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CHAPTER 1

General introduction

Background

According to the World Health Organization (WHO), 17.9 million people died in 2019 from
cardiovascular diseases (CVDs) (1). Many different risk factors for CVD exist. Some of these
risk factors are non-modifiable such as age, family history of CVD, and genetic background.
The negative impact of many other risk factors, however, can be reduced through changes in
lifestyle. These so-called modifiable risk factors include smoking, physical inactivity, diabetes,
being overweight or obese, and high blood pressure. Another well-known modifiable risk
factor is hypercholesterolemia, which is characterized by high serum cholesterol
concentrations in the atherogenic low-density lipoprotein (LDL-C) fraction. Serum LDL-C is
controlled by many different factors amongst others genetic background, endocrine factors,
body weight, circadian rhythms, drugs, physical activity, and diet (2, 3). Cholesterol in the body
can be obtained from the diet via intestinal absorption or by endogenous synthesis, mainly by
the liver. Serum cholesterol concentrations vary widely between populations that have
different dietary habits. Indeed, a change in dietary habits resulting in a reduced intake of
cholesterol reduces serum cholesterol concentrations (4), though relatively modest (5).
However, serum cholesterol concentrations within populations consuming comparable diets
can also be very different. This suggests that wide inter-individual variation in cholesterol
metabolism exists (6). Indeed, fractional cholesterol absorption between individuals
consuming standardized diets varied between 29 — 81% (7). In general, however, the higher
the absolute and fractional dietary cholesterol absorption rates, the lower the rates of
cholesterol synthesis, biliary secretion, and fecal elimination are (8). People who absorb more
cholesterol, deliver more cholesterol to the liver, which suppresses endogenous cholesterol
synthesis and downregulates receptor-mediated uptake of LDL by the liver. Consequently,
serum total cholesterol and LDL-C concentrations will increase, whereas the opposite occurs
when cholesterol absorption is inhibited (9). Although the inter-individual variation is high,
the intra-individual variation is low (10) suggesting that genetic background is an important

determinant of cholesterol absorption.
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Intestinal cholesterol absorption

Intestinal cholesterol absorption is a multistep process. Briefly, the intestinal micelle, that
contains free cholesterol, interacts with the brush border membrane of the enterocyte. Here,
the Niemann-Pick C1 like 1 protein (NPC1L1), which plays a critical role in cholesterol
absorption (11), is highly expressed. Within the enterocyte, the cholesterol molecules first
move to the endoplasmic reticulum, where they become esterified by acyl-CoA cholesterol
acyltransferase (ACAT). In the endoplasmic reticulum, the esterified cholesterol is packed with
triacylglycerol, phospholipids, and apolipoprotein-B48 to form chylomicrons (12). In this
process, microsomal triglyceride transfer protein (MTP) plays an important role, as this
enzyme transfers neutral lipids (triacylglycerol and cholesterol ester) into the newly formed
chylomicrons (13). Via the basolateral membrane of the enterocyte, the chylomicrons are
secreted into the lymph and subsequently travel to the blood. However, other essential
proteins also determine the net flux of cholesterol into the enterocyte and as such the amount
of cholesterol that is available for incorporation into mixed micelles. Two important proteins
are the adenosine triphosphate (ATP) binding cassette (ABC) transporters ABCG5 and ABCGS.
These proteins promote the efflux of cholesterol from the enterocyte back into the intestinal
lumen for excretion (14). Thus, multiple genes are involved in this complex process. In fact,
the precise mechanism of intestinal cholesterol absorption is still unsolved, and it is very likely
that many more proteins play an important role. Figure 1 presents a schematic overview of

the intestinal cholesterol absorption pathway.
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Figure 1. Schematic overview of the intestinal cholesterol absorption pathway. Free
cholesterol (FC) enters the enterocyte via Niemann-Pick C1-like 1 (NPC1L1) and is esterified
by Acetyl-CoA Acetyltransferase 2 (ACAT2) in the endoplasmic reticulum (ER). FC can also be
transported back into the intestinal lumen via ATP-binding cassette members 5 and 8
(ABCG5/G8). Low-density lipoprotein (LDL) is taken up from the basolateral side via LDL
receptor-mediated endocytosis. FC is also used by ATP-binding cassette A1 (ABCA1) to form
high-density lipoprotein. Cholesterol ester (CE) is further processed in the Golgi complex (GC)
with other components to form chylomicrons which are further transported to the lymphatic
system. The drug ezetimibe is an NPC1L1 blocker and thus inhibits intestinal cholesterol
absorption.

Biomarkers of intestinal cholesterol absorption

Phytosterols, also called plant sterols (e.g., campesterol and sitosterol), can be found in plant
cell membranes and are therefore present in plant products such as vegetable oils, seeds,
nuts, fruits, vegetables, and grain products (15, 16). Except for the plant sterols, also minute
guantities of plant stanols (e.g. campestanol and sitostanol) can be found in plant-based
products (17). Higher amounts are present in food products enriched with plant stanols
derived from hydrogenated plant sterols. Saturation of the double bond at the C5-C6 position
of the second ring in plant sterols results in the conversion of, for example, campesterol into
campestanol and of sitosterol into sitostanol (18). Plant sterols and plant stanols, frequently
esterified with fatty acids, are incorporated into certain so-called functional foods, as they

effectively lower serum LDL-C concentrations (19).
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Dietary intake of phytosterols ranges between 250-400 mg/day in European countries but
varies widely between subjects (20). The intake of campesterol plus sitosterol is almost equal
to that of cholesterol, but their intestinal absorption rates are markedly lower (21, 22). This
lower intestinal absorption might relate to their chemical structure, differing in the side chain
(Figure 2). The intestinal absorption of plant sterols is about 5%, while that of plant stanols is
even lower (0.02-0.3%). For comparison, cholesterol absorption is 30-80% (7, 22-25). Another
steroid, which is a metabolite of cholesterol, is cholestanol, which is present in small amounts
in most mammalian tissues (26). It differs from cholesterol by the absence of the double bond
in the second ring at the C5-C6 position (27). Intestinal absorption of cholestanol is also low
and is estimated to be 3-4% (28).

Isotopic tracers can be used to measure intestinal cholesterol absorption. Though very
precise, it is a labor-intensive and costly technique, thereby limiting its use in large-scale
studies (29). However, fractional cholesterol absorption can also be estimated using a method
developed by Miettinen and co-workers (30) by using serum total cholesterol-standardized
levels of campesterol, sitosterol, or cholestanol. For that reason, non-cholesterol sterols are
frequently used markers of cholesterol absorption, as plasma samples are easily accessible,
and the non-cholesterol sterols are less laborious to measure. These non-cholesterol sterol
markers have been validated in a randomly selected healthy population (30). In that study,
ratios of plasma non-cholesterol sterols markers (campesterol, sitosterol, and cholestanol) to
cholesterol were measured and compared with the quantification of intestinal cholesterol
absorption as measured by the dual-isotope continuous feeding technique. It was shown that
the plasma non-cholesterol to cholesterol ratios highly correlated with the absorption values

determined by using the dual stable isotope technique.
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Cholesterol

Cholestanol Sitosterol Sitostanol

Figure 2. Chemical structure of cholesterol and a cholesterol absorption marker: cholestanol
in the left part of the figure. In the middle, the chemical structures of two plant sterols are
shown, that are also used to estimate cholesterol absorption: campesterol and sitosterol. In
the right part of the figure, the chemical structures of two plant stanols are presented:
campestanol and sitostanol. Structure source: MolView (31).

Genetic variation and intestinal cholesterol absorption

As already mentioned, cholesterol absorption varies widely between individuals, but is rather
constant within an individual (10). This strongly suggests that this interindividual variation
relates to genetic variations between individuals, as the diet was controlled for in that study.
The genetic information of an organism is found in deoxyribonucleic acid (DNA), that is
composed of two polynucleotide chains that wind around each other forming a double helix.
The two DNA strands are made of nucleotides, and each nucleotide consists of a sugar
molecule, a phosphate group, and one of the four nucleobases: adenine (A), thymine (T),
guanine (G), or cytosine (C) (32). The genetic information that is necessary to produce a
protein is called a gene. These genes are composed of different parts. The first part is the

promoter. Other essential parts of a gene are the introns and exons. Different steps are
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required for a gene to be expressed. First, information from a gene is transferred to messenger
ribonucleic acid (mRNA) by a process known as transcription, which can be initiated by the
binding of transcription factors to the promoter region. In this process, an enzyme called RNA
polymerase Il plays an important role and a pre-mRNA molecule is formed. For the synthesis
of the pre-mRNA, both the introns and exons of DNA are transcribed. The information from
the introns is then removed by a process called RNA splicing and mature mRNA is formed.
Secondly, the mature mRNA will leave the nucleus and travels through the cytoplasm to the
ribosomes. Ribosomes can now attach to the mRNA and translation will start, which refers to
the process that the information of an mRNA molecule is used to build a polypeptide
composed of many different amino acids. Finally, the polypeptide is converted into a

functional protein (33) (Figure 3).

RNA
polymerase Il

%
‘ QO . o
Nucleus Transcription
Pre-mRNA Mature mRNA

e ——

Mature mRNA exits
the nucleus

Polypeptide

Ribosome

Cytoplasm Translation

clajcgalulc
ﬂl IN $HN
ulc[clalclalalujclalu c.A,u[c‘{h[chulsrAﬁ

Figure 3. Gene expression through transcription and translation. Exons are the colored boxes,
while the introns are the gray lines in the pre-mRNA in the nucleus. During transcription,
mature mRNA is formed. During translation, the mature mRNA is used for the synthesis of a
specific protein. This figure was created using BioRender (https://biorender.com/).
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The genetic information in our DNA varies largely between individuals. Single nucleotide
polymorphisms (SNPs) are single base-pair changes in the genomic DNA strains that are
present with a frequency of more than 1% in an unrelated population (34). In Figure 4, for
example, DNA variation between two individuals exists due to the substitution of the thymine

nucleobase for the guanine nucleobase.

Individual 1 AT 6 T T G C A A

Individual 2 AT 6 | T G G C A A

Figure 4. Single nucleotide polymorphisms (SNPs) are single base variations among different
people. The figure shows a part of DNA in which one nucleobase of individual 1 (thymine (T))
is replaced by guanine (G) in individual 2.

SNPs can be categorized based on their effects on the amino-acid sequence of the coded
protein. Synonymous SNPs do not cause a change in the encoded amino acids. However,
nonsynonymous (missense) SNPs cause a change in the amino-acid sequence of the protein
(35). Also, other polymorphisms exist. Indel polymorphisms, for example, are insertions or
deletions of a nucleotide sequence. Indel is a type of genetic variation, in which a specific
nucleotide is present (insertion) or absent (deletion), which can also alter protein structure
or function depending on the site of the indel in the gene (36). Variant annotation can be used
to find out the functional consequences of the DNA variants, which can further help in
predicting the variant effects on the protein function and structure (37). Different genetic
variants are shown in Figure 5. There is a great potential of using SNPs as markers to detect
associations with phenotypic variations in a population. Some SNPs can have functional
consequences if they are present within transcriptional regulatory elements, which can
impact mRNA transcription stability or affect transcription factor binding affinity. These
variations are associated with diversity in the population, individual responses to diet and
medication, and susceptibility to disease (38, 39). For this reason, SNPs are a great tool to
identify and map complex diseases and are a promising approach for medical decisions for
healthcare providers to customize treatment tailored to individual patients (precision

medicine) (40-42).
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5 3

* regulatory region * 5 prime UTR variant  splice donor variant * splice region variant « 3 prime UTR variant
* TF binding site * start retained variant « splice acceptor variant * intron variant
* startlost
* downstream gene variant
intergenic variant * synonymous variant
upstream gene variant * missense variant
* inframe insertion « Stop lost
* inframe deletion « Stop retained variant
* stop gained * Incomplete terminal codon variant

 frameshift variant
* coding sequence variant

Figure 5. Possible locations of genetic variants and its consequence for the transcript.
Consequences of variants on, for example transcripts can be obtained from the Ensembl
variant effect predictor (43).

Another essential aspect of human genomics is linkage disequilibrium (LD), which refers to
the nonrandom pattern of associations between alleles in a given population. An allele refers
to a gene variant, and a haplotype to a set of alleles on the same chromosome (44). These
associations between alleles are mainly due to physical proximity (physically close to each
other on a chromosome) and are, therefore, more likely to be inherited together during
meiosis (45). Thus, LD can impact the interpretation of genetic association studies. To reduce
the number of outcomes when examining, for example, the association between SNPs and
the likelihood of developing a disease, it is possible to select a SNP (tag SNP) that is

representative for group of SNPs (e.g. haplotype) instead of testing all the variants (46).

Cholesterol absorbers and synthesizers

Based on cholesterol absorption and endogenous cholesterol synthesis markers, humans can
be classified as high-cholesterol and low-cholesterol absorbers or as high-cholesterol and low-
cholesterol synthesizers (47). These characteristics have been shown to relate to the
cholesterol-lowering efficacy of an intervention (48, 49). Statin therapy, for example, is most
effective in high-cholesterol synthesizers, while individuals classified as high-cholesterol
absorbers will benefit more if they use cholesterol-absorption inhibitors such as products

enriched with plant stanol and sterol esters or the drug ezetimibe (47, 50, 51). By defining
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whether a patient is a cholesterol-synthesizer or cholesterol-absorber, a tailored regimen can
be followed to achieve the best outcome and to reduce the cost of treatment. SNPs in genes
involved in intestinal cholesterol absorption can relate to the efficacy of dietary interventions
aimed to lower serum LDL-C concentrations. Weinberg et al. (52), for example, found that by
consuming a high-cholesterol, high-polyunsaturated fat diet, individuals that were
heterozygous for the A-1V-2 allele have a lower fractional cholesterol absorption than A-1V-1/1
homozygous individuals. Moreover, Plat et al. (53) observed that after consuming plant
stanols, participants homozygous for the ABCG8 T400K genotype TT had a greater reduction
in cholesterol absorption compared to the TK/KK genotype group.

Since different laboratories use different methods to monitor cholesterol absorption and
synthesis (54), there are no generally accepted cut-off values to define individuals as high-
cholesterol or low-cholesterol absorbers or as high-cholesterol or low-cholesterol
synthesizers. Therefore, the need exists to better standardize analytical procedures to define
individuals as high-cholesterol or low-cholesterol absorbers or synthesizers. In addition,
mapping SNPs associated with cholesterol absorption and synthesis can help to identify

cholesterol-absorbers or synthesizers and optimize personalized treatments.

The significance of biological networks

Cellular processes are controlled at multiple levels by regulating gene transcription and
protein synthesis within complex networks (55). To obtain a deeper understanding of gene
functions and interactions, several tools are available to visualize complex biological networks
graphically and to predict gene functions by using available genomic and proteomics data
(56). A frequently used software program is GeneMania (57). Based on several lines of
evidence indicating the importance of SNPs in genes associated with intestinal cholesterol
absorption, the focus of this thesis was directed toward a better understanding of the

complex intestinal cholesterol absorption network.

Outline of the thesis
As mentioned before, intestinal cholesterol absorption varies widely between individuals. This
thesis now aims to understand reasons for this interindividual variability. Not only SNPs in

genes related to intestinal cholesterol absorption were examined, but also investigated the
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interplay between the SNPs and endogenous cholesterol synthesis markers and LDL-C levels.
Furthermore, genes that are affected by plant stanol ester intake were investigated, and genes
related to intestinal cholesterol absorption were identified using different approaches.
Moreover, enriched pathways were revealed. In the end, this knowledge should lead to a
better understanding of the determinants of the complex intestinal cholesterol absorption

network. Figure 6 represents the outline of this thesis.

CHAPTER 2 first provides a systematic overview of the literature to summarize genetic
variants associated with intestinal cholesterol absorption. Secondly, the genes that appeared
from the systematic review were used to build an intestinal cholesterol absorption network
using the GeneMANIA Cytoscape plugin. CHAPTER 3 presents the association of pre-selected
genes with intestinal cholesterol absorption and endogenous cholesterol synthesis rates, and
LDL-C concentrations. In CHAPTER 4, we have genotyped participants’ from five human
intervention studies to investigate the association of all SNPs of the Axiom™ Precision
Medicine Research Array (PMRA) Kit (Thermo Fisher Scientific, Waltham, MA, USA) (58) with
different non-cholesterol sterol absorption markers. To better understand the molecular
mechanism of intestinal cholesterol absorption, we tried to identify in CHAPTER 5 genes that
are differentially regulated after the intake of plant stanol esters in high-cholesterol and low-
cholesterol absorbers. The effects of acute plant stanol ester consumption on mRNA gene
expression profiles in the duodenum and jejunum biopsies in two groups pre-classified as
high-cholesterol or low-cholesterol absorbers were studied. Additionally, the mRNA
expression for each group (high-cholesterol and low-cholesterol absorbers) was visualized in
enterocyte cholesterol metabolism wikipathways, which was an output of the enrichment
analysis. All data for this thesis were obtained from samples collected in five previous human
intervention studies performed between 1997 and 2012 at Maastricht University, the
Netherlands. All individuals included in these studies were from Maastricht and the
surrounding area, a European population. The General Discussion discusses the significance

of the results obtained, while possible implications and further studies are mentioned.
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Figure 6. Outline of the thesis. Abbreviations: PMRA = Axiom™ Precision Medicine Research

Array.
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Abstract

Intestinal cholesterol absorption varies widely between individuals, which may translate into
differences in responsiveness to cholesterol-lowering drugs or diets. Therefore, understanding
the importance of genetic variation on cholesterol absorption rates and the complex intestinal
cholesterol network is important. Based on a systematic review, genetic variants in seven
genes (ABCG5, ABCGS8, ABO, APOE, MTTP, NPC1L1, and LDLR) were identified that were
associated with intestinal cholesterol absorption. No clear associations were found for
variants in APOA4, APOB, CETP, CYP7A1, HMGCR, SCARB1, SLCO1B1, and SREBF1. The seven
genes were used to construct an intestinal cholesterol absorption network. Finally, a network
with fifteen additional genes (APOA1, APOA4, APOB, APOC2, APOC3, CETP, HSPG2, LCAT,
LDLRAP1, LIPC, LRP1, OLR1, P4HB, SAR1B, and SDC1) was generated. The constructed network
shows that cholesterol absorption is complex. Further studies are needed to validate and
improve this network, which may ultimately lead to a better understanding of the wide inter-
individual variability in intestinal cholesterol absorption and the development of personalized

interventions.
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1. Aim and rationale of the review

Plasma cholesterol concentrations are the result of many interacting pathways including
intestinal cholesterol absorption. To prevent hypercholesterolemia, a major risk factor for
coronary heart disease (CHD), tight regulation of intestinal cholesterol absorption is therefore
essential (1,2). However, fractional intestinal cholesterol absorption rates vary widely
between individuals and ranged between 29% and 80%, when participants consumed a
breakfast providing 64 mg of cholesterol. Within subject-variability, however, was small (3).
These findings therefore suggest that genetic background is an important determinant of
intestinal cholesterol absorption rates.

Intestinal cholesterol absorption can be lowered by drugs specifically targeting NPC1 like
intracellular cholesterol transporter 1 (NPC1L1), a key transmembrane protein that transports
cholesterol from the intestinal lumen into the enterocyte (4). Besides NPC1L1, many other
proteins such as the ATP-binding cassette subfamily G member 5 and member 8 (ABCG5 and
ABCGS, respectively) heterodimers (ABCG5/8) affect intestinal cholesterol absorption rates
(5). This heterodimer is involved in the efflux of cholesterol over the apical membrane of the
enterocyte back into the intestinal lumen (6), thereby decreasing overall intestinal cholesterol
absorption efficiency. These proteins are not only associated with the transport of cholesterol
but also of plant sterols, like campesterol and sitosterol. Plant sterols are structurally related
to cholesterol, but are not synthesized by humans. Therefore, all plant sterols in plasma are
diet-derived and their cholesterol-standardized plasma levels can be used as markers for
fractional intestinal cholesterol absorption (7). In addition to apical influx and efflux
transporters, other proteins within the enterocyte are important for cholesterol absorption.
Acyl-CoA: cholesterol acyltransferase isoform 2 (ACAT2), apolipoprotein B48 (apoB48), and
microsomal triglyceride transfer (MTTP), for example, are involved in intracellular cholesterol
trafficking and chylomicron assembly. The chylomicrons, secreted over the basolateral
membrane of the enterocyte into the lymphatic system, transport cholesterol and dietary
lipids from the intestine to the periphery. In all these genes, single nucleotide polymorphisms
(SNPs) are present that may at least partly explain the large variability between individuals in
intestinal cholesterol absorption rates, which may also translate in differences in
responsiveness to drugs or diets that inhibit cholesterol absorption. Therefore, a systematic
overview of genetic variants in relation to intestinal cholesterol absorption was carried out.

Cholesterol absorption was quantified by measuring plasma plant sterol levels or by using
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isotope protocols. Markers for cholesterol synthesis were also reported, when available.
Based on the findings of genetic variants associated with intestinal cholesterol absorption, an

intestinal cholesterol absorption network was built.

2. Approach

2.1. Literature search and data synthesis

An online literature search was performed in three databases (Medline, Embase, and
Cochrane Central Register of Clinical Trials) on July 16, 2021. The keywords used were:
(cholesterol absorption Or plant sterol* Or plant stanol* Or sitosterol* Or phytosterol* Or
campesterol* Or cholestanol*) AND (single nucleotide polymorphism* Or SNP* or genetic
association Or genetic polymorphism* Or genome-wide association study Or GWA Or GWAS
or genetic variability). The search was limited to “human” and the “English language”.
Moreover, reference lists of selected articles were manually searched. PRISMA guidelines
were followed (8). Data of 21 studies could be used to examine cross-sectional relationships
between gene polymorphisms with plasma or serum non-cholesterol sterol levels as markers
for intestinal cholesterol absorption (9-29). Characteristics of these 21 studies are summarized
in Supplementary Table 1. In two additional studies, cholesterol absorption was estimated
using isotopes (30-31), which are summarized in Supplementary Table 2.

For the markers, absolute concentrations and cholesterol-standardized concentrations were
extracted. When needed, non-cholesterol sterol or total cholesterol concentrations were
converted into respectively umol/L and mmol/L. Data reported as median (interquartile
range) values were transformed into means + standard deviation (SD) based on the method
of Wan et al. (32). For the study of Teupser et al. (17), however, geometric means were

reported, while values were log-transformed for the study of Lupattelli et al. (20).

2.2 Creating an intestinal cholesterol absorption network

GeneMANIA prediction software (33) was used to construct an intestinal cholesterol
absorption network. For this, the seven genes of which genetic variation was related to
cholesterol absorption, based on our literature review, were entered into the query box of the
GeneMANIA Cytoscape plugin. The settings used were: max resultant genes = 15, max

resultant attributes = 0, with the criteria: pathway, co-expression, genetic interaction, and co-
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localization. Pathway means that two gene products are part of the same reaction; co-
expression indicates that expression of the two genes are comparable under different
conditions; genetic interaction implies that expression levels of one gene is influenced by the
other gene; finally, co-localization means that the genes are expressed in the same tissue or
their protein products are found in the same part of a cell. The analysis was run as a plugin
with the Cytoscape tool version (3.8.2) (34). For each new gene, expression in the small
intestine was checked via the National Center for Biotechnology Information (NCBI) (35). If a
gene was not expressed in the small intestine, it was deleted from the network in Cytoscape
and a new gene proposal as part of the network was requested. The network was constructed

on July 26, 2021.

3. Cross-sectional relationships between gene polymorphisms with cholesterol
absorption
Cross-sectional associations between genetic variants (e.g., SNPs and variable number of
tandem repeats (VNTR)) with plasma non-cholesterol sterol levels were presented in 21
studies. These studies were mainly carried out in mildly hypercholesterolemic, but otherwise
healthy subjects (Table 1). The reported variants were located in fifteen different genes:
ABCG5, ABCG8, alpha 1-3-N-acetylgalactosaminyltransferase and alpha  1-3-
galactosyltransferase (ABO), apolipoprotein A4 (APOA4), apolipoprotein E (APOE), cholesteryl
ester transfer protein (CEPT), cytochrome P450 family 7 subfamily A member 1 (CYP7A1), 3-
hydroxy-3-methylglutaryl-CoA reductase (HMGCR), MTTP, NPC1L1, scavenger receptor class
B member 1 (SCARB1), solute carrier organic anion transporter family member 1B1 (SLCO1B1),
and sterol regulatory element binding transcription factor 1 (SREBF1). In the two studies that
used isotopes, the reported variants were located in the ABCG5, ABCGS8, apolipoprotein B
(APOB), APOE, and low-density lipoprotein receptor (LDLR) (Table 2). Genes and protein
names and chromosomal location of the genes are shown in Supplementary Table 3. Results
are summarized in Figure 1. We found evidence that SNPs in ABCG5, ABCG8, ABO, APOE,
MTTP NPC1L1, and LDLR were associated with intestinal cholesterol absorption. Only those
genetic variants for which mechanistic studies have been performed (ABCGS8, apoE, and

NPC1L1) are discussed in the next paragraphs.
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Figure 1. Number of cross-sectional studies that found statistically significant relationships
between genetic variation in a particular gene with intestinal cholesterol absorption.

n: indicates the total number of data points included in the review. On the outside of the
circle, the polymorphism of the gene is shown. The numbers in superscript refer respectively
to the number of studies that observed or did not observe a statistically significant
relationship with intestinal cholesterol absorption for a certain single nucleotide
polymorphism (SNP) or haplotype. Full gene names are given in Supplementary Table 3.

3.1. ABCGS8

Important regulators that act as a cholesterol efflux pump are ABCG5 and ABCGS. In
transgenic mice, overexpression of the human ABCGS8 gene decreased fractional cholesterol
absorption by about 50% and increased biliary cholesterol levels more than five-fold. These
effects were associated with a compensatory two to four-fold increase in hepatic cholesterol
synthesis and a three- to sixth fold increase in fecal neutral sterol excretion (36). In contrast,

deletion of ABCG8 in a murine model resulted in a significant increase in intestinal sterol
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absorption and a decrease in the hepatic secretion of cholesterol (37). This data clearly
illustrates the reciprocal character of intestinal cholesterol absorption and endogenous

cholesterol synthesis.

3.1.1. DI19H (rs11887534)

All four studies yielding 6 data points included in our review (9, 12, 13, 14) showed that
carriers of the H-allele (DH or HH) of the ABCG8 D19H polymorphism had a lower cholesterol
absorption as compared with carriers of the wild-type allele (DD), which was not always
compensated for by a higher cholesterol synthesis. In the study that measured cholesterol
absorption with isotopes, no significant differences between the genotype groups were found
(30). No significant differences in serum lipoprotein profiles were evident (9, 12, 13, 14).
However, in another study (38), which was not included in this review since cholesterol
absorption markers were not measured, concentrations of total cholesterol and triacylglycerol
were lower in carriers of the H-allele (DH or HH). To examine underlying mechanisms, Renner
et al. (13) investigated whether the D19H polymorphism in humans affected the intestinal
expression of ABCGS8 in ileal mucosal biopsies. However, no differences in mRNA levels were
found. Moreover, ABCG8 protein concentrations were comparable, while in silico modelling
suggested that the D19H polymorphism did not affect the 3-dimensional structure of the
protein (39). It has, however, been suggested that the reduction in intestinal cholesterol
absorption associated with this polymorphism is due to the substitution of histidine
(negatively charged) with aspartic acid (positively charged) at amino acid 19, which may alter

the transport efficiency of ABCG8 (39).

3.1.2. T400K (rs4148217)

The T400K polymorphism in ABCG8 was clearly related with intestinal cholesterol absorption.
In five studies, absorption was lower in carriers of the minor allele (TK or KK) as compared to
wild-type carriers (TT) (9, 11, 12, 15, 16). Two studies found no associations (10, 30), while
cholesterol synthesis was only increased in carriers of the minor allele (TK or KK) in the study
of Berg et al. (9). For serum lipoproteins, plasma triacylglycerol concentrations were
significantly lower in carriers of the minor allele (TK) compared with carriers of the major allele
(TT) in one study (15), while the opposite was found in another study (11). No associations

were found with LDL-C and HDL-C (9, 11, 16, 21). A possible explanation for the lower
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cholesterol absorption in carriers of the minor allele (TK or KK) could be due to differences at
the post-transcriptional and translational levels. The function of ABCG8 as a sterol transporter
depends on the formation of ABCG8/ABCGS5 heterodimers and translocation from the Golgi
complex to the apical membrane. The change of threonine for lysine at amino acid 400 in exon
8 may enhance the heterodimer functionality, thereby increasing the transport of cholesterol
and plant sterols for the (TK+KK) polymorphism from the enterocyte back into the intestinal

lumen (11, 40).

3.2.  APOE

ApoE plays a central role in fat and cholesterol metabolism and is part of all lipoproteins.
Polymorphisms in APOE result in three common alleles (E2, E3, and E4), which can result in
six different genotypes (E2E2, E2E3, E2E4, E3E3, E3E4, and E4E4). The most frequent isoform
is ApoE3 (41). We found two studies in which carriers of at least one E4 allele had a higher
intestinal cholesterol absorption as compared to those carrying an E3 allele (19, 20). These
subjects also had a lower cholesterol synthesis but higher serum total serum cholesterol
concentrations (19). In the study of Plat et al. (18), carriers of ApoE2 (E2E2 + E2E3 + E2E4) had
lower LDL-C concentrations at baseline as compared with ApoE3 (E3E3) and ApoE4 subjects
(E3E4+ E4E4). A possible mechanistic explanation for the cross-sectional associations between
ApoE genotype and serum total and LDL-C concentrations is not entirely clear. It can be
speculated that the different ApoE isoforms regulate the transport of cholesterol into cells
differently. It has been found that the affinity of ApoE2 for lipoprotein receptors is lower than
that of E3 and E4, due to the amino acid substitutions of the different ApoE isoforms (42).
Furthermore, the clearance of chylomicron remnants is faster in ApoE4 than in ApoE3
individuals. Combined with the increased cholesterol absorption in ApoE4 subjects, these
effects may increase the intrahepatic pool of free cholesterol, which downregulates
cholesterol synthesis (43). How this translates to differences in intestinal cholesterol
absorption is not clear. However, it is most likely that it is not a direct effect of the ApoE
polymorphism, but more a consequence of other differences in cholesterol metabolism

between the various ApoE genotypes.

43



CHAPTER 2

3.3.  NPCilL1

A second important transporter protein involved in cholesterol absorption is the NPC1L1
protein. NPC1L1 transports sterols from the intestinal lumen into the enterocytes. This protein
is the primary target for the drug ezetimibe, which potently inhibits intestinal absorption of
biliary and dietary cholesterol without affecting the absorption of triacylglycerols, bile acids,
or fat-soluble vitamins (44). Treatment with ezetimibe also reduces the absorption of plant
sterols (45), which illustrates that just like for ABCG5/G8 mediated efflux, plant sterols, and

cholesterol also share the same influx transporter.

3.3.1. L272L (rs2072183)

Lupatelli and colleagues found an increased cholesterol absorption in patients with primary
hyperlipidemia that carried the CG or GG genotype of the L272L polymorphism of NPC1L1
(20). How the NPC1L1 L272L polymorphism is functionally related to cholesterol absorption is
unknown (20). It is, however, known that this polymorphism results in a synonymous
substitution which does not alter the amino acid sequence of the protein but may affect

translation rates and protein folding (46).

4. Intestinal cholesterol absorption network

Since one of our aims was to better understand the physiology of intestinal cholesterol
absorption, the seven genes of which genetic variation was related to intestinal cholesterol
rates (ABCG5, ABCG8, ABO, APOE, LDLR, MTPP, and NPC1L1) were used to construct a network
for intestinal cholesterol absorption. The network was generated by entering the seven genes
of which genetic variation was associated with intestinal cholesterol absorption into
GeneMania (33). Fifteen new genes, that were related to these seven identified genes and
expressed in the small intestine, were requested to create a network of in total 22 genes.
These fifteen new genes were: apolipoprotein A1 (APOA1), APOA4, APOB, apolipoprotein C2
(APOC2), apolipoprotein C3 (APOC3), CETP, heparan sulphate proteoglycan 2 (HSPG2),
lecithin-cholesterol acyltransferase (LCAT), low density lipoprotein receptor adaptor protein 1
(LDLRAP1), lipase C, hepatic type (LIPC), LDL receptor related protein 1 (LRP1), oxidized low
density lipoprotein receptor 1 (OLR1), prolyl 4-hydroxylase subunit beta (P4HB), secretion
associated Ras related GTPase 1B (SAR1B), and syndecan 1 (SDC1) (Supplementary Table 4).
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Pathway and co-expression interaction between the genes added the most to the network,

while genetic interaction and co-localization contributed the least (Figure 2).

ABCG8 CETP
O
LCAT
o ABO
NPC1L1 SAR1B
APOA4
ABCG5
APOC2
APOA1
MTTP
o
P4HB o HSPG2

SDC1
APOC3

APOE
APOB

o
LRP1

1) LIPC
OLR1 LDLR

LDLRAP1

Figure 2. An intestinal cholesterol absorption network.

Seven genes (black circles) were identified by our systematic literature review and fifteen new
genes (gray circles) were predicted with GeneMANIA Cytoscape plugin.

The larger the circle size of the new genes, the more likely that the gene is functionally related
to the genes in the network. The type of interaction (network category) between genes is
illustrated by different colours. Pathway means that two gene products are part of the same
reaction; co-expression indicates that expression of the two genes are comparable under
different conditions; genetic interaction implies that expression levels of one gene is
influenced by the other gene; finally, co-localization means that the genes are expressed in
the same tissue or their protein products are found in the same part of a cell. Full gene names
are given in Supplementary Table 4.

Network category:

Pathway
Co-expression
Genetic Interaction

Co-localization
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Some of the suggested fifteen genes were certainly logical candidates, while the role for
others in the network is less clear and ambiguous. Lipids and cholesterol that are absorbed by
the enterocytes of the small intestine are transported to the endoplasmic reticulum and
incorporated into chylomicrons. In this step ApoB, ApoC2, and ApoC3 are clearly involved (47,
48). Furthermore, ApoA4 is also linked to intestinal lipid metabolism, since its expression is
upregulated upon intestinal lipid absorption. The role of LIPC, which encodes for hepatic lipase
(HL) is less evident. It is well known that HL is secreted by the hepatocytes (49) and catalyses
the hydrolysis of triacylglycerols and phospholipids present in circulating plasma lipoproteins,
including chylomicron remnants (50). Though expressed in the intestine, no role for HL in
enterocytes has been described so far. LDLRAP1 interacts with the LDL receptor as it is
required for LDLR to be functional, as has been described for hepatocytes (51). Genome-wide
association studies (GWAS) studies have shown that a SNP in the LDLRAP1 gene (rs12027135)
is associated with plasma total cholesterol and LDL-cholesterol concentrations (52). Finally,
both CETP, which plays a central role in cholesterol and triacylglycerol metabolism in the
circulation (53), as well as LCAT, which is crucial for the esterification of cholesterol in plasma
(54) are unexpected candidates in the intestinal cholesterol absorption network. Further

studies are needed to validate and improve this network.

5. Conclusion

Genetic variants in ABCG5, ABCG8, ABO, APOE, LDLR, MTTP, and NPC1L1 were identified that
were associated with intestinal cholesterol absorption. When interpreting the results,
however, it should be realized that the relationship between SNPs with cholesterol
metabolism may depend on subject characteristics, such as health status, gender, and
ethnicity (55). Therefore, further studies are needed with different populations to better
understand the wide inter-individual variability in intestinal cholesterol absorption. Also,
GWAS studies may help identifying new genes and genetic variations contributing to the
complex intestinal cholesterol absorption network. Also, only a limited number of studies
have examined relations of combinations of multiple SNP with cholesterol absorption. Third,
intervention studies especially designed to answer the question whether a genetic variant or
a combination of variants modifies the response towards an intervention are needed.

The constructed intestinal cholesterol absorption network is complex, and our knowledge of

genes involved in this process is not complete. All genes of the created intestinal cholesterol
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absorption network should be further explored to find if specific SNPs in these genes that may
affect the level of absorbed cholesterol via the small intestine, while also interaction between
the genes in the network should be evaluated. Further studies are needed to validate and
improve this network, which may ultimately lead to a better understanding of the wide inter-
individual variability in intestinal cholesterol absorption and the development of personalized

interventions.
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List of abbreviations

ABCG5
ABCGS8
ABO

ACAT2
APOA1l
APOA4
APOB
ApoB48
APOC2
APOC3
APOE
CETP
CHD
CYP7A1
GWAS
HSPG2
HMGCR
LCAT
LDLR
LDLRAP1
LIPC
LRP1
MTTP
NCBI
NPC1L1
OLR1
P4HB
RFLP
SAR1B
SCARB1

ATP-binding cassette subfamily G member 5
ATP-binding cassette subfamily G member 8
ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-
galactosyltransferase

acyl-CoA: cholesterol acyltransferase isoform 2
apolipoprotein Al

apolipoprotein A4

apolipoprotein B

apolipoprotein B48

apolipoprotein C2

apolipoprotein C3

apolipoprotein E

cholesteryl ester transfer protein

coronary heart disease

cytochrome P450 family 7 subfamily A member 1
Genome-wide association studies

heparan sulphate proteoglycan 2
3-hydroxy-3-methylglutaryl-CoA reductase
lecithin-cholesterol acyltransferase

low density lipoprotein receptor

low density lipoprotein receptor adaptor protein 1
lipase C, hepatic type

LDL receptor related protein 1

microsomal triglyceride transfer

National Center for Biotechnology Information
NPC1 like intracellular cholesterol transporter 1
oxidized low density lipoprotein receptor 1

prolyl 4-hydroxylase subunit beta

restriction fragment length polymorphism
secretion associated Ras related GTPase 1B

scavenger receptor class B member 1
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SD standard deviation

SDC1 syndecan 1

SLCO1B1 solute carrier organic anion transporter family member 1B1
SNP single nucleotide polymorphism

SREBF1 sterol regulatory element binding transcription factor 1

VNTR variable number of tandem repeats
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CHAPTER 3

Abstract

Single nucleotide polymorphisms (SNPs) have been associated with cholesterol metabolism
and may partly explain large inter-individual variability in intestinal cholesterol absorption
and endogenous cholesterol synthesis rates. This cross-sectional study therefore examined
whether SNPs in genes encoding for proteins involved in intestinal cholesterol absorption
(ABCG5, ABCGS8, and NPC1L1) and endogenous cholesterol synthesis (CYP51A1, DHCR7,
DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) were associated with intestinal cholesterol
absorption markers (total cholesterol (TC) standardized campesterol and sitosterol levels), an
endogenous cholesterol synthesis marker (TC-standardized lathosterol levels), and serum
low-density lipoprotein cholesterol (LDL-C) concentrations in a European cohort. ABCG5
(rs4245786) and the tag SNP ABCGS8 (rs4245791) were significantly associated with serum
campesterol and/or sitosterol levels. In contrast, NPC1L1 (rs217429 and rs217416) were
significantly associated with serum lathosterol levels. The tag SNP in HMGCR (rs12916) and a
SNPin LBR (rs12141732) were significantly associated with serum LDL-C concentrations. SNPs
in the cholesterol absorption genes were not associated with serum LDL-C concentrations.
SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not associated with the serum non-
cholesterol sterols and LDL-C concentrations. Given the variable efficiency of cholesterol-
lowering interventions, the identification of SNPs associated with cholesterol metabolism

could be a step forward towards personalized approaches.
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1. Introduction

Cholesterol homeostasis is determined by the interaction between various complex
processes, including intestinal dietary and biliary cholesterol absorption and endogenous
cholesterol synthesis (1,2). For the uptake of sterols into the enterocyte, the apical
transporter Niemann-Pick C1-Like 1 (NPC1L1) plays a key role (3). After absorption, the sterol
efflux pump ATP-binding cassette (ABC) transporters G5 and G8 secrete a fraction of these
sterols back into the intestinal lumen, while the remaining part is incorporated into
chylomicrons and secreted into the circulation (Figure S1) (4). De novo cholesterol synthesis,
which involves approximately 30 reactions and more than 20 different enzymes, mainly takes
place in the liver (2). Other tissues, however, synthesize cholesterol as well (2). The
endogenous cholesterol synthesis pathway starts with acetyl-CoA, which is converted into the
intermediate lanosterol in a multistep process. Lanosterol is ultimately converted into
cholesterol via either the Bloch or the Kandutsch—Russell pathway (Figure S2). The
intermediates in these two pathways differ, but the same enzymes are involved (5-8). To
estimate fractional intestinal cholesterol absorption, cholesterol-standardized campesterol
and sitosterol levels can be used, while those of the Kandutsch—Russell pathway intermediate
lathosterol reflect endogenous cholesterol synthesis rates. The use of these markers has been
validated by correlating their plasma levels to stable isotope tracer measurements (9).

A reciprocal relation exists between intestinal cholesterol absorption and endogenous
cholesterol synthesis (10). For example, statin treatment decreases cholesterol synthesis but
increases cholesterol absorption (11), while ezetimibe treatment results in the opposite
effects (12). Furthermore, large inter-individual differences are present in relative intestinal
cholesterol absorption and endogenous cholesterol synthesis rates. To illustrate, intestinal
cholesterol absorption values ranged from approximately 29% to 80% in healthy adults.
However, within subject-variability was small (13). For the cholesterol synthesis marker
lathosterol, an intra-individual variation of around 23% and an inter-individual variation of
more than 50% has been reported for healthy adults (14). Genetic variants, including single-
nucleotide polymorphisms (SNPs), might at least partly explain these large inter-individual
variations and the wide ranges between individuals in responses to lipid-lowering

medications (15). In fact, some SNPs in intestinal cholesterol absorption genes have already
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been associated with fractional cholesterol absorption rates (16—19). Additionally, several
studies have reported associations between SNPs in genes related to intestinal cholesterol
absorption and endogenous cholesterol synthesis with lipid-lowering effects of both
pharmacological (20-23) and dietary interventions (24,25). However, whether these
associations relate to differences in intestinal cholesterol absorption and endogenous
cholesterol synthesis rates has unfortunately not been documented. Identification of SNPs
associated with intestinal cholesterol absorption and endogenous cholesterol synthesis is
important, as findings may contribute to the development of personalized interventions
aimed at improving cholesterol metabolism. The present study therefore investigated in a
European population the relation between a number of selected SNPs in genes essential in
intestinal cholesterol absorption—ABCG5, ABCG8, and NPC1L1—and SNPs in genes involved
in endogenous cholesterol synthesis—CYP51A1, DHCR7, DHCR24, HMGCR, HSD17B7, LBR,
and MSMO1—with serum intestinal cholesterol absorption markers (total cholesterol (TC)
standardized levels of campesterol and sitosterol), an endogenous cholesterol synthesis

marker (TC-standardized levels of lathosterol), and LDL-C concentrations.

2. Materials and methods
2.1. Study Population

The present study included participants’ baseline data from five human intervention studies
(Study 1 to Study 5), performed between 1997 and 2012 at Maastricht University, the
Netherlands. All participants were recruited from Maastricht and the surrounding area, and
data from N = 456 were available for the present study. Overall, the study sample consisted
of healthy adults aged >18 years old. The body mass index (BMI) was calculated for each
participant by diving their body weight (kg) by the square of height (m). Most participants had
a normal weight (N = 225; 49.3%) or were overweight (N = 179; 39.3%). BMI of few
participants fell within the underweight (N = 7; 1.5%), obesity class | (N = 28, 6.1%) or obesity
class Il (N = 6; 1.3%) range (26). None of the participants used medication known to affect
lipid metabolism. Details of the studies have been published (27-30), except for Study 4,
which was a 6-week randomized, double-blinded, placebo-controlled parallel trial evaluating
effects of plant-sterol ester supplementation as part of a combined lifestyle intervention. For
the analysis of this project, we only used samples that were collected at baseline or at the

end of a control period. All studies were approved by the Medical Ethics Committee of
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Maastricht University and were conducted according to the principles laid down in the

Declaration of Helsinki. Written informed consent was obtained from all participants.

2.2. Blood Sampling and Biochemical Measurements

Blood samples were drawn from participants after an overnight fast. At least one hour after
venipuncture, serum was obtained by centrifugation at 2000x g for 15-30 min at 4 °C and
aliquots were stored at -80 °C. The concentrations of TC (CHOD/PAP method; Roche
Diagnostics Systems Hoffmann-La Roche Ltd., Basel, Switzerland), high-density lipoprotein
cholesterol (HDL-C) (precipitation method by adding phosphotungstic acid and magnesium
ions, and CHOD/PAP method; Roche Diagnostics Systems Hoffmann-La Roche Ltd., Basel,
Switzerland) and triacylglycerol (TAG) corrected for free glycerol (GPO-Trinder; Sigma
Diagnostics, St Louis, USA) were determined in serum by using enzyme-based methods. LDL-
C concentrations were calculated using the Friedewald equation (31).

Serum concentrations of the intestinal cholesterol absorption markers campesterol and
sitosterol, and the endogenous cholesterol synthesis marker lathosterol were analyzed using
gas chromatography with flame-ionization detection (GC-FID) in Study 1 and Study 5, while
GC-mass spectrometry (GC-MS) was used in the three other studies. Further details on the
non-cholesterol sterol analysis have been presented in the article by Mackay et al. (32).
Campesterol, sitosterol, and lathosterol concentrations are transported in plasma by
cholesterol-rich lipoproteins, and therefore their concentrations were corrected for the
differing number of lipoprotein particles by standardizing the concentrations of the markers

to the TC concentrations (102 x pmol/mmol TC) as measured with the CHOD/PAP method.

2.3. DNA Extraction, Genotyping, and Quality Control

Genomic DNA was isolated from either full blood or buffy coats using the QlAamp genomic
DNA isolation kit (Westburg BV, Leusden, the Netherlands) according to the instructions of
the manufacturer. After isolation, the purity of the genomic DNA was checked by measuring
the 260/280 nm and the 260/230 nm ratios (NanoDrop; ND-1000 spectrophotometer, Isogen
Lifescience B.V., De Meern, The Netherlands). For all samples, ratios varied between 1.7 and
1.9 and around 2.0, respectively. DNA concentrations were calculated using the relationship
that an Azeo of 1.0 corresponds with 50 pug/mL DNA. All samples were stored at -80 °C after

isolation. After thawing, the quality of about 5% of the samples was tested by evaluating the
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degradation of DNA on agarose gels before further analysis. Results indicated that the quality
of these samples was sufficient for genotyping. In the end, 471 DNA samples were genotyped
by using the Axiom™ Precision Medicine Research Array (PMRA) Kit (Thermo Fisher Scientific,
Waltham, MA, USA) (33).

After running the arrays, the software package PLINK (version 1.90 beta; www.cog-
genomics.org/plink/1.9/) (34) was used to exclude SNPs: (1) with >2% missing data, (2)
located on sex chromosomes, (3) with a minor allele frequency (MAF) < 0.05, or (4) that
deviated from Hardy—Weinberg Equilibrium (HWE) based on a p-value < 1 x 10719, Six subjects
were removed because they had a heterozygosity rate + 3 standard deviations (SDs) from the
mean heterozygosity rate. Nine subjects were excluded because there was a sex discrepancy
between DNA results with clinical records. Ultimately, 456 samples and 306,898 SNPs passed
the quality-control criteria. Only SNPs in genes with a clear role in intestinal cholesterol
absorption (ABCG5, ABCGS8, and NPC1L1) or endogenous cholesterol synthesis (CYP51A1,
DHCR7, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) that were present on the array and
had passed the quality control steps were included in this study. An overview of the full gene
names is provided in Table S1. The rs-numbers of the selected SNPs are presented, except for
two SNPs in ABCGS8 for which the rs-numbers were unknown. For these SNPs, their Affymetrix
SNP ID (AX-number), i.e., their unique probe set identifier, is given. Table S2 presents

information about these two SNPs that were provided by the PMRA array.

2.4. Statistics

Continuous values are reported as mean + SD and categorical values as N (%). Visual
inspection of histograms and Q-Q plots of the residuals showed a skewed distribution for TAG
and concentrations were therefore log-transformed. Analysis of variance (ANOVA) was used
to examine whether continuous variables differed significantly between the five studies. A
chi-square test was used for categorical variables.

Possible deviations of the genotype frequencies from those expected under Hardy—
Weinberg equilibrium (HWE) were assessed using chi-square tests in Microsoft Excel.
Thereafter, SNPs with a genotype group with a frequency of <12 participants, which equals
<2.5% of the sample size, were moved to the supplements. All SNPs in DHCR7 were moved to
the supplements due to this reason. Only for SNPs with a genotype group with a frequency of

>12 participants, linkage disequilibrium (LD) was estimated and reported as r?-values for pairs
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of SNPs < 500 kB apart using the Haploview software package (version 4.1, Broad Institute of
MIT and Harvard, Cambridge, MA, USA) (35). A threshold of r? > 0.8 was used to define SNPs
in LD. Haplotype blocks were constructed in Haploview by using the default algorithm as
defined by Gabriel et al. (36). In short, blocks were generated by this algorithm when at least
95% of the informative SNPs were in strong LD (36). Furthermore, the Tagger program in
Haploview version 4.1 was used to select tag SNPs using the pairwise tagging approach (35).
Selection criteria were a r? threshold > 0.8 and a log of the likelihood odds ratio (LOD)
threshold of 3.0. Results of the statistical analysis of the tag SNPs are presented in the main
text, whereas results for the captured SNPs have been placed in the supplemental
information.

Linear regression analyses, corrected for the factor study, were used to examine associations
among the TC-standardized non-cholesterol sterols and LDL-C concentrations. Additionally,
the general linear model (GLM) was used to examine associations between the SNPs with
serum non-cholesterol sterol levels, and LDL-C and TC concentrations. The analyses were
adjusted for the factor study. In case of a statistically significant effect of a SNP, the
differences in TC-standardized non-cholesterol sterol levels, serum LDL-C concentrations, or
serum TC concentrations between the genotype groups were compared with a Bonferroni
post-hoc test. The Benjamini—Hochberg multiple testing correction with a false discovery rate
of 0.2 was applied to the GLM results for each gene separately. Only SNPs with genotype
groups consisting of at least 12 individuals were included in the Benjamini—Hochberg
correction. If the original p-value obtained from the general linear model analysis was smaller
than the Benjamini—Hochberg critical value, the p-value was considered statistically
significant. Next, for SNPs that were significantly associated with TC-standardized non-
cholesterol sterols or LDL-C concentrations, an additive, dominant, or recessive multiple
linear regression model was built with adjustment for the factor study. The additive model
was used when the Bonferroni post-hoc test indicated that all three genotypes were
significantly different or when the post-hoc test did not show which genotypes differed
significantly. A dominant or recessive model was used when the Bonferroni post-hoc
indicated a significant difference between only two genotypes. A dominant model was used
if the least frequent homozygous genotype (e.g., aa) and the heterozygous genotype (e.g.,
aA) had a comparable relation with the outcome (i.e., the non-cholesterol sterols or LDL-C).

The dominant model used the major homozygous group as reference, hence, AA was
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compared with aa + aA. Moreover, a recessive model was used if the least frequent
homozygous genotype and the heterozygous genotype did not have a comparable relation
with the outcome. The recessive model thus compared AA + aA with aa. All analyses were

carried out using SPSS for Mac OS X (version 26.0, SPSS Inc., Chicago, IL, USA).

3. Results

Baseline characteristics for all participants and the five studies separately are shown in Table
S3. Significant differences between the studies were reported for all characteristics of the

participants (all p < 0.05), except for gender (p = 0.064).

3.1. Associations between Markers for Cholesterol Absorption and Cholesterol Synthesis, and

Serum LDL-C Concentrations

Linear regression analyses showed that, after controlling for the factor study, sitosterol was
positively associated with campesterol (B = 1.39x10? umol/mmol TC; p < 0.001) and inversely
with lathosterol (B = -0.09x10? umol/mmol TC; p-value = 0.025). In addition, campesterol
showed a significant inverse association with lathosterol (B = -0.10x10? umol/mmol TC; p-
value < 0.001). Campesterol, sitosterol, and lathosterol were not significantly associated with

serum LDL-C concentrations (all p > 0.05) (Table S4).

3.2. The Location and Allele Frequencies of the Selected SNPs

Table S5 shows the location and allele frequencies of the selected SNPs. The majority of SNPs
were located in an intron and all SNPs had a call rate of >98.2%. The reference and alternative
allele frequencies of the SNPs in our cohort were comparable to those of the European
population, which were obtained from the National Center for Biotechnology Information
(NCBI) (37). Five of the 12 selected SNPs in the ABCG8 gene (AX_11180448, rs41360247,
rs4245791, rs4299376, rs6544713) deviated significantly from HWE (p < 0.05). All other SNPs
were in HWE (all p > 0.05).

3.3. Linkage Disequilibrium and Tagging for SNPs in Genes Related to Intestinal Cholesterol

Absorption

SNPs in ABCG8 (rs4299376, rs6544713, and rs4245791) were in high LD (all r?> > 0.90) and
consequently included in a haplotype block (Figure 1a). Haplotype block 2 included ABCG8
(rs13390041, rs4077440, and rs3795860). Of these SNPs, rs13390041 and rs3795860 showed

80



CHAPTER 3

a high LD (r? = 0.98). The tag SNP ABCGS8 (rs4245791) captured rs6544713 and rs4299376,
while tag SNP ABCGS8 (rs3795860) captured rs13390041 (Table 1). For SNPs in ABCG5 (Figure
S3a) and NPC1L1 (Figure S3b), no high LD was found (all r> < 0.70).
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Figure 1. Pairwise LD among (a) 7 SNPs in ABCG8 and (b) 4 SNPs in HMGCR is indicated in the
diamond shapes. The triangles mark the two haplotype blocks within this region (based on
the confidence interval of D’). The shading with a dark grey to white gradient indicates the
level of higher to lower LD between each pair of SNPs based on the r2-value. The LD plot was
created by Haploview version 4.1 (35).

Table 1. Tag SNPs and their captured SNPs with their corresponding r2-values.

Gene Tag SNP Captured SNP R%-Value
ABCG8 rs4245791 rs6544713 0.995
rs4245791 rs4299376 0.919
rs3795860 rs13390041 0.982
DHCR24 rs6676774 rs7551288 0.906
HMGCR rs12916 rs12654264 0.872
rs12916 rs3846662 0.862
rs12916 rs3846663 0.879

TagSNPs and their captured SNPs were selected using the Tagger program within Haploview
version 4.1. (35).
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3.4. Linkage Disequilibrium and Tagging for SNPs in Genes Related to Endogenous Cholesterol

Synthesis

All SNPs in HMGCR were in (borderline) LD (all r? > 0.75) and consequently all SNPs were
included in one single haplotype block (Figure 1b). One tag SNP in HMGCR was selected
(rs12916), which captured rs12654264, rs3846662, and rs3846663 (Table 1). For DHCR24,
rs6676774 and rs7551288 were in high LD (r?> = 0.90) and DHCR24 (rs6676774) was selected
as a tag SNP for rs7551288 (Figure S4c; Table 1). None of the other SNPs in DHCR24, as well
as the SNPs in LBR,-were in pairwise LD (all r> < 0.80) (Figure S4).

3.5. Associations between SNPs in ABCG5, ABCG8, and NPC1L1 with TC-Standardized Serum

Non-Cholesterol Sterol Levels and Serum LDL-C Concentrations

Significant associations were found for a SNP in ABCG8 (rs4245791; p < 0.001) with both TC-
standardized serum campesterol and TC-standardized serum sitosterol levels. ABCG5
(rs4245786) was also significantly associated with TC-standardized sitosterol levels (p =
0.041). In addition, two SNPs in NPC1L1 (rs217429 and rs217416) were significantly related
with TC-standardized serum lathosterol levels (p < 0.05) (Table 2). After Benjamini—-Hochberg
multiple testing correction, all associations remained significant. Results for SNPs with a
genotype group <12 participants are presented in Table S6. A recessive model was built for
NPC1L1 (rs217429 and rs217416) with lathosterol levels (Figure S5). The additive models for
ABCG5 (rs4245786) with sitosterol, and for ABCG8 (rs4245791) with sitosterol and
campesterol levels can be found in Table S7. No significant associations were observed
between SNPs in ABCG5, ABCG8, or NPC1L1 with serum LDL-C concentrations (all p > 0.05)
(Table 2) or TC concentrations (all p > 0.05) (Table S8).

3.6. Associations between SNPs in CYP51A1, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1
with TC-Standardized Serum Non-Cholesterol Sterol Levels and Serum LDL-C Concentrations

None of the SNPs in genes essential in endogenous cholesterol synthesis showed a significant
association with TC-standardized campesterol, sitosterol or lathosterol serum levels (all p >
0.05). Significant associations were reported for HMGCR (rs12916) and LBR (rs12141732) with
serum LDL-C concentrations (all p-value < 0.05) (Table 3). Dominant models for these SNPs
can be found in Figure S6. SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not

significantly associated with serum LDL-C concentrations (all p > 0.05). Table S9 presents

82



CHAPTER 3

associations for SNPs with a genotype group <12 participants. Results for serum TC

concentrations (Table S10) are comparable to these of serum LDL-C concentrations (Table 3).
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4. Discussion

Large inter-individual variation in intestinal cholesterol absorption and endogenous
cholesterol synthesis exists, which may relate to differences in genetic background. Indeed,
we found that SNPs in ABCG5 and ABCGS8 were associated with intestinal cholesterol
absorption, while SNPs in NPC1L1 were significantly associated with endogenous cholesterol
synthesis. However, none of the SNPs that were associated with intestinal cholesterol
absorption or endogenous synthesis were associated with serum LDL-C concentrations,
whereas SNPs in HMGCR and LBR did show such a relation. No associations were found for
SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 with either one of the evaluated
parameters.

ABCG5 (rs4245786) was significantly related with TC-standardized serum sitosterol levels, a
marker for intestinal cholesterol absorption. To the best of our knowledge, this association
has not been reported before. ABCG8 (rs4245791) had tagged rs6544713 and rs4299376,
which all showed significant associations with intestinal cholesterol absorption markers. A
previous study in a European cohort has also reported that SNPs in ABCG8 were associated
with cholesterol absorption (19). In that study, the minor allele of rs41360247 was negatively
related to cholesterol absorption and the minor allele of rs4245791 positively (19), which is
in agreement with our findings.

For genes encoding enzymes of the endogenous cholesterol synthesis pathways, no
significant associations with TC-standardized serum lathosterol levels were reported.
Lathosterol is an intermediate in the Kandutsch—Russell pathway. To what extent the selected
SNPs that are essential in endogenous cholesterol synthesis are associated with cholesterol
synthesis rates in the Bloch pathway is not clear. For this, serum desmosterol should have
been measured, which is specific for the Bloch pathway, whereas we analyzed lathosterol
which is only part of the Kandutsch—Russell pathway. An explanation for the non-significant
relations for the SNPs in the endogenous cholesterol synthesis genes that were selected in
our study may be that other SNPs in these genes are associated with endogenous cholesterol
synthesis, which were not included in the present study. Another explanation might be that
the regulation of endogenous cholesterol synthesis is more complex and does not relate to
one single SNP, as many enzymes are involved in the endogenous cholesterol synthesis

pathway. In contrast to the absence of an association with lathosterol levels, SNPs in LBR
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(rs12141732) and HMGCR (rs12916) were significantly related with serum LDL-C
concentrations. HMGCR (rs12916) was selected as tag SNP for HMGCR (rs12654264,
rs3846662, and rs3846663), which also showed significant associations with serum LDL-C
concentrations. For HMGCR (rs12654264, rs3846662, rs3846663, and rs12916) these
associations with LDL-C concentrations agree with previous studies in Asian and European
populations (38—42). Although intestinal cholesterol absorption and endogenous cholesterol
synthesis play a key role in the regulation of plasma LDL-C concentrations (2), they do not
explain the significant associations between SNP in HMGCR and LBR with serum LDL-C
concentrations. It is likely that other genes that are involved in cholesterol homeostasis have
contributed to these findings.

Interestingly, SNPs in genes involved in intestinal cholesterol absorption were not exclusively
associated with markers for their postulated physiological process. However, the cholesterol
absorption genes ABCG5, ABCGS8, and NPC1L1 are not only expressed in the human intestine,
but also in the liver (43,44). On hepatocytes, ABCG5/G8 regulates the secretion of cholesterol
into bile and NPCI1L1 facilitates hepatic cholesterol re-uptake, thereby finetuning an
otherwise potentially large biliary and fecal loss of cholesterol (45). In transgenic mice,
overexpression of human ABCG5 and ABCGS8 in the liver and small intestine reduced plasma
plant sterol levels and fractional cholesterol absorption as measured by the fecal dual-isotope
radio method (46). In contrast, plasma lathosterol and liver mRNA levels of HMGCR were
increased. Additionally, in vivo cholesterol synthesis was increased in the liver, possibly to
compensate for the elevated biliary cholesterol secretion rates in these transgenic mice (46).
This animal study thus shows that ABCG5 and ABCGS8 expression influences endogenous
cholesterol synthesis which confirms our observations. Moreover, in our cohort, we noticed
a similar association for an absorption gene, i.e., two SNPsin NPC1L1 (rs217429 and rs217416)
were associated with endogenous cholesterol synthesis. The question remains whether these
associations between SNPs in intestinal cholesterol absorption genes and lathosterol only
show the reciprocal phenomenon or should also be interpreted as a possible direct effect of
the SNP on hepatic cholesterol synthesis. Temel et al. have shown that hepatic NPC1L1
expression in transgenic mice increased hepatic cholesterol levels by enhancing the reuptake
of cholesterol from the bile (47). It may be that SNPs in NPC1L1 have increased the expression
or activity of NPC1L1 in the liver, which in turn impacts serum lathosterol levels. Furthermore,

the SNPs in ABCG5 and ABCGS8 that showed an association with intestinal cholesterol
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absorption were not associated with serum LDL-C concentrations and also did not show an
inverse association with endogenous cholesterol synthesis. This may suggest that the
cholesterol has been eliminated from the body, via for example hepatobiliary cholesterol
excretion involving ABCG5/G8 or transintestinal cholesterol efflux (2,48).

There are some points that should be considered while interpreting our data. Firstly, it should
be noted that almost all selected SNPs were located in intron regions. In general, SNPs in
introns do not induce changes in protein-coding sequences, suggesting that they are
potentially of less functional relevance than SNPs located in exons. However, SNPs in the
intron regions can impact the protein via alternative regulation of splicing (49). This can lead
to incorrectly spliced mRNA, which may ultimately affect mRNA translation and result in non-
functional proteins and can also have clinical consequences (50). SNPs in introns could also
serve as markers for other functionally relevant SNPs, as should be indicated by high LD
between the SNPs. Secondly, significant differences were found between all baseline
characteristics, except for gender distribution, between the five different studies. This
heterogeneity between study populations was taken into account by correcting for the factor
study in our analyses. In addition, only European individuals were included, which has further
minimized this heterogeneity. In four studies, only individuals with a stable body weight
(weight gain or loss of <3 kg for studies 1, 2 and 3 and <2 kg for study 5) could participate. For
study 4, a stable body weight was not an inclusion criterion. It is therefore possible that some
of the participants lost or gained some weight in the months preceding the study. However,
it is not expected that possible changes in weight were related to a specific genotype group
and therefore biased the results. Thirdly, this study had a relatively small sample size. This
suggests that the significant findings that we found reflect strong associations. Our results can
therefore help to determine whether individuals with specific genotypes are more sensitive
to specific nutritional and pharmacological interventions, such as foods enriched with plant
sterols or stanols, or ezetimibe and statin treatment. To illustrate, 4-week statin treatment in
women with familiar hypercholesterolemia resulted in a significantly smaller percentage
reduction in LDL-C concentrations in women with the AA genotype of HMGCR (rs3846662)
compared to women with the other genotypes. Moreover, statin efficacy was significantly
decreased in the AA group compared with women with the other genotypes (51). This
suggests that genotyping SNPs, even those located in the intron region, may play an important

role in the development of more personalized treatment. Finally, an independent cohort in
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which we could replicate the positive findings was unavailable. Therefore, an additional study

is needed to reach greater validity.

5. Conclusions

This study showed that several SNPs in genes that are essential in intestinal cholesterol
absorption were associated with serum markers for intestinal cholesterol absorption and/or
endogenous cholesterol synthesis. In addition, a number of SNPs in genes that are essential
in endogenous cholesterol synthesis were associated with serum LDL-C concentrations in a

European cohort.

91



CHAPTER 3

Supplemental data
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——— Chylomicron
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Figure S1. Schematic overview of the intestinal cholesterol absorption pathway. Free
cholesterol (FC) enters the enterocyte via Niemann-Pick C1-like 1 (NPC1L1) and is esterified
by Acetyl-CoA Acetyltransferase 2 (ACAT2) in the endoplasmic reticulum (ER). FC can also be
transported back into the intestinal lumen via ATP-binding cassette member 5 and 8
(ABCG5/G8). Low-density lipoprotein (LDL) is taken up from the basolateral side via LDL
receptor-mediated endocytosis. FC is also used by ATP-binding cassette A1 (ABCA1) to form
high-density lipoprotein. Cholesterol ester (CE) is further processed in the Golgi complex (GC)
with other components to form chylomicrons which are further transported to the lymphatic
system. The drug ezetimibe is a NPC1L1 blocker and thus inhibits intestinal cholesterol
absorption. Note: Single-nucleotide polymorphisms in genes in bold have been included in
the present study.
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Figure S2. The endogenous cholesterol synthesis pathway. Cholesterol is synthesized via the
Bloch and/or Kandutsch-Russell pathway. Similar enzymes are involved in these pathways, but
intermediates differ. Note: Single-nucleotide polymorphisms in genes in bold have been
included in the present study.
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Table S1. List of full names of genes included in the present study.

Gene symbol/ HGNC Approved gene name in HGNC

Cholesterol absorption genes

ABCG5 ATP binding cassette subfamily G member 5
ABCGS8 ATP binding cassette subfamily G member8
NPC1L1 NPC1 like intracellular cholesterol transporter 1

Cholesterol synthesis genes

CYP51A1 Cytochrome P450 family 51 subfamily A member 1
DHCR7 7-dehydrocholesterol reductase
DHCR24 24-dehydrocholesterol reductase
HMGCR 3 -hydroxy-3-methylglutaryl-CoA reductase
HSD17B7 Hydroxysteroid 17-beta dehyrogenase 7
LBR Lamin B receptor
MSMO1 Methylsterol monooxygenase 1

Abbreviation: HGNC = Human Genome Organisation (HUGO) Gene Nomenclature Committee.
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Table S4. Associations between intestinal cholesterol absorption markers, an endogenous

cholesterol synthesis marker and serum LDL-C concentrations.

Independent Dependent t B 95 % Cl for B P-value
Variable Variable
Lower Upper
Bound Bound
Sitosterol Campesterol 42.424 1.39 1.321 1.449 <0.001
Sitosterol Lathosterol —2.253 -0.09 -0.169 —0.012 0.025
Campesterol Lathosterol -3.733 -0.10 -0.146  —0.045 <0.001
Campesterol LDL-C 0.335 0.00 —0.001 0.001 0.738
Sitosterol LDL-C 0.277 0.00 —0.001 0.001 0.782
Lathosterol LDL-C —0.403 0.00 —0.002 0.001 0.687

Abbreviations: LDL-C = low-density lipoprotein cholesterol. Note: Non-cholesterol sterols are
presented in 102 X pmol/mmol cholesterol and LDL-C in mmol/L. All results were obtained

from a linear regression analysis adjusted for the factor study.
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Figure S3. Pairwise LD among SNPs in (a) ABCG5 and (b) NPC1L1 is indicated in the diamond
shapes. The triangle marks the haplotype block within each region (based on the confidence
interval of D’). The shading with a dark grey to white gradient indicates higher to lower LD
between each pair of SNPs based on the r?-value The LD plots were created by Haploview
version 4.1 (35).
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Figure S4. Pairwise LD among SNPs in (a) DHCR24, and (b) LBR is indicated in the diamond
shapes. The triangle marks the haplotype block within each region (based on the confidence
interval of D’). The shading with a dark grey to white gradient indicates higher to lower LD
between each pair of SNPs based on the r?-value The LD plots were created by Haploview
version 4.1 (35).
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Figure S5. Association between SNPs (a) NPC1L1 (rs217429) and (b) NPC1L1 (rs217416) with
serum levels of cholesterol-standardized lathosterol using recessive models. All values were
adjusted for the factor study and presented as estimated marginal means + SE. The black bars
refer to the least frequent homozygous genotype, and the white bars refer to the most
frequent homozygous genotype. * p-value < 0.05, ** p-value < 0.01.

105



CHAPTER 3

Table S7. Associations between SNPs in intestinal cholesterol absorption genes with TC-

standardized non-cholesterol sterols using additive models (N = 455).

Gene SNP Alleles Marker t B 95 % Cl for B P-value
(Ref/Alt) Lower Upper
Bound Bound
ABCG5 rs4245786 G/A Sitosterol -1.4  -6.9 -16.5 2.7 0.161
ABCGS8 rs6544713 T/C Campesterol 5.7 41.5 27.3 55.8 <0.001
ABCG8 rs6544713 T/C Sitosterol 6.2 28.7 19.6 37.9 <0.001
ABCGS8 rs4245791 C/T Campesterol 58 414 27.2 55.5 <0.001
ABCG8 rs4245791 C/T Sitosterol 6.2 28.6 19.5 37.7 <0.001
ABCGS8 rs4299376 G/T Campesterol 58 429 28.5 75.4 <0.001
ABCG8 rs4299376 G/T Sitosterol 6.3 29.7 204 38.9 <0.001

Abbreviations: Alt = alternative allele; Ref = reference allele; SNP= single-nucleotide
polymorphism. Note: Non-cholesterol sterols are presented in 102 X pumol/mmol total
cholesterol. All results were obtained from a linear regression analysis adjusted for the factor
study. The alternative allele was used as reference in the model; each copy of the reference
allele changes the outcome parameter (marker) with 3.
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Table S8. Associations between various SNPs in genes involved in intestinal cholesterol

absorption with serum total cholesterol concentrations (N = 456).

Gene SNP Genotype N Total cholesterol
mmol/L
Mean (95% Cl) P-value

ABCG5 rs10208987 T 403 5.40 (5.26 —5.53)
TG 48 5.40 (5.11-5.69) 0.906

GG 4 5.19 (4.24 - 6.14)

rs4148189 T 4 5.13 (4.81-6.09)
TC 84 5.43 (5.21 -5.66) 0.803

cc 368 5.39 (5.25-5.53)

rs4245786 AA 266 5.45 (5.29 - 5.60)
AG 161 5.35(5.18 -5.53) 0.356

GG 29 5.21 (4.85-5.58)

rs7599296 AA 15 5.16 (4.66 —5.66)
AG 141 5.42 (5.23 - 5.60) 0.616

GG 300 5.40 (5.26 — 5.55)

rs4148184 T 74 5.22 (4.98 —5.46)
TC 219 5.41 (5.24 -5.57) 0.182

cc 162 5.47 (5.29 - 5.65)

rs13396273 T 53 5.25 (4.98 —5.53)
TC 214 5.39 (5.23 - 5.55) 0.376

cc 189 5.46 (5.29 - 5.63)

ABCGS8 AX_11180448 cc 5 5.16 (4.31-6.01)
CG 52 5.27 (5.00 —5.54) 0.463

GG 399 5.42 (5.29 - 5.56)

rs4148207 T 157 5.43 (5.25-5.61)
TC 227 5.42 (5.26 —5.58) 0.408

cc 72 5.26 (5.02 —5.50)

rs4299376 T 194 5.33(5.16 —5.50)
TG 221 5.42 (5.25-5.58) 0.467

GG 33 5.52 (5.18 -5.86)

rs41360247 T 405 5.44 (5.30-5.57)
TC 46 5.18 (4.90-5.47) 0.203

cC 5 5.16 (4.31-6.01)

rs6544713 T 33 5.54 (5.21 -5.88)
TC 217 5.46 (5.30-5.63) 0.151

cc 206 5.30(5.14-5.47)

rs4245791 T 206 5.31(5.14-5.47)
TC 216 5.47 (5.31-5.63) 0.163

cc 34 5.51(5.18 - 5.85)

rs13390041 AA 132 5.41 (5.22 - 5.60)
AG 231 5.46 (5.30-5.61) 0.115

GG 93 5.21(4.99 —5.44)

rs6709904 AA 374 5.42 (5.28 —5.56)
AG 75 5.33(5.10-5.56) 0.392

GG 7 4.99 (4.27-5.71)

rs4077440 T 92 5.49 (5.27-7.71)
TC 218 5.46 (5.30-5.62) 0.066

cc 145 5.25 (5.06 —5.43)

rs3795860 T 129 5.41 (5.22 - 5.60)
TC 233 5.46 (5.30-5.61) 0.127

cc 94 5.21 (5.00 - 5.44)

AX_82902928 - 197 5.45 (5.29 -5.62)
-AC 193 5.41 (5.24 - 5.58) 0.057

ACAC 66 5.13 (4.88 -5.39)

rs55924588 T 410 5.39 (5.26 —5.53)
TC 46 5.46 (5.16 —5.76) 0.645
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cC 0 N/A

NPC1L1 rs217429 AA 259 5.39 (5.24 - 5.54)
AC 170 5.41 (5.23 -5.59) 0.938

cC 27 5.45 (5.08 — 5.83)

rs217416 T 239 5.43 (5.28 - 5.59)
TC 190 5.36 (5.18 - 5.53) 0.698

cC 25 5.37 (4.90 - 5.76)

rs11763759 T 209 5.42 (5.26 — 5.58)
TC 202 5.31(5.15-5.48) 0.043

cC 43 5.71(5.41-6.01)

rs2072183 cC 18 5.34 (4.88 - 5.80)
CG 174 5.41 (5.23 -5.59) 0.956

GG 263 5.40 (5.25-5.54)

Abbreviations: N/A: not applicable; SNP = single-nucleotide polymorphism. Note: All analyses
were adjusted for the factor study. Data are presented as estimated marginal means (95%
Cl). Statistical significance was set at a p-value < 0.05.
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Figure S6. Association between SNPs (a) HMGCR (rs12916) and (e) LBR (rs12141732) with
serum LDL-C concentrations using dominant models. All values were adjusted for the factor
study and presented as estimated marginal means + SE. The black bars refer to the least
frequent homozygous genotype, and the white bars refer to the most frequent homozygous
genotype. * p-value < 0.05, ** p-value < 0.01.
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Table S10. Associations between various SNPs in genes involved in endogenous cholesterol

synthesis with serum total cholesterol concentrations (N = 456).

Gene SNP Genotype N Total cholesterol
mmol/L
Mean (95% Cl) P-value
CYP51A1 rs35968894 AA 161 5.40 (5.22 - 5.57)
AG 224 5.39(5.23-5.56) 0.993
GG 71 5.41 (5.17 - 5.65)
DHCR7 rs1792275 TT 407 5.37 (5.24 -5.51)
TC 48 5.63 (5.35-5.92) 0.075
CcC 0 N/A
rs72954301 TT 3 5.50 (4.40 — 6.59)
TG 91 5.28 (5.06 —5.51) 0.453
GG 362 5.43 (5.29 - 5.56)
DHCR24 rs77668549 AA 339 5.41 (5.27 —5.55)
AG 110 5.36 (5.15—-5.57) 0.738
GG 6 5.64 (4.87 — 6.41)
rs7553385 AA 402 5.40 (5.26 —5.53)
AG 51 5.38 (5.09 —5.66) 0.347
GG 3 6.20 (5.11—7.29)
rs7551288 AA 80 5.44 (5.21-5.67)
AG 207 5.36 (5.19-5.52) 0.700
GG 168 5.43 (5.25-5.61)
rs11206456 TT 2 5.81(4.47 -7.15)
TC 72 5.34 (5.10-5.59) 0.725
CcC 382 5.41 (5.27 —5.54)
rs111480286 - 3 6.20 (5.11-7.29)
-ACAG 54 5.31(5.03-5.58) 0.276
ACAGACAG 399 5.40 (5.27 —5.54)
rs6676774 AA 75 5.45 (5.21 - 5.68)
AG 208 5.34 (5.18 —5.50) 0.427
GG 173 5.46 (5.28 —5.63)
rs718265 AA 43 5.30 (5.00-5.61)
AG 190 5.36 (5.20—-5.53) 0.437
GG 223 5.45 (5.29 -5.62)
HMGCR rs12654264 AA 169 5.26 (5.08 —5.44)A
AT 227 5.51(5.35-5.66)8 0.037
TT 60 5.34 (5.08 —5.60)
rs3846662 AA 134 5.24 (5.04 —5.44)
AG 236 5.47 (5.31-5.62) 0.087
GG 86 5.41 (5.18 -5.63)
rs3846663 TT 59 5.34 (5.08 — 5.60)A
TC 229 5.51(5.35-5.66)8 0.034
CcC 167 5.26 (5.08 —5.44)
rs12916 TT 152 5.24 (5.06 —5.43)A
TC 231 5.51(5.36-5.67)8 0.022
CcC 73 5.32 (5.08 —5.55)
HSD17B7 rs77482353 AA 156 5.39 (5.21-5.57)
AG 228 5.34 (5.18 —5.50)* 0.103
GG 68 5.62 (5.37-5.87)8
LBR rs6678087 TT 141 5.41 (5.22 - 5.60)
TC 223 5.36 (5.20-5.52) 0.530
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CcC 91 5.49 (5.27 -5.71)
rs12141732 T 227 5.52 (5.36 - 5.44)A
TC 194 5.28 (5.12-5.88)® 0.032
CcC 34 5.54 (5.20 — 286)
rs4653635 AA 11 5.11 (4.53 -5.69)
AG 127 5.41 (5.21-5.60) 0.600
GG 318 5.40 (5.26 — 5.55)
rs12410357 AA 4 6.34 (5.39-7.29)
AG 93 5.33 (5.10-5.55) 0.111
GG 359 5.41 (5.27 - 5.54)
MSMO1 rs17585739 AA 2 5.54 (4.18 - 6.90)
AT 47 5.43 (5.13-5.72) 0.956
T 407 5.39 (5.26 - 5.53)
rs17046216 AA 53 5.68 (5.41-5.96)
AG 206 5.39 (5.23 -5.55) 0.060
GG 197 5.33(5.17 - 5.50)

Abbreviations: N/A: not applicable; SNP = single-nucleotide polymorphism. Note: All analyses were
adjusted for the factor study. Data are presented as estimated marginal means (95% Cl). Different
letters within a SNP indicate significantly different TC concentrations between the genotypes based
on a Bonferroni post-hoc test. Statistical significance was set at a p-value < 0.05.
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CHAPTER 7

Impact

This dissertation focused on associations between genetic variants with cholesterol
metabolism, in particular with intestinal cholesterol absorption. It was shown that different
single nucleotide polymorphisms (SNPs) were associated with intestinal cholesterol
absorption. These SNPs were located in or close to the following genes: ABCG5, ABCGS,
EIF2B5, EPHB3, C4orf26, CDKL2, NR3C2, LOC285626, BMP6, HLA-G, HLA-H, WBSCR27,
WBSCR28, TMTC4, and COL4A2. Moreover, to better understand the complex network of
intestinal cholesterol absorption, an intestinal cholesterol absorption network was built.
Furthermore, in an intervention study, the effects of a non-nutrient that lowers intestinal
cholesterol absorption on gene expression profiles were investigated. It was found that gene
expression profiles of high-cholesterol and low-cholesterol absorbers were distinct after the
intake of plant stanol esters. Altogether, results have contributed to a better understanding of
the complex intestinal cholesterol network. In the following paragraphs, the potential impact
of the main findings in terms of societal, economic, and scientific relevance will be addressed.

Finally, possible implications for the translation of the findings into practice will be discussed.

Societal and economic relevance

Despite the significant advancement over the past decades in its prevention and treatment,
cardiovascular disease (CVD) continues to be the primary cause of morbidity and mortality
globally (1). Moreover, its burden on the EU economy is substantial and - according to
estimations of the European Heart Network - imposes annually an economic burden of over
€200 billion (2). A well-known risk marker for the development of CVD is the concentration of
cholesterol in the blood. Many processes play a role in cholesterol homeostasis, including
intestinal cholesterol absorption. It is widely recognized that the amount of cholesterol
absorbed by the small intestine differs between individuals due to various factors, including
genetic background (3). In fact, individuals can be categorized as high-cholesterol or low-
cholesterol absorbers, and individuals with a high cholesterol absorption rate may exhibit a
more favorable response to interventions aimed at reducing intestinal cholesterol uptake

compared to those with a low cholesterol absorption rate (4). Importantly, the rate of
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cholesterol absorption has been associated with different metabolic diseases (5). Therefore,
it is important to understand in more detail 1) the mechanism of intestinal cholesterol
absorption and 2) associations between genetic variants related to the amount of cholesterol

absorbed.

Translation into practice

Currently, there is a high demand for tools and methods that can support and enhance the
interpretation of the physiological and metabolic effects of carrying genetic variants,
particularly SNPs. These SNPs are common genetic variations found in the human genome and
are crucial for the emerging field of precision nutrition and medicine. As the business activity
surrounding genetic testing rapidly grows, numerous companies are providing genetic tests
for various purposes, surpassing the traditional roles of healthcare professionals. Therefore,
the need for robust tools and methods to analyze and understand the biological implications
of genetic variants under a non-business influence is of utmost importance.

Healthcare professionals can benefit from a better understanding of the mechanism of
intestinal cholesterol absorption and the relationship between genetic variants with intestinal
cholesterol absorption. With the knowledge that high levels of LDL-C have limited life quality
and increase the chance to develop different metabolic diseases, the practical need to
understand this variation is crucial. This dissertation now provides evidence that genetic
variation affects intestinal cholesterol absorption. However, it is unclear if these SNPs also link
to the efficacy of LDL lowering interventions. If not, it is even possible that the characteristic
of having a high cholesterol absorption is a risk factor independent of (changes in) serum LDL
cholesterol concentrations. To date, however, there is no (genetic) test that differentiates high-
cholesterol absorbers from those of low-cholesterol absorbers. Finding a tool that can
distinguish these two groups from each other may help in the future healthcare professionals
to optimize the treatment for individuals using precision nutrition and medicine. Since genetic
tests like SNPs are more robust and easier to interpret as compared to analyzing serum non-
cholesterol sterols, this may be a more suitable strategy. Therefore, a validated SNP or set of
SNPs that can be linked to these characteristics is a promising tool for future precision

nutrition approaches.
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Scientific relevance

Other researchers can build upon the scientific conclusions of this dissertation which provides
a foundation for further research. However, it is crucial to critically evaluate and validate the
results before drawing any definitive conclusions. Therefore, further experimental studies are
needed to determine the functional effects of the identified genes and genetic variants on
intestinal cholesterol absorption and on other pathways affected. For instance, to investigate
the effect of particular genetic variants on cholesterol absorption, CaCo-2 cells cultured on a
transwell system can be used as it serves as a model for intestinal epithelial cells. These cells
can be transfected with genes of interest and used in a cholesterol absorption assay. Also,
studies are needed the establish relationships between (a set of) genetic variants with SNPs
LDL-C responses. Also, the causal connection between cholesterol absorption and various
metabolic disease warrants further study. Our findings may ultimately contribute to improve

the management of elevated blood cholesterol concentrations.

In conclusion, the research presented in this thesis has made a valuable contribution to the
scientific community. The findings have undergone or are undergoing the process of
publication in peer-reviewed scientific journals. Findings have also been presented at scientific
meetings. As a result, the knowledge obtained is readily available to scientists, facilitating
further investigations into the mechanism of intestinal cholesterol absorption and the

influence of genetic variation on cholesterol absorption levels.
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Summary

Elevated concentrations of cholesterol in the blood, also known as hypercholesterolemia,
increase the risk of developing cardiovascular disease (CVD). Amongst others, intestinal
cholesterol absorption plays a crucial role in determining blood cholesterol concentrations.
The amount of absorbed cholesterol via the small intestine varies between - but less within -
individuals. This suggests that variations in cholesterol absorption are related to differences
in genetic background. Consequently, individuals can be categorized as high-cholesterol or
low-cholesterol absorbers. This is an important concept, as variation in intestinal cholesterol
absorption has been associated with the presence of different metabolic disorders. Also, it
can be envisaged that low-cholesterol and high-cholesterol absorbers respond differently to
cholesterol-lowering treatments. High-cholesterol absorbers, for example, may respond
better to interventions that inhibit intestinal cholesterol uptake than low-cholesterol
absorbers do. The main aim of this thesis was therefore to better understand (i) reasons for
this interindividual variability in intestinal cholesterol absorption and (ii) the complex

intestinal cholesterol network.

In Chapter 2, associations of genetic variants with intestinal cholesterol absorption were
systematically reviewed. Genetic variants in seven genes were associated with intestinal
cholesterol absorption: ABCG5, ABCG8, ABO, APOE, MTTP, NPC1L1, and LDLR. In that chapter,
an intestinal cholesterol absorption network was also constructed using these seven genes
with the help of GeneMANIA Cytoscape plugin. The constructed network revealed the
complex nature of intestinal cholesterol absorption. It was concluded that further research is
needed to validate and improve this network, which could eventually result in a better
understanding of the differences in cholesterol absorption rates and the formulation of

personalized treatment interventions.
Single nucleotide polymorphisms (SNPs) in certain genes have been associated with

cholesterol metabolism and may partly explain the large inter-individual variability in

intestinal cholesterol absorption. In Chapter 3 and in Chapter 4, associations of SNPs with
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intestinal cholesterol absorption have been investigated in a cross-sectional study. First, in
Chapter 3, SNPs were selected from genes that encoded proteins involved in intestinal
cholesterol absorption. As cholesterol absorption and endogenous cholesterol synthesis are
generally negatively related, also SNPs of genes involved in endogenous cholesterol synthesis
were selected. For these selected SNPs, associations with intestinal cholesterol absorption
markers, endogenous cholesterol synthesis markers, and serum low-density lipoprotein
cholesterol (LDL-C) were calculated. A SNP in ABCG5 (rs4245786) and the tag SNP ABCGS8
(rs4245791) were significantly associated with intestinal cholesterol absorption markers. In
contrast, SNPs in NPCI1L1 (rs217429 and rs217416) were significantly associated with
endogenous cholesterol synthesis. Finally, the tag SNP in HMGCR (rs12916) and a SNP in LBR
(rs12141732) were significantly associated with serum LDL-C concentrations. Of note, the
other SNPs in the cholesterol absorption or synthesis genes were not associated with serum

LDL-C concentrations.

In Chapter 4, associations of a large data set of more than 160,00 SNPs with intestinal
cholesterol absorption markers have been analyzed. For this total cholesterol-standardized
(TC-standardized) campesterol and sitosterol levels, which are validated intestinal cholesterol
absorption markers, were tested in 457 individuals of European descent. Only those SNPs that
showed a consistent association with both markers, i.e. campesterol and sitosterol, were
considered to be relevant. These SNPs were located in or between ABCGS8, EIF2B5, EPHB3,
C4orf26, CDKL2, NR3C2, LOC285626, BMP6, HLA-G, HLA-H, WBSCR27, WBSCR28, TMTC4, and
COL4A2. These genes were used to construct a protein-protein interaction (PPl) network,
which could be linked to 30 unique WikiPathways. This study highlighted the discovery of
numerous unexplored genes and pathways potentially associated with intestinal cholesterol

absorption that warrants further investigation.

Finally, in Chapter 5, gene expression profiles of a previous randomized, double-blind
crossover study with participants of European descent were analyzed. The differently
expressed genes (DEGs) in participants pre-classified as high-cholesterol and low-cholesterol
absorbers were analyzed before and after the intake of plant stanol-esters, which are known
to inhibit intestinal cholesterol absorption, in two parts of the small intestine: duodenum and

jejunum. In the duodenum, 181 DEGs in the high-cholesterol absorbers and 482 DEGs in the
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low-cholesterol absorbers were identified. In the jejunum, the corresponding numbers were
366 and 316 DEGs. Generally, changes in gene expression were in the opposite direction
between the low-cholesterol absorbers and the high-cholesterol absorbers. The resulting
DEGs were used for enrichment analysis using WikiPathways, KEGG, and Reactome. From this
study, it is clear that responses in gene expression profiles differed between subjects that were
a priori defined as low-cholesterol or high-cholesterol absorbers. These differences provide
leads to better understand the molecular intestinal characteristics of low-cholesterol versus
high-cholesterol absorbers, before and after exposure to an intervention that lowers intestinal
cholesterol absorption. Whether these results can also be used to better understand the
etiology of metabolic diseases possibly related to intestinal cholesterol absorption warrants

further investigation.

In conclusion, the present thesis has deepened our understanding to explain the large
interindividual variability in intestinal cholesterol absorption in apparently healthy individuals.
To what extent findings can be extrapolated to other populations and can be confirmed in
larger cohorts warrants further study. Also, majority of the identified SNPs or genes that were
part of the created intestinal cholesterol absorption networks has not been associated with
intestinal cholesterol absorption before. Thus, future studies should be carried out to gain a
better understanding of the relationship between these genes and intestinal cholesterol

absorption.
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Samenvatting in het Nederlands

Verhoogde concentraties cholesterol in het bloed, ook bekend als hypercholesterolemie,
verhogen het risico op het ontwikkelen van hart- en vaatziekten (HVZ). Vele factoren spelen
een belangrijke rol bij het tot stand komen van de cholesterolconcentraties in het bloed, zoals
bijvoorbeeld de hoeveelheid cholesterol die in de darm wordt opgenomen. Deze hoeveelheid
varieert aanzienlijk tussen - maar minder binnen - individuen. Dit suggereert dat variaties in
cholesterolopneming in de darm, ook wel cholesterolabsorptie genoemd, verband houden
met verschillen in genetische achtergrond. Mensen kunnen dan ook worden gekarakteriseerd

Ill

als hoog-cholesterol of laag-cholesterol “absorbers”. Dit is een belangrijk concept, omdat
variatie in cholesterolabsorptie is geassocieerd met de aanwezigheid van verschillende
metabole stoornissen. Ook betekent dit dat laag-cholesterol en hoog-cholesterol “absorbers”
op een verschillende manier kunnen reageren op behandelingen, die erop gericht zijn om het
cholesterolgehalte in het bloed te verlagen. Hoog-cholesterol “absorbers” kunnen
bijvoorbeeld beter reageren op interventies die de opname van cholesterol in de darmen
remmen dan laag-cholesterol “absorbers”. Het belangrijkste doel van de studies beschreven
in dit proefschrift was dan ook om (i) redenen voor de grote variatie in cholesterolabsorptie

tussen personen en (ii) het complexe cholesterolabsorptie-netwerk in de darm beter te

begrijpen.

In Hoofdstuk 2 werd op gestructureerde wijze een literatuuronderzoek uitgevoerd om
verbanden tussen genetische variaties met de cholesterolopname in de darm in kaart te
brengen. De resultaten lieten zien dat genetische varianten in zeven genen waren
geassocieerd met cholesterolabsorptie; deze genen waren ABCG5, ABCG8, ABO, APOE, MTTP,
NPCI1L1 en LDLR. In dit hoofdstuk werd ook een cholesterolabsorptie-netwerk gemaakt,
gebruik makend van de resultaten van het literatuuronderzoek. Het bouwen van dit netwerk
gebeurde met behulp van de GeneMANIA Cytoscape-plug-in. Het geconstrueerde netwerk liet
zien dat de cholesterolabsorptie in de darm zeer complex is. Er werd dan ook geconcludeerd
dat verder onderzoek nodig is om dit netwerk te valideren en te verbeteren, hetgeen

uiteindelijk zou kunnen resulteren in een beter begrip van de verschillen in
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cholesterolabsorptie tussen mensen en het adviseren van gepersonaliseerde behandelings-

interventies, die erop gericht zijn om de cholesterolabsorptie te veranderen.

Single nucleotide polymorfismen (SNPs) zijn een bepaalde vorm van genetische variatie en
kunnen invloed hebben op vele processen, waaronder de cholesterolstofwisseling. In
Hoofdstuk 3 en in Hoofdstuk 4 is dan ook in een dwarsdoorsnede-onderzoek gekeken of
bepaalde SNPs gerelateerd zijn aan de cholesterolopneming in de darm. In Hoofdstuk 3
werden SNPs geselecteerd van genen, waarvan reeds bekend was dat zij coderen voor
eiwitten betrokken bij de opneming van cholesterol in de darm. Omdat cholesterolabsorptie
in de darm en cholesterolsynthese door het lichaam in het algemeen negatief gerelateerd zijn,
werden ook SNPs in genen betrokken bij de cholesterolsynthese geselecteerd. Voor de
geselecteerde SNPs werden verbanden onderzocht met cholesterolabsorptie-markers,
endogene cholesterolsynthesemarkers en het cholesterolgehalte in de lage-
dichtheidslipoproteinen (LDL-C). Een SNP in ABCG5 (rs4245786) en de tag SNP ABCGS8
(rs4245791) waren significant geassocieerd met cholesterolabsorptiemarkers. Daarentegen
waren SNPs in NPCIL1 (rs217429 en rs217416) significant geassocieerd met de
cholesterolsynthese door het lichaam. Ten slotte waren de tag SNP in HMGCR (rs12916) en
een SNP in LBR (rs12141732) significant geassocieerd met serum LDL-C concentraties.
Opmerkelijk was dat die andere SNPs in de cholesterolabsorptie- of cholesterolsynthese-

genen niet geassocieerd waren met serum LDL-C-concentraties.

In Hoofdstuk 4 zijn associaties van een groot gegevensbestand met meer dan 160.000 SNPs
met markers voor de absorptie van cholesterol in de darm bestudeerd. Hiervoor is de
associatie  tussen  totaal cholesterol-gestandaardiseerde  (TC-gestandaardiseerde)
campesterol- en sitosterolniveaus (gevalideerde markers voor de absorptie van cholesterol in
de darm) bestudeerd bij 457 personen van Europese afkomst. Alleen die SNPs die een
associatie vertoonden met zowel campesterol als sitosterol werden als relevant beschouwd.
Deze SNPs bevonden zich in of tussen de genen ABCGS8, EIF2B5, EPHB3, C4orf26, CDKL2,
NR3C2, LOC285626, BMP6, HLA-G, HLA-H, WBSCR27, WBSCR28, TMTC4 en COL4A2. Deze
genen werden gebruikt om een eiwit-eiwit-interactienetwerk (PPI-netwerk) te construeren,

dat kon worden gekoppeld aan 30 unieke WikiPathways. Deze studie suggereerde dat nog vele
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genen en pathways mogelijk geassocieerd zijn met de absorptie van cholesterol in de darm,

hetgeen verder onderzoek rechtvaardigt.

Ten slotte werden in Hoofdstuk 5 genexpressieprofielen geanalyseerd van een
gerandomiseerde, dubbelblinde cross-overstudie met deelnemers van Europese afkomst. De
verschillend tot expressie gebrachte genen (Differentialy Expressed Genes: DEGs) van
deelnemers die vooraf waren geclassificeerd als hoog-cholesterol of laag-cholesterol
absorbers, werden geanalyseerd voor en na de inname van plantenstanolesters. Dit zijn
stoffen die de absorptie van cholesterol in de darm remmen. Hiervoor werd materiaal gebruikt
afkomstig van twee verschillende delen van de dunne darm: de twaalfvingerige darm en het
jejunum. In de twaalfvingerige darm werden 181 DEGs in de hoog-cholesterol absorbers en
482 DEGs in de laag-cholesterol absorbers geidentificeerd. In het jejunum waren de
overeenkomstige getallen 366 en 316 DEGs. Bovendien verschilde de genregulatie tussen de
twee groepen: in het algemeen waren veranderingen in genexpressie in de tegenovergestelde
richting in de laag-cholesterol absorbers en de hoog-cholesterol absorbers. De DEGs werden
vervolgens gebruikt om processen te identificeren, waarvan deze genen onderdeel van
uitmaakten. Hiervoor werd gebruik gemaakt van WikiPathways, KEGG en Reactome. Uit deze
studie blijkt duidelijk dat veranderingen in genexpressieprofielen verschillen tussen
proefpersonen die a priori waren gedefinieerd als lage of hoge cholesterolabsorbers. Deze
verschillen leiden tot een beter begrip van de moleculaire kenmerken van lage en hoge
cholesterol absorbers, voor en na blootstelling aan een interventie die de opname van
cholesterol in de darm verandert. Volgende stappen moeten uitwijzen of deze patronen ook
kunnen worden gebruikt om de oorzaak van metabole ziekten die mogelijk verband houden

met een veranderde cholesterolabsorptie beter te begrijpen.

Samenvattend kan worden gesteld dat de studies beschreven in dit proefschrift hebben
bijgedragen aan een beter begrip van factoren die verschillen in cholesterolabsorptie in de
darm van gezonde mensen kunnen verklaren. In hoeverre bevindingen ook van toepasing zijn
op andere populaties en kunnen worden bevestigd in grotere cohorten, verdient verder
onderzoek. Ook is de meerderheid van de geidentificeerde SNPs of genen die deel uitmaakten

van de gecreéerde netwerken niet eerder in verband gebracht met de cholesterolabsorptie in
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de darm. Toekomstige studies moeten dus worden uitgevoerd om een beter begrip te krijgen

van de relatie tussen deze genen en de absorptie van cholesterol in de darmen.
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