
 

 

 

On the design of enterprise ontology-driven software
development
Citation for published version (APA):

Krouwel, M. R. (2023). On the design of enterprise ontology-driven software development. [Doctoral
Thesis, Maastricht University]. Maastricht University. https://doi.org/10.26481/dis.20231103mk

Document status and date:
Published: 01/01/2023

DOI:
10.26481/dis.20231103mk

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 29 Apr. 2024

https://doi.org/10.26481/dis.20231103mk
https://doi.org/10.26481/dis.20231103mk
https://cris.maastrichtuniversity.nl/en/publications/916dc097-31ad-48cf-8848-96b8e1784554


Summary

Situation and Goal

Due to factors such as hyper-competition, increasing expectations from customers,
regulatory changes, and technological advancements, the conditions in which en-
terprises need to thrive become increasingly turbulent. As a result, the ability
to change with an ever decreasing time-to-market, often referred to as ‘agility’,
becomes an important determinant for the success of enterprises. As an enterprise
and its supporting software can hardly be separated anymore, enterprise agility
is to a large extent dependent on software agility.

Agility currently is mainly achieved by adopting processes that support flexi-
bility with regard to planning and execution. In contrast to, e.g., a waterfall ap-
proach, agile approaches such as SCRUM and DevOps prescribe multidisciplinary
teams that create new software versions in short iterations or even continuously.
These approaches however say nothing about the structures in enterprises or its
supporting software that should be adhered to in order to ensure quick adaptation
is possible at all. It has been shown that changing software over time becomes
more and more costly and indeed hampers enterprise agility.

The dream that drives this research is to have a structured approach towards
software development for enterprises that supports the quick and continuous cre-
ation and adaptation of high quality software solutions to support enterprise
agility. From the generic need for software quality, specific needs are identified,
viz., that the software supports the end users, is evolvable, is created (or adapted)
with little effort and in little time, and that the step from requirements to software
constructs is traceable.

Partial answers are found in having a structured approach, i.e., a method.
Methods for software development date back to the 1970s and mostly rely on
the use of models. This is also known as Model-based Engineering (MBE), of
which Model-driven Architecture (MDA), model-as-code and low code/no code
are recent implementations. The reason that MBE and structured approaches gain
new attention is the advancements in the availability of technologies as well as in
(enterprise) modeling techniques. It is therefore that the challenge of this research
is to work towards the creation of a new method for software development that
answers the needs and supports enterprise agility. In order to meet this research
goal, seven research questions have been formulated.

xiii



SUMMARY

Approach

The dream that drives this research, is to have a method, including supporting
tools, to create software from enterprise models that addresses the needs, can be
applied repeatedly, and is adaptable to specific situations. In order to create such
a method and supporting tools, clear specifications are needed. However, there
are several uncertainties in order to create such a method, including what models
to choose and whether such an approach is technically feasible.

It is because of these uncertainties that this research is considered part of the
fuzzy front-end of creating a complete method. This fuzzy front-end is a necessary
stage in which a problem is explored, guided by a vague idea of the solution, and
assumptions are being examined, resulting in a minimum specification as well as
an initial version of elements that could be part of the final solution. In this
research the focus is on reducing these uncertainties, while aiming to find some
initial method elements that could be part of such a method.

As methods often result from structuring or generalizing procedures or ap-
proaches that are being applied in practice, a practice-driven research approach
is adopted. In order to deal with the uncertainties and answer the research ques-
tions, the Action Design Research (ADR) approach is adopted, combining Design
Science Research with Action Research. ADR defines four stages of research that
helps researchers to both make scientific contributions and to assist in solving
current and anticipated problems of practitioners.

The research questions are answered initially through literature study, and
validated or extended by practical research. The practical research consists of
four exploratory case studies, aimed to explore the creation of a single method
element. By combining theory and practice and by having multiple exploratory
case studies, both rigor and relevance are added to this research.

Results and Benefits

The Model-driven Software Development (MDSD) approach is adopted as enabler
for speed and traceability in the software development process. MDSD relies on
model transformations for which both input models and target technologies are
selected. From the possible enterprise modeling techniques, Design and Engineer-
ing Methodology for Organizations (DEMO) is chosen that provide the ontological
enterprise models as the starting point for the MDSD approach. As DEMO mod-
els alone do not provide enough information to fully create working software, the
Enterprise Implementation Framework has been developed. This framework uses
Organization Implementation Variables (OIVs) to capture (additional) enterprise
implementation design decisions, and can be used to consciously decide about
the required flexibility on the enterprise level, that needs to be supported by the
software. Together, DEMO and OIVs provide an answer to the other needs, i.e.,
completeness of user requirements and adaptability. An argument against this ap-
proach is that it moves complexity from the code to the (enterprise) models. As
most complexity in software actually comes from the enterprise implementation,
moving the complexity to these models is considered the only right approach.

xiv



SUMMARY

Creating a (situational) method, mainly relies on the availability of so-called
method fragments. Fragments can be categorized in three axes: perspective,
abstraction and granularity. Existing literature is reviewed on the existence of
method fragments that start from DEMO models and ends in some software
implementation. While there are some usable fragments, none of these support
all concepts from DEMO, most existing fragments ignore the step from DEMO
to implementation model, and that there are almost no technical fragments to
support the desired method.

For the four exploratory case studies four (modern) target technologies have
been selected that all address multiple identified needs: microservices, mockups,
Normalized Systems, and low code. The exploratory studies have in common that
a mapping from the input, i.e., DEMO models and enterprise implementation (in
terms of OIVs), to the target technology has been devised and evaluated in prac-
tice, sometimes on multiple enterprises (or enterprise models). These mappings,
that are either automatable or automated during the exploratory case study,
can be considered a method fragment, possibly to be assembled into an overall
method. The exploratory case studies show that creating software from the cho-
sen input models is indeed technically feasible, and that it is possible to do this
in a structured (and automatable) way.

Put together, the foundation has been laid to create the desired method that
addresses the needs and supports enterprise agility. The requirements are detailed
and several fragments have been identified or created that can later be used to
compose such a method. Such a method could be useful for practitioners as it
may reduce software development costs and efforts, relies less on technically skilled
people – so-called citizen development – and may improve project success rate.

Limitations and Future Research

The exploratory case studies were performed mainly in the Netherlands and
mainly at public or semi-public organizations. Although there is no reason to
believe that the results are not applicable to other enterprises, further validation
is needed.

Moreover, most of the model transformations in the exploratory case studies
involved manual steps. A reason simply is the unavailability of proper modeling
tools for DEMO. In order to apply the algorithms in a disciplined way, it is
necessary to further automate the mappings, and thus provide tool support to
create the input models.

Embedding the suggested approach into existing approaches seems key to im-
prove its adoption. Advantages are expected by introducing LLM and (generative)
AI into the method. However, combining approach also means that they should
be comparable, in their underlying theoretical background or ‘world view’, but
also in the results they produce. Further research is needed in order to compare
different approaches for software development from enterprise models.

Finally, adaptable software is just one factor in achieving enterprise agility.
Other research shows that it is possible to apply principles to the enterprise level

xv



SUMMARY

that should enable enterprise agility. An open question is whether enterprise
constructs can be created, perhaps based on one or more DEMO concepts, that
inherently adhere to these principles. This also implies the need for an objective
way to measure enterprise agility in order to be able to compare different enterprise
constructs. Although the foundation was laid for creating enterprise software from
enterprise models that intrinsically supports enterprise agility, there is still much
to do in order to achieve true enterprise agility.

xvi


	Summary

