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Model-Based Nonlinear Control of a Class of Musculoskeletal Systems

Raphael Stolpe, Yannick Morel

Abstract— The presented work addresses the motion control
problem for a class of musculoskeletal systems, composed of
the combination of a rigid multibody system (i.e. the skeletal
part) subjected to efforts produced by a set of muscle-tendon
complexes. A control law, prescribing the rate of change of
muscle fiber activation, is proposed and shown to guarantee
exponential convergence of skeletal joint angles to user-defined
desired trajectories. Results of numerical simulations, for a
simple two degree of freedom skeletal system actuated by five
muscle-tendon complexes, illustrate efficacy of the approach.

I. INTRODUCTION

The nervous system has evolved to become, among
other qualities, a distinctly capable controller of movements
([1, 2]). This functional ability of the neural circuitry re-
sponsible to support motion control tasks, combined with
the mechanical properties of muscle-tendon complexes it is
acting upon, has afforded humans a degree of robustness and
compliance in their movements that is essential to supporting
compliant mechanical interactions with their surroundings,
qualities that have largely eluded actuated artificial agents.
Emulating such qualities on robotic systems would prove of
benefit to numerous applications. However, our knowledge
of the manner in which the nervous system solves control
problems remains limited, for instance as pertains to how the
multitude of brain regions involved in motor control func-
tionally interact ([3]). The development of motion control
technology addressing the same types of control problems
can prove helpful in advancing this knowledge. Consider-
ation of such control algorithms, and more specifically of
the closed-loop dynamical properties obtained when they are
applied to the corresponding physical systems (or models
thereof), can be exploited to constrain computational neural
models descriptive of sensorimotor loops. This notion of
dynamical functional constraining constitutes a natural exten-
sion of the well-established concept of physical grounding,
or embodiment (see the discussion in [4-7]). A particularly
promising approach in this perspective would be to construct
and subsequently study such a motion controller in vivo.

Recent advances in neurotechnology have allowed to in-
vestigate the restoration of voluntary movement in humans
with spinal cord injury ([8, 9]). The method utilizes Epidural
Electrical Stimulation (EES) to stimulate motor neuron pools
with spatiotemporal patterns ([8-10]). Specifically, a closed-
loop controller is constructed from previously recorded Elec-
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troMyoGraphic (EMG) activity. Emulating the activity cor-
responding to a foot trajectory, and applying it through EES
([8, 9, 11-13]), one is able to elicit a voluntary sequence of
actions supporting a walking pattern. The control framework
applied in [8] and [9] however remains largely naive to the
neuromuscular dynamics supporting actuation of human legs.
In effect, it essentially amounts to the replaying of prere-
corded input trajectories, modulated in real-time to pursue
effectiveness. While this approach has shown outstanding
results, improvements to the control design could be expected
to result in greater quality of achieved movements.

Simple, relevant approaches include Proportional Integral
Derivative (PID) control ([14, 15]). However, muscle-tendon
dynamics are characterized by a strongly nonlinear behavior
([16-18]), limiting the expected effectiveness of linear control
techniques. Neural control approaches have been success-
fully applied to address the control of neuromusculoskeletal
systems. In [19], for instance, the authors propose the use of a
neural network to control the movements of a pendulum sys-
tem actuated by two antagonistic muscle-tendon complexes,
addressing a tracking problem. The framework described
in [19] involves the use of a pattern generator, the output
of which is modulated by the trained neural model. This
breakdown of the control problem, distinguishing baseline
pattern generation and adjustments to the generated pattern,
is reminiscent of some of the interplay between spinal
structures (e.g. Central Pattern Generators, CPG, [20, 21])
and descending signals, which could prove helpful in inves-
tigating or emulating (for instance, in the aforementioned
EES setting) such interactions. However, it remains unclear
how effectively the neural model in [19] would generalize to
more complex musculoskeletal systems or control tasks.

Improving performance of the control technology dis-
cussed in [8] and [9] could be pursued by exploiting avail-
able system information; that is, using model information,
descriptive of the system acted upon (which includes in this
case spinal circuitry and musculoskeletal system) to refine
control action. This can be pursued by applying model-based
control techniques ([22]). Such an avenue of investigation
has been exploited, with for instance the application of
backstepping techniques ([23]) to control muscle-actuated
systems ([24-28]). In [24], the authors consider the actuation
of a frictionless mass by a pair of antagonistic muscles.
The approach provides interesting results, although it does
not consider notions of cocontraction. Cocontraction consti-
tutes a central paradigm of biological movement ([27-30]),
intrinsic to muscle-driven actuation. A number of results
have proposed the use of model predictive control addressing
cocontraction, and more generally, aspects related to muscle



redundancy ([31, 32]). For instance, in [31] the authors
formulate cocontraction as an optimal control objective,
resulting in well balanced muscle efforts. In [25] and [27],
the authors investigate two connected open-chain linkages
representative of the human arm, actuated by six pairwise an-
tagonistic Hill-type muscles ([16, 33]). The authors construct
a model-based controller using backstepping. The system
being controlled features two Degrees of Freedom (DoF)
representing mechanical joints, actuated by a redundant set of
six muscles. Two different solutions are proposed to support
the change of variable between (lower dimensional) joint
space to (relatively higher dimensional) muscle space. In
particular, the authors consider a least mean square solution
to this change of variables (using the usual Moore-Penrose
pseudoinverse, [34]). The approach results in unrealistically
elevated tendon efforts ([27]). This behavior is compounded
by the use of constant moment arms ([27]), which comes
short of reflecting variations induced by changes in joint an-
gle, as observed in physiology ([16]). Such an approximation
has a substantial impact on the magnitude of torques gener-
ated. In an attempt to circumvent the issue, the authors resort
to a minimization technique, considering a cost-function
reflecting the magnitude of overall muscle activation. This
results in more biologically plausible tendon forces (in spite
of constant moment arms), but leads to non-smooth muscle
length trajectories ([27]). In [25], the authors address the
muscle redundancy problem using a comparable minimiza-
tion technique, using a cost function designed to minimize
efforts produced by muscle-tendon complexes. While both
approaches provide convincing results, their reliance on
optimization techniques, which may prove computationally
expensive, complicates their application in real time.

In the following, we consider a class of musculoskeletal
models featuring a set of antagonistic Hill-type muscles
([16, 33]). We design a model-based controller which, for the
considered range of musculoskeletal models, produces mus-
cle contraction signals supporting trajectory tracking in joint
space, explicitly addressing aspects of cocontraction. The
control approach is useful as a functional baseline to help
investigate the type of functionality and signals necessary to
support human-like motor control. The specific contribution
of the presented result entails the provision of a guarantee
of exponential stability of the origin of the constructed error
system for the class of models considered, and the ability to
directly adjust the magnitude of cocontraction across agonist
and antagonist muscle pairs. In addition, the approach may
be exploited to help inform EES signals, using a model
descriptive of the considered patient. Special attention is
afforded to the transition from joint space to muscle space,
emphasizing reasonable, plausible muscle efforts.

This paper is structured as follows. Section II describes
the class of musculoskeletal models considered. Section III
outlines the proposed control approach. This approach is
applied to an example of musculoskeletal model featuring
two skeletal joints, actuated by five muscles. Results of
numerical simulations are provided in Section IV. Section
V concludes this paper.

II. MODEL DEFINITION

In the following we consider movements of parts of a human
skeletal system, in particular those of a given limb or set of
limbs, under the effect of a set of muscle-tendon complexes.
We assume the considered skeletal system is mechanically
grounded and that bones composing this system behave as
rigid segments. We further assume that joints between seg-
ments remain rotational in nature (i.e. revolute or ball joints).
This is a limiting assumption, not allowing for instance to
reflect kinematics of shoulder joints (see [35]), which will in
the future be relaxed, but facilitates clarity of exposition. The
state of the considered class of skeletal systems is described
by a set of n joint angles θ(t) ∈ Dθ ⊆ Rn, n ∈ N, t ⩾ 0,
and angle velocities θ̇(t) ∈ Rn. Its dynamics are described
by the usual mechanical formulation,
M(θ(t))θ̈(t) + C(θ(t), θ̇(t))θ̇(t) + g(θ(t)) = τ(t),

θ(0) = θ0, θ̇(0) = θ̇0, t ⩾ 0, (1)
where the matrix M(·) ∈ Rn×n describes the system’s
inertia, C(·, ·) ∈ Rn×n, g(·) ∈ Rn represents the effect of
gravity’s acceleration, and τ(t) ∈ Rn is the set of torques
applied to the considered joints by relevant muscle-tendon
complexes.

We describe the muscle dynamics using the model pro-
posed in [16]. In particular, using the formulation in [16],
we compute the torque vector in (1) as follows,

τ(t) = Ω(θ(t))Fγs(ϵt(t)), t ⩾ 0, (2)
where the matrix Ω(θ) ∈ Rn×m is rank n and describes the
moment arms through which the m ⩾ 2n, m ∈ N considered
muscle-tendon complexes generate torque, γs(·) ∈ R+m

represents the vector of normalized efforts produced by
tendons as a result of tendon strains ϵt(t) ∈ R+m, and F ∈
Rm×m is a diagonal matrix reflecting maximum isometric
tendon forces. Tendon efforts are provided by the following
equation,

γsi(ϵti) =

{
p1
(
ep2ϵti/ϵth − 1

)
/ (ep2 − 1), ϵti ⩽ ϵth,

p3(ϵti − ϵth) + p1, ϵti > ϵth,
(3)

where γsi ∈ R+ represents the ith entry of γs, i = 1, . . ., m,
p1, p2, p3 ∈ R+ are characteristic parameters, and ϵth ∈ R+

describes a threshold strain value. The tendon strains are
computed as follows,

ϵti(θ, li) =
l̄i(θ)− li cos(αi(li))− lt0i

lt0i
, (4)

where l̄i(θ) ∈ R+ describes the length of the ith muscle-
tendon complex, li ∈ R+ is the ith muscle fiber’s length,
lt0i ∈ R+ is the ith tendon’s slack length, and the pennation
angle αi(li) ∈ R+ is obtained from

αi(li) = arccos

(√
1−
(
lri sin(αri)

li

)2
)
, (5)

where lri ∈ R+ is a muscle fiber reference length. The
muscle fiber length is obtained from the following nonlinear
relationship,

l̇(t) = h(θ(t), l(t), q(t)), l(0) = l0, t ⩾ 0, (6)
where q(t) ∈ (0, 1]m represents the vector of normalized



muscle fiber contractions,
hi(t) ≜{

(α1+α2qi(t))(γci(t)−qi(t)γai(t))
qi(t)γai(t)+γci(t)/α3

, γci(t)⩽qi(t)γai(t),
α4(α1+α2qi(t))(γci(t)−qi(t)γai(t))

α5qi(t)γai(t)+γci(t)
, γci(t)>qi(t)γai(t),

i = 1, . . . ,m, (7)
where hi(t) ∈ R represents the ith entry of h(t) in (6), αj ∈
R+, j = 1, . . . , 5, are constant parameters, qi(t) represents
the ith entry of q(t), and

γpi(lni) ≜ e(lni−1)/ϵ0m−1
ek−1

, (8)

γai(lni) ≜ e−(lni−1)2/gs , (9)
γci(γsi , γpi , αi) ≜

γsi

cos(αi)
− γpi , (10)

where lni ≜ li/lri is the normalized ith muscle length, k,
ϵ0m, gs ∈ R are constant parameters. The muscle activation
vector q(t) =

[
q1(t) . . . qm(t)

]T
describes the signal

produced by the nervous system to elicit muscle contractions.
In the following we assume we are able to directly assign
its rate of change, q̇(t), and design a control law such that
the joint angles θ(t) are made to track a prescribed desired
trajectory θd(t) ∈ Rn.

III. CONTROL DESIGN

Consider the following joint angle and angular velocity
errors,

e1(t) ≜ θd(t)− θ(t), t ⩾ 0, (11)
e2(t) ≜ θ̇d(t) +G1e1(t)− θ̇(t), (12)

where G1 ∈ Rn×n, G1 > 0. Then define

τd(t) ≜ C(θ(t), θ̇(t))θ̇(t) + g(θ(t)) +M(θ(t))
(
θ̈d(t)

+(In −G2
1)e1(t)+(G1 +G2)e2(t)

)
, (13)

where In ∈ Rn×n represents the n × n identity, and
G2 ∈ Rn×n, G2 > 0. Differentiating (11)–(12) in time,
substituting in (1), and assuming that τ(t) ≡ τd(t), t ⩾ 0,
we would obtain[

ė1(t)
ė2(t)

]
=

[
−G1 In
−In −G2

] [
e1(t)
e2(t)

]
, t ⩾ 0, (14)

from which we would be able to straightforwardly
conclude exponential convergence of the error vector[
eT1 (t) eT2 (t)

]T
to the origin.

We are not however able to directly define the torque
profile τ(t), which instead is produced through action of the
muscle-tendon complexes, as described by (2). In general,
the system is overactuated, in that m/2 > n, where m/2
represents the number of effective agonistic-antagonistic
muscle pairs. That is, a greater number of muscle pairs are
made to act on a smaller number of joints. Accordingly,
there exists no unique change of variable from joint space
to muscle space. For instance, in light of (2), one could be
tempted to define a desirable muscle effort profile as follows,

γ∗sd(t) ≜ (Ω(θ(t))F )
†
τd(t), t ⩾ 0, (15)

where ·† denotes the usual generalized inverse. This design
choice would be similar to that adopted in [27, 28]. A
possible issue emerging from such a choice relates to the

nature of the normalized effort vector γs(t), the entries for
which are in practice positive. However, there is no reason for
the pseudo-inverse in (15) to result in consistently positive
entries in the above-defined γ∗sd(t). Attempting to track
γ∗sd(t) with γs(t) would therefore prove problematic. Instead,
we carefully distinguish positive and negative parts of the
entries in τ(t), thereby disentangling effort contributions
from flexors and extensors. Specifically, consider

τµ(t)≜

[
τ+d (t) + c(τd(t))

−τ−d (t) + c(τd(t))

]
, t ⩾ 0, (16)

where τµ ∈ R2n, τ+d (t) = τd(t) if τd(t) > 0, τ+d (t) =
0 otherwise, and τ−d (t) = τd(t) if τd(t) < 0, τ−d (t) = 0
otherwise, and c(τd(t)) ∈ Rn is computed as follows,

ci(τd(t)) ≜
e(−αs|τdi(t)|)

2αs
+ β, i = 1, . . . , n, (17)

where ci(t) is the ith entry of vector c(t), αs, β ∈ R+. The
vector c(·) is representative of cocontraction across flexors
and extensors, and is designed in such a manner that τµ(t)
is continuously differentiable. Parameter αs in (17) affects
smoothness of τµ(t), while β allows to adjust the magnitude
of cocontraction. In practice, the net torques applied by the
combination of flexors and extensors amounts to τ+d (t) +
τ−d (t) = τd(t), as the cocontraction terms c(t) from flexors
and extensors cancel out. More concretely, from (2), we are
able to expand Ω(θ(t))F to describe flexors and extensors
contributions to joint torques as follows,[

τ+(t)
τ−(t)

]
= Ψ(θ(t))γs(ϵt(t)), t ⩾ 0, (18)

where τ+(t), τ−(t) ∈ Rn represent torque produced by
flexors and extensors, and Ψ(θ(t)) ∈ R2n×m describes a
change of coordinates from muscle space to torque space,
allowing to map contributions from flexors and extensors
onto the actuated joints. Provided that the considered set of
muscle-tendon complexes provides sufficient control author-
ity over the considered joints, one is always able to construct
one such mapping (see illustrative application in Section IV,
(42)). Then, define

γsd(t) ≜ Ψ†(θ(t))τµ(t), (19)
which is such that if γs(t) ≡ γsd(t), t ⩾ 0, then τ(t) ≡ τd(t),
t ⩾ 0, and (14) is verified. Accordingly, define

e3(t) ≜ γsd(t)− γs(t), t ⩾ 0, (20)
e4(t) ≜ l̇d(t)− l̇(t), (21)

where γsd(t) is provided by (19) and

l̇d(t) ≜

(
∂γs(t)

∂l(t)

)−1 (
− ∂γs(t)

∂θ(t)
θ̇(t) + ΓT(θ(t))e2(t)

+γ̇sd(t) +G3e3(t)
)
, t ⩾ 0, (22)

where G3 ∈ Rm×m, G3 > 0, and Γ(θ) ≜ M−1(θ)Ω(θ)F .
For brevity, we do not provide the closed-form expressions
from which one may compute ∂γs(t)/∂l(t), ∂γs(t)/∂θ(t),
γ̇sd(t), they can be straightforwardly obtained from (3)–
(5) and (19). The desired muscle fiber velocity (22) was
designed, together with the desired torque (13) using a
backstepping procedure ([23]). In the following, we build



upon this set of tracking errors to pursue convergence of the
joint angles θ(t) to their desired trajectories θd(t).

Theorem 1: Consider the joint angle trajectory θ(t), t ⩾
0, produced by the musculoskeletal system composed of (1)
and (6), its desired trajectory θd(t), and the following choice
of muscle fiber activation rate,

q̇(t) =

(
∂h(t)

∂q(t)

)−1
(
G4e4(t)−

∂h(t)

∂θ(t)
θ̇(t)− ∂h(t)

∂l(t)
h(t)

+

(
∂γs(t)

∂l(t)

)T
e3(t) + l̈d(t)

)
, q(0) = q0, t ⩾ 0, (23)

where G4 ∈ Rm×m, G4 > 0, h(t) is given by (7),
tracking errors e3(t) and e4(t) are provided by (20), (21),
the normalized series elastic force γs(t) is provided by (3),
and l̈d(t) is obtained by differentiating over time the desired
muscle fiber speed (22).

Using the muscle fiber activation q(t) obtained from (23)
as input to model (1), (6), guarantees exponential conver-
gence of θ(t) to θd(t).

Proof: Differentiating (11) over time along the trajecto-
ries of the system composed of (1) and (6) subjected to the
control input q(t) obtained from (23), substituting in (12)
leads to

ė1(t) = −G1e1(t) + e2(t), t ⩾ 0. (24)
Similarly, from (12), (20), (1), (13), (16), and (19), we obtain

ė2(t) = −e1(t)−G2e2(t) + Γ(θ(t))e3(t). (25)
From (20), (21), (6), and (22), we have

ė3(t) = −ΓT(θ(t))e2(t)−G3e3(t) +
∂γs(t)

∂l(t)
e4(t). (26)

Finally, differentiating (21) and substituting in (23) yields

ė4(t) = −
(
∂γs(t)

∂l(t)

)T

e3(t)−G4e4(t). (27)

Define e(t) ≜
[
eT1 (t) eT2 (t) eT3 (t) eT4 (t)

]T
, t ⩾ 0.

From (24)–(27), we have
ė(t) = Ā(θ(t), l(t)) e(t), (28)

where

Ā(θ, l) ≜


−G1 In 0n×m 0n×m

−In −G2 Γ(θ) 0n×m

0m×n −ΓT(θ) −G3
∂γs(θ,l)

∂l

0m×n 0m×n −(∂γs(θ,l)
∂l )T −G4

 ,
(29)

where 0i×j denotes the i× j zero matrix.
Then, consider the error system consisting of (28) with

initial condition e(0) = e0, and the following Lyapunov
candidate for this system,

V (e) ≜
1

2
eTe. (30)

Differentiating (30) along the trajectories of the considered
error system provides

V̇ (e(t)) = eT(t)Ā(θ(t), l(t))e(t), t ⩾ 0,

= −eT(t)Ge(t), (31)
where G ≜ diag

([
G1 G2 G3 G4

])
. From (30), we

have that k1∥e∥2 ⩽ V (e) ⩽ k2∥e∥2 with k1 = k2 = 1/2.
From (31), we have that V̇ (e(t)) ⩽ −k3∥e(t)∥2 with k3 ≜
λmin(G) strictly positive by construction of G. It follows
([36]) that the origin is an exponentially stable equilibrium
point of the error system. From (11), it directly follows that
θ(t) converges to θd(t), exponentially.
Note that the control designer is able to adjust control gains
Gi, i = 1, . . ., 4, to adjust stiffness of the error system’s
response to prescribed desired trajectories. In particular, me-
chanical impedance of the response may be adjusted through
selection of G1, G2. Efficacy of the result in Theorem 1
can be verified through numerical simulation, as presented
in Section IV. However, for a meaningful range of mus-
culoskeletal models, the error state matrix Ā(θ, l) in (29) is
characterized by strong oscillatory modes. Existence of these
modes, the emergence of which can be traced to large values
in Γ(θ) and ∂γs(θ, l)/∂l, affects closed-loop behavior of the
system in an undesirable manner. In particular, initial errors
may lead to excessive and brutal oscillations in the transient.
To mitigate the issue, we propose a minor adjustment to the
above result.

This adjustment amounts to omitting compensating cross
terms in the desired muscle fiber velocity (22) and contrac-
tion rate (23). Specifically, consider the following alternate
desired fiber velocity,

l̇d(t) =

(
∂γs(t)

∂l(t)

)−1(
− ∂γs(t)

∂θ(t)
θ̇(t) + γ̇sd(t) +G3e3(t)

)
,

t ⩾ 0. (32)
Omitting in (32) the term ΓT(θ)e2, originally present in (22),
will lead to the emergence of an additional, undesirable term
in the Lyapunov derivative. With a particular choice of con-
trol gains, we are able to overcome the negative influence of
this perturbing term, helping to circumvent the emergence of
undesirable oscillatory modes without jeopardizing stability
of the solution of the error system, as stated in the following.
For ease of exposition, let

Λ(θ, l) ≜


0n×2n 0n×m 0n×m

0n×2n Γ(θ) 0n×m

0m×2n 0m×m
∂γs(θ,l)

∂l
0m×2n 0m×m 0m×m

 . (33)

Theorem 2: Consider the joint angle trajectory θ(t), t ⩾
0, produced by the musculoskeletal system composed of
(1) and (6), consider the desired trajectory θd(t), and the
following choice of muscle fiber activation rate,

q̇(t) =

(
∂h(t)

∂q(t)

)−1 (
G4e4(t)−

∂h(t)

∂θ(t)
θ̇(t)− ∂h(t)

∂l(t)
h(t)

+l̈d(t)
)
, q(0) = q0, t ⩾ 0, (34)

where G4 ∈ Rm×m, G4 > 0, h(t) is given by (7),
tracking errors e3(t) and e4(t) are provided by (20), (21),
the normalized series elastic force γs(t) is provided by
(3), and l̈d(t) is obtained by differentiating over time the
adjusted desired muscle fiber speed (32). In addition, select
the control gains Gi, i = 1, . . ., 4, in (13), (32), and (34) such
that λmin(G2) > 1, λmin(G3) > λmax(Im + ΓT(t)Γ(t)/4)



Fig. 1: Skeletal system and joint angle definitions.

uniformly in time, and λmin(G4) > λmax(ρ
T(t)ρ(t)/4)

uniformly in time, where ρ(t) ≜ ∂γs(t)/∂l(t). Using the
muscle fiber activation q(t) obtained from (34) as input to
model (1), (6), guarantees exponential convergence of θ(t)
to θd(t).

Proof: The modified desired fiber speed (32) and
activation rate (34) lead to the following error dynamics,

ė(t) = A(θ(t), l(t)) e(t), t ⩾ 0, (35)
with

A(θ, l) ≜


−G1 In 0n×m 0n×m

−In −G2 Γ(θ) 0n×m

0m×n 0m×n −G3 ρ(θ, l)
0m×n 0m×n 0m×m −G4

 . (36)

Using the same Lyapunov candidate (30), differentiating it
over time along the trajectories of this new closed-loop
system, we obtain
V̇ (t) = −eT(t)Ge(t)+eT(t)Λ(t)e(t),

= −eT(t)Ge(t)+eT2 (t)Γ(t)e3(t)+eT3 (t)ρ(t)e4(t).
Completing the squares, we obtain
V̇ (t) = −eT(t)Ge(t) + eT2 (t)e2(t) + eT3 (t)e3(t)

−(e2(t)− Γ(t)e3(t)/2)
T(e2(t)− Γ(t)e3(t)/2)

−(e3(t)− ρ(t)e4(t)/2)
T(e3(t)− ρ(t)e4(t)/2)

+eT3 (t)Γ
T(t)Γ(t)e3(t)/4 + eT4 (t)ρ

T(t)ρ(t)e4(t)/4,

⩽ −λmin(G1)∥e1(t)∥2 − (λmin(G2)− 1)∥e2(t)∥2

−(λmin(G3)− λmax(Im + ΓT(t)Γ(t)/4))∥e3(t)∥2

−(λmin(G4)− λmax(ρ
T(t)ρ(t)/4))∥e4(t)∥2. (37)

By construction of Gi, i = 2, 3, 4, there exist ri ∈ R+∗

such that r2 < λmin(G2)− 1, r3 < λmin(G3)− λmax(Im +
ΓT(t)Γ(t)/4), r4 < λmin(G4)− λmax(ρ

T(t)ρ(t)/4).

Then, let k4 ≜ min {λmin(G1), r2, r3, r4}. It follows from
(37) that V̇ (e(t)) ⩽ −k4∥e(t)∥2 with k4 strictly positive.
In addition, from (30), we have (1/2)∥e∥2 ⩽ V (e) ⩽
(1/2)∥e∥2. Accordingly, the origin is an exponentially stable
equilibrium point of the modified error system, and θ(t) →
θd(t) as t→ ∞, exponentially.

This Section has proposed two distinct control designs
addressing the tracking control problem for a class of mus-
culoskeletal systems. In the following Section, we apply
these designs to an example and present results of numerical
simulations, illustrating their respective merits.

IV. ILLUSTRATIVE APPLICATION

We consider a two DoF skeletal system (n = 2), actuated
by a set of five muscle-tendon complexes (m = 5). This
musculoskeletal model represents an approximation of an
upper limb, with DoFs representing a rotational joint in the
shoulder and in the elbow. See Figure 1 for an illustration of
the skeletal system and sign definition of the considered joint
angles. Specifically, the humerus is connected to the torso
through the shoulder joint, represented using a rotational
joint (described by θ1(t), t ⩾ 0). Ulna and radius are together
connected to the humerus through the elbow joint, which
is also here approximated as a single DoF rotational joint
(θ2(t)). Two of the muscle-tendon complexes are flexors,
three are extensors one of which is biarticular. The Anterior
Deltoid acts as a flexor on the shoulder joint, whereas the
Triceps long acts antagonistically on the shoulder joint. The
Triceps long head is biarticular and, in combination with the
Triceps medial and lateral, acts as extensor on the elbow
joint. Lastly, Brachialis is a flexor of the elbow joint.

For the purpose of numerical simulation, we use a mass
of m1 = 1.86kg for the humerus, m2 = 1.53kg for the com-
bined ulna and radius, and respective lengths of l1 = 0.29m
and l2 = 0.24m (values taken from [37]). Each segment is
approximated as a thin rod of uniform mass density. The
maximal isometric tendon forces, reference muscle lengths,
tendon slack lengths, and reference pennation angles for
each of the five considered muscles are provided in Table
1 (values adapted from [38]). Numerical integration is done
using ode45 ([39]).

To illustrate performance of the control laws presented
in Section III, we simulate tracking of a sinusoidal tra-
jectory θd(t) = a sin(ωt + ϕ) + b, t ⩾ 0, where a =

π/180 diag
([

45 11.25
])

rad, ω =
[
3/π 4/π

]T
rad/s,

ϕ =
[
0 0

]T
rad, and b = π/180

[
67.5 22.5

]T
rad.

Values of the control gains are G1 = 5 In, G2 = 2 In,
G3 = 500 Im and G4 = 500 Im when applying the control
defined in (23), and G1 = 5 In, G2 = 2 In, G3(t) = 20 Im
and G4(t) = 20 Im for that in (34). M(θ), C(θ, θ̇) and g(θ)
are of the form

M(θ) =

[
1 l2m2

l1(m1+m2)
cos(θ1−θ2)

l1
l2
cos(θ1−θ2) 1

]
, (38)

C(θ, θ̇) =

[
0 l2m2

l1(m1+m2)
sin(θ1−θ2)θ̇2

− l1
l2
sin(θ1−θ2)θ̇1 0

]
, (39)

g(θ) =
[ g

l1
sin(θ1)

g
l2
sin(θ2)

]T
, (40)

where g = 9.81m/s2. Ω(θ) in (2) is of the form

Ω(θ) =

[
ω11(θ1) ω12(θ1) 0 0 0

0 ω22(θ2) ω23(θ2) ω24(θ2) ω25(θ2)

]
, (41)

Muscle F [N] lr [cm] lt0 [cm] αr [deg]
Anterior Deltoid (DELT1) 1,218.9 9.76 9.3 22
Triceps long head (TRIlong) 501.7 13.4 14.3 12
Triceps lateral (TRIlat) 609.9 11.38 9.8 9
Triceps medial (TRImed) 932.7 11.38 9.08 9
Brachialis (BRA) 4,120.8 8.58 5.35 0

Tab. 1: Muscle-Tendon Parameters
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Fig. 2: Desired (green) and actual joint angle trajectories
(shoulder joint in blue, elbow in red, Theorem 1 dashed,
Theorem 2 solid, top), desired and actual torques (bottom).

where the specific expressions of ωij , i = 1, 2, j = 1, . . .,
5, are provided by [40]. The specific values used in (3) and
(7-9) are taken from [37] (which itself is adapted from [16]);
p1 = 0.33, p2 = 51.8749, p3 = 3, ϵth = 0.0201, α1 = 1/4,
α2 = 3/4, α3 = 3/10, α4 = 0.0923, α5 = 1.8, e0m = 6/10,
k = 4 and g = 1/2. In addition, we select αs = 0.5, β = 3,
and the muscle recruitment matrix is of the form

Ψ(θ)=


ψ11(θ1) 0 0 0 0

0 ψ22(θ1, θ2) 0 0 0
0 0 0 0 ψ35(θ2)
0 ψ42(θ1, θ2) ψ43(θ2) ψ44(θ2) 0

, (42)

where the specific values of ψij are directly derived from
entries of Ω(θ). Values for l̄(θ) are taken from [38].
Tracking performance is shown in Figure 2. Initial con-
ditions used when applying the result from Theorem 1
are the following, θ0 =

[
0.6427 1.4281

]T
rad, θ̇0 =

θ̇d(0), l0 =
[
8.83 17.97 10.08 9.57 7.07

]T
cm and

q0 =
[
0.3323 0.1866 0.1240 0.1898 0.3175

]T
. For

the result from Theorem 2, we used θ0 =
[
0 0

]T
rad,

θ̇0 = θ̇d(0), l0 =
[
11.36 13.60 6.93 6.43 8.76

]T
cm

and q0 =
[
0.2498 0.3233 0.0764 0.1302 0.5409

]T
.

Tracking performance is excellent. Initial conditions used to
simulate the closed-loop using the control law from Theorem
1 were selected to avoid excessive transient oscillations, as
discussed in Section III. This constraint is relaxed when
using the controller presented in Theorem 2, as illustrated
in Figure 2. Upon reaching steady state (from about t = 2s),
trajectories appear consistent across both control laws. Nor-
malized tendon efforts for extensors and flexors are shown
in Figure 3 (top and bottom, respectively), the corresponding
muscle fiber activations in Figure 4. Note that by definition
of q(t), activation values are expected to remain within
(0, 1]. Here, ensuring that activation remains positive can
be achieved by adjusting the cocontraction parameter β in
(17). Avoiding that activation exceeds its maximal value is
achieved by selecting achievable (given initial conditions and
model parameters, in particular F ) desired trajectories. Al-
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Fig. 3: Normalized tendon efforts for extensors TRIlong,
TRIlat, TRImed (top), and flexors DELT1, BRA (bottom),
result from Theorem 1 shown in dashed, Theorem 2 solid.
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Fig. 4: Muscle fibar activation for extensors TRIlong, TRIlat,
TRImed (top) and flexors DELT1, BRA (bottom), result
obtained from Theorem 1 shown in dashed, Theorem 2 solid.

ternatively, one may employ actuation saturation techniques
such as that in [41].

V. CONCLUSION

The work presented addresses the tracking problem for a
class of musculoskeletal systems. Results provided achieve
exponential convergence of skeletal joint angles to user-
defined desired angle trajectories. Application to a two DoF
model of an upper limb, actuated by a set of five muscles, is
provided to illustrate performance of the control laws. Future
work will address a number of different aspects. In particular,
steps are being taken to provide the approach with a measure
of robustness to system uncertainty, using adaptive and robust
control techniques, such as that in [42], which has in the
past been applied to a robotic model of a swimmer ([43]).
Similarly, the output feedback problem will be addressed
to more closely reflect the type of control problem solved
by the nervous system, in particular considering feedback
from muscle spindles (as is the case in biology) in the stead
of assuming direct availability of muscle fiber length. In



addition, the considered system will be extended to include
a functional spinal cord model. At that stage, the control
law will act at the level of descending signals ([44, 45]).
The setup will be used to investigate the contribution to
closed-loop behavior of different spinal pathways, allowing
to interrogate and assess merit of existing models of such
pathways proposed in the computational neuroscience liter-
ature. In the longer term, this avenue of investigation will
be exploited to support functional dynamical grounding of
detailed neural sensorimotor loop models, with applications
to digital modeling of patients suffering from adverse motor
conditions (e.g. post-stroke paresis). Such models (i.e. neuro-
physical digital twins [46]) can be used to help inform
physical therapies relied upon to help improve patients’
condition.
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