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Sample Size Calculation and Optimal Design for Regression-Based
Norming of Tests and Questionnaires

Francesco Innocenti1, Frans E. S. Tan1, Math J. J. M. Candel1, and Gerard J. P. van Breukelen1, 2
1 Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University
2 Department of Methodology and Statistics, Graduate School of Psychology and Neuroscience, Maastricht University

Abstract
To prevent mistakes in psychological assessment, the precision of test norms is important. This can be
achieved by drawing a large normative sample and using regression-based norming. Based on that norming
method, a procedure for sample size planning to make inference on Z-scores and percentile rank scores is
proposed. Sampling variance formulas for these norm statistics are derived and used to obtain the optimal
design, that is, the optimal predictor distribution, for the normative sample, thereby maximizing precision of
estimation. This is done under five regression models with a quantitative and a categorical predictor, differ-
ing in whether they allow for interaction and nonlinearity. Efficient robust designs are given in case of uncer-
tainty about the regressionmodel. Furthermore, formulas are provided to compute the normative sample size
such that individuals’ positions relative to the derived norms can be assessed with prespecified power and
precision.

Translational Abstract
Normative studies are needed to derive reference values (or norms) for tests and questionnaires, so that psy-
chologists can use them to assess individuals. Specifically, norms allow psychologists to interpret individu-
als’ score on a test by comparing it with the scores of their peers (e.g., individuals with the same sex, age, and
educational level) in the reference population. Because norms are also used tomake decisions on individuals,
such as the assignment to clinical treatment or remedial teaching, it is important that norms are precise (i.e.,
not strongly affected by sampling error in the sample on which the norms are based). This article shows how
this goal can be attained in three steps. First, norms are derived using the regression-based approach, which
is more efficient than the traditional approach of splitting the sample into subgroups based on demographic
factors and deriving norms per subgroup. Specifically, the regression-based approach allows researchers to
identify the predictors (e.g., demographic factors) that affect the test score of interest, and to use the whole
sample to derive norms. Second, the design of the normative study (e.g., which age groups to include) is cho-
sen such that the precision of the norms is maximized for a given total sample size for norming. Third, this
total sample size is computed such that a prespecified power and precision are obtained.

Keywords: normative data, optimal design, percentile rank score, sample size calculation, Z-score
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Normative studies provide reference values, also known as
norms, that psychologists can use to compare individuals with the
reference population, for instance, to make decisions about clinical

treatments, school admission or remedial teaching, or selection of
candidates for job vacancies. Examples of normative studies are
Goretti et al. (2014) and Parmenter et al. (2010), who have derived
reference values for two batteries of neuropsychological tests to
assess cognitive function in patients with multiple sclerosis, and
Van der Elst et al. (2006), who have normed the Dutch version of
three verbal fluency tests. Normative studies are of practical im-
portance because they allow psychologists to interpret scores on
the outcome variable of interest by comparing an individual’s test
score with the scores of his or her peers (e.g., individuals of the
same age, sex, and educational level) in the reference population.
For instance, knowing that a highly educated 75-year-old woman
scored 11.5 on the profession naming verbal fluency test is in itself
not informative on whether this score is within the normal range
or exceptional. According to the normative data provided by Van
der Elst et al., (2006, Table A.2), only 10% of her peers (i.e.,
women of the same age and educational level) have a test score equal
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to or lower than 11.5, which indicates that her access to semantic
memory is well below the average and might lead her psychologist
to perform further tests, given that a poor performance on verbal flu-
ency tests has been associated with Alzheimer’s disease (Van der
Elst, et al., 2006). This example shows that it is crucial to have pre-
cise norms to prevent mistakes in psychological assessment.
There are two approaches to norming: the traditional approach

and the regression-based approach. The traditional approach con-
sists of first splitting the sample drawn for norming into subgroups
based on some relevant demographic factors like age and sex, and
then computing the norm statistics of interest within each sub-
group. Instead, in the regression-based approach, first, a regression
of the test score on some relevant predictors is performed, and
then norm statistics are estimated from the cumulative distribution
of the standardized residuals obtained from the model (Oosterhuis
et al., 2016; Van Breukelen & Vlaeyen, 2005). The regression-
based approach has several advantages. First, it uses the whole
sample to establish norms instead of norming per subgroup,
thereby increasing the precision of the norms, that is, reducing the
role of sampling error in estimating the norms. Second, it allows
researchers to identify which independent variables (e.g., demo-
graphic factors) affect the test score, thereby increasing the valid-
ity of the norms. Third, under the (testable) assumption of a
specific regression model for relating the test score to relevant pre-
dictors such as age and sex, it is possible to express the sampling
error of the norm statistic of interest as a function of the joint dis-
tribution of the predictors, for instance the age distribution per sex,
and the sex distribution, in the normative sample. Subsequently,
one can then find that joint distribution of the predictors that mini-
mizes this sampling error and thus maximizes the precision of the
norms under the assumed regression model. This joint distribution
will be called the optimal design for the normative study. In con-
trast, the traditional approach forces the researcher to choose
between two evils: establishing a single set of norms for the whole
population, thus ignoring effects of demographic factors, or estab-
lishing a separate set of norms per subgroup as defined by demo-
graphic factors, by splitting the normative sample into subgroups
and thus reducing the sample size and precision of norming. For
these reasons, the regression-based approach is adopted here. The
validity of the regression model must be tested, of course.
This article provides the optimal design for estimating Z-scores

and percentile rank scores under linear regression models that
include a quantitative predictor (e.g., age) and a categorical predictor
(e.g., sex), for which the residual errors (i.e., the differences between
observed and predicted test scores) are assumed to be normally dis-
tributed and homoscedastic, possibly after a suitable transformation
of the test score. Furthermore, it will be shown how to compute the
total sample size for the normative study using the optimal design,
and sample size requirements will be provided for the most relevant
Z-scores and percentile rank scores used in practice.
To the best of the authors’ knowledge, there is only one other ar-

ticle, Oosterhuis et al. (2016), that provides sample size require-
ments for normative studies. Specifically, Oosterhuis et al. (2016)
give sample size guidelines for percentile estimation under both tra-
ditional and regression-based norming, and show that regression-
based norming requires smaller sample sizes than traditional
norming. However, these sample size requirements are based on a
simulation study, and no equations are given in Oosterhuis et al.
(2016) that can be used, for instance, to derive the optimal design.

Oosterhuis et al. (2017) do provide variance formulas for several
norm statistics, but predictors are not considered in the norming,
and then no optimal design can be obtained from their formulas. In
contrast, the variance formulas given in the present article are
obtained under a regression model that includes predictors, thus
allowing the derivation of the optimal design.

This article is organized as follows. First, the considered models
are introduced, and first-order Taylor series approximations of the
variances of an estimated Z-score and an estimated percentile rank
score are derived. Second, the optimal designs (i.e., the optimal
joint distribution of the predictors) for the considered models are
shown, and it is discussed how to deal with uncertainty about the
“true” model at the design stage. Third, a procedure is proposed to
determine the required total sample size for the optimal design,
given a desired power level for hypothesis testing, or a desired pre-
cision level for interval estimation. Fourth, the results of this article
are illustrated with a real-life example. Finally, some concluding
remarks are made. Online Supplement A presents the results of a
literature review on regression-based normative studies, and of two
simulation studies that assessed the bias of the variance approxima-
tions given in the next section and of their estimators. Furthermore,
online Supplement A gives the derivations of the optimal and ro-
bust designs. Online Supplement B provides the R codes (R Core
Team, 2019), and additional results of the simulation studies.

Models for Norming and Variances of
the Norm Statistics

Models for Norming and Norm Statistics

A sample of N individuals is drawn from the reference popula-
tion. This is called the normative sample. The normative sample
allows researchers to identify which variables influence scores on
the outcome variable of interest, to estimate the unknown model
parameters, and to derive reference values, also known as norms.
Once the norms are available, practitioners can use them to com-
pare individuals’ (e.g., patients’, or students’, or job applicants’)
scores with the reference population.

Let Yi be the score on the outcome variable (e.g., score on a verbal
fluency test) of individual i (i ¼ 1; . . . ;N). Denote by X1 a quantita-
tive variable (e.g., age), and X2 a categorical variable coded 0/1 (e.g.,
sex). The following multiple regression models can then be consid-
ered in order of increasing complexity and flexibility:

Yi ¼ b0 þ b1X1i þ b2X2i þ ei; (1)

Yi ¼ b0 þ b1X1i þ b2X2i þ b3X
2
1i þ ei; (2)

Yi ¼ b0 þ b1X1i þ b2X2i þ b4X1iX2i þ ei; (3)

Yi ¼ b0 þ b1X1i þ b2X2i þ b3X
2
1i þ b4X1iX2i þ ei; (4)

Yi ¼ b0 þ b1X1i þ b2X2i þ b3X
2
1i þ b4X1iX2i þ b5X

2
1iX2i þ ei:

(5)

In all models (1–5) it is assumed that ei �Nð0;r2
eÞ, that is, nor-

mality and homoscedasticity are assumed throughout the article.
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In Model 3, the regression coefficient of the interaction between
X1 and X2 is called b4, instead of b3, in order to unequivocally
identify each regression parameter with a certain predictor
throughout the text. Concerning the assumption of a linear or
quadratic effect of X1, note that any relation between Y and X1 that
can be described as part of a (inverted) U-shape, including a mon-
otonic relation with accelerating or decelerating slope, can be fit-
ted with a quadratic model.
Concerning the assumptions of normality and homoscedastic-

ity, it is relevant to mention that in a literature review of 65
regression-based normative studies, involving 396 psychologi-
cal tests, both normality and homoscedasticity appeared to be
satisfied by conventional diagnostics in 71% of the models for
which checks on these assumptions were reported (online
Supplement A, Table S.A.1). Furthermore, the most common
predictors were age (present in 88% of the models used for
norming), sex (45%), and education (81%) (online Supplement
A). In a literature review of 65 tests, Oosterhuis et al. (2016)
have also found that these three predictors were the most rele-
vant in defining norms, but age was used in 36.2% of the tests,
sex in 33.3%, and educational level/job position in 30.4%.
Nevertheless, education was not included in Models 1–5,
because it would have been unfeasible to treat all possible mod-
els obtained from taking into account all possible degrees of
interaction between the three predictors and the fact that educa-
tion can be treated either as a categorical (i.e., low, medium,
high level of education) or a quantitative variable (i.e., number
of years in school). However, the variance formulas given in
this section depend neither on the number of predictors, nor on
their scale types.
In the notation, summarized in Table 1, it is important to

make a distinction between, on the one hand, the normative
sample from the reference population, from which the norms
are derived, and, on the other hand, the individual (e.g., patient,
student, job applicant) to whom the norms are applied.

Normative Sample

The five considered models for the reference population
are all standard regression equations and can be expressed
in the matrix form y ¼ Xbþ e, where y is the N3 1 vector
of scores on the outcome variable, X is the N3 ðkþ 1Þ
design matrix, b is the ðkþ 1Þ3 1 vector of regression coef-
ficients, and e is the N3 1 vector of residual errors such
that e ¼ ðy �XbÞ�Nð0;r2

eI NÞ, where N is the number of
individuals in the normative sample. The OLS estimators of

the unknown parameters b and r2
e are, respectively, b̂ ¼

ðX 0XÞ�1X 0y�Nðb;r2
eðX 0XÞ�1Þ and r̂2

e ¼ ê 0 ê
N�k�1 with ðN �

k� 1Þr̂2
e �r2

ev
2
N�k�1 (Johnson & Wichern, 1998, pp. 389–390),

so that Eðr̂2
eÞ ¼ r2

e and Vðr̂2
eÞ ¼ r4

e
2

N�k�1, where ê ¼ y � ŷ ¼
y �X b̂.

Individual to Whom the Norms Are Applied

Having estimated the unknown model parameters b and
r2
e , one can use these estimates to compare an individual

with the reference population. This is done by converting
the individual’s outcome value into a Z-score. Denote by
x0 the ðkþ 1Þ3 1 vector containing the individual’s scores
on the predictors. Let Y0 ¼ x0

0bþ e0 be the observed individ-
ual’s score on the outcome, and e0 the individual’s residual
error such that e0 �Nð0;r2

eÞ. The individual’s Z-score is

then defined as Z0 ¼ e0
re

¼ r�1
e ðY0 � x0

0bÞ and is estimated by

Ẑ0 ¼ ê0
r̂e

¼ r̂�1
e ðY0 � Ŷ 0Þ ¼ r̂�1

e ðY0 � x0
0b̂Þ, where r̂e and b̂

have been obtained from the normative sample. Under nor-

mality and homoscedasticity, this Ẑ0 tells us how many
standard deviations the individual’s test score is below or
above the average in the reference population, adjusted for
the predictors in the model.

Alternatively, one can compare the individual’s test score
Y0 with the reference population by computing the percentile

rank score PR0 corresponding to the individual’s Ẑ0, that is,
the percentage of individuals in the reference population

with a Z-score equal to or lower than that Ẑ0. Under the
assumptions of normality and homoscedasticity, the percen-
tile rank score can be estimated by:

PRðẐ0Þ ¼ UðẐ0Þ3 100; (6)

where U(·) is the cumulative distribution function of the
standard normal distribution. In the sequel, the subscript “0”
will be used for symbols referring to the individual to whom
the norms are applied (as opposed to symbols for the norma-
tive sample).

Variances of the Norm Statistics

The sampling variances of Ẑ0 and PRðẐ0Þ are derived using the
Delta method (Casella & Berger, 2002, p. 245). Oosterhuis et al.
(2017) have also derived variance formulas for Z-scores and PR-
scores using the Delta method. However, the results presented here

Table 1
Section in Which a Symbol is Used for the First Time

Section Symbols

Models for norming and norm statistics N, Y , X1, X2, b0, b1, b2, b3, b4, b5, e, r
2
e , y, X , b, e, k, b̂, r̂2

e , ê, ŷ , Y0, x0, e0, Z0, Ẑ 0, ê0, Ŷ 0, PR0, PR Ẑ 0

� �
, U

Variances of the norm statistics V Ẑ0

� �
, V PR Ẑ 0

� �� �
, /, V̂ Ẑ 0

� �
, V̂ PR Ẑ 0

� �� �
, n

Optimal and robust design w, n�, d X ; nð Þ, n�1, n�2, Q2, w�
1, w

�
2, w

�, RE n vs n�ð Þ
Sample size calculation V Ẑ0

� ��
, V PR Ẑ 0

� �� ��
, Zc, PRc, Zt, PRt, d, N�, a, 1� c, z1�a, z1�a=2, z1�c, ZPRc , ZPRt , U

�1, s

Note. Symbols with subscript “0” refer to the individual to whom the norms are applied (i.e., not a member of the normative sample).

REGRESSION-BASED NORMING: OPTIMAL DESIGN AND SIZE 3
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differ from those of Oosterhuis et al., (2017) in two ways. First,
Oosterhuis et al., (2017) did not consider predictors in the norming,
thereby restricting application of their results to subgroups based on
those predictors (the traditional norming approach), while here the
regression-based approach is adopted by assuming Models 1–5 for
norming. Second, here the residual error ei is assumed to be nor-
mally distributed, possibly after data transformation, whereas in
Oosterhuis et al., (2017) the raw test score Yi was assumed to fol-
low a multinomial distribution because each Yi value was treated
as a possible outcome of a trial, over N independent trials. How-
ever, scores on a test are not necessarily integer values (see, for
instance, Van der Elst, et al., 2006, Tables A.1–A.3), and treat-
ing test scores as continuous outcomes is a standard approach,
as evidenced by the 65 regression-based normative studies
reviewed in online Supplement A. As mentioned in the introduc-
tion, adopting the regression-based approach makes it possible
not only to derive norms based on the whole sample yet adjusted
for predictors, but also to derive the joint distribution of the pre-
dictors that maximizes the precision of norm statistics estima-
tion, that is, the optimal design.
The sampling variances of Ẑ0 and PRðẐ0Þ arise from the sam-

pling error in b̂ and r̂2
e in the normative sample, and not from

measurement error in the outcome of the individual to whom the
norms will be applied, so conditioning on Y0. Measurement error
in Y0 itself is beyond the scope of this article, which is about the
optimal design for the normative study (i.e., the optimal joint dis-
tribution of the predictors in the norming model). Note, however,
that measurement error can be reduced by measuring the outcome
repeatedly and averaging per individual in the normative sample

as well as in applying norms to individuals. For Ẑ0, the sampling
variance is (for proofs, see Appendix A):

VðẐ0Þ � x0
0ðX 0XÞ�1x0 þ 1

2ðN � k� 1ÞZ
2
0 : (7)

For PRðẐ0Þ, the sampling variance is (for proofs, see Appendix
A):

VðPRðẐ0ÞÞ � 1002/ðZ0Þ2VðẐ0Þ ¼ 1002/ðZ0Þ2

3 x0
0ðX 0XÞ�1x0 þ 1

2ðN � k� 1ÞZ
2
0

� �
; (8)

where /ð�Þ is the probability density function of the standard nor-
mal distribution. Equations 7 and 8 can be estimated as follows

V̂ ðẐ0Þ � x0
0ðX 0XÞ�1x0 þ 1

2ðN � k� 1Þ Ẑ
2
0; (9)

and

V̂ ðPRðẐ0ÞÞ � ð1003/ðẐ0ÞÞ2

3 x0
0ðX 0XÞ�1x0 þ 1

2ðN � k� 1Þ Ẑ
2
0

� �
; (10)

which differ from Equations 7 and 8 in replacing the unknown

true Z0 with the estimator Ẑ0.

Equations 7 and 8, as well as Equations 9 and 10, are based
on first-order Taylor series approximations, so their bias must
be assessed. This was done through two simulation studies in

which Equations 7–10 were compared with the true VðẐ0Þ and
VðPRðẐ0ÞÞ, for which no analytical expressions were known, hence
the need for simulations of true values. The design and the results
of these simulation studies are thoroughly discussed in online
Supplement A. A summary of the results of the simulation studies
is given in Appendix B, and additional results are given in online
Supplement B. In the first simulation study, the relative bias of

Equations 7 and 8 for VðẐ0Þ and VðPRðẐ0ÞÞ, respectively, and the

absolute bias of Ẑ0 and Equation 6 for PRðẐ0Þ were assessed. In
the second simulation study, the relative bias of Equations 9 and 10

for V̂ðẐ0Þ and V̂ ðPRðẐ0ÞÞ, respectively, and the coverage of the
95% confidence interval obtained using Equations 9 and 10 were
assessed. The smallest sample size considered in the simulation
studies was N ¼ 338. From the two simulation studies the follow-
ing practical recommendations can be given:

• Equation 7 for VðẐ0Þ and Equation 9 for V̂ðẐ0Þ are accu-
rate (i.e., relative bias 2 ð�3%; 3%ÞÞ even for small sam-
ple sizes such as N ¼ 338. Likewise, the 95% confidence
interval for Z0, obtained using Equation 9, has good cover-
age (i.e., coverage ¼ 95%6 0:5%) for N$ 338.

• When the target of inference is PR, the sample size should be
N$ 1,690 in order to guarantee acceptable bias in Equation 6
for PRðẐ0Þ (i.e., absolute bias 2 ½�0:1; 0:1�Þ, in Equation 8
for VðPRðẐ0ÞÞ (i.e., relative bias 2 ½�5%; 3%�), and in
Equation 10 for V̂ ðPRðẐ0ÞÞ (i.e., relative bias 2 ½�3%; 5%�),
and good coverage (i.e., coverage ¼ 95%6 1%) across all
considered models (i.e., Equations 1–5). Under Model 1, the
sample size for PR-scores can be N$ 676, but not for the other
models with the relative bias of Equations 8 and 10 exceeding
10%, and the coverage approaching 93%.

These lower-bounds for the sample size (i.e., 338 for Z-scores
and 1,690 for PR-scores) are in line with typical sample sizes for
normative studies (see Figure S.A.1, online Supplement A, and
Oosterhuis et al., 2016).

In study planning, one wants to determine the required sample
size to achieve the desired precision level for estimating (or power
level for testing hypotheses on) a true Z-score or PR-score of inter-
est. Hence, in sample size calculation one should use Equations 7–8
instead of Equations 9–10, because the former equations are func-
tions of the true Z0, while the latter equations are functions of the

estimate Ẑ0, which is available only after the study has been carried
out. Clearly, taking N as large as feasible minimizes Equations 7
and 8, but is a waste of resources, when the desired precision of
norm estimation can be obtained with a smaller sample size. The
sample size can be minimized even further by the design n (i.e., the
joint distribution of the predictors in the regression model for norm-
ing) of the normative sample. Such optimal designs will be pre-
sented for Models 1–5 in the next section. Next, in the Sample Size
Calculation section, two approaches are proposed to determine the
required size for the normative sample given an optimal design.
The first approach ensures a desired power level for hypothesis test-
ing, while the second approach ensures a desired margin of error
for confidence interval estimation.
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Optimal and Robust Design

Designs for Optimizing Precision of Z-Score and
PR-Score Estimation

Theory

In this section, the optimal design that maximizes the precision
of Z-score and PR-score estimation is presented. A design n is
defined as a joint distribution of the predictors in the normative
sample, given N. Each possible combination of the levels of the
predictors (e.g., a 50-year-old male, or a 30-year-old female), is
called a support point of n, and the proportion of the total N allo-
cated to a support point is called design weight (w). The optimal
design n� is then defined as that joint distribution of the predictors
(or equivalently, as that distribution of the total sample over the
support points) that maximizes precision of Z-score and PR-score
estimation, that is, that minimizes Equations 7 and 8 given N. This
optimization is done over the design region, that is, over the set of
all possible support points. In this optimization, 1

2ðN� k� 1Þ Z
2
0 in

Equations 7 and 8, and 1002/ðZ0Þ2 in Equation 8 are kept fixed,
because these terms do not depend on the normative sample
(apart from its size N), but on the true Z0 of the individual (e.g.,
patient, student, job applicant) to whom the norms are applied. A
safe approach is to minimize Equations 7 and 8 for the worst-case
scenario, that is, for that set of values of the predictors x0 for

which VðẐ0Þ and VðPRðẐ0ÞÞ are maximum, given N and Z0. This
in turn comes down to finding the D-optimal design, that is, to

minimizing the determinant of ðX 0XÞ�1 (Atkinson et al., 2007;
Berger & Wong, 2009; Goos & Jones, 2011). To see this, note

that x0
0ðX 0XÞ�1x0, in Equations 7 and 8, is proportional to the

standardized prediction variance for a given design n, dðX ; nÞ ¼
Nr�2

e VðŶ 0Þ ¼ Nr�2
e Vðx0

0b̂Þ ¼ Nx0
0ðX 0XÞ�1x0 (Atkinson et al.,

2007, p. 55, Equation 5.32). Thus, the minimization of the max-

imum VðẐ0Þ and VðPRðẐ0ÞÞ over the design region can be done
by minimizing the maximum dðX ; nÞ over the design region,
which is known as G-optimality (Atkinson et al., 2007; Berger
& Wong, 2009; Goos & Jones, 2011). Under homoscedasticity
of the residual (e) distribution, the equivalence theorem states
that G-optimality is equivalent to D-optimality. Hence, the D-
optimality criterion will be used here, and the obtained designs
will be both D- and G-optimal. The equivalence theorem also
states that a design n is D-/G- optimal if and only if dðX ; nÞ ¼
ðkþ 1Þ at its support points (i.e., at each combination of predic-
tor values included in that design) and dðX ; nÞ, ðkþ 1Þ over
the rest of the design region (Wong, 1995), where ðkþ 1Þ is the
number of regression coefficients in the model. This latter result
can be used to check whether a design is D-optimal by plotting
the standardized prediction variance dðX ; nÞ over the design
region, and will be used in the Sample Size Calculation section

to derive an expression for VðẐ0Þ and VðPRðẐ0ÞÞ under the opti-
mal design.
In order to derive the optimal design analytically, it is helpful to

categorize multiple regression models, such as Equations 1–5,
based on the degree of interaction between predictors (Schwabe,
1996). There are three possible degrees of interaction and thus
three types of models: complete interaction (that is, all possible

interactions between predictors are included in the model, like in
Models 3 and 5), no interaction (that is, Models 1 and 2), and par-
tial interaction (i.e., not all possible interactions are present, like in
Model 4). However, for all types of models the D-optimal design
(n�) is obtained by combining the optimal designs (n�1 and n�2) for
the marginal models, where the marginal models are the model
with just X1 (and possibly X2

1) and the model with just X2 as given
in Table 2 (for details, see online Supplement A, pp. 37–39).

Results

Table 2 gives (from left to right): the full model (first column),
the marginal models (second column), the optimal designs for the
marginal models n�1 and n�2 (third and fourth columns), and the D-
optimal design n� for the full model (fifth column). All designs n�1
and n�2 in Table 2 (third and fourth columns) are D-optimal, with
the only exception of n�1 under the partial interaction Model 4, for
technical reasons explained in online Supplement A (pp. 37–39).
In Table 2, the range of values for the quantitative predictor X1

(e.g., age) is rescaled to the interval ½�1; 1� (to emphasize that the
results in Table 2 are valid for any age range, e.g., 20–80 or 50–90
years, where the range is chosen by the researcher, e.g., the age
range for which the test to be normed is intended), and the categor-
ical predictor X2 (e.g., sex) is coded as 0/1. This does not affect
the results in Table 2, because D-optimality is invariant with
respect to linear transformations of the scale of the predictors
(Atkinson et al., 2007, p. 152; Berger & Wong, 2009, p. 40;
Schwabe, 1996, p. 22). A graphical illustration of the designs in
Table 2 (third, fourth, and fifth columns) is given in Figure 1,
where design weights are represented by dot size. As Figure 1
shows, the D-optimal design n� in Table 2 consists of replicating
the optimal design for the quantitative predictor X1 (Table 2, third
column) at each level of the categorical predictor X2, which has
only two levels in Figure 1, but the results in Table 2 hold for any
number of levels of X2 (e.g., for three levels if X2 is education:
low, medium, high). Two main results can be seen in Table 2 and
Figure 1 First, the D-optimal design n� has two age levels and
these are at the boundaries of the age range, when the marginal
model for age includes only a linear effect, and it has three equi-
distant age levels when a quadratic effect is present in the marginal
model for age (Table 2, second and fifth column). Second, the D-
optimal design n� is balanced, that is, each support point of n�

(i.e., age-sex combination, such as X1 ¼ �1 and X2 ¼ 1) has the
same design weight (i.e., the same sample size). An exception to
the latter result is the D-optimal design for Model 4 that gives
more weight to age levels �1 and 1 than it does to age level 0.
This can be explained by noting that Model 4 combines Models 2
and 3, and that the D-optimal design under Model 4 is then a com-
promise between the D-optimal designs under Models 2 and 3.
Indeed, this design gives equal weight to X1 ¼ �1 and X1 ¼ þ1,
which are needed to estimate the linear age effect (like for all mod-
els) as well as the interaction effect (like for Model 3), and a
smaller weight to X1 ¼ 0, which is needed only to estimate the
quadratic age effect (like for Model 2).

Including in a normative sample only two or three age levels
over the whole age range, as suggested by Table 2, may sound
counterintuitive, particularly if one compares this approach with
the traditional norming that categorizes age into equidistant groups
over the whole age range of interest (e.g., 20–30, 30–40, 50–60,
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60–70, and 70–80 years). The key point to understand here is that
the two/three age levels required by the optimal designs in Table 2
are a consequence of the assumption of a linear/quadratic age
effect. If the linear/quadratic relation between age and Y is the
“true” model (i.e., the best fitting polynomial), then including
additional age levels into the normative sample yields, under the
constraint of a fixed total N, a loss of statistical efficiency com-
pared with the two/three age levels normative sample prescribed
by Table 2 (as will be illustrated in the next section). However, the
“true” model is often unknown and therefore the correctness of the
specified model is uncertain. How to deal with uncertainty about
the “true” model is the topic of the next section.

The results in Table 2 can be easily extended to models with
three predictors, say age, sex and education, with complete or no
interaction between age, sex, and education. If education is treated
as a categorical predictor (e.g., low, medium, high level), theT
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Figure 1
Optimal Designs for the Marginal Models (Central Column), and
D-Optimal Designs That Maximize Precision of Z-Score and PR-
Score Estimation Under Models 1–5 (Rightmost Column)

Note. Dot size represents the design weights in Table 2 (for details, see
online Supplement A, pp. 37–39). Recall that X1 (e.g., age) 2 �1; 1½ � and
X2 (e.g., sex) 2 0; 1f g.
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D-optimal design is obtained by replicating the D-optimal design
for age (Table 2, third column) at each combination of sex and
education (i.e., with Q2, now, as the number of combinations of
sex and education). If education is treated as a quantitative predic-
tor (e.g., number of years in school), the D-optimal design is
obtained by replicating, at each level of sex, the D-optimal design
for age and education. The latter, in turn, is obtained by crossing
the D-optimal design for age (Table 2, third column) with that for
education (Table 2, third column), with as design weights the
product of the optimal weights of these two designs. For instance,
if age and education have at most a quadratic effect, then the D-
optimal design for the model with complete or no interaction
crosses age values �1, 0, and 1 with the same values for educa-
tion, with design weight 1=18 for each of the nine age by educa-
tion combinations which are to be replicated per level of sex. For
optimal designs for higher-order polynomial effects, such as cubic,
see Table 3.5 in Berger and Wong (2009).

Efficiency of the Optimal DesignWhen There is
Uncertainty About the “True”Model

The optimal designs in Table 2 depend on the assumed model,
that is, they are optimal under the chosen model. At the design
stage, however, the “true” model (i.e., the best fitting model) might
be unknown. A solution to this issue is to find the design most ro-
bust against misspecification of the model. The most robust design
can be obtained using two alternative criteria: the relative effi-
ciency, and the efficiency. Under the relative efficiency criterion,
the most robust design is defined as the design that guarantees the
highest minimum relative efficiency (i.e., relative to the optimal
design for a model) across all plausible models, and is called the
RE maximin design. Under the efficiency criterion, instead, the
most robust design is defined as the design that yields the highest
minimum efficiency across all plausible models and is called the
absolute maximin design (Van Breukelen & Candel, 2018). It will
be shown that, when Models 1–5 are all equally plausible, the D-
optimal design for Models 2 and 5 in Table 2 is both the RE maxi-
min design and the absolute maximin design.

Relative Efficiency Criterion

Given a fixed total N, the relative efficiency of a design n versus

the optimal design n� is defined as the ratio of VðẐ0Þ or

VðPRðẐ0ÞÞ (that is, Equations 7 or 8) under n� to VðẐ0Þ or

VðPRðẐ0ÞÞ under n, which reduces to the following expression
(for proof, see online Supplement A, pp. 39–40):

REðn vs n�Þ � dðX ; n�Þ þ Z2
0
2

dðX ; nÞ þ Z2
0
2

; (11)

where dðX ; nÞ ¼ Nx0
0ðX 0XÞ�1x0 is the standardized prediction

variance under design n. The RE maximin design is obtained in
three steps:

1. For each design, find the lowest value of Equation 11
over x0, assuming each plausible model in turn to be the
“true” model, given Z0. This yields for each design and
model combination the minimum RE.

2. For each design, find the lowest minimum RE among all
minimum REs as obtained in Step 1, given Z0. This gives,
for each design, the lowest minimum RE across all plausi-
ble models.

3. Take the design with the highest lowest minimum RE
across all designs considered.

The results of Steps 1–2, when Models 1–5 are all equally
plausible, are shown in Table 3 for Z0 ¼ 0 and Z0 ¼ 62 (for
details, see online Supplement A, pp. 39–40). As can be seen in
Table 3, the most robust design is the design in the second row
(that is, the optimal design under Models 2 and 5), because that
design has the highest lowest minimum relative efficiency
across all designs considered. Further, a numerical evaluation
has shown that what is the most robust design does not depend
on Z0 (for details, see online Supplement A, pp. 39–40). In its
worst-case scenario (that is, true Model 3), the optimal design

under Models 2 and 5 requires, for Z0 ¼ 0, ðRE�1 � 1Þ100% ¼
ð0:80�1 � 1Þ100% ¼ 25% more persons than the optimal design
for that case (that is, for Model 3).

Note that Table 3 does not show all possible comparisons,
because some of them are not feasible. Indeed, a design should
include enough support points to ensure the estimation of all
model parameters. For instance, a quadratic effect needs (at least)
three support points to be identifiable, thus the relative efficiency
of a design which has only two support points per sex level (that
is, the optimal designs for Models 1 and 3) cannot be computed if
the “true” model is Model 2, 4, or 5). Furthermore, Table 3 shows
that including into the normative sample more age levels than pre-
scribed by the optimal design under the “true” model, while keep-
ing the total N fixed, is statistically inefficient. The REðn vs n�Þ of
equidistant age levels designs with four, five, six, and thirteen age
levels, is shown in the last four rows of Table 3, and it decreases
as the number of age levels increases. Specifically, the thirteen
equidistant age levels design (i.e., that used in the simulation stud-
ies and perhaps the most appealing design for traditional norming
if the age range is large, e.g., from 20 to 80 years) requires, depend-

ing on the “true” model, between ð0:6563�1 � 1Þ100% � 52% and

ð0:4468�1 � 1Þ100% � 124% more persons than the optimal

design, for Z0 ¼ 0, and between ð0:7609�1 � 1Þ100% � 31% and

ð0:5185�1 � 1Þ100% � 93% more persons, for Z0 ¼ 62.

Efficiency Criterion

Efficiency is defined as ðVðẐ0ÞÞ�1 or ðVðPRðẐ0ÞÞÞ�1, depend-
ing on the norm statistic of interest. The absolute maximin design
is obtained in three steps:

1. For each design, find the minimum efficiency (i.e., the
maximum VðẐ0Þ or VðPRðẐ0ÞÞÞ over x0, assuming each
plausible model in turn to be the “true” model, given N
and Z0.

2. For each design, find the lowest minimum efficiency
among all minimum efficiency values obtained in Step 1,
given N and Z0, thus obtaining, for each design, the low-
est minimum efficiency across all plausible models.
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3. Take the design with the highest lowest minimum effi-
ciency (i.e., the lowest highest maximum VðẐ0Þ or
VðPRðẐ0ÞÞÞ across all designs considered.

When all Models 1–5 are plausible, Steps 1–3 yield the D-opti-
mal design for Models 2 and 5 in Table 2 as the absolute maximin
design (see online Supplement A, p. 41). Recall that this design is
also the RE maximin design. Also note that designs with more
than three age levels are not only inefficient in terms of their rela-
tive efficiencies (see Table 3), but also in terms of their efficien-
cies (online Supplement A, Table S.A.3), at least given the
present set of plausible models.

Sample Size Calculation

Sample Size Calculation for Hypothesis Testing

The results of the previous sections are used in this section to
determine the sample size N for a normative study under the opti-
mal design (i.e., the optimal joint distribution of the predictors).
Specifically, the required sample size can be determined using
Equations 7 and 8 under the optimal design n� as follows. First,

note that dðX ; nÞ (and thereby also VðẐ0Þ and VðPRðẐ0ÞÞ), as a
function of the predictor value x0, has its maximum at the support
points of the optimal design (a result of the equivalence theorem,
see also Figure 2, first row), which thus are safe starting points for
sample size calculation, because other predictor values give
smaller sampling variances. Second, at any of the support points
of the optimal design n�, Equations 7 and 8 can be rewritten for
n� as follows (with k ¼ number of predictors, see Table 1):

VðẐ0Þ� � kþ 1
N

þ 1
2ðN � k� 1Þ Z

2
0 � 2ðkþ 1Þ þ Z2

0

2N
; (12)

and

VðPRðẐ0ÞÞ� � 1002/ðZ0Þ2VðẐ0Þ�

� 1002/ðZ0Þ2 2ðkþ 1Þ þ Z2
0

2N

� �
; (13)

by plugging into Equations 7 and 8 x0
0ðX 0XÞ�1x0 ¼ dðX ;nÞ

N and
by noting that dðX ; n�Þ ¼ kþ 1 (a result of the equivalence theo-
rem, see also Figure 2, first row). Regarding the first approxima-
tion in Equations 12 and 13, recall that Equation 7 is an accurate

approximation of the true VðẐ0Þ for N$ 338, and Equation 8 is

an accurate approximation of the true VðPRðẐ0ÞÞ for N$ 1,690
(online Supplement A, pp. 7–33). For these lower-bounds for the
sample size, N � k� 1 � N which gives the second approxima-
tion in Equations 12 and 13. Hence, the required sample size can-
not be smaller than these two to ensure that the approximations
are satisfactory.

To infer sample size recommendations from Equations 12 and
13, one needs to define the objective of the norming study first and
then determine the required sample size. In practice, the main use
of reference values is to classify individual’s performance relative
to a chosen cut-off point as, say, “normal” (e.g., �2# Z0 # þ 2 or
5#PR0 # 95) versus “too low” (e.g., Z0 , � 2 or PR0 , 5) orT
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“too high” (e.g., Z0 > þ2 or PR0 > 95), in order to make decisions
about, for instance, clinical treatments or remedial teaching. The
size of the normative sample must then be sufficiently large to
allow adequate classification of the individual. This classification
problem can be expressed in terms of hypothesis testing, and the

required sample size can be determined as a function of type I error
rate, power, and effect size. Denote by Zc or PRc the cut-off point
to be used for decision making, and denote by Zt or PRt the individ-
ual’s true Z- or PR-score, and by d the smallest “clinically relevant”
difference between Zt and Zc, or between PRt and PRc. Depending

Figure 2
Standardized Prediction Variance d X ; nð Þ, as Function of Individual’s Age and Sex (i.e., x0),
Under the Five Optimal Designs n� in Table 2 (Top Half of Figure 2), and Under the 13
Equidistant Age Levels Design in the Last Row of Table 3 (Bottom Half of Figure 2)
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Note. The horizontal lines in each panel are located at k þ 1 (i.e., the number of regression coefficients) for
each model. From the equivalence theorem (Atkinson et al., 2007); a design n is D/G-optimal if and only if
d X ; nð Þ ¼ k þ 1ð Þ at its support points and d X ; nð Þ, k þ 1ð Þ over the rest of the design region. Note that
while the designs in Table 2 satisfy this condition (see top half of the figure), the 13 equidistant age levels
design does not (see bottom half of the figure).
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on the norm statistic type of interest (i.e., Z-score or PR-score),
the null hypothesis H0 is defined as either Zt ¼ Zc or PRt ¼ PRc,
and the alternative hypothesis H1 is one-sided, that is, either
Zt , Zc or PRt ,PRc (if Zc , 0 or PRc , 50), or Zt > Zc or PRt >

PRc (if Zc > 0 or PRc > 50), because in practice psychologists
are usually interested in distinguishing between “normal” and
“too low” (for performance), or between “normal” and “too
high” (for clinical symptoms). Thus, the required sample size is
here defined as that size N� of the normative sample that allows
to detect the smallest “clinically relevant” difference (d) between
individual’s true Z- or PR-score (Zt or PRt) and the cut-off point
used for classifying individuals (Zc or PRc), given a prespecified
type I error rate a and power 1� c. The required sample size N�

can be computed with the following procedure:

1. Choose the regression model for norming (thus fixing the
number of predictors k), the norm statistic of interest (i.e.,
Z-score or PR-score), the cut-off point for classifying
individuals (e.g., Zc ¼ �2 or PRc ¼ 5), the Type I error
rate a, the power 1� c, and the smallest “clinically rele-
vant” difference d > 0 between Zt and Zc, or between PRt

and PRc, that one wants to be able to detect.

2. Compute the required sample size with one of the follow-
ing equations (for proofs, see Appendix C). For Z-scores,
the required sample size N� is given by

N� ¼
z1�a kþ 1þ Z2

c
2

� �1=2
þ z1�c kþ 1þ Z2

t
2

� �1=2
d

2
4

3
5
2

; (14)

where z1�a and z1�c are the ð1� aÞth and ð1� cÞth percentiles
of the standard normal distribution (e.g., 1.65 and 1.28 if a ¼
0:05 one-tailed and the power is 90%). For PR-scores, the
required sample size N� is given by

N� ¼

z1�a � 100 � /ðZPRcÞ k þ 1þ Z2
PRc
2

� �1=2
þ z1�c � 100 � /ðZPRt Þ k þ 1þ Z2

PRt
2

� �1=2
d

2
4

3
5
2

;

(15)

where ZPRc ¼ U�1 PRc
100

� �
, ZPRt ¼ U�1 PRt

100

� �
, and U�1ð�Þ is the

inverse function of the cumulative standard normal
distribution.

3. If the sample size obtained from Equations 14 and 15 is
smaller than the two lower-bounds 338 for VðẐ0Þ and
1,690 for VðPRðẐ0ÞÞ (see Appendix B), researchers
should be aware that the bias induced by the approxima-
tions in Equations 7–8 (on which Equations 14–15 are
based) might be large (for details, see Appendix B), and
should consider taking a larger sample size. For PR-
scores, one can use the results of the simulation studies
given in online Supplements A and B to decide upon the
increase of N�. For instance, if for Model 5 Equation 15
yields N� 2 ½676; 1690Þ, one could increase N� by 15%,

which is the largest relative bias found for Equation 8
under Model 5 and N ¼ 676 (see Figure S.A.8, online
Supplement A).

Note that Equations 14 and 15 depend on the true Z- or PR-
score (i.e., Zt or PRt). Given the chosen cut-off Zc or PRc and the
chosen smallest clinically relevant difference d > 0, there are two
possible values for the individual’s true Zt or PRt: Zt ¼ Zc � d or
Zt ¼ Zc þ d, and PRt ¼ PRc � d or PRt ¼ PRc þ d. Which of the
two possible values of Zt or PRt should one plug into Equations 14
or 15? In practice, one is primarily interested in detecting extreme
performance or symptoms, since these have important consequen-
ces for the individual (e.g., the assignment to a treatment), thus
one should plug into Equations 14 and 15 a Zt or PRt more
extreme than the chosen cut-off Zc or PRc. Hence, if Zc , 0 take
Zt ¼ Zc � d, while if Zc > 0 take Zt ¼ Zc þ d. Likewise, if
PRc , 50 take PRt ¼ PRc � d, while if PRc > 50 take
PRt ¼ PRc þ d. Having established in which direction the true Z-
score or PR-score should be assumed (i.e., always more extreme
than the cut-off point for decision making), the choice of the exact
value for Zt or PRt depends on the choice of the effect size d. How
small (or large) d should be depends on the definition of “clinically
relevant” for the specific test score of interest. Furthermore, note
that d is on the Z-score or the PR-score scale depending on the
choice of the norm statistic in Step 1. For example, d might be cho-
sen to be 0.3 for Z-scores, or to be 2 for PR scores. How d affects
the required sample size will be discussed in the next paragraph.

As can be seen in Equations 14 and 15, the required sample size
N� is an increasing function of the number of predictors k in the
model and the statistical power 1� c (the larger 1� c, the larger
z1�c), and a decreasing function of the Type I error rate a (the
larger a, the smaller z1�a). Furthermore, N� for Z-scores increases
as Zc and Zt move away from 0, while N� for PR-scores increases
as PRc and PRt move toward 50. This opposite pattern for
Z-scores and PR-scores is explained by the presence of the factor
1003/ðZ0Þ in Equation 15 (but not in Equation 14), which
increases rapidly as jZ0j decreases (i.e., PR0 moves toward 50, see
Figure 3). Finally, N� is roughly proportional to d�2 but not exactly
so because d is both at the denominator and the numerator of Equa-
tions 14 and 15 (recall that Zt and PRt are both functions of d, given
Zc and PRc, respectively). In Table 4, N� is given for several cut-
off points, three d values per norm statistic type, different models
(that is, Models 1–5), and two power levels. As shown in Table 4,
N� increases as d decreases, both for Z-scores and PR-scores, but
PR-scores tend to require a larger sample size than Z-scores.

Sample Size Calculation for Precision of Norms
Estimation

An alternative approach to sample size calculation is to focus
on the precision of norms estimation, instead of hypothesis test-
ing (Maxwell et al., 2008). Under this approach, the required
sample size N� is defined as that size N� of the normative sample
that provides the desired margin of estimation error for the ð1�
a=2Þ100% confidence interval for a Z- or PR-score of interest.
Note that the width of a ð1� a=2Þ100% confidence interval

equals 2 � z1�a=2ðVðẐ0ÞÞ1=2 or 2 � z1�a=2ðVðPRðẐ0ÞÞÞ1=2, depend-
ing on the norm statistic type of interest, where z1�a=2 is the
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ð1� a=2Þth percentile of the standard normal distribution,
VðẐ0Þ is Equation 7 or, under the optimal design, Equation 12,
and VðPRðẐ0ÞÞ is Equation 8 or, under the optimal design, Equa-
tion 13. Thus, the required sample size N� can be obtained as
that size of the normative sample such that half the confidence
interval width equals the desired margin of estimation error.
Then, for Z-scores the required N� is given by

N� ¼ z1�a=2ðkþ 1þ Z2
0
2 Þ1=2

s

" #2
; (16)

and for PR-scores the required N� is given by

N� ¼ z1�a=2 � 100 � /ðZ0Þðkþ 1þ Z2
0
2 Þ1=2

s

" #2
; (17)

where Z0 is the Z-score of interest in Equation 16, and the Z-score
corresponding to the PR-score of interest in Equation 17, and s is the
desired margin of estimation error (instead of the smallest “clinically
relevant” effect size). Note that Equations 16 and 17 can be obtained

by replacing z1�a with z1�a=2, z1�c ¼ 0 (i.e., power 1� c ¼ 50%),
and d with s in Equations 14 and 15. Having replaced Equations 14
and 15 with Equations 16 and 17, one can still follow Steps 1–3 to
determine N�, which is now that size of the normative sample that
yields sufficient precision of norms estimation (instead of that size
that allows to detect the desired effect size). For example, under
Model 1 (i.e., k ¼ 2), if the desired margin of estimation error for the
95% confidence interval for a Z0 ¼ 6 2 of interest is 10% of Z0, so
s ¼ 0:20, then using Equation 16 one obtains that N� ¼ 480.

Determining the required sample size with Equations 14–17 has
several advantages. First, it is a safe approach because it guaran-
tees the desired precision level/power level for the worst-case pre-
dictor values, and at least the same precision level/power level for
all other predictor values for which the sampling variance is smaller
(i.e., a result of drawing a normative sample as prescribed by the
G-optimal design). Second, Equations 14–17 allow researchers to
analytically compute the required sample size given either the desired
margin of error for interval estimation, or the desired power level and
effect size for hypothesis testing. Third, the proposed approach is not
restricted to a specific regression model (for example, Equation 1),

Figure 3
Variances V Ẑ0

� ��
and V PR Ẑ0

� �� ��
(i.e., Equations 12 and 13), as Functions of Z0
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because Equations 12 and 13 (used to derive Equations 14–17) are
restricted neither to a specific number of predictors nor to specific
scale types of the predictors. Relatedly, from Equations 14–17 it can
be seen that if a categorical predictor is included into the regression
model by dummy coding, the required sample size increases with the
number of categories Q2, because the higher Q2, the higher the num-
ber of predictors k in the model. Increasing Q2 also affects the opti-
mal design, because the optimal design for the quantitative predictor
(i.e., X1 in Figure 1, central column) is then replicated for each level
of the categorical predictor (i.e., X2 in Figure 1, central column),
thus increasing the total number of support points and decreasing the
design weight per support point proportionally (see Table 2, right-
most column).

Application

The results of this article are illustrated using Van der Elst et
al.’s (2006) normative study of three verbal fluency tests (VFT).

In a VFT, participants are asked to name as many words as possi-
ble belonging to a specific category (e.g., professions, animals) in
60 s. Hence, the raw score of a VFT is the total number of correct,
nonrepeated words (so the higher the raw score, the better). The
normative sample was composed of N ¼ 1,825 healthy individuals
belonging to 12 equidistant age groups within the range 24–81
years and of approximately equal size (except the eldest group,
which was the smallest one), and the male-female ratio per age
group was (fairly) balanced (Van der Elst, et al., 2006; Table 1).
The distribution of education within each age group, instead, was
not balanced. Van der Elst et al. (2006) fitted three separate multi-
ple linear regression models, one for each VFT, but the focus is
here on the profession naming VFT, which was also used in the
simulation studies. The predictors were age, age2, sex, and educa-
tion (i.e., low, medium, high), including all possible two-way
interactions, but in the final model no interaction was present (Van
der Elst, et al., 2006, Table 2). The assumptions of normality and
homoscedasticity of residuals were satisfied as far as regression
diagnostics results could tell.

Suppose a researcher wants to derive new normative data for the
profession naming VFT, focusing on men and women in the age
range 55–85 years, and leaving education out from the study for
simplicity now. The normative study can be planned in three steps:

1. Choice of the model: Based on Van der Elst et al. (2006,
Figure 1 and Table 2), it is reasonable to assume a quad-
ratic age effect on the score of the profession naming VFT.
Further, even though an interaction between sex and age,
and between sex and age2 were not found, it is prudent to
assume them both because a Type II error cannot be ruled
out in Van der Elst et al. (2006). So, Model 5 is assumed.

2. Choice of the design: As shown in Figure 1, the optimal
design for Model 5 has six support points: sex ¼ 0 and
age ¼ 55, sex ¼ 0 and age ¼ 70, sex ¼ 0 and age ¼ 85,
sex ¼ 1 and age ¼ 55, sex ¼ 1 and age ¼ 70, sex ¼ 1
and age ¼ 85. Furthermore, the same number of subjects
must be sampled for each support point (see Table 2).
This design yields maximum efficiency under Model 5
(and Model 2), but Model 5 might not be the “true”
model. To prevent a great loss of efficiency due to model
misspecification, the most robust design should be chosen
instead. In this case, the optimal design for Model 5 is
also the most robust design, both in terms of relative effi-
ciency and of efficiency (see Table 3, and Table S.A.3,
online Supplement A), at least assuming the age effect to
be linear or quadratic, but not of higher order.

3. Sample size calculation: Suppose that the researcher
wants to provide normative data in terms of Z-scores.
Hence, to determine the required total sample size either
Equation 14 or 16 should be used. Equation 14 should be
used if the researcher wants to use the derived norms to
make decisions about individuals (e.g. assignment to a
treatment). Instead, Equation 16 should be used when the
primary interest is in assessing within which range of val-
ues the true Z-score of an individual lies. In any case, it is
prudent to target extreme Z-scores because they require a
larger sample size (see Figure 3). Suppose that the

Table 4
Size N�of the Normative Sample, Under the Optimal Designs
for Models 1–5, That Allows to Detect the Smallest “Clinically
Relevant” Difference (d) Between Individual’s True Z- or PR-
Score (Zt or PRt) and the Cut-Off Point Used for Classifying
Individuals (Zc or PRc)

Zc PRc

Power Model 62:5 62 61:5 2.5 or 97.5 5 or 95 10 or 90

d ¼ 0:4 d ¼ 2

0.8 1 250 204 168 149 574 1,657
2 and 3 289 243 207 178 702 2,085
4 328 282 245 207 831 2,513
5 366 320 284 237 960 2,941

0.9 1 353 288 236 169 741 2,231
2 and 3 406 341 290 202 906 2,805
4 460 395 344 235 1,071 3,379
5 513 449 397 268 1,236 3,954

d ¼ 0:3 d ¼ 1:5

0.8 1 439 358 295 316 1,085 3,020
2 and 3 508 427 363 379 1,330 3,802
4 576 496 432 441 1,574 4,585
5 645 564 501 504 1,819 5,368

0.9 1 615 502 413 386 1,430 4,098
2 and 3 711 597 508 462 1,751 5,157
4 806 693 603 537 2,072 6,215
5 901 788 698 613 2,393 7,274

d ¼ 0:2 d ¼ 1

0.8 1 974 794 654 824 2,584 6,958
2 and 3 1,128 949 809 988 3,171 8,767
4 1,283 1,104 963 1,152 3,757 10,576
5 1,437 1,258 1,118 1,315 4,344 12,386

0.9 1 1,360 1,109 913 1,060 3,470 9,510
2 and 3 1,574 1,324 1,127 1,269 4,254 11,978
4 1,788 1,538 1,341 1,479 5,039 14,446
5 2,002 1,752 1,555 1,688 5,823 16,914

Note. The Type I error rate a is 0:05. The individual’s true Z- or PR-
score is assumed to be more extreme than the cut-off (i.e., Zt ,Zc , 0 or
Zt > Zc > 0, and PRt ,PRc , 50 or PRt > PRc > 50). Sample sizes in
boldface are below the lower-bounds N� ¼ 338 for Z-scores, and N� ¼
1,690 for PR-scores, which are required to ensure a good approximation
by the equations used (for details, see Appendix B).
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researcher wants to have a sample such that half the width
of the 95% confidence interval for Z0 ¼ �1:64 (i.e., the
5th percentile, below which an individual’s performance
is considered “abnormal”) is s ¼ 0:18 (which is half the
distance between the 10th and 5th percentile of the Z dis-
tribution). Plugging these values into Equation 16:

N� ¼
z1�a=2 kþ 1þ Z2

0
2

� �1=2
s

2
4

3
5
2

¼
1:96 5þ 1þ ð�1:64Þ2

2

� �1=2
0:18

2
4

3
5
2

;

it then follows that the researcher should sample 870 individuals, so
145 per support point, assuming Model 5 (i.e., k ¼ 5 predictors).

Discussion

The aim of this article was to illustrate how to design regres-
sion-based normative studies for which the norm statistics of inter-
est are Z-scores and percentile rank (PR) scores. The sampling
variances of these norm statistics were derived under the assump-
tions of normality and homoscedasticity of the residual errors.
Because these variances were based on approximations, a simula-
tion study was performed to investigate the bias induced by these
approximations. A second simulation study investigated the bias
in the estimators of these variances as well as the coverage of 95%
confidence intervals for an individual’s true Z-score or PR-score
obtained with these variance estimators. From these simulation
studies, it can be concluded that for the sampling variance equa-
tion and its estimator to be accurate, and for the coverage to be
close to the nominal value, the sample size should be at least N ¼
338 for Z-scores, and N ¼ 1,690 for PR-scores.
Five regression models with a quantitative predictor (e.g., age)

and a categorical predictor (e.g., sex), differing in whether they
allowed for interaction and for nonlinearity, were considered. For
each of these models the optimal design, that is, the joint distribu-
tion of the predictors which maximizes precision of norms estima-
tion under the constraint of a fixed sample size, was presented.
Extensions to the inclusion of a third predictor (e.g., education)
were also discussed. Furthermore, the robustness of the optimal
design against misspecification of the model was investigated. It
turned out that the optimal design for Models 2 and 5 guarantees
the highest minimum relative efficiency (i.e., relative to the opti-
mal design under the “true” model) across all considered models
(Tables 2 and 3), and the highest minimum efficiency (that is,
under the model that maximizes the sampling variance of the
norm statistic for all considered designs, which is Model 5, see
Table S.A.3 in online Supplement A). Thus, in presence of high
uncertainty about the best model among the five models consid-
ered, the optimal design for Models 2 and 5 is recommended.
Equidistant age levels designs with intervals of 5–20 years, typi-

cally used in traditional norming, were compared with the optimal
design. For efficient estimation, it turned out that the normative
sample need not be representative of the reference population with
respect to the distribution of the predictors. If the “true” model is
known, then maximum efficiency is achieved by drawing a norma-
tive sample as prescribed by the optimal design (see Table 3). If
knowledge of the “true” model may sound as a strong prerequisite,
it should be noted that normative studies often deal with tests that

have already been normed in the past or in other countries/lan-
guages (see, for instance, Mitrushina et al., 2005). These previous
studies can help researchers in formulating (at least) an educated
guess of the best fitting polynomial that helps to improve the design
of the normative study, thus saving resources. In the 65 regression-
based normative studies reviewed in online Supplement A, either a
linear or a quadratic age effect was observed. If researchers do not
trust the linear/quadratic model and suspect that a polynomial of
higher order is the “true” model, they can include intermediate age
levels into the design of the normative study. Also for such models
an optimal design yielding maximum efficiency can be derived.
Specifically, the optimal design for an age effect of polynomial
order h (e.g., h ¼ 3 for cubic trend) consists of hþ 1 age levels
only (see Berger & Wong, 2009, Table 3.5, . 67).

A procedure was proposed that allows researchers to analytically
compute the required sample size for estimating norm statistics (Z-
scores or PR-scores) that gives sufficient power for hypotheses test-
ing, or sufficient precision of interval estimation of an individual’s
position relative to reference values. Hypothesis testing is of interest
when reference values are used to make binary decisions about
whether to treat a person or not (e.g., remedial teaching in school,
cognitive training in revalidation, medication or psychotherapy for
depression). Instead, when the main interest is in assessing within
which range the person’s true Z-score or PR-score lies, interval esti-
mation is preferable. Both for interval estimation and hypothesis
testing, researchers need to choose the norm statistic type of interest
(i.e., either Z- or PR-score), and a regression model. For interval
estimation, researchers need to specify the coverage probability, the
value of the norm statistic (e.g., Z0 ¼ 2, or PR0 ¼ 95), and the
desired margin of error. For hypothesis testing, researchers need to
specify a cut-off value to be used for decision making (e.g., Zc ¼
�2 or PRc ¼ 5, for distinguishing between “normal” and “too low”
performance), the Type I error rate, the desired power level, and the
smallest “clinically relevant” difference between the cut-off and the
individual’s position that one wants to be able to detect. The choice
of the norm statistic type has important consequences for sample
size calculation, because PR-scores tend to require larger sample
sizes than Z-scores. Finally, when researchers are interested in sev-
eral cut-off points (e.g., for distinguishing between “too low,”
“low,” and “normal” performance), Equations 16 and 17 for confi-
dence intervals could be used in sample size planning and the most
extreme Z-score and the least extreme PR-score of interest should
be targeted. This approach guarantees not only the desired margin
of error for the most extreme Z-score and the least extreme PR-
score, but also (at least) the same precision level for the less
extreme Z-scores and the more extreme PR-scores (see Figure 3).
An alternative approach is sequential hypothesis testing (e.g., first
testing whether a performance is “normal” or “low” and, only if
classified as “low,” whether it is “low” or “too low”), but this
approach is complicated due to multiple testing issues. How to con-
trol for familywise Type I and II error rates and thus adapt Equa-
tions 14 and 15 in sequential hypothesis testing for norming could
be a topic for future research.

A limitation of the regression-based approach is that the validity
of the norms depends on whether the model assumptions are met.

For instance, if homoscedasticity is violated in Models 1–5, Ẑ0 ¼ ê0
r̂e

is biased, and thereby PRðẐ0Þ as well (see Equation 6). For this rea-
son, it is important that researchers report the results of regression
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diagnostics when providing normative data (note that in the literature
review on regression-based normative studies in online Supplement
A, these checks were reported only for 42% of the models). If both
homoscedasticity and normality are violated, a simple solution can
be to compute the standard deviation of the residuals per quartile (or
per decile) of the predicted values, first, then to standardize the resid-
uals with these standard deviations and, finally, to estimate percen-
tiles from the empirical distribution of the standardized residuals. A
more sophisticated solution could be to derive norms using general-
ized additive models for location, scale, and shape (see Voncken et
al., 2019a, 2019b); which allow researchers to model a wide range of
test score distributions. Future research could extend the results of
this article to heteroscedasticity and/or non-normality. Furthermore,
the simulation studies in online Supplement A, and the results of
Tables 3 and 4, could be extended to the presence of additional pre-
dictors (e.g., education). Other extensions could be the derivation of
the optimal design for regression-based norming for repeated cogni-
tive assessment (see Van der Elst et al., 2013), or, because normative
studies often involve several outcomes (online Supplement A), for
multivariate regression-based norming (see Van der Elst et al., 2017).
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Appendix A

Derivations of the Sampling Variances of the Z-Score and PR-Score Estimators

Sampling Variance of Ẑ0

To derive the sampling variance of Ẑ0 ¼ r̂�1
e ðY0 � x0

0b̂Þ with
the Delta method (Casella & Berger, 2002, p. 245), one needs
to derive the first-order derivatives of Ẑ0 with respect to b̂ and
r̂2

e evaluated at their expectations h ¼ ðb;r2
e Þ0 :

oẐ0

ob̂

����
b̂¼b;r̂2

e¼r2
e

¼ �r̂�1
e x0

0

����
b̂¼b;r̂2

e¼r2
e

¼ �r�1
e x0

0;

oẐ0

or̂2
e

����
b̂¼b;r̂2

e¼r2
e

¼ �ðr̂2
eÞ�

3
2

2
ðY0 � x0

0b̂Þ
����
b̂¼b;r̂2

e¼r2
e

¼ �ðr2
eÞ

�
3
2

2
ðY0 � x0

0bÞ:

Then, Ẑ0 can be approximated with a first-order Taylor se-
ries as follows

Ẑ0 � gðb;r2
eÞ þ

oẐ0

ob̂

����
b̂¼b;r̂2

e¼r2
e

ðb̂ � bÞ

þ oẐ0

or̂2
e

����
b̂¼b;r̂2

e¼r2
e

ðr̂2
e � r2

eÞ ¼ r�1
e ðY0 � x0

0bÞ � r�1
e x0

0ðb̂ � bÞ

� ðr2
eÞ

�
3
2

2
ðY0 � x0

0bÞðr̂2
e � r2

eÞ:

Finally, taking the expectation and variance of the previous
expression with respect to b̂ and r̂2

e , one obtains

EðẐ0Þ �
E

	
r�1
e ðY0 � x0

0bÞ � r�1
e x0

0ðb̂ � bÞ � ðr2
eÞ

�
3
2

2
ðY0 � x0

0bÞðr̂2
e � r2

eÞ



¼ r�1
e ðY0 � x0

0bÞ ¼ Z0;

and

VðẐ0Þ �

V

	
r�1
e ðY0 � x0

0bÞ � r�1
e x0

0ðb̂ � bÞ � ðr2
eÞ

�
3
2

2
ðY0 � x0

0bÞðr̂2
e � r2

eÞ



¼ r�2
e x0

0Vðb̂Þx0 þ
�
ðr2

eÞ�
3
2

�2
4

ðY0 � x0
0bÞ2Vðr̂2

eÞ

þr�1
e ðr2

eÞ
�
3
2ðY0 � x0

0bÞx0
0Covðb̂; r̂2

eÞ:
Note that Covðb̂; r̂2

eÞ ¼ 0 for the following reasons: (a)
Covðb̂; êÞ ¼ 0 (Johnson & Wichern, 1998, p. 387); (b) r̂2

e is a
function of ê; and (c) Theorem 4.3.5, p. 161 in Casella and

Berger (2002); that is, if two random variables X and Y are in-

dependent (here, X ¼ b̂ and Y ¼ ê) and f ð�Þ and gð�Þ are two
functions, then f ðXÞ and gðYÞ are independent (here, f ð�Þ is the
identity function, and gð�Þ is r̂2

e). Furthermore, recall that

Vðb̂Þ ¼ r2
eðX 0XÞ�1 and Vðr̂2

eÞ ¼ r4
e

2
N�k�1 (Johnson &

Wichern, 1998, pp. 389–390). Thus, VðẐ0Þ can be simplified
as follows

VðẐ0Þ � r�2
e x0

0Vðb̂Þx0 þ
ðr2

eÞ�
3
2

	 
2

4
ðY0 � x0

0bÞ2Vðr̂2
eÞ

¼ x0
0ðX 0XÞ�1x0 þ 1

r2
e

1
2ðN � k� 1Þ ðY0 � x0

0bÞ2

¼ x0
0ðX 0XÞ�1x0 þ 1

2ðN � k� 1ÞZ
2
0 :

which is Equation 7.

Sampling Variance of PRðẐ0Þ
The sampling variance of Equation 6 is derived as follows.

First, note that oPRðẐ 0Þ
oẐ 0

���
Ẑ 0¼EðẐ 0Þ

¼ 1003/ðẐ0Þ
���
Ẑ 0¼EðẐ 0Þ

�
1003/ðZ0Þ, where /ð�Þ is the probability density function
of the standard normal distribution, and the last equality

follows from EðẐ0Þ � Z0 (see previous paragraph).
Second, Equation 6 can be approximated with the follow-

ing first-order Taylor series evaluated at EðẐ0Þ

PRðẐ0Þ ¼ gðEðẐ0ÞÞ þ oPRðẐ0Þ
oẐ0

����
Ẑ 0¼EðẐ 0Þ

ðẐ0 � EðẐ0ÞÞ

� 1003
�
UðZ0Þ þ /ðZ0ÞðẐ0 � Z0Þ

�
:

Taking the expectation and variance of the previous expres-
sion with respect to Ẑ0, one obtains

EðPRðẐ0ÞÞ � UðZ0Þ3 100;

and the sampling variance of PRðẐ0Þ, approximating VðẐ0Þ by
Equation 7, is

VðPRðẐ0ÞÞ � 1002/ðZ0Þ2VðẐ0Þ

¼ 1002/ðZ0Þ2
"
x0

0ðX 0XÞ�1x0 þ 1
2ðN � k� 1Þ Z

2
0

#
;

which is Equation 8.

(Appendices continue)
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Appendix B

Summary of the Results of the Simulation Studies

Simulation Design

A simulation study was needed because the true VðẐ0Þ and
VðPRðẐ0ÞÞ were unknown. The true VðẐ0Þ and VðPRðẐ0ÞÞ
were generated in three steps: (a) a normative sample was
drawn from the reference population, (b) the model parameters
were estimated using the normative sample, and (c) the raw
outcome of an individual (not belonging to the normative sam-
ple) was translated into an estimated Z-score and a PR-score.
These three steps were repeated 20; 000 times, and the true
VðẐ0Þ and VðPRðẐ0ÞÞ were computed as the variance of Ẑ0
and PRðẐ0Þ over the 20; 000 generated normative samples.
Having generated the true VðẐ0Þ and VðPRðẐ0ÞÞ, the relative
bias of Equations 7–10 could be computed (for details, see
online Supplement A). The factors involved in the simulation
studies were:

• The reference population as expressed by the regression
model used for norming: The five considered models were
Equations 1–5.

• The true values of the Z-scores and PR-scores: The con-
sidered true Z-scores were all values from �3 to 3 with in-
crement 0:5, yielding 13 values. The considered PR-
scores were not those corresponding to the 13 Z-scores
but PR0 2 1; 2:5; 5; 10; 90; 95; 97:5; 99f g, because the
latter set of values is more often used in practice.

• The distribution of the predictors (i.e., age and sex) in the
normative sample: For age all the values from 20 to 80,
with Step 5, were considered, giving 133 2 ¼ 26 combi-
nations of age and sex.

• The sample size N: Four values were considered
N ¼ 338; 676; 1,690; 3,380f g. The first value N ¼ 338
was obtained by combining each Z-score value with each
age-sex combination. The other three values were
obtained by replicating each age-sex-Z-score combination
by a factor of two, five, and ten, respectively.

• The true regression parameter values: Three sets of true
values were chosen (see Table S.A.2, online Supplement
A). It turned out that these true values did not affect the
bias of Equations 7–8. Hence, only one set of values was
used in the simulation study for assessing the bias in
Equations 9–10.

Simulation Results

Z-Scores

In all the considered scenarios, the relative bias of VðẐ0Þ
(that is, Equation 7) was always within the interval ð�3%; 3%Þ,
showing no clear patterns with respect to the predictors or the

sample size (see Figures S.A.3-S.A.4, online Supplement A).
Likewise, the relative bias of V̂ ðẐ0Þ (that is, Equation 9) was
always within the range ð�3%; 3%Þ in all scenarios (see Figures
S.A.11-S.A.12, online Supplement A). Furthermore, the abso-
lute bias of Ẑ was within the interval ð�0:01; 0:01Þ for any Z-
score, age by sex combination, sample size, and model (see
Figures S.A.5-S.A.6, online Supplement A). Finally, in all the
considered scenarios, the coverage of 95% confidence intervals
for Z0 obtained using V̂ ðẐ0Þ was close to the nominal coverage
probability (i.e., 95%6 0:5%) for any Z-score (see Figures S.
A.13-S.A.14, online Supplement A). Given these good results,
N ¼ 338 might be a conservative lower-bound for Equations 7
and 9, and one might expect that smaller sample sizes still might
yield acceptable bias (i.e., bias 2 ½�5%; 5%�) and coverage (i.e.,
nominal coverage probability 61%). However, note that most
of the required sample sizes for detecting the smallest “clinically
relevant” difference in Table 4 are larger than N ¼ 338, and the
few sample sizes smaller than N ¼ 338 are, in most cases, close
to this lower-bound. So, considering sample sizes much smaller
than N ¼ 338 (say, N, 280) was not of interest.

PR-Scores

The relative bias of VðPRðẐ0ÞÞ (that is, Equation 8) was a
decreasing function of the sample size, an increasing function
of model complexity (that is, from Model 1 to Model 5), and
was acceptable (i.e., relative bias 2 ½�5%; 3%�) if N$ 1,690
for Models 3–5 or if N$ 676 for Models 1–2, except for com-
binations of extreme values of age (i.e., age = 20 and 80) with
extreme PR-scores (PR = 1 or 99) (see Figures S.A.7-S.A.8,
online Supplement A). The relative bias of VðPRðẐ0ÞÞ
increased as age and/or the true PR-score became more
extreme, but was not affected by sex. The relative bias of
V̂ ðPRðẐ0ÞÞ (that is, Equation 10) was also a decreasing func-
tion of sample size, and was always within the interval
½�3%; 10%� for N$ 676 (see Figures S.A.15-S.A.16, online
Supplement A). The bias was within the interval ½�3%; 5%�
under Model 1 for N$ 676, and under all other models for
N$ 1,690. The absolute bias of PRðẐ0Þ (that is, Equation 6)
was a decreasing function of the sample size, and was always
within the interval ½�0:1; 0:1�, on the scale from 0 to 100, if
N$ 1,690 (see Figures S.A.9-S.A.10, online Supplement A).
Furthermore, PRðẐ0Þ tended to overestimate PRðZ0Þ if
PR0 , 50 and underestimate it if PR0 > 50. Finally, the cover-
age of the 95% confidence interval for PR0 obtained using
Equation 10 was a decreasing function of model complexity,
and was always within the interval ½93%; 96%� for N$ 676,
and within the interval ½94%; 96%� for N$ 1,690 (see Figures
S.A.17-S.A.18, online Supplement A).

(Appendices continue)
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Appendix C

Derivations of the Sample Size Calculation Formulas (That Is, Equations 14 and 15)

In this appendix, the formulas to determine the required sample
size N� to detect the smallest “clinically relevant” difference
between individual’s true Z- or PR-score (Zt or PRt) and the
cut-off (Zc or PRc), d, are derived as functions of the type I
error rate a, and the statistical power 1� c (i.e., to reject the
null hypothesis H0 that Zt ¼ Zc, for Z-scores, and PRt ¼ PRc,
for PR-scores). These formulas are derived under the optimal
design for the normative sample, that is, Equations 12 and 13
are used.

Z-Scores

The true Z-score Zt differs from the cut-off Zc by d > 0,
that is, either Zt ¼ Zc � d or Zt ¼ Zc þ d. From the Delta
method it follows that the sampling distribution of Ẑ0 is
(approximately) normal with mean Z0 (with Z0 ¼ Zc under H0,
and Z0 ¼ Zt under H1), and variance as given in Equation 7
(Casella & Berger, 2002, p. 245). Under the optimal design,
the sampling variance of Ẑ0 can be approximated with
Equation 12 which is denoted by VðẐ0jZcÞ� if Z0 ¼ Zc, and

VðẐ0jZtÞ� if Z0 ¼ Zt. Note that Ẑ 0�Zc
ðVðẐ 0jZcÞ�Þ1=2

follows (approxi-

mately) a standard normal distribution if Z0 ¼ Zc and likewise

for Ẑ 0�Zt
ðVðẐ 0jZtÞ�Þ1=2

if Z0 ¼ Zt. For the sake of brevity, the case of

Zt ¼ Zc þ d is considered (but the same result, that is,
Equation 14, is obtained for Zt ¼ Zc � d). Denote by za and
z1�a the 100ðaÞ% and 100ð1� aÞ% percentile of the standard
normal distribution, respectively. The power 1� c of rejecting
the null hypothesis H0 that Zt ¼ Zc is defined as follows
Step 1.

1� c ¼ Pðreject H0 jZt ¼ Zc þ dÞ

¼ P
Ẑ0 � Zc

ðVðẐ0 jZcÞ�Þ1=2
> z1�a

����Zt ¼ Zc þ d

 !
:

Step 2.
P

Ẑ0 � Zc

ðVðẐ0 j ZcÞ�Þ1=2
> z1�a

���� Zt ¼ Zc þ d

 !

¼ P
Ẑ0 � Zt þ Zt � Zc

ðVðẐ0 jZtÞ�Þ1=2
> z1�a

ðVðẐ0 j ZcÞ�Þ1=2
ðVðẐ0 j ZtÞ�Þ1=2

����Zt ¼ Zc þ d

 !

¼ P
Ẑ0 � Zt

ðVðẐ0 j ZtÞ�Þ1=2
> z1�a

ðVðẐ0 jZcÞ�Þ1=2
ðVðẐ0 j ZtÞ�Þ1=2

� d

ðVðẐ0 j ZtÞ�Þ1=2
����Zt ¼ Zc þ d

 !
;

where the last equality follows from d ¼ Zt � Zc.
Step 3. The desired power level 1� c is obtained when

�z1�c ¼ z1�a
ðVðẐ0 jZcÞ�Þ

1
2

ðVðẐ0 jZtÞ�Þ
1
2

� d

ðVðẐ0 j ZtÞ�Þ1=2
;

where z1�c is the 100ð1� cÞ% percentile of the standard nor-
mal distribution. This equality in turn can be rewritten using
Equation 12 as follows

�z1�c ¼ z1�a

kþ 1þ Z2c
2

N

	 
1
2

kþ 1þ Z2t
2

N

	 
1
2

� d

kþ 1þ Z2t
2

N

	 
1=2
;

from which the following expression for the required sample
size N� (that is, Equation 14) is obtained

N� ¼
z1�a kþ 1þ Z2

c
2

� �1=2
þ z1�c kþ 1þ Z2

t
2

� �1=2
d

2
4

3
5
2

;

which holds for Zt ¼ Zc þ d and can also be shown to hold for
Zt ¼ Zc � d.

PR-Scores

The true PR-score PRt differs from the cut-off PRc by d > 0,
that is, either PRt ¼ PRc � d or PRt ¼ PRc þ d. From the Delta
method it follows that the sampling distribution of PRðẐ0Þ is
(approximately) normal with mean PRðZ0Þ (with PRðZ0Þ ¼ PRc
under H0, and PRðZ0Þ ¼ PRt under H1), and variance as given
in Equation 8. Under the optimal design, the sampling variance
of PRðẐ0Þ can be approximated with Equation 13 which is
denoted by VðPRðẐ0Þ jPRcÞ� if Z0 ¼ ZPRc ¼ U�1ðPRc

100Þ (i.e., the
Z-score corresponding to PRc), and VðPRðẐ0Þ jPRtÞ� if Z0 ¼
ZPRt ¼ U�1ðPRt

100Þ (i.e., the Z-score corresponding to PRt), where
U�1ð�Þ is the inverse of the cumulative standard normal distribu-

tion. Note that PRðẐ 0Þ�PRc

ðVðPRðẐ 0Þ jPRcÞ�Þ1=2
follows (approximately) a stand-

ard normal distribution if PRðZ0Þ ¼ PRc and likewise for
PRðẐ 0Þ�PRt

ðVðPRðẐ 0Þ jPRtÞ�Þ1=2
if PRðZ0Þ ¼ PRt. Only the case of PRt ¼

PRc þ d is considered (but the same result, that is, Equation 15,

(Appendices continue)
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is obtained for PRt ¼ PRc � d). Following the same Steps 1–3
as for Z-scores, but now using Equations 8 and 13 instead of
Equations 7 and 12, respectively, one gets that the power 1� c
of rejecting the null hypothesis H0 that PRt ¼ PRc is obtained
when

�z1�c ¼ z1�a
ðVðPRðẐ0Þ jPRcÞ�Þ1=2
ðVðPRðẐ0Þ jPRtÞ�Þ1=2

� d

ðVðPRðẐ0Þ jPRtÞ�Þ1=2
;

which can be rewritten using Equation 13 as follows

�z1�c ¼ z1�a

1002/ðZPRcÞ2 kþ 1þ
Z2
PRc
2

N

� �	 
1
2

1002/ðZPRtÞ2 kþ 1þ
Z2
PRt
2

N

� �	 
1
2

� d

1002/ðZPRt Þ2 kþ 1þ
Z2
PRt
2

N

� �	 
1=2
;

from which the following expression for the required sample
size N� (that is, Equation 15) is obtained

N� ¼

z1�a � 100 � /ðZPRc Þ kþ 1þ Z2
PRc
2

� �1=2
þ z1�c � 100 � /ðZPRt Þ kþ 1þ Z2

PRt
2

� �1=2
d

2
4

3
5
2

:

which holds for PRt ¼ PRc þ d and can also be shown to hold
for PRt ¼ PRc � d.
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