

On the design of enterprise ontology-driven software
development
Citation for published version (APA):

Krouwel, M. R. (2023). On the design of enterprise ontology-driven software development. [Doctoral
Thesis, Maastricht University]. Maastricht University. https://doi.org/10.26481/dis.20231103mk

Document status and date:
Published: 01/01/2023

DOI:
10.26481/dis.20231103mk

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 29 Apr. 2024

https://doi.org/10.26481/dis.20231103mk
https://doi.org/10.26481/dis.20231103mk
https://cris.maastrichtuniversity.nl/en/publications/916dc097-31ad-48cf-8848-96b8e1784554

Over het ontwerp van
organisatieontologiegestuurde

softwareontwikkeling

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Maastricht,
op gezag van de Rector Magnificus, Prof. dr. Pamela Habibović

volgens het besluit van het College van Decanen,
in het openbaar te verdedigen

op vrijdag 3 november 2023 om 13:00 uur

door

Marien Rolin Krouwel
geboren op 12 april 1986

te Utrecht

i

Promotoren:
Prof. dr. A.F. Harmsen
Prof. dr. H.A. Proper, Technische Universiteit Wenen, Wenen, Oostenrijk

Co-promotor:
Prof. dr. M. Op ’t Land, Antwerp Management School, Antwerpen, België

Manuscriptcommissie:
Prof. dr. A. Brüggen (voorzitter)
Prof. dr. M.G.J. van den Brand, Technische Universiteit Eindhoven, Eindhoven,
Nederland
Prof. dr. H.F.D. Hassink
Ing. R. Pergl, Technische Universiteit Tsjechië, Praag, Tsjechië

ii

On the Design of Enterprise
Ontology-Driven Software Development

DISSERTATION

to obtain the degree of Doctor at the Maastricht University,
on the authority of the Rector Magnificus, Prof. dr. Pamela Habibović

in accordance with the decision of the Board of Deans,
to be defended in public

on Friday, November 3, 2023, at 13:00 hours

by

Marien Rolin Krouwel
born on April 12, 1986

in Utrecht (the Netherlands)

iii

Supervisors:
Prof. dr. A.F. Harmsen
Prof. dr. H.A. Proper, Technische Universität Wien, Vienna, Austria

Co-supervisor:
Prof. dr. M. Op ’t Land, Antwerp Management School, Antwerp, Belgium

Assessment Committee:
Prof. dr. A. Brüggen (chair)
Prof. dr. M.G.J. van den Brand, Eindhoven University of Technology, Eindhoven,
the Netherlands
Prof. dr. H.F.D. Hassink
Ing. R. Pergl, Czech Technical University, Prague, Czech Republic

iv

Arundo et Olea seu Quercus

Quercus, et adversans illi contendit Arundo,
Utraque praestantem se magis esse refert.
Tune quamvis Quercu quod mobilis esset ad auram
Obiciente, lubens Canna modesta tacet.
Tempore sed parvo post diruta turbine Quercus
Dicitur, et ramis fracta fuisse suis.
At varie flectens se ventis cessit Arundo,
Hac ea non frangi mobilitate potest.
Laudandi potius sunt, qui concedere norunt,
Quam prae se fortes qui superare parant.
Noveris esse Deo, convellat ut ardua, morem,
Stare diu quo non summa premente valent.

From Phryx Aesopus Habitu Poetico by Hieronymus Osius, 15741

1A simplified Latin version by Laura Gibbs is available at https://archive.org/details/
gibbs-laura-mille-fabulae-et-una.-1001-aesops-fables-in-latin.

v

https://archive.org/details/gibbs-laura-mille-fabulae-et-una.-1001-aesops-fables-in-latin
https://archive.org/details/gibbs-laura-mille-fabulae-et-una.-1001-aesops-fables-in-latin

The Oak and the Reeds

A Giant Oak stood near a brook in which grew some slender Reeds. When the
wind blew, the great Oak stood proudly upright with its hundred arms uplifted
to the sky. But the Reeds bowed low in the wind and sang a sad and mournful
song. “You have reason to complain,” said the Oak. “The slightest breeze that
ruffles the surface of the water makes you bow your heads, while I, the mighty
Oak, stand upright and firm before the howling tempest.” “Do not worry about
us,” replied the Reeds. “The winds do not harm us. We bow before them and so
we do not break. You, in all your pride and strength, have so far resisted their
blows. But the end is coming.” As the Reeds spoke a great hurricane rushed out
of the north. The Oak stood proudly and fought against the storm, while the
yielding Reeds bowed low. The wind redoubled in fury, and all at once the great
tree fell, torn up by the roots, and lay among the pitying Reeds.

From The Æsop for Children: with Pictures by Milo Winter, 19192

2Available as ebook by Project Gutenberg EBook at https://www.gutenberg.org/ebooks/
19994 and as interactive book by Library of Congress at https://read.gov/aesop/index.html.

vi

https://www.gutenberg.org/ebooks/19994
https://www.gutenberg.org/ebooks/19994
https://read.gov/aesop/index.html

“It is better to concede when it is foolish to resist,
than to resist stubbornly and be destroyed.”

Based on a story by Aesop (∼600B.C.)

Preface

The story and the poem on the previous pages originate from a collection of fables
credited to Aesop – Aesopus or Aisopos –, a Greek storyteller from around 600
BC. These fables are known as Aesop’s Fables or ‘the Aesopica’. The moral of
the story is that those who adapt will emerge unharmed, as summarized in the
quote above.

While this moral holds for life in general, I apply it specifically to my work
with enterprises and the software that supports these enterprises. Only when
an enterprise can adapt to its changing environment, it will be able to survive.
In a world where every enterprise uses software, and where more and more en-
terprises are becoming a technology company,3, it is of the utmost importance
that enterprise software is adaptable as well. Adaptable software is not new, but
configuring standard packages and creating customized software is still a time-
consuming task. There is a need for software that is easily and quickly adaptable
to typical changes in the enterprise.

Back to the story: an oak will never become reed, or vice versa. While both
may adapt in response to a changing environment, even into a new species, there
is a stable core of DNA sequences that differentiates the oak from reed. A similar
reasoning holds for enterprises: a bank will never (suddenly) become a pizzeria.

With DEMO Enterprise Ontology I found a way to discover the stable core of
an enterprise. Subsequently, I devised a framework to explicitly design adaptabil-
ity around this stable core. Model-driven Software Development brought me a way
to quickly convert these enterprise models into working software. Together, these
concepts provide the ingredients to create enterprise software that is designed to
quickly adapt to changing enterprise needs. This thesis provides the foundation
for a new method, called Enterprise Ontology-Driven Software Development, to
create enterprise software that is adaptable around a stable core.

About the cover

The structure shows a network of related (organizational and software) compo-
nents. Although the structure is built with rigid components, the structure as a
whole is very flexible so that it can adapt to a changing environment.

3See, e.g., [217], https://www.ing.com/Newsroom/News/We-want-to-be-a-tech-

company-with-a-banking-license-Ralph-Hamers.htm, https://www.satellitetoday.com/

innovation/2019/02/26/microsoft-ceo-every-company-is-now-a-software-company/ and
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-

is-a-software-company-six-must-dos-to-succeed.

vii

https://www.ing.com/Newsroom/News/We-want-to-be-a-tech-company-with-a-banking-license-Ralph-Hamers.htm
https://www.ing.com/Newsroom/News/We-want-to-be-a-tech-company-with-a-banking-license-Ralph-Hamers.htm
https://www.satellitetoday.com/innovation/2019/02/26/microsoft-ceo-every-company-is-now-a-software-company/
https://www.satellitetoday.com/innovation/2019/02/26/microsoft-ceo-every-company-is-now-a-software-company/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-is-a-software-company-six-must-dos-to-succeed
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-is-a-software-company-six-must-dos-to-succeed

viii

“It is good to have an end to journey towards;
but it is the journey that matters, in the end.”

Ursula K. Le Guin, in “The Left Hand of
Darkness” (1969)

Acknowledgements

Some say it’s the journey that matters, not the destination or end goal.4 And
while the journey has been great, I am very happy that my PhD journey now
comes to an end. It has been a bumpy and long road, that brought me to many
places in which I met a lot of people.

In 2013, I took my first steps in setting up my research at University of
Antwerp. During my time in Antwerp, I got to know my fellow PhD students:
Dieter, Els, Jos, Mark, Peter, and Philippe. I want to thank you all for the in-
spiring conversations, with or without pizza after the EDSM course. I want to
thank Jan Verelst and Herwig Mannaert for their support in starting my PhD.
Additionally, I want to thank Lourens van der Weerd, as he was the one that
made it possible to combine my PhD with my full-time job at Capgemini.

During my time at Capgemini I have met many people with interests that are
related to or at the core of my research; in reverse order of appearance: Alcedo
Coenen (ABN AMRO), Steven Hanekroot (Dutch Police), Steven Gort (ICTU),
Diederik Dulfer c.s. (Dutch Tax Authority), and Edward van Dipten (Dutch Min-
istry of Defense). I thank you all, including the ones I forgot to mention, for
providing me the opportunity to combine research and consultancy. I also want
to thank the people that I have met in a DEMO or Enterprise Design Course,
where we often had lively discussions on the theories behind DEMO and the
practical challenges in implementing a DEMO model. I also am thankful for the
opportunities I had in talking to representatives and board members of different
technology vendors, and Mendix and USoft in particular, as those conversations
helped to shape my ideas and convert them into a business opportunity.

During my research, I have worked together with several (MSc) students,
among which were Sam, Sandra, Lotte, Jermaine, and Jelle. I am thankful for
the contributions you made to my research, as well as the challenging discussions
we had. I am also thankful to the organizers of the conferences I attended, and
especially David Aveiro (EEWC, Madeira), Antonio Albani (EEWC), Isabella
Ramos (MCIS, Guimarães), Robert Pergl (EEWC), and Kurt Sandkuhl (PoEM,
London), as these conferences allowed me to improve my research and collaborate
with other researchers.

This research wouldn’t exist if I hadn’t seen the field of Enterprise Engineering.
I am very grateful to Jan Dietz as he introduced me into the DEMO way of
thinking, and for his support and feedback all along the way. On the topic of

4In a way, this whole thesis describes a journey, from enterprise models to working software;
it is up to the reader to make this journey and arrive in a destination of adaptable enterprise
software.

ix

ACKNOWLEDGEMENTS

DEMO I also want to thank Ingrid Theuwissen, Peter Kuipers, and Tine de Mik
for providing an opportunity to really dive into the EE-theories in an effort to
explain them as easy as possible.5

Referring to the story of the oak and the reeds: sometimes I was foolish,
sometimes I was stubborn, and it was the input from my supervisors, and my
ability to deal with it, that improved this research significantly. I am very thankful
to Erik Proper for transferring my research to Nijmegen and then to Maastricht,
and for the assistance in finding a focus. I am also very thankful to Frank Harmsen
for his critical view on the several choices I made in my research. I want to thank
the assessment committee for their feedback as it contributed to the quality of
this research.

I am very grateful to Hans Mulder as he was one of the stable factors during
my PhD journey. Hans was there whenever I was struggling to progress, either he
listened or provided guidance towards the next step in my research. Finally, I am
very thankful to Martin Op ’t Land, who introduced me into Capgemini and into
the world of (practical) research. And while it was hard to combine a full-time job
and academic research, Martin always showed me ways to find shared interests
and he never stopped encouraging me to find the right balance between the two.

I want to thank my family, friends and paranymphs for their support: Florian,
Violette, Dorien, Max, Rogier, Wiemer, Wouter, and . . . (insert your name here
in case I forgot to mention you). I especially want to thank my father, Dinant, for
his interest in the topic, helping me find the correct references, and for proofread-
ing my entire thesis. I am thankful to my mother, Annemarie, who has always
challenged me to get the most out of myself. Although you cannot be here to see
me receiving the highest academic grade, I know you are proud of me.

Last but far from least, I want to thank my wife, Janneke. You chose the
better path in finishing your PhD before we got married. I chose the difficult
path and tried to finish my PhD with two young kids running around. I am very
grateful for your endless support, and even more grateful for the two possible
future doctors, Sem and Lize, we raise.

Marien, September 18, 2023, Utrecht

5The result can be downloaded from https://ee-institute.org/demo/werken-met-demo/.

x

https://ee-institute.org/demo/werken-met-demo/

Abstract

Due to factors such as hyper-competition, increasing expectations from customers,
regulatory changes, and technological advancements, the conditions in which en-
terprises need to thrive become increasingly turbulent. As a result, enterprise
agility, or flexibility, becomes an increasingly important determinant for enter-
prise success. As enterprises rely more and more on software, the need for a
software development method aimed at supporting the end users, adaptability,
speed and traceability is almost evident.

The dream that drives research, is to create such a method, but many uncer-
tainties are recognized in order to do so, including its feasibility. As methods,
or elements thereof, often arise from structuring or generalizing procedures or
approaches that are being applied in practice, a practice-driven Action Design
Research approach is adopted.

Model-driven Software Development is an approach towards software devel-
opment that relies on model transformations, supporting speed and traceability.
The ontological model of an enterprise, as defined by the Design and Engineer-
ing Methodology for Organizations (DEMO), has shown to be useful in designing
the stable parts of an enterprise and its supporting software. As part of this
research, the Enterprise Implementation Framework is created that can be used
to explicitly design, but linked to or as an extension of DEMO models, the more
flexible implementation of an enterprise and its supporting software. Together
they form the input for the Enterprise Model-driven Software Development ap-
proach as adopted in this research. Although there are existing method elements
that could support such a method, these elements also have their limitations.

In four exploratory case studies it has been shown that creating a transfor-
mation from the input models to different target technologies is technically and
procedurally feasible. Several possible method elements have been created for the
automated and thus traceable and high-speed transformation of DEMO models
into working software that is adaptable in consciously chosen enterprise imple-
mentation categories. With these elements and the results of the exploratory
case studies, the foundation is laid to further create a method for the automatic
creation of software from enterprise ontological models.

xi

xii

Summary

Situation and Goal

Due to factors such as hyper-competition, increasing expectations from customers,
regulatory changes, and technological advancements, the conditions in which en-
terprises need to thrive become increasingly turbulent. As a result, the ability
to change with an ever decreasing time-to-market, often referred to as ‘agility’,
becomes an important determinant for the success of enterprises. As an enterprise
and its supporting software can hardly be separated anymore, enterprise agility
is to a large extent dependent on software agility.

Agility currently is mainly achieved by adopting processes that support flexi-
bility with regard to planning and execution. In contrast to, e.g., a waterfall ap-
proach, agile approaches such as SCRUM and DevOps prescribe multidisciplinary
teams that create new software versions in short iterations or even continuously.
These approaches however say nothing about the structures in enterprises or its
supporting software that should be adhered to in order to ensure quick adaptation
is possible at all. It has been shown that changing software over time becomes
more and more costly and indeed hampers enterprise agility.

The dream that drives this research is to have a structured approach towards
software development for enterprises that supports the quick and continuous cre-
ation and adaptation of high quality software solutions to support enterprise
agility. From the generic need for software quality, specific needs are identified,
viz., that the software supports the end users, is evolvable, is created (or adapted)
with little effort and in little time, and that the step from requirements to software
constructs is traceable.

Partial answers are found in having a structured approach, i.e., a method.
Methods for software development date back to the 1970s and mostly rely on
the use of models. This is also known as Model-based Engineering (MBE), of
which Model-driven Architecture (MDA), model-as-code and low code/no code
are recent implementations. The reason that MBE and structured approaches gain
new attention is the advancements in the availability of technologies as well as in
(enterprise) modeling techniques. It is therefore that the challenge of this research
is to work towards the creation of a new method for software development that
answers the needs and supports enterprise agility. In order to meet this research
goal, seven research questions have been formulated.

xiii

SUMMARY

Approach

The dream that drives this research, is to have a method, including supporting
tools, to create software from enterprise models that addresses the needs, can be
applied repeatedly, and is adaptable to specific situations. In order to create such
a method and supporting tools, clear specifications are needed. However, there
are several uncertainties in order to create such a method, including what models
to choose and whether such an approach is technically feasible.

It is because of these uncertainties that this research is considered part of the
fuzzy front-end of creating a complete method. This fuzzy front-end is a necessary
stage in which a problem is explored, guided by a vague idea of the solution, and
assumptions are being examined, resulting in a minimum specification as well as
an initial version of elements that could be part of the final solution. In this
research the focus is on reducing these uncertainties, while aiming to find some
initial method elements that could be part of such a method.

As methods often result from structuring or generalizing procedures or ap-
proaches that are being applied in practice, a practice-driven research approach
is adopted. In order to deal with the uncertainties and answer the research ques-
tions, the Action Design Research (ADR) approach is adopted, combining Design
Science Research with Action Research. ADR defines four stages of research that
helps researchers to both make scientific contributions and to assist in solving
current and anticipated problems of practitioners.

The research questions are answered initially through literature study, and
validated or extended by practical research. The practical research consists of
four exploratory case studies, aimed to explore the creation of a single method
element. By combining theory and practice and by having multiple exploratory
case studies, both rigor and relevance are added to this research.

Results and Benefits

The Model-driven Software Development (MDSD) approach is adopted as enabler
for speed and traceability in the software development process. MDSD relies on
model transformations for which both input models and target technologies are
selected. From the possible enterprise modeling techniques, Design and Engineer-
ing Methodology for Organizations (DEMO) is chosen that provide the ontological
enterprise models as the starting point for the MDSD approach. As DEMO mod-
els alone do not provide enough information to fully create working software, the
Enterprise Implementation Framework has been developed. This framework uses
Organization Implementation Variables (OIVs) to capture (additional) enterprise
implementation design decisions, and can be used to consciously decide about
the required flexibility on the enterprise level, that needs to be supported by the
software. Together, DEMO and OIVs provide an answer to the other needs, i.e.,
completeness of user requirements and adaptability. An argument against this ap-
proach is that it moves complexity from the code to the (enterprise) models. As
most complexity in software actually comes from the enterprise implementation,
moving the complexity to these models is considered the only right approach.

xiv

SUMMARY

Creating a (situational) method, mainly relies on the availability of so-called
method fragments. Fragments can be categorized in three axes: perspective,
abstraction and granularity. Existing literature is reviewed on the existence of
method fragments that start from DEMO models and ends in some software
implementation. While there are some usable fragments, none of these support
all concepts from DEMO, most existing fragments ignore the step from DEMO
to implementation model, and that there are almost no technical fragments to
support the desired method.

For the four exploratory case studies four (modern) target technologies have
been selected that all address multiple identified needs: microservices, mockups,
Normalized Systems, and low code. The exploratory studies have in common that
a mapping from the input, i.e., DEMO models and enterprise implementation (in
terms of OIVs), to the target technology has been devised and evaluated in prac-
tice, sometimes on multiple enterprises (or enterprise models). These mappings,
that are either automatable or automated during the exploratory case study,
can be considered a method fragment, possibly to be assembled into an overall
method. The exploratory case studies show that creating software from the cho-
sen input models is indeed technically feasible, and that it is possible to do this
in a structured (and automatable) way.

Put together, the foundation has been laid to create the desired method that
addresses the needs and supports enterprise agility. The requirements are detailed
and several fragments have been identified or created that can later be used to
compose such a method. Such a method could be useful for practitioners as it
may reduce software development costs and efforts, relies less on technically skilled
people – so-called citizen development – and may improve project success rate.

Limitations and Future Research

The exploratory case studies were performed mainly in the Netherlands and
mainly at public or semi-public organizations. Although there is no reason to
believe that the results are not applicable to other enterprises, further validation
is needed.

Moreover, most of the model transformations in the exploratory case studies
involved manual steps. A reason simply is the unavailability of proper modeling
tools for DEMO. In order to apply the algorithms in a disciplined way, it is
necessary to further automate the mappings, and thus provide tool support to
create the input models.

Embedding the suggested approach into existing approaches seems key to im-
prove its adoption. Advantages are expected by introducing LLM and (generative)
AI into the method. However, combining approach also means that they should
be comparable, in their underlying theoretical background or ‘world view’, but
also in the results they produce. Further research is needed in order to compare
different approaches for software development from enterprise models.

Finally, adaptable software is just one factor in achieving enterprise agility.
Other research shows that it is possible to apply principles to the enterprise level

xv

SUMMARY

that should enable enterprise agility. An open question is whether enterprise
constructs can be created, perhaps based on one or more DEMO concepts, that
inherently adhere to these principles. This also implies the need for an objective
way to measure enterprise agility in order to be able to compare different enterprise
constructs. Although the foundation was laid for creating enterprise software from
enterprise models that intrinsically supports enterprise agility, there is still much
to do in order to achieve true enterprise agility.

xvi

Nederlandse samenvatting

Aanleiding en doel

Organisaties6 bevinden zich in toenemende mate in onstuimige omstandigheden,
veroorzaakt door o.a. sterke concurrentie, toenemende verwachtingen van klanten,
wijzigende wet- en regelgeving en technologische vooruitgang. Als gevolg hiervan
wordt het vermogen om steeds sneller te kunnen veranderen, ook wel bekend als
wendbaarheid of ‘agility’, steeds belangrijker voor het succes van organisaties.
Omdat organisaties steeds meer afhankelijk zijn geworden van IT, is de wend-
baarheid van organisaties steeds meer afhankelijk van de wendbaarheid van het
IT landschap.

Wendbaarheid tracht men momenteel vooral te bereiken door processen in
te richten die de flexibiliteit in de operatie en planning ondersteunen. Bekende
methoden hiervoor zijn SCRUM en DevOps, die, in tegenstelling tot waterval-
aanpakken, voorschrijven dat multidisciplinaire teams in korte iteraties of zelfs
continu software (door)ontwikkelen. Hoewel de voordelen van deze methoden dui-
delijk zijn, zeggen de methoden niets over hoe de software zelf in de constructie
opgebouwd dient te worden, zodat aanpassingen überhaupt snel kunnen worden
gemaakt. Wat niet helpt is de wet van Lehmann die zegt dat het wijzigen van
software alleen maar duurder wordt en meer tijd gaat kosten, iets wat uiteindelijk
ten koste gaat van de wendbaarheid van de software èn (dus) van de organisatie.

De droom achter dit onderzoek is om met behulp van een gestructureerde
aanpak snel en continu nieuwe (versies van) software van hoge kwaliteit te kunnen
neerzetten, om zo de benodigde wendbaarheid te kunnen ondersteunen. Met
kwaliteit wordt specifiek gedoeld op software die gebruikers in hun werkzaamheden
ondersteunt, die eenvoudig en snel aanpasbaar is, en waarbij de functionele wensen
herleidbaar zijn tot specifieke onderdelen in de software en andersom.

Zo’n gestructureerde aanpak wordt ook wel ‘methode’ genoemd, waarvan de
eerste al uit de jaren ’70 stammen. Vrijwel alle methoden voor softwareontwikke-
ling gebruiken modellen als tussenproduct, en zijn dan ook wel bekend als (me-
thoden voor) modelgebaseerde (software) ontwikkeling. Door o.a. ontwikkelingen
in technologie en de opkomst van nieuwe modelleertalen, zijn recente varianten
van modelgebaseerde ontwikkeling ontstaan, waaronder model-gedreven architec-
tuur, model-als-code en low-code en no-code platforms. Hoewel sommige van
deze ontwikkelingen recent zijn, lijkt er (nog) geen methode te zijn die aan de

6Onder organisaties worden zowel commerciële bedrijven als (semi-)publieke instanties en
samenwerkingsketens verstaan.

xvii

NEDERLANDSE SAMENVATTING

gëıdentificeerde kwaliteitseisen voldoet om de wendbaarheid van organisaties te
ondersteunen of zelfs te verbeteren. Het doel van dit onderzoek is om een basis te
leggen voor een dergelijke methode, waarin vanuit organisatiemodellen software
wordt ontwikkeld. Om dat doel te bereiken is een onderzoeksuitdaging als doel
geformuleerd met zeven onderzoeksvragen.

Aanpak

De droom achter dit onderzoek is om een methode te hebben, ondersteund door de
benodigde (IT) hulpmiddelen, om vanuit modellen van de organisatie software te
ontwikkelen die voldoet aan de genoemde kwaliteitseisen, meermaals kan worden
toegepast en aangepast kan worden aan specifieke situaties. Om zo’n methode en
hulpmiddelen te ontwikkelen, zijn precieze specificaties nodig. Tegelijkertijd zijn
er nog onzekerheden m.b.t. het ontwikkelen van een dergelijke methode, waaron-
der welke modellen het beste gebruikt kunnen worden en of zo’n aanpak überhaupt
mogelijk is.

Vanwege deze onzekerheden is dit onderzoek gepositioneerd als een verkennend
onderzoek, een noodzakelijke fase waarin een probleemgebied wordt verkend, pa-
rallel met het opbouwen van een grove oplossingsrichting. Ook worden in deze
fase aannames getoetst en de specificaties helder gemaakt. Dit onderzoek richt
zich primair op het wegnemen van de onzekerheden, terwijl een eerste oplossings-
richting wordt geschetst en getoetst.

Methoden zijn vaak het resultaat van het structureren of abstraheren van in
de praktijk (formeel of informeel) gehanteerde procedures of aanpakken. Om de
onzekerheden weg te nemen in deze verkennende fase, en de onderzoeksvragen
te beantwoorden, moeten onderzoek in de praktijk worden gedaan. Action De-
sign Research (ADR) is de combinatie van Design Science Research en Action
Research, gericht op het degelijk en gestructureerd aanpakken van praktisch on-
derzoek. ADR definieert vier fasen die gericht zijn op zowel het oplossen van een
(potentieel) probleem in de praktijk alsook het creeëren van een wetenschappelijke
bijdrage.

De onderzoeksvragen worden initieel beantwoord met een literatuurstudie.
Deze initiële antwoorden worden daarna getoetst in de praktijk met probleem-
gedreven onderzoek. Voor het praktijkonderzoek zijn vier verkennende studies
gedaan, die allemaal gericht zijn op het ontwikkelen van een mogelijk onderdeel
van de gehele methode. Door het combineren van praktisch en theoretisch onder-
zoek, in meerdere iteraties en met meerdere praktijkstudies, is de relevantie en
(wetenschappelijke) onderbouwing van dit onderzoek aangescherpt.

Resultaten

In dit onderzoek is een model-gedreven aanpak tot softwareontwikkeling geadop-
teerd, waarin code wordt gegenereerd vanuit organisatiemodellen. Voordelen van
deze aanpak zijn primair de snelheid en de traceerbaarheid. Voor de organisatie-
modellen is gekozen voor Design and Engineering Methodology for Organizations

xviii

NEDERLANDSE SAMENVATTING

(DEMO), dat de essentie of ontologie van een organisatie blootlegt. Omdat een
DEMO model onvoldoende details bevat voor het volledig genereren van software,
is het Organisatie Implementatie Raamwerk (OIR) ontwikkeld dat voorschrijft om
inrichtingskeuzes als waarden voor zekere Organisatie Implementatie Variabelen
(OIVs) vast te leggen. Het ontwikkelde raamwerk maakt het mogelijk bewust de
dimensies te kiezen waarin een organisatie wendbaar dient te zijn, terwijl andere
dimensies als minder belangrijk kunnen worden aangemerkt – beiden hebben hun
eigen weerslag in de software. Door gebruik te maken van DEMO en het OIR is
in grote mate gewaarborgd dat alle en niet meer dan de relevante klantvereisten
als startpunt worden genomen, aangevuld met, waar nodig, specifieke vereisten
op het gebied van wendbaarheid. Een risico van deze aanpak is dat complexiteit
wordt verplaatst van de softwareontwikkeling naar het creëren van de organisatie-
modellen. Omdat softwarecomplexiteit vaak het resultaat is van organisatiecom-
plexiteit, is het niet meer dan een logische stap om de complexiteit te brengen
naar waar die (initieel) vandaan komt.

Het ontwikkelen van een (situationele) methode is afhankelijk van de beschik-
baarheid van zogenaamde methode-onderdelen. Onderdelen van een methode
kunnen worden geclassificeerd op drie assen: perspectief, abstract en granula-
riteit. Gerelateerd onderzoek is bestudeerd om bestaande onderdelen voor het
ontwikkelen van software vanuit een DEMO model te classificeren. Hoewel er
meerdere onderdelen zijn gëıdentificeerd, blijkt helaas geen van de bestaande on-
derdelen een volledig DEMO te ondersteunen, slaan vrijwel alle onderdelen de stap
naar implementatie geheel over, en is er slechts één bestaand technisch onderdeel
gevonden voor het genereren van software vanuit DEMO.

Voor het uitvoeren van de verkennende studies, zijn vier verschillende en mo-
derne technologieën geselecteerd, gedreven door de klantorganisaties die een con-
crete uitdaging hadden binnen de scope van dit onderzoek. De geselecteerde
technologieën, die tevens (een significant deel van) de kwaliteitseisen afdekken,
zijn microservices, mockups (wireframes), Normalized Systems en low-code. Het
gemeenschappelijke deel van deze verkennende studies is dat ieder start vanuit
een DEMO model, in meer of mindere mate aangevuld met inrichtingskeuzes.
In alle gevallen is vanuit deze modellen middels een algoritme of vertaaltabel
software ontwikkeld. In sommige gevallen zijn deze algoritmes of vertaaltabellen
volledig geautomatiseerd, waardoor geautomatiseerde software-generatie mogelijk
is gemaakt. De ontwikkelde algoritmes, potentiële onderdelen voor een volledige
methode, zijn typisch getoetst op meerdere organisaties, om de relevantie alsook
(her)bruikbaarheid van de onderdelen te borgen. De verkennende studies hebben
aangetoond dat het mogelijk is om op gestructureerde en, dus, automatiseerbare
wijze vanuit een DEMO model, mogelijk aangevuld met inrichtingskeuzes, soft-
ware te ontwikkelen.

Samengevat vormen de gëıdentificeerde en gecreëerde onderdelen de basis om
de gehele methode te gaan ontwikkelen. De specificaties van een dergelijke me-
thode, die moet voldoen aan diverse kwaliteitseisen, zijn gevalideerd en aange-
vuld. Vanuit de specificaties kan met de onderdelen een (specifieke of generieke)
methode worden samengesteld om – uiteindelijk – de wendbaarheid van een or-
ganisatie te kunnen ondersteunen. Het onderzoek heeft laten zien dat er vraag

xix

NEDERLANDSE SAMENVATTING

is naar een dergelijke methode die uiteindelijk de kosten van softwareontwikke-
ling kan reduceren, terwijl deze minder afhankelijk is van (technisch geschoolde)
softwareontwikkelaars.

Beperkingen en toekomstig onderzoek

De verkennende studies zijn uitgevoerd voornamelijk bij (semi)publieke organisa-
ties in Nederland. Hoewel er geen reden is om aan te nemen dat de resultaten niet
ook van toepassing zijn bij andere organisaties en buiten Nederland, kan alleen
breder onderzoek deze aanname valideren.

De algoritmes die zijn ontwikkeld in de verkennende studies zijn veelal gedeel-
telijk handmatig uitgevoerd. Een van de redenen is eenvoudigweg het gebrek aan
een goed digitale hulpmiddel voor het maken van DEMO modellen dat het model
tevens kan exporteren naar een door software leesbaar formaat. Om de algorit-
mes verder te automatiseren en het risico op het introduceren van fouten door
handmatige stappen te reduceren, is het noodzakelijk dat dergelijke hulpmiddelen
worden (door)ontwikkeld.

Voor een bredere adoptie van de ontworpen methode is het wenselijk deze
onderdeel te maken van bestaande methoden. Specifiek lijkt het integreren van
taalmodellen7 en Kunstmatige Intelligentie voor het sneller en beter opzetten
van DEMO modellen een interessante stap. Om methoden te integreren is het
belangrijk dat ze eenzelfde theoretische basis hebben. Nader onderzoek is nodig
om aanpakken vergelijkbaar te maken.

Hoewel IT steeds belangrijker wordt voor de operatie van organisaties, is wend-
bare software slechts één onderdeel in het bereiken van een wendbare organisatie.
Gerelateerd onderzoek heeft aangetoond dat het mogelijk is om vanuit architec-
tuurprincipes de wendbaarheid van organisaties te ondersteunen. Tegelijkertijd is
en blijft de vraag voorlopig welke constructies er zijn, al dan niet op concepten
uit DEMO gebaseerd, die voldoen aan al die principes. Om dergelijke construc-
ties te kunnen vergelijken, dient wendbaarheid van organisaties meetbaar te zijn.
Hoewel een basis is gelegd voor de ontwikkeling van wendbare software ter on-
dersteuning van wendbare organisaties, is er nog veel aanvullend onderzoek nodig
om organisaties wendbaar te maken in alle relevante aspecten.

7Bijvoorbeeld ChatGPT.

xx

Contents

Preface vii

Acknowledgements ix

Abstract xi

Summary xiii

Nederlandse samenvatting xvii

Contents xxi

Publications xxvii
Conference and Journal Publications xxvii
Other Publications . xxix
Mapping From Papers to Thesis . xxx

1 Introduction 1
1.1 Background . 2

1.1.1 Enterprise Agility . 2
1.1.2 Needs in Software Development 5
1.1.3 Partial Answers . 8

1.2 The Need for a (New) Method 10
1.3 Research Challenge, Questions and Deliverables 12

1.3.1 Research Challenge . 12
1.3.2 Research Questions . 12
1.3.3 Deliverables . 13

1.4 Outline . 13

I Theoretical Background 17

2 Research Approach 19
2.1 Possible Research Approaches . 19

2.1.1 Experiments . 20
2.1.2 Case Studies . 20
2.1.3 Design Science Research 20
2.1.4 Action Research . 22

xxi

CONTENTS

2.1.5 Action Design Research 22

2.2 Approach as Applied in This Research 23

2.2.1 Adopting a Nested ADR Approach 25

2.2.2 Choosing the Exploratory Case Studies 26

3 Software Development 29

3.1 Models and Its Relationship With Software 30

3.1.1 Model Kinds . 30

3.1.2 Relationships Between Models and Software 32

3.2 General System Development Process 32

3.2.1 System Design . 33

3.2.2 Technical Design . 34

3.2.3 System Implementation 34

3.2.4 System Architecture . 34

3.3 Model-based Engineering . 35

3.3.1 MBE and Related Notions 35

3.3.2 Model-driven Software Development 37

3.4 Target Technologies . 40

3.4.1 Mockups . 41

3.4.2 Microservices . 41

3.4.3 Normalized Systems . 43

3.4.4 Low Code . 46

3.5 Conclusions . 48

4 Enterprise Modeling 49

4.1 Choosing an Enterprise Modeling Technique 49

4.1.1 Enterprise Modeling Perspectives 50

4.1.2 Criteria . 51

4.1.3 Enterprise Modeling Techniques 52

4.1.4 Choice for This Research 57

4.2 Enterprise Ontology . 58

4.2.1 Complete Transaction Pattern 59

4.2.2 Actor Cycle . 62

4.2.3 Organizational Layering 64

4.2.4 Ontological Aspect Models 64

4.2.5 DEMO Metamodel . 66

4.3 Enterprise Implementation . 66

4.3.1 Implementation Layers . 68

4.3.2 Examples . 69

4.3.3 Benefits . 69

4.3.4 Implications for Software Development 70

4.4 Conclusions . 71

xxii

CONTENTS

5 Towards a Method 73
5.1 Method Engineering . 73

5.1.1 Method Fragments . 74
5.1.2 Situational Method Engineering 75
5.1.3 Implications for This Research 75

5.2 Existing Method Fragments . 76
5.2.1 DEMO to Services . 76
5.2.2 DEMO to Components 76
5.2.3 DEMO to Normalized Systems 76
5.2.4 Realization: From O to I to D 77
5.2.5 DEMO CTP Engine . 77

5.3 Conclusions . 78

II Exploratory Case Studies 81

6 ECS 1: Specifying Microservices 83
6.1 Problem Formulation . 83
6.2 Building, Intervention and Evaluation 85

6.2.1 Deducing the Algorithm From the Actor Cycle 85
6.2.2 Evaluating the Algorithm 89

6.3 Reflection and Learning . 94
6.3.1 Reflecting on the Criteria 94
6.3.2 Reflecting on the Design Decisions 95

6.4 Formalization of Learnings . 96
6.4.1 Identified Fragments . 96
6.4.2 Implications For Future Research 96

7 ECS 2: Using Mockups to Validate Reqs 97
7.1 Problem Formulation . 97
7.2 Building, Intervention and Evaluation 98

7.2.1 Similar Enterprises . 99
7.2.2 Working Principles and Design Choices 99
7.2.3 Procedure . 100
7.2.4 Evaluating the Procedure 104

7.3 Reflection and Learning . 109
7.4 Formalization of Learnings . 110

7.4.1 Identified Fragments . 110
7.4.2 Implications For Future Research 111

8 ECS 3: Deriving a Normalized System 113
8.1 Problem Formulation . 113
8.2 Building, Intervention and Evaluation 114

8.2.1 Theoretical Comparison 114
8.2.2 Algorithm . 115
8.2.3 Evaluation: Dutch Governmental Subsidy Schemes 117

8.3 Reflection and Learning . 122

xxiii

CONTENTS

8.4 Formalization of Learnings . 123
8.4.1 Identified Fragments . 123
8.4.2 Implications For Future Research 123

9 ECS 4: Generating Mendix Applications 125
9.1 Problem Formulation . 125
9.2 Building, Intervention and Evaluation 126
9.3 Reflection and Learning . 133
9.4 Formalization of Learnings . 134

9.4.1 Identified Fragments . 135

III Results 137

10 Conclusions 139
10.1 Answers to Research Questions 140

10.1.1 Answers to Theoretical Research Questions 140
10.1.2 Answers to Practical Research Questions 143
10.1.3 Reflection on Main Research Challenge 144

10.2 Research Contributions . 146
10.2.1 Scientific Contributions 146
10.2.2 Practical Contributions 148

10.3 Impact . 150
10.3.1 Research Goal and Results 150
10.3.2 Contributions . 150
10.3.3 Relevance . 152

11 Discussion 153
11.1 Reflections . 153

11.1.1 The Choice for MDSD . 153
11.1.2 The Selection of Technologies 155
11.1.3 The Choice for DEMO . 155
11.1.4 Research Approach and Case Selection 156

11.2 Limitations . 157
11.3 Future Research . 158

11.3.1 DEMO Support . 158
11.3.2 Embedding in Existing Approaches 159
11.3.3 Enterprise Agility . 159

Bibliography 161

List of Figures 207

List of Tables 209

List of Acronyms 211

xxiv

CONTENTS

IV Appendices 217

A Enterprise Modeling Examples 219

B ARSs for Social Housing 229

C JSON file for Social Housing 235

D Generated YAML file for Social Housing 237

E ARSs for Subsidy Granting 269

Curriculum Vitae 273

xxv

xxvi

Publications

The publications below have contributed to the contents of this thesis. A detailed
mapping from the most contributing papers to this thesis is included.

Conference and Journal Publications

EEWC 2011 M. R. Krouwel and M. Op ’t Land, Combining DEMO and
Normalized Systems for Developing Agile Enterprise Information Systems,
in EEWC 2011: Advances in Enterprise Engineering V, A. Albani, J. L. G.
Dietz, and J. Verelst, eds., vol. 79 of Lecture Notes in Business Information
Processing, Springer Berlin Heidelberg, 2011, pp. 31–45. 10.1007/978-3-

642-21058-7_3

PRET 2011 M. Op ’t Land, M. R. Krouwel, E. van Dipten, and J. Ver-
elst, Exploring Normalized Systems Potential for Dutch MoD’s Agility –
A Proof of Concept on Flexibility, Time-to-Market, Productivity and Qual-
ity, in PRET 2011: Practice-Driven Research on Enterprise Transforma-
tion, F. Harmsen, K. Grahlmann, and E. Proper, eds., vol. 89 of Lecture
Notes in Business Information Processing, Springer, Sept. 2011, pp. 110–121.
10.1007/978-3-642-23388-3_5

MCIS 2012 M. R. Krouwel and M. Op ’t Land, Using Enterprise Ontology
as a basis for Requirements for Cross-Organizationally Usable Applications,
in Proceedings of the 7th Mediterranean Conference on Information Systems
2012 (MCIS2012), A. D. Figueiredo, I. Ramos, and E. Trauth, eds., MCIS
Proceedings, University of Minho, Portugal, Sept. 2012, AIS Electronic Li-
brary (AISeL). Paper 23. http://aisel.aisnet.org/mcis2012/23

EEWC 2013 M. Op ’t Land and M. R. Krouwel, Exploring Organizational
Implementation Fundamentals, in EEWC 2013: Advances in Enterprise En-
gineering VII, H. A. Proper, D. Aveiro, and K. Gaaloul, eds., vol. 146 of
Lecture Notes in Business Information Processing, Springer-Verlag Berlin
Heidelberg, 2013, pp. 28–42. 10.1007/978-3-642-38117-1_3

EEWC 2016 M. R. Krouwel, M. Op ’t Land, and T. Offerman, Formal-
izing Organization Implementation, in EEWC 2016: Advances in Enterprise
Engineering X, D. Aveiro, R. Pergl, and D. Gouveia, eds., vol. 252 of Lec-
ture Notes in Business Information Processing, Funchal, Madeira Island,
Portugal, 2016, Springer, pp. 3–18. 10.1007/978-3-319-39567-8_1

xxvii

https://doi.org/10.1007/978-3-642-21058-7_3
https://doi.org/10.1007/978-3-642-21058-7_3
https://doi.org/10.1007/978-3-642-23388-3_5
http://aisel.aisnet.org/mcis2012/23
https://doi.org/10.1007/978-3-642-38117-1_3
https://doi.org/10.1007/978-3-319-39567-8_1

PUBLICATIONS

EEWC 2016 L. de Laat, M. Op ’t Land, and M. R. Krouwel, Supporting
Goal-oriented Organizational Implementation - Combining DEMO and Pro-
cess Simulation in a Practice-tested Method, in EEWC 2016: Advances in
Enterprise Engineering X, D. Aveiro, R. Pergl, and D. Gouveia, eds., vol. 252
of Lecture Notes in Business Information Processing, Springer, 2016, pp. 19–
33. 10.1007/978-3-319-39567-8_2

EEWC 2020 M. Op ’t Land, M. R. Krouwel, and S. Gort, Testing the
Concept of the RUN-Time Adaptive Enterprise - Combining Organization
and IT Agnostic Enterprise Models with Organization Implementation Vari-
ables and Low Code Technology, in EEWC 2020: Advances in Enterprise En-
gineering XIV, D. Aveiro, G. Guizzardi, R. Pergl, and H. A. Proper, eds.,
vol. 411 of Lecture Notes in Business Information Processing, Springer, Apr.
2021, pp. 228–242. 10.1007/978-3-030-74196-9_13

EEWC 2021 M. R. Krouwel and M. Op ’t Land, Business Driven Micro
Service Design - An Enterprise Ontology based approach to API Specifica-
tions, in Advances in Enterprise Engineering XV, D. Aveiro, H. A. Proper,
S. Guerreiro, and M. De Vries, eds., vol. 441 of Lecture Notes in Business
Information Processing, Springer, 2021, pp. 95–113. 10.1007/978-3-031-

11520-2_7

PoEM 2022 M. R. Krouwel, M. Op ’t Land, and H. A. Proper, Gen-
erating Low-Code Applications from Enterprise Ontology, in PoEM 2022:
The Practice of Enterprise Modeling, B. S. Barn and K. Sandkuhl, eds.,
vol. 456 of Lecture Notes in Business Information Processing, Springer Na-
ture Switzerland AG, 2022, pp. 19–32. 10.1007/978-3-031-21488-2_2

SoSyM M. R. Krouwel, M. Op ’t Land, and H. A. Proper, From Enter-
prise Models to Low-Code Applications: Mapping DEMO to Mendix, illus-
trated in the Social Housing domain, International Journal on Software and
Systems Modeling, (2024). Invited submission, currently under review

xxviii

https://doi.org/10.1007/978-3-319-39567-8_2
https://doi.org/10.1007/978-3-030-74196-9_13
https://doi.org/10.1007/978-3-031-11520-2_7
https://doi.org/10.1007/978-3-031-11520-2_7
https://doi.org/10.1007/978-3-031-21488-2_2

OTHER PUBLICATIONS

Other Publications

M. R. Krouwel, Understanding the Essence of Organizations with DEMO-4.
Online, Jan. 2021. https://www.linkedin.com/pulse/understanding-essence-
organizations-demo-4-marien-krouwel/

M. R. Krouwel, M. Stam, A. Bulat, and R. de Wit, Mendix and SAP: do
you choose or combine? Online, Aug. 2021. https://www.linkedin.com/pulse/
mendix-sap-do-you-choose-combine-marien-krouwel/

M. R. Krouwel, Low Code and No Code: Is There a Difference? A practical
analysis. Online, Feb. 2022. https://www.linkedin.com/pulse/low-code-

difference-practical-analysis-marien-krouwel/

J. Dietz, E. van Dipten, M. Krouwel, P. Kuipers, T. de Mik, and
I. Theuwissen-Krol, Begrijpen en Maken van Essentiële Modellen, Werken met
DEMO (WmD), Enterprise Engineering Institute, Nov. 2021. Dutch. https:

//ee-institute.org/demo/werken-met-demo/

J. L. G. Dietz, M. Op ’t Land, M. R. Krouwel, and J. B. F. Mulder,
Enterprise Design, Springer, 2024. Forthcoming

xxix

https://www.linkedin.com/pulse/understanding-essence-organizations-demo-4-marien-krouwel/
https://www.linkedin.com/pulse/understanding-essence-organizations-demo-4-marien-krouwel/
https://www.linkedin.com/pulse/mendix-sap-do-you-choose-combine-marien-krouwel/
https://www.linkedin.com/pulse/mendix-sap-do-you-choose-combine-marien-krouwel/
https://www.linkedin.com/pulse/low-code-difference-practical-analysis-marien-krouwel/
https://www.linkedin.com/pulse/low-code-difference-practical-analysis-marien-krouwel/
https://ee-institute.org/demo/werken-met-demo/
https://ee-institute.org/demo/werken-met-demo/

PUBLICATIONS

Mapping From Papers to Thesis

Parts of this thesis have been published as separate papers. This section provides
an overview of how the original papers were used in this thesis.

M. R. Krouwel and M. Op ’t Land, Combining DEMO and Normalized
Systems for Developing Agile Enterprise Information Systems, in EEWC 2011:
Advances in Enterprise Engineering V, A. Albani, J. L. G. Dietz, and J. Verelst,
eds., vol. 79 of Lecture Notes in Business Information Processing, Springer Berlin
Heidelberg, 2011, pp. 31–45. 10.1007/978-3-642-21058-7_3

Section in paper Section in thesis Changes

1. Introduction Section 8.1
2. Theoretical Background Section 4.2,

Section 3.4.3
Updated to DEMO-4 and
2016-version of NS theory

3. Theoretical Comparison Section 8.2
4. Enterprise Ontology of

the Dutch Governmental
Subsidy Schemes

Section 8.2 Updated to DEMO-4

5. Deriving a Normalized
System from an
Enterprise Ontology

Section 8.2 Updated to DEMO-4

6. Implementation Freedom Section 8.2
7. Conclusions and Future

Research
Section 8.3

n/a Section 8.4 Added identified method
fragments

xxx

https://doi.org/10.1007/978-3-642-21058-7_3

MAPPING FROM PAPERS TO THESIS

M. R. Krouwel and M. Op ’t Land, Using Enterprise Ontology as a basis
for Requirements for Cross-Organizationally Usable Applications, in Proceedings
of the 7th Mediterranean Conference on Information Systems 2012 (MCIS2012),
A. D. Figueiredo, I. Ramos, and E. Trauth, eds., MCIS Proceedings, University
of Minho, Portugal, Sept. 2012, AIS Electronic Library (AISeL). Paper 23.
http://aisel.aisnet.org/mcis2012/23

Section in paper Section in thesis Changes

1. Introduction Section 7.1
2. Research Design Section 3.2,

Section 4.2,
Section 7.2

Updated to DEMO-4

3. The Approach in
Practice

Section 7.2

4. Results (Case Level) Section 7.2 Updated to DEMO-4
5. Conclusions and

Discussion (Research
Level)

Section 7.3,
Chapter 11

n/a Section 7.4 Added identified
method fragments

M. R. Krouwel, M. Op ’t Land, and T. Offerman, Formalizing Or-
ganization Implementation, in EEWC 2016: Advances in Enterprise Engineering
X, D. Aveiro, R. Pergl, and D. Gouveia, eds., vol. 252 of Lecture Notes in Busi-
ness Information Processing, Funchal, Madeira Island, Portugal, 2016, Springer,
pp. 3–18. 10.1007/978-3-319-39567-8_1

Section in paper Section in thesis

1. Introduction Section 1.1, Section 4.2
2. Way of Thinking Section 3.2, Section 4.2
3. Way of Working Chapter 2
4. Result Section 4.3
5. Conclusions and Future Research Section 4.3, Chapter 11

xxxi

http://aisel.aisnet.org/mcis2012/23
https://doi.org/10.1007/978-3-319-39567-8_1

PUBLICATIONS

M. R. Krouwel and M. Op ’t Land, Business Driven Micro Service Design
- An Enterprise Ontology based approach to API Specifications, in Advances in
Enterprise Engineering XV, D. Aveiro, H. A. Proper, S. Guerreiro, and M. De
Vries, eds., vol. 441 of Lecture Notes in Business Information Processing, Springer,
2021, pp. 95–113. 10.1007/978-3-031-11520-2_7

Section in paper Section in thesis Changes

1. Introduction Section 3.4.2,
Section 6.1,
Section 6.2

2. Research Design Chapter 2
3. Foundations on

Enterprise Ontology
and Service Design

Section 4.2,
Section 5.2,
Section 6.2

4. Devising the
Algorithm

Section 6.2 Added some details
that did not fit in the
original paper

5. Evaluation of the
Algorithm

Section 6.2,
Section 6.3

Minor changes

6. Conclusions and
Future Research

Section 5.2,
Section 6.2,
Section 6.3

Minor changes

n/a Section 6.4 Added identified
method fragments

xxxii

https://doi.org/10.1007/978-3-031-11520-2_7

MAPPING FROM PAPERS TO THESIS

M. R. Krouwel, M. Op ’t Land, and H. A. Proper, Generating Low-
Code Applications from Enterprise Ontology, in PoEM 2022: The Practice of En-
terprise Modeling, B. S. Barn and K. Sandkuhl, eds., vol. 456 of Lecture Notes in
Business Information Processing, Springer Nature Switzerland AG, 2022, pp. 19–
32. 10.1007/978-3-031-21488-2_2

Section in paper Section in thesis Changes

1. Introduction Section 1.1,
Section 3.3,
Section 3.4.4,
Section 4.1.3,
Section 5.2,
Section 9.1

2. Theoretical Background Section 3.3.2,
Section 3.4.4,
Section 4.1.3,
Section 4.2,
Section 4.3

3. Mapping Section 9.2 Updated to latest version
of both metamodels

4. Implementation and
Evaluation

Section 9.2 Added and updated some
screenshots

5. Conclusions and
Discussion

Section 9.3,
Section 9.4,
Chapter 11

n/a Section 9.4 Added identified method
fragments

The authors of this paper were invited to submit an extended version to
SoSyM. This extended version [267], including more detailed parts of this the-
sis, has been submitted and is currently in the review process (final round).

xxxiii

https://doi.org/10.1007/978-3-031-21488-2_2

“(...) the species that survives is the one that is able best to adapt
and adjust to the changing environment in which it finds itself”

Leon C. Megginson [310, p. 4]

“Blessed are the flexible, for they will not be bent out of shape.”

Robert Ludlum, in ‘The Janson Directive’ (2002)

“Program testing can be used to show the presence of bugs, but never
to show their absence.”

Edsger W. Dijkstra [127] 1
Introduction

This thesis is about creating evolvable software for (agile) enterprises1 in a struc-
tured way. The quotes above may seem a bit off-topic, but are close to my heart
and, combined, they form the core of the motivation of this thesis.2

In 1963, the first quote3 was said to be applicable not only to individuals but
also to institutions, businesses and even to civilizations. Therefore, enterprises,
including their supporting software, need to be agile in order to survive.

The second quote, originally from an espionage thriller in the context of chang-
ing a plan when needed, is currently used a lot in yoga practice to stress the im-
portance of a flexible mind and body. It shows, again, that flexibility and agility
is needed in multiple aspects, for both individuals and enterprises.

The last quote criticizes most current approaches to software development
that involve multiple manual conversions from requirements to code, risking the
introduction of defects in each conversion step. These approaches rely heavily on
software testing to improve or maintain its quality, but it is never possible to show
that no defects were introduced during development. As numbers show that solv-
ing a defect (or: bug) in production can be up to 100 times more expensive than
solving it in the design phase [95], it is highly undesired that defects are introduced
late(r) in the software development life cycle. Applying a more mathematical ap-
proach to software development, e.g., by applying model transformation(s), has
the advantage that it is possible to a priori show by means of formal reasoning
that the applied transformation does not introduce (new) defects. Not introduc-

1An enterprise is defined as any goal oriented cooperative, including commercial businesses,
public organizations and non-profit institutions as well as chains of such organizations.

2For the connection between the quotes used in this thesis and my personal life, the reader
is referred to my resume on p. 273.

3Although this quote originates from Charles Darwin’s evolutionary theory, it is not from
Darwin and often incorrectly attributed to him.

1

CHAPTER 1. INTRODUCTION

ing defects during software development is even more important when you need
to change software often.

The sum of these quotes brought the dream about having a structured way
to quickly and traceably convert enterprise models, describing its (essential) user
activities and known (or desired) flexibility, to working and adaptable software,
without defects, so that software (development) is not the limiting factor in chang-
ing an enterprise. Using model transformations – that can be expressed as mathe-
matical functions or algorithms – in the process of software development not only
could be an answer to this dream, but also has the potential to close the gap be-
tween software design, development and maintenance, and therefore could reduce
the (big) difference in effort and related costs needed to fix a bug in production
compared to fixing it during the design phase.

The remainder of this chapter is structured as follows: in Section 1.1 the con-
cept of enterprise agility is introduced, needs in software development to support
enterprise agility – and, thus, enterprise survival – are formulated and partial
answers to the formulated needs are outlined; in Section 1.2 the research gap is
detailed which is then used to formulate the research challenge, questions and
deliverables in Section 1.3. While the research approach to answer the research
questions will follow in Chapter 2, the outline of this thesis is provided in Sec-
tion 1.4.

1.1 Background

Due to factors such as hyper-competition [93], increasing expectations from cus-
tomers, regulatory changes, and technological advancements, the conditions in
which enterprises need to thrive become increasingly turbulent. As a result,
the ability to change with an ever decreasing time-to-market, often referred to
as ‘agility’ [470], becomes an important determinant for the success of enter-
prises [451, 348]. In a society where most enterprises are supported by software,
unfortunately, software is seen more as obstruction to than as enabler for en-
terprise agility [471]. Because an enterprise and its supporting software are in
fact intrinsically intertwined [124, p. 251] (see Figure 1.1a), enterprise software
has to be able to quickly respond and change directions to support enterprise
agility [392].

In this section the notion of enterprise agility will be explored, and refined into
specific needs in software development that are considered critical in achieving
enterprise agility. The use of methods and models, together known as Model-
based Engineering (MBE) (see Section 3.3), is shown to be a partial answer in
order to identify the research gap.

1.1.1 Enterprise Agility

Agile enterprises are able to adapt rapidly and cost efficiently in response to
environmental changes [455, 128]. It is often operationalized as a set of organi-
zational capabilities, behaviors, and ways of working that affords their business

2

1.1. BACKGROUND

(a) Notion of Enterprise
Information Systems [124]

(b) Cornerstones of enterprise flexibility [437]

Figure 1.1: As software is an inseparable part of an enterprise, software agility
and enterprise agility are strongly connected

freedom, flexibility, and resilience to achieve its purpose [67]. This ‘dynamic ca-
pability’ [441] can be further disaggregated into two key capabilities [327, 399,
306, 470, 379, 196, 44]:

a) sensing the environment for (relevant) changes and detecting flaws in cur-
rent operations, and

b) responding to these (external and internal) factors by deciding whether the
internal organization needs to be changed at all and, when required, to
implement the change.

The notion of ‘agile enterprise’ is also referred to as the ‘run-time adaptive en-
terprise’ [342] or the ‘flexible enterprise’ [437]. Different aspects of flexibility can
be identified that can be considered cornerstones in creating a flexible enterprise,
including strategic flexibility, organizational flexibility, financial flexibility, mar-
keting flexibility, manufacturing flexibility and (automated) Information System
(IS)4 flexibility [437, Figure 1.4] (see Figure 1.1b). Nowadays, enterprises attempt
to be agile in all of these aspects [42]. As a result, enterprises are continuously be-
ing redesigned [173] and enterprise engineering (including software development)
is an ongoing activity that requires continuous alignment between the business
(activities) and its supporting software [213].

4In this thesis, whenever there is a reference to Information System, it is meant in the sense
of the automated part of an IS that uses Information Technology (IT) or, more specifically,
Information and Communication Technology (ICT) and typically consists of hardware, software
and network components.

3

CHAPTER 1. INTRODUCTION

Reflection on Current Approaches

In achieving enterprise agility, there seem to be two distinct but related axes: prod-
uct and process [175, 257, 423, 296, 224]. When the product is (easily) adaptable,
but the processes to sense and respond to changes are not in place, chances are
little that the product is adapted to changing needs on time. On the other hand,
if the processes are there, but the product is not easily adaptable, changing the
product will still take a lot of time. For example, a closet with fixed shelves is
harder to change, if possible at all, than a closet with a flexible shelf system in case
you need to make space for a book that is taller than the current shelf height [45]
(see Figure 1.2).

(a) Cupboard with fixed shelves (b) Cupboard with flexible shelf
system

Figure 1.2: Fixed versus flexible product

For agility in software development, SCRUM5 and DevOps6 are well-adopted
(best) practices [302, 235, 78, 422, 64, 100, 172, 283]. At the same time there
seem to be many issues with their adoption [6, 235]. It seems that these practices

5https://www.scrum.org/
6https://en.wikipedia.org/wiki/DevOps

4

https://www.scrum.org/
https://en.wikipedia.org/wiki/DevOps

1.1. BACKGROUND

are mainly focused on introducing the processes to support enterprise agility7

and thus do not ensure that necessary product changes can be executed within
limited amount of time – almost everyone is familiar with the time it can take to
(re)configure standard packages or to create or change custom-made software to
support changing business requirements.

In order to accommodate (software) product flexibility, best practices include
modularization [12, 223, 362]. However, finding the right level of modularization
as well as defining the exact scope of a module, turns out to be hard in practice [72,
30]. Applying a microservice architecture is currently a popular way to modularize
an application landscape, but suffers from similar issues [492] (see Section 3.4.2).

Summarizing, (business) processes to make sure an enterprise is aware of
changes that need to be dealt with is not enough; additionally there is a need
for structures – in terms of organization and supporting software – that allow
to implement changes quickly, supported by processes to ensure those structures
are adhered to. In the next section specific needs regarding both the process to
develop software and the structure of the resulting software will be formulated.

1.1.2 Needs in Software Development

The increased required flexibility as well as the ever-increasing complexity of both
enterprises and supporting software make that IT budgets have to grow every year,
as was stated by Lehman in 1980 [281]: “As an evolving (software) program is
continuously changed, its complexity, reflecting deteriorating structure, increases
unless work is done to maintain or reduce it.” It is no surprise that most en-
terprises have to increase their IT budgets every year [83, 170] as Lehman’s law
implies that enterprises that do not increase the yearly IT budget will be faced
with less satisfactory IT and decreased support of organizational changes.

The driver of this research is the dream to have an approach towards software
development that supports the quick and continuous creation and adaptation of
high quality software solutions to support an enterprise’s agility – and, of course,
its employees and customers. Based on practical experience, some specific quality
attributes are considered key to support this dream. First the broader topic
of software quality is introduced, and then the specific needs are formulated:
supporting the end users, evolvability, speed, and traceability.

Quality

Software quality can be measured on two main axes: a) functional quality is about
how well it complies to its functional requirements [88], and b) structural quality
is about how well it is structured and meets non-functional requirements [232].
Many frameworks and models exist to define and/or measure software (struc-
tural) quality. Cavano and McCall [75] mention correctness, reliability, efficiency,
integrity, usability, maintainability, flexibility, testability, portability, reusabil-
ity, and interoperability. The Evans and Marciniak factor model [136] and the

7Some even say that SCRUM has nothing to do with agile at all, see, e.g., http://www.
dennisweyland.net/blog/?p=43.

5

http://www.dennisweyland.net/blog/?p=43
http://www.dennisweyland.net/blog/?p=43

CHAPTER 1. INTRODUCTION

Deutsch and Willis factor model [112] mention similar factors, but add verifiabil-
ity, expandability, safety, manageability, and survivability [168]. Blundell et al.
further extend this list and propose a list of software quality metrics [47]. Davis
proposes a total of 30 principles for quality in software development [94]. Some
of these dimensions are now part of ISO/IEC 25010.8 It shows that quality is
important but at the same time hard to achieve. It has been stated that up to
50% of all time spent in software development goes to testing and debugging [499].
As software quality is such a broad topic, a specific need cannot be formulated.
Instead, some specific quality aspects that are considered relevant for this research
are highlighted in the next paragraphs.

Supporting the End Users

In contrast to, e.g., neurological systems, biological systems, society as a whole
and the world economy, that can be considered emergent systems that just change
while they are being used without explicit design upfront, enterprises and their
supporting software systems are considered deliberately designed systems.9,10 The
development of such deliberately designed systems, and software systems specif-
ically, starts with the users needs, or requirements [120].11 It is thus a quality
aspect of the functional kind. There is an increasing demand for software that
matches real user needs in a working environment [36]. It is no longer sufficient to
(just) deliver products of technical excellence; instead, products need to be useful
and usable for consumers and professional users [269]. The Agile Manifesto12 em-
phasizes the collaboration with customers, but its approach does not guarantee
that the software development team will work towards solving the correct prob-
lem [330]. In a sense, it is not (only) about building it right, but about building
the right it [143]; if the software doesn’t support its users in their daily tasks, it’s
either not useful, or not usable, or fails on both aspects.

The biggest issue in identifying requirements is that talking to users might
not be enough to reveal their true needs [249, 231]. Or, even bolder: “People
don’t know what they want until you show it to them” (attributed to Steve
Jobs). Although early involvement of users [271] and Design Thinking approaches,
e.g., [61, 477, 290], can help in creating satisfying software solutions, they still rely
for a big extent on asking users what they need. Instead, user activities should
be described in such a way that all user requirements are there, and not more
than that – i.e., they need to be complete and concise – without relying on users

8ISO/IEC 25010:2011 is the successor of ISO 9126 and can be found at https://www.iso.

org/standard/35733.html.
9Etymologically, system means ‘organized whole’, from the Latin ‘systema’.

10Emergent Software Systems are software systems that build their own understanding of
their environment and autonomously optimize at run-time by composing discovered compo-
nents [361, 147]. These systems usually involve forms of Artificial Intelligence (AI) and there-
fore still need to be designed at some level. Also, most development practices nowadays involve
iterations where (end user) feedback is being used to design the next version of the system.
In this research, applying iterative development is considered as emergence within deliberately
designed systems.

11A detailed explanation can be found in Section 3.2.
12https://agilemanifesto.org/

6

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://agilemanifesto.org/

1.1. BACKGROUND

solely. The first need is formulated as follows:

Need 1: The set of user requirements for the software system needs to be
complete and concise.

Preferably these requirements are captured and expressed in a way that is easily
understandable and verifiable by end users.

Evolvability

Software evolvability, the ability to easily and cost effectively accommodate changes,
is considered an important software quality aspect [80]. In the context of en-
terprise agility, software needs to be adaptable or flexible in order to support
changing business requirements [143]. In 1969, McIlroy envisioned that software
components should be easily replaceable [308], which is why the next need is
formulated as follows:

Need 2: The software system should be easily adaptable.

A potential issue in achieving software adaptability, is Lehman’s law that
states that the amount of work required to replace or change components, will
grow over time [281]. In a response, Normalized Systems theory has formulated
a set of anticipated changes on the software level and suggest using the concept
of system stability as starting point for software design [299].13

As the scope of this research is not just any software, but enterprise software
specifically, it is considered important to look at anticipated changes at the en-
terprise level, that could or should be supported by software, and find stability at
the enterprise level before looking at how to support that with software. An en-
terprise can be described at three different levels of abstraction: what it does, how
it does it, and with what it does that [501, 474]. Based on these three abstraction
levels, the following kinds of changes relevant for enterprises are considered:

� adding or deleting14 a product or service;

� adding or deleting a department, functionary type, means type or process
step; and

� adding or deleting a specific technological resource, such as a human-being,
a piece of software or a specific mean.

Speed

As said in the introduction, the world is ever-changing. This implies that soft-
ware needs to be created and adapted at a speed that is not lower than the
desired or required rate of change at business level. Keeping up with competition
by reducing the time-to-market of new or changed products is still considered a

13More about software evolvability and Normalized Systems theory can be found in Sec-
tion 3.4.3.

14A change is seen as the combination of a delete and add action.

7

CHAPTER 1. INTRODUCTION

dominant issue [499]. Although CI/CD pipelines, reusing components, microser-
vice architectures, different ways of working and new management styles support
the release of new pieces of software within minutes [46, 27], it is only a matter of
time before software development is slowed down again [282]. In fact, this calls for
a (fundamentally) different approach towards software development. The need is
formulated as follows:

Need 3: It should be able to create (a new version of) the software system in
little time.

Traceability

Traceability refers to the degree to which a relationship can be established between
two or more products of the development process [221]. It implies that require-
ments are clearly linked to design artifacts, source code, test cases, etc. [369],
preferably bidirectional [276], and therefore tries to prevent hidden design deci-
sions in the creation of software, something that, unfortunately, still happens quite
often [192, 494, 458]. Traceability allows a) to validate whether all requirements
have been implemented [383, 326], b) to provide information on the justification,
decisions and assumptions behind a requirement [369], c) for easy determination
of the impact of a change [396, 383], and d) to understand why a software artifact
was created [254]. It has been recognized as an important factor in the quality
of a software development product [360]. Although much research has been done
in the area of traceability in software development, there are still many open
issues [426, 326]. This leads to the last need.

Need 4: It should be clear, i.e., traceable, how a requirement is implemented
in the software system.

1.1.3 Partial Answers

Applying a structured method in creating software has shown to improve effi-
ciency [151] and quality [245] and hence improves the discipline of software engi-
neers [192]. A method towards software development15 is a step-by-step approach,
based on a specific way of thinking, consisting of structured activities and deliv-
erables and is preferably supported by tools [17, 58, 199]. More specifically, a
method should contain a Way of Thinking (WoT), a Way of Working (WoW), a
Way of Modeling (WoM), Way of Controlling (WoC), and a Way of Supporting
(WoS) [411, 488, 487, 176, 87, 92] (see Figure 1.3).

Already in the 1970s, just shortly after Dijkstra’s discussion on step-wise com-
puter program composition [127], the first structured methods for analyzing, de-
signing and developing software systems have emerged, e.g., Structured Analysis
and Design Technique (SADT) [384, 500, 109] and Structured System Design
(SSD) [154]. These methods all rely on the use of models as (intermediate) de-
liverables, such as Entity-Relationship Diagrams (ERDs) [79], flowcharts [500],

15Also known as Information Systems Development Method (ISDM). In this thesis the term
method is used to refer to an ISDM.

8

1.1. BACKGROUND

Way of Modeling
modeling language

Way of Working
procedure

Modeling Technique

Way of Controlling
management

Way of Thinking
how to look at the world

Way of Supporting
tool support

Figure 1.3: Aspects of a method, adapted from [411, 488, 487, 176, 237, 92]

Data Flow Diagrams (DFDs) [109], State Transition Diagrams (STDs) [498] and
IDEF [307]. Combining different modeling techniques (see Figure 1.3) is key to
improving the software development process [24].

A model is a simplified representation of a (software) system, that is used
to study aspects of the system one is interested in [357, 291, 408, 142, 270,
124] and are key to support human understanding, reasoning and communica-
tion [394]. Models allow representing and studying systems even prior to im-
plementation [479, 410] and are being used to explain and validate the intended
behavior of a (software) system [410, 203]. Therefore, models are an important
input for the design and development of software [479, 295, 76]. Not using mod-
els is considered inadequate for creating and maintaining large-scale or complex
software systems [60].

Using (formal) models in the process of system development is also known
as Model-based Engineering (MBE), and the Computer-aided Software Engineer-
ing (CASE) tools from the 1980s can be considered as a first implementation of
MBE [160, 292, 285]. These tools quickly evolved into tools to support Object-
Oriented Programming for the web, aimed at integrating with other (online) sys-
tems. A more recent and well-known implementation of MBE is Model-driven
Architecture (MDA),16 a software development approach that relies heavily on
the use of Unified Modeling Language (UML) models [407]. However, MDA
comes with a lot of issues, including poor integration of different models, lack
of efficiency, limited applicability, vendor lock-in, and its complexity [419, 331].

16https://www.omg.org/mda/

9

https://www.omg.org/mda/

CHAPTER 1. INTRODUCTION

A reason for the perceived complexity of MBE might be that, even with the
use of models, the wide conceptual gap between the enterprise itself and the sup-
porting software system(s) is a big challenge in creating software for the enterprise
and thus requires extensive manual work making software development complex
and costly [160]. Others even say that models don’t deliver enough value if they
are not on a direct path to working software [430]. Despite its possible challenges,
this research expects value in starting from high-level enterprise models that can
be step-wise refined and translated into working software.

A reason that MBE now has more interest [403, 69] than CASE in the 1980s
might be the advancements in the availability of technologies in general and (stan-
dardized) (enterprise) modeling techniques [192], as well as the availability of more
advanced graphical interfaces do to the modeling [285]. The advancements on
these aspects as well as marketing also seem the reason low code nowadays is an
even bigger trend than MBE [69], while they can be considered synonyms [69, 50].
Currently there does not seem to exist an MBE approach towards software devel-
opment that addresses all formulated needs, while the aforementioned advance-
ments provide new possibilities to explore such a method.

1.2 The Need for a (New) Method

As outlined in the previous section, in order to support the agile enterprise, there
is a need to be able to quickly create software of high quality that supports (trace-
ably) real end users’ needs and is adaptable to changing needs. Since an enterprise
and its supporting software are closely related, the design of an enterprise and the
design of its supporting software should not be separated. Since models cannot be
left out of the software development process anymore, at least for creating (com-
plex) enterprise software, the approach needs to start from high-level enterprise
models that are step-wise refined and converted into working software. As the
formulated needs are not unique to a specific enterprise, the aim is to have an
approach that can be used repeatedly in different situations. Such an explicitly
structured approach towards software development that addresses the formulated
needs, is a method, as shown before.

Structuring an approach so that it can be applied repeatedly to different situ-
ations is called method engineering: the discipline to design, construct and adapt
methods, techniques and tools for the development of software systems [272, 58].
Indeed, methods often result from structuring or generalizing procedures or ap-
proaches that are being applied in practice [199, 206] (see Figure 1.4).17 In order
for a method to be widely applicable, it should be adaptable to different situa-
tions [200]; this is known as a Situational Method, typically composed of several
method elements.18

So, the dream that drives this research, is to have a method, including support-
ing tools, to create software from enterprise models that addresses the needs, can
be applied repeatedly, and is adaptable to specific situations. In order to create

17The inverse is however also true [199, 3].
18More on (Situational) Method Engineering can be found in Section 5.1.

10

1.2. THE NEED FOR A (NEW) METHOD

Figure 1.4: The creation of (situational) methods by structuring procedures that
are applied on cases, adapted from [200]

such a method and supporting tools, clear specifications are necessary [367]. Al-
though the needs defined in Section 1.1 can be considered an initial specification,
there are some uncertainties:

� What are the requirements for such a method?

� What input model(s) should be chosen to support the step-wise refinement
towards software?

� What target technology or technologies should be chosen?

� Is creating such a method technically feasible?

� How can the needs as defined in Section 1.1.2, i.e., completeness of require-
ments, flexibility in the solution, speed in the development process, and
traceability from requirements to solution – i.e., no hidden design decisions
– be supported?

� How adaptable should such a method be to meet different situations?

Due to these uncertainties, this research is considered part of the ‘fuzzy front-
end’ [247] of creating a complete method. This fuzzy front-end is a necessary
stage [253] in which a problem is explored, guided by a vague idea of the solution,
and assumptions are being examined, resulting in a minimum specification [457] as
well as an initial version of elements that could be part of the final solution [134].
This research will focus on reducing these uncertainties, while aiming to find some
initial method elements that could be part of such a method.

11

CHAPTER 1. INTRODUCTION

1.3 Research Challenge, Questions and Deliver-
ables

In this section the scope of this research in terms of a main research challenge
will be detailed, supported by research questions and deliverables.

1.3.1 Research Challenge

In order to deal with the uncertainties for designing an integrated method for en-
terprise model-based software development, as outlined in Section 1.2, supporting
the needs as outlined in Section 1.1.2, this research is considered an exploratory
research that details how to create such a method. The main research challenge
is as follows:

Main Research Challenge: How to create a method for the development of
enterprise software that answers the identified needs?

In order to deal with the main research challenge, several research questions are
formulated.

1.3.2 Research Questions

As creating a method consists of multiple phases that come with many uncer-
tainties, several research questions have been formulated to address these un-
certainties. The research questions are outlined below, of which some are more
theoretical while others are more practical. Addressing the identified needs is an
implicit part of all questions.

Theoretical Research Questions

In order to choose a more specific approach for the structured and repeatable
creation of software from enterprise models, the following research question is
formulated:

Research Question 1 (RQ 1): What does it mean to step-wise create soft-
ware for enterprises?

In order to use enterprise models in the method, one or more model kind(s)
need(s) to be selected as a starting point. The following research question guides
the selection of the input model(s) or modeling technique(s) to provide the input
model(s):

Research Question 2 (RQ 2): What model(s) should be used as input for
the method?

In order to create working software, one or more target technologies should be
selected.

Research Question 3 (RQ 3): What target technology or technologies should
be supported by the method?

12

1.4. OUTLINE

In order to be able to create a method after this fuzzy front-end research has
been performed, it should detailed what creating a method means as well as how
adaptable it needs to be.

Research Question 4 (RQ 4): What does the creation of a (situational)
method entail?

Practical Research Questions

The answers to the theoretical research questions should be validated in practice.
Specifically, it should be validated if it is technically feasible to create software
in the chosen target technology or technologies (RQ 3) from the chosen input
model(s) (RQ 2).

Research Question 5 (RQ 5): Is it technically feasible to create software
from (the selected) enterprise models?

While the needs in Section 1.1.2 can be considered an initial set of requirements,
only in practice it can be validated whether these are enough or whether there
are others.

Research Question 6 (RQ 6): What are requirements for a method to de-
velop software from enterprise models?

One of the goals of the fuzzy front-end research phase is to create a first set of
possible method elements for the method.

Research Question 7 (RQ 7): Which elements could be part of such a
method?

1.3.3 Deliverables

The theoretical contribution of this research is the founded selection of both in-
put(s) and output(s) of the approach, in terms of enterprise models and target
technologies. The practical contribution of this research is expected to be a set of
possible method elements for creating software from enterprise models. In creat-
ing possible method elements a better view on the feasibility and requirements of
such a method will be gained. Combined, these deliverables provide an overview
of possible elements from both literature and practice, and gives guidance to later
(possible) assembly a situational method. Moreover, this could be one of the first
attempts to apply the theory of (Situational) Method Engineering in practice.

1.4 Outline

As explained in Chapter 2, a practice-driven ADR approach will be adopted to
provide the answers to the research questions. ADR defines four stages: 1. prob-
lem formulation, 2. building, intervention and evaluation, 3. reflection and learn-
ing, and 4. formalization of learnings. This introduction has laid the foundation
for the problem formulation on the research level. The following parts are struc-
tured according to the ADR stages (see Table 1.1):

13

CHAPTER 1. INTRODUCTION

� In order to further refine the research challenge and elaborate on the the-
oretical research questions, in Part I the research approach is detailed, the
process of step-wise system and model-based software development is ex-
plored, the enterprise model(s) and the target technologies to work with
are selected, and the concept of method engineering is explored in order to
classify existing method elements. It is structured as follows:

– In Chapter 2 the chosen research approach is detailed.

– As both enterprises and software are systems to be designed, in Chap-
ter 3 system development in general and software development specifi-
cally are explored, as well as the kind of models that can be used in the
process, in an (initial) answer to RQ 1. Additionally, several modern
software technologies are outlined in an (initial) answer to RQ 3.

– In Chapter 4 the different kind of modeling techniques for enterprises.
The choice for a specific modeling technique is made and more details
on the chosen technique are provided in an (initial) answer to RQ 2.

– The topic of (Situational) Method Engineering in Chapter 5 provides
an (initial) answer to RQ 4. The provided framework is then used to
classify existing method elements.

� In an attempt to create new possible method elements, that need to be built,
evaluated and reflected on, and to validate the answers from Part I, Part II

Part/chapter ADR stage Provides (initial)
answers to

Chapter 1 1. problem formulation RQ 6

Part I 2. building, intervention and
evaluation

Chapter 2
Chapter 3 RQ 1 and RQ 3
Chapter 4 RQ 2
Chapter 5 RQ 4

Part II 2. building, intervention and
evaluation; and
3. reflection and learning

RQ 5, RQ 6, and
RQ 7

Chapter 6
Chapter 7
Chapter 8
Chapter 9

Part III 4. formalization of learnings
Chapter 10 all
Chapter 11

Table 1.1: Outline of this thesis related to ADR stages and research questions

14

1.4. OUTLINE

reports on four exploratory case studies (ECSs) in which possible method
elements are created to show the feasibility and reflect on the requirements
of such a method in order to answer RQ 5, RQ 6, and RQ 7. The chapter
titles reflect the choices that will be made in Part I.

ECS 1. Chapter 6: Specifying Microservices

ECS 2. Chapter 7: Using Mockups to Validate Requirements

ECS 3. Chapter 8: Deriving a Normalized System

ECS 4. Chapter 9: Generating Mendix Applications

These exploratory case studies are themselves structured according to the
ADR stages as well (see Section 2.2.1).

� The formalization of learnings is done in Part III:

– In Chapter 10, answers to the research questions and a reflection on
the main research challenge are provided, and the contribution towards
the method as a whole and the impact of this research in a broader
perspective are outlined.

– The discussion in Chapter 11 contains of a critical reflection on this
research and provides directions for future research.

15

16

Part I

Theoretical Background

17

“No action without research; no research without action”

Kurt Lewin

2
Research Approach

The goal of this research is to contribute to the design of a method, including
supporting tools, for the development of software from enterprise models that
addresses the identified needs, can be applied repeatedly, and is adaptable to spe-
cific situations. Due to the uncertainties mentioned in Section 1.2, this research is
considered part of the ‘fuzzy front-end’ [247]. In order to get a better understand-
ing of the problem as well as to get a first idea of possible method elements, a
practice-driven approach is adopted, combining theoretical and practical research.

Lewins statement (above) underpins this combined approach, that is common
in exploratory research: The only way to meet the goal to have a method, is
by doing research – “no action without research” – while, at the same time, this
research needs to be nourished and validated by actually changing the world – “no
research without action”. This chapter will first outline the possible and relevant
research approaches for performing a fuzzy front-end research, and then describe
the approach that will be applied in this research.

2.1 Possible Research Approaches

In Section 1.3 the main research challenge was formulated and detailed into theo-
retical and practical research questions. The theoretical research questions require
literature study but will require validation in practice. The practical research
questions build upon the theoretical research questions and require practical re-
search to provide an answer. Although there are barely universally applicable
approaches or best practices to execute an effective fuzzy front-end [373], it often
requires several iterations of alternating between creating a possible solution ele-
ment and applying and evaluating it in practice [134]. This approach is in line with

19

CHAPTER 2. RESEARCH APPROACH

the earlier observation that methods often result from structuring or generalizing
procedures or approaches that are being applied in practice (see Figure 1.4).

Exploring a problem as well as solution space is at the core of (exploratory)
case studies [442, 497, 89], an approach that is used often in the fuzzy front-
end [432]. An alternative approach to design elements and to test the hypothesis
that enterprise models can be used to create adaptable software, is experimenta-
tion. Both method elements and the method as a whole can be considered artifacts
that need to be designed and evaluated, as described by Design Science Research
and Action Research. In this section these different approaches are explored.

2.1.1 Experiments

Experiments seek to test a specific hypothesis through deliberately manipulating
the environment [413], and require a) explicit manipulation of an independent
variable, b) random assignment of subjects, c) measuring one or more dependent
variable(s) – the outcome –, and d) to hold constant all other variables. As it is
difficult, if not impossible, to isolate variables or even to repeat an intervention
with the change of just a single variable in practical settings [226], this approach
does not support the creation of a method based on practical research.

2.1.2 Case Studies

In contrast to (field) experiments, the case study approach aims to explore a
phenomenon in its natural context [442, 497, 89], with no specific defined out-
comes [31]. The case study approach can impose limitations, including lack of
rigor and being unable to generalize conclusions [442, 497]. However, by appropri-
ately designing a single case study with its own research approach [442, 497, 89],
it can satisfy standards of scientific research [280, 152]. Comparing results of
multiple case studies can further impair the limitations [131, 89]. As a result,
the (exploratory) case study methodology is a useful research and evaluation
tool [497].

2.1.3 Design Science Research

The design science research paradigm is fundamentally a problem-solving para-
digm [212, 485], with roots in engineering and the science of the artificial [418].
Design science research aims at constructing and evaluating an artifact designed
to meet the identified business need and is therefore complementary to behav-
ioral science that seeks to develop and justify theories that explain or predict
phenomena related to the identified business need [301, 150]. Artifacts produced
include [301] a) conceptual designs, b) methods, c) models and systems, and
d) (better) theories.

Because design is inherently an iterative and incremental activity, Hevner
suggests three cycles for design science research [211] that can be applied in as
many iterations as needed (Figure 2.1):

20

2.1. POSSIBLE RESEARCH APPROACHES

Figure 2.1: Design Science Research Cycles [211]

� The relevance cycle provides the requirements for the research and the ac-
ceptance criteria for the evaluation of the results. These results determine
whether the resulting artifact improves the environment and whether addi-
tional iterations are needed.

� The rigor cycle provides past knowledge to the project and ensures new
contributions are added to the knowledge base. This cycle distinguishes
science from (best) practice.

� The design cycle where the artifact is constructed and evaluated and (thus)
the heart of any design science research project. It takes the requirements
from the relevance cycle and theories and methods from the rigor cycle as
inputs for both the construction and evaluation phase of the artifact. Often,
multiple iterations are needed before contributions can be output into the
relevance and rigor cycles.

Peffers suggests a more elaborate stage model that can be applied iteratively [355],
but contains more or less the same activities and ideas.

The case study method is considered the most suitable (empirical) method
to perform design science research, compared to, e.g., surveys, interviews and
experiments [442] and multiple case studies fit well into the Design Science Re-
search iterations [210]. Although performing multiple design iterations can be
time-consuming [389], it is considered a good way to design a case study [442].
However, in order to successfully apply Design Science Research, the goal and
requirements for the artifact to be created need to be clear [301, 476, 485]. While
both the method as a whole and the possible method elements can be considered
artifacts to be constructed and evaluated, the requirements for those artifacts are
not clear yet. It is expected that only by following the design cycle and evaluating
the results in practice, the requirements will become more clear.

21

CHAPTER 2. RESEARCH APPROACH

2.1.4 Action Research

In the 1940s Kurt Lewin introduced the term ‘action research’ [1] as a research
approach in which the action researcher and a client collaborate to solve an or-
ganizational problem [63]. It assumes the world to be constantly changing and
the research as being part of that change [82]. Action research combines theory
and practice and uses a simple, practical, and iterative process to diagnose the
problem, intervene with action and reflect on the learnings of the interventions in
order to get increasingly better results [29, 18].

Action research consists of a number of activities that are usually applied
iteratively (see Figure 2.2):

a) diagnosing and planning in order to initiate change;

b) implementing the change (acting) and observing the process of implemen-
tation and its consequences; and

c) reflecting on the results and process.

idea

plan

act and
observe

reflect

(re)plan

act and
observe

reflect

(re)plan

Figure 2.2: Action Research Spiral, adapted from [438, 240]

Action research works well in situations that aim for a working solution, rather
than the best solution. As the researcher is active as an IT consultant, he has
access to customer situations where typically time and budget is an important
constraint in creating artifacts. Action research allows for the creation of a plan or
procedure that can be improved in different iterations by applying it several times
on the same or different situations. However, action research suffers from the same
disadvantages as single case studies, in the sense that without a proper design
they lack the rigor and generalizability [28, 21]. Iterating between and across
separate case studies could be a way to circumvent some of these issues [28, 214].
By studying multiple cases, conclusions can be drawn over the similarities and
differences between the cases [31, 497].

2.1.5 Action Design Research

ADR is the result of combining design science and action research in order to gen-
erate design knowledge through building and evaluating artifacts [409]. It helps
researchers to both make scientific contributions and to assist in solving current

22

2.2. APPROACH AS APPLIED IN THIS RESEARCH

and anticipated problems of practitioners [81, 193]. ADR facilitates this approach
by having different stages that are mutually influential and can be executed in
parallel (see Figure 2.3):

1. problem formulation;

2. building, intervention, and evaluation;

3. reflection and learning; and

4. formalization of learning.

ADR has successfully been applied in the creation of methods [356].

1. Problem
formulation

2. Building,
intervention and

evaluation

3. Reflection
and learning

4. Formalization
of learnings

Figure 2.3: Action Design Research stages, adapted from [409]

2.2 Approach as Applied in This Research

The research challenge is to contribute to the design of a method. As methods
and method elements often result from structuring or generalizing procedures
or approaches that are being applied in practice [199, 206], a practice-driven
approach is needed to answer the research questions. Since the research challenge
is broad – as is typical for the field of engineering and design science research – and
the solution direction has to be developed through interventions in practitioners’
problems – as is typical for action research – ADR is specifically applicable for this
research. As an IT consultant, the researcher is also a practitioner with access to
real-world cases, providing the perfect combination to apply ADR in practice. The

Research Approach Applicability
Experiments No
Case Studies Yes
Design Science Research Yes
Action Research Yes
Action Design Research Yes, dominant approach

Table 2.1: Usability of different research approaches for this research

23

CHAPTER 2. RESEARCH APPROACH

dominant approach for this research will be Action Design Research, combining
design science research and action research (see Table 2.1).

In terms of ADR, the problem formulation (stage 1.) for this research has been
explored in Section 1.1 and Section 1.2, resulting in an initial set of research ques-
tions in Section 1.3. By applying ADR, the relevance of these research questions
can easily be validated.

The iterative building, intervention and evaluation (stage 2.) should con-
tribute to building a method. As methods and method elements often result from
structuring or generalizing procedures or approaches that are being applied in
practical cases, this research should use case studies. Performing a case study
has shown to be an effective method in both design science research and action
research, and therefore is considered effective for ADR. However, it is suggested
to use multiple case studies before drawing general conclusions. In order to fur-
ther add rigor to each (exploratory) case study, a nested ADR approach (see
Figure 2.4) will be applied, as explained in more detail below. In practice, this
stage is easily combined with reflection and learning (stage 3.) to guide additional
iterations, involving theoretical research, practical research, or a combination of
both. By performing multiple iterations, answers from theoretical research can be
validated by practical research, while practical research might require additional
theoretical research.

In the last stage, formalization of learnings (stage 4.), the lessons learned from
the exploratory case studies are extended to a revised set of requirements and a
general solution concept for the method to-be. These learnings should provide
answers to the research questions (see Table 2.2), in order to reflect on the main
research challenge.

RQ 1 Initial answer provided by literature study in Chapter 3, validated by
ECSs in Part II

RQ 2 Initial answer provided by literature study in Chapter 4, validated by
ECSs in Part II

RQ 3 Initial answer provided by literature study in Chapter 3, validated by
ECSs in Part II

RQ 4 Initial answer provided by literature study in Chapter 5, validated by
ECSs in Part II

RQ 5 Initial answer provided by literature study in Chapter 4, validated by
ECSs in Part II

RQ 6 Initial answer provided by literature study in Section 1.1.2, validated
and extended by ECSs in Part II

RQ 7 Initial answer provided by literature study in Chapter 5, validated
and extended by ECSs in Part II

Table 2.2: How the research questions are answered by the research approach

24

2.2. APPROACH AS APPLIED IN THIS RESEARCH

2.2.1 Adopting a Nested ADR Approach

As said before, methods and method elements often result from structuring or
generalizing procedures or approaches that are being applied in practice. While
a specific situation can use and improve a procedure or algorithm to convert an
enterprise model into working software by performing multiple iterations, its ap-
plicability is likely to increase if a procedure is used and improved by applying
it to multiple cases or situations (see Figure 1.4). The creation of one procedure
and possible method element, with no specifically defined outcome, is called an
exploratory case study, with the procedure being the phenomenon to be exam-
ined. In order to fully explore the fuzzy front-end of this research, it is important
to perform multiple exploratory case studies with different procedures on differ-
ent organizations. Multiple procedures can, but don’t necessarily need to, be
evaluated on the same organization.

This research applies a nested ADR approach by considering two levels (see
Figure 2.4):

1. the method (research), and

2. the method element (exploratory case studies).

Applying ADR to the method level has been explained in the previous section.
In order to further add rigor to the exploratory case studies used in this research,
the ADR stages are used to design each of the exploratory case studies, aimed
at creating a method element, as well. These exploratory case studies should

Figure 2.4: Nested ADR approach for this research. All exploratory case studies
follow the same process.

25

CHAPTER 2. RESEARCH APPROACH

not only provide answers to the practical research questions, but also validate the
answers to the theoretical research questions. By setting the method element to be
created at the heart of each exploratory case study, there is a direct contribution
to answer RQ 7. Moreover, they will provide insights in what does – and doesn’t
– work, contributing to answer RQ 5 and validating initial answers to RQ 1,
RQ 2, and RQ 3, as well as provide the opportunity to reflect on the requirements
and the needed adaptability for the method, contributing to answer RQ 4 and
RQ 6. Applying multiple iterations within each of the exploratory case studies will
strengthen the problem formulation for each of the exploratory case studies, and
makes sure that the findings on feasibility and usefulness of the created method
element(s) are not specific to one case and can be generalized.

2.2.2 Choosing the Exploratory Case Studies

In order to perform exploratory case studies, they need to be selected. As the
researcher is also an IT consultant, he has access to real-world enterprises to work
with in the creation of possible method elements. By discussing and fine-tuning
the problem formulation, the relevance of such a method element, and possibly
the entire method, is validated immediately. This approach thus ensures that
only elements that are relevant for real-world enterprises are created.

A possible drawback of this approach could be that findings are only relevant
for the considered enterprise. When possible, a designed element, being a proce-
dure or algorithm to create software from enterprise models, should be evaluated
with multiple enterprises. At the same time, multiple elements can be evaluated

ECS1 ECS2 ECS3 ECS4

Target technology
Micro-
services

Mockups
Normalized
Systems

Low
code

N
ee
d
s

1. Complete X X
2. Evolvability X X X X
3. Speed X X X
4. Traceability X X X

C
as
es

EU-Rent (academic) X
Pizzeria (academic) X
Volley (academic) X X

Patent Granting (IPPO)
three

countries
Social Housing (ICTU) X X
Subsidy Schemes two
(anonymized agency) schemes

Table 2.3: Links between the exploratory case studies, the target technologies,
the needs addressed, and the cases used for evaluation

26

2.2. APPROACH AS APPLIED IN THIS RESEARCH

against the same set of enterprises when considered relevant. Evaluating multiple
elements on multiple enterprises ensures that only elements that are relevant for
and applicable to multiple enterprises are created, contributing to the design of a
method for the development of software from enterprise models. Table 2.3 sum-
marizes for each exploratory case study, the target technology that will be used
(see Section 3.4 for the reasoning of the choice), the identified needs that will be
addressed, and the actual (academic and real-world) cases that are used for the
evaluation.

27

28

“In the computer field, the moment of truth is a running program; all
else is prophecy.”

Herbert A. Simon [417]

3
Software Development

The quote above tells that developing software (systems) should not be taken
light-hearted and that the effort of designing software does not ensure its cor-
rectness nor even that it will run. However, this doesn’t mean that the design
of software can be skipped; they are still systems that should be designed, typi-
cally by using models as simplifications of the enterprise and its users and/or the
software to-be-developed.

In this chapter an initial answer to RQ 1 and RQ 3 will be provided. As
nowadays software development cannot – or should not – be done without mak-
ing a model, different kind of models will be outlined in Section 3.1 and how they
are typically used in the process of software development. As a method needs to
be based on a particular Way of Thinking (see Section 1.1.3), in Section 3.2 the
General System Development Process (GSDP) is introduced as a generic frame-
work for system design and development that is also grounded in theory and
applies a step-wise refinement process. Model-based Engineering (MBE) is an ap-
proach towards software development that uses models and knows many flavors,
among which is one that addresses need 4; MBE will be explored in Section 3.3.
Specific technologies that address needs 2 and 3 are microservices, Normalized
Systems, and low-code platforms. As mockups, or user interface prototypes or
wireframes, have proven to improve quality and speed in the software development
process [374, 378, 25, 148], they will be explored as well. These target ‘technolo-
gies’ are discussed in Section 3.4, and this chapter ends with initial conclusions
in Section 3.5.

29

CHAPTER 3. SOFTWARE DEVELOPMENT

3.1 Models and Its Relationship With Software

As mentioned in Chapter 1, a model is a simplified representation of a (soft-
ware) system, that is used to study aspects of the system one is interested
in [357, 291, 408, 142, 270, 124] and are key to support human understanding,
reasoning and communication [394], allowing for validation before actual imple-
mentation [479, 410, 203]. It is therefore considered an important artifact in the
software development process [479, 60, 295, 76]. In this section different kinds of
models, the notion of ontology, and the typical relationships between models and
software code are explored.

3.1.1 Model Kinds

Different kinds of models that are used within the software development process
can be distinguished (see Figure 3.1). Guarino et al. distinguish conceptual models
from non-conceptual models [186]: non-conceptual models are representations of
the real world, including physical (architectural) (scale) models and models repre-
senting the inner workings of a (computer) system [186]; conceptual models on the
other hand represent the conceptualizations of a domain, i.e., it uses abstractions
of reality expressed as concepts with clearly-defined semantics [188, 216, 186].1

This view seems similar to that of NIAM (see Section 4.1.3), that distinguishes
conceptual models from physical models [491]. Conceptual modeling is considered
a fundamental activity within software development [188].

Seidewitz discerns between descriptive and prescriptive models [408]: a de-
scriptive model describes reality, but reality is not constructed from it; a pre-
scriptive model on the contrary prescribes the structure or behavior of a desired
reality which then has to be constructed according to the model. Conceptual
models are by definition descriptive, while implementation models are prescrip-
tive [174].

Seemingly related, others discern between conceptual, logical and physical
models [380, 501, 474]: conceptual describes what is being done, logical is about
how things are done and physical with what specifically. This layering conforms
to the types of change as defined in need 2, but this definition of conceptual can
but does not necessarily conform to the definition provided earlier. This definition
of conceptual however does relate to what is known as ‘essential’: independent of
specific technology; only what is done, not how, when or by whom [309, 480, 305,
499].

Chaudron et al. distinguish three levels of model abstraction [76]:

� architecture, defined as a high-level abstraction in terms of components and
layers and their relations;

� design, defined as a medium abstraction of the implementation of the sys-
tem, represented in classes and packages and the relations between them;
and

� implementation, the model that mirrors the actual implementation.

1Semantics is used here as a synonym for ‘meaning’.

30

3.1. MODELS AND ITS RELATIONSHIP WITH SOFTWARE

Figure 3.1: Model kinds, expressed in a Venn-diagram

It is clear that the implementation level is of the non-conceptual kind, but for the
other levels it is still unclear.

Ontology

An ontology2 is defined as a formal and explicit conceptual specification describ-
ing (shared) knowledge about some domain [185, 53, 436, 188]. An ontology and
can be expressed in a model containing the relevant concepts including their defi-
nition or semantics, and their relations [157, 427, 187]. An ontology or ontological
model is therefore considered a descriptive, conceptual model [13]. In contrast to,
e.g., ‘regular’ (data) models, an ontology specifies a shared view of the involved
stakeholders [427].

Metamodels and Modeling Languages

Metamodels are a special kind of models: Theoretically, a metamodel is a con-
ceptual model of a modeling language [57, 237]. A modeling language con-
sists of three components: an abstract syntax, a concrete syntax, and seman-
tics [443, 237, 250, 169]. The abstract syntax provides the constructs and their re-
lationships as well as rules that apply [428]. The abstract syntax can be described
by a grammar or metamodel [237, 270, 153, 189, 43, 275]. The concrete syntax
provides the notation to express the constructs and relationships of the abstract
syntax, and can be, e.g., graphical or textual or a combination [237, 394]. There
can be multiple concrete syntaxes that conform to the abstract syntax [250]. The
semantics describe the meaning of the concepts in the abstract syntax [250, 52].
A semantics can be formal or informal [394]; the formal semantics can be defined
by using an ontology [52].

2Etymologically, the word ontology means the study of being and the essence of things, see
https://www.etymonline.com/word/ontology.

31

https://www.etymonline.com/word/ontology

CHAPTER 3. SOFTWARE DEVELOPMENT

In practice, metamodels are only capable to express the concrete syntax [236,
169, 65], describing the possible structure of (valid) models, i.e., instances of
the metamodel [408, 13, 428, 227], mostly with an implied or informal seman-
tics. However, without a formal semantics, multiple developers can interpret the
same model in different ways; only with formal semantics it can be guaranteed
that the interpretation conforms precisely with the conceptualization that was
modeled [190, 394]. Ontologies have shown to be helpful in reducing semantic
ambiguity [114, 452]. The closer a metamodel is to an ontology, the better it can
express real-world phenomena [188, 189].

3.1.2 Relationships Between Models and Software

Brown provides a view on the possible relationships between code and models [60]
(see Figure 3.2). He uses the term code-only for the approach that completely
ignores models or uses only informal models. On the other end of the spectrum
lies the in practice closely related model-only approach where models are used
exhaustively to create designs of the software system, but the actual software
development is disconnected from the models. Both are considered inadequate
for creating and maintaining large-scale or complex software systems [60]. Code
visualization provides a direct representation of the code, sometimes referred to
as implementation model. Although this improves understanding of the system
that has been built, it does not aid in designing the system upfront [60]. Brown
defines round-trip engineering as an approach where formal models and code are
constantly and mostly manually being synchronized in order to be able to verify
the actual implementation to the designs. As approaches can be combined, the
‘flavor’ where formal models are being used during software development, but
are manually converted to code, can be defined. In the model-centric approach,
models are the primary deliverables of developers and they are created to such a
level of detail that they can automatically be converted to code [60].

Informal models are
used before coding

Modeling and coding
as separate disciplines

Code
visualization

Formal models are
used before coding

Models are automatically
converted to code

Model Model Model Model Model

Code Code Code Code Code

Figure 3.2: Possible relationships between modeling and coding, adapted from [60]

3.2 General System Development Process

System development is the bringing about of a new system or of changes to
an existing system [125]. Many frameworks or models exist to understand the

32

3.2. GENERAL SYSTEM DEVELOPMENT PROCESS

development of systems that may cover the whole or parts of a system’s life
cycle [390, 365], from inception, planning, analysis, and design, until development,
deployment, maintenance, and disposal. In this research the main focus is on the
analysis, design and development, and not so much on the other phases. The
GSDP is chosen as it addresses exactly those phases, is grounded in theory, and is
fully aligned with the Viable System Model (VSM) that helps to design adaptable
systems [32, 133, 73, 320].

The GSDP (see Figure 3.3) comprises all activities that have to be performed
to arrive at an implemented system, called the Object System (OS), that is part of
and used by an environment, called the Using System (US). It distinguishes three
phases, i.e., (general) design, technical design, and (actual) implementation, while
architecture deals with alignment between systems within a landscape. Both the
three phases and the notion of architecture will be explained below.

Figure 3.3: The General System Development Process (GSDP), adapted
from [120, 125]

3.2.1 System Design

In the GSDP, the system design phase includes function design and construction
design.

Function Design

According to the GSDP, function design starts from the construction of the US
and ends with the function of the OS. The result is a functional or black box
model clarifying the behavior of the OS in terms of the construction of the US.
The input of this activity are functional requirements, provided by the US. The
ontological model of the US can assist in specifying and validating (the complete
set of) requirements and detect unfounded requirements.

33

CHAPTER 3. SOFTWARE DEVELOPMENT

Construction Design

In the GSDP, construction design starts with the specified function of the OS
and ends with the construction of the OS. The result is a constructional or white
box model of the OS containing all constructional specifications for the OS to be
built. The input of this activity are constructional requirements, provided by the
US, also known as non-functional requirements. The constructional specifications
should be feasible given the available technology, budget and timelines. It could
be that this requires compromising or iterating between (reasonable) requirements
and (feasible) specifications.

3.2.2 Technical Design

According to the GSDP, technical design is the activity in which a number of sub-
sequently more detailed constructional models are produced. Every subsequent
model is derived from the previous one, taking into account the available require-
ments. A technical design starts from the highest-level (ontological) model that is
completely independent of the way in which it is implemented, and ends with the
implementation model that fully depends on the applied (abstract) technologies.
This view conforms (roughly) to the model kinds as described in Section 3.1.1.
Common technologies to use include human beings and IT.

3.2.3 System Implementation

In the GSDP, by implementing a system is understood the assignment of (con-
crete) technological means to the elements in the implementation model, so that
the system can be put into operation. For software, implementing means the ac-
tual installation of the software on a device so it can start doing the actual work.
For human-beings it is more a matter of telling them to start doing the actual
work, possibly by using a device or certain piece of software.

3.2.4 System Architecture

A general challenge in system development is the (too) large amount of design
freedom that is left when all (user) requirements are satisfied [124]. Architecture
helps designers to use this freedom in a purposeful and systematic way [184,
363]. Most architecture requirements hold for a class of systems instead of for
a single system, and are known as principles or standards [448, 222]. Applying
architecture during systems development balances and safeguards the interests,
concerns, and objectives of all stakeholders, broader than just the parties involved
in the US and OS [120]. Benefits of architecture include improved integration,
reusability, scalability, performance, adaptability, agility and cost savings [329,
440].

34

3.3. MODEL-BASED ENGINEERING

3.3 Model-based Engineering

Model-based Engineering (MBE) is an approach towards system development
where models are created and analyzed to predict and understand its capabili-
ties [144]. As outlined in Section 1.1.3, nowadays creating – professional – en-
terprise software without the use of models is unimaginable. As shown in Sec-
tion 3.1.2, many ‘flavors’ of MBE can be discerned, ranging from the use of in-
formal models to more formal models, and ranging from more manual to more
automated conversion. In fact, automated conversion is only possible from formal
models and is better known as Model-driven Development (MDD). In this section
the different flavors are explored and it is concluded that Model-driven Software
Development (MDSD) best fits the GSDP and answers some of the identified
needs.

3.3.1 MBE and Related Notions

Flavors of MBE include Model-driven Engineering (MDE), MDD, and Model-
driven Architecture (MDA) [10, 56]. While sometimes these notions are used as
synonyms [337, 56], there are differences to distinguish [56, 69]. In fact three
different axes can be used to describe the differences: Model-based or model-
driven, the scope, and engineering or a part thereof. These axes are detailed
below (see also Figure 3.4).3 Not all possible combinations exist, as summarized
in Table 3.1. For example, MDA4 is defined by the Object Management Group as
an example of MDD that uses UML to visualize and (partly) generate code [335]
but other uses of Architecture in the field of MBE are not found in literature.

Figure 3.4: Venn diagrams of the different axes in the domain of MBE, adapted
from [10, 56]

3For more details, see, e.g., https://modelbasedengineering.com/glossary/.
4Some say it has nothing to do with architecture [85].

35

https://modelbasedengineering.com/glossary/

CHAPTER 3. SOFTWARE DEVELOPMENT

Based

Any (System)
Engineering MB(S)E [495, 315, 144, 204]
Development MB(S)D [505]
Architecture MB(S)A [483]

Enterprise System
Engineering

Not found in literatureDevelopment
Architecture

Software
Engineering MBSE [203, 318, 503]
Development

Not found in literature
Architecture

Driven

Any (System)
Engineering MD(S)E [241, 39, 403, 160, 462]
Development MD(S)D [313, 410, 23, 160, 56]
Architecture MD(S)A [41, 312, 251, 335, 56]

Enterprise System
Engineering MDESE*
Development

Not found in literature
Architecture

Software
Engineering MDSE [462, 285, 56]
Development MDSD [38, 428, 478]
Architecture Not found in literature

* Only found in call for papers: https://edocconference.org/2022/

Table 3.1: Mentions of MBE and related notions in literature

Model-based or Model-driven

Model-based (MB) uses models in the process, i.e., models play an important role
but are not necessarily key artifacts. An example is to manually write code based
on models. Model-driven (MD) can be seen as a subset of model-based where
models play a key role in, hence, ‘drive’, the development. An example is the
automatic generation of code. Usually, this comes with a set of model trans-
formations [412], defined in mapping functions [313]. Going back to Figure 3.2,
the most right one is considered a model-driven approach, while the others are
model-based [285].

Scope

The scope can be System (S), Enterprise System (ES) or Software (S),5 or can
be left out to indicate any scope. As in the world of engineering everything is
considered a system [294], the System scope is considered synonymous for any
scope. The Enterprise System scope is a subset of System, aimed at enterprises,
including their ISs. Software is a subset of System, focused on software. Software
can be but not necessarily is an Enterprise System and v.v.

5Indeed, S can refer to both System and Software. In this thesis S is used only for Software
specifically.

36

https://edocconference.org/2022/

3.3. MODEL-BASED ENGINEERING

Engineering or Part Thereof

Engineering (E) in the context of MBE refers to the process of applying (scientific)
engineering principles to the design, development and maintenance of structures,
machines, processes, etc. Development (D) in the context of MBE is seen as part
of engineering process in which, often in multiple steps or iterations, an artifact
is being produced.6 Architecture (A) in the context of MBE refers to a part of
the engineering process, that could but not necessarily is part of Development.

3.3.2 Model-driven Software Development

MDD or, more specifically, MDSD puts models at the heart of software devel-
opment with the promise to bridge the gap between requirements of an orga-
nization and the technical implementation of the software system by means of
model transformation [412, 315, 428, 352, 43, 56], using the models to generate
code or for real-time interpretation by running software [149, 203, 56]. While
there are differences between code generation and model interpretation in terms
of easiness to understand, debugging possibilities, performance of the execution
environment, and compile and deploy time, from a usage perspective these dif-
ferences don’t really matter; both need a mapping (or transformation definition)
from higher order (business domain) model to lower order software model, and
they can even be combined [68, 113, 56]. Sometimes this mapping is called
‘forward engineering’ to explicitly address that the process moves from a high-
level implementation-independent abstraction to a physical implementation of the
(software) system [141], fully compliant with the GSDP (see Section 3.2).

The first mentions of a model-driven approach are from the ’90s [259, 132], and
traces can be found in the CASE tools [160, 292] that were based on SADT [384,
500, 109] and SSD [154] (see also Section 1.1.3). In a way, MDD goes back to
introducing Assembly language7 [51] as an abstraction over machine code8 [192],
after which many more abstractions followed, including Third-Generation Pro-
gramming Languages (3GLs) such as FORTRAN, Cobol, and object-oriented
programming languages such as C++ and Java.

MDD hides complexity of its underlying technologies by raising the level of
abstraction [192, 160, 285] and therefore offers a promising approach to address
the inability of 3GLs to alleviate the complexity of software development [403].
The promise of Fourth-Generation Programming Languages (4GLs) is that non-
programmers can create applications, including data management, report gen-
eration and web development [304]. Current implementations of 4GLs include
Uniface,9 SAP PowerBuilder,10 and basically all low-code platforms (see Sec-
tion 3.4.4). As it raises the abstraction level to the business, 4GLs can be consid-

6This does seem to conform to the definition of technical design as defined in the GSDP (see
Section 3.2.2).

7Known as Second-Generation Programming Language (2GL), see, e.g., https://www.ibm.
com/docs/en/zos/2.1.0?topic=hlasm-language-reference.

8Known as First-Generation Programming Language (1GL).
9https://www.rocketsoftware.com/products/uniface-application-development-

platform
10Currently known as Appeon: https://www.appeon.com/.

37

https://www.ibm.com/docs/en/zos/2.1.0?topic=hlasm-language-reference
https://www.ibm.com/docs/en/zos/2.1.0?topic=hlasm-language-reference
https://www.rocketsoftware.com/products/uniface-application-development-platform
https://www.rocketsoftware.com/products/uniface-application-development-platform
https://www.appeon.com/

CHAPTER 3. SOFTWARE DEVELOPMENT

ered a subset of Domain Specific Languages (DSLs) [463, 202]. Currently, 3GL
and 4GL co-exist [11].

Moreover, Fifth-Generation Programming Languages (5GLs) have been de-
fined as logic-based programming languages that use constraints to solve prob-
lems rather than (user defined) defined algorithms [273, 228]. Prolog11 is one of
the few implementations of 5GL.12 Currently, 5GLs are considered too limited to
create enterprise software [429]. Thalheim et al. define Modeling-as-Programming
as a necessary first step towards real 5GLs [446, 445].

MDD can start from a DSL or from a more generic modeling language [55].
MDD is currently also known as model-as-code [430, 347] and therefore closely re-
lated to trends such as infrastructure-as-code [319], and everything-as-code [433].

Model Transformation

Metamodels play a crucial role in defining a model transformation or mapping
function [13, 43, 26, 234] (see Figure 3.5) and need to be precisely defined [315,
248, 56]. A model transformation definition or mapping function has its root in
compiler construction [4]13 and basically consists of three parts [453, 43]:

1. identify elements in the source (meta)model14 that need to be transformed;

2. for each of the identified elements produce the associated target element(s)
(in terms of the target metamodel); and

3. produce the tracing information that links target and source elements.

A model transformation or mapping function can be defined in various ways,
imperative or declarative and using graphs and/or rules, and can be defined as
a precise procedure, algorithm or mathematical function [90, 43, 248] and thus
allows for formal reasoning and verification.

Advantages of MDSD

Main advantages of an MDSD approach include a) a common and better under-
standing and reasoning about the required or created system [26, 203, 56], b) the
possibility to simulate before building the system [248, 203], c) an increased pro-
ductivity of the development team due to (partial) automation of the development
process [248, 26, 203, 56], d) a reduction of the number of bugs or defects, as they
can be discovered early in the development process when they are less costly to
fix [248, 203, 56], and e) traceability between model and the code [5, 396].

11https://www.iso.org/standard/21413.html.
12ChatGPT can be considered an implementation towards 5GL, see https://dev.to/

peibolsang/conversational-programming-4l53.
13On the lowest level, creating machine code that can be executed by the Central Processing

Unit (CPU) from a higher level programming language is known as a compiler [410, 43].
14This can be multiple models that, for simplicity, together are considered as one model.

38

https://www.iso.org/standard/21413.html
https://dev.to/peibolsang/conversational-programming-4l53
https://dev.to/peibolsang/conversational-programming-4l53

3.3. MODEL-BASED ENGINEERING

Transformation
Execution

Model A
(Source)

Model B
(Target)

Transformation
Function

(Source)
Metamodel M

(Target)
Metamodel N

uses creates

uses uses
co
n
fo
rm

s
to

con
form

s
toex

ec
u
te
s

Figure 3.5: Model transformation and the role of metamodels, adapted from [40,
90, 43, 56]

Disadvantages of MDSD

Reported drawbacks of MDSD include: a) it is considered complex [9, 192, 403,
160, 285]; b) it is hard to include custom code [160]; c) it tends to leave user
interface (UI) aspects to the end of the development [377]; d) it moves complexity
to the models instead of the code [192]; e) it is not considered agile or flexible [312];
f) it needs input models with formal semantics [192, 236, 403, 160, 394].

Regarding disadvantage a): This is not solved easily. However, due to advance-
ments in technologies, the step from (enterprise) models to a software model is
becoming more and more easy.

Regarding disadvantage b): Technologies such as low code have shown that it
is now easier to combine code generation and insertion of custom code. Low-code
platforms are explored in Section 3.4.

Regarding disadvantage c): Traditionally, mockup interfaces are used to check
the usability before creating the software. Technological advancements such as
low code have made it possible to create interesting and usable user interfaces
from the start of software development. Both technologies will be explored in
Section 3.4.

Regarding disadvantage d): Although this can be considered a disadvantage,
for this research it is considered the (only) right approach. Most complexity in
software comes from the enterprise level [177] and thus should be made visible at
that level by means of enterprise models.

Regarding disadvantage e): The reasoning is that first a model must be cre-
ated, and then there still is the effort to create software. However, when the
models are executable or can be converted to code automatically, they can be
seen as if they are the code. In that case, the same agile principles that apply
to programming apply equally well to modeling [311, 285]; such an approach can
only enhance the agility, especially on the enterprise level.

Regarding disadvantage f): in this research this is not considered as a dis-

39

CHAPTER 3. SOFTWARE DEVELOPMENT

advantage, as in fact every model used in software development should provide
semantics (see Section 3.1.1); it is however a concern that implies the need to
carefully choose a modeling language with a formal semantics.

Usability for This Research

From all the flavors of MBE, it is concluded that the best fit for this research is
a model-driven approach towards the development of high quality enterprise soft-
ware that starts from enterprise models. For the remainder of this thesis, this will
be called Enterprise Model-driven Software Development (EMDSD), as a special-
ization of MDSD: Enterprise Model as the approach starts from the model of an
enterprise; Model-driven as this approach needs to bridge the gap from enterprise
model towards software while automating this step ensures speed (need 3) and
traceability (need 4); Software as the approach is focused on creating software for
enterprises;15 and Development as the goal is to create working software in one
or more steps or iterations, in line with the technical design part of the GSDP.
While MDSD addresses some of the identified needs, for needs 1 and 2 it relies
on the quality of the input models and the evolvability of the output technologies
respectively.

Applying MDSD implies defining a model transformation or mapping function
from the input model(s) to the target technologies. For the input models an
existing DSL could be chosen. Downsides of using a DSL is that they are hard
to develop [316, 255] and domain-specific and thus only usable within a specific
domain [439]. As the method to be designed should be universally applicable, a
more generic (enterprise) modeling language should be chosen. Such a modeling
language, preferably based on a Way of Thinking, should also help in describing
all business requirements, addressing need 1. MDSD indeed requires that the
model describes all business requirements, is free from contradictions, and has
its metamodel and semantics formally and precisely specified [410, 198, 192, 56]
(see also Section 3.1.1). These are considered as criteria in choosing the (input)
enterprise modeling language in Chapter 4.

In order to further address the need 2, the kind of changes in the enterprise
that should be supported by the generated software need to be made explicitly.
In order to further support this need and in order to deal with the issue of incor-
porating custom code (see disadvantage b) in Section 3.3.2), target technologies
that support evolvability will be selected in the next section.

3.4 Target Technologies

While MDSD addresses the needs 3 and 4, and it offers a way to regenerate the
system with new input models and therefore provides some flexibility (need 2),
concerns of MDSD include a lack of integration of custom code and poor user
interface (UI). Therefore, in this section, some modern technologies that are built

15The focus of this research actually is on Enterprise Software, the overlapping part of Soft-
ware and Enterprise Systems in Figure 3.4.

40

3.4. TARGET TECHNOLOGIES

around offering flexibility and/or a good UI, and sometimes even for speed, are
explored; mockups for speed and good UI, microservices for flexibility, normalized
systems for flexibility (and speed), and low code for all of them. As MDSD requires
a model transformation, the metamodels are provided where possible.

3.4.1 Mockups

Mockups, also known as user interface (UI) prototypes or wireframes, have become
a very popular artifact to capture requirements and to evaluate the usability of
software before it is actually created [332, 377]. A mockup is a sketch or visual
prototype of a possible UI of the application that helps to agree on broad aspects
of the UI [377]. A mockup can be considered as a model of the software to-
be-developed, providing a way to get early feedback on both the requirements
and the implementation [74, 300]. The main advantage of a mockup is that it is
understandable by both end users and developers [323, 300]. Using mockups in
the software development process has proven to improve quality and speed [374,
378, 25, 148].

Many mockup tools currently exist, including Axure,16 Balsamiq,17 Figma,18

Marvel,19 Mockflow,20 Mockingbird,21 Moqups,22 Pencil,23 Sketch,24 and Wire-
frame.25 Disadvantages of mockups include that they are usually thrown away
after development, and that they have to be converted manually into working
software [145]. It has been shown that mockups can be used in an MDSD ap-
proach [377, 37, 351], which is a way to overcome the aforementioned disadvantage.
Low-code platforms (see Section 3.4.4) can be considered advanced mockup tools.

3.4.2 Microservices

Microservices are an architectural and organizational approach to software de-
velopment where software is composed of small, independent services that com-
municate with each other through Application Programming Interfaces (APIs)
[328, 156, 492]. Microservices are independently deployable, operable and scal-
able and may be implemented with different technologies [155, 115]. In practice
these services are owned by small, self-contained teams, and typically built around
business capabilities [155].

The microservice architecture is becoming a popular market standard, based
on service orientation, that aims at improving adaptivity by decoupling (software)
systems [156, 129, 111, 289]. It allows organizations to a) easier scale applications,
b) faster develop or change applications independently, while maintaining their

16https://www.axure.com/
17https://balsamiq.com/
18https://www.figma.com/
19https://marvelapp.com/
20https://www.mockflow.com/
21https://gomockingbird.com/
22https://moqups.com/
23http://pencil.evolus.vn/
24https://www.sketch.com/
25https://wireframe.cc/

41

https://www.axure.com/
https://balsamiq.com/
https://www.figma.com/
https://marvelapp.com/
https://www.mockflow.com/
https://gomockingbird.com/
https://moqups.com/
http://pencil.evolus.vn/
https://www.sketch.com/
https://wireframe.cc/

CHAPTER 3. SOFTWARE DEVELOPMENT

interoperability, c) enable innovation, and d) accelerate time-to-market for new
or changed products and thus increase agility [274, 492, 129, 289].

An issue with microservice is that there is no agreement on the ‘right’ size of
a microservice [492, 225]:

� Steghuis’ research for optimal service granularity [431] found mainly func-
tional considerations such as business process flexibility, a maintainable and
low-cost landscape, and performance. She recommends splitting services
into logical parts with different stability characteristics – leaving open how
to discern these “logical parts” and characteristics of stability.

� Compared to “traditional” Service Oriented Architecture (SOA), microser-
vices are (more) fine-grained and protocols of the involved APIs are (more)
lightweight [508, 129, 139].

� The largest sizes reported follow Amazon’s notion of the Two Pizza Team,
i.e., the whole team can be fed by two pizzas, or no more than a dozen
people. On the smaller size scale there are setups where a team of half-a-
dozen would support half-a-dozen services [155].

� A microservice should not be as small as possible, but as small as needed
to make it understandable [140].

� When a service is too big, it should be split into two or more services [129].
This however still doesn’t provide an objective measure when a service is
too big.

� Moreover, the size of a microservice might depend on the business and
organizational context [509] and it is considered bad practice to make the
service too small, as the run-time overhead and the operational complexity
can overwhelm the benefits of the approach [424, 7].

� Others mention that a microservice should be focused on one specific task [156],
one single business capability [129], or one atomic business activity [447].
However, this still doesn’t provide a size for a microservice.

Other challenges of applying a microservice architecture include the difficulty
to keep data consistent across the enterprise [425], to monitor the resources [225,
425], and to align the organizational coordination in order to manage all the
services [129, 225]. However, several solutions to overcome these issues have also
been proposed [425].

Application Programming Interface

In order for a (micro)service to be able to be used, it will need to expose an
API [22, 66]: a clearly defined method and protocol for communication that define
how other services can access the service’s functions and data, making it possible
to use the service without knowing its internal construction or technology behind
it [233]. APIs can be specified by using, e.g., OpenAPI Specification (OAS),
a technology independent and widely adopted industry standard for describing
HTTP APIs, based on YAML [288] (see Figure 3.6b for an example). Such a

42

3.4. TARGET TECHNOLOGIES

specification describes what a (micro)service does and how it can be accessed,
but not how it is actually implemented. According to OAS, an API definition
must contain a name, type,26 summary, response, and, optionally, one or more
parameters (see Figure 3.6a). Tools that support this standard27 can (often) easily
generate mock APIs or stubs from these definitions and generate documentation
and tests.

(MICRO)SERVICE
(OR API)

– – – – – – – – – –
name

operation type
summary

parameter(s)
response(s)

(a) (simplified) API
metamodel according

to OAS [288]

paths:

/users: <-name

get: <-operation type

summary: Returns a list of users. <-summary

description: Optional extended description in CommonMark or

HTML

parameters: <-parameters (empty)

responses: <-responses

’200’:

description: A JSON array of user names

content:

application/json:

schema:

type: array

items:

type: string

(b) Example that defines the GET /user endpoint,
(micro)service, or API, as a path in OAS, annotated with

properties from the API metamodel.

Figure 3.6: (Micro)service metamodel and example

3.4.3 Normalized Systems

Lehman’s software evolution laws [281] stipulate that

1) “A program [...] must be continually adapted else it becomes progressively
less satisfactory”, and

2) “As a program is evolved its complexity increases unless work is done to
maintain or reduce it”.

On one hand this means that software systems should always change in order
to be effective, while on the other hand it means that change will become more
difficult over time, unless the software system is designed to be evolvable.

Normalized Systems Theory states that software should not have instabilities,
i.e., a bounded amount of additional requirements cannot lead to an unbounded
amount of additional (versions of) software primitives [298]. If a change requires
increasing effort as the software system grows, this is considered an instability
and this is called a combinatorial effect. Normalized Systems are software systems
that exhibit stability with respect to an anticipated set of changes and, therefore,
avoid the occurrence of combinatorial effects and thus accommodate (endless)
change [297]. Normalized Systems Theory defines four theorems and five elements
to achieve stable yet evolvable software systems.

26Typical HTTP operation types or methods include GET, PUT, POST, DELETE, PATCH,
OPTIONS, HEAD, TRACE and CONNECT [146, 395].

27See https://openapi.tools/.

43

https://openapi.tools/

CHAPTER 3. SOFTWARE DEVELOPMENT

Theorems

Normalized Systems Theory formulates four design theorems (including proofs)
for the implementation of stable software systems that can be changed in such a
way the impact of the change only depends on the change itself and not on the
size of the system as a whole [297, 298]:

Theorem 1. Separation of concerns implies that every change driver or concern
should be separated from other concerns;

Theorem 2. Data version transparency implies that data should be communi-
cated between components in a version transparent way;

Theorem 3. Action version transparency implies that an active component can
be upgraded without impacting the calling components, i.e., in a version
transparent way; and

Theorem 4. Separation of states implies that active components should exhibit
state keeping, e.g., to support (stateful) workflow.

Normalized Systems theorems 2, 3, and 4 can be considered special cases of sep-
aration of concerns (theorem 1).

Elements

Systematically applying the Normalized System (NS) theorems will lead to a very
fine-grained modular structure [298], in a way similar to that of microservices
(see Section 3.4.2). As applying these theorems in a disciplined way may ask a lot
from software developers, Normalized Systems Theory proposes a set of higher-
level software elements that encapsulate software primitives: data element, task
element, connector element, flow element, and trigger element. These elements
are modular structures that adhere to the design theorems, in order to provide
the required stability with respect to the anticipated changes [297], and are inde-
pendent of a specific technology environment. Both data and action elements can
contain cross-cutting concerns, or generic supporting tasks. The metamodel of
the NS elements is shown in Figure 3.7. The internal structure of every element
can be described by a design pattern that is executable and can be expanded
automatically, enabling the automation of software development [297]. The NS
expanders, that use descriptor files, representing the elements, as input, can be
considered an implementation of MDSD [99].

Data Element A data element represents an encapsulated data construct for
storing and providing data. It contains various attributes or fields with its get-
and set-methods to provide access to the data in a data version transparent way.
Generic supporting tasks, also called cross-cutting concerns, such as access control
and persistency, should be added to the element in separate constructs [297]. An
attribute can either be a link to another data element or a primitive type such as

44

3.4. TARGET TECHNOLOGIES

FLOW
ELEMENT

DATA
ELEMENT

TASK
ELEMENT

– – – – – – – – – –
standard | manual |
bridge | external

CROSS-CUTTING
CONCERN

TRIGGER
ELEMENT

CONNECTOR
ELEMENT

is parameter of

contains

refers to

is parameter of

is added
to

is
ad
de
d
to

con
trolsen

ab
le
s

in
te
ra
ct
io
n
w
it
h

enables interaction with

Figure 3.7: Normalized Systems metamodel, adapted from [130]

Integer, String, Boolean, or Date. NS data elements can be visualized by means
of an ERD.28 An example data element is PersonDetails that holds the name and
birthday of a person.

Task Element A task element contains a task or action representing one and
only one specific functional task.29 Arguments and parameters need to be encap-
sulated as separate data elements, and cross-cutting concerns such as logging and
remote access should be added as separate constructs. Four different implemen-
tations of a task element are distinguished:

� In a standard task, the actual task is programmed in the task element and
performed by the same system.

� In a manual task, a human act is required to fulfill the task. The user then
has to set the state of the life cycle data element through a user interface,
after completion of the task.

� A process step can also require more complex behavior, involving aspects
that are not the concern of that particular flow. A bridge task creates an
instance of another data element that goes through its own designated flow.
The data element instances that are created by a bridge task – its ‘children’
– must report its status to the instance it was created by, making it possible
for the creating instance to wait for some state of its child(ren) to continue.

� When another (external) system has been implemented to perform a certain
action, the task element can be implemented as an external task, calling the
other system and setting its state depending on the answer from the external
system.

28See, e.g., http://en.wikipedia.org/wiki/Entity-relationship_model.
29It is up to the developer to decide on the granularity of such a functional task.

45

http://en.wikipedia.org/wiki/Entity-relationship_model

CHAPTER 3. SOFTWARE DEVELOPMENT

An example task element is a PersonFileWriter that can write person data (Per-
sonDetails) to some file.

Connector Element The connector element enables users as well as external
applications systems to interact with data and task elements. For every data and
task element one or more connector element(s) can be fully and deterministically
derived. An example of a connector element is the PersonDetailDeleter that can
be used (by other applications) to delete the data of some person.

Flow Element A flow element orchestrates the flow of tasks and contains a
sequence of actions and intermediate states that can be described by a state
transition diagram.30 Several data elements are tied to it to keep the state and
the history of the state. An example flow element is an OrderEngine that handles
the Order from initiation to delivery.

Trigger Element The trigger element provides the functionality to periodically
invoke flow orchestration. It controls both the regular and error states and checks
whether a task element has to be triggered. An example is a DailyTimerHandler
that starts all tasks to create daily reports.

3.4.4 Low Code

The term low code was introduced by Forrester in 2014 [375]. Although some
say it is neither clear what low code exactly is, nor that its features are very
new [69, 50], low-code development platforms claim to enable creation of software
with less effort compared to traditional31 programming [481]. It builds upon exist-
ing concepts such as MDD, code generation and visual programming [116]; most
platforms support the generation of data models from importing existing spread-
sheets or database and the generation of interfaces (both screens and APIs) for
data management, that can be further extended to enrich the user experience,
for both desktop, tablet and mobile devices. Depending on the features of the
platform being used and the overall system requirements, the developer may or
may not have to augment the design with some good old-fashioned code, or the
platform may produce an entire working solution with no additional code re-
quired [372]. Some better known low-code platforms include Appian,32 Mendix,33

Microsoft PowerApps,34 Oracle APEX,35 OutSystems,36 Pega,37 Quickbase,38

30See, e.g., https://en.wikipedia.org/wiki/State_diagram.
31Also known as ‘high code’, such as Java and .Net.
32https://appian.com/
33https://mendix.com/
34https://powerapps.microsoft.com/en-us/
35https://apex.oracle.com/en/
36https://www.outsystems.com/
37https://www.pega.com/
38https://www.quickbase.com/

46

https://en.wikipedia.org/wiki/State_diagram
https://appian.com/
https://mendix.com/
https://powerapps.microsoft.com/en-us/
https://apex.oracle.com/en/
https://www.outsystems.com/
https://www.pega.com/
https://www.quickbase.com/

3.4. TARGET TECHNOLOGIES

Salesforce Lightning,39 ServiceNow Now Platform,40 and Zoho Creator.41

Claimed benefits of low code include [208, 393, 293, 381, 416] a) less hand–
coding, faster development, and, as a result, cost reduction in both development
and maintenance and a shorter time-to-market; b) complexity reduction by using
prebuilt components; c) the ability for non-technical people to create applications,
thus opening up the possible population for application development as well as
improving business and IT collaboration while increasing IT productivity; and
d) enabling digital transformation and increasing IT and business agility.

Low-code platforms support technical variability such as changing from one
database to another, or from one front-end framework to another, and they sup-
port (quick) implementation of new features as well. And although low-code
platforms may (implicitly) adhere to (some of) the NS design theorems, this is
not guaranteed. Moreover, these platforms also do not prevent developers from
hard coding (implicit) organizational design choices [494, 458] (see Section 4.3).

Other limitations include poor scalability and performance, especially in work-
ing with large data sets, vendor lock-in and limited creativity and customizabil-
ity [416]. Regarding scalability and performance: there is also research that argues
otherwise [376, 208]. Low code should not be considered to be the solution for
all kinds of software development, but it does support a (possibly wide) range of
software solutions. Regarding vendor lock-in: Some platforms offer possibilities
to export the models or generated code [167]. It is questionable whether these
exports are useful without the tool that created these exports, but on the other
hand vendor lock-in also seems to work for some types of customers [506]. Vendor
lock-in also isn’t tied to low code only, it is quite common within the software
branch. When applying an MDSD approach towards low code, the mapping can
be recreated for another target platform so that all applications can be regen-
erated towards another technology. The latter limitation, limited creativity and
customizability, can be considered both a pro and a con: by limiting the design
freedom for developers, they can focus on what really matters, namely the busi-
ness impact. On the other hand, once you run into a limitation of the platform,
it is hard to work around this. Depending on the platform, it might be possible
to insert custom code. Again, it is mainly about choosing the right platform for
the purpose; sometimes low code just isn’t the right answer.

Metamodel

Low-code platforms rely on three basic concepts (see Figure 3.8): data, logic, also
called action or (micro)service, and interface, i.e., API or screen, as well as their
interrelations and permission (or access control) rules for user roles to allow users
with certain roles to use these parts of the application. Compared to traditional
programming languages like Java and .Net, that mainly rely on the concepts of
class and method, the metamodel of low code is richer and closer to the business,
making it easier to, e.g., connect the information need of a user to an interface to

39https://www.salesforce.com/eu/products/platform/lightning/
40https://www.servicenow.com/now-platform.html
41https://www.zoho.com/creator/

47

https://www.salesforce.com/eu/products/platform/lightning/
https://www.servicenow.com/now-platform.html
https://www.zoho.com/creator/

CHAPTER 3. SOFTWARE DEVELOPMENT

retrieve and show the corresponding data.

LOW-CODE UNIT PERMISSION RULE USER ROLE

DATA LOGIC INTERFACE

SCREEN API

describes
access to

describes
access for

is
a is a

is a

is a

is
a

is parameter to provides access to

provides access to

Figure 3.8: Low-code metamodel

3.5 Conclusions

In this chapter the concept of a model is explored as a means to study aspects of
a (software) system before it is actually implemented; although there are different
possible relationships between models and code, models are considered key arti-
facts in software development, also known as MBE. In an initial answer to RQ 1,
the GSDP explains that (software) system development comprises the activity of
detailing high level models, called ontological models, into more specific models,
called implementation models. MDSD is a ‘nephew’ of MBE where models are
being used to generate working software by means of model transformation that
enables traceability from requirements to implementation, addressing needs 3 and
4. In order to define such a model transformation, the metamodel of both the
input and output models needs to be precisely defined. Moreover, the semantics
of the input (meta)model needs to be formally defined.

In order to further address the needs, four target ‘technologies’ are selected,
in an initial answer to RQ 3: Mockups improves quality and speed of the software
development process, answering the general need for quality and need 3 specifi-
cally. Microservices improve agility, answering need 2. Normalized Systems is a
theory about system stability, allowing for controlled evolvability, answering need
2. Low code is built around the concept of MDSD for speed and adaptability,
answering needs 3 and 2.

Now that the general approach and target technologies to answer the needs are
defined, the enterprise models that will be used as input for the EMDSD approach
can be identified in Chapter 4. Additionally, identified method elements will be
summarized in Chapter 5 in order to provide guidance to the exploratory case
studies in Part II.

48

“Het is gemakkelijk flexibel te zijn, als je geen ruggengraat hebt.”
“It is easy to be flexible without a backbone.”

Nederlands tegeltjeswijsheid / Dutch saying

4
Enterprise Modeling

This chapter is about Enterprise Modeling in general and Enterprise Ontology
and Enterprise Implementation specifically. Building upon need 1 and the specific
needs from MDSD, i.e., that the input (enterprise) models need to be precise and
have a formal semantics (see Section 3.3.2), in Section 4.1 different modeling
techniques for enterprises are explored and criteria in order to select one for the
purpose of this research are formulated. The theoretical foundations of Enterprise
Ontology and the chosen modeling technique are detailed in Section 4.2.

As explained in Section 1.1, enterprises nowadays need to be flexible in mul-
tiple aspects. However, the Dutch saying above implies an enterprise – and its
supporting software – cannot be flexible in all aspects; there has to be some stable
part or backbone. Enterprise Ontology defines the (relatively) stable parts of an
enterprise. As Enterprise Ontology abstracts from implementation, the concept
of Enterprise Implementation is explored. The theoretical framework of Enter-
prise Implementation is created while performing the exploratory case studies,
and thus is a key deliverable in this research that will be shown in Section 4.3.
This chapter ends with conclusions and an initial answer to RQ 2 in Section 4.4.

4.1 Choosing an Enterprise Modeling Technique

Enterprise modeling is the structured activity in which an integrated and com-
monly shared model of an enterprise is created [434, 394], preferably supported
by practical, flexible and adaptable procedures, tools, best practices [158, 394].
SADT, DFD and ERDs from the 1970s (see Section 1.1.3) can be considered as
the first enterprise modeling techniques [475]. An enterprise model can contain
multiple aspects highlighting different perspectives [434, 394] and is sometimes
considered synonymous to enterprise architecture [165]. Enterprise modeling can

49

CHAPTER 4. ENTERPRISE MODELING

support, e.g., a) the understanding of what an enterprise is and does, b) the de-
sign and analysis of an enterprise, c) identifying improvement possibilities for an
enterprise, d) (strategic) decision-making of an enterprise, and e) (re)designing
supporting software for an enterprise [475, 394]. Enterprise modeling is an im-
portant area within Enterprise Engineering, the body of knowledge containing
principles, methods and best practices for aligned design and development of an
enterprise [173, 394].

Participative Enterprise Modeling is a way to improve the quality of the mod-
els [434, 435] and therefore can be an answer to need 1. As participative enterprise
modeling requires the modeling technique to be easily understood by the audi-
ence [434, 435], it often means it is not as rigid or formal as EMDSD requires,
and therefore this branch of enterprise modeling is further explored.

In this section the different perspectives in enterprise modeling (Section 4.1.1)
and the criteria to choose a modeling technique for the purpose of this research
(Section 4.1.2) are explored, and several enterprise modeling techniques are out-
lined (Section 4.1.3) in order to choose one to use in the EMDSD approach as
adopted in this research.

4.1.1 Enterprise Modeling Perspectives

Within enterprise modeling, two dominant approaches or perspectives can be
discerned: business process centered and data (or object or information1) cen-
tered [475]. Fox suggests that integrating different perspectives is necessary in
order to achieve agility [158]. UML is an example of an enterprise modeling
language that combines both processes and data [303, 182].

Others suggest that combining process descriptions and business rules has
benefits [512, 322, 510], especially in achieving (process) flexibility [181, 464]. At
the same time, business rules and facts or objects are closely related [386, 385,
512, 394]. CogNIAM is a method for enterprise modeling that combines business
processes, business rules and data. Using flowcharts2 is another example [504] that
basically consists of process steps, decisions (rules) and (input or output) data.
Organizing around services and/or products, defined as a bundle of services, is
another trend in enterprises and thus in enterprise modeling [246, 405, 394, 230].
The relationships between these different enterprise modeling perspectives are
summarized in Figure 4.1.

The field of Enterprise Engineering sees enterprises as complex sociotechnical
systems [173] and therefore connects the fields of organizational science and soft-
ware engineering. With this view, both actors (human-beings) and software are
considered important perspectives as well.

In order to be able to create software from enterprise models, the software
perspective is left out to keep focus on the other perspectives. Similar research has
shown that bridging the gap from these perspectives to software is possible [507].
The perspectives will be reflected in the criteria in the next section.

1Data, objects and information are not exactly the same but they are closely related and
often considered as being the same approach/perspective.

2https://en.wikipedia.org/wiki/Flowchart

50

https://en.wikipedia.org/wiki/Flowchart

4.1. CHOOSING AN ENTERPRISE MODELING TECHNIQUE

Product Service
bundles

Business Process
realizes

Business RuleInformation/Data

provides

access
to

constrains

uses

constrains

refers to

cr
ea
te
s

us
es

Figure 4.1: Relationships between different enterprise modeling perspectives
(business) products, (business) services, (business) processes, (business) rules and
information or data

4.1.2 Criteria

In choosing an enterprise modeling technique, consisting of at least a modeling
language and modeling procedure [237] (see Figure 1.3), several criteria are de-
fined, partly from literature and partly from experience. A critical reflection
on the choice for modeling technique as well as these criteria will follow in the
conclusions of this research.

The criteria for selecting an enterprise modeling technique to support the
automated creation of software are as follows:

a) the modeling technique is a proper technique, i.e., it comes with a modeling
language (WoM) and modeling procedure (WoW);

b) the modeling technique is grounded in theory that provides the way to look
at the world (WoT);

c) there are tools (WoS) that support the modeling technique, or, at minimum,
the modeling language, so that the models as input for the MDSD approach
as adopted in this research can indeed be created (easily);

d) the modeling technique supports the perspectives Product and/or Service,
Actors (or Roles), Process, Information and/or Data, and Business Rules
(see Section 4.1.1) as they are considered important to create enterprise
software;

e) the modeling language of the modeling technique has a formalized abstract
syntax, which is required to be able to perform a model transformation (see
Section 3.1.1 and Section 3.3.2);

f) the modeling language of the modeling technique has a formal semantics, as
this is required to provide unambiguous specifications [52] and to be able to
perform a transformation to code without loss of semantics (see Section 3.1.1
and Section 3.3.2);

51

CHAPTER 4. ENTERPRISE MODELING

g) there is a good number of example cases that have applied the modeling
technique so that the EMDSD approach as adopted in this research can be
evaluated on these models;

h) there is an active and good-sized community using the modeling technique
that might be able to take on the EMDSD approach as adopted in this
research in the future.

Compared to Figure 1.3 the Way of Controlling is left out. The WoC is
about managing a development activity or project and includes, e.g., planning,
monitoring and evaluating [411, 488, 487]. While it is desirable to have a WoC
that is aligned with the modeling technique, there are many existing WoCs such
as PRINCE2,3 The Open Group Architecture Framework (TOGAF),4 and Agile
methods,5 that are often separated from modeling techniques. At this stage of
the research the researcher suggests applying an existing WoC.

In choosing a modeling technique, different techniques can be combined in
order to cover all or most criteria. However, at this stage of the research it is
considered better, if possible, to choose one modeling technique that covers all or
most criteria.

4.1.3 Enterprise Modeling Techniques

In this section the (current) enterprise modeling techniques that can be found
in the public domain, i.e., not proprietary are briefly summarized. The focus
is on modeling techniques and generic frameworks such as TOGAF, Zachman,6

Integrated Architecture Framework (IAF) [474], or Generalized Enterprise Ref-
erence Architecture and Methodology (GERAM),7 as well as specific tools that
may support one or more modeling language(s) but are not a modeling technique
by itself, such as ARIS Cloud,8 Bizzdesign,9 OpenModeling,10 or the Open Model
Initiative (OMI),11 are left out. The C4model12 is also not included in the analy-
sis as it does not prescribe a notation, but relies on existing modeling techniques
such as ArchiMate and UML. Examples of the provided modeling techniques can
be found in Appendix A.

In Table 4.1 the scoring of the enterprise modeling techniques with respect to
the defined criteria (Section 4.1.2) is presented. For the scoring with respect to
the criteria an ordinal scale is applied: ‘-’ if it is clear that the criterion is not met,
‘0’ if the criterion is somewhat met, and ‘+’ if the criterion is reasonably or fully

3https://prince2.wiki/
4https://www.opengroup.org/togaf
5See, e.g., https://en.wikipedia.org/wiki/Agile_software_development#Agile_

software_development_methods.
6https://www.zachman.com/about-the-zachman-framework
7Currently part of ISO19439: https://www.iso.org/standard/33833.html.
8https://ariscloud.com/
9https://bizzdesign.com/

10https://open-modeling.sourceforge.io/
11https://www.omilab.org/
12https://c4model.com/

52

https://prince2.wiki/
https://www.opengroup.org/togaf
https://en.wikipedia.org/wiki/Agile_software_development#Agile_software_development_methods
https://en.wikipedia.org/wiki/Agile_software_development#Agile_software_development_methods
https://www.zachman.com/about-the-zachman-framework
 https://www.iso.org/standard/33833.html
https://ariscloud.com/
https://bizzdesign.com/
https://open-modeling.sourceforge.io/
https://www.omilab.org/
https://c4model.com/

4.1. CHOOSING AN ENTERPRISE MODELING TECHNIQUE

met. The scoring is based on examining existing and easily accessible literature
and on practical experience of the researcher with the modeling techniques.

4EM

For Enterprise Modeling (4EM) is created as a high mature, openly available
method that focuses on techno-social systems, includes all perspectives of enter-
prise modeling and supports participative modeling [394, 279]. It mostly com-
prises a systematic way of working (WoW) and a notation with a well-defined
metamodel. Despite its intent to cover all perspectives, 4EM does not seem to
have a product and service perspective, and the information or data perspective
seems limited to terms only. The number of cases that can be found is limited,
and only a few tools (partially) support 4EM.

ArchiMate

ArchiMate13 is a visual modeling language for describing, analyzing and com-
municating Enterprise Architecture [277, 449]. It comes with a framework or
reference structures that classifies all concepts of the ArchiMate language. Since
2008, ArchiMate is a standard of The Open Group.14 Because it is an open stan-
dard, there are several communities of active practitioners and researchers around
ArchiMate.15

ArchiMate supports TOGAF by providing elements for each ADM phase, from
strategic capabilities to business processes, objects, services, products and actors,
to application components and technology nodes, including motivation (why),
and migration planning (how to get there), including relationships between all
these elements. ArchiMate has a formally defined metamodel and a standardized
XML-based exchange file format that is supported by several tools. Its semantics
are defined in an informal way.

It has been suggested that ArchiMate has some drawbacks: its metamodel is
multi-interpretable, contains irrelevant concepts while other (important) concepts
may be missing [135, 20]. This might be the result of the fact that the theoretical
background (WoT) behind ArchiMate seems to be missing. ArchiMate does not
contain a structured way to capture business rules.

Architecture of Integrated Information Systems

The Architecture of Integrated Information Systems (ARIS)16 framework provides
an approach to support the entire system development life cycle of enterprises,
from conceptualization to IT implementation [400]. It uses five perspectives or
views: function, organization (including human-beings), data, product and ser-
vices (also known as output), and processes (also known as control). It relies

13https://www.opengroup.org/archimate-forum
14https://www.opengroup.org/
15E.g., https://community.opengroup.org/archimate-user-community/home.
16https://en.wikipedia.org/wiki/Architecture_of_Integrated_Information_Systems

53

https://www.opengroup.org/archimate-forum
https://www.opengroup.org/
https://community.opengroup.org/archimate-user-community/home
https://en.wikipedia.org/wiki/Architecture_of_Integrated_Information_Systems

CHAPTER 4. ENTERPRISE MODELING

(partly) on existing modeling languages such as Entity-Relationships, EPC and
BPMN.

ARIS has a community of active users, and is supported by several tools. It
is unclear what theoretical foundations (WoT) are behind ARIS. ARIS does not
support the modeling of business rules.

Business Process Modeling and Notation

The Business Process Modeling and Notation (BPMN)17 is a standard by the
Object Management Group (OMG) that defines the graphical representation for
specifying business processes. It has been suggested that it is closely related to
UML Activity Diagrams [484]. The BPMN specification also provides a mapping
between notation and the underlying constructs of Business Process Execution
Language (BPEL) [484].

There are many tools that support the creation of BPMN models. Most
BPMN communities seem to be organized around specific tooling. While BPMN
only focuses on modeling business processes, additional standards have been
adopted by the OMG to support case management modeling (Case Management
Modeling and Notation18) and decision modeling (Decision Modeling and Nota-
tion19). Several studies however show that these standards are not (yet) inte-
grated [201, 354, 108]. While BPMN is mostly a notation, there is a metamodel
but its semantics seem to be poorly defined [370, 126, 493, 256, 86]. It does not
seem to build upon a theoretical background (WoT).

CogNIAM

Cognition enhanced Natural language Information Analysis Method (CogNIAM),20

a successor of NIAM, is a conceptual fact-based modeling method to structure and
classify knowledge. It that aims to integrate different dimensions of knowledge,
i.e., data, rules, processes and semantics, and uses BPMN, Decision Modeling
and Notation (DMN) and Semantics of Business Vocabulary and Business Rules
(SBVR) to do so. See the specific sections on BPMN and SBVR for details.
CogNIAM will be scored as the combination of both modeling techniques.

Design and Engineering Methodology for Organizations

Having strong methodological and theoretical roots, including but not limited to
Language/Action Perspective [482], Speech Act Theory [14, 406] and Theory of
Communicative Action [191], the Design and Engineering Methodology for Or-
ganizations (DEMO) sets communication as the primal notion for the design of
enterprises and its supporting software systems [473]. In its current state, DEMO
mainly focuses on creating a so-called ontological model of an enterprise21, that

17https://www.omg.org/spec/BPMN/
18https://www.omg.org/spec/CMMN/
19https://www.omg.org/spec/DMN
20https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language_Information_

Analysis_Method
21More about Enterprise Ontology and its theoretical background can be found in Section 4.2.

54

https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/CMMN/
https://www.omg.org/spec/DMN
https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language_Information_Analysis_Method
https://en.wikipedia.org/wiki/Cognition_enhanced_Natural_language_Information_Analysis_Method

4.1. CHOOSING AN ENTERPRISE MODELING TECHNIQUE

defines the products and services that the enterprise delivers through actors, in-
cluding the underlying processes, information and business rules, independent
of its technological implementation [124]. This ontological model is called the
essence of an enterprise, following the earlier provided definition of essential (see
Section 3.1.1). DEMO’s Way of Working is called Organizational Essence Reveal-
ing (OER).

There is an increasing uptake of applying DEMO in practice, illustrated by
the active (but small) community and certification institute22 as well as the re-
ported cases regarding the use of DEMO (see, e.g., [364, 16, 107] and below)
and integration with other mainstream enterprise modeling approaches such as
ArchiMate [135, 103] and BPMN [469, 461, 353, 71, 321, 183]. Reported bene-
fits of DEMO include: a) ensuring completeness and helping to find omissions
and ambiguous situations [324, 124], b) providing a solid, consistent and inte-
grated set of (aspect) models [124], c) creating a shared understanding [324, 106],
d) providing a stable base to discuss required flexibility [458], e) supporting sim-
ulation experiments [415, 104] f) offering a good Return On Modeling Effort
(ROME) [324, 339, 340, 124], and g) offering a good basis to define requirements
and design or generate software systems [138, 324, 171, 220, 465, 101, 106, 124].

A reported downside of DEMO is that due to the level of abstraction, i.e.,
they are technology-independent, DEMO models are hard to understand and far
from actual implementation and thus should be complemented with other tech-
niques or models in order to communicate them to stakeholders and to provide
the necessary implementation details [220, 398]. There are however also case stud-
ies where DEMO has successfully been used in communication with stakeholders
ranging from people at the workplace [252] to software developers and business
analysts [106] and even higher management [346]. The case studies above have
shown DEMO models can be used for software design and implementation. An-
other concern is that there is a lack of (free) modeling tools for DEMO [415].
Currently available tools for modeling DEMO models are OpenModeling,23 Sim-
plified Modeling Platform,24 and an extension (MDG) for Sparx EA.25

Although there are some initiatives to enhance DEMO and/or its notation [359,
358, 349, 350, 15], the current version of DEMO Specification Language (DEMO-
SL) and its metamodel are documented in [122, 325].

Event-driven Process Chain

Event-driven Process Chain (EPC) is a type of flow chart for business process
modeling and part of ARIS. Main elements of EPC include: event, function (pro-
cess (step) or task and decision), process owner, information and connectors be-
tween these elements. Its metamodel is only informally described and (thus) lacks
proper semantics [460]. Suggestions to improve EPC have been made [314, 450],
but it is unclear whether these suggestions have been adopted. The EPC com-

22https://ee-institute.org
23https://open-modeling.sourceforge.io/
24https://teec2.nl/products/modelling-platform/
25http://www.eaxpertise.nl/cmsform.aspx?webpage=DEMO4MDG

55

https://ee-institute.org
https://open-modeling.sourceforge.io/
https://teec2.nl/products/modelling-platform/
http://www.eaxpertise.nl/cmsform.aspx?webpage=DEMO4MDG

CHAPTER 4. ENTERPRISE MODELING

munity seems to reside within the (broader) ARIS community. It is mainly the
ARIS tools that support EPC, although some others can be found as well.

Multi-Perspective Enterprise Modeling

Multi-Perspective Enterprise Modeling (MEMO) is an academic initiative that
incorporates several perspectives, ranging from processes to organizational struc-
ture to information models [161]. Additionally, a metamodel, modeling language
and tools have been developed [162, 164, 163, 166, 49, 48]. Although MEMO pro-
vides a well documented metamodel, it seems to be missing a modeling procedure
(WoW) and theoretical foundation (WoT). As MEMO is merely an academic ini-
tiative that is not (widely) being used in practice, it lacks a community and cases
cannot easily be found.

Semantics of Business Vocabulary and Business Rules

SBVR26 is a standard of the OMG, intended to be the basis for a formal natural-
language based description of enterprises. It builds upon the fact-oriented ap-
proach that is designed to promote correctness, clarity and adaptability and en-
hances semantic stability [195]. SBVR uses controlled natural language to express
business vocabulary, i.e., terms, and business rules in a declarative way, i.e., what
it should be or do, not how. Rulespeak27 provides a set of guidelines for expressing
business rules that is fully compliant with SBVR. The SBVR community seems
to be small, and not a lot of example cases can be found.

System Modeling Language

System Modeling Language (SysML)28 is a general-purpose modeling language for
systems engineering that supports specifying, analyzing, designing and validating
systems. It was originally developed as an open-source project and later adopted
by the OMG. It is defined as an extension of a subset of UML and includes nine
types of diagrams of which some are taken from UML.

Unified Modeling Language

UML29 is a standardized modeling language intended for the specification and
visualization of software. It consists of best practices and a (graphical) notation
and is maintained by the Object Management Group. UML provides two cat-
egories of diagrams: structure and behavior. Structure diagrams represent the
static aspects of a system, such as components and classes. Behavior diagrams
represent the dynamic or functional aspects of a system, such as activities, use
cases and communication.

26https://www.omg.org/spec/SBVR/
27https://www.rulespeak.com/en/
28http://www.omgsysml.org/ and https://sysml.org/
29http://www.uml.org/

56

https://www.omg.org/spec/SBVR/
https://www.rulespeak.com/en/
http://www.omgsysml.org/
https://sysml.org/
http://www.uml.org/

4.1. CHOOSING AN ENTERPRISE MODELING TECHNIQUE

W
ay

of
M
o
d
el
in
g

W
ay

o
f
T
h
in
k
in
g

W
ay

o
f
W
or
k
in
g

W
ay

o
f
S
u
p
p
or
ti
n
g

P
ro
d
u
ct
s
&

S
er
v
ic
es

A
ct
or
s

P
ro
ce
ss
es

R
u
le
s

In
fo
rm

at
io
n
or

d
a
ta

D
o
cu
m
en
te
d
m
et
a
m
o
d
el

F
or
m
al

se
m
an

ti
cs

N
u
m
b
er

o
f
ex
am

p
le

ca
se
s

C
om

m
u
n
it
y
si
ze

4EM + - + 0 - + + + + 0 0 0 0
ArchiMate + - 0 + + + + - + + 0 + +
ARIS + - - + + 0 + - + + 0 + +
BPMN + - - + 0 0 + 0 0 + 0 + +
CogNIAM + 0 0 + - - + + + + + 0 0
DEMO + + + 0 + + + + + + + 0 0
EPC + - - + - - + 0 0 + 0 0 +
MEMO + - 0 0 - + + 0 + 0 0 0 -
SBVR + + 0 0 - 0 - + + + + 0 0
SysML + - - 0 - 0 0 - 0 + 0 0 0
UML + - - + 0 0 0 0 + + 0 + +

Table 4.1: Overview of enterprise modeling techniques scored to the identified
criteria (see Section 4.1.2)

UML has a big user group and many tools support this standard. And al-
though UML is being used for enterprise modeling, it is also noted that a) it has
too many constructs which makes it complex and hard to learn or use [34, 160],
b) it lacks proper concepts for enterprise modeling [511], and c) its semantics are
(very) poorly defined [242, 137, 258, 77, 190, 159, 192, 275, 62].

4.1.4 Choice for This Research

As can be seen in Table 4.1, CogNIAM, DEMO, and SBVR seem to be the only
modeling techniques that are (somehow) based on a Way of Thinking and with
a formal semantics. On the other hand, 4EM, ArchiMate, and DEMO seem to
be the only modeling techniques with a proper WoW and covering all or most
modeling perspectives that are important for this research. It seems logical to
choose DEMO as input for the EMDSD approach as applied in this research, as
it seems to score best with respect to the chosen criteria.

However, the lack of tools to create DEMO models is a concern. An alternative
is to combine, possibly multiple to cover all perspectives, modeling techniques for
which there are proper tools with the WoT of DEMO or SBVR. As said before,
creating such a technique can be a research on its own and therefore DEMO is
chosen as it has a formal semantics and covers all perspectives, and the downside

57

CHAPTER 4. ENTERPRISE MODELING

is accepted that for this research the models have to be created and converted
into a format that a computer program can understand manually.

The other issue that DEMO or ontological models are abstracted a lot from
(enterprise) implementation can be regarded as both an advantage and disad-
vantage: only by abstracting away from implementation, it can be used to truly
redesign the implementation, while in implementation-dependent models opti-
mization is the best achievable result. It is however also a concern with respect to
the EMDSD approach as adopted in this research. In order to bridge the gap from
enterprise ontology to implementation, the Enterprise Implementation Framework
(EIF) is created with the Organization Implementation Variable (OIV) as main
concept to describe an enterprise’s implementation that is linked to the ontologi-
cal model of the enterprise. The EIF is thus fully compliant with the GSDP and
has been validated during the exploratory case studies in Part II. Both Enterprise
Ontology and Enterprise Implementation are detailed in the next sections.

4.2 Enterprise Ontology

Building upon the definition of ontology in general (see Section 3.1.1), the goal of
enterprise ontology is to share knowledge about an enterprise within and between
enterprises [456]. As enterprise knowledge is local by nature, it needs to be specific
for a certain enterprise [284]. Bertolazzi et al. have composed a core enterprise
ontology describing generic enterprise concepts [35], but they do not offer a way
to capture the ontology for a specific enterprise.

Building upon the Language/Action Perspective [482], Fox proposes actors,
their roles and communication links between them as key concepts in enterprise
ontology [157]. In his EE-theories for Enterprise Engineering and Enterprise On-
tology, Dietz builds upon these concepts by seeing an enterprise as a network of
actors that enter into and comply with commitments [124]. Such commitments
are raised by actors in acts, the atomic units of action, and follow a generic
pattern called the Complete Transaction Pattern (CTP). The general working
principle is that actors constantly check whether there are acts they have to deal
with or respond to, the so-called actor cycle. By abstracting actors to actor roles
and commitments regarding a specific product to transaction kinds, the model
becomes independent of the people involved in the operation.

According to the EE-theories, an enterprise ontology describes both the dy-
namics and statics of an enterprise and concerns the highest level white-box model
of the construction and operation of the organization of an enterprise [124]. Since
it only depends on an enterprise’s products and services, it is fully independent
of the way in which it is realized and implemented [119]. These models are
therefore considered more stable than implementation dependent models [123].
An enterprise ontology is expressed in a set of aspect models that is claimed to
be comprehensive, coherent, consistent, and concise [124, p. 14].30 DEMO is a

30While it is not possible to prove these claims, several case studies have confirmed, or at
least not been able to disprove, these properties, see, e.g., [138, 324, 339, 171, 220, 364, 340,
465, 16, 101, 107, 415, 458, 104, 124].

58

4.2. ENTERPRISE ONTOLOGY

leading method in the field of Enterprise Engineering, currently mainly cover-
ing Enterprise Ontology; the ontological models of an enterprise are sometimes
referred to as DEMO models.

According to the EE-theories, three layers of organizations can be discerned
in enterprises [124]: a) original for devising things, deciding, manufacturing, and
transporting things, b) informational for remembering, computing, deriving and
sharing facts, and c) documental for saving, providing, transforming and deleting
documents, data and files. The ontological model of the original layer of an
enterprise is also called its essence.

In this chapter the notions of CTP (Section 4.2.1), actor cycle (Section 4.2.2
and organizational layering (Section 4.2.3) are introduced. Moreover, the onto-
logical aspect models (Section 4.2.4) and the DEMO metamodel (Section 4.2.5),
needed to define the model transformation for the EMDSD approach (see Sec-
tion 3.3.2) as adopted in this research, are detailed.

4.2.1 Complete Transaction Pattern

According to the EE-theories, each commitment is raised in a coordination act
(C-act), e.g., ‘Martin requests Erik order #12531 is completed’, and results in a
corresponding coordination fact (C-fact). Following Habermas’ Theory of Com-
municative Action [191], every C-act has a performer (in the example: Martin),
an addressee (in the example: Erik), an intention from the CTP (in the example:
request), and is about some product or production fact (P-fact) (in the example:
‘order #125 is completed’; see Figure 4.2). An act can be performed explicitly,
i.e., by verbal or non-verbal communication, or implicitly, i.e., tacitly as there is
no explicit act but its existence can be deduced from the presence (or absence) of
other acts [472]. C-acts (and its corresponding C-facts) about the same product
are called transactions and all follow the CTP. The CTP is considered to be the
universal pattern in all organizations [124]. It consists of 18 C-act kinds (inten-
tions) and 1 production act (P-act) – in which the product is being produced –
and deals with the basic flow – request, promise, execute, declare and accept – as
well as discussion states – decline, reject – and cancellations, called revocations
(see Figure 4.3).

Coordination
act/fact

Intention AddresseePerformer Product

Martin requests Erik order #125 is completed

Figure 4.2: Structure and example of a C-act and C-fact, adapted from [124]

31The order can have many attributes, like exactly what is being ordered and when the result
is expected. For simplicity, these properties are left out.

59

CHAPTER 4. ENTERPRISE MODELING

C-acts (and its corresponding C-facts) are considered the atomic building
blocks of organizational processes, while transactions are considered the molecu-
lar building block of organizations. Every transaction instance is of a particular
transaction kind, e.g., ‘order completing’. A transaction kind concerns one specific
product kind, e.g., ‘[order] is completed’, has one specific actor role, e.g., ‘order
completer’ as its executor role, and can have multiple actor roles as its initiator
role. The performer of the request of some transaction is the initiator of that
transaction, while the addressee of the request is the executor of that particular
transaction.

The CTP tells that after a request, the executor (in the example: Erik) can
choose between performing a promise or decline. On the level of the C-act, the
roles of performer and addressee will be reversed: Erik is the performer and Mar-
tin the addressee, e.g., ‘Erik promises Martin order #125 is completed’. Instead
of promising, a decline is possible which brings the transaction into a discussion
state in which the initiator and executor of the transaction have to sit together
and discuss next steps. One possibility is that the initiator convinces the execu-
tor to agree to the request, after which the request will be renewed so that the
executor can promise it. Another possibility is that together they negotiate the
terms for a (slightly) changed request of the initiator that the executor can then
promise. A last, but often not desired, possibility is that the discussion end with
a disagreement, not resulting in a renewed request. A similar reasoning holds for
the discussion state ‘rejected’, where the roles are reversed (again).

The CTP also defines revocation patterns that allow actors to revoke (with-
draw or cancel) a C-act. The revocation pattern in itself is generic but made
specific for the four ‘basic’ C-acts (see Figure 4.3) – from the discussion states it
is always possible to get back to the main flow, so no revocations are needed for
them. It is a separate flow as it does not immediately influence the main flow.
However, it is best practice stopping the work in the main flow once a revocation
flow has been started. The idea is that either the initiator or the executor of the
transaction can start a revocation, after which the other actor can decide to allow
the revocation or to grant it. The start of the revocation is also a discussion state,
as usually both parties have to discuss the terms with which a revocation can be
allowed. It will mostly depend on the specific situation at hand, and whether
the executor has already started producing the P-fact whether a revocation will
be allowed or refused. For example, when Erik has already produced the order,
it will be unlikely that he allows Martin to revoke the request. Only when the
revocation is allowed, the main flow returns to a previous state, as indicated in
the CTP.

The CTP can be compressed by only showing the involved actor roles and the
transaction kind it is about, abstracting from but still implying the underlying
CTP. Actor roles are denoted by a box while transaction kinds are denoted by
a diamond-in-a-disk (see Figure 4.4). A transaction kind and its executing actor
role together is called transactor role. These symbols are used in the Cooperation
Model (CM) as will be explained in Section 4.2.4.

60

4.2. ENTERPRISE ONTOLOGY

in

rq

rqdc

dc

pm

pm da

daac

ac

rj

rj

initiator

executor

alalin

rv-rqrv-rq?

rf rfrq+

initiator

executor

al al da

rv-ac rv-ac ?

rfrf ac

initiator

executor

alalrq

rv-pmrv-pm?

rf rfpm+

initiator

executor

al al pm

rv-da rv-da ?

rfrf da+

initiator

executor

Legend

in: initial state ac: accept(ed)
rq: request(ed) rj: reject(ed)
pm: promise(d) rv: revoke(d)
dc: decline(d) al: allow(ed)
da: declare(d) rf: refuse(d)

act

fact

discussion
state

area of
responsibility

causal link

response link

conditional link

reversion link

Figure 4.3: Complete transaction pattern comprising the basic flow and four
revocation flows, adapted from [124]

61

CHAPTER 4. ENTERPRISE MODELING

initiator
role

executor
role

initiator
role

executor
role

Figure 4.4: Denotation of actor role and transaction kind. For compatibility rea-
sons, both the DEMO-3 notation (left) and DEMO-4 notation (right) are shown.
Only the latter explicitly shows the concept of transactor role, while it is implied
in the older notation by the black box on the executor role.

4.2.2 Actor Cycle

Every actor is considered to constantly loop through its operating cycle (see
Figure 4.5), at a pace that is sufficiently frequent to deal with the agenda on
time [124]. The actor’s agenda consists of C-facts (see Section 4.2.1), the total
set of acts for the actor to deal with.

The cycle starts with an actor selecting an agendum (a single item in the
agenda) to be settled – at this stage it is irrelevant how such an agendum is
chosen, typically based on internal or external defined priorities. Then, the ac-
tor fetches the applicable action rule(s) (from the Action Model (AM), see Sec-
tion 4.2.4). Next, the actor assesses the situation following Habermas’ three
validity claims [191]:

� in the claim to rightness the actor checks whether both parties have the
authority to be the performer and addressee of the C-act;

� in the claim to sincerity the actor verifies the trust and honesty of the other
party;

� in the claim to truth the actor checks for possible violation of rules.

In order to verify the claims, the actor usually needs to fetch information saved
earlier or by someone else. After the assessment, the actor decides how to respond
to the selected C-fact. Typically, when all claims have been successfully verified,
the actor will continue with the basic flow. Otherwise, the actor will move the
transaction into a discussion state. Either way, the actor performs the act(s) that
follow from the decision.

With reference to Figure 4.5, let’s look again at the example: Suppose Martin
has performed the C-act as stated earlier, viz., ‘Martin requests Erik order #125

62

4.2. ENTERPRISE ONTOLOGY

⟳1. select
agendum

2. get applicable
action rule(s)

3. assess

4. decide on
response

5. perform
act(s)

Figure 4.5: Operating cycle of actors, adapted from [124]

is completed’. Now, there is a C-fact on Eriks agenda. After having had his
morning coffee, Erik notices this C-fact is the only agendum for the day. Thus,
he chooses to act upon this agendum (1). He fetches the applicable action rule
that guides him in his decisions (2). The action rule (see Section 4.2.4 for more
details) tells Erik to assess the situation (3):

a) he checks whether he is authorized to deal with the request – as he is han-
dling it, this is assumed to be true;

b) Erik checks whether Martin was allowed to perform the request – as Martin
is a potential customer and does not seem to be a crook, let’s assume this
is true as well;

c) then he verifies the trust and honesty of Martin – let’s again assume this to
be true as well;

d) lastly, Erik checks whether the enterprise allows producing the P-fact, i.e.,
to complete the order. Examples in which the order cannot be completed are
when the product is not there to complete the order, when Martin expects
the order to be completed within 12 hours but the current planning only
allows for completion after 48 hours, or when Martin does not have the right
certification to receive the completed order.

Having assessed the situation, Erik decides (4) to promise the order completion
and, as a result, performs (5) the C-act ‘Erik promises Martin order #125 is
completed’.

As actors are autonomous in deciding how to act, action rules must be under-
stood as guidelines. The responsibility given to an actor in fact allows the actor
to, responsibly, make a decision that is not in line with the action rule(s). In such

63

CHAPTER 4. ENTERPRISE MODELING

cases, the actor is expected to be able to explain the reason of deviating from the
action rule.

4.2.3 Organizational Layering

In an enterprise, three different types of (trans)actors can be distinguished [124]:
original, informational, and documental. This view is based on the semiotic lad-
der that distinguishes between commitments in the social world (orginal) from
semantics or content (informational) and syntax or form (documental) [286].

Original (trans)actors create new facts by, e.g., devising, deciding, judging, man-
ufacturing, transporting or observing things.

Informational (trans)actors support the original (trans)actors by remembering,
deriving, computing and sharing facts.

Documental (trans)actors support the informational (trans)actors by saving,
providing, transforming and deleting documents, data and files.

These layers should be seen as distinct (organizational) layers: O- (O for
Original), I- (I for Informational) and D-organization (D for Documental). Put
together, these organizations are the enterprise. For all three layers, an onto-
logical model can be created. The ontological model of the O-organization is
called the enterprise’s essence. There are procedures that describe how to devise
(or generate) parts of the ontological model for the I-organization based on the
ontological model of the O-organization, and similarly for creating parts of the
ontological model for the D-organization based on the ontological model of the
I-organization [102, 101, 124].32 In practice, however, these models are barely
created as software can easily be created from the ontological model of the O-
organization [117].

While informational and documental acts and actors can easily be taken over
by IT artifacts, such as software systems, only human actors can be held respon-
sible33 for acts. Original acts should only be performed by human beings and it
should always be clear which human actor is responsible for the IT artifacts that
perform informational and documental acts.

4.2.4 Ontological Aspect Models

The ontological model of an organization consists of an integrated whole of four
aspect models34 (see Figure 4.6):

32The generation is only partly as there may be non-derivable I- and D-transaction kinds.
33Most organizations make a distinction between responsibility and accountability. In this

research they are treated as synonyms.
34It is doubtful whether ‘aspect model’ is the right term. In general, a model is a simplified

representation of a (software) system to study aspects of a system (see Section 3.1). The system
to be studied is an enterprise, the model to do so is its ontological model. As the ontological
aspects models as defined here form an integrated whole, it could be argued that instead of
aspect models, they should be called model aspects or (model) viewpoints.

64

4.2. ENTERPRISE ONTOLOGY

CM:
CSD + TPT

PM:
PSD + TPD

FM:
OFD + DFS

AM: ARS + WIS

Figure 4.6: Ontological aspect models, adapted from [124]

Cooperation Model (CM) models the cooperation of the enterprise; it consists
of transaction kinds, associated (initiating and executing) actor roles, fact
banks, the access links between actor roles and fact banks, and wait links
between transaction kinds and actor roles. The CM is expressed in one or
more Coordination Structure Diagrams (CSDs) and a Transactor Product
Table (TPT);

Process Model (PM) models the processes that take place as the effect of acts
by actors, by detailing the coordination between actor roles. It specifies the
state and transition space of the coordination world by making explicit the
causal and wait links between C-(f)acts from the CTP. The Process Model
(PM) is expressed in one or more Process Structure Diagrams (PSDs) and
one or more Transaction Pattern Diagrams (TPDs);

Fact Model (FM) is the semantic model of products of the enterprise – spec-
ifying the state and transition space of its production world in terms of
fact types (entity types with their related product kinds, property types,
attribute types and value types), existence laws and occurrence laws. The
Fact Model (FM) is expressed in an Object Fact Diagram (OFD) and zero
or more Derived Fact Specifications (DFSs);

Action Model (AM) is a model of the operation of the enterprise, guiding ac-
tors in performing P-acts (through Work Instruction Specifications (WISs))
and C-acts (through Action Rule Specifications (ARSs)). It specifies for
every C-fact kind with which the enterprise has to deal – called agendum
kind – one or more ARSs. Each ARS contains three parts that support the
actor cycle:

� an event part consisting of a when-clause stating the agendum kind to
respond to, a while-clause if additional wait conditions (impediments)

65

CHAPTER 4. ENTERPRISE MODELING

apply, and a with-clause that specifies the fact kinds that are needed
to assess the action rule;

� an assess part to check for certain conditions, following the 3 claims
from Habermas (see Section 4.2.2); and

� a response part that states how the actor should respond, possibly
defining an alternative path.

4.2.5 DEMO Metamodel

DEMO-SL is the formal language in which the ontological models as defined in
Section 4.2.4 are expressed. In Figure 4.7 the relevant parts of the metamodel
for this research are depicted. The general step kinds are defined by the CTP
(see Section 4.2.1) and thus are not defined in any of the aspect models. Product
kinds are defined in both the CM and FM. A derived fact type can be expressed
as a calculation, which can be an aggregation, specialization, or generalization.
Both (elementary) actor roles and fact types can be in or out of focus – composite
(trans)actor roles and multiple transaction kinds are by default out of focus, while
the other concepts are by default in focus. Out (of) focus means the concept is
shown in the higher-level models, such as CM, PM, and FM, but no (detailed)
action rules are created.

While there is an Extensible Markup Language (XML)-based exchange model
for DEMO available [325], for this research a more compact JavaScript Object
Notation (JSON) format to represent the input models for automated model
conversions is created. This version leaves only contains item from the metamodel
does not contain parts that are for representation only.

4.3 Enterprise Implementation35

In order for an enterprise to become and stay operational, it needs to be imple-
mented with appropriate technology in a future-proof way. This implies that the
construction model of an enterprise is described at such a level of detail that it
can be put into operation. In doing so, it should be possible to consider multiple
alternatives and choose the better (or optimal) one with respect to some business
goals or objectives. It can even turn out that different alternatives can co-exist,
or that one implementation should be able to evolve into another implementation
relatively easily. While it can be very costly to keep every option open, it is also
not necessary; a pizzeria will not suddenly become an insurance company or the
other way around. Instead, the need for adaptability in implementation should
be identified carefully. It is thus needed to better understand how the implemen-
tation model looks like and how it can be used to design and compare alternatives
as well as informedly decide on the variability in implementation that can exist
over time or over different locations.

35Parts of this section are originally published as M. R. Krouwel, M. Op ’t Land, and
T. Offerman, Formalizing Organization Implementation [265]. A detailed mapping from the
original paper to this thesis can be found on p. xxx ff.

66

4.3. ENTERPRISE IMPLEMENTATION

TRANSACTOR
ROLE

– – – – – – – – – –
self-initiating

(ELEMENTARY)
ACTOR ROLE

– – – – – – – – – –
in-focus | out-focus

MULTIPLE
TRANSACTION

KIND

(ELEMENTARY)
TRANSACTION

KIND
PRODUCT KIND

COMPOSITE
(TRANS)ACTOR

ROLE

contains (1:1)

contains (1:1)

concerns (1:1)

is
in
itiator

of
(m

:n
)

is
ex
ecu

tor
of

(1:1)

is initiator of
(m:n)

h
as

access
to

th
e
b
an

k
of

(m
:n
)

has access to
the bank of (m:n)

h
as

access
to

th
e
b
an

k
of

(m
:n
)

im
p
ed
es

(m
:n
)

TRANSACTION
KIND STEP KIND
(AGENDUM KIND)

GENERAL
STEP KIND

ENTITY TYPE concerns (1:n)

con
cern

s
(1:n

)

con
cern

s
(m

:n
)

causes (m:n)causes (m:n)
is a wait condition

for (m:n)

FACT TYPE
– – – – – – – – – –
declared | derived
in-focus | out-focus

PROPERTY TYPE

ASSESS PARTATTRIBUTE TYPE

EVENT PART

RESPONSE PART

ACTION RULE
SPECIFICATION

VALUE TYPE

is a

is
a

is
a

is a

is
a

h
as

d
om

ain
(1:n

)

h
as

ran
ge

(1:n
)

h
as

d
om

ain
(1:n

)

h
as

ran
ge

(1:n
)

is in when-clause (1:n)

is in while-clause (m:n)

is
p
art

of
(1:1)

is
pa
rt
of
(1
:1
)

is
pa
rt
of
(1:
1)

is in then-clause (m:n)
is in else-clause (m:n)

refers
to

(m
:n
)

refers to (m:n)

refers to
(m
:n)

is
u
sed

b
y
(m

:n
)

Legend:
entity type

– – – – – – – – – –
attribute type property type

(cardinality)
generalization
/specialization

defined in CM

defined in PM

defined in FM

defined in AM

Figure 4.7: DEMO metamodel, adapted from [122, 325]

67

CHAPTER 4. ENTERPRISE MODELING

As outlined in the GSDP (see Section 3.2), the construction model of any
system, including enterprises, comprises both the ontological model and the im-
plementation model, the lowest level construction model of the OS, fully detailing
the specifications of a possible implementation that can subsequently be imple-
mented using appropriate technology [120]. When a product or service is decided
upon, and the collaboration network needed for its delivery has been revealed
in the ontological (enterprise) model, still many degrees of freedom exist before
an enterprise can become operational [124, p. 46]. While architecture constrains
the design freedom (see Section 3.2.4), still many technological alternatives can
satisfy both the functional (user) and constructional requirements. The remain-
ing choices can and should be captured as design decisions. Each decision can
be expressed as value for a certain (organization implementation) variable, called
OIV. Together, these implementation design choices constitute the lowest level
and most detailed model of the construction of an enterprise.

This section introduces the Enterprise Implementation Framework (EIF) that
details the layers that can be discerned in implementation (Section 4.3.1), shows
some examples (Section 4.3.2), highlights the benefits of using the approach of
expressing an implementation in terms of variables (Section 4.3.3) and ends with
implications for software development (Section 4.3.4).

4.3.1 Implementation Layers

Implementation spans different layers:

Organization: the (non-ontological) structure of the organization such as func-
tionary types, organizational units, work locations, and the types of means
that support the actors in doing their work, as well as the relations be-
tween them and with the ontological elements (mainly agendum kind, see
Figure 4.7);

Means: all technological means, including human beings and IT artifacts – also
known as silicon and carbon servers [454] – as well as tools, equipment,
buildings, vehicles, office supplies, etc., that are needed to operate;

Installation: the (temporary or more durable) assignment of specific means from
the means layer to (abstract) elements from the organization layer; and

Operation: the assignment of specific agenda (see Section 4.2.2) to specific
means.

In fact, with reference to the model kinds as described in Section 3.1.1, the on-
tological model can be considered to be the conceptual model of the enterprise,
the organization implementation layer can be considered the logical model of an
enterprise, and the other implementation layers can be considered the physical
model. The latter two combined constitute the implementation model. This lay-
ering therefore helps in classifying the different types of change as described in
need 2.

68

4.3. ENTERPRISE IMPLEMENTATION

An OIV can be elementary or cross-reference. An elementary OIV does not
depend on the existence of some other OIV or element in the enterprise ontology,
e.g., functionary type. A cross-reference OIV does depend on the existence of
some other OIV or element in the enterprise ontology, e.g., authorization as the
assignment of a functionary type to an actor role.

By expressing the implementation as a set of values for a (chosen) set of
OIVs, a new implementation alternative can be created simply by changing the
value of a single variable. These alternatives can then be evaluated against the
requirements, e.g., by means of simulation. In practice, the implementation of
organization, and therefore the value(s) of OIVs, will change far more often than
the products and services they help deliver.

4.3.2 Examples

Extensive literature review on the topic of Enterprise Implementation, e.g., [96,
397, 455, 84, 119, 345, 414, 459, 470, 215, 344, 391, 402], enterprise or process
flexibility [287, 371, 404, 194], as well as assessments on both academic [334, 121,
341] and real-world use cases [317, 458, 104] on the presence of OIVs, has resulted
in a list of ∼30 variables [336].

Examples include (see Figure 4.8):

� deciding on work locations and organizational units, e.g., which branches
and departments exist;

� deciding upon functionary types and the authorization that describes which
functionary type fulfills which actor role(s) or deals with which agendum
kind(s) – e.g., the functionary type ‘cook’ that fulfills both the actor roles
‘baker’ and ‘stock controller’; or the functionary type ‘deliverer’ who is au-
thorized for the acts ‘promise’ and ‘declare’ of the transaction kind ‘trans-
port’ and also for the act of ‘accept’ for the ‘customer payment’ transaction
kind;

� deciding on which C-acts are performed explicitly and which implicitly (see
Section 4.2.1); and

� deciding on order of working and logical units of work – e.g., should delivery
only be done after receiving payment (as common in retail) or is it (also)
possible to pay afterwards (more common in B2B), and should receiving of
payment and delivery be seen as a single unit of work that should be carried
out by the same person without interruptions.

4.3.3 Benefits

By expressing an enterprise implementation model as a set of values for a (chosen)
set of variables, it can be used to

a) decide informedly upon enterprise changes,

b) enable traceability in governing transformations,

69

CHAPTER 4. ENTERPRISE MODELING

OIV
other concept
(not an OIV)

Legend

AGENDUM KIND
ORDER OF
WORKING

IMPLICIT/EXPLICIT

AUTHORIZATION
LOGICAL

WORK UNIT

ORGANIZATIONAL
UNIT

FUNCTIONARY
TYPE

PERSON
INSTALLATION

WORK LOCATION

PERSON

action before

action after
is performed

com
bin

es

concerns

con
cer

ns concerns

con
cern

s

concerns

co
n
ce
rn
s

con
cer

ns

concerns

Figure 4.8: Example OIVs and their relations

c) assess to what extent software solutions support enterprise implementation
variability,

d) design software systems that inherently supports enterprise variability, and

e) design enterprises that support variability.

4.3.4 Implications for Software Development

In order to achieve enterprise agility, it is a priority that frequently occurring
changes are not on its critical path (see Section 1.1 and need 2 specifically). Ide-
ally, it is possible to make such changes with no or only little impact in the
supporting software systems. This may show the need for an implementation to
be easily adaptable in some variables, while for other variables it is not necessary
to change its value easily. E.g., departments may be rearranged yearly, while
work locations may be more stable. Analyzing alternatives may create the (ar-
chitectural) requirement that the value for a certain variable is easily changeable,

70

4.4. CONCLUSIONS

imposing a design constraint that can heavily impact the design of supporting
software. As a minimum requirement, it should be clear which software compo-
nents are affected by a change in the (enterprise) implementation, and, preferably,
this number of components is limited.

On the other hand, organizationally variability can be quite high, making it
difficult to gain overview and impossible to support all possibilities. With the
simplistic assumption that each of the (14) elementary OIVs can have 3 different
and each of the values is able to change independent of the values of the other
OIVs, the total number of possible organizational implementation alternatives is
already 314 ≈ 4.8 ∗ 106, per transaction kind! This is a problem for both human
understanding and automation; it is thus necessary to make conscious choices on
what changes should be supported by the supporting software systems and to
what extent.

Organization Implementation Variables are a way to make explicit the orga-
nization design decisions that need to be supported by the software systems. The
Enterprise Implementation Framework also provides the possibility to make an
explicit (architectural) requirement that the value for an OIV should be (easily)
changeable in the software. In a way, it is similar to Normalized Systems Theory,
but it defines expected types of change on the enterprise level and not in terms
of software constructs.

4.4 Conclusions

In this chapter the notion of Enterprise Modeling in general as a means to under-
stand what an enterprise does and as input for the software development process
has been explored. Different perspectives can be chosen when modeling an en-
terprise, and combining multiple perspectives is key in order to achieve agility
and to improve the quality of the enterprise models. Based on the general need
in this research for qualitative models, the specific needs for the EMDSD ap-
proach as adopted in this research, and the need for different perspectives, several
criteria have been formulated to choose a modeling technique that supports the
purpose of this research. Several modeling techniques are outlined and, while
it is possible to combine different techniques to fully cover all important criteria,
DEMO models have been chosen as input for the EMDSD approach as adopted in
this research, that now becomes an Enterprise Ontology-Driven approach towards
Software Development.

DEMO is well-grounded in theory and provides the ontological model of an
enterprise, covering all perspectives that are considered essential for this research.
This technique is fully compliant with the GSDP (see Section 3.2), and provides
enterprise models with a formal semantics as is required for MDSD. The downsides
of using DEMO is the lack of proper tooling – which is not an insurmountable
hurdle – and the big gap towards (software) implementation. In order to deal with
the latter issue, the Enterprise Implementation Framework has been developed to
capture organizational implementation design decisions in terms of Organization
Implementation Variables. Together, DEMO and the EIF cover the different

71

CHAPTER 4. ENTERPRISE MODELING

Model Kind Layer Change type Model

Ontology:
descriptive,
technology-
independent

Conceptual Adding or deleting
a product or
service

DEMO (essence)

Implementation:
prescriptive,
technology-
dependent

Logical Adding or deleting
a department,
functionary type,
means type or
process step

EIF: Organization
layer
(organizational
implementation)

Physical Adding or deleting
a specific
technological
resource

EIF: Means,
Installation, and
Operation layers
(technical
implementation)

Table 4.2: Overview of the model kinds, layers, types of enterprise change and
used models in this research

model kinds as discussed in Section 3.1.1 as well as the typical enterprise changes
as formulated in need 2 (see Table 4.2).

From theory, an initial answer to RQ 2 would be DEMO-models extended with
explicit organization design decisions expressed as a set of values for some OIVs.
This initial answer should be validated in practice as will be done in Part II.
Before diving into the practical part of this research, in Chapter 5 the topic
of (Situational) Method Engineering is detailed and an overview of the method
elements found so far is provided, to guide the practical validation part of this
research.

72

“The whole difference between construction and creation is exactly
this: that a thing constructed can only be loved after it is constructed;
but a thing created is loved before it exists, as the mother can love
the unborn child.”

Gilbert K. Chesterton, in ‘Appreciations and Criticisms of the Works
of Charles Dickens’ (1991)

5
Towards a Method

The research challenge is to contribute to the design of a method, including sup-
porting tools, for the development of software from the ontological model of an
enterprise including explicit implementation design decisions, that can be applied
repeatedly and is adaptable to specific situations. A method is a step-by-step
approach to perform a system development project, based on a specific way of
thinking, consisting of structured activities and deliverables, preferably supported
by tools [17, 58, 199] and helps to develop software in an effective and efficient
way by standardizing the process [245, 151]. Such a method can be created (and
loved) before its actual construction.

In this chapter an initial answer to RQ 4 is provided by exploring the field
of Method Engineering and Situational Methods in Section 5.1. Then, existing
literature is reviewed for the presence of usable method elements in Section 5.2.
This chapter ends with some initial conclusions and directions for the practical
research in Section 5.3.

5.1 Method Engineering

Method engineering is the discipline to design, create and adapt methods for the
development of software systems [272, 58]. In creating or configuring a method,
often (proven) parts of existing methods [200], called method fragments [199], are
used. Creating a method from method fragments is also known as method as-
sembly and follows certain rules [59]. If such a resulting method is tailored to a
specific project or particular situation, it is considered a situational method [200].
Especially in creating situational methods from method fragments, it is impor-
tant to set the configuration and adaptation mechanisms in terms of fragment
configuration rules [490].

73

CHAPTER 5. TOWARDS A METHOD

This section will introduce the notions of method fragment (Section 5.1.1) and
situational method engineering (Section 5.1.2) and ends with implications for this
research (Section 5.1.3).

5.1.1 Method Fragments

Amethod fragment is a description of a method, or any coherent part thereof [199].
Method fragments can be created from existing methods (reverse engineering) or
by construction from scratch [206]. Method fragments can be categorized on 3
axes [199, 59]:

Perspective: a fragment is either a product fragment or a process fragment:

– a product fragment describes a deliverable, delivered by or required
within the method, such as specifications, designs, models,1 diagrams,
documents, reports, etc.;

– a process fragment describes an activity or task to be carried out or
a stage in between them, such as high level strategies, models of the
development process and detailed procedures.

Abstraction: a fragment is either conceptual or technical:

– a conceptual fragment is an objective description, such as model de-
scriptions and activities;

– a technical fragment is a specification that has been implemented with
IT. More specifically, this can be further discerned into:

* tools, including (model and diagram) editors,
* repositories to store models and diagrams, and
* process managers that guide the user through the modeling and
development procedures.

A conceptual fragment can be supported by one or more technical
fragments.

Granularity: a fragment can reside on one of five granularity layers, from high
to low:

– Method, if the fragment addresses the complete method for developing
the entire system, e.g., the (entire) method for Information Engineer-
ing;

– Stage, if the fragment addresses a segment of the life-cycle of the sys-
tem, e.g., function design or testing;

– Model, if the fragment addresses an aspect system of an abstraction
level of the system, e.g., a Data Model or a User Interface Model;

– Diagram, if the fragment addresses the representation of a view of a
Model method fragment, e.g., a Data Flow Diagram or a State (Tran-
sition) Diagram;

1A description of a model is a metamodel, see Section 3.1.1.

74

5.1. METHOD ENGINEERING

– Concept, if the fragment addresses the concepts and associations of
Diagram method fragments, e.g., a Process or (State) Transition.

Others mention method components [238] or chunks [382, 368] that are defined as
aggregates of fragments and therefore reside on the higher levels of granularity [2,
205, 388, 207]. To prevent that method fragments are arbitrarily combined into
meaningless methods, only fragments of the same category (in all three axes) may
be used to assemble a (situational) method [59].

5.1.2 Situational Method Engineering

Situational Method Engineering is the subarea of Method Engineering directed
towards the controlled, formal and computer-assisted construction of situational
methods out of fragments [200]. It combines the benefits of control by means
of standardization and reuse of existing method fragments with the benefits of
flexibility by providing means to tune a method to project-specific needs into con-
trolled flexibility [200]. The process of configuring a situational method consists
of a few steps [58, 199]:

1. project environment characterization,

2. selection of method fragments,

3. assembly of fragments into a (situational) method,

4. application and validation of the resulting method.

As the application of the method can provide more insights into the characteriza-
tion of the environment, or the environment can change during the application,
it may turn out the method needs to be refined or adapted in iterations following
the same process. Note there may be a difference between the situational method
as configured and the actual method as used in an intervention [3].

5.1.3 Implications for This Research

In an initial answer to RQ 4, it is shown that methods, and situational methods
specifically, heavily rely on the availability of method fragments.2 Therefore, a
first analysis of possible existing method fragments that support the creation of
an enterprise model-driven software development method, before creating addi-
tional method fragments. The categorization of method fragments outlined in
Section 5.1.1 will be used to define and describe the (possible) method fragments.
In line the model kinds (see Section 3.1.1) and the different types of change (see
Table 4.2), and in order to support the natural flow of conceptual models from
high-over to more detailed (see Section 3.2) – but still independent of technol-
ogy! – the abstraction category ‘conceptual’ is split into conceptual-abstract and
conceptual-implementable, where the latter is (very) detailed, low-level, and im-
plementable but not the actual IT implementation as a technical fragment.

2From hereon the term ‘method fragment’ is used instead of ‘method element’.

75

CHAPTER 5. TOWARDS A METHOD

5.2 Existing Method Fragments

In this section related research on creating software from enterprise ontology – as
provided by DEMO – is reviewed in the search for possible fragments that could
be part an enterprise model-driven software development method. The summary
of findings can be found in Table 5.1.

5.2.1 DEMO to Services

Several attempts have been made to design (micro)services from ontological mod-
els. Some define a (business) service as synonymous with a DEMO transac-
tion kind [197, 110, 486, 444], supporting the decoupling between consumer and
provider as suggested by SOA [447]. Some of this research includes an ex-
ample mapping to a Web Services Business Process Execution Language (WS-
BPEL) [333] implementation. However, as a transaction consists of one P-act
and many C-acts, involving acts performed by the initiator and executor of the
transaction in an alternating way (see CTP in Section 4.2.1), this is quite coarse-
grained with the risk of not being able to easily change the implementation of
parts of such a service. As these ideas need further development, (micro)service
creation is considered a method fragment to further explore in one of the ex-
ploratory case studies (see Chapter 6).

5.2.2 DEMO to Components

Albani and Dietz have created the Three Dimensional method for Business Com-
ponents Identification (BCI-3D), a way to group business tasks and corresponding
information objects into business components. This model is then used to define
components from enterprise ontology [110, 8]. They however do recognize that in
order to implement the identified components in software, additional implemen-
tation design decisions have to be taken. These ideas are considered a high-level
method fragment.

5.2.3 DEMO to Normalized Systems

Huysmans [218] has applied the principles from Normalized Systems theory to
Enterprise Ontology, as a base for automated translation from DEMO models to
working software. His approach however seems to be based on a single case and
lacks a feedback loop to allow for incremental improvements of the automated
transformation. Because of these limitations, these ideas cannot be considered
a method fragment yet but these ideas can be developed into a more formal
approach, and method fragment, to map DEMO models to NS elements (see
Chapter 8).

Huysmans also notes that as the “organizational elements” are missing in
the enterprise ontology, it is hard to identify combinatorial effects that hamper
flexibility, and, as a result, that it is unclear to what extent combinatorial effects
on the organizational level can or should be avoided. This strengthens the idea to

76

5.2. EXISTING METHOD FRAGMENTS

include enterprise implementation (Section 4.3) into the design of a method for
Enterprise Model-driven Software Development.

5.2.4 Realization: From O to I to D

De Jong [102, 101] suggests an approach, called realization, to first create the on-
tological models of the infological and documental organization (see Section 4.2.3),
based on the ontological model of the O-organization. In order to do so, he de-
fines multiple transaction kinds for sharing, recalling, remembering and archiving
P-facts to support a single original transaction kind. However, he does not seem
to define transaction kinds for sharing or remembering C-facts.

De Jong recognizes that the ontological model alone is not enough to fully
generate supporting software. Thus, in a next step de Jong suggests implement-
ing the actor roles in all (O-, I-, and D-) organizations and for all (P- and C-)acts.
Although he calls his approach a method, he mainly provides examples of im-
plementation, but does not suggest a detailed framework that can be used to
repeatedly decide on the implementation of acts and actor roles.

More specifically, table 11.1 in [124] shows a remember transaction for the
object when dealing with a request. A critical review from an ontological per-
spective however yields that this is wrong: since this is the action rule for dealing
with some act on the object, the object was already there and a share transaction
would be the only logical choice. Possibly the choice for a remember transaction
is the result from an implicit design decision where the executor of the transaction
still needs to save the information in its own data storage.

Research on enterprise implementation has shown that implementing actor
roles can be very complex and has its implications on software design and devel-
opment (see Section 4.3). Moreover, in a world that is full of automation, the
implementation is typically with IT, that is aimed at the infological and docu-
mental layer. The question then arises whether applying the realization approach
is really necessary or over-engineering.

Supported by the statement that software can be created without the creation
of the ontological models of the I- and D-organizations [117], using the layered
organization approach does not seem necessary for this research. The realiza-
tion approach is considered a potential method fragment that will not be further
explored in this research.

5.2.5 DEMO CTP Engine

Van Kervel et al. [465, 466, 421] report on a software engine able to generate
working operational software, taking the ontological enterprise model of a domain
as input. As opposed to both Huysmans and de Jong, he believes that enterprise
ontology is enough to create working software. A further investigation however
revealed that in the process of creating this engine, several implicit (organization)
implementation design decisions have been made and ended up being hard coded
in the engine. Moreover, this approach only seems to support changes in the

77

CHAPTER 5. TOWARDS A METHOD

ontological level, i.e., a new or changed product, service, or business rule, and not
on the implementation level, i.e., a new functionary type or organizational unit.

At the same time, van Kervel has done extensive work in creating a state
machine and a dynamic logic model to support the CTP (see Section 4.2.1),
including the automatic evaluation of action rules. There are however comments
that it is not fully compliant with the theory [179]. A quick analysis shows that
indeed it is not compliant anymore with the latest version of the CTP as little,
but important, details have changed over time.

Gouveia provides an alternative microservice based implementation of the
CTP using pots [178], based on Normalized Systems theory. In his attempt to
simplify the state machine, he seems to lose however some benefits of using en-
terprise ontology and the CTP. Also, he seems to mix enterprise ontology and
implementation without a clear view on the separation of the two, making it
impossible to make design decisions explicit, and possibly hampering agility.

Although both attempts have their limitations, there seems to be value in
supporting the CTP by working software. Both works are identified as a potential
method fragment and the focus for this research will not be in creating software
to support the CTP.

5.3 Conclusions

In this chapter the concept of method fragment and its categorization are explored.
In order to be able to create a (situational) method, several method fragments
are needed.

Furthermore, existing research in the area of creating software from DEMO
models is reviewed on the presence of usable method fragments. Although first
attempts have been made to create software from Enterprise Ontology, the con-
clusion is that there is still a big gap to create a complete method to generate
software from DEMO models that completely supports the end users and is flex-
ible in its implementation to the level that is required by the enterprise. Most
efforts seem to be put into creating software components to support the CTP,
but in doing so many researchers seem to have skipped the step of explicitly ad-
dressing enterprise implementation, resulting in the need for developers to deal
with such decisions themselves, possibly diminishing the end user support as well
as the quality and evolvability of the resulting software.

In Table 5.1 the relevant method fragments as found in literature are classified.
In particular, there seems to be a lack of technical fragments and a lack of support
for all DEMO aspects models. It strengthens the idea that method fragments are
needed that are executable by IT and cover all aspects of the DEMO metamodel
(Section 4.2.5), involving different technologies, and explicitly addressing organi-
zation implementation decisions, that can later be combined into a (situational)
method. This will be the basis for the practical research in Part II.

78

5.3. CONCLUSIONS

A
bs
tr
ac
ti
on

G
ra
nu
la
ri
ty Perspective

Product Process

Conceptual Method GSDP
/ abstract Stage MDSD, DEMO2services,

DEMO2components,
DEMO2NS, realization

Model DEMO aspect models,
implementation model

OER

Diagram DEMO diagrams and
tables

Concept see DEMO metamodel
(Figure 4.7), OIVs
(Section 4.3)

Conceptual Method
/ imple- Stage DEMO2WSBPEL
mentable Model DEMO exchange model

(XML and JSON)
Diagram
Concept

Technical Method
Stage CTP engine
Model OpenModeling,

Simplified Modeling
Platform, Sparx MDG

Diagram
Concept

Table 5.1: Identified existing method fragments categorized

79

80

Part II

Exploratory Case Studies

81

Parts of this chapter are originally published as M. R. Krouwel and
M. Op ’t Land, Business Driven Micro Service Design - An Enter-
prise Ontology based approach to API Specifications [264].1

6
ECS 1: Specifying Microservices

Abstract. As technology is evolving rapidly and market demand is chang-
ing quicker than ever, many are trying to implement service orientation and
adopt market standards to improve adaptivity. A microservice architecture
makes applications easier to scale and faster to develop, enabling innova-
tion and accelerating time-to-market for new features. The question then
arises how to design a manageable and stable set of microservices that is
sufficient for the business. This exploratory case study systematically de-
duces an algorithm to derive a set of microservices, expressed according to
the OpenAPI standard, from the ontological model of an enterprise, that
is stable by nature, sufficient for the business, and based on units of clear
size. This algorithm has the DEMO actor cycle at its heart and has been
evaluated with the real-world case Social Housing from ICTU by creating
a SwaggerHub implementation. Further research should clarify the role of
implementation choices in the algorithm.

6.1 Problem Formulation

As technology is evolving rapidly and market demand is changing quicker than
ever, many enterprises are trying to implement service orientation and adopt mar-
ket standards to improve adaptivity [111, 289]. However, when applying microser-
vices at an industrial scale, the manageability of its underlying software service
portfolio can become a problem [129]. Indeed, a large portfolio of “small” services
enables high adaptivity – just as sand is much more flexible in the construction
world than stones or prefab walls – but its governance can be a nightmare, low-

1A detailed mapping from the original paper to this thesis can be found on p. xxx ff.

83

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

ering its business value. This exploratory case study aims to find a method to
design a manageable, complete and stable set of microservices that is sufficient
for the business, while being adaptable in its software implementation.

As literature is limited on specifying the ‘right’ size of a microservice, or some-
times even in contradiction (see Section 3.4.2), in this research, a goal is to find a
clear size for the microservice, that is sufficient for the business and independently
changeable from a software perspective. Poorly defined microservices can lead to
increased development costs and often miss important use cases entirely [209].
O’Reilly finds, in a survey with 1502 respondents, that decomposing (business)
functions into microservices is one of the biggest challenges in adopting microser-
vices [289]. In this research, a goal is to find a set of microservices that is stable
and complete from a business perspective, thus with a traceable mapping from
business (services) to microservices – as soon as an enterprise changes its business,
e.g., from pigsty to restaurant, its portfolio of (business) products and services
will change anyhow, including its supporting microservices.

This exploratory case study is inspired by Stichting ICT Uitvoeringsorgan-
isatie (ICTU),2 a Dutch organization that supports Dutch government by explor-
ing methods, IT solutions and platforms that are built around the principle of
continuous change in organization and technology. The Social Housing domain
is of particular interest for ICTU as it’s being reorganized every few years and
many parties are involved. In order to create stability within this domain, inde-
pendent of how it is organized, it is desirable to have a stable and complete set
of technology-independent microservice specifications.

Summarizing, the goal is to find an algorithm to define a set of microservice
specifications that:

C1 is stable from a business perspective with respect to a set of (business)
products and services;

C2 is complete – i.e., sufficient and not more than strictly necessary – from a
business perspective;

C3 is changeable in its internal software implementation, while the external
behavior remains unchanged; and

C4 contains services of a well-defined size – i.e., with a clear scope.

This exploratory case study reports on an algorithm that defines the (trace-
able) mapping from an ontological enterprise model to API specifications. This
chapter is structured as follows: the background for this chapter was introduced
in Section 4.2, specifically the actor cycle, and Section 3.4.2; in Section 6.2 the cre-
ated algorithm is shown, along with its evaluation with the real-world case ‘Social
Housing’ from ICTU; in Section 6.3 the results and learnings of this exploratory
case study are summarized and in Section 6.4 the learnings are formalized in terms
of the goals within this research.

2https://www.ictu.nl/

84

https://www.ictu.nl/

6.2. BUILDING, INTERVENTION AND EVALUATION

6.2 Building, Intervention and Evaluation

As shown, earlier attempts have been made to define (micro)services from DEMO
ontological enterprise models (see Section 5.2), because they a) are stable with
respect to a set of (business) products and services, b) are complete with regard
to all real-world business actions, and c) use the transaction notion to decouples
transactors in a way very similar to SOA (see Section 4.2). In order to address
criteria C1 and C2, and C3, DEMO models are used as input for the algorithm.
As an API specification contains a stable method and protocol for communica-
tion while the technological implementation behind it remains unknown for the
consumer of the API and thus can change (see Section 3.4.2), the microservices
will be defined as APIs, in order to further address criterion C3. The created
algorithm explicitly defines the (traceable) mapping from the enterprises onto-
logical model to API specifications, making sure no use cases are left out and
resulting in a clear scope, focused on a single task, and thus with a well-defined
size, addressing criterion C4.

Earlier approaches seem to have ignored the actor cycle (Section 4.2.2) to
define a set of (micro)services. As the actor cycle is key in order to support
business actors, the algorithm in this research is mostly built around the actor
cycle (Section 6.2.1). The algorithm has been evaluated on the Social Housing
case from ICTU (Section 6.2.2), which resulted in many refinements. Below the
final version of the algorithm is shown.

6.2.1 Deducing the Algorithm From the Actor Cycle

By deducing the algorithm from the actor cycle, completeness can be claimed from
a process perspective: in the operation of an organization, actors typically select
an agendum from a list of agenda and process the selected agendum by retrieving
the applicable action rule, assessing the action rule, deciding on the response and
performing new acts (see Figure 4.5). As DEMO itself claims comprehensiveness
and conciseness (see Section 4.2), together this makes sure criterion C2 is met.

By taking apart the different steps in the operating cycle, several kinds of
microservices can be defined.

1. select agendum: the services that provide the possible agenda for an actor,
fulfilling an actor role, to select an agendum from, are called agenda services;

2. get applicable action rule(s): in an environment that is supported by soft-
ware, using the right services can be enforced by the specifications and no
additional services are needed;

3. assess: the services that provide the information on how to proceed are
called assess services, that will use read services that retrieve the facts;

4. decide on response: in order to comply to the autonomy of actors (see
Section 4.2.2), the decision is left up to human actors and no services are
defined for this step;

85

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

5. perform act(s): the services that perform the act(s) are called response
services, that will use write services to create the facts.

These services will be explained in more detail below.

Write Services Following the CTP, for each transaction kind 19 write services
have to be defined, one for each C-act kind (18 per transaction kind) and one
for the P-act, that deals with performing the act. For the API specification it
is irrelevant who uses it in order to perform an act – that will be a matter of
authorization. Additionally, write services are needed for all entity types in focus.

Read Services As information needs to be available for the actors, for each
fact type in the DEMO FM (both OFD and all DFSs) a read service must be
defined. The assess service for every action rule is considered a special kind of
read service that uses or aggregates other read services.

Assess Services For each ARS in the AM, an assess service must be defined
that evaluates the assess part of the action rule. As the assess part basically
consists of mathematical expressions on facts, the assess service will use read
services to retrieve the necessary information.

Response Services One response service is needed for each ARS, to allow
actors to easily perform one or the other branch of the response part of the action
rule. As the response part can consist of performing multiple acts, it will use one
or more write service(s).

Agenda Services For each actor role, an agenda service is needed in order for
the actor to gain insight in the agenda that require follow-up. It might be useful
or necessary to create more detailed services to only retrieve the open agenda
with a certain state (e.g., being promised), in order to be able to easily deal with
delegations.

Complete Algorithm

The algorithm below shows how to transform a DEMO model into a set of (mi-
cro)service specifications cf. the API metamodel (Figure 3.6a). The transforma-
tion is visualized in Figure 6.1.

Input: Ontological model of the enterprise, covering all aspect models, expressed
in DEMO-SL;

Output: Set of microservice API specifications;

Steps:

1. For each transaction kind in the CM: generate 19 write services (one
for each C-act kind and one for the P-act) for performing the act, e.g.:

86

6.2. BUILDING, INTERVENTION AND EVALUATION

Ac�on Rule Specifica�on
ev

en
t

p
a

rt

a
ss

es
s

A
P

I (
G

ET
)

re
sp

o
n

se
A

P
I

(P
O

ST
)

n
o

se
p
ar

at
e

A
PI

re
tr

ie
ve

 f
a

ct
 A

P
I

(G
ET

)

ca
lc

u
la

te
 f

a
ct

 A
P

I
(G

ET
)

lo
g

ic
n
o

se
p
ar

at
e

A
PI

th
en

-
b

ra
n

ch

el
se

-
b

ra
n

ch

w
ri

te
 A

P
I p

er
 C

/P
-a

ct

(P
O

ST
)

S
te

p
 1

0
…

*

0
…

*

d
ec

la
re

d
 f

ac
t

ty
p

e
S
te

p
 2

S
te

p
 3

d
er

iv
ed

 f
ac

t
ty

p
e

Fa
ct

 M
o

d
el

1
…

*

0
…

*

S
te

p
 4

S
te

p
 4

u
se

s

1
…

*

n
o

se
p
ar

at
e

A
PI

C
o

o
p

er
a�

o
n

M

o
d

el

ac
to

r
ro

le

C
o

o
p

er
a�

o
n

M

o
d

el

tr
an

sa
c�

o
n

 k
in

d

C
TP

1
…

*

1
…

*

a
g

en
d

a
A

P
I

(G
ET

)

S
te

p
 5

A
c�

o
n

 M
o

d
el

1
…

*

re
a

d
A

P
I (

G
ET

)
fa

ct
 t

yp
e

u
se

s

1
9

re
su

lt
s

in

re
su

lt
s

in

co
n
ta

in
s

co
n
ta

in
s

co
n
ta

in
s

fo
r

co
n
ta

in
s

re
su

lt
s

in

co
n
ta

in
s

re
su

lt
s

in

re
su

lt
s

in

u
se

s

co
n
ta

in
s

u
se

s
co

n
ta

in
s

u
se

s

1
…

*

0
…

1

D
EM

O
 A

sp
ec

t
M

o
d

el
L
e
g
e
n
d

D
EM

O
 m

et
a

ty
p

e
A

P
I (

ty
p

e)

F
ig
u
re

6.
1:

V
is
u
al
iz
at
io
n
of

th
e
m
ap

p
in
g
o
f
th
e
D
E
M
O

m
et
a
m
o
d
el

to
A
P
I
sp
ec
ifi
ca
ti
o
n
s

87

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

Name: TK01request

Operation type: POST

Summary: creates a TK01request if all needed parameters are provided

Parameter(s): registration (the variable in the product kind)

Response(s): created agendum or error message if agendum could not
be created

2. For each declared entity type in the OFD: generate one read service for
retrieving the related data, and generate one write service if the entity
type is in focus, e.g.:

Name: registration

Operation type: GET

Summary: returns registration data for given ID if it exists

Parameter(s): registrationID (integer)

Response(s): registration data for given registrationID or error mes-
sage if registration with registrationID does not exist

3. For each DFS (Derived Fact Specification): generate one read service
for calculating the derived fact, e.g.:

Name: calculateAge

Operation type: GET

Summary: calculates and returns the age for a given person if it exists

Parameter(s): person, day (datetime)

Response(s): age in years (integer) for given input

This service will use other read services.

4. For each ARS in the AM: generate one assess service and one response
service, possibly introducing additional services for several (sub) parts
thereof, e.g.:

Name: assessARS01

Operation type: GET

Summary: evaluates the assess part of the ARS for a given C-act if it
exists

Parameter(s): cactID (integer)

Response(s): ‘comply’ or ‘non-comply’ (boolean) or error message if
C-act with actID does not exist

Name: responseARS01

Operation type: POST

Summary: Performs the response for the given C-act and decision

Parameter(s): cact, decision (boolean)

Response(s): list of created agenda that have been created as result
of performing the response, or error message if C-act with act has
already been dealt with

88

6.2. BUILDING, INTERVENTION AND EVALUATION

The assess service will use other read services while the response service
will use write services.

5. For each (elementary and composite) actor role in the CM: generate
one agenda service, e.g.:

Name: agendaForAR01

Operation type: GET

Summary: returns a list of open agenda that AR01 needs to deal with

Parameter(s): none, or possibly filters like the act kind or transaction
kind

Response(s): list of agenda to deal with for AR01, or empty list if such
agenda cannot be found

For some services, object identifiers (IDs) were introduced, which is quite common
in software development and database design. The algorithm does not generate
PATCH, PUT or DELETE services, as from an ontological perspective informa-
tion and data are never changed or deleted. The algorithm also does not generate
OPTIONS, HEAD, TRACE, or CONNECT services as those operation types
are more on the infrastructural level. The algorithm has been implemented in
Python3 to ease generation and validation of the service specifications.

6.2.2 Evaluating the Algorithm

As mentioned in Section 6.1, the Social Housing domain is of particular interest
for ICTU as it’s being reorganized every few years and many parties are involved.
In order to create stability within this domain, independent of how it is organized,
it is desirable to have a standard set of APIs specifications. Moreover, there is
enough documentation available for this domain as the researchers have done more
work in this area [342].

In the Social Housing domain two main areas can be discerned: a) the regis-
tration of a home-seeker as a member, and b) assigning a house to the member.
The focus for the evaluation was on the first.

Input: Ontological Enterprise Model of the Social Housing Domain

The CSD (Figure 6.2) and TPT (Table 6.1) reveal the starting, periodic renewal
and ending of a registration. Starting the registration is initiated by the (aspirant)
member and executed after the registration fee has been paid. Every year the
registration is renewed against payment of a renewal fee. Ending a registration
can be initiated by the member – e.g., when moving to another area – or by
the Social Housing organization – e.g., in case of (repeated) non-payment of the
renewal fee. The model shows that actors in this domain need access to facts
about costs and terms, and about persons and (their) living, abstracted from how
access to these facts is arranged.

3Source code can be found at https://github.com/mkrouwel/demo2api.

89

https://github.com/mkrouwel/demo2api

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

CTAR01
(aspirant)
member

registration
starter

01

registration
payer

02

registration
manager

04

registration
payer

02

CTAR01
(aspirant)
member

registration
ender

03

registration
ender

03

0..* 0..*

Costs and terms

91 92

Person & living facts

composite
actor role

elementary
actor role

xx

xx

transaction
kind

self-initiating
actor role

xx

initiator link

Legend

multiple
transaction kind

access link

Figure 6.2: CSD for Social Housing

Transaction Kind Product Kind Executor Role

TK01 registration starting PK01 [registration] is started AR01 registration starter
TK02 registration paying PK02 the fee for [registration]

in [year] is paid
AR02 registration payer

TK03 registration ending PK03 [registration] is ended AR03 registration ender
TK04 registration manage-

ment
PK04 registration management

for [year] is done
AR04 registration manager

Table 6.1: TPT for Social Housing

ANNUAL REGISTRATION
PAYMENT

paid amount {MONEY}

REGISTRATION PERSON

nationality
day of birth {DAY}

the member of [registration]
is [person]

02

the payer of [registration]
is [person]

the fee for [registration]
in [year] is paid

registration management
for [year] is done

{YEAR}

standard registration fee {MONEY}
standard renewal fee {MONEY}

REGISTRATION x
{YEAR}*

STARTED
REGISTRATION

starting day {DAY}

ENDED
REGISTRATION

ending day {DAY}

[registration] is started

[registration] is ended

01

04

03

Legend

entity type

attribute type

{value type}

Pxx

product kind

property type

Figure 6.3: OFD for Social Housing

90

6.2. BUILDING, INTERVENTION AND EVALUATION

the age of [person] on [day] ≡ [day] minus the day of birth of [person]

[person] has active registration on [day] ≡ there exists a [registration]
for which the member of [registration] equals [person]

and [registration] is started
and starting day of [registration] is smaller than or equal to [day]
and (NOT [registration] is ended

or ending day of [registration] is greater than [day])

Table 6.2: DFSs for Social Housing

The OFD (Figure 6.3) shows the registration as core entity type, and the
starting and ending of a registration as product kinds. Additionally, the entity
type person is shown – gray colored and thus out of focus, as persons are not
created within this domain – including the property type that a person is the
member and/or payer of a registration. The value type {year} is included to
express a) the product kind of annual registration payment, b) the definition
of the (aggregated) entity type registration × {year} for the product kind
‘annual registration payment’, and c) several decisions taken yearly – modeled
as attribute type of {year} – such as the standard registration fee. In deciding
upon starting a registration, (derived) facts about the existence of one or more
active registration(s) for and the age of a person are needed; Table 6.2 shows the
DFSs to calculate those.

Action rules guide actors in their decisions. Table 6.3 shows the ARS for
the registration starter (AR01) to settle the agendum kind registration starting
is requested (TK01/rq). This action rule says to assess that the participants are

ev
en

t

when registration starting for [registration] is requested (TK01/rq)

with the starting day of [registration] is some day;
the member of [registration] is some person;
the payer of [registration] is some person

a
ss
es
s

if rightness: the performer of the request is the member of [registration];

the addressee of the request is a registration starter

sincerity: * no specific condition *
truth: the age of member of [registration] on starting day

of [registration] is greater than or equal to 18;
nationality of member of [registration] is Dutch;
NOT member of [registration] has active registration

on the starting day of [registration];
the year of the starting day of [registration] is greater than

or equal to the year of Now

re
sp
o
n
se

if performing the action after then is considered justifiable
then promise registration starting for [registration] [TK01/pm]

to the performer of the request

else decline registration starting for [registration] [TK01/dc]
to the performer of the request

with * reason for declining *

Table 6.3: ARS01 for AR01 (TK01/rq)

91

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

authorized to play their (performer and addressee) role in this request, that the
(aspirant) member is at least 18 years old and Dutch, that the (aspirant) member
doesn’t have an active registration at the starting day of the new registration,
and that the starting day is in the current year or later – the latter implies that
a registration can start retrospectively, but limited to the current year. If the
assessment yields a positive result, normally the registration starter can proceed
to request the (aspirant) member to promise that the registration will be started;
otherwise the registration starter normally should decline to do so. As an action
rule is not fully deterministic, the registration starter remains free to – responsibly!
– deviate from this rule. For the chosen focus within the Social Housing domain,
11 ARSs have been defined (see Appendix B).

All DEMO models have been converted (manually) into a JSON format (see
Appendix C) that can easily be fed into the reference implementation. In order
to be able to generate working software, the only extension made to the DEMO
model was a mapping from value types and result types of derivations to primitive
software data types such as number, boolean, or datetime.

Output: List of API Specifications

In Table 6.4 for each step in the algorithm it is shown which services are cre-
ated. The complete generated YAML file for the given input can be found in
Appendix D. All (109) services have been loaded into SwaggerHub,4 a tool for
API design and documentation based on OAS, to confirm that the output of the
algorithm conforms to OAS. As an example, the specifications for two services
are shown in Figure 6.4.

Step Microservices Total Type

1. TK01request, TK01promise, TK01decline, . . . 4 ∗ 19 = 76 POST
2. registration, person, year 3 GET

1 POST
3. calculatePersonAge,

calculatePersonHasActiveRegistration
2 GET

4. assessARS01, responseARS01, assessARS02, 11 GET
. . . 11 POST

5. agendaForCTAR01, agendaForAR01,
agendaForAR02, agendaForAR03,
agendaForAR04

5 GET

Total 109

Table 6.4: Full list of APIs for Social Housing as generated by the algorithm

4https://swagger.io/tools/swaggerhub/

92

https://swagger.io/tools/swaggerhub/

6.2. BUILDING, INTERVENTION AND EVALUATION

paths :
/TK01rq :
post :
summary : c r e a t e s a new TK01=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/agendaForAR01 :
get :
summary : r e t r i e v e s agenda f o r AR01
re sponse s :
'200 ' :
d e s c r i p t i o n : agenda f o r AR01 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

components :
schemas :
CFact :
type : ob j e c t
p r op e r t i e s :
per former :
type : s t r i n g
example : 'Martin '

addres see :
type : s t r i n g
example : 'Erik '

i n t en t i on :
type : s t r i n g
example : rq

product :
$ r e f : '#/components/schemas/ProductKind '

Figure 6.4: Specification of services TK01request and agendaForAR01, and com-
ponent CFact, in OAS format

93

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

During development, it was found that defining the DEMO product kinds,
entity types and value kinds as reusable specification components greatly reduced
the complexity of the specifications; in OAS these are defined as components. Ad-
ditionally, a reusable (specification) component for CFact was developed, shown
at the bottom of Figure 6.4. This component can easily be used for other cases
as well. It was chosen to use objects instead of object identifiers where possible,
a decision that is easily changed as the services are there to get an object by its
identifier (ID).

6.3 Reflection and Learning

In this section a reflection is provided whether the algorithm meets the goals and
criteria that were set in Section 6.1 and on the design decisions that were taken
in the creation of the algorithm.

6.3.1 Reflecting on the Criteria

The algorithm for specifying microservice APIs will be evaluated with respect to
the criteria as defined in Section 6.1. As the set is generated from an ontological
model of the enterprise, it’s by definition stable with respect to a set of products
and services, meeting criterion C1. As new products or services are identified,
the algorithm can easily generate the additional microservices. As ontological
models are said to be comprehensive and concise, and the operating cycle is used
as a basis for the algorithm, the resulting set is complete, meeting criterion C2.
Organization implementation [265], such as delegations, might require additional
services or additional parameters in existing services. As the set only specifies
APIs for the microservice, their software implementation is undecided yet and
thus changeable, meeting criterion C3. In fact, meeting criteria C1, C2 and C3
follows directly from the deduction of the algorithm from the actor cycle.

Criterion C4 can only be reflected on empirically. It is claimed that all mi-
croservices are well-defined and are focused on one (business) responsibility, pos-
sibly using other services, and therefore have a clear scope and size. Although
an externally measurable size for a microservice is not provided, this research at
least progressed the definition of the ‘right’ size for a microservice. Generating
service definitions on this level makes it easier to maintain the large amount of
services – this concept is similar to that of Normalized Systems expanders (see
Section 3.4.3) – even by multiple and distributed teams. Additional research is
needed to define a method to measure the size of a microservice, as well as to
define the ‘right’ size for a microservice, possibly depending on many variables.

The algorithm mostly produces GET (read) services on the ‘raw’ data (such as
registration) and only provides POST (write) services on the process level, leaving
out POST services on most entity types and completely leaving out services of
another operation type, such as PUT, PATCH and DELETE. This is in contrast
to current practices that define services of (almost) all HTTP operation types on
the data level and usually leaves out services on the process level. Taking the
C-act as unit of work – embedding one independent and several dependent facts

94

6.3. REFLECTION AND LEARNING

– provides integrity from a process perspective, ensuring that only a consistent
set of data can come into existence. As a result, the algorithm creates services
that are driven by business (demand), where current practice typically seems to
define microservices from a supplier perspective on top of existing data sources.

During the evaluation of the algorithm, it was found useful to validate the
meaningfulness for the business end users. As it wasn’t part of the criteria, this
validation was not done. In further evaluations it seems necessary to do additional
field evaluation with end users.

6.3.2 Reflecting on the Design Decisions

During the application of the algorithm, a mapping from the value types in the
OFD, i.e., year, day, money, nationality, to data types had to be made. Currently
this is done by extending the DEMO model with primitives. It might be desirable
to separate this mapping to primitives from the input model in a next iteration.

While HTTP is one of the more popular internet protocols, others exist, such
as SMTP, (S)FTP, MQTT, AMQP and XMPP. A next iteration of the algorithm
can include extensions or abstractions to other protocols, especially where there
are relevant standards available, similar to OAS for HTTP.

Currently, the decision part – the first and default sentence of the response
part – of an action rule is left out of the design of APIs. It could be argued that
this can also be seen as a microservice, though often – or at least: preferably
– executed by a human actor. Adding such a decision API would also create
the opportunity to add an action rule API, covering the complete execution of
a single action rule (steps 2-5 of the actor cycle), thereby making it possible
to completely outsource its implementation – as part of further research on the
mutual dependence of organization splitting with IT splitting [339].

Instead of creating one generic service for handling C-acts, it was chosen to
define a set of services. The reason for doing so is to minimize complexity in the
implementation and to adhere to the principle of ‘Separation of Concerns’. By
separating this service into many smaller services, it also becomes easier to grasp
the advantages of (true) microservices such as independent scaling.

Some transformation steps in the algorithm are or can be influenced by (or-
ganization and/or software) implementation choices (see Section 4.3), such as
regulations regarding archiving or security, delegation of work from one actor to
another, the mapping from value types to technical (primary) data types, as well
as how external information is provided – e.g., completely given by the initia-
tor or referenced by with a key, including the permission for the executor to use
the key to retrieve the required information. The role of such implementation
choices should be made more explicit in next iterations of the algorithm, possibly
resulting in additional services.

In the algorithm read services are defined on the entity and value type level.
However, it could be considered to further detail this into different microservices
on the level of attribute type, property type and product kind, supporting an even
more distributed data storage model and possibly a better performance as only the
strictly required data is retrieved. The downside however can be that splitting

95

CHAPTER 6. ECS 1: SPECIFYING MICROSERVICES

this up into several services introduces an overhead in computing and network
latency with a lower performance as result. Further research should investigate
whether splitting up to a lower level is useful.

6.4 Formalization of Learnings

In this exploratory case study the goal was to deduce an algorithm to generate a
set of microservice specifications that is stable, complete, changeable in implemen-
tation and contains services of well-defined size. It has been shown that DEMO
offers a good starting point to generate microservices that are (relatively) sta-
ble and (claimed) complete. By defining microservices in terms of APIs, they are
changeable in their implementation. As the algorithm generates a fine-grained set
of microservice specifications that are all focused on one (business) responsibility,
it is claimed they have a well-defined scope and size.

This exploratory case study has shown that defining (implementable) (mi-
cro)services specifications from DEMO models is possible. The only implementa-
tion details added are the (software) primitives for the value types in the OFD.
This also shows that software can be built around a steady core while being
flexible in its software implementation. Using the realization approach (see Sec-
tion 5.2.4) does not seem necessary, nor does it address the issue of specifying
primitive types. This exploratory case study confirms that the overall method
should use DEMO models and (conscious) chosen implementation decisions.

6.4.1 Identified Fragments

The conceptual mapping from DEMO to microservice or API specifications is
considered a conceptual-implementable process fragment. Its counterpart imple-
mentation in Python to generate API specifications in OAS from a DEMO model
in JSON format is a technical process fragment.

6.4.2 Implications For Future Research

While generating API specifications can be useful, the software that conforms
to these specifications still has to be built. As the specification is not an actual
implementation, it makes sense that this exploratory case study did not include
the concept of Enterprise Implementation. However, in order to really bridge
the gap from conceptual enterprise models to software implementation, follow-
up research should focus more on actual implementation in software, supporting
concepts from the Enterprise Implementation Framework.

96

Parts of this chapter are originally published as M. R. Krouwel and
M. Op ’t Land, Using Enterprise Ontology as a basis for Require-
ments for Cross-Organizationally Usable Applications [263].1

7
ECS 2: Using Mockups to Validate

Requirements for Similar Enterprises

Abstract. Developing software that can be (re)used by multiple (sim-
ilar) enterprises is becoming increasingly important. However, actually
reusing business software has been hindered in practice often by implicit
assumptions about enterprise and software implementation. A procedure
is proposed to gather and validate requirements for software for similar en-
terprises that, taking DEMO as starting point, a) is easy to communicate,
b) can discern differences between similar enterprises, and c) has an at-
tractive ROME. While evaluating this procedure in a large real-world case,
it also appeared to be possible to a) systematically design the ‘unhappy’
flow as well, b) define software architecture principles for supporting enter-
prise agility, and c) systematically design mockup screens based on DEMO
models. Finally, the procedure greatly objectified the discussions between
all stakeholders involved.

7.1 Problem Formulation

Developing software that can be (re)used by multiple enterprises is becoming
increasingly important [91, 496, 244, 19]. Especially in (international) coopera-
tion(s), ranging from open-ended without any agreements on one side to one with
a high degree of sector agreements and standards on the other side, reusing (busi-
ness) software is becoming more and more popular [243]. Being able to develop
a piece of software once and use it in several enterprises is, obviously, one of the

1A detailed mapping from the original paper to this thesis can be found on p. xxx ff.

97

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

main benefits to be achieved.
Reusing IT components among multiple enterprises is a great concept in theory

and has been quite successful in the context of inter-enterprise reuse of technical
infrastructure: modern operating systems, database management systems, com-
ponent infrastructures, web servers, web browsers, etc., are examples of infras-
tructural components that can be (re)used by multiple enterprises [54]. Reusing
business software, however, has been hindered in practice often by implicit as-
sumptions about enterprise and software implementation [494, 458]. How often
is similar software developed multiple times, just because of small differences in
the requirements? And how often do enterprises adapt their processes to fit a
standard software package, such as an ERP system, as it is not possible to adapt
the package to meet the enterprise’s specific needs?

This exploratory case study reports on a procedure that uses DEMO (see
Section 4.2) and mockups in the process of gathering and validating requirements
for software that can be used by similar enterprises. The procedure a) is easy
to communicate, b) can discern differences between the (similar) enterprises, and
c) has an attractive Return On Modeling Effort (ROME). By using mockups to
elicit the requirements and validate enterprise models, within a relatively short
period great insights in the similarities and differences between enterprises and
the consequences for their supporting software can be gained.

The procedure has been evaluated in a large real-world case at an Interna-
tional Public Private Organization (IPPO)2 that supports common concerns of
National Offices that grant patents. These National Offices have their own way of
working, including their own supporting software systems that were loosely based
on what once were copies of the same software system; several offices have adapted
the software in terms of business rules, supported processes, and integration(s)
with CMSs and DMSs. The goal of this exploratory case study was to find the
differences between three National Offices to see whether these offices could be
supported by one software system.

The remainder of this chapter is structured as follows: the background for
this chapter was introduced in Section 3.2 (GSDP), Section 4.2 (DEMO) and
Section 3.4.1 (mockups); in Section 7.2 the concept of similar enterprise is de-
tailed, the created procedure is presented, and the evaluation with the real-world
case IPPO is shown; in Section 7.3 the results and learnings of this exploratory
case study are summarized and in Section 7.4 the learnings are formalized in terms
of the goals within this research.

7.2 Building, Intervention and Evaluation

First, the concept of similar enterprises is defined and principles and choices in
the design of the procedure are explained. Then the procedure to gather and
validate requirements for the design of software of similar enterprises is elabo-
rated. The desired end result of this procedure is a validated set of business and

2Between 2012 and 2022, 6,000 to 7,000 employees worked at IPPO in over 30 countries.

98

7.2. BUILDING, INTERVENTION AND EVALUATION

software requirements that makes explicit the similarities and differences between
the investigated enterprises.

7.2.1 Similar Enterprises

Enterprises are said to be similar when they offer the same kind(s) of products
and/or services. For example, all health care insurance companies are considered
similar, as they all provide health care insurance, although the exact products
delivered may vary. In terms of GSDP, enterprises can be said to be similar when
their businesses share the same function model. Multiple enterprises sharing the
same function model can have different enterprise ontologies. And when those
enterprises have the same enterprise ontology, their enterprise implementations
are likely to differ. In an ideal situation, one piece of software supports similar
enterprises, possibly with (slightly) different enterprise ontologies and likely with
different enterprise implementations.

In traditional requirements engineering processes, the resulting set of require-
ments usually describes the current or future enterprise implementation. However,
this approach easily misses future changes in the enterprise and thus endangers
reusing the supporting software in other enterprises.

DEMO has shown to offer a quick way to find similarities and differences on the
enterprise ontological level, and to clearly distinguish those from similarities and
differences in their implementations. For example, Op ’t Land et al. [338] showed
in six weeks that the enterprise ontologies of the Cargo business processes of the
two merging parts of Air France and KLM were very alike and allowed to compare
the enterprise and software implementation of these processes. Mulder [324] has
looked at 22 complaints boards of the Dutch Stichting Geschillencommissies Con-
sumentenzaken (Dispute Settlement Boards for Consumer Affairs) using DEMO
and found that the 22 boards share the same enterprise ontology, but have differ-
ent enterprise implementations.

7.2.2 Working Principles and Design Choices

The main principles to create the procedure were that

a) it should allow for open discussion,

b) it should be possible to involve employees with different positions, i.e., man-
agement, subject-matter expert, legal, etc., and

c) the models created are understandable and/or falsifiable by means of un-
derstandable views by everyone involved.

As DEMO allows to easily find similarities and differences between enterprises,
DEMO models will be used as starting point. As communicating and validat-
ing DEMO models in their pure form is considered difficult (see Section 4.1.3),
mockups will be used instead as they have proven to be understandable by most
audience (see Section 3.4.1).

99

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

7.2.3 Procedure

The procedure is split into a preparation phase and a validation phase. The total
time spent was 200 person days, of which 128 days were by Capgemini and the
other 72 were by IPPO and National Offices.

Preparation Phase

In this phase, a draft DEMO model is created using existing materials such as
process models and software implementation, possibly complemented with inter-
views.3 In line with earlier research on transforming DEMO acts to software
design [118, 219, 262], for each C-act agendum kind a mockup is created. As the
being executed of a P-act can only be known by performing the corresponding
declare C-act [119, p. 128], a separate mockup for performing the P-acts is not
necessary. Depending on the act kind and its relevant action rule(s), the mockup
should show the relevant data so that the actor can take a decision and/or enter
new data.

CTAR01
(to-be)
member

AR01
membership

starter

TK01

AR02
membership

payer

TK02

MTK01

person data

(a) CSD

in

rq

rqdc

dc

pm

pm da

daac

ac

rj

rj

initiator

executor

TK02/
rq

TK02/
ac

(b) TPD for TK01

PERSON
– – – – – – – – – –
day of birth {DAY}

MEMBERSHIP
– – – – – – – – – –
membership type

is member of

(c) OFD

Figure 7.1: Selection of diagrams of the DEMO model for a fictitious membership
office

3This is also known as reverse engineering, as shown in Figure 3.3.

100

7.2. BUILDING, INTERVENTION AND EVALUATION

Transaction Kind Product Kind Executor Role

TK01 membership starting PK01 [membership] is started AR01 membership starter
TK02 membership payment PK02 [membership] is paid AR02 membership payer

Table 7.1: TPT for a fictitious membership office

the age of [person] on [day] ≡ [day] minus the day of birth of [person]

Table 7.2: DFS for a fictitious membership office

The process of determining the contents of a mockup is shown by two exam-
ples using a fictitious membership case (see Figure 7.1, Table 7.1, Table 7.2 and
Table 7.3). Suppose a transaction of kind TK01 is requested. It is of no relevance
whether it is the member-to-be itself who enters the data into some (online) form,
or whether it is an administrative employee who enters the data on behalf of
the member-to-be. The data needed for the membership starting concerns some
person data (see Figure 7.1c). If the person is not yet known in the database,
this data must be entered – when the membership office uses the personal data
as known by the government (residential registration office), every person is re-

Figure 7.2: Example mockup to perform a TK01 request for the fictitious mem-
bership office

101

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS
ev
en

t when membership starting for [membership] is requested (TK01/rq)

with the type of [membership] is some membership type;
the member of [membership] is some person

a
ss
es
s

if rightness: the performer of the request is the member of [membership];

the addressee of the request is a membership starter

sincerity: * no specific condition *
truth: the age of member of [membership] on Now

is greater than or equal to 18;
there are no open payments (TK02) for any membership of which

the member of the new membership is also the member

re
sp
o
n
se

if performing the action after then is considered justifiable
then promise membership starting for [membership] [TK01/pm]

to the performer of the request

else decline membership starting for [membership] [TK01/dc]
to the performer of the request

with * reason for declining *

Table 7.3: ARS01 for AR01 (TK01/rq) of a fictitious membership office

Figure 7.3: Mockup to respond to a TK01 request for the membership office

102

7.2. BUILDING, INTERVENTION AND EVALUATION

garded to be known. The resulting mockup (Figure 7.2) thus contains a part to
enter data about the membership, a part to select or enter data about the mem-
ber (person), and a button to perform the request, as well as to save (without
submission) the current state of the form or to cancel and close the current form.

After being requested, actor AR01 now needs to decide on a promise or de-
cline. In order to do so, it needs to evaluate the business rule as specified in
Table 7.3. As a member (to-be) can have multiple memberships at the same
time, the membership office wants to check there are no open payments for any
membership here the member of the new membership is also the member. Thus,
AR01 needs information about the membership, about the person and about the
(open) payments. The resulting mockup (Figure 7.3) thus contains parts that
show information about the membership, about the person, and about the (open)
payments. The mockup also contains the buttons to decide between a promise and
a decline, and additional buttons are provided for saving and canceling entered
data, supporting a possible interruption in the operation.

Validation Phase

In this phase, the (draft) DEMO model and mockups are used to validate the
requirements while enriching them with implementation details. The procedure
defines the following steps that are performed for each business process that con-
sists of a set of related transaction kinds:

1. Identify and validate the transactions kinds in the CM that are needed
to create the product kind(s). This step is independent of a particular
implementation, such as the working order, the way in which it is executed
by human beings, and the way in which it is supported by software.

2. Identify and validate the acts in the PM and the dependencies. Make sure
to distinguish true (existential) dependencies from a chosen order of working
(implementation). As the PM is based on the CTP that provides not only
the happy flow, the model now also include the ‘unhappy’ flow.

3. For each C-act from the acpm, determine whether it is performed explicitly
or implicitly (tacitly). For explicit C-acts that have to be supported by
software, the software must provide one (or more) screen(s) that shows the
relevant data and allows for entering additional data. For implicit C-acts,
no screens are needed.

4. From this step the created mockups are used to further validate the DEMO
model. By showing the mockups for the explicit C-acts in the order as
defined by the PM and possible chosen order of working, all findings from
the previous steps are validated and/or improved upon. In particular, the
preferred order of working will become more clear, consciously restricting
the freedom left by the dependencies between acts as defined in the PM.

5. Discuss the contents of the mock-up:

103

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

� What decision is made: this should reflect the assess part of the relevant
ARS for the C-act, and thus of the path or paths in the PM.

� What data is entered: this should reflect the response part of the
relevant ARS for the C-act. Moreover, this data should be represented
in the FM.

� What data is needed: this should reflect parts of the event and assess
parts of the relevant ARS for the C-act. Moreover, this data should be
represented in the FM, and the need for this data should be visualized
in the CM by an access link.

For reference data, such as a list of countries or (yearly) fees, it should be
discussed whether these lists should be manageable in the running software.

6. Discuss the applicable business rules per mock-up. This will validate the
contents of the assess part of the relevant ARS for the C-act, providing
input for the data needs.

7. For each mockup, discuss which department or functionary type uses it.
This will make explicit how authorization and delegation is arranged.

8. Make sure to perform a consistency check between all the deliverables pro-
duced. Especially when transaction kinds are reused, such as payment, vari-
ations could have been introduced in the requirements for the data entered,
needed, or the actor role assignment, depending on the business process at
hand. The audience should be confronted with these differences, making
explicit why these differences are there or concluding there are in fact no
differences and the execution should be the same, no matter who initiated
the transaction kind.

For these steps it doesn’t matter whether the audience is from a single department,
an entire enterprise, or multiple (similar) enterprises at the same time. Especially
the latter could result in interesting discussions about the way the enterprise
ontology is implemented. When a separate session is used for each enterprise
or department, it is up to the facilitators to detect, and possibly discuss, the
differences in implementation.

7.2.4 Evaluating the Procedure

Directed by IPPO, from 2002 to 2005 software was developed for the National
Offices to support their business processes. This piece of software was highly
adaptable in order to conform to national laws and differences in way of working,
and, as a result, every National Office had its own software configuration.

In order to support a single request for an international patent, operational-
ized as separate patents in multiple countries, National Offices hand-over requests
to other National Offices. In 2009, the idea came up to connect the systems to
exchange data but an independent feasibility study in 2010 identified 54 problems
on both the business – e.g., missing functionality, difficult interaction design –

104

7.2. BUILDING, INTERVENTION AND EVALUATION

and technical level - e.g., software failure, bad database design, and missing doc-
umentation. The causes of these problems were traced back to its original design:
a) the design was based on an older version of the software reflecting a limited
set of requirements, b) the National Offices were not involved in the design phase,
and, c) as a consequence of the bad design and the high degree of customization,
every National Office had created its own instance of the software and integrated
it with local software such as a CMS and/or DMS.

In order to gather the requirements of these National Offices, an initial study
was performed at three National Offices, making explicit the similarities and dif-
ferences between them. The focus was on identifying the as-is situation at the
business level, i.e., the main processes and the way in which they should be
supported by software. The identification of optimization opportunities at the
business level (to-be) was out of scope.

Preparation Phase

In the first phase, for each National Office a one-day workshop and a few interviews
were held to gather the input to create the (draft) DEMO CM and PM. More than
90% of the defined transaction kinds were present in all three National Offices’
CMs. Additionally, a (draft) FM was created by reverse engineering the existing
database model, which was similar for all three National Offices. Based on the
draft DEMO model, for every (relevant) C-act a mockup was created using a
rapid wire framing tool (see Figure 7.4 for an example).

Figure 7.4: Example mockup for patent requesting

105

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

Validation Phase

In this phase, for three National Offices, a separate workshop4 was organized
in which the (8) steps mentioned above were executed. Each workshop lasted
three days to discuss all business processes in an elaborate way with domain
experts, IT directors, administrative, financial, and legal officers, and the sponsors
of the project. For each step, large posters and slides were used in an interactive
way (Figure 7.5). During the workshops, two team members made notes of the
discussed topics, including relevant implementation details (Table 7.4) After each
3-day workshop session, the results were summarized and the notes were added to
the DEMO models. To minimize interpretation issues, the notes and models were
sent to the National Offices that were offered the opportunity to provide feedback
in case notes were misinterpreted.

In the second and third workshops, insights gained from the previous one(s)
were taken along and discussed, making explicit the differences between these
National Offices. After having finished the three workshops, the similarities and
differences between the DEMO models and implementation details of the three
National Offices were consolidated. Specific results include:

� A DEMO model that fitted all three National Offices was created, detailing
which activities were (not) applicable per National Office. The total CM
(partly shown in Figure 7.6) consists of 70 transactions and 21 information
links. Although there are almost no international regulations on granting a
patent, the models are similar to a large extent. Some business processes
or individual transaction kinds simply did not exist for some National Of-
fice(s), indicated by a gray diamond in Figure 7.6. For example, for National

Transaction kind C-act
National Office

A B C

T01 - Grant patent

rq E E E
pm E E E
da I E E
ac I I I
dc E E E
rj E E E

T07 - Examine formally

rq E E E
pm I I I
da E E E
ac I I E
dc I E E
rj E E I

Table 7.4: Excerpt of the results of the implicit (I)/explicit (E) analysis

4Separate due to travel and language reasons.

106

7.2. BUILDING, INTERVENTION AND EVALUATION

in

rq

rqdc

dc

pm

pm da

daac

ac

rj

rj

initiator

executor

TK02/

rq

TK02/

ac

Figure 7.5: Example of capturing implicit/explicit

Patent Off ice

FB04

IPC Classif icat ion

FB05

Patent registers

FB01

Terms

FB02

Fees

A11

Substant ive judger

A09

Substant ive
examiner

A07

Formal examiner

A06

Pre- classif ier

A08

Searcher

A05

Minimum
requirements
examiner

T11

Judge substant ively

T09

Examine
substant ively

T07

Examine formally

T06

Pre- classif icat ion

T04

Check military
interest

T08

Perform search

T05

Examine minimum
requirements

A01

Patent grantor

CA10

National defense

T01

Grant patent

CA01

Patent applicant

What should be
paid?

Respected?

Exist ing?

What class?

T03

Pay fee

Figure 7.6: DEMO CM of patent granting

107

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

Office A check military interest (TK04) is mandatory by law, for National
Office C it’s optional, depending on the content of the patent requested,
while National Office B never checks this. Also, National Office B does not
perform a substantive examination or search, as a patent is always granted
– in case of conflicting patents, the involved parties can resolve this in court.

� Although the true dependencies between transaction kinds are the same
for every National Office, the specific order of working differed a lot. For
example, while one National Office performed the search at the beginning to
prevent unnecessary work, another one performs it at the end because the
costs are high. This implies that different screen flows better fit the needs
of the different enterprises.

� Whether an act is performed implicitly or explicitly is to a large extent
the same for every National Office (Table 7.4). However, differences were
also detected, especially in the transaction kinds that are both initiated and
executed within the enterprise itself, i.e., there is no external party involved.
For example, in National Office A it is not possible to decline any internally
initiated transaction. And, while in National Offices A and B an implicit
accept holds until an explicit reject is performed, in National Office C the
accept has to be performed explicitly, otherwise a reject is assumed. The
differences imply that not every screen is used by every National Office.

� The data entered at each screen (if applicable) for every National Office is
the same. Also, the information needed (indicated by information links in
the CM) is the same. The screens were very helpful as they brought the
models alive.

� It was discovered the functionary type to actor role mapping differed a lot
per National Office. Discussions about the fulfillment of actor roles at one
National Office actually resulted them to introduce a new functionary type
to fulfill actor role AR01 as coordinator of the grant process. By fulfilling
this actor role explicitly, the control in coordination is expected to increase,
shortening throughput times.

� As already indicated by some examples above, the sharing of information of
other National Office helped them find the core processes and activities, as
well as finding new business improvement opportunities.

� Based on the findings outlined above, two (software) architecture principles
were defined:

1. the software system should be able to support different orders of work-
ing (as a result of Step 4.); and

2. the software system should be able to deal with different actor role to
functionary type mappings (as a result of Step 7.).

The results were supported by all three National Offices and therefore the
conclusion is that the procedure indeed helped to objectify the discussion. Based
on these results, the estimation is that the differences between the three National

108

7.3. REFLECTION AND LEARNING

Offices, and probably between all National Offices, are relatively small, suggesting
it is possible to create one piece of software to support them all.

7.3 Reflection and Learning

The goal of this exploratory case study was to design a procedure to gather
and validate requirements for software for similar enterprises that a) is easy to
communicate, b) can discern differences between the enterprises, and c) has an
attractive ROME. In the validation phase, mockups were used to visualize the
DEMO models that represent the functions of the software. The participants
stated that the use of mockups was a great way to communicate and validate the,
sometimes rather abstract, DEMO models, as they ‘brought alive the system’.

The use of DEMO has shown its benefits in finding differences in both the
enterprise ontologies and the enterprise implementations. Differences in the on-
tologies were mainly a result from differences in applicable regulations, such as
the military interest check that was enforced by law for National Office A but not
applicable for National Office B. The implicit/explicit analysis and actor role as-
signment analysis, as well as discussions about the screen flows, have offered great
insights in the enterprise implementations, and helped in validating the enterprise
ontologies. DEMO helped to distinguish the differences in the enterprise ontolo-
gies from differences in the enterprise implementations. While this exploratory
case study was performed prior to the existence of the EIF (Section 4.3), in ret-
rospect it can be concluded that the OIVs used in this procedure are functionary
type, order of working, and whether an agendum kind is performed explicitly or
implicitly.

With a total of 200 days spent for the analysis of 3 enterprises, including a
consolidation of the similarities and differences, the ROME seems good. However,
as there are no other cases studies that have used the designed procedure, and
there are no similar approaches known, it is impossible to compare the ROME of
this procedure to others.

In applying the procedure, some other interesting benefits were found: first, as
the CTP includes the ‘unhappy’ flow, it is automatically a systematic part of the
requirements and design of the software; second, (software) architecture principles
were defined; and third, it has been shown that it is possible to systematically
design mockups from DEMO models.

Using the CTP, it is possible to design screens independent of its actual user,
i.e., whether the user is an internal employee or an external customer or supplier.
The screens themselves are actually used for performing an (in)formative act,
fully determined by the ontological act. The performer of the (in)formative act
can but need not be the same as the performer of the ontological. For example,
the screen used for requesting a membership (Figure 7.2) is for entering the data
necessary for the membership as determined in the ontological act, i.e., member
name, day of birth, etc. The same screen can either be used by both a member-
to-be requesting the membership online and by an employee entering the data
after a letter of request has been received as well as by the employee listening to

109

CHAPTER 7. ECS 2: USING MOCKUPS TO VALIDATE REQS

the member-to-be passing by in the office.
The IPPO case demonstrates that comparable enterprises, i.e., National Of-

fices sharing the same function model, can have different ontological models, as
the different enterprises are subject to different national laws and regulations.
This also implies that DEMO models can change as these laws and regulations
change over time. Since ontological changes often have a deep impact on sup-
porting software, it is important to increase the insight in other aspects that can
influence the ontological models of an enterprise.

The IPPO case also demonstrates that even when enterprises share the same
ontological model, their enterprise implementations can differ significantly, also
over time. Two (software) architecture principles were defined that could con-
tribute to the possibility of one piece of software that supports different enterprise
implementations of the same enterprise ontology.

As DEMO models are abstracted from implementation, it is inevitable not to
introduce implementation decisions in designing mockups. For example, external
fact banks have been considered to be part of the software as well. It could
be decided to use external data sources such as the database of the residential
registration office. It is interesting to see how additional software architecture
principles can support such changes.

7.4 Formalization of Learnings

In this exploratory case study the aim was to find a procedure to gather and
validate requirements for software for similar enterprises. As DEMO models have
shown to support the easy finding of similarities and differences between enter-
prises, these were used as a starting point. As mockups have shown to improve
speed and quality of the requirements engineering process and to be easily under-
standable by most audience, mockups are used in the procedure to communicate
(parts of) the DEMO model. This exploratory case study has shown that it is
possible to procedurally create mockups from a (draft) DEMO model, in order to
validate and extend it with (relevant) enterprise implementation choices, such as
the order of working, whether a C-act is performed explicitly or implicitly, and
the functionary types that perform these acts. Moreover, the procedure seems
to be effective and has an attractive ROME, as shown in validation with three
National Offices from IPPO.

This exploratory case study strengthens the idea that software can be built
around a stable core, but needs to be adaptable in its IT implementation to sup-
port changes in the enterprise implementation. At the same time, more research
is needed to get a view on the complexity of supporting a flexible enterprise im-
plementation with software. This exploratory case study confirms that the overall
method should use DEMO and (conscious) chosen implementation decisions.

7.4.1 Identified Fragments

The procedure to create mockups from DEMO is considered a conceptual process
fragment. While the procedure does not describe how a mockup should look like

110

7.4. FORMALIZATION OF LEARNINGS

on the lowest level, by means of example it has been shown this gap is easily
bridged. As at the time of performing this exploratory case study, there was not
a tool available that support the automatic generation of mockups. Although a
counterpart implementation to support the procedure has not been created, the
procedure can still be considered of the kind conceptual-implementable.

7.4.2 Implications For Future Research

While generating mockups to validate and extend DEMO models has proven to be
valuable, the actual working software still has to be produced. Prescribing soft-
ware architecture principles to support the differences in both enterprise ontology
and implementation is easier than implementing those in software. In order to
further validate that it is possible to create actual software based on these input
models, follow-up research should focus on actual implementation in software,
specifically addressing the level of flexibility in enterprise implementation.

111

112

Parts of this chapter are originally published as M. R. Krouwel and
M. Op ’t Land, Combining DEMO and Normalized Systems for De-
veloping Agile Enterprise Information Systems [262].1

8
ECS 3: Deriving a Normalized System

Abstract. To effectively respond to environmental changes, such as in
market needs, technology, regulations or law, enterprises need to be able
to change their supporting software accordingly. DEMO has shown to be
an effective tool in designing and realizing agile enterprises. The Normal-
ized Systems approach, on the other hand, has proven to be the key for
developing adaptable software, to support agile enterprises. It was found
that DEMO and its underlying theories, and the theorems and elements of
the NS approach match. Moreover, an automatable algorithm was defined
that allows to derive a Normalized System from the ontological model of an
enterprise, while retaining some freedom in the implementation of the en-
terprise. This algorithm was evaluated on two real-world cases of a Dutch
governmental agency responsible for the granting of subsidies. By deriving
a Normalized System from DEMO, the impact of changing an enterprise
implementation decision on the software can be clearly determined, and,
due to the characteristics of a Normalized System this impact is minimal.
With this result, one cornerstone to support enterprise agility has been
covered.

8.1 Problem Formulation

To effectively respond to environmental changes, such as in market needs, tech-
nology, regulations or law, enterprises need to be able to change their supporting
software accordingly. DEMO has shown to be an effective tool in realizing agile
enterprises [124]. The Normalized Systems approach has proven to be the key for

1A detailed mapping from the original paper to this thesis can be found on p. xxx ff.

113

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

developing adaptable software [298]. Both DEMO and NS are aimed at finding
concepts to support enterprise agility, comprised in both a way of thinking and a
way of modeling. This exploratory case study explores how concepts from both
theories can be connected in order to support agile enterprises with adaptable
software.

In the Netherlands, several subsidy agencies, responsible for even more subsidy
schemes, exist. While the process of granting a subsidy is rather similar for all
schemes, the (business) rules differ per schema. Moreover, there are big differences
in how these schemes are supported: some are more automated while others
require more manual decisions. These subsidy schemes exist in a landscape with
changing rules and regulations, including the obligation for the agencies to offer
online channels to the interested parties to request such subsidies. It is thus
desirable to have software that can easily be adapted to changing rules, regulations
and enterprise implementation. Similar interests are found at the Dutch Ministry
of Defense (MoD) [343]. Therefore, it was decided to explore the derivation of a
Normalized System from the ontological model of an enterprise, while supporting
changes in rules, regulations, and enterprise implementation.

This exploratory case study reports on an automatable algorithm to derive a
Normalized System from the ontological model of an enterprise, while retaining
some freedom in the implementation of the enterprise. The chapter is structured
as follows: the theoretical background for this chapter can be found in Section 4.2
and Section 3.4.3; in Section 8.2 the similarities and differences between the theo-
retical backgrounds of DEMO and Normalized Systems are explored, the designed
algorithm is shown, and the evaluation of the algorithm on the real-world case
of subsidy agencies is elaborated; in Section 8.3 the results and learnings of this
exploratory case study are summarized, and in Section 8.4 the learnings are for-
mulated in terms of the goals within this research.

8.2 Building, Intervention and Evaluation

First, a high-level comparison of the theories behind DEMO and Normalized Sys-
tems are provided, after which the algorithm to create a Normalized System from
a DEMO model is elaborated. Then the real-world case of Dutch governmental
subsidy schemes is outlined and the required software adaptability is formulated,
after which the specific output of applying the algorithm to the input models is
shown, followed by a reasoning on the achieved adaptability on the software level.

8.2.1 Theoretical Comparison

For Normalized Systems it holds that, while the elements completely enforce
adherence to theorems 2, 3, and 4, it is up to the designer to fully adhere to
theorem 1 (separation of concerns): “the more fine-grained the identification of
the tasks by a designer, the more tasks are separated from each other” [297,
p. 112]. Normalized Systems identifies two different kinds of tasks: functional
tasks (task elements) and generic supporting tasks (cross-cutting concerns).

114

8.2. BUILDING, INTERVENTION AND EVALUATION

The CTP (see Section 4.2.1) helps in identifying the different functional tasks,
discerning two different types of tasks, namely, a) tasks regarding coordination,
and b) tasks regarding production. The CTP defines the coordination and pro-
duction acts that are the same for every transaction. Finally, DEMO discerns
tasks in different layers, namely, original, informational or documental (see Sec-
tion 4.2.3). The question then rises how DEMO helps in identifying the generic
supporting tasks or cross-cutting concerns.

Typical NS cross-cutting concerns include persistency for data elements, log-
ging for task elements and authorization (for both). Persistency typically follows
from the fact that the data needs to be remembered so that it can be shared later
on. It seems that the informational and documental layers may be the source of
a selection of the generic supporting tasks. Logging who did what, in a way is
explicitly defined in the DEMO AM, as it needs to be checked in the assess part
of every ARS. This logging is tightly connected with authorization that needs to
make sure that only persons who are authorized to perform a certain task can
indeed do so. While the ontological model of an enterprise is abstracted from
people, and thus from authorization, it does provide a solid base in terms of actor
roles to authorize persons to. In a sense, the need for these cross-cutting concerns
can be derived from the DEMO models.

8.2.2 Algorithm

The steps to create a Normalized System from a DEMO model are described
below. The mapping from DEMO concepts to Normalized Systems concepts is
summarized in Table 8.1.

1. For each entity type and product kind in the DEMO FM, a Normalized
Systems data element is created. Property types become links between the
data elements. Every attribute type of some entity type becomes an at-
tribute in the respective NS data element. Value types must be represented
by a software primitive.

For the DEMO existence and occurrence laws, it is not immediately clear
how they can be supported by (an) NS element(s). Additional tasks or
other means of constraints might be needed. Derived fact types can be
implemented in an NS task element.

2. For each transaction kind in the CM, two data elements are created: one
for the initiator and one for the executor, both having their own separate
flow element with task elements (see Figure 8.1). Both data elements are
linked to the relevant data elements that represent the entity types in the
product kind of the transaction kind. If the initiator or the executor of
a transaction kind is outside the current scope, the elements for that part
can be left out. The reason for having two separate workflows instead of
just one, is to support the easy reorganization of actor roles over different
enterprises, as common in the splitting and allying of enterprises [339].

The two workflow patterns in Figure 8.1 are subject to interaction, as fol-
lows: in the request action of the initiator, the data element for the executor

115

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

DEMO concept N
S

e
le
m
e
n
t

D
at
a
el
em

en
t

T
as
k
el
em

en
t

F
lo
w

el
em

en
t

C
on

n
ec
to
r
el
em

en
t

T
ri
g
ge
r
el
em

en
t

C
ro
ss
-c
u
tt
in
g
co
n
ce
rn

Fact kind X X
Product kind X X
Existence law ?
Occurrence law ?
Derived fact type X X
Actor role X
Transaction kind X X X
Transaction kind step kind X X
Causal link X X
Wait link X X
Action rule X X

Table 8.1: Mapping from DEMO concepts to Normalized Systems elements

is created; in the promise and declare action of the executor, the initiator is
informed; in the accept action of the initiator, the executor is informed. To
accommodate that one actor waits for the other, wait tasks are introduced.
Since the initiator does not know whether the executor is going to promise
or decline, it will wait for either message. Similarly, the executor waits for
either an accept or reject by the initiator. Huysmans has shown how to ex-
tend these workflows to accommodate the (full) discussion and revocation
patterns [219].

As actor roles will be fulfilled by subjects in an organization, the cross-
cutting concern authorization should make sure that a person only can ac-
cess the data and perform the tasks he or she is authorized for. The auto-
matically generated connector elements for every data and task element are
enough to support the access to fact banks.

3. The PM prescribes the exact dependencies between transaction kinds. For
causal relations between transaction kinds, an NS bridge task is created.
For wait links in the PM, additional wait tasks have to be introduced.

4. While most aspects of the CM have been covered by now, the decision rules
itself – the assess part of the ARSs – should be placed in a separate task,
to support changing the assess part while retaining the response part [468].

116

8.2. BUILDING, INTERVENTION AND EVALUATION

TransactionInit
CREATED

perform
request

TransactionExec
CREATED

REQUESTED

assess

POSITIVE

NEGATIVE

perform
promise

perform
decline

wait for
pm/dc

PM RECEIVED

DC RECEIVED

PROMISED

DECLINED

perform
execute

EXECUTED

perform
declare

DECLARED

wait for
ac/rj

AC RECEIVED

RJ RECEIVED

wait for
declare

DECLARE
RECEIVED

assess

POSITIVE

NEGATIVE
perform
accept

ACCEPTED

perform
reject

REJECTED

Legend: state action flow interaction between flows

Figure 8.1: Normalized Systems basic workflow patterns for a DEMO transaction
kind, expressed in two (related) State Transition Diagrams

8.2.3 Evaluation: Dutch Governmental Subsidy Schemes

Dutch law defines subsidy as the entitlement to financial resources provided by
an administrative authority for the purposes of specifically named activities of
the applicant, other than by way of payment for goods or services supplied to
the administrative authority [105, art. 4:21.1]. In the Netherlands, many subsidy
schemes exist. Moreover, these different schemes have to be supported by several
subsidy agencies, while the rules and regulations, as well as the degree of automa-
tion, changes regularly. In order to support these changes, it is desirable to have
software that can easily be adapted to changing rules, regulations and enterprise
implementation.

Similar to ECS 1 (Chapter 7), the process of granting a subsidy is similar for
all schemes. The common kernel, that was created by examining several specific
subsidy schemes, including one for car demolition (Dutch: ‘sloopregeling’), is
shown below. In order to easily support different subsidy schemes based on this
common kernel, specific requirements for the flexibility of the software are defined.
For this common kernel, the output of the algorithm, i.e., the NS elements, is
shown, along with a reflection on the achieved flexibility.

Enterprise Ontological Model

While different subsidy schemes exist for different kinds of activities in the Nether-
lands, the process of granting a subsidy is the same for all schemes (see Table 8.2
and Figure 8.2): the applicant (CTAR01) applies for a subsidy (TK01) at the
subsidy granter (AR01). Before the subsidy can be granted, an evaluation has to
be performed (TK02). Only if the evaluation yield a positive result, a subsidy can
be granted. Next, after this evaluation, the amount the applicant will receive for
his activities is determined (TK03). There can be cases where the amount is set
to 0 (zero). Both the subsidy evaluator (AR02) and amount determiner (AR03)
need to have access to the particular subsidy scheme act in order to know the
specific criteria and the rules for amount determination. Dutch law states that
payment (TK04) has to follow within four weeks after the grant.

117

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

CTAR01
subsidy
applicant

AR01
subsidy granter

TK01

AR02
subsidy
evaluator

TK02

AR03
amount

determiner

TK03

AR04
subsidy
payer

TK04

MTK01

subsidy scheme act

Figure 8.2: CSD for subsidy granting

Transaction Kind Product Kind Executor Role

TK01 grant subsidy PK01 [subsidy] is granted AR01 subsidy granter
TK02 subsidy evaluation PK02 [subsidy] is evaluated AR02 subsidy evaluator
TK03 amount determination PK03 amount for [subsidy] is

determined
AR03 amount determiner

TK04 subsidy payment PK04 amount for [subsidy] is
paid out

AR04 subsidy payer

Table 8.2: TPT for subsidy granting

118

8.2. BUILDING, INTERVENTION AND EVALUATION

SUBSIDYPK01

GRANTED SUBSIDY

– – – – – – – – – –
calculated verdict* {VERDICT}

calculated maximum amount* {MONEY}

PK02

EVALUATED SUBSIDY

– – – – – – – – – –
verdict {VERDICT}

PK03

AMOUNT DETERMINED
SUBSIDY

– – – – – – – – – –
amount {MONEY}

PK04

PAID SUBSIDY

– – – – – – – – – –
paid amount {MONEY}

Figure 8.3: OFD for subsidy granting

From the FM (Figure 8.3) it can be read a subsidy has a derivation rule
for whether it should pass the evaluation or not, and one for calculating the
(maximum) subsidy amount. The evaluation result is modeled as a value type,
with possible values ‘positive’ and ‘negative’. The definitions of these derivation
rules (DFSs) differ per subsidy scheme and are thus not provided on this level.

The ARSs for AR01 (subsidy granter) are provided in Appendix E; they are
relatively straightforward as they don’t contain actual decision rules in the assess
part as the decision rules are specific for a subsidy scheme.

Desired Flexibility

For the process of subsidy granting, requirements have been formulated that
within the software that supports this process, it must be possible to easily:

a) add rules for different subsidy schemes;

b) change rules following from a change in law for either the entire process or
a specific scheme;

c) add different communication channels (following from the Dutch Reference
Architecture NORA2);

d) choose to automate tasks or perform them manually;

e) switch between internal and external data usage;

f) choose which information is shown on a screen;

g) outsource or insource parts of the system; and

h) add controls for managing throughput time.

2https://www.noraonline.nl/

119

https://www.noraonline.nl/

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

Output Elements

1. Five data elements are created: Subsidy, GrantedSubsidy, EvaluatedSub-
sidy, AmountDeterminedSubsidy, and PaidSubsidy, Money (see Figure 8.4).
Money is represented by a floating point number, and Verdict is represented
by a string – an alternative is boolean, but the NS approach states that
booleans should be avoided as they lock up the possibility to have more
than two values. While it might be possible to define generic tasks to calcu-
late the derived facts, the implementation will be specific for a scheme and,
as a result, these tasks are not defined at the generic level.

Subsidy

GrantedSubsidy

calculatedVerdict : string
calculatedAmount : float

EvaluatedSubsidy

verdict : string

AmountDeterminedSubsidy

determinedAmount : float

PaidSubsidy

paidAmount : float

TK01init TK01exec

TK02init TK02exec

TK03init TK03exec

TK04init TK04exec

Figure 8.4: ERD of identified NS data elements for subsidy granting

2. As three of the four transaction kinds reside within the focus, 3 ∗ 2 + 1 = 7
data elements are created to support the workflows (see Figure 8.4). Addi-
tionally, a data element for TK01/rq could be created in case the software
needs to support the performing of a subsidy grant request (shown grayed
out in Figure 8.4). Every data element is linked to the data elements rep-
resenting its product kind.

3. Identified bridge tasks follow from the fact that TK02, TK03, and TK04 are
enclosed in TK01: create TK02init, create TK03init, and create TK04init.
Relevant wait tasks follow from the wait links in the PM, also shown in the
while clauses in the ARSs: wait for TK02/ac, wait for TK03/ac, and wait
for TK04/ac. The complete workflow for T01exec is shown in Figure 8.5.
The other flows don’t deviate from the basic workflow as shown in Figure 8.1.

120

8.2. BUILDING, INTERVENTION AND EVALUATION

TK01exec
CREATED

assess
ARS01

ARS01
POSITIVE

ARS01
NEGATIVE

create
TK02init

TK02init
CREATED

wait for
TK02ac

TK02
ACCEPTED

TK02
REJECTED

assess
ARS03

ARS03
POSITIVE

ARS03
NEGATIVE

perform
decline

DECLINED

perform
promise

PROMISED

assess
ARS04

ARS04
POSITIVE

ARS04
NEGATIVE

create
TK03init

TK03init
CREATED

wait for
TK03ac

TK03
ACCEPTED

TK03
REJECTED

assess
ARS06

ARS06
POSITIVE

ARS06
NEGATIVE

create
TK04init

TK04init
CREATED

wait for
TK04ac

TK04
ACCEPTED

TK04
REJECTED

assess
ARS08

ARS08
POSITIVE

ARS08
NEGATIVE

perform
execute

EXECUTED

perform
declare

DECLARED

wait for
ac/rj

ACCEPTED

REJECTED

Figure 8.5: Workflow for the T01exec data element

4. While the basic pattern already covers the assessment of ARS01, ARS02,
ARS05, and ARS07, additional tasks to evaluate the assess parts (decision
rules) of ARS03, ARS04, ARS06, and ARS08 (see Figure 8.5) are created.

Achieved Flexibility

By applying the algorithm, a set of NS elements is generated, that, when put into
the descriptor files, can be expanded automatically using the NS expander (see
Section 3.4.3). Below, a reasoning will follow to what extent the desired flexibility
is achieved.

a) Add rules for different subsidy schemes: Because of data version trans-
parency, different implementations of the subsidy data element for different
schemes can easily be introduced. For example, for one scheme, the subsidy
is about cars, while for another scheme, it is about houses. Because of ac-
tion version transparency, different actions that apply for the different kinds
of subsidy can be implemented as well. For different schemes, the task for
calculating the maximum amount will differ. Of course, there must be some
mechanism that ensures the data and task versions are matched.

Alternatively, it could be argued to generate completely new (and separate)
software for each subsidy scheme, based on the generic set of elements.

b) Change rules for the entire process or a specific scheme: This is similar to
adding a new scheme. Depending on the nature of the change, this will

121

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

mean implementing a new version of some task or adding or deleting some
task(s).

c) Add different communication channels: Because of task version transparency,
different versions of a task to perform a C-act can be implemented. In gen-
eral, to enable reuse, these tasks might become bridge tasks with their own
designated workflow.

d) Automate tasks or not: As before, this is up to the implementation of a task.
If it is chosen to automate the task, it must be implemented in the software.
Otherwise, a manual task is used. By means of task version transparency,
several implementations (versions) can coexist.

e) Switch between internal and external data usage: For example, for getting
person data, e.g., about the applicant of a subsidy (currently not modeled),
the enterprise could use its own database in which it must enter all person
data on first use. However, it could also be decided to connect to some
governmental person register. Because of data version transparency, it is
easy to change this choice.

f) Decide which information is shown on the screen: A screen is user interaction
that is provided by connector elements. Creating a new or changed screen
means adding or changing a connector element. This has no impact on the
task or data elements.

g) Outsource (or insource) parts of the system: A similar reasoning holds as
for changing rules for the entire process: either tasks are deleted or they are
re-implemented as external task. By splitting the workflow of the initiator
and executor (see Figure 8.1), the flexibility in the resulting software does
not only help to support the splitting of enterprises, but also eases allying
with new partners [339, p. 102].

h) Add controls for managing throughput time: This can be reached by adding
trigger elements with timers. For example, if the payment of some appli-
cation is not performed within three weeks after granting, some notify task
must be started.

8.3 Reflection and Learning

In linking DEMO and Normalized Systems theory, it was found that the under-
lying theories both prescribe a modular structure and share the idea that sepa-
ration of tasks is crucial to fully design an (agile) system. The ontological model
of the O-organization of an enterprise provides enough information – assuming
some mapping from value types to software primitives – to create fully functional
software that supports the operation of the enterprise and provides freedom in im-
plementation. This implementation freedom includes, but is not limited to, using
different information channels, choosing to automate tasks or not, and changing
business rules, and therefore is considered a cornerstone to support enterprise

122

8.4. FORMALIZATION OF LEARNINGS

agility. Similar results, including a big gain in the development speed, were found
at the MoD [343]. .

At the same time, given the choice for DEMO and Normalized Systems, the
software is not optimized for several non-functional requirements such as user-
friendliness and performance, as these aspects are not specified in a DEMO model.
The Normalized Systems approach considers these requirements as cross-cutting
concerns that should be addressed separately from the functional requirements.
These aspects should therefore be added to the input models, in order to create
fully compliant software.

Unfortunately, from this exploratory case study and additional evaluations at
the MoD, it is not clear for all DEMO concepts how they can be supported by
Normalized Systems elements. As can be read from Table 8.1, for the existence
and occurrence laws it is not yet clear how to model them in a Normalized System;
there is not a construct in NS onto which it can directly be mapped.

The other way around, from Table 8.1 it can also be read for each NS element
which DEMO concepts are needed in order to define it. The empty column of
trigger element shows that there are no immediate clues in DEMO models that
provide the need to define a trigger element.

8.4 Formalization of Learnings

In this exploratory case study, the comparison of the theories behind DEMO and
Normalized Systems showed that they are highly compatible. As both are help-
ful in designing adaptable systems, the combination should provide a solid base
to support enterprise agility. An algorithm was created to derive a Normalized
System from the ontological model of an enterprise, with specifically designed
adaptability in terms of both enterprise ontology and enterprise implementation.

While this exploratory case study was performed prior to the existence of the
EIF (Section 4.3), multiple OIVs are supported implicitly. As the system can
be regenerated for new products and services, the algorithm thus supports all
three kinds of change as defined in need 2. This again underpins the idea that
it is possible to create software that has a stable core, based on DEMO, and is
adaptable around that core, as defined in chosen OIVs.

8.4.1 Identified Fragments

The conceptual mapping from the DEMO metamodel to the NS metamodel is
considered a conceptual-implementable process fragment. The conversion from
DEMO models to NS descriptor files has been performed manually, and no tech-
nical counterpart fragment has been produced.

8.4.2 Implications For Future Research

This is the first exploratory case study where working software has been produced.
At the same time, there are still manual conversions in the process, introducing
the possibility for errors and/or implicit design decisions. Moreover, while some

123

CHAPTER 8. ECS 3: DERIVING A NORMALIZED SYSTEM

dimensions for enterprise implementation flexibility were defined, this exploratory
case study did not build upon the EIF. When the software can easily, thus au-
tomatically, be regenerated with changed input models, the question also arises
whether the software strictly has to adhere to all the NS theorems. Follow-up re-
search should focus on the automatic conversion from DEMO to working software,
accommodating explicitly designed enterprise implementation flexibility, based on
the EIF, so that it can be checked whether the NS expanders are actually a ne-
cessity to construct adaptable software.

124

Parts of this chapter are originally published as M. R. Krouwel,
M. Op ’t Land, and H. A. Proper, Generating Low-Code Applica-
tions from Enterprise Ontology [266].1

9
ECS 4: Generating Mendix Applications

Abstract. Due to factors such as hyper-competition, increasing expecta-
tions from customers, regulatory changes, and technological advancements,
the conditions in which enterprises need to thrive become increasingly tur-
bulent. As a result, enterprise agility becomes an increasingly important
determinant for enterprise success. Since software development often is a
limiting factor in achieving enterprise agility, enterprise agility and software
adaptability cannot be viewed separately and choices that regard agility
should not be left to developers. By taking an MDSD approach, starting
from ontological models of the enterprise and explicit design decisions, the
gap from enterprise agility to software adaptability is bridged, in such a
way that changing software is no longer the limiting factor in changing
the enterprise. Low-code technology is a growing market trend. In this
exploratory case study, a mapping is created for (the automation of) the
creation of a Mendix low-code application from the ontological model of an
enterprise, while accommodating the explicitly defined enterprise agility.
Even though the algorithm has been evaluated successfully on multiple
cases, supporting all possible enterprise implementation variability seems
to be an NP-hard problem, and more research is required to check the
feasibility and usability of this approach.

9.1 Problem Formulation

Currently, enterprises are mostly adaptive at design-time, where transformation
projects and programs that change the operation can take between a few weeks

1A detailed mapping from the original paper to this thesis can be found on p. xxx ff.

125

CHAPTER 9. ECS 4: GENERATING MENDIX APPLICATIONS

and several years. Run-time adaptive enterprises are enterprises with a near-
zero time-to-market for new or changed products and services, implying that
the software time-to-market is not on the critical path of its business time-to-
market [342]. In this exploratory case study, the hypothesis is that, by taking an
MDSD approach towards low code, starting from enterprise ontology, the support
of enterprise agility can be improved up to the point that software development
is not the limiting factor anymore.

As introduced in Section 4.3, consciously and explicitly designing enterprise
implementation is necessary in order to support enterprise agility – otherwise such
design decisions may end up hard coded in software and thus hard to change. Ex-
isting method fragments seem to ignore the concept of Enterprise Implementation
completely (see Section 5.2). A potential explanation for the latter is that creat-
ing code to support a mapping of the complete metamodel of a modeling method
such as DEMO is a highly complex and time-consuming task. This is also why, in
principle, the researcher suggests using a MDSD or code generation strategy, as
real-time interpreters can become even more complex. At the same time, such an
approach can make it harder to make (controlled) customizations and extensions
that are often needed in practice. This is why the researcher suggests turning to
low-code technology as it allows for controlled insertion of custom code.

This exploratory case study reports on the design of an automated model
transformation to create a Mendix2 low-code application from Enterprise Ontol-
ogy (expressed as DEMO models) and Enterprise Implementation (expressed in
terms of OIVs). This chapter is structured as follows: the relevant background
for this chapter can be found in Section 4.2 (Enterprise Ontology), Section 3.3.2
(MDSD), Section 4.3 (Enterprise Implementation), and Section 3.4.4 (low code in
general); in Section 9.2 the choice for Mendix is discussed, and the mapping in-
cluding its validation and evaluation in practice is shown; in Section 9.3 the results
and learnings of this exploratory case study are summarized and in Section 9.4
the learnings are formalized in terms of the goals of this research.

9.2 Building, Intervention and Evaluation

The Mendix low-code platform is chosen because it provides good documentation
about its metamodel,3 that is a specialization of the more generic low-code meta-
model (see Table 9.1), and offers a Software Development Kit (SDK) to create
Mendix applications using TypeScript.4 Next to that, the research is experienced
in using the Mendix platform in real-world situations.

In order to be able to (automatically) generate Mendix applications from
DEMO models, a (conceptual) mapping from the DEMO metamodel (see Fig-
ure 4.7) to the Mendix metamodel is devised. Initially, this mapping was done
manually, while later a Typescript (reference) implementation of this mapping5

2https://mendix.com/
3https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/
4TypeScript is the language to access the Mendix SDK, also known as model API, see

https://docs.mendix.com/apidocs-mxsdk/mxsdk/.
5Source code is available at https://github.com/mkrouwel/demo2mendix.

126

https://mendix.com/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/
https://github.com/mkrouwel/demo2mendix

9.2. BUILDING, INTERVENTION AND EVALUATION

Low-Code Unit Mendix Unit

Data Entity with Attributes and Associations, Enumeration
Logic Microflow
Screen Page, typically containing Action Buttons
Permission Rule Access Rule

Table 9.1: Mendix (metamodel) units as specialization of generic low-code meta-
model (Figure 3.8)

was created to allow for easy validation with multiple DEMO models. Both the
mapping and the implementation have been evaluated several times with different
input models, ranging from academic cases such as EU-Rent [334, 341] and Vol-
ley [124] to real-world cases including Social Housing [342]. While the evaluations
with different cases improved and enhanced the mapping and its implementation
in order to deal with all the required concepts and ease the process of code gener-
ation, the evaluations never showed the need for a major redesign of the mapping
or its implementation.

The final mapping includes concepts from both the DEMO metamodel and the
concept of OIV and can be found in Table 9.2. The result of applying the map-
ping function to a DEMO model is a full-functional Mendix low-code application
containing a data model (and database), (basic) CRUD screens, a security model
so that users can only access the parts they are authorized for, several workflows
to support the DEMO CTP, and (business) rules for the evaluation of DFSs and
truth parts of the ARSs. It is fairly easy to add APIs on top of the data model
and/or logic to expose data or functions to other applications. In the process of
creating the mapping, several design decisions have been made that are reported
below.

D.1 Transaction Kinds are not mapped. Instead, their associated Product Kinds
are mapped to an Entity in order to be able to capture the state of a
transaction, see D.4.

D.2 For Multiple Transaction Kinds (MTKs) it is usually not needed to capture
the coordination acts around these facts, so no mapping is needed. The
production facts in the MTK are present in the FM and mapped accordingly
to a Mendix unit, see D.5.

D.3 As the page for showing the agenda for an actor is a very generic function-
ality, it was not generated but built in Mendix as a reusable component
(module). The logic to support the state machine representing the Com-
plete Transaction Pattern is also built as a generic module. The details
of this module are not part of this chapter as they merely rely on earlier
research (see Section 5.2). Development of this module has started before
Mendix launched its native workflow capabilities, that has the potential to
reduce complexity of this module.

127

CHAPTER 9. ECS 4: GENERATING MENDIX APPLICATIONS

DEMO Concept (Aspect Model) Example Mendix Unit

Elementary Transaction Kind (CM) TK01 n/a, see D.1
Multiple Transaction Kind (CM) MTK01 n/a, see D.2
Actor Role (both elementary and
composite) (CM)

AR01 User Role, see D.3

Executor Link (CM) AR01-TK01 Action Button and
(Microflow) Access Rule

Initiator Link (CM) CAR01-
TK01

Action Button and
(Microflow) Access Rule

Access Link (CM) CA01-
MTK01

Entity Access Rule

Product Kind (CM) [registration]
is started

Entity having
Transaction.Proposition
as generalization, with
Association(s) to its
variable(s), see D.4

Transaction Kind Step Kind (PM) TK01/rq Page
Declared Entity Type (FM) Registration Entity and Pages, see D.5
Aggregation Entity Type (FM) {Registration

X Year}
Entity with Associations to
its aggregates

Specialization Entity Type (FM) Started
Registration

n/a, see D.6

Generalization Entity Type (FM) n/a n/a, see D.6
Property Type (FM) member Association
Declared Attribute Type (FM) starting day Attribute or Association,

see D.7
Calculated Attribute Type (FM) age Microflow, see D.8
Value Type (FM) day, money Enumeration or Entity, see

D.7
Action Rule-Event Part (AM) Action Button and

(Microflow) Access Rule,
see D.9

Action Rule-Assess Part (AM) Microflow and Page, see
D.9

Action Rule-Response Part (AM) Action Button, Microflow
and (Microflow) Access
Rule, see D.9

Organization Implementation
Variable

Functionary
Type

Entity, see D.10

Table 9.2: Mapping from the DEMO metamodel to the Mendix metamodel

128

9.2. BUILDING, INTERVENTION AND EVALUATION

D.4 Transaction.Proposition is an Entity that is part of the generic module
handling the CTP. By extending it through specialization, the generic state
machine can be used, while it is still possible to relate the specific product
entity to the entity or entities the Product Kind is about (the variables in
the product formulation).

D.5 For out-of-focus Entity Types in the FM, the decision has to be made
whether the data is stored within the generated application, or used from
another source, typically through an API. For the latter, in Mendix an exter-
nal entity can be created, but it requires the API to be available in Mendix
Connect.6 For now it was decided to not use that possibility, especially as
this does not seem possible (yet) through the Mendix SDK. Instead, some
basic CRUD (Create, Read, Update, and Delete) pages are created to mod-
ify and view the data. It is fairly easy in the generated application to change
this later.

D.6 There were not enough example DEMO models to provide a mapping for
the generalization and specialization Entity Types.

D.7 DEMO Attribute Types can have different kinds of Value Types. If the scale
sort of a Value Type is categorical, the Value Type can either be mapped
to a Mendix Enumeration or Entity. The DEMO Attribute Type using
the Value Type will then either be a Mendix EnumerationTypeAttribute
or Association. If the scale sort of the Value Type is of some other type,
e.g., day, money, etc., the DEMO Attribute Type will be mapped to some
specific Mendix AttributeType, e.g., DateTime, Decimal, etc.

D.8 Calculated Attribute Types need to be calculated, for which currently a
Microflow is created. The (mathematical) definition of the calculation (as
defined in a DFS) needs to be implemented in the Microflow, of which
the mapping is too extensive and detailed for the scope of this chapter.
A decision that goes along with this choice is that from a performance
perspective there is still the decision whether the calculation is performed
on request (read) or on change (save). The low-code approach makes it easy
to make such a decision in the platform, as it currently seems too difficult
to include this aspect into the mapping.

D.9 For the handling of Action Rules, it was decided to implement this as a
Mendix Action Button for the User Role that has to deal with the agendum
(type), a Mendix Page to see all the relevant information to decide on a
response, as well as one or more Mendix Action Buttons for the different
choices. In this way the autonomy of the actor(s) involved is respected, and
only the parts for retrieving, and possibly calculating, all the information
are automated. The transformation of the assess-part is similar to that of a

6Mendix Connect is a collection of functionalitities that enables developers to discover and
use APIs from other applications and publish APIs for other applications to use, see https:

//www.mendix.com/data-hub/.

129

https://www.mendix.com/data-hub/
https://www.mendix.com/data-hub/

CHAPTER 9. ECS 4: GENERATING MENDIX APPLICATIONS

Calculated Attribute Type and thus a similar reasoning holds as described
in D.8.

D.10 In this research the principle is adopted that a chosen set of OIVs should be
adaptable at run-time, and therefore this concept is mapped to a Mendix
Entity, including basic CRUD pages to edit the value, i.e., design decision,
of a certain OIV in the running application. The different values of such an
OIV can have impact on authorization, redirecting and handling of a C-act,
and much more. This is considered to be part of the logic and state machine
and supports the choice for low code as target platform because it is easier
to build this into the state machine than into the automated translator.
At the same time, in Section 4.3.4 it has been reasoned that the possible
number of configurations can grow exponentially with the number of OIVs
(see Section 4.3); incorporating OIVs into the logic might turn out to be a
NP-hard problem.

The Social Housing case is used as an illustration.7 Within the domain of
Social Housing it is important to be able to easily shift responsibilities between
organizational units, e.g., from one social housing association to an umbrella of
social housing associations, or to a municipality, or to a collective of municipalities.
Moreover, the assignment of actor roles to functionary types shifts regularly, due
to changes in required education and competence level, compliance requirements
and labor market opportunities or constraints. Finally, as it is common practice
to authorize persons to fulfill functionary types, and not actor roles directly, it
was decided to select Organizational Unit, Functionary type and Authorization
from the collection of OIVs (see Section 4.3) as the OIVs that should be easily
changeable in the supporting software.

Figure 9.1 shows the descriptor file for Social Housing that was fed into the au-
tomated translator to generate a Mendix application. The descriptor file includes
an app name and module name and refers to the DEMO model in JSON format
(see Appendix C). Figure 9.2 shows the project folder of the generated Mendix
application, containing pages with buttons, microflows and enumerations. Fig-
ure 9.3 shows the generated domain (data) model consisting of entities, attributes
and associations. Additionally, the needed user roles are created and all Mendix
units have the proper access rules so that only authorized users can see and/or
mutate the data and/or use the functionality provided through screens. Figure 9.4
shows how the truth part of an action rule was implemented in Mendix and Fig-
ure 9.5 shows a screenshot of the running application where an actor with the
right authorization can deal with a C-act of kind TK01/rq.

{"appname": "SH", "defaultmodule": "SH", "demomodel": "./ SHdemomodel.json"}

Figure 9.1: Descriptor file in JSON format for Social Housing

7For the case description see Chapter 6.

130

9.2. BUILDING, INTERVENTION AND EVALUATION

Figure 9.2: Project outline of the generated Mendix application for Social Housing

131

CHAPTER 9. ECS 4: GENERATING MENDIX APPLICATIONS

Figure 9.3: Domain (data) model of the generated Mendix application for Social
Housing

Figure 9.4: Mendix implementation of the ‘truth part’ of ARS01

132

9.3. REFLECTION AND LEARNING

Figure 9.5: Example screen for AR01 to deal with TK01/rq

9.3 Reflection and Learning

By introducing the concept of Organization Implementation Variable into the
MDSD process or code generation, it became able to create transparency in the
mapping from enterprise design decision(s) to software implementation, thereby
not leaving it up to developers to make the right choice. As the enterprise’s
implementation is configurable in terms of OIVs, it is easy to change the en-
terprise implementation (or: configuration) for a given enterprise’s ontological
model, thereby supporting enterprise agility.

Given the choice for Mendix as low-code target platform, a complete mapping
from the DEMO metamodel including enterprise implementation to the Mendix
metamodel was defined. This mapping was implemented in TypeScript, using
the Mendix SDK, in order to generate a readily deployable low-code application
from the ontological model of an enterprise, including the support for run-time
configurable OIVs. During development of the reference implementation, reusable
components in Mendix were created to support the CTP as well as for showing
relevant agenda to the actors that have to deal with them.

One advantage of the proposed approach follows from the use of an ontological
enterprise model as the starting point. Since these models are comprehensive,
coherent, consistent, and concise (see Section 4.2), the generated software is of
high quality and only contains the necessary constructs to support the enterprise’s

133

CHAPTER 9. ECS 4: GENERATING MENDIX APPLICATIONS

end users. It also adds flexibility as parts of the software system are simply
(re)generated when new transaction kinds arise. By adding OIVs to the MDSD
approach, it becomes possible to change (some) design decisions at run-time,
therefore allowing for even more flexibility and agility for the enterprise.

Another advantage of this approach seems to be that the generated code can
easily be adapted through the low-code visual paradigm. This allows for changes
in the UI, to make use of APIs, or to implement the execution of the action rules
or calculations in a more efficient way. A warning should be given that changes
in the generated code can become a source of hidden design decisions.

Reflecting on the MDSD approach, by making explicit the required enterprise
flexibility and giving it a specific place in the generated code, the notions of en-
terprise flexibility and software flexibility have been connected. As the code can
easily be regenerated, changing the software system is not the limiting factor
anymore in changing the enterprises service or product portfolio or its implemen-
tation.

The implementation of OIVs in Mendix, or maybe even software in general,
is not straightforward. The impact of certain software design choices in the state
machine and logic is not completely detailed yet. This will differ per OIV and
can only be detailed per individual OIV. It can even be that when combining
different OIVs, the problem becomes to complex to solve. It is not clear whether
all OIVs can be implemented completely independent of others, as suggested by
Normalized Systems theory (see Section 3.4.3). More evaluations with more
cases involving more OIVs are needed to fully understand the complexity of this
problem. Supporting all possible enterprise implementations could even be an
NP-hard problem. Further research is required to check the feasibility and limi-
tations of this approach.

The mapping is specific towards the Mendix platform. Although other low-
code platforms rely on similar concepts, the question arises whether the mapping
can be abstracted to facilitate other low-code platforms, or even high code. Fur-
ther research is needed to get a perspective on the feasibility and usability of such
an abstraction.

Mendix and other low-code platforms offer ways to easily create and consume
APIs. The current mapping does not build on the findings of the exploratory case
study on microservices (Chapter 6). It could be interesting to see how these two
can be combined so that not only generate the API definitions are generated but
also their implementations.

9.4 Formalization of Learnings

In this exploratory case study, the hypothesis was that by taking an MDSD ap-
proach towards low code, starting from enterprise ontology, the support of enter-
prise agility can be improved up to the point that software development is not the
limiting factor anymore. By starting from an enterprise’s ontological model and
introducing the concept of OIV into the MDSD process, it was shown that it is
possible to automatically generate a (Mendix low-code) application that supports

134

9.4. FORMALIZATION OF LEARNINGS

changing an enterprise implementation at run-time. As changing an enterprise’s
implementation often has more implications than just changing the software, at
least there now is a possibility to guarantee that software development is no longer
on the critical path of changing an enterprise implementation and/or launching
new or changed products and services.

By not only creating a (conceptual) mapping, but by also implementing the
mapping, software that is adaptable at run-time to identified OIVs can be gener-
ated from DEMO models. As (parts of) the application can easily be regenerated
for new products and services, all three kinds of change as defined in need 2 are in
fact supported. This exploratory case study also underpins the idea that it is pos-
sible to create software that has a stable core, based on DEMO, and is adaptable
around that core, as defined in the chosen OIVs.

9.4.1 Identified Fragments

The conceptual mapping from the DEMO metamodel to the Mendix metamodel
is considered a conceptual-implementable process fragment. Its counterpart im-
plementation in TypeScript is a technical process fragment.

135

136

Part III

Results

137

“Glory lies in the attempt to reach one’s goal and not in reaching it.”

Mahatma Gandhi, in ‘A Young Canadian’s Question’ (1942)1

10
Conclusions

In Chapter 1 the background and motivation of this research is outlined, i.e.,
that, in order to support enterprise agility, enterprise software should support
end users (need 1), should be adaptable (need 2), should be created quickly (need
3), and that it should be traceable how the end users’ requirements are supported
by the software (need 4). It is argued that the only way to provide an answer
to the identified needs is by having a structured method. Such methods are
not new and date back to the 1970s, but advancements in Enterprise Modeling
and software technologies have paved the way for a new method to address the
needs. Partial answers are found in Model-based Engineering and (enterprise)
models but it is also shown there are still many uncertainties to create such a
method. Therefore, it is concluded that this research is in the fuzzy front-end
stage of creating such a method, aimed at better understanding the challenge
and possibly providing initial solution elements. A main research challenge is
formulated along with seven research questions to deal with the uncertainties in
this challenge. An Action Design Research approach consisting of both literature
review and exploratory case studies is adopted to answer the research questions
and to be able to reflect on the main research challenge.

In this chapter the contribution to a method for software development that
supports typical enterprise changes will be reviewed. In Section 10.1, answers to
the research questions will be formulated, ending with a reflection on the main
research challenge. In Section 10.2 the research contributions are formulated, and
in Section 10.3 the broader impact of this research is outlined. A critical reflection
on this research as well as its limitations and directions for future research will
follow in Chapter 11.

1Published as writing 526 (March 26, 1942) in ‘The Collected Works of Mahatma Gandhi’,
volume 75.

139

CHAPTER 10. CONCLUSIONS

10.1 Answers to Research Questions

The main research challenge is decomposed into theoretical and more practical
research questions. Initial answers to the theoretical questions are provided in
Part I. In Part II the initial answers to the theoretical research questions are
validated, while also trying to provide answers to the practical research questions.
In this section the answers to the theoretical research questions are reviewed,
followed by the answers to the practical research questions, in order to be able to
reflect on the main research challenge.

10.1.1 Answers to Theoretical Research Questions

Step-wise Creation of Software

RQ 1: What does it mean to step-wise create software for enterprises?

Using models in software development has been common since the 1970s. Mod-
els provide a way to study a system, such as an enterprise or software, before it
is actually implemented. Not using models in the software development process
is considered a bad practice, especially in enterprise environments.

The General System Development Process (GSDP) is adopted as it seems to
be the most generic framework for system design that is grounded in theory and
applies a step-wise refinement process that relies on the use of models. The GSDP
is aimed at deliberately designed systems, including enterprises and software. It
says that, after having collected, possibly only a fraction of, the functional require-
ments by analyzing the construction of its environment, the (technical) design of
a system consists of the subsequent creation of more detailed constructional mod-
els; it starts from the ontological model, a conceptual model that is completely
independent of technology, and ends with the implementation model, the most
detailed and technology-dependent model.

Model-based Engineering is the common name for any approach towards soft-
ware engineering that uses models. It is shown that the more specific Model-driven
Software Development approach has the potential to answer needs 3 and 4 and is
fully compliant with the GSDP. As a result, the Enterprise Model-driven Software
Development approach is adopted, an approach that relies on model transforma-
tions starting from enterprise models. The exploratory studies have shown that
such an approach indeed works in practice and addresses needs 3 and 4.

Input Models

RQ 2: What model(s) should be used as input for the method?

Given the choice for applying an EMDSD approach that seems to address needs
3 and 4, the addressing of need 1 is still fully up to the chosen input (enterprise)
model. Several perspectives exist in enterprise modeling, and combining multiple
perspectives improves the overall quality and completeness of the model(s). Based

140

10.1. ANSWERS TO RESEARCH QUESTIONS

on the needs and the different perspectives that exist, several criteria to choose
(an) enterprise modeling technique(s) are formulated, including:

� the chosen modeling technique should cover the perspectives Product and/or
Service, Actors (or Roles), Process, Information and/or Data, and Business
Rules;

� the chosen modeling technique should comprise a modeling language (WoM)
and a modeling procedure (WoW), that is supported by a Way of Thinking
(WoT) and tools (WoS);

� the metamodel and semantics of the chosen modeling technique are formally
defined, as is required for MDSD; and

� there is a user group behind the chosen modeling technique with a large
enough sample base.

Given these criteria, and considering that combining modeling techniques is
possible but possibly too complex in this stage of the research, it is concluded that,
despite the lack of proper tools, DEMO has the best fit for this research. A concern
in using DEMO is that its abstraction level is far from the actual implementation.
Therefore the Enterprise Implementation Framework is developed that allows
expressing an enterprise implementation in terms of Organization Implementation
Variables, related to concepts from the DEMO (meta)model. Using OIVs offers
the possibility to make design decisions explicit and to make transparent how
they are implemented in software, preventing software developers to implicitly
hard code these decisions into the software. For this research, DEMO models and
the OIVs are used as input models for the EMDSD approach, as together they
seem to address need 1 and allow for controlled variability, addressing need 2.

The exploratory studies have shown that DEMO models alone are not enough
to fully generate software that answers needs 1 and 2. By incorporating the
concept of OIVs into the process, it has been shown that it is possible to fully
generate software that is adaptable to the level that is required by the enterprise.

From ECS 3 (Chapter 8) it has been concluded that it could be necessary to
add non-functional requirements, such as user-friendliness and performance, to the
input models. At the same time, several of these non-functional requirements are
nowadays often – implicitly or explicitly – already addressed by target platforms.
In order not to (over)complicate this exploratory research, it is left to future
research to find out if, and perhaps how, such non-functional requirements should
be further incorporated into the input models.

Target Technologies

RQ 3: What target technology or technologies should be supported by the method?

In order to address some concerns of the chosen MDSD approach, i.e., a) that
it lacks integration of custom code, b) that the result often has a poor UI, c) that
it is seen as quite rigid, and in order to address need 2, a range of modern software
technologies as possible target outputs has been explored. Four technologies were
selected:

141

CHAPTER 10. CONCLUSIONS

� mockups as they are aimed at providing a good-looking UI, while they are
also used to assess the correctness and completeness of the requirements and
thus addresses need 1;

� a microservice architecture that aims to provide flexibility by creating lots
of small components, addressing need 2;

� Normalized Systems as it aims at creating stable systems that support con-
tinuous change, addressing need 2 and, as NS can be considered an MDD
implementation by itself, it also addresses needs 3 and 4; and

� low-code platforms are a big trend that address in fact both needs 2 and 3,
while it also aims at offering a good UI.

Of all these technologies the metamodel is provided that is needed to create a
mapping from the input (metamodel) to the target metamodel as part of the
model transformation for MDSD.

The exploratory studies have shown that the chosen input models can indeed
be transformed into these chosen target technologies, that sometimes themselves
apply transformations to even lower-level (implementation) models or running
software.

Creating a Method

RQ 4: What does the creation of a (situational) method entail?

A method is a step-by-step approach to perform a system development project,
based on a specific way of thinking, consisting of structured activities and deliv-
erables, preferably supported by models and tools. In creating or configuring a
method, often (proven) parts of existing methods, called method fragments, are
used. Method fragments can be assembled into a more generic or a more project
specific situational method. Fragments can be categorized in three axes: perspec-
tive, abstraction and granularity. In order create a method, method fragments
are needed first.

Such fragments can be already existing or newly created. Given the choice
for DEMO models as input models, literature has been reviewed on the existence
of method fragments that start from DEMO models and end in some software
implementation. Although there seem to be a few usable fragments, none of
these fragments use all aspect models of DEMO and most of them are conceptual
fragments that don’t have a technical implementation as counterpart. Moreover,
most existing fragments seem to ignore the step from DEMO to implementation
model and try to immediately create software from DEMO models, of which it
has been shown that it is only adaptable with respect to a small set of types of
enterprise change. This provided the directions for the exploratory case studies to
create method fragments that cover all aspect models of DEMO include explicit
enterprise implementation design decisions, and preferably have a counterpart in
software, or are very close to being executable by IT.

142

10.1. ANSWERS TO RESEARCH QUESTIONS

10.1.2 Answers to Practical Research Questions

Feasibility

RQ 5: Is it technically feasible to create software from (the selected) enterprise
models?

A famous example of creating software from enterprise models is MDA, that
uses UML models to visualize and generate software. This shows that creating or,
even stricter, generating software from enterprise models is possible. There are
however several known issues with MDA, including poor integration of different
models, lack of efficiency, limited applicability, vendor lock-in, and its complex-
ity. Moreover, as UML is more aimed at software modeling and has limitations
with regard to enterprise modeling, it is questionable whether MDA addresses all
identified needs.

Given the choice for an MDSD approach from DEMO models to several soft-
ware technologies, and given the practical setup of this research, the exploratory
case studies have shown that it is possible to provide a mapping from the input
models to the target technologies and/or an algorithm that transforms an input
model into a (computer program in the) target technology. The exploratory case
studies (once more) confirmed that DEMO models provide a relatively stable
foundation and showed that the OIVs provide a way to consciously decide on the
implementation that supports the end users’ requirements as well as the required
adaptability. Moreover, by creating two different (reference) implementations, it
has been shown that it is possible to automate these mappings and algorithms.
Thus, it is technically feasible to automatically generate software with the se-
lected technologies from the chosen DEMO models and OIVs, and that there are
multiple ways to achieve this.

Requirements

RQ 6: What are requirements for a method to develop software from enterprise
models?

As mentioned in Section 1.2, the requirements for the desired method were not
clear. The fuzzy front-end research is aimed at creating a better understanding of
the challenge and the requirements for the solution. From literature it was already
concluded that having a (structured) method is better than not having one. The
exploratory case studies have shown that it is possible to have such a method,
and that it seems to improve the results and address the identified needs. Having
a method at least provides a way of repeating the procedure, so that learnings
can be taken to a next case and improvements on the method can be made with
every application of the method. The real usefulness of such a method can only
be validated when the ‘complete’ method has been created.

The exploratory case studies have not been able to prove or disprove the
hypothesis that the identified needs form the base requirements for the ‘complete’
method. The exploratory case studies however did show the need for a flexible

143

CHAPTER 10. CONCLUSIONS

target technology, i.e., that the method should be adaptable to generate software
with different target platforms or technologies. It will mostly be dependent on the
project specific situation what target technology will be chosen. The exploratory
case studies also provide insights in the detailing of the needs, and specifically for
need 2 it turned out it is important to distinguish between the different types of
(expected) change so that conscious decisions can be made which do and which
do not need to be supported by the software; supporting all possible variability
seems to be impossible at first sight.

Method Fragments

RQ 7: Which elements could be part of such a method? 2

In Table 5.1 an overview of existing possible method fragments from litera-
ture on the topic of creating software from DEMO models is provided. In the
exploratory case studies, model transformations or mappings from DEMO mod-
els to several technologies have been explored. While it might not be useful to
combine all these transformations, each transformation individually can be con-
sidered a method fragment. The updated overview, including the newly created
method fragments, is shown in Table 10.1. Additional research should provide
insights in how these fragments can be combined to create a (situational) method
for enterprise ontology-driven software development.

10.1.3 Reflection on Main Research Challenge

Main Research Challenge: How to create a method for the development of
enterprise software that answers the identified needs?

With the answers to the theoretical and practical questions, a reflection on a
reflection on the main research challenge is now possible. Having established what
a method is (see Chapter 1), and that it is typically composed of fragments (see
Chapter 5), an initial answer to the first part of the research challenge is provided.
In order to make the method specifically address the identified needs, it has been
shown that MDSD is an approach towards software development, aligned with the
GSDP and the VSM (see Chapter 3), that provides the desired speed (need 3) and
traceability (need 4). In order to make MDSD work, and to address the desired
completeness of user requirements (need 1), a solution was found in using DEMO
models as input models (see Chapter 4). In order to address the different layers
of adaptability (need 2) and fill the gap towards enterprise implementation that
DEMO does not address, the Enterprise Implementation Framework was created
as additional input to the MDSD approach, that also enables explicit traceability
from design decision to software implementation, further addressing need 4 (see
Section 4.3). In order to further address the needs and possible shortcomings in

2In the original research question the more general term ‘element’ was used. As explained
in Chapter 5, in the answer the term ‘fragment’ will be used.

144

10.1. ANSWERS TO RESEARCH QUESTIONS

A
bs
tr
ac
ti
on

G
ra
nu
la
ri
ty Perspective

Product Process

Conceptual Method GSDP
/ abstract Stage MDSD, DEMO2services,

DEMO2components,
DEMO2NS, realization

Model DEMO aspect models,
implementation model

OER

Diagram DEMO diagrams and
tables

Concept see DEMO metamodel
(Figure 4.7), OIVs
(Section 4.3)

Conceptual
/ imple-
mentable

Stage DEMO2WSBPEL,
DEMO2mockups
(Chapter 7),
DEMO2APIs
(Chapter 6),
DEMO2NS
(Chapter 8),
DEMO2lowcode
(Chapter 9)

Model DEMO exchange model
(XML and JSON)

Technical Stage CTP engine,
DEMO2OAS
(Chapter 6),
DEMO2Mendix
(Chapter 9)

Model OpenModeling,
Simplified Modeling
Platform, Sparx MDG

Table 10.1: Method fragments from literature and from exploratory case studies
(newly created in bold). Empty rows are left out.

145

CHAPTER 10. CONCLUSIONS

the several choices made, target technologies for the approach were selected, viz.,
mockups, microservices, Normalized Systems, and low code (see Section 3.4).

The exploratory case studies in Part II have shown that such an approach is
technically feasible and indeed addresses the needs. Moreover, these exploratory
case studies have provided insights in the detailing of the needs as requirements
for a complete method. Additionally, method fragments have been created that
later can be combined into a complete method to generate software from the
chosen enterprise models.

In terms of aspects of a method (see Figure 1.3), below the choices are sum-
marized:

� the Way of Thinking is defined in Chapter 4, in which the WoT of DEMO
is combined with a framework to describe enterprise implementation;

� the Way of Modeling is defined as the sum of DEMO ontological models
and Organization Implementation Variables;

� the Way of Working is defined to be EMDSD that is a further refinement of
MDSD, MBE in general and the GSDP for system development, along with
the designed algorithms for conversion from these input models to some
technology;

� the Way of Controlling is not specifically defined and it is suggested to use
some existing WoC; and

� the Way of Supporting is defined as the set of modeling tools for DEMO
and the created reference implementations for automated conversion.

This research has laid the foundation to start composing a ‘complete’ method
for enterprise ontology-driven software development, including tools to support
both researchers and practitioners. However, it can never be said that the results
of this research are enough to indeed create such a method. Only by attempting to
create a complete method, it will become clear whether this research has provided
enough fragments or whether more research is still needed. With reference to the
quote by Gandhi (see beginning of this chapter), the main result of this research
is in the attempt to lay a foundation for a method, as it is impossible to (ever)
claim that the creation of such a method has been finished.

10.2 Research Contributions

In this section the scientific and practical contributions of this research are out-
lined.

10.2.1 Scientific Contributions

This section details the scientific contributions.

146

10.2. RESEARCH CONTRIBUTIONS

Overview of MBE-related Notions

In Chapter 3 it has been shown that the development of enterprise software relies
on the use of models. This is also known as MBE. In literature, several related ap-
proaches that use models to some extent to develop, engineer or architect systems
in general or software specifically can be found. Sometimes, these notions are used
interchangeably, while at other times these notions are used to denote something
else. An overview of the different notions is provided and used to position this
research. This overview could be used by other researchers in an attempt to find
agreement on the terminology around MBE.

Comparison of Enterprise Modeling Techniques

In Chapter 4 an overview of available enterprise modeling techniques is provided,
criteria are formulated to choose one that fits the chosen approach, i.e., EMDSD.
While other overviews can be found in literature, this overview is considered a
first attempt that uses multiple formalized criteria in order to choose a modeling
technique for a specific purpose. This overview as well as the way of using it can
be used by other researchers as well as practitioners.

Moreover, by tightly linking enterprise models to software creation, the pos-
sibility arises to use the software generated from these models to get feedback
on the models. This may open up a new way to look at Participative Enterprise
Modeling.

Enterprise Implementation Framework

As DEMO ontological models are abstracted from implementation, there is in
fact a gap from these models to implementation. That gap is bridged in this
research by creating the Enterprise Implementation Framework to capture enter-
prise implementation design decisions in terms of Organization Implementation
Variables. This framework could be used by researchers to further define the no-
tion of implementation model. This framework could be used by practitioners to
actually design an enterprise implementation, linked to the ontological model of
the enterprise. This framework can therefore also improve the adoption of DEMO
as enterprise modeling technique, now that a way is provided to link DEMO to
implementation.

Method Requirements

This research has resulted in a (revised) set of requirements for a method for
the generation of enterprise software from enterprise ontological models. The
requirements have laid the foundation to actually start composing the ‘complete’
method, including tools to support both the researcher and practitioner.

Method Fragments

The literature study has provided an overview of existing method fragments in
order to compose a method for enterprise ontology-driven software development.

147

CHAPTER 10. CONCLUSIONS

Moreover, the practical research has delivered some additional fragments, that
are either technical or very close to being a technical fragment. Having fragments
available was the last precondition for composing a ‘complete’ method, including
supporting tools.

10.2.2 Practical Contributions

This section details the practical contributions.

Overview of Enterprise Modeling Techniques

In Chapter 4 an overview of available enterprise modeling techniques is provided,
criteria are formulated to choose one that fits the chosen approach, i.e., EMDSD.
While other overviews can be found in literature, this overview is considered a
first attempt that uses multiple formalized criteria in order to choose a modeling
technique for a specific purpose. This overview as well as the way of using it can
be used by practitioners to choose a modeling technique for their own purpose,
project or enterprise. The framework can easily be extended with additional
modeling techniques and criteria.

Enterprise Implementation Framework

As DEMO ontological models are abstracted from implementation, there is in
fact a gap from these models to implementation. That gap is bridged in this
research by creating the Enterprise Implementation Framework to capture enter-
prise implementation design decisions in terms of Organization Implementation
Variables. This framework could be used by (enterprise or business) architects to
actually design an enterprise implementation, linked to the ontological model of
the enterprise. They can also use it to consciously decide on and explicitly specify
the required flexibility of the supporting software. This framework could be used
by software developer to either challenge the aforementioned architects to further
detail design decisions, or to capture the design decisions they used to implicitly
hard code into software. In that way, at least the decisions are known and cap-
tured in a structured way. This framework could also improve the adoption of
DEMO as enterprise modeling technique, now that is shown how it can be used
in actual implementation and software development.

Method Fragments

The literature review showed that only a few technical fragments exist to support
practitioners in creating software from DEMO models. The practical research
has delivered some additional fragments, that are either technical or very close
to being a technical fragment. These fragments have the possibility to support
practitioners, and therefore could even improve the adoption of DEMO as it now
has become easier to create working software from these models.

Completeness of the fragments is impossible to prove, and may in future be
disproved. By using these fragments in practice, it can be validated whether

148

10.2. RESEARCH CONTRIBUTIONS

these fragments are enough, or whether additional ones are required. It is mostly
likely, as shown in Section 1.2, that the set of method fragments will evolve by
composing them into (situational) methods.

Addressing the Identified Needs

The exploratory case studies have shown that indeed the chosen approach helps
in quickly creating enterprise software that supports the end users and is adapt-
able, in a traceable way. More specifically, it is adaptable to respond to expected
changes on the enterprise level, i.e., adding or deleting a product or service, chang-
ing a business rule, or changing the implementation of a product or service. For
changing the implementation, several possible expected types of change have been
identified that can be used to consciously decide which ones to (easily) support
with software, and which not – possibly resulting in a large redesign or rebuilt
project if such a change needs to happen. It cannot be claimed that the quality
of the resulting software is good, or better than with other approaches, but it has
been shown that it supports in answering the identified needs, and therefore in
achieving enterprise agility.

Moreover, these fragments, preferably supported by a tool that integrates
them, could be an answer to legacy software, the tech talent shortage, and IT
project failure. Currently, legacy applications need to be reverse engineering in
order to understand their purpose and requirements, after which a new solution
can be built. By starting from stable enterprise models, the processes and re-
quirements that the software supports are known. Once a technology becomes
outdated, a new mapping from the DEMO models to the new technology sim-
ply needs to be created so that all software can be regenerated towards the new
technology. In that way, legacy migration is not an issue anymore.

By generating software from enterprise models, the enterprise model becomes
the software and therefore can be considered a first step towards further integra-
tion of enterprise modeling and software development [165]. A direct consequence
of this integration is that (more) software can be created with less highly skilled
IT people as the models can be created by end users, architects or business ana-
lysts. This is in line with the trend of citizen development, that enables non-IT
people to create software without (deep) knowledge of software development. This
research has shown that the DEMO transaction kind could play a central role in
creating software solution building blocks, that simply could be combined to sup-
port business process chains. This is currently known as composable architecture
or composable software applications, a trend that also tries to provide an answer
to the growing tech talent gap.

By applying an approach where software is generated from models with known
quality attributes, and by reducing the amount of manual intervention in the
process from models to working software to zero, the quality of the software is
known as well. Project success or failure has many factors, of which expectations,
in terms of requirements, budget and timelines, is a very important one. While it is
hard to adjust or improve expectations and planning, this research has shown that
it is possible to improve the actual implementation. Assuming that expectations

149

CHAPTER 10. CONCLUSIONS

and planning do not change, the possibility arises to reduce project failure.
The designed approach can be considered a next level in 4GL (see Section 3.3.2).

As the DEMO Action Model can be considered a constraint or logic model, the
approach can be considered a step towards 5GL. More research is needed to see
to what extent DEMO can be used for logic-based programming.

10.3 Impact

In this section the broader impact of this research will be outlined.

10.3.1 Research Goal and Results

The aim of this research is to work towards a method to generate enterprise
software from enterprise models. The idea is that enterprises need to continuously
adapt to stay ahead of competition, to keep their customers happy, and in order
to comply with changing laws and regulations. Moreover, in order to support
‘enterprise agility’, it was identified that enterprise software should support their
end users, should be adaptable, should be created quickly, and that it should be
traceable how the end users’ requirements are supported by the software. The
only way to answer these needs, is by creating a structured method that guides
its users on the path of software development for enterprises. Methods are not
new, but due to advancements in technologies and enterprise modeling, this is the
moment to create a new method.

In order to guarantee speed and traceability in the software development pro-
cess, this research adopts an approach where software is fully generated from
enterprise models. In order to guarantee that the right – and possibly all – user
requirements are supported, DEMO models are used that only describe what a
user needs and not how the user should be supported. As these models tend to
leave out specific details, it is much easier to communicate and validate them.
These models could even be used as reference models for a particular type of
enterprise, e.g., a pizzeria or a bank. In order to prevent hard coding impor-
tant details in the software, a framework was developed to capture additional
design decisions. This framework also enables to explicitly design the required
adaptability for enterprise software.

By means of exploratory case studies it has been shown that this approach
is indeed feasible and addresses the identified needs. Moreover, four method ele-
ments were created that later can be combined into a complete method to generate
software from enterprise models. This research thus has laid the foundations to
create such a method.

10.3.2 Contributions

The results of this research show that the development of software can (and needs
to) be drastically changed in order to support the so much desired enterprise
agility. For scientific research it is required that the fields of enterprise modeling
and software development are further integrated. A framework was developed

150

10.3. IMPACT

that can be used to bridge the gap from enterprise models to software, and it
is suggested that it will be adopted in both scientific research and practical use
cases. The practical research has shown that it is possible to use practical cases
in a scientific context. Moreover, only by applying scientific research to practical
cases, the real value can be validated. Scientific research in this area is encouraged
to apply a practice-driven approach.

For enterprises, being public or commercial or some other, this research con-
tributes to the improvement of the software development process, and to achieve
enterprise agility in general. More specifically, with the designed approach, more
software can be produced in less time, thus providing a way to lower the ever-
growing IT budgets. As software can be changed more easily using the designed
approach, it also offers new opportunities with a shorter time-to-market for new
business innovations. As the approach uses high-level models that can be consid-
ered reference models, it becomes fairly easy to create specifically tailored software
to similar organizations. Especially for municipalities and for financial, health-
care, and educational organizations, there is a big need to use reference models
and standards while accommodating local differences in implementation.

Combining higher-level enterprise models and code generation has one more
advantage: When technology advances, the only thing that is needed is to create
a new transformation from the enterprise (meta)model to the new technology
(metamodel). As soon as that mapping has been devised, all software can easily
be regenerated from the enterprise models, without a detailed analysis of what
the old legacy systems exactly do or should do.

Research shows that a lot of IT projects fail.3 There are two dominant vari-
ables that define project failure or success: expectation (in terms of requirements,
timelines and budget) and reality. If the gap is (too) big, a project is considered
a failure. This research does not help to plan better for budgets or timelines. It
does however help to improve and speed up implementation. This means that as
long as plannings are being improved and expectations stay stable, this research
can help in improving IT project success rate and save money by reducing project
failure.

This research shows that it is possible to automate software development to
a large extent, and use models that can typically be created in little time. As a
result, less and less software developers are needed. The results of this research
could therefore be part of a solution to deal with the tech shortage4 as the designed
approach enables persons without a background in IT to create software. This
approach can therefore be considered an implementation of citizen development
that enables and encourages non-IT people to create enterprise applications. The
biggest difference between the current implementations of citizen development and
this research is that current implementations rely on visualizing software compo-
nents, whereas this research starts from the business level, i.e., processes, rules,

3See, e.g., a report from the Standish group: https://www.standishgroup.com/sample_

research_files/CHAOSReport2015-Final.pdf.
4See, e.g., https://www.gartner.com/en/newsroom/press-releases/2021-09-13-gartner-

survey-reveals-talent-shortages-as-biggest-barrier-to-emerging-technologies-

adoption.

151

https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.gartner.com/en/newsroom/press-releases/2021-09-13-gartner-survey-reveals-talent-shortages-as-biggest-barrier-to-emerging-technologies-adoption
https://www.gartner.com/en/newsroom/press-releases/2021-09-13-gartner-survey-reveals-talent-shortages-as-biggest-barrier-to-emerging-technologies-adoption
https://www.gartner.com/en/newsroom/press-releases/2021-09-13-gartner-survey-reveals-talent-shortages-as-biggest-barrier-to-emerging-technologies-adoption

CHAPTER 10. CONCLUSIONS

and information. The designed approach can be considered an implementation
of the paradigm of composable applications, where software solutions are being
created by combining existing (functional) software components. If the DEMO
transaction kind is considered a (functional) component, that is easily converted
into working software, creating larger applications becomes nothing more than
creating a chain of transaction kinds. This research could help in bringing citizen
development and application composition to the next level, lowering the need for
highly-skilled software developers.

Shortening the cycle from business idea to working software also has the po-
tential to add value in the field of (Agile) Enterprise Design. By quickly imple-
menting working software, the feedback cycles become shorter, and (potential)
design flaws, in terms of business objectives, enterprise ontology, and enterprise
implementation, can arise earlier in the process, reducing wasted investments.

10.3.3 Relevance

As the impact of this research is both scientific and practical, it is relevant for
both researchers and practitioners. It is relevant for researchers in the area of
software development as well as in the area of enterprise modeling and enterprise
architecture. For practitioners, at first it may seem only relevant for ‘IT people’.
As software is an integral part of an enterprise and should be close to the end
users, this research is also relevant for process owners, team leads, etc., that play
a role in enterprise improvement and/or enterprise change (management) up to
the highest management level. Any employee in an organization can use this
research to show that software development can be improved and challenge the
IT department to either use this research or come up with a better way. Moreover,
tool builders could adopt this approach to further support the automatic creation
of software.

The true value of this research can only be found by practical application. It
is therefore necessary to apply it to more use cases, in small and big, and in public
and commercial organizations. It is necessary to further validate and show the
results of this research. Only then may such an approach be adopted by more
and more enterprises, and may it become a new standard for software develop-
ment. Adoption by one of the larger standardization entities and/or governmental
agencies could speed up the adoption in practice.

152

“Es ist des Lernens kein Ende.”
“There is no end to learning.”

Robert Schumann, in Musikalische Haus- und Lebensregeln (1850)

11
Discussion

As learning and research is a never-ending process, in this chapter a critical re-
flection on this research is outlined, resulting in directions for further research. In
Section 11.1 reflections on several choices made in this research are provided. In
Section 11.2 the limitations of this research are discussed. Both sections are used
as input to formulate future research directions in Section 11.3.

11.1 Reflections

In this section reflections on the choice MDSD as general approach, the chosen
target technologies, the choice for DEMO as enterprise modeling technique, and
to the research approach as a whole will be provided.

11.1.1 The Choice for MDSD

Model-driven Software Development was chosen as it seemed to address the iden-
tified needs 3 and 4. Applying MDSD also has downsides, including that it is
considered complex, it is hard to include custom code, it moves complexity to the
models, it needs input models with formal semantics (see Section 3.3.2). Regard-
ing the need for formal semantics: it has been shown that by choosing a proper
enterprise modeling technique, this concern can be dealt with.

Regarding the moving of complexity: it is argued that the complexity should
be where it arises: Technical complexity should be in the software models, en-
terprise complexity should be in the enterprise models. As most complexity in
software actually comes from complexity in the enterprise or its implementation,
moving the complexity to the enterprise models is considered the only right ap-
proach. By doing so, the possibility opens up to make software development less

153

CHAPTER 11. DISCUSSION

complex, and, more importantly, leave the design decisions where they belong,
i.e., not deep in the software but on the enterprise level.

A related concern is that if the model is not good, the generated software
also won’t be good. This is in fact a concern for all model-driven software de-
velopment approaches. At the same time, developing enterprise software without
using models is considered a bad practice (see Section 1.1.3). The advantage of a
model-driven approach is that if the result is not as expected, both the model and
the mapping towards technology can be adapted, while retaining transparency in
the mapping. Thus, although models have their limitations, they are still con-
sidered a must-have in software development. By setting models at the core of
software development through model-driven code generation, the models even be-
come a primary deliverable that should have the main focus before even thinking
of software development.

Regarding the inclusion of custom code: by generating towards a low-code
platform, it has been shown that it is possible to include custom code as these
platforms are built to allow for integration of custom code. The NS expanders
(code generators) have also shown that it is possible to combine generated and
custom code in a controlled way.

Regarding its complexity: having experienced the exploratory case studies, it
is hard to argue that it is not complex; creating a mapping from metamodel to
metamodel is indeed complex, or at least hard. The creator of such a mapping
needs to thoroughly know both the input and output (meta)model. On the other
hand, creating such mappings is not new, and its complexity might just be in the
eye of the beholder [502, 239].

Another concern in applying the MDSD approach might be that it is not de-
sirable to automate everything. The working principle as applied in this research,
based on the adopted WoT, is that every transaction kind or C-act should be sup-
ported by software, but does not need to be fully automated.1 The created EIF
does contain possibilities to distinguish between tasks that should be supported
by IT and those that don’t need support from IT. Another approach could be
to simply leave out the transactions kinds and related entities and action rules
in the models that drive the software generation. Still, scenarios can be thought
of in which it is desired to manually transform an enterprise model into working
software. This may mean that the designed EMDSD approach needs to be ex-
tended to an approach where it is possible to combine both manual and automated
transformations.

While MDSD promises to close the gap between requirements and (software)
implementation, there are also reasons to believe that this might not be possi-
ble at all. As shown in the GSDP (see Section 3.2), the step from functional
requirements to implementation is the job of an engineer, that takes into account
all requirements and tries to design a solution that best fits all or most require-
ments; such a mapping from functional requirements to solution is typically not a
one-to-one mapping [98]. In this research, the functional requirements are merely

1By support is (only) meant that the end user can see the relevant details to make a decision
and is guided along the process. By support is explicitly not meant that the software takes a
decision fully automated.

154

11.1. REFLECTIONS

ignored, and instead the gap from ontology or high-level conceptual model to
implementation is bridged.2 The high-level construction model clearly is not the
same as user requirements, although it might be possible to create a, possibly not
too complex, mapping between the two.

A final question to ask is ‘is MDSD a necessary means to answer the needs’?
And, to be honest, possibly it can be done without. Especially the rise of Large
Language Models (LLMs) and generative AI [387]3 provides new possibilities to
increase efficiency and accuracy in software development. At the same time, it
is unlikely that these advancements will fully replace software developers, while
it now enables both humans and computers to introduce implicit implementation
design decisions into software. Only by using an algorithm to do a model trans-
formation, traceability can be ensured. The exploratory case studies have shown
that manually executing such an algorithm is possible, but also time-consuming
and possibly error-prone. And if such an algorithm is on the level that it can be
automated, computer execution will always beat a human in both speed and cor-
rectness of applying the algorithm. It seems that applying the MDSD approach
was indeed a valid choice.

11.1.2 The Selection of Technologies

As shown in Section 3.4, four technologies were selected, that support addressing
the needs and/or overcoming shortages of the MDSD approach. Mockups were
chosen as a means to validate requirements (need 1), speed up development (need
3), and improve UI aspects. At the same time, they have been used to detect
similarities and differences between similar enterprises (see Chapter 7), addressing
need 2. Both microservices, Normalized Systems and low code were chosen as
they offer a flexible landscape or solution, addressing need 2, while speeding up
development (need 3).

The exploratory case studies were centered around the mapping from DEMO
models to a specific technology (see Table 2.3). In each case, the target technology
has delivered to meet or exceed the expectations. The selected technologies were
also within the expertise area of the researcher, who played an active role in all
exploratory case studies, as was needed to create the algorithms in the first place.
Given that this research is in the exploratory phase (see Section 1.2), the selection
of technologies was ‘good enough’ to take away (most of) the uncertainties as
posed. At the same time, it is expected that other technologies could deliver
similar results; it is thus not being said that the overall method should (only)
incorporate the evaluated target technologies.

11.1.3 The Choice for DEMO

In order to choose an enterprise modeling technique that supports the main re-
search challenge and chosen EMDSD approach, multiple criteria have been defined

2In the GSDP, this is known as technical design, see Section 3.2.2.
3Examples include ChatGPT.

155

CHAPTER 11. DISCUSSION

(see Section 4.1.2). These criteria are derived from the general needs (see Sec-
tion 1.1), specific needs from MDSD (see Section 3.3.2), requirements for a proper
method fragment (see Figure 1.3), the perspectives that are considered important
in enterprise modeling (see Section 4.1.1), and some usage and support factors.
From the scoring of several enterprise modeling techniques it was concluded that
DEMO has the best fit. If less or other perspectives were chosen, or if the pres-
ence of an underlying WoT was considered less important, or if the availability of
tooling and examples were found more important, the chosen enterprise modeling
technique could have been a different one. It could be beneficial to further verify
the criteria and scoring, e.g., by means of a survey and/or an expert group deci-
sion session. Still, the advantages of DEMO have been proven by earlier research
and these advantages are strengthened by this research.

One of the concerns in using DEMO is the lack of proper tooling. In the
exploratory case studies the input file for the automated convertors were created
manually. Although not ideal, this turned out to be workable.

Another concern in using DEMO is that is abstracted so far from implemen-
tation that additional techniques are required. In order to bridge the gap from
enterprise ontology to implementation, the Enterprise Implementation Framework
was developed (see Section 4.3). An alternative approach is to use the DEMO
WoT and combine it with a modeling technique that includes more implementa-
tion details. For example, despite their incomparability to a large extent, Archi-
Mate and DEMO can be combined [135]. Other research has shown that DEMO
models could be converted into BPMN [469, 353, 461, 70, 321, 183] or UML [33]
models that have proven paths towards (automated) software development. How-
ever, combining these modeling techniques raises two new concerns: a) can these
modeling techniques be properly combined or are there conflicts in their, possibly
implicit, underlying WoT, and b) do modeling techniques like ArchiMate, BPMN
and UML support the explicit and conscious decision-making process, allowing
for adaptability on the three levels as defined in need 2?

As mentioned in Section 4.1.2, a Way of Controlling is not part of the designed
method. DEMO does not include a WoC, nor do (most of) the other modeling
techniques. Instead, modeling techniques mostly rely on existing WoCs such as
PRINCE2, TOGAF, and Agile methods. It is thus necessary to further investigate
what WoC best aligns to the chosen modeling technique.

Another possible approach to answer the needs is to use the DEMO WoT to
create UML diagrams and then apply an MDA approach to generate software.
As shown in Section 1.1.3 and Section 4.1, both MDA and UML have downsides
that would hamper the method in answering the needs. Although not explicitly
evaluated, using a modeling technique that is close to the (preferred) WoT, i.e.,
DEMO, is considered the best way to approach this research.

11.1.4 Research Approach and Case Selection

In Chapter 2 a nested ADR approach was defined, using exploratory case studies
focused on a method fragment that can later be combined to form the base for
a complete method. By performing multiple exploratory case studies, it became

156

11.2. LIMITATIONS

possible to learn from the creation of one fragment, before creating another one.
The fragments that have been created subsequently contain more detail in terms
of enterprise implementation flexibility, and are subsequently geared more and
more towards working software. Moreover, the exploratory case studies provided
the necessary feedback on initial answers from the theoretical studies. On the
method or research level the ADR approach has shown valuable.

For the exploratory case studies, it was important to design a fragment not
only for a single enterprise. Multiple iterations have been conducted, where pos-
sible, to make sure the designed fragment works for multiple enterprises, adding
relevance to the created fragment. While this aim was achieved, it can be reasoned
more iterations are needed to really confirm the broad applicability. By perform-
ing multiple iterations that were enhanced by further theoretical research, rigor
was added to the creation of the fragment. Together, applying ADR at the ECS or
fragment level ensured grounded design science research, while solving real-world
problems according to action research. While improvements are possible in the
execution of individual ECSs, the nested ADR approach worked to achieve the
research goal and to answer the research questions.

The selected real-world cases confirmed the relevance on both the method and
the fragment level. It could be argued that the real-world cases that disproved the
relevance were ignored. That is an inherent aspect of practice-driven research that
is hard to avoid. At the same time, it might not be needed to show irrelevance as
there are enterprises that see the relevance. The selected real-world cases were the
source for designing and/or helped in evaluating a method fragment. The Social
Housing case was used in the evaluation of two fragments, potentially showing
that combining multiple fragments can be worthwhile. Additional research will
be needed to confirm the findings of these exploratory case studies, to add to both
relevance and rigor of the created fragments.

11.2 Limitations

A first limitation in this research is that the exploratory case studies were limited
to academic cases and public or semi-public organizations. And although ECS
1 (Chapter 7) was performed on an international level, the other use cases are
from the Netherlands. Apparently these were the organizations the researcher
had access to and that were willing to cooperate in or support such an explo-
ration. It does not immediately mean the results are only valid for Dutch public
organizations only. However, additional validation, preferably with international
commercial organizations would be preferred. This would also enable to better
understand the possible complexity of supporting more OIVs in software (see
Chapter 9).

Another limitation is that, while the aim for this research was to create techni-
cal fragments, only two technical fragments have been created, i.e., an implemen-
tation for the transformation of DEMO models to Mendix and one for the trans-
formation of DEMO models to API specifications in OAS. The other fragments
are considered detailed enough to be easily converted into a technical implemen-

157

CHAPTER 11. DISCUSSION

tation, but weren’t actually implemented with IT. The impact on the results of
this research seems limited, as it was possible, but perhaps more labor intensive,
to manually execute the algorithms to perform the transformations. In order to
further validate these mappings and to support practical use, it is however rec-
ommended creating technical fragments as counterpart for the implementable but
non-implemented fragments.

Moreover, for the technical implementations OAS and Mendix were chosen as
target technologies. It could be that the choices were influenced by the possibilities
of these target technologies, and that the designed approach does not work with
other target platforms. Only by creating more implemented technical fragments
with different target technologies and platforms, it can be verified whether the
approach really works in practice.

While two algorithms have been automated and the two others are considered
automatable, the claimed properties cannot be (mathematically) proven, they
are only shown to be plausible by means of evaluation and/or reasoning. Further
formalization of the fragments requires clear objectives and could be achieved,
e.g., by applying formalization principles [443].

Finally, the exploratory case studies were mainly exploratory in the sense that
it was never a goal to create working software, but more a means to show that such
an approach is feasible and perhaps beneficial. While input from end users was
used to create and validate the DEMO models, the output of the transformation,
i.e., the working software was barely used by end users. It would be beneficial if
the output software would be used by the actual end users to get more feedback
on both the input models and the transformation to software.

11.3 Future Research

Based on the reflection on and limitations of this research, the following directions
and opportunities for future research are formulated.

11.3.1 DEMO Support

During this research, it was noticed that the DEMO metamodel was not fully
specified. In parallel to this research, research has been done to improve DEMO-
SL [325]. However, the adapted metamodel does not seem to be fully incorporated
into DEMO-SL yet and the exchange model includes not only DEMO concepts
but also visualization aspects that are necessary for modeling tools but not for
model transformation. These were also the main reasons to use an adapted meta-
model and a cleaner JSON-based exchange format for the automed convertors.
It would be beneficial if these efforts are integrated into one DEMO metamodel
with a JSON-based exchange format that separates the DEMO concepts from its
visualization.

Moreover, in order to further improve the adoption of the designed approach
and DEMO in general, proper tooling is needed. Tooling could combine existing
and newly created fragments, or is aimed for modeling purposes to create the input

158

11.3. FUTURE RESEARCH

for convertor(s) in the right format. This is a prerequisite to further explore the
usage of DEMO in participative (enterprise) modeling and software creation.

11.3.2 Embedding in Existing Approaches

While the goal of this research was to contribute towards a method, the dream
is still to have such a ‘complete’ method for enterprise ontology-driven software
development. This dream implies not only having the right concepts, but also
having the right tools, and having them embedded in a complete method that
supports the complete software life cycle.

Embedding also means it is being adopted by a critical mass. In order to reach
a bigger audience, integrating the designed approach with ArchiMate, BPMN
and/or UML can be beneficial. Further formalization of the designed fragments
is a necessary step in order to ensure integration. Moreover, the fragments should
be integrated or aligned with a Way of Controlling. As stated earlier, there are
some concerns regarding such an integration. More research should be done to
investigate those concerns and see whether there are ways to overcome them.

Integrating approaches also means combining the better parts of one approach
to overcome the ‘flaws’ of another approach. That also means that approaches or
parts thereof should be compared somehow, in order to decide which fragments
to use and which not. Research is needed to create comparison framework over
enterprise model-based software development approaches.

As referred to earlier, while a risk with Large Language Models and (genera-
tive) Artificial Intelligence is that only more implementation design decisions are
hard coded into software, there are also opportunities in combining such tech-
nologies with Enterprise Model-driven Software Development:

� (enterprise) modeling tools can be enhanced with AI so that similar ad-
vantages as in software development can be achieved, but on the level of
enterprise modeling, in order to speed up and improve the input models for
EMDSD;

� LLMs could transform text prompts into an enterprise model to allow users
to create an input model for the automated convertors without having to
learn the specific modeling technique;

� AI could be of support in optimizing implementation decisions; and

� it might be possible to use an LLM to detect (implicit) design decisions that
are hard coded in software.

More research is needed to explore the potential of these upcoming technologies
on the level of enterprise modeling and EMDSD.

11.3.3 Enterprise Agility

Enterprise agility is currently an important topic in Enterprise Engineering and
Software Development. Although a first proposal is done how to measure enter-
prise agility, in practice it turns hard to objectively measure enterprise agility,

159

CHAPTER 11. DISCUSSION

let alone compare different enterprises on their agility. From a practical point of
view, it is often not desirable to actually create different implementations in the
real world and compare their agility. Instead, numerous existing implementations
need to be examined in order to be able to detect crucial design choices that
support or hamper an enterprise’s agility.

Measuring enterprise agility is also a prerequisite to define the constructs that
are needed to support enterprise agility. Applying the Normalized Systems prin-
ciples (see Section 3.4.3) to business processes has already been done [467], and
the feasibility of normalized enterprises has been shown [218]. But what happens
if the transactor role is used as core enterprise construct, with cross-cutting con-
cerns around it? An initial set of such cross-cutting concerns has been proposed
but not validated yet [97]. When comparing this set to the defined OIVs (see
Section 4.3), it does raise the question whether all OIVs should be considered
cross-cutting concerns, and whether that set is complete. More research is needed
to find whether such a normalized construct for enterprises, fully compliant with
the Normalized Systems principles, is feasible and improves enterprise agility. As
a first step towards such a construct, it might be useful to formulate architecture
principles related to the required enterprise agility, as shown in ECS2 (Chapter 7).

The normalized construct for enterprises may be comparable to the biological
system that evolves around a stable core. What other lessons can be learned from
biology in creating adaptable software and adaptable enterprises? It is clear that
this is just the beginning of exploring concepts for enterprise agility, and that
there is possibly much to learn from other research areas.

160

Bibliography

[1] C. Adelman, Kurt Lewin and the Origins of Action Research, Educational
Action Research, (1993), pp. 7–24. 10.1080/0965079930010102.

[2] P. J. Ågerfalk, S. Brinkkemper, C. Gonzalez-Perez,
B. Henderson-Sellers, F. Karlsson, S. Kelly, and J. Ralyté,
Modularization Constructs in Method Engineering: Towards Common
Ground?, in Situational Method Engineering: Fundamentals and Experi-
ences, J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers, eds., Boston,
MA, 2007, Springer US, pp. 359–368. 10.1007/978-0-387-73947-2_27.

[3] P. J. Ågerfalk and B. Fitzgerald, Exploring the Concept of Method
Rationale: A Conceptual Tool to Understand Method Tailoring, in Advanced
Topics in Database Research, K. Siau, ed., vol. 5, IGI Global, 2006, pp. 63–
78. 10.4018/978-1-59140-935-9.ch004.

[4] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers : principles, tech-
niques, and tools, Addison-Wesley, Reading, Massachusetts, 1985.

[5] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,
Model traceability, IBM Systems Journal, 45 (2006), pp. 515–526. 10.1147/
sj.453.0515.

[6] R. Akif and H. Majeed, Issues and Challenges in Scrum Implementation,
International Journal of Scientific & Engineering Research, 3 (2012).

[7] I. K. Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan, A
Model-Driven Architecture for Automated Deployment of Microservices, Ap-
plied Sciences, 11 (2021). 10.3390/app11209617.

[8] A. Albani and J. L. G. Dietz, Enterprise ontology based development
of information systems, International Journal of Internet and Enterprise
Management, 7 (2011). 10.1504/IJIEM.2011.038382.

[9] S. W. Ambler, Agile Model Driven Development Is Good Enough, IEEE
Software, 20 (2003), pp. 71–73. 10.1109/MS.2003.1231156.

[10] D. Ameller, Considering Non-Functional Requirements in Model-Driven
Engineering, mathesis, Universitat Politècnica de Catalunya, Jan. 2011.

[11] K. P. Arnett and M. C. Jones, Programming Languages: Today and
Tomorrow, Journal of Computer Information Systems, 33 (1993), pp. 77–81.
10.1080/08874417.1993.11646550.

161

https://doi.org/10.1080/0965079930010102
https://doi.org/10.1007/978-0-387-73947-2_27
https://doi.org/10.4018/978-1-59140-935-9.ch004
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.3390/app11209617
https://doi.org/10.1504/IJIEM.2011.038382
https://doi.org/10.1109/MS.2003.1231156
https://doi.org/10.1080/08874417.1993.11646550

BIBLIOGRAPHY

[12] L. Arts, M. K. Chmarra, and T. Tomiyama, Modularization Method
for Adaptable Products, in roceedings of the ASME 2008 International De-
sign Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 4, 2008, pp. 193–202. 10.1115/DETC2008-

49338.

[13] U. Aßmann, S. Zschaler, and G. Wagner, Ontologies, Meta-models,
and the Model-Driven Paradigm, in Ontologies for Software Engineering and
Software Technology, C. Calero, F. Ruiz, and M. Piattini, eds., Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 249–273. 10.1007/3-540-
34518-3_9.

[14] J. L. Austin, How to do things with words, William James Lectures, Oxford
University Press, 1962.

[15] D. Aveiro and V. Freitas, A new Action Meta-Model and Grammar for
a DEMO based low-code platform rules processing engine, in Advances in
Enterprise Engineering XIV, 2023.

[16] D. Aveiro and D. Pinto, A Case Study Based New DEMO Way of Work-
ing and Collaborative Tooling, in 2013 IEEE 15th Conference on Business
Informatics, 2013, pp. 21–26. 10.1109/CBI.2013.12.

[17] D. E. Avison and G. Fitzgerald, Information Systems Development:
Methodologies, Techniques and Tools, McGraw-Hill, second ed., 1995.

[18] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, Action
research, Communications of the ACM, 42 (1999), pp. 94–97.

[19] M. Azarm-Daigle, C. Kuziemsky, and L. Peyton, A Review of Cross
Organizational Healthcare Data Sharing, Procedia Computer Science, 63
(2015), pp. 425–432. 10.1016/j.procs.2015.08.363.

[20] C. L. B. Azevedo, M.-E. Iacob, J. P. A. Almeida, M. van Sin-
deren, L. Ferreira Pires, and G. Guizzardi, Modeling resources
and capabilities in enterprise architecture: A well-founded ontology-based
proposal for ArchiMate, Information Systems, 54 (2015), pp. 235–262.
10.1016/j.is.2015.04.008.

[21] T. G. Badger, Action research, change and methodological rigour, Nursing
Management, 8 (2000), pp. 201–207. 10.1046/j.1365-2834.2000.00174.
x.

[22] K. Bakshi, Microservices-based software architecture and approaches, in
2017 IEEE Aerospace Conference, 2017, pp. 1–8. 10.1109/AERO.2017.

7943959.

[23] L. Balmelli, D. Brown, M. Cantor, and M. Mott, Model-driven
systems development, IBM Systems Journal, 45 (2006), pp. 569–585. 10.

1147/sj.453.0569.

162

https://doi.org/10.1115/DETC2008-49338
https://doi.org/10.1115/DETC2008-49338
https://doi.org/10.1007/3-540-34518-3_9
https://doi.org/10.1007/3-540-34518-3_9
https://doi.org/10.1109/CBI.2013.12
https://doi.org/10.1016/j.procs.2015.08.363
https://doi.org/10.1016/j.is.2015.04.008
https://doi.org/10.1046/j.1365-2834.2000.00174.x
https://doi.org/10.1046/j.1365-2834.2000.00174.x
https://doi.org/10.1109/AERO.2017.7943959
https://doi.org/10.1109/AERO.2017.7943959
https://doi.org/10.1147/sj.453.0569
https://doi.org/10.1147/sj.453.0569

BIBLIOGRAPHY

[24] J. P. Bansler and K. Bødker, A Reappraisal of Structured Analysis:
Design in an Organizational Context, ACM Transactions on Information
Systems, 11 (1993), pp. 165–193. 10.1145/130226.148055.

[25] I. Baroi and S. De, A Novel Application of Neuromarketing for Designing
User Interface Mockups to Enhance User Experience in Software Develop-
ment, in 2021 IEEE 2nd International Conference on Technology, Engineer-
ing, Management for Societal impact using Marketing, Entrepreneurship
and Talent (TEMSMET), 2021. 10.1109/TEMSMET53515.2021.9768683.

[26] N. M. J. Basha, S. A. Moiz, and M. Rizwanullah, Model Based Soft-
ware Development: Issues & Challenges, International Journal of Computer
Science and Informatics, 3 (2013). 10.47893/IJCSI.2013.1123.

[27] R. L. Baskerville, B. Ramesh, L. Levine, and J. Pries-Heje, High-
Speed Software Development Practices: What Works, What Doesn’t, IT Pro-
fessional, 8 (2006), pp. 29–36. 10.1109/MITP.2006.86.

[28] R. L. Baskerville and A. T. Wood-Harper, A critical perspective on
action research as a method for information systems research, Journal of In-
formation Technology, 11 (1996), pp. 253–246. 10.1080/026839696345289.

[29] , Diversity in information systems action research methods, European
Journal of Information Systems, 7 (1998), pp. 90–107. 10.1057/palgrave.
ejis.3000298.

[30] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, Using structural
and semantic measures to improve software modularization, Empirical Soft-
ware Engineering, 18 (2013), pp. 901–932. 10.1007/s10664-012-9226-8.

[31] P. Baxter and S. Jack, Qualitative Case Study Methodology: Study De-
sign and Implementation for Novice Researchers, The Qualitative Report,
13 (2008), pp. 544–559. 10.46743/2160-3715/2008.1573.

[32] S. Beer, The Viable System Model: Its Provenance, Development, Method-
ology and Pathology, Journal of the Operational Research Society, 35 (1984),
pp. 7–25. 10.1057/jors.1984.2.

[33] I. Begetis, Combining Design and Engineering Methodology for Organi-
zations with the Rational Unified Process, Master’s thesis, Delf University
of Technology, 2010.

[34] A. E. Bell, Death by UML Fever, Queue, 2 (2004).

[35] P. Bertolazzi, C. Krusich, and M. Missikoff, An Approach to the
Definition of a Core Enterprise Ontology: CEO, Computer Science, (2001).

[36] N. Bevan, Quality in use: Meeting user needs for quality, Journal of Sys-
tems and Software, 49 (1999), pp. 89–96. 10.1016/S0164-1212(99)00070-
9.

163

https://doi.org/10.1145/130226.148055
https://doi.org/10.1109/TEMSMET53515.2021.9768683
https://doi.org/10.47893/IJCSI.2013.1123
https://doi.org/10.1109/MITP.2006.86
https://doi.org/10.1080/026839696345289
https://doi.org/10.1057/palgrave.ejis.3000298
https://doi.org/10.1057/palgrave.ejis.3000298
https://doi.org/10.1007/s10664-012-9226-8
https://doi.org/10.46743/2160-3715/2008.1573
https://doi.org/10.1057/jors.1984.2
https://doi.org/10.1016/S0164-1212(99)00070-9
https://doi.org/10.1016/S0164-1212(99)00070-9

BIBLIOGRAPHY

[37] M. Bexiga, S. Garbatov, and J. C. Seco, Closing the Gap between
Designers and Developers in a Low Code Ecosystem, in Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, New York, NY, USA, Oct. 2020, pp. 1–10. 10.

1145/3417990.3420195.

[38] S. Beydeda, M. Book, and V. Gruhn, eds., Model-Driven Software
Development, Springer Berlin, Heidelberg, 2005. 10.1007/3-540-28554-7.

[39] J. Bézivin, On the unification power of models, Software & Systems Mod-
eling, 4 (2005), pp. 171–188. 10.1007/s10270-005-0079-0.

[40] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev,
and A. Lindow, Model Transformations? Transformation Models!, in
Model Driven Engineering Languages and Systems, 9th International Con-
ference, MoDELS 2006, Genova, Italy, October 1-6, 2006, Proceedings,
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, eds., vol. 4199 of
Lecture Notes in Computer Science, Springer, Oct. 2006, pp. 440–453.
10.1007/11880240_31.

[41] J. Bézivin and O. Gerbé, Towards a precise definition of the OMG/MDA
framework, in Proceedings 16th Annual International Conference on Auto-
mated Software Engineering (ASE 2001), 2001, pp. 273–280. 10.1109/ASE.
2001.989813.

[42] N. Bieberstein, S. Bose, L. Walker, and A. Lynch, Impact of service-
oriented architecture on enterprise systems, organizational structures, and
individuals, IBM Systems Journal, 44 (2005), pp. 691–708. 10.1147/sj.

444.0691.

[43] M. Biehl, Literature Study on Model Transformations, tech. rep., Royal
Institute of Technology Stockholm, Sweden, July 2010.

[44] E. Bigdeli, M. Motadel, A. Toloie Eshlaghy, and R. Radfar, A
dynamic model of effective factors on Agile business-IT alignment, Kyber-
netes, 49 (2020), pp. 2521–2546. 10.1108/K-05-2019-0358.

[45] A. Bischof and L. Blessing, Guidelines for the Development of Flexible
Products, in DS 48: Proceedings DESIGN 2008, the 10th International De-
sign Conference, D. Marjanovic, M. Storga, N. Pavkovic, and N. Bojcetic,
eds., 2008, pp. 289–300.

[46] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, Im-
proving speed and productivity of software development: a global survey of
software developers, IEEE Transactions on Software Engineering, 22 (1996),
pp. 875–885. 10.1109/32.553636.

[47] J. K. Blundell, M. L. Hines, and J. Stach, The measurement of soft-
ware design quality, Annals of Software Engineering, 4 (1997), pp. 235–255.
10.1023/A:1018914711050.

164

https://doi.org/10.1145/3417990.3420195
https://doi.org/10.1145/3417990.3420195
https://doi.org/10.1007/3-540-28554-7
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/11880240_31
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1147/sj.444.0691
https://doi.org/10.1147/sj.444.0691
https://doi.org/10.1108/K-05-2019-0358
https://doi.org/10.1109/32.553636
https://doi.org/10.1023/A:1018914711050

BIBLIOGRAPHY

[48] A. C. Bock and U. Frank, MEMO GoalML: A Context-Enriched Model-
ing Language to Support Reflective Organizational Goal Planning and Deci-
sion Processes, in Conceptual Modeling, 35th International Conference, ER
2016, vol. 9974 of Lecture Notes in Computer Science, 2016, pp. 515–529.

[49] , Multi-Perspective Enterprise Modelling - Conceptual Foundation and
Implementation with ADOxx, in Domain-Specific Conceptual Modeling,
D. Karagiannis, H. Mayr, and J. Mylopoulos, eds., Springer, Cham, 2016,
pp. 241–267. 10.1007/978-3-319-39417-6_11.

[50] , In Search of the Essence of Low-Code: An Exploratory Study of Seven
Development Platforms, in 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-
C), 2021, pp. 57–66. 10.1109/MODELS-C53483.2021.00016.

[51] A. D. Booth and K. H. V. Britten, Coding for A.R.C., tech. rep.,
Institute for Advanced Study, Princeton, 1947.

[52] D. Bork and H.-G. Fill, Formal Aspects of Enterprise Modeling Methods:
A Comparison Framework, in 47th Hawaii International Conference on Sys-
tem Sciences, IEEE, Jan. 2014, pp. 3400–3409. 10.1109/HICSS.2014.422.

[53] W. Borst, Construction of Engineering Ontologies, PhD thesis, Institute
forTelematica and Information Technology, University of Twente, 1997.

[54] J. Bosch, On the Development of Software Product-Family Components, in
Proceedings of the 3rd International Conference on Software Product Lines
(SPLC), Springer LNCS, 2004. 10.1007/b100081.

[55] A. Bragança and R. J. Machado, Model Driven Development of Soft-
ware Product Lines, in Proceedings of the 6th International Conference on
Quality of Information and Communications Technology (QUATIC), IEEE,
2007, pp. 199–203. 10.1109/QUATIC.2007.25.

[56] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Soft-
ware Engineering in Practice, Synthesis Lectures on Software Engineer-
ing, Morgan & Claypool Publishers, second ed., Sept. 2017. 10.2200/

S00441ED1V01Y201208SWE001.

[57] S. Brinkkemper, Formalisation of Information Systems Modelling, PhD
thesis, Radboud University Nijmegen, June 1990.

[58] , Method engineering: Engineering of information systems develop-
ment methods and tools, Information & Software Technology, 38 (1996),
pp. 275–280. 10.1016/0950-5849(95)01059-9.

[59] S. Brinkkemper, M. Saeki, and F. Harmsen, Assembly techniques for
method engineering, in Advanced Information Systems Engineering, B. Per-
nici and C. Thanos, eds., Berlin, Heidelberg, 1998, Springer Berlin Heidel-
berg, pp. 381–400.

165

https://doi.org/10.1007/978-3-319-39417-6_11
https://doi.org/10.1109/MODELS-C53483.2021.00016
https://doi.org/10.1109/HICSS.2014.422
https://doi.org/10.1007/b100081
https://doi.org/10.1109/QUATIC.2007.25
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1016/0950-5849(95)01059-9

BIBLIOGRAPHY

[60] A. W. Brown,Model driven architecture: Principles and practice, Software
and Systems Modeling, 3 (2004), pp. 314–324. 10.1007/s10270-004-0061-
2.

[61] T. Brown, Design Thinking, Harvard business review, 86 (2008), pp. 84–
92,141.

[62] M. Broy and M. V. Cengarle, UML formal semantics: lessons learned,
Software and Systems Modeling, 10 (2011), pp. 441–116. 10.1007/s10270-
011-0207-y.

[63] A. Bryman and E. Bell, Business Research Methods, Oxford University
Press, 2011.

[64] I. Bucena and M. Kirikova, Simplifying the DevOps Adoption Process, in
Joint Proceedings of the BIR 2017 pre-BIR Forum, Workshops and Doctoral
Consortium co-located with 16th International Conference on Perspectives
in Business Informatics Research (BIR 2017), Copenhagen, Denmark, Au-
gust 28 - 30, 2017, B. Johansson, ed., vol. 1898 of CEURWorkshop Proceed-
ings, CEUR-WS.org, 2017. http://ceur-ws.org/Vol-1898/paper14.pdf.

[65] C. Bürger, S. Karol, and C. Wende, Applying Attribute Grammars
for Metamodel Semantics, in Proceedings of the International Workshop on
Formalization of Modeling Languages, FML ’10, New York, NY, USA, 2010,
Association for Computing Machinery. 10.1145/1943397.1943398.

[66] T. Bush, What Is The Difference Between APIs and Microservices? On-
line, Jan. 2019. Accessed 2021-Nov-18. https://nordicapis.com/what-

is-the-difference-between-apis-and-microservices/.

[67] Business Agility Institute, Domains of Business Agility. Online, 2020.
Accessed 2022-Nov-08. https://api.businessagility.institute/

storage/files/download-publications/bai-domains-of-business-

agility-digital.pdf.

[68] J. Cabot, Executable models vs code-generation vs model interpreta-
tion. Online, Aug. 2010. Accessed 2022-May-17. https://modeling-

languages.com/executable-models-vs-code-generation-vs-model-

interpretation-2/.

[69] , Positioning of the Low-Code Movement within the Field of Model-
Driven Engineering, in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings, New York, NY, USA, 2020, Association for Computing
Machinery. https://doi.org/10.1145/3417990.3420210.

[70] A. Caetano, A. Assis, and J. Tribolet, Using Business Transactions
to Analyse the Consistency of Business Process Models, in Proceedings of
CONFENIS 2011, C. Møller, ed., CIP Working Papers, Center for Industrial
Production, Aalborg University, 2011.

166

https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
http://ceur-ws.org/Vol-1898/paper14.pdf
https://doi.org/10.1145/1943397.1943398
https://nordicapis.com/what-is-the-difference-between-apis-and-microservices/
https://nordicapis.com/what-is-the-difference-between-apis-and-microservices/
https://api.businessagility.institute/storage/files/download-publications/bai-domains-of-business-agility-digital.pdf
https://api.businessagility.institute/storage/files/download-publications/bai-domains-of-business-agility-digital.pdf
https://api.businessagility.institute/storage/files/download-publications/bai-domains-of-business-agility-digital.pdf
https://modeling-languages.com/executable-models-vs-code-generation-vs-model-interpretation-2/
https://modeling-languages.com/executable-models-vs-code-generation-vs-model-interpretation-2/
https://modeling-languages.com/executable-models-vs-code-generation-vs-model-interpretation-2/
https://doi.org/10.1145/3417990.3420210

BIBLIOGRAPHY

[71] , Using DEMO to analyse the consistency of business process models,
in Advances in Enterprise Information Systems II, CRC Press, June 2012,
pp. 133–146. 10.1201/b12295-17.

[72] D. Card, G. T. Page, and F. E. McGarry, Criteria for Software Mod-
ularization, in Proceedings of the 8th international conference on Software
engineering, M. M. Lehman, H. Hünke, and B. W. Boehm, eds., IEEE Com-
puter Society, 1985, pp. 372–377.

[73] P. P. Cardoso Castro, The viable system model as a framework to
guide organisational adaptive response in times of instability and change,
International Journal of Organizational Analysis, 27 (2019), pp. 289–307.
10.1108/IJOA-01-2018-1334.

[74] M. Carr and J. Verner, Prototyping and Software Development Ap-
proaches, tech. rep., Department of Information Systems, City University
of Hong Kong, 1997.

[75] J. P. Cavano and J. McCall, A framework for the measurement of soft-
ware quality, SIGMETRICS Perform. Evaluation Rev., 7 (1978), pp. 133–
139.

[76] M. R. V. Chaudron, A. Fernandes-Saez, R. Hebig, T. Ho-Quang,
and R. Jolak, Diversity in UML Modeling Explained: Observations,
Classications and Theorizations, in 44th International Conference on Cur-
rent Trends in Theory and Practice of Computer Science, SOFSEM 2018,
vol. 10706 of Lecture Notes in Computer Science, 2018, pp. 47–66. 10.

1007/978-3-319-73117-9_4.

[77] F. Chauvel and J.-M. Jézéquel, Code Generation from UML Models
with Semantic Variation Points, in Model Driven Engineering Languages
and Systems (MODELS 2005), L. Briand and C. Williams, eds., vol. 3713
of Lecture Notes in Computer Science, Berlin, Heidelberg, 2005, Springer
Berlin Heidelberg, pp. 54–68. 10.1007/11557432_5.

[78] L. Chen, Continuous Delivery: Huge Benefits, but Challenges Too, IEEE
Software, 32 (2015), pp. 50–54. 10.1109/MS.2015.27.

[79] P. Chen, The Entity-Relationship Model - Toward a Unified View of Data,
ACM Transactions on Database Systems, 1 (1976), pp. 9–36.

[80] S. Ciraci and P. van den Broek, Evolvability as a quality attribute of
software architectures, Journal of Physics: Conference Series, (2006).

[81] R. Cole, S. Purao, M. Rossi, and M. K. Sein, Being proactive: where
action research meets design research, in ICIS 2005 Proceedings, D. Avison,
D. Galletta, and J. I. DeGross, eds., 2005, pp. 325–336.

[82] J. Collis and R. Hussey, Business Research: A Practical guide for under-
graduate and postgraduate students, Palgrave Macmillan, second ed., 2003.

167

https://doi.org/10.1201/b12295-17
https://doi.org/10.1108/IJOA-01-2018-1334
https://doi.org/10.1007/978-3-319-73117-9_4
https://doi.org/10.1007/978-3-319-73117-9_4
https://doi.org/10.1007/11557432_5
https://doi.org/10.1109/MS.2015.27

BIBLIOGRAPHY

[83] Computer Economics, IT Spending and Staffing Benchmarks 2022/2023,
tech. rep., Avasant Research, 2022.

[84] K. Conboy and B. Fitzgerald, Toward a Conceptual Framework of
Agile Methods: A Study of Agility in Different Disciplines, in Proceed-
ings of the 2004 ACM workshop on Interdisciplinary software engineer-
ing research, WISER ’04, New York, NY, USA, 2004, ACM, pp. 37–44.
10.1145/1029997.1030005.

[85] S. Cook, Domain-specific modeling and model driven architecture, MDA
Journal, 9 (2004), pp. 2–10.

[86] C. Corea, M. Fellmann, and P. Delfmann, Ontology-Based Process
Modelling - Will We Live to See It?, in Conceptual Modeling, A. Ghose,
J. Horkoff, V. E. Silva Souza, J. Parsons, and J. Evermann, eds., vol. 13011
of Lecture Notes in Computer Science, Cham, 2021, Springer International
Publishing, pp. 36–46. 10.1007/978-3-030-89022-3_4.

[87] S. Cronholm and P. J. Ågerfalk, On the Concept of Method in In-
formation Systems Development, in Proceedings of the 22nd Information
Systems Research in Scandinavia (IRIS 22): Enterprise Architectures for
Virtual Organisations, T. K. Käkölä, ed., vol. 1, 1999, pp. 229–236.

[88] P. B. Crosby, Quality Is Free: The Art of Making Quality Certain, Mentor
book, McGraw-Hill, 1979.

[89] S. Crowe, K. Cresswell, A. Robertson, G. Huby, A. Avery, and
A. Sheikh, The case study approach, BMC Med Res Methodol, 11 (2011).
10.1186/1471-2288-11-100.

[90] K. Czarnecki and S. Helsen, Feature-Based Survey of Model Trans-
formation Approaches, IBM Systems Journal, 45 (2006), pp. 621–645.
10.1147/sj.453.0621.

[91] M. Daneva and R. Wieringa, Cost estimation for cross-organizational
ERP projects: research perspectives, Software Quality Journal, 16 (2008),
pp. 459–481. 10.1007/s11219-008-9045-8.

[92] F. Daoudi and S. Nurcan, A framework to evaluate methods’ capacity to
design flexible business processes, in 6th International Workshop on Business
Process Modeling, vol. 12, Porto, Portugal, 2006, pp. 1–8. 10.1002/spip.
308.

[93] R. A. D’aveni, Hypercompetition, Simon & Schuster, 2010.

[94] A. M. Davis, Fifteen principles of software engineering, IEEE Software, 11
(1994), pp. 94–96. 10.1109/52.329409.

[95] M. Dawson, D. Burrell, E. Rahim, and S. Brewster, Integrat-
ing Software Assurance into the Software Development Life Cycle (SDLC),
Journal of Information Systems Technology and Planning, 3 (2010), pp. 49–
53.

168

https://doi.org/10.1145/1029997.1030005
https://doi.org/10.1007/978-3-030-89022-3_4
https://doi.org/10.1186/1471-2288-11-100
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/s11219-008-9045-8
https://doi.org/10.1002/spip.308
https://doi.org/10.1002/spip.308
https://doi.org/10.1109/52.329409

BIBLIOGRAPHY

[96] B. de Bruin, A. Verschut, and E. Wierstra, Systematic Analysis of
Business Processes, Knowledge & Process Management, 7 (2000), pp. 87–
96. 10.1002/1099-1441(200004/06)7:2<87::AID-KPM71>3.0.CO;2-4.

[97] P. De Bruyn and H. Mannaert, Towards Applying Normalized Systems
Concepts to Modularity and the Systems Engineering Process, in ICONS
2012, The Seventh International Conference on Systems, 2012, pp. 59–66.

[98] P. De Bruyn, D. Van Nuffel, P. Huysmans, and H. Mannaert,
Towards Functional and Constructional Perspectives on Business Process
Patterns, in ICSEA 2011 : The Sixth International Conference on Software
Engineering Advances, Oct. 2011, pp. 459–464.

[99] P. De Bryun, H. Mannaert, J. Verelst, and P. Huysmans, En-
abling Normalized Systems in Practice - Exploring a Modeling Approach,
Business & Information Systems Engineering, 60 (2018), pp. 55–67. 10.

1007/s12599-017-0510-4.

[100] R. de Feijter, R. van Vliet, E. Jagroep, S. Overbeek, and
S. Brinkkemper, Towards the adoption of DevOps insoftware product
organizations: A maturitymodel approach, Tech. Rep. UU-CS-2017-009,
Utrecht University, May 2017.

[101] J. de Jong, A Method for Enterprise Ontology based Design of for Enter-
prise Information Systems, PhD thesis, TU Delft, 2013.

[102] J. de Jong and J. L. G. Dietz, Understanding the realization of organi-
zations, in Advances in Enterprise Engineering IV, W. Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, C. Szyperski, A. Albani, and J. L. G. Dietz, eds.,
vol. 49 of Lecture Notes in Business Information Processing, Springer Berlin
Heidelberg, 2010, pp. 31–49.

[103] S. de Kinderen, K. Gaaloul, and H. A. Proper, On Transform-
ing DEMO Models to ArchiMate, in Enterprise, Business-Process and In-
formation Systems Modeling, I. Bider, T. Halpin, J. Krogstie, S. Nurcan,
E. Proper, R. Schmidt, P. Soffer, and S. Wrycza, eds., Springer Berlin Hei-
delberg, 2012, pp. 270–284. 10.1007/978-3-642-31072-0_19.

[104] L. de Laat, M. Op ’t Land, and M. R. Krouwel, Supporting Goal-
oriented Organizational Implementation - Combining DEMO and Process
Simulation in a Practice-tested Method, in EEWC 2016: Advances in En-
terprise Engineering X, D. Aveiro, R. Pergl, and D. Gouveia, eds., vol. 252 of
Lecture Notes in Business Information Processing, Springer, 2016, pp. 19–
33. 10.1007/978-3-319-39567-8_2.

[105] De Rijksoverheid, Algemene wet bestuursrecht, 2022. Accessed on 2022-
Dec-13. https://wetten.overheid.nl/BWBR0005537/2022-11-05.

[106] M. De Vries, DEMO and the Story-Card Method: Requirements Elicita-
tion for Agile Software Development at Scale, in PoEM 2018: The Practice

169

https://doi.org/10.1002/1099-1441(200004/06)7:2<87::AID-KPM71>3.0.CO;2-4
https://doi.org/10.1007/s12599-017-0510-4
https://doi.org/10.1007/s12599-017-0510-4
https://doi.org/10.1007/978-3-642-31072-0_19
https://doi.org/10.1007/978-3-319-39567-8_2
https://wetten.overheid.nl/BWBR0005537/2022-11-05

BIBLIOGRAPHY

of Enterprise Modeling, R. Buchmann, D. Karagiannis, and M. Kirikova,
eds., vol. 335 of Lecture Notes in Business Information Processing, Springer,
2018, pp. 138–153. 10.1007/978-3-030-02302-7_9.

[107] C. Décosse, W. A. Molnar, and H. A. Proper, What Does DEMO
Do? A Qualitative Analysis about DEMO in Practice: Founders, Modellers
and Beneficiaries, in Proceedings of the 4th Enterprise Engineering Working
Conference (EEWC 2014), Funchal, Madeira, vol. 174 of Lecture Notes in
Business Information Processing, 2014, pp. 16–30. 10.1007/978-3-319-

06505-2_2.

[108] A. Delgado and D. Calegari, Towards integrating BPMN 2.0 with
CMMN and DMN standards for flexible business process modeling, in 22nd
Conferencia Iberoamericana en Software Engineering (CIbSE 2019), Curran
Associates, Inc., Apr. 2019, pp. 697–704.

[109] T. DeMarco, Structured Analysis and System Specification, Prentice Hall,
1979.

[110] J. Den Haan, An Enterprise Ontology based approach to Model-
Driven Engineering, Master’s thesis, TU Delft, Oct. 2009. https:

//repository.tudelft.nl/islandora/object/uuid:e2093132-9db7-

4cba-bc68-9355f93cb9e3.

[111] V. Desai, Y. Koladia, and S. Pansambal, Microservices: Architecture
and Technologies, International Journal for Research in Applied Science &
Engineering Technology (IJRASET), 8 (2020). 10.22214/ijraset.2020.

31979.

[112] M. S. Deutsch and R. R. Willis, Software Quality Engineering: A Total
Technical and Management Approach, Prentice Hall, 1988.

[113] G. Dévai, M. Karácsony, B. Németh, R. Kitlei, and T. Kozsik,
UML Model Execution via Code Generation, in EXE@MoDELS, 2015.

[114] V. Devedzić, Understanding Ontological Engineering, Communications of
the ACM, 45 (2002), pp. 136–144. 10.1145/505248.506002.

[115] P. Di Francesco, P. Lago, and I. Malavolta, Architecting with Mi-
croservices: A Systematic Mapping Study, Journal of Systems and Software,
(2019).

[116] D. Di Ruscio, D. Kolovos, J. Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, Low-code development and model-driven engineering: Two
sides of the same coin?, Software and Systems Modeling, 21 (2022), pp. 437–
446. 10.1007/s10270-021-00970-2.

[117] J. Dietz, E. van Dipten, M. Krouwel, P. Kuipers, T. de Mik,
and I. Theuwissen-Krol, Begrijpen en Maken van Essentiële Modellen,
Werken met DEMO (WmD), Enterprise Engineering Institute, Nov. 2021.
Dutch. https://ee-institute.org/demo/werken-met-demo/.

170

https://doi.org/10.1007/978-3-030-02302-7_9
https://doi.org/10.1007/978-3-319-06505-2_2
https://doi.org/10.1007/978-3-319-06505-2_2
https://repository.tudelft.nl/islandora/object/uuid:e2093132-9db7-4cba-bc68-9355f93cb9e3
https://repository.tudelft.nl/islandora/object/uuid:e2093132-9db7-4cba-bc68-9355f93cb9e3
https://repository.tudelft.nl/islandora/object/uuid:e2093132-9db7-4cba-bc68-9355f93cb9e3
https://doi.org/10.22214/ijraset.2020.31979
https://doi.org/10.22214/ijraset.2020.31979
https://doi.org/10.1145/505248.506002
https://doi.org/10.1007/s10270-021-00970-2
https://ee-institute.org/demo/werken-met-demo/

BIBLIOGRAPHY

[118] J. L. G. Dietz, Deriving Use Cases from Business Process Models, in
Conceptual Modeling - ER 2003, I.-Y. Song, S. Liddle, T.-W. Ling, and
P. Scheuermann, eds., vol. 2813 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2003, pp. 131–143. 10.1007/978-3-540-

39648-2_13.

[119] , Enterprise Ontology — Theory and methodology., Springer, 2006.

[120] , Architecture – Building strategy into design, Netherlands Architecture
Forum, Academic Service – SDU, The Hague, The Netherlands, 2008.

[121] , The Essence of Organisation - an Introduction to Enterprise Engi-
neering, Sapio, 2013. http://www.sapio.nl.

[122] , The DEMO Specification Language v4.7, tech. rep., Enterprise En-
gineering Institute, Apr. 2022. https://ee-institute.org/download/

demo-specification-language-4-7-1/.

[123] J. L. G. Dietz and J. A. P. Hoogervorst, Enterprise Ontology and En-
terprise Architecture – how to let them evolve into effective complementary
notions., GEAO Journal of Enterprise Architecture, 2007, 1 (2007).

[124] J. L. G. Dietz and J. B. F. Mulder, Enterprise Ontology — A Human-
Centric Approach to Understanding the Essence of Organisation, The En-
terprise Engineering Series, Springer, Cham, 2020. 10.1007/978-3-030-

38854-6.

[125] J. L. G. Dietz, M. Op ’t Land, M. R. Krouwel, and J. B. F. Mul-
der, Enterprise Design, Springer, 2024. Forthcoming.

[126] R. M. Dijkman, M. Dumas, and C. Ouyang, Semantics and analysis of
business process models in BPMN, Information and Software Technology,
50 (2008), pp. 1281–1294. 10.1016/j.infsof.2008.02.006.

[127] E. W. Dijkstra, Notes on Structured Programming, tech. rep., Techno-
logical University Eindhoven, Department of Mathematics, Apr. 1970. Vol.
70-WSK-03.

[128] R. Dove, Agile Enterprise Cornerstones: Knowledge, Values, and Response
Ability, in Business Agility and Information Technology Diffusion, R. L.
Baskerville, L. Mathiassen, J. Pries-Heje, and J. I. DeGross, eds., vol. 180
of IFIP International Federation for Information Processing, Boston, MA,
2005, Springer US, pp. 313–330. 10.1007/0-387-25590-7_20.

[129] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, Microservices: yesterday,
today, and tomorrow, Present and Ulterior Software Engineering, (2017),
pp. 195–216. 10.1007/978-3-319-67425-4_12.

171

https://doi.org/10.1007/978-3-540-39648-2_13
https://doi.org/10.1007/978-3-540-39648-2_13
http://www.sapio.nl
https://ee-institute.org/download/demo-specification-language-4-7-1/
https://ee-institute.org/download/demo-specification-language-4-7-1/
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/0-387-25590-7_20
https://doi.org/10.1007/978-3-319-67425-4_12

BIBLIOGRAPHY

[130] E. Eessaar, On Applying Normalized Systems Theory to the Business Ar-
chitectures of Information Systems, Baltic Journal of Modern Computing,
2 (2014), pp. 132–149.

[131] K. M. Eisenhardt, Building theories from case study research, Academy
of management review, 14 (1989), pp. 532–550.

[132] D. W. Embley, B. D. Kurtz, and S. N. Woodfield, Object-Oriented
Systems Analysis, A Model-Driven Approach, Yourdon Press, 1992.

[133] R. Espejo and A. Reyes, Organizational Systems: Managing Complexity
with the Viable System Model, Springer, 2011.

[134] R. W. Ettema, Using triangulation in lean six sigma to explain qual-
ity problems – An enterprise engineering perspective, PhD thesis, Radboud
University, 2016.

[135] R. W. Ettema and J. L. G. Dietz, ArchiMate and DEMO - Mates to
Date?, in Advances in Enterprise Engineering III. CIAO! EOMAS 2009,
A. Albani, J. Barjis, and J. L. G. Dietz, eds., vol. 34 of Lecture Notes in
Business Information Processing, Springer, Berlin, Heidelberg, 2009. 10.

1007/978-3-642-01915-9_13.

[136] M. W. Evans and J. J. Marciniak, Software Quality Assurance & Man-
agement, John Wiley & Sons, 1987.

[137] J. Evermann and Y. Wand, Towards Ontologically Based Semantics for
UML Constructs, in Conceptual Modeling – ER 2001, H. S.Kunii, S. Ja-
jodia, and A. Sølvberg, eds., vol. 2224 of Lecture Notes in Computer Sci-
ence, Berlin, Heidelberg, 2001, Springer Berlin Heidelberg, pp. 354–367.
10.1007/3-540-45581-7_27.

[138] R. A. Falbo, G. Guizzardi, K. Duarte, and A. Natali, Developing
software for and with reuse: an ontological approach, in ACIS International
Conference on Computer Science, Software Engineering, Information Tech-
nology, e-Business, and Applications, International Association for Com-
puter and Information Science (ACIS), June 2002, pp. 311–316.

[139] D. Farinelli and D. McAllister, API vs. Microservices: A Mi-
croservice Is More Than Just an API. Online, Oct. 2019. Accessed
2021-Nov-11. https://dzone.com/articles/api-vs-microservices-a-

microservice-is-more-than-j.

[140] D. Farley, The Problem With Microservices. Online, Oct. 2020. Accessed
2021-Nov-18. https://www.youtube.com/watch?v=zzMLg3Ys5vI.

[141] J.-M. Favre, Foundations of Model (Driven) (Reverse) Engineering : Mod-
els - Episode I: Stories of The Fidus Papyrus and of The Solarus, in Lan-
guage Engineering for Model-Driven Software Development, J. Bezivin and
R. Heckel, eds., vol. 4101 of Dagstuhl Seminar Proceedings (DagSemProc),

172

https://doi.org/10.1007/978-3-642-01915-9_13
https://doi.org/10.1007/978-3-642-01915-9_13
https://doi.org/10.1007/3-540-45581-7_27
https://dzone.com/articles/api-vs-microservices-a-microservice-is-more-than-j
https://dzone.com/articles/api-vs-microservices-a-microservice-is-more-than-j
https://www.youtube.com/watch?v=zzMLg3Ys5vI

BIBLIOGRAPHY

Dagstuhl, Germany, 2004, Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, pp. 1–31. https://drops.dagstuhl.de/opus/volltexte/2005/13,
10.4230/DagSemProc.04101.8.

[142] , Megamodelling and Etymology, in Transformation Techniques in Soft-
ware Engineering, J. R. Cordy, R. L”ammel, and A. Winter, eds., no. 05161
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006, Internationales
Begegnungs- und Forschungszentrum f”ur Informatik (IBFI), Schloss
Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/
427.

[143] M. Fayad and M. P. Cline, Aspects of Software Adaptability, Communi-
cations of the ACM, 39 (1996), pp. 58–59.

[144] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language, SEI
Series in Software Engineering, Pearson Education, 2012. https://books.
google.nl/books?id=T_nOltBoX64C.

[145] J. Ferreira, J. Noble, and R. Biddle, Agile Development Iterations
and UI Design, in Agile 2007, 2007, pp. 50–58. 10.1109/AGILE.2007.8.

[146] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, RFC 2616, Hypertext Transfer Pro-
tocol – HTTP/1.1. Online, June 1999. Accessed 2022-Apr-01. http:

//www.rfc.net/rfc2616.html.

[147] R. R. Filho, Emergent Software Systems, PhD thesis, Lancaster Univer-
sity, UK, 2018.

[148] M. Filipović, Ž. Vuković, I. Dejanović, and G. Milosavljević,
Rapid Requirements Elicitation of Enterprise Applications Based on Exe-
cutable Mockups, Applied Sciences, 11 (2021). 10.3390/app11167684.

[149] H.-G. Fill and D. Karagiannis, On the Conceptualisation of Modelling
Methods Using the ADOxx Meta Modelling Platform, Enterprise Modelling
and Information Systems Architecture, 8 (2013), pp. 4–24.

[150] C. Fischer, R. Winter, and F. Wortmann, Design Theory, Business &
Information Systems Engineering, 2 (2010), pp. 387–390. 10.1007/s12599-
010-0128-2.

[151] B. Fitzgerald, N. L. Russo, and E. Stolterman, Information Sys-
tems Development: Methods-in-Action, McGraw-Hill, London, June 2002.

[152] B. Flyvbjerg, Five Misunderstandings About Case-Study Research, Qual-
itative Inquiry, 12 (2006), pp. 219–245. 10.1177/1077800405284363.

[153] F. Fondement, Concrete syntax definition for modeling languages, PhD
thesis, École Polytechnique Fédérale de Lausanne, Nov. 2007. 10.5075/

epfl-thesis-3927.

173

https://drops.dagstuhl.de/opus/volltexte/2005/13
https://doi.org/10.4230/DagSemProc.04101.8
http://drops.dagstuhl.de/opus/volltexte/2006/427
http://drops.dagstuhl.de/opus/volltexte/2006/427
https://books.google.nl/books?id=T_nOltBoX64C
https://books.google.nl/books?id=T_nOltBoX64C
https://doi.org/10.1109/AGILE.2007.8
http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html
https://doi.org/10.3390/app11167684
https://doi.org/10.1007/s12599-010-0128-2
https://doi.org/10.1007/s12599-010-0128-2
https://doi.org/10.1177/1077800405284363.
https://doi.org/10.5075/epfl-thesis-3927
https://doi.org/10.5075/epfl-thesis-3927

BIBLIOGRAPHY

[154] G. B. Forbach, Structured system design: Analysis, design, and construc-
tion, Behavior Research Methods & Instrumentation, 13 (1981), pp. 163–
171. 10.3758/BF03207927.

[155] M. Fowler, Microservices. Online, Mar. 2014. Accessed 2021-Nov-05.
http://martinfowler.com/articles/microservices.html.

[156] M. Fowler and J. Lewis, Microservices: Nur ein weiteres Konzeptin der
Softwarearchitektur oder mehr?, Online Themenspecial Innovation in und
durch Architekturen 2015, (2015).

[157] M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin, An Orga-
nization Ontology for Enterprise Modelling, in Simulating Organizations:
Computational Models of Institutions and Groups, M. Prietula, K. Carley,
and L. Gasser, eds., MIT Press, 1997, pp. 131–152.

[158] M. S. Fox and M. Gruninger, Enterprise Modeling, AI Magazine, 19
(1998). 10.1609/aimag.v19i3.1399.

[159] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, Model-
driven development using UML 2.0: promises and pitfalls, Computer, 39
(2006), pp. 59–66. 10.1109/MC.2006.65.

[160] R. B. France and B. Rumpe, Model-driven Development of Complex
Software: A Research Roadmap, in Future of Software Engineering (FOSE
’07), 2007, pp. 37–54. 10.1109/FOSE.2007.14.

[161] U. Frank, The MEMO Meta-Metamodel, tech. rep., Universität Koblenz-
Landau - Institut für Wirtshaftsinformatik, June 1998.

[162] , Multi-perspective enterprise modeling (MEMO) conceptual framework
and modeling languages, in Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences, 2002, pp. 1258–1267. 10.1109/

HICSS.2002.993989.

[163] , MEMO Organisation Modelling Language: (2) Focus on Business
Processes, Tech. Rep. 49, ICB, Dec. 2011.

[164] , The MEMO Meta Modelling Language (MML) and Language Archi-
tecture, Tech. Rep. 43, ICB, Feb. 2011.

[165] , Enterprise Modelling: The Next Steps, Enterprise Modelling and
Information Systems Architectures, 9 (2014), pp. 22–37.

[166] , Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges, Software and Systems Modeling,
13 (2014), pp. 941–962. 10.1007/s10270-012-0273-9.

[167] U. Frank, P. Maier, and A. C. Bock, Low code platforms: Promises,
concepts andprospects. a comparative study of ten systems, Tech. Rep. 70,
ICB-Research, 2021. 10.17185/duepublico/75244.

174

https://doi.org/10.3758/BF03207927
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1609/aimag.v19i3.1399
https://doi.org/10.1109/MC.2006.65
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/HICSS.2002.993989
https://doi.org/10.1109/HICSS.2002.993989
https://doi.org/10.1007/s10270-012-0273-9
https://doi.org/10.17185/duepublico/75244

BIBLIOGRAPHY

[168] D. Galin, Software Quality Assurance: From Theory to Implementation,
Pearson Education Limited, 2004.

[169] A. Gargantini, E. Riccobene, and P. Scandurra, A semantic frame-
work for metamodel-based languages, Automated Software Engineering, 16
(2009), pp. 415–454. 10.1007/s10515-009-0053-0.

[170] Gartner. Online, Oct. 2022. Accessed on 2022-Dec-15. https://www.

gartner.com/en/newsroom/press-releases/2022-10-19-gartner-

forecasts-worldwide-it-spending-to-grow-5-percent-in-2023.

[171] J. Geskus and J. L. G. Dietz, Developing Quality Management Sys-
tems with DEMO, in Advances in Enterprise Engineering III. CIAO! EO-
MAS 2009, A. Albani, J. Barjis, and J. L. G. Dietz, eds., vol. 34 of Lec-
ture Notes in Business Information Processing, Springer, Berlin, Heidelberg,
2009, pp. 130–142. 10.1007/978-3-642-01915-9_10.

[172] G. B. Ghantous and A. Gill, DevOps: Concepts, Practices, Tools, Ben-
efits and Challenges, in PACIS 2017 Proceedings, 2017. https://aisel.

aisnet.org/pacis2017/96.

[173] R. E. Giachetti, Design of Enterprise Systems: Theory, Architecture, and
Methods, CRC Press, first ed., Jan. 2010.

[174] M. Gogolla and B. Selic, On teaching descriptive and prescriptive mod-
eling, in Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS ’20), Oct.
2020, pp. 1–9. 10.1145/3417990.3418744.

[175] B. Gold, Approaches to accelerating product and process development,
Journal of Product Innovation Management, 4 (1987), pp. 81–88.

[176] G. Goldkuhl, M. Lind, and U. Seigerroth, Method Integration as a
Learning Process, in Proceedings of the Fifth International Conference of
the British Computer Society Information Systems Methodologies Specialist
Group, N. Jayaratna, B. Fitzgerald, T. Wood-Harper, and J.-M. Larrasquet,
eds., Springer-Verlag, 1997, pp. 15–26.

[177] D. L. Goodhue, D. Q. Chen, M. C. Boudreau, A. Davis, and
J. Cochran, Addressing Business Agility Challenges with Enterprise Sys-
tems, MIS Quarterly Executive, 8 (2009), pp. 73–88.

[178] D. Gouveia, EMOTIONS - Essential Model of Organization Operational-
ized in a Normalized System, PhD thesis, Universidade da Madeira, 2020.
Forthcoming.

[179] D. Gouveia and D. Aveiro, Two Protocols for DEMO Engines: PSI or
Tell&Agree, in 15th CIAO! Doctoral Consortium Workshop, June 2015.

175

https://doi.org/10.1007/s10515-009-0053-0
https://www.gartner.com/en/newsroom/press-releases/2022-10-19-gartner-forecasts-worldwide-it-spending-to-grow-5-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-19-gartner-forecasts-worldwide-it-spending-to-grow-5-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-10-19-gartner-forecasts-worldwide-it-spending-to-grow-5-percent-in-2023
https://doi.org/10.1007/978-3-642-01915-9_10
https://aisel.aisnet.org/pacis2017/96
https://aisel.aisnet.org/pacis2017/96
https://doi.org/10.1145/3417990.3418744

BIBLIOGRAPHY

[180] S. Graf, I. Ober, and I. Ober, A real-time profile for UML, International
Journal on Software Tools for Technology Transfer, 8 (2006), pp. 113–127.
10.1007/s10009-005-0213-x.

[181] T. Graml, R. Bracht, and M. Spies, Patterns of Business Rules to
Enable Agile Business Processes, in 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), IEEE, 2007.
10.1109/EDOC.2007.35.

[182] R. Grangel, J. P. Bourey, R. Chalmeta, and M. Bigand, UML
for Enterprise Modelling: basis for a Model-Driven Approach, in Enterprise
Interoperability, G. Doumeingts, J. Müller, G. Morel, and B. Vallespir, eds.,
Springer, London, 2007, pp. 91–101. 10.1007/978-1-84628-714-5_9.

[183] T. Gray, D. Bork, and M. De Vries, A New DEMO Modelling Tool
that Facilitates Model Transformations, in Enterprise, Business-Process
and Information Systems Modeling, Springer, Heidelberg, Germany, 2020,
pp. 359–374. 10.1007/978-3-030-49418-6_25.

[184] D. Greefhorst and E. Proper, Architecture Principles: The Cor-
nerstones of Enterprise Architecture, The Enterprise Engineering Series,
Springer, 2011. 10.1007/978-3-642-20279-7.

[185] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition, 5 (1993), pp. 199–220. 10.1006/knac.1993.1008.

[186] N. Guarino, G. Guizzardi, and J. Mylopoulos, On the Philosophical
Foundations of Conceptual Models, in 29th International Conference on In-
formation Modelling and Knowledge Bases (EJC 2019), vol. 321 of Frontiers
in Artificial Intelligence and Applications, 2019. 10.3233/FAIA200002.

[187] N. Guarino, D. Oberle, and S. Staab, What Is an Ontology?, in
Handbook on Ontologies, S. Staab and R. Studer, eds., International Hand-
books on Information Systems, Springer, Berlin, Heidelberg, 2009, pp. 1–17.
10.1007/978-3-540-92673-3_0.

[188] G. Guizzardi, Ontological foundations for structural conceptual models,
PhD thesis, University of Twente, Oct. 2005.

[189] , On Ontology, Ontologies, Conceptualizations, Modeling Languages,
and (Meta)Models, in Proceedings of the 2007 Conference on Databases
and Information Systems IV: Selected Papers from the Seventh Inter-
national Baltic Conference DB&IS’2006, IOS Press, 2007, pp. 18–39.
10.5555/1565421.1565425.

[190] G. Guizzardi, L. Ferreira Pires, and M. van Sinderen, An
Ontology-Based Approach for Evaluating the Domain Appropriateness and
Comprehensibility Appropriateness of Modeling Languages, in MODELS
2005: Model Driven Engineering Languages and Systems, L. Briand and
C. Williams, eds., vol. 3713 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2005, pp. 691–705. 10.1007/11557432_51.

176

https://doi.org/10.1007/s10009-005-0213-x
https://doi.org/10.1109/EDOC.2007.35
https://doi.org/10.1007/978-1-84628-714-5_9
https://doi.org/10.1007/978-3-030-49418-6_25
https://doi.org/10.1007/978-3-642-20279-7
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.3233/FAIA200002
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.5555/1565421.1565425
https://doi.org/10.1007/11557432_51

BIBLIOGRAPHY

[191] J. Habermas, The theory of communicative action, Cambridge: Polity
Press, 1986.

[192] B. Hailpern and P. Tarr, Model-driven development: The good, the bad,
and the ugly, IBM Systems Journal, 45 (2006), pp. 451–461.

[193] A. Haj-Bolouri, S. Purao, M. Rossi, and L. Bernhardsson, Action
Design Research in Practice: Lessons and Concerns, in Proceedings of the
European Conference on Information Systems 2018 (ECIS 2018), U. Frank,
K. Kautz, and P. M. Bednar, eds., June 2018.

[194] A. Hallerbach, T. Bauer, and M. Reichert, Capturing Variability
in Business Process Models: The Provop Approach, Journal of Software
Maintenance and Evolution: Research and Practice, 22 (2010), pp. 519–
546.

[195] T. Halpin, Fact-Oriented Modeling: Past, Present and Future, in Concep-
tual Modelling in Information Systems Engineering, J. Krogstie, A. L. Op-
dahl, and S. Brinkkemper, eds., Springer, 2007, pp. 19–38. 10.1007/978-

3-540-72677-7_2.

[196] M. Hamman, Evolvagility: Growing an Agile Leadership Culture from the
Inside Out, Agile Leadership Institute, Jan. 2019.

[197] G. Hardjosumarto, An Enterprise Ontology basedApproach to Service
Specification, Master’s thesis, Delft University of Technology, 2008.

[198] D. Harel and B. Rumpe, Meaningful modeling: What’s the semantics of
”semantics”?, Computer, 37 (2004), pp. 64–72. 10.1109/MC.2004.172.

[199] F. Harmsen, Situational Method Engineering, PhD thesis, University of
Twente, Jan. 1997.

[200] F. Harmsen, S. Brinkkemper, and J. Oei, Situational Method Engi-
neering for Information System Project Approaches, in Methods and Asso-
ciated Tools for the Information Systems Life Cycle, A. A. Verrijn Stuart
and T. W. Olle, eds., Sept. 1994, pp. 169–194.

[201] F. Hasić, J. De Smedt, and J. Vanthienen, Towards Assessing the The-
oretical Complexity of the Decision Model and Notation (DMN), in CEUR
Workshop Proceedings, vol. 1859, June 2017, pp. 64–71.

[202] J. Heering and M. Mernik, Domain-Specific Languages for Software
Engineering, in Proceedings of the 35th Hawaii International Conference on
System Sciences, vol. 9, IEEE, 2002. 10.1109/HICSS.2002.10113.

[203] C. Heitmeyer, S. Shukla, M. Archer, and E. Leonard, On Model-
Based Software Development, in Perspectives on the Future of Software
Engineering, J. Münch and K. Schmid, eds., Springer, 2013, pp. 49–60.
10.1007/978-3-642-37395-4_4.

177

https://doi.org/10.1007/978-3-540-72677-7_2
https://doi.org/10.1007/978-3-540-72677-7_2
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/HICSS.2002.10113
https://doi.org/10.1007/978-3-642-37395-4_4

BIBLIOGRAPHY

[204] K. Henderson and A. Salado, Value and benefits of model-based systems
engineering (MBSE): Evidence from the literature, Systems Engineering, 24
(2020). 10.1002/sys.21566.

[205] B. Henderson-Sellers, C. Gonzalez-Perez, and J. Ralyte, Com-
parison of Method Chunks and Method Fragments for Situational Method
Engineering, Proceedings of the Australian Software Engineering Confer-
ence, ASWEC, (2008), pp. 479–488. 10.1109/ASWEC.2008.4483237.

[206] B. Henderson-Sellers and J. Ralyte, Situational Method Engineering:
State-of-the-Art Review, Journal of Universal Computer Science, (2010).

[207] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk, and M. Rossi,
Situational Method Engineering, Springer-Verlag Berlin Heidelberg, 2014.
10.1007/978-3-642-41467-1.

[208] D. Hendriks, The selection process of model based platforms, Master’s
thesis, Radboud Universiteit Nijmegen, July 2017.

[209] M. Henning, API Design Matters, Commun. ACM, 52 (2009), pp. 46–56.
10.1145/1506409.1506424.

[210] M. Herselman and A. Botha, Evaluating an Artifact in Design Sci-
ence Research Methodology as was implemented in a resource constrained
environment, in Proceedings of the 2015 Annual Research Conference on
South African Institute of Computer Scientists and Information Technolo-
gists (SAICSIT), R. J. Barnett, L. Cleophas, D. G. Kourie, D. B. le Roux,
and B. W. Watson, eds., Association for Computing Machinery, Sept. 2015.
10.1145/2815782.2815806.

[211] A. R. Hevner, A Three Cycle View of Design Science Research, Scandi-
navian Journal of Information Systems, 19 (2007), pp. 87–92.

[212] A. R. Hevner, S. T. March, J. Park, and S. Ram, Design science in
information systems research, MIS Quarterly, 28 (2004), pp. 75–105.

[213] K. Hinkelmann, A. Gerber, D. Karagiannis, B. Thoenssen,
A. van der Merwe, and R. Woitsch, A new paradigm for the continu-
ous alignment of business and IT: Combining enterprise architecture mod-
elling and enterprise ontology, Computers in Industry, 79 (2016), pp. 77–86.
10.1016/j.compind.2015.07.009.

[214] S. Holwell, Themes, Iteration, and Recoverability in Action Research, in
Information Systems Research - Relevant Theory and Informed Practice,
B. Kaplan, D. P. Truex, D. Wastell, A. T. Wood-Harper, and J. I. De-
Gross, eds., vol. 143 of IFIP Advances in Information and Communication
Technology, Springer, June 2004. 10.1007/1-4020-8095-6_20.

[215] J. Hoogervorst, A framework for enterprise engineering, International
Journal of Internet and Enterprise Management, 7 (2011), pp. 5–40. 10.

1504/IJIEM.2011.038381.

178

https://doi.org/10.1002/sys.21566
https://doi.org/10.1109/ASWEC.2008.4483237
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1145/1506409.1506424
https://doi.org/10.1145/2815782.2815806
https://doi.org/10.1016/j.compind.2015.07.009
https://doi.org/10.1007/1-4020-8095-6_20
https://doi.org/10.1504/IJIEM.2011.038381
https://doi.org/10.1504/IJIEM.2011.038381

BIBLIOGRAPHY

[216] S. J. B. A. Hoppenbrouwers, H. A. E. Proper, and T. P. van der
Weide, A Fundamental View on the Process of Conceptual Modeling, in
Conceptual Modeling - ER 2005, L. Delcambre, C. Kop, H. C. Mayr, J. My-
lopoulos, and O. Pastor, eds., vol. 3716 of Lecture Notes in Computer Sci-
ence, Springer, Berlin, Heidelberg, 2005, pp. 128–143. 10.1007/11568322_
9.

[217] W. S. Humphrey, Winning with Software: An Executive Strategy, SEI
Series in Software Engineering, Addison-Wesley Professional, 2001.

[218] P. Huysmans, On the Feasibility of Normalized Enterprises: Applying Nor-
malized Systems Theory to the High-Level Design of Enterprises., PhD the-
sis, University of Antwerp, 2011.

[219] P. Huysmans, D. Bellens, D. Van Nuffel, and K. Ven, Aligning
the Constructs of Enterprise Ontology and Normalized Systems, in Sixth
International CIAO! Workshop on the Fifth International Conference on
Design Science Research in Information Systems and Technology (DESRIST
2010), Aalst, Will and Mylopoulos, John and Sadeh, Norman M. and Shaw,
Michael J. and Szyperski, Clemens and Albani, Antonia and Dietz, Jan L.
G., ed., Springer Berlin Heidelberg, June 2010.

[220] P. Huysmans, K. Ven, and J. Verelst, Using the DEMO methodology
for modeling open source software development processes, Information and
Software Technology, 52 (2010), pp. 656–671. 10.1016/j.infsof.2010.

02.002.

[221] IEEE, Standard Glossary of Software Engineering Terminology, Tech. Rep.
610.12-1990, The Institute of Electrical and Electronics Engineers, 345 East
47th Street, New York, NY 10017, USA, 1990. 10.1109/IEEESTD.1990.

101064.

[222] International Organization for Standardization, ISO/IEC/IEEE
42010:2022 Software, systems and enterprise - Architecture description.
Online, 2022. Accessed 2022-Dec-08. https://www.iso.org/standard/

74393.html.

[223] S. Isaac, T. Bock, and Y. Stoliar, A methodology for the optimal
modularization of building design, Automation in Construction, 65 (2016),
pp. 116–124. 10.1016/j.autcon.2015.12.017.

[224] M. Jacobs, C. Droge, S. K. Vickery, and R. Calantone, Prod-
uct and Process Modularity’s Effects on Manufacturing Agility and Firm
Growth Performance, Journal of Product Innovation Management, 28
(2011), pp. 123–137. 10.1111/j.1540-5885.2010.00785.x.

[225] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
Microservices: The Journey So Far and Challenges Ahead, IEEE Software,
35 (2018), pp. 24–35. 10.1109/MS.2018.2141039.

179

https://doi.org/10.1007/11568322_9
https://doi.org/10.1007/11568322_9
https://doi.org/10.1016/j.infsof.2010.02.002
https://doi.org/10.1016/j.infsof.2010.02.002
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.iso.org/standard/74393.html
https://www.iso.org/standard/74393.html
https://doi.org/10.1016/j.autcon.2015.12.017
https://doi.org/10.1111/j.1540-5885.2010.00785.x
https://doi.org/10.1109/MS.2018.2141039

BIBLIOGRAPHY

[226] P. Järvinen, On boundaries between field experiment, action research and
design research, no. 14 in Reports in Information Sciences, University of
Tampere, 2012. https://trepo.tuni.fi/handle/10024/66319.

[227] M. A. Jeusfeld, Metamodel, in Encyclopedia of Database Systems, L. Liu
and M. T. Özsu, eds., Springer US, Boston, MA, 2009, pp. 1727–1730.
10.1007/978-0-387-39940-9_898.

[228] H. Jipeng and L. Zhihang, A Constraint and Object Oriented Fifth
Generation Programming Language and its Compiler and Runtime System,
ArXiv, (2022). 10.48550/arXiv.2206.01024.

[229] L.-O. Johansson, M. Wärja, H. Kjellin, and S. Carlsson, Graph-
ical modeling techniques and usefulness in the Model Driven Arcitechture:
Which are the criteria for a ‘ good’ Computer independent model?, in Pro-
ceedings of The 31st Information Systems Research Seminar in Scandinavia
(IRIS31), Jan. 2008.

[230] A. Josey, Open Agile Architecture - A Standard of the Open Group, Van
Haren Publishing, 2020.

[231] Y. Jung and A. Anttila, How to look beyond what users say that they
want, in CHI 2007 Extended Abstracts, B. Begole, S. Payne, E. Churchill,
R. St. Amant, D. Gilmore, and M. B. Rosson, eds., CHI EA ’07, New York,
NY, USA, Apr. 2007, Association for Computing Machinery, pp. 1759–1764.
Conference on Human Factors in Computing Systems, San Jose, California,
USA, April 28–May 3, 2007. 10.1145/1240866.1240896.

[232] J. M. Juran, Juran’s Quality Control Handbook, McGraw-Hill, 1988.

[233] J. Juviler, Microservices vs. APIs: What’s the Difference? Online,
Nov. 2020. Accessed 2021-Nov-18. https://blog.hubspot.com/website/
microservices-vs-api [cited 18-11-2021].

[234] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and
D. Varró, Survey and classification of model transformation tools, Soft-
ware & Systems Modeling, 18 (2019), pp. 2361–2397. 10.1007/s10270-

018-0665-6.

[235] A. Kanane, Challenges related to the adoption of Scrum, Master’s thesis,
Ume̊a Universitet, 2014.

[236] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter,
W. Retschitzegger, W. Schwinger, and M. Wimmer, Lifting Meta-
models to Ontologies: A Step to the Semantic Integration of Modeling Lan-
guages, in MODELS 2006: Model Driven Engineering Languages and Sys-
tems, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, eds., Berlin,
Heidelberg, 2006, Springer Berlin Heidelberg, pp. 528–542. 10.1007/

11880240_37.

180

https://trepo.tuni.fi/handle/10024/66319
https://doi.org/10.1007/978-0-387-39940-9_898
https://doi.org/10.48550/arXiv.2206.01024
https://doi.org/10.1145/1240866.1240896
https://blog.hubspot.com/website/microservices-vs-api
https://blog.hubspot.com/website/microservices-vs-api
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/11880240_37
https://doi.org/10.1007/11880240_37

BIBLIOGRAPHY

[237] D. Karagiannis and H. Kühn, Metamodeling Platforms, in Proceedings
of the Third international EC-Web 2002, Springer, 2002.

[238] F. Karlsson and K. Wistrand, Method Components - Extending the Vi-
sion, in Proceedings of the the 26th Information Systems Research Seminar
inScandinavia (IRIS 26), 2003.

[239] I. J. Kashiwagi, Complexity is in the Eye of the Beholder, PhD the-
sis, Delft University of Technology, 2019. 10.4233/uuid:9b434ac4-ebcd-
4e23-812d-354d836fdcb3.

[240] S. Kemmis and R. McTaggart, Participatory Action Research: Commu-
nicative Action and the Public Sphere, in The Sage handbook of qualitative
research, N. K. Denzin and Y. S. Lincoln, eds., Sage Publications Ltd., 2005,
pp. 559–603.

[241] S. Kent, Model Driven Engineering, in Integrated Formal Methods. IFM
2002, M. Butler, L. Petre, and K. Sere, eds., vol. 2335 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2002. 10.1007/3-540-
47884-1_16.

[242] S. Kent, A. Evans, and B. Rumpe, UML Semantics FAQ, in ECOOP’99
Workshops, A. Moreira and S. Demeyer, eds., vol. 1743 of LNCS, Springer,
1999, pp. 33–56.

[243] R. Keswani, S. Joshi, and A. Jatain, Software Reuse in Practice, in
2014 Fourth International Conference on Advanced Computing & Commu-
nication Technologies, 2014, pp. 159–162. 10.1109/ACCT.2014.57.

[244] M. Khalfallah, N. Figay, P. Ghodous, and C. Ferreira da
Silva, Cross-organizational Business Processes Modeling Using Design-by-
Contract Approach, in IWEI 2013: Enterprise Interoperability, M. van Sin-
deren, P. Oude Luttighuis, E. Folmer, and S. Bosems, eds., vol. 133 of
LNBIP, Springer, 2013, pp. 77–90. 10.1007/978-3-642-36796-0_8.

[245] M. Khalifa and J. M. Verner, Drivers for software development method
usage, IEEE Transactions on Engineering Management, 47 (2000), pp. 360–
369. 10.1109/17.865904.

[246] S. Khoshafian, Service Oriented Enterprises, Auerbach Publications,
2006. 10.1201/9781420013269.

[247] A. Khurana and S. R. Rosenthal, Towards Holistic “Front Ends” In
New Product Development, Journal of Product Innovation Management, 15
(1998), pp. 57–74. 10.1111/1540-5885.1510057.

[248] D. Kleidermacher and M. Kleidermacher, Embedded Systems Secu-
rity - Practical Methods for Safe and Secure Software and Systems Devel-
opment, Newnes, 2012.

181

https://doi.org/10.4233/uuid:9b434ac4-ebcd-4e23-812d-354d836fdcb3
https://doi.org/10.4233/uuid:9b434ac4-ebcd-4e23-812d-354d836fdcb3
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1109/ACCT.2014.57
https://doi.org/10.1007/978-3-642-36796-0_8
https://doi.org/10.1109/17.865904
https://doi.org/10.1201/9781420013269
https://doi.org/10.1111/1540-5885.1510057

BIBLIOGRAPHY

[249] D. Klein, When to Ignore What Users Say, Ergonomics in Design: The
Quarterly of Human Factors Applications, 14 (2006), pp. 24–26. 10.1177/
106480460601400106.

[250] A. G. Kleppe, A Language Description is More than a Metamodel, in
4th International Workshop on Software Language Engineering (ATEM
2007), Nashville, United States, Oct. 2007. https://research.utwente.

nl/files/134651864/paper18.pdf.

[251] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise, Pearson, Apr. 2003.

[252] KMar, KMar Operationele Werkvloer Activiteiten (KOWA): Hoe werkt dat
eigenlijk. KMarMagazine, Online, Oct. 2014. Article in Dutch, Accessed
2023-Feb-06. https://magazines.defensie.nl/kmarmagazine/2014/10/
11-hoe-werkt-dat-10.

[253] P. Koen, G. Ajamian, R. Burkart, A. Clamen, J. Davidson,
R. D’Amore, C. Elkins, K. Herald, M. Incorvia, A. Johnson,
R. Karol, R. Seibert, A. Slavejkov, and K. Wagner, Providing
Clarity and A Common Language to the ‘Fuzzy Front End’ , Research-
Technology Management, 44 (2001), pp. 46–55. 10.1080/08956308.2001.
11671418.

[254] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, On-demand merging
of traceability links with models, 3rd ECMDA traceability workshop, (2006),
pp. 47–55.

[255] T. Kosar, P. E. Mart́ınez López, P. A. Barrientos, and
M. Mernik, A preliminary study on various implementation approaches of
domain-specific language, Information and Software Technology, 50 (2008),
pp. 390–405. 10.1016/j.infsof.2007.04.002.

[256] F. Kossak, C. Illibauer, V. Geist, J. Kubovy, C. Natschläger,
T. Ziebermayr, T. Kopetzky, B. Freudenthaler, and K.-D.
Schewe, A Rigorous Semantics for BPMN 2.0 Process Diagrams, Springer
International Publishing, Cham, 2014, ch. A Rigorous Semantics for BPMN
2.0 Process Diagrams, pp. 29–152. 10.1007/978-3-319-09931-6_4.

[257] K. Kraft, Are product and Process Innovations Independent of Each
Other?, Applied Economics, 22 (1990), pp. 1029–1038. 10.1080/

00036849000000132.

[258] J. Krogstie, Evaluating UML using a generic quality framework, in UML
and the Unified Process, L. Favre, ed., 2003, pp. 1–22. 10.4018/978-1-

93177-744-5.ch001.

[259] J. Krogstie, P. McBrien, R. Owens, and A. H. Seltveit, In-
formation systems development using a combination of process and rule
based approaches, in Advanced Information Systems Engineering. CAiSE

182

https://doi.org/10.1177/106480460601400106
https://doi.org/10.1177/106480460601400106
https://research.utwente.nl/files/134651864/paper18.pdf
https://research.utwente.nl/files/134651864/paper18.pdf
https://magazines.defensie.nl/kmarmagazine/2014/10/11-hoe-werkt-dat-10
https://magazines.defensie.nl/kmarmagazine/2014/10/11-hoe-werkt-dat-10
https://doi.org/10.1080/08956308.2001.11671418
https://doi.org/10.1080/08956308.2001.11671418
https://doi.org/10.1016/j.infsof.2007.04.002
https://doi.org/10.1007/978-3-319-09931-6_4
https://doi.org/10.1080/00036849000000132
https://doi.org/10.1080/00036849000000132
https://doi.org/10.4018/978-1-93177-744-5.ch001
https://doi.org/10.4018/978-1-93177-744-5.ch001

BIBLIOGRAPHY

1991, R. Andersen, J. A. Bubenko, and A. Sølvberg, eds., vol. 498 of
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1991.
10.1007/3-540-54059-8_92.

[260] M. R. Krouwel, Understanding the Essence of Organizations with
DEMO-4. Online, Jan. 2021. https://www.linkedin.com/pulse/

understanding-essence-organizations-demo-4-marien-krouwel/.

[261] , Low Code and No Code: Is There a Difference? A practical anal-
ysis. Online, Feb. 2022. https://www.linkedin.com/pulse/low-code-

difference-practical-analysis-marien-krouwel/.

[262] M. R. Krouwel and M. Op ’t Land, Combining DEMO and Normalized
Systems for Developing Agile Enterprise Information Systems, in EEWC
2011: Advances in Enterprise Engineering V, A. Albani, J. L. G. Dietz, and
J. Verelst, eds., vol. 79 of Lecture Notes in Business Information Processing,
Springer Berlin Heidelberg, 2011, pp. 31–45. 10.1007/978-3-642-21058-
7_3.

[263] , Using Enterprise Ontology as a basis for Requirements for Cross-
Organizationally Usable Applications, in Proceedings of the 7th Mediter-
ranean Conference on Information Systems 2012 (MCIS2012), A. D.
Figueiredo, I. Ramos, and E. Trauth, eds., MCIS Proceedings, University
of Minho, Portugal, Sept. 2012, AIS Electronic Library (AISeL). Paper 23.
http://aisel.aisnet.org/mcis2012/23.

[264] , Business Driven Micro Service Design - An Enterprise Ontology
based approach to API Specifications, in Advances in Enterprise Engineering
XV, D. Aveiro, H. A. Proper, S. Guerreiro, and M. De Vries, eds., vol. 441 of
Lecture Notes in Business Information Processing, Springer, 2021, pp. 95–
113. 10.1007/978-3-031-11520-2_7.

[265] M. R. Krouwel, M. Op ’t Land, and T. Offerman, Formalizing
Organization Implementation, in EEWC 2016: Advances in Enterprise En-
gineering X, D. Aveiro, R. Pergl, and D. Gouveia, eds., vol. 252 of Lecture
Notes in Business Information Processing, Funchal, Madeira Island, Portu-
gal, 2016, Springer, pp. 3–18. 10.1007/978-3-319-39567-8_1.

[266] M. R. Krouwel, M. Op ’t Land, and H. A. Proper, Generating Low-
Code Applications from Enterprise Ontology, in PoEM 2022: The Practice of
Enterprise Modeling, B. S. Barn and K. Sandkuhl, eds., vol. 456 of Lecture
Notes in Business Information Processing, Springer Nature Switzerland AG,
2022, pp. 19–32. 10.1007/978-3-031-21488-2_2.

[267] , From Enterprise Models to Low-Code Applications: Mapping DEMO
to Mendix, illustrated in the Social Housing domain, International Journal
on Software and Systems Modeling, (2024). Invited submission, currently
under review.

183

https://doi.org/10.1007/3-540-54059-8_92
https://www.linkedin.com/pulse/understanding-essence-organizations-demo-4-marien-krouwel/
https://www.linkedin.com/pulse/understanding-essence-organizations-demo-4-marien-krouwel/
https://www.linkedin.com/pulse/low-code-difference-practical-analysis-marien-krouwel/
https://www.linkedin.com/pulse/low-code-difference-practical-analysis-marien-krouwel/
https://doi.org/10.1007/978-3-642-21058-7_3
https://doi.org/10.1007/978-3-642-21058-7_3
http://aisel.aisnet.org/mcis2012/23
https://doi.org/10.1007/978-3-031-11520-2_7
https://doi.org/10.1007/978-3-319-39567-8_1
https://doi.org/10.1007/978-3-031-21488-2_2

BIBLIOGRAPHY

[268] M. R. Krouwel, M. Stam, A. Bulat, and R. de Wit,
Mendix and SAP: do you choose or combine? Online, Aug.
2021. https://www.linkedin.com/pulse/mendix-sap-do-you-choose-

combine-marien-krouwel/.

[269] S. Kuhn, The Software Design Studio: An Exploration, IEEE Software, 15
(1998), pp. 65–71. 10.1109/52.663788.

[270] T. Kühne, Matters of (Meta-) Modeling, Software and Systems Modeling,
5 (2006), pp. 369–385. 10.1007/s10270-006-0017-9.

[271] S. Kujala, Effective user involvement in product development by improving
the analysis of user needs, Behaviour & Information Technology, 27 (2008),
pp. 457–473. 10.1080/01449290601111051.

[272] K. Kumar and R. J. Welke, Methodology Engineering: A Proposal for
Situation-Specific Methodology Construction, in Challenges and strategies
for research in systems development, W. W. Cotterman and J. A. Senn,
eds., John Wiley & Sons, Inc., 605 Third Ave. New York, NY, United
States, Sept. 1992, pp. 257–269. 10.5555/133549.133574.

[273] T. Kurozumi, Outline of the Fifth-Generation Project and ICO Activities,
in Technology Transfer in Consortia and Strategic Alliances, D. V. Gibson
and R. W. Smilor, eds., vol. 3 of International series on technical innovation
and entrepreneurship, Rowman & Littlefield, 1992, ch. 15, pp. 173–192.

[274] A. Kwan, H.-A. Jacobsen, A. Chan, and S. Samoojh, Microservices in
the Modern Software World, in Proceedings of the 26th Annual International
Conference on Computer Science and Software Engineering, CASCON ’16,
USA, 2016, IBM Corp., pp. 297–299.

[275] A. Laarman and I. Kurtev, Ontological Metamodeling with Explicit
Instantiation, in SLE 2009: Software Language Engineering, M. van den
Brand, D. Gašević, and J. Gray, eds., vol. 5969 of Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, 2010, pp. 174–183. 10.1007/

978-3-642-12107-4_14.

[276] P. Lago, H. Muccini, and H. van Vliet, A Scoped Approach to Trace-
ability Management, Journal of Systems and Software, 82 (2009), pp. 168–
182. 10.1016/j.jss.2008.08.026.

[277] M. M. Lankhorst, Enterprise Architecture at Work: Modelling, Com-
munication and Analysis, The Enterprise Engineering Series, Springer,
fourth ed., 2017. 10.1007/978-3-662-53933-0.

[278] M. M. Lankhorst, H. A. Proper, and H. Jonkers, The Anatomy
of the ArchiMate Language, International Journal of Information System
Modeling and Design, 1 (2010), pp. 1–32. 10.4018/jismd.2010092301.

184

https://www.linkedin.com/pulse/mendix-sap-do-you-choose-combine-marien-krouwel/
https://www.linkedin.com/pulse/mendix-sap-do-you-choose-combine-marien-krouwel/
https://doi.org/10.1109/52.663788
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1080/01449290601111051
https://doi.org/10.5555/133549.133574
https://doi.org/10.1007/978-3-642-12107-4_14
https://doi.org/10.1007/978-3-642-12107-4_14
https://doi.org/10.1016/j.jss.2008.08.026
https://doi.org/10.1007/978-3-662-53933-0
https://doi.org/10.4018/jismd.2010092301

BIBLIOGRAPHY

[279] B. Lantow, K. Sandkuhl, and J. Stirna, Enterprise Modeling with
4EM: Perspectives and Method, in Domain-Specific Conceptual Modeling,
D. Karagiannis, M. Lee, K. Hinkelmann, and W. Utz, eds., Springer, 2022,
pp. 95–120. 10.1007/978-3-030-93547-4_5.

[280] A. S. Lee, A Scientific Methodology for MIS Case Studies., MIS Quarterly,
13 (1989), pp. 33–50. 10.2307/248698.

[281] M. M. Lehman, On understanding laws, evolution, and conservation in
the large-program life cycle, Journal of Systems and Software, 1 (1980),
pp. 213–221.

[282] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski, Metrics and Laws of Software Evolution - The Nineties
View, in Proceedings Fourth International Software Metrics Symposium,
IEEE, 1997, pp. 20–32. 10.1109/METRIC.1997.637156.

[283] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, A
Survey of DevOps Concepts and Challenges, ACM Computing Surveys, 1
(2019). 10.1145/3359981.

[284] M. Leppänen, A Context-Based Enterprise Ontology, in Business Infor-
mation Systems (BIS 2007), W. Abramowicz, ed., vol. 4439 of Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2007, pp. 273–
286. 10.1007/978-3-540-72035-5_21.

[285] S. W. Liddle, Model-Driven Software Development, in Handbook of Con-
ceptual Modeling: Theory, Practice, and Research Challenges, D. W. Em-
bley and B. Thalheim, eds., Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, ch. Model-Driven Software Development, pp. 17–54. 10.1007/978-

3-642-15865-0_2.

[286] J. Liebenau and J. Backhouse, Understanding Information: An Intro-
duction, no. 1 in Information Systems Series, Red Globe Press London,
1990. 10.1007/978-1-349-11948-6.

[287] M. Lind and G. Goldkuhl, Designing Business Process Variants - Using
the BAT Framework as a Pragmatic Lens., in Business Process Management
Workshops, C. Bussler and A. Haller, eds., vol. 3812, Feb. 2005, pp. 408–420.

[288] Linux Foundation, OpenAPI Specification v3.1.0. Online, Feb. 2021. Ac-
cessed 2021-Nov-21. https://spec.openapis.org/oas/v3.1.0.

[289] M. Loukides and S. Swoyer, Microservices Adoption in 2020, tech. rep.,
O‘Reilly, July 2020. Accessed 2022-Jun-01. https://www.oreilly.com/

radar/microservices-adoption-in-2020/.

[290] P. Lucena, A. Braz, A. Chicoria, and L. Tizzei, IBM Design Think-
ing Software Development Framework, in Agile Methods, T. Silva da Silva,
B. Estácio, J. Kroll, and R. Mantovani Fontana, eds., Cham, 2017, Springer
International Publishing, pp. 98–109.

185

https://doi.org/10.1007/978-3-030-93547-4_5
https://doi.org/10.2307/248698.
https://doi.org/10.1109/METRIC.1997.637156
https://doi.org/10.1145/3359981
https://doi.org/10.1007/978-3-540-72035-5_21
https://doi.org/10.1007/978-3-642-15865-0_2
https://doi.org/10.1007/978-3-642-15865-0_2
https://doi.org/10.1007/978-1-349-11948-6
https://spec.openapis.org/oas/v3.1.0
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/

BIBLIOGRAPHY

[291] J. Ludewig, Models in software engineering – an introduction, Software
and Systems Modeling, 2 (2003), pp. 5–14. 10.1007/s10270-003-0020-3.

[292] R. Luitwieler, A Selection Method for Model-Driven Development Tools,
Master’s thesis, TU Delft, 2010.

[293] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, Characteristics
and Challenges of Low-Code Development: The Practitioners’ Perspective,
CoRR, (2021). 10.48550/arXiv.2107.07482.

[294] G. Madhavan, Applied Minds: How Engineers Think, W. W. Norton &
Company, Aug. 2015.

[295] A. Maes and G. Poels, Evaluating quality of conceptual modelling scripts
based on user perceptions, Data & Knowledge Engineering, 63 (2007),
pp. 701–724.

[296] E. B. Magrab, S. K. Gupta, F. P. McCluskey, and P. Sandborn,
Integrated Product and Process Design and Development: The Product Re-
alization Process, CRC Press, second ed., 2009. 10.1201/9781420070613.

[297] H. Mannaert and J. Verelst, Normalized systems: re-creating infor-
mation technology based on laws for software evolvability, Koppa, Kermt,
Belgium, 2009.

[298] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems
Theory: From Foundations for Evolvable Software Toward a General Theory
for Evolvable Design, Normalized Systems Institute, Koppa, 2016.

[299] H. Mannaert, J. Verelst, and K. Ven, Towards evolvable software
architectures based on systems theoretic stability, Software: Practice and
Experience, 42 (2012), pp. 89–116. 10.1002/spe.1051.

[300] M. Mannio and U. Nikula, Requirements Elicitation Using a Combina-
tion of Prototypes and Scenarios, in WER, 2001, pp. 283–296.

[301] S. T. March and G. F. Smith, Design and Natural Science Research
on Information Technology, Decis. Support Syst., 15 (1995), pp. 251–266.
10.1016/0167-9236(94)00041-2.

[302] A. Marchenko and P. Abrahamsson, Scrum in a Multiproject Envi-
ronment: An Ethnographically-Inspired Case Study on the Adoption Chal-
lenges, in Agile 2008 Conference, 2008, pp. 15–26. 10.1109/Agile.2008.77.

[303] C. Marshall, Enterprise Modeling with UML: Designing Successful Soft-
ware through Business Analysis, Addison-Wesley, 2000.

[304] J. Martin, Fourth-generation languages. Volume I: principles, Prentice-
Hall, Inc., 1985.

[305] , Information Engineering, vol. 1, Savant, 1986.

186

https://doi.org/10.1007/s10270-003-0020-3
https://doi.org/10.48550/arXiv.2107.07482
https://doi.org/10.1201/9781420070613
https://doi.org/10.1002/spe.1051
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.1109/Agile.2008.77

BIBLIOGRAPHY

[306] L. Mathiassen and A. M. Vainio, Dynamic Capabilities in Small Soft-
ware Firms: A Sense-and-Respond Approach, IEEE Transactions on Engi-
neering Management, 54 (2007), pp. 522–538. 10.1109/TEM.2007.900782.

[307] R. J. Mayer, C. P. Menzel, M. K. Painter, P. S. Dewitte,
T. Blinn, and B. Perakath, Information Integration for Concurrent En-
gineering (IICE) IDEF3 Process Description Capture Method Report, tech.
rep., Knowledge Based Systems Incorporated, 1995.

[308] M. D. McIlroy, Mass-Produced Software Components, in Software Engi-
neering: Report of a conference sponsored by the NATO Science Committee,
P. Naur and B. Randell, eds., Scientific Affairs Division, NATO, Jan. 1969,
pp. 138–155.

[309] S. M. McMenamin and J. F. Palmer, Essential Systems Analysis, Your-
don, 1984.

[310] L. C. Megginson, Lessons from Europe for American Business, The
Southwestern Social Science Quarterly, 44 (1963), pp. 3–13. http://www.

jstor.org/stable/42866937.

[311] S. J. Mellor, Adapting agile approaches to your project needs, IEEE Soft-
ware, 22 (2005), pp. 17–20.

[312] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architecture, Addison-Wesley, 2002.

[313] S. J. Mellor, A. N. Clark, and T. Futagami, Model-driven develop-
ment - Guest editor’s introduction, IEEE Software, 20 (2003), pp. 14–18.
10.1109/MS.2003.1231145.

[314] J. Mendling and W. van der Aalst, Towards EPC Semantics based on
State and Context, in Proceedings of EPK’ 06, M. Nüttgens, F. J. Rump,
and J. Mendling, eds., 2006, pp. 25–48.

[315] T. Mens and P. Van Gorp, A Taxonomy of Model Transformation, Elec-
tronic Notes in Theoretical Computer Science, 152 (2006). 10.1016/j.

entcs.2005.10.021.

[316] M. Mernik, J. Heering, and A. Sloane, When and How to Develop
Domain-Specific Languages, ACM Computing Surveys, 37 (2005), pp. 316–
344. 10.1145/1118890.1118892.

[317] S. Molly, Exploring Organizational Implementation Fundamentals in a
real enterprise, Master’s thesis, Antwerp Management School, 2014.

[318] B. Morin, N. Harrand, and F. Fleurey, Model-Based Software En-
gineering to Tame the IoT Jungle, IEEE Software, 34 (2017), pp. 30–36.
10.1109/MS.2017.11.

[319] K. Morris, Infrastructure as Code, O’Reilly Media, Inc., second ed., 2020.

187

https://doi.org/10.1109/TEM.2007.900782
http://www.jstor.org/stable/42866937
http://www.jstor.org/stable/42866937
https://doi.org/10.1109/MS.2003.1231145
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/MS.2017.11

BIBLIOGRAPHY

[320] N. Mouhib, S. Bah, and A. Berrado, Governing the Generic System
Development Process Using Cybernetic Principles, in 4th World Confer-
ence on Complex Systems (WCCS), 2019, pp. 1–6. 10.1109/ICoCS.2019.
8930755.

[321] O. Mráz, P. Náplava, R. Pergl, and M. Skotnica, Converting
DEMO PSI Transaction Pattern into BPMN: A Complete Method, in Ad-
vances in Enterprise Engineering XI: EEWC 2017, D. Aveiro, R. Pergl,
G. Guizzardi, J. Almeida, R. Magalhães, and H. Lekkerkerk, eds., vol. 284
of Lecture Notes in Business Information Processing, Springer Cham, 2017,
pp. 85–98. 10.1007/978-3-319-57955-9_7.

[322] M. Muehlena and M. Indulska, Modeling languages for business pro-
cesses and business rules: A representational analysis, Information Systems,
35 (2010), pp. 379–390. 10.1016/j.is.2009.02.006.

[323] K. S. Mukasa and H. Kaindl, An Integration of Requirements and User
Interface Specifications, in 2008 16th IEEE International Requirements En-
gineering Conference, 2008, pp. 327–328. 10.1109/RE.2008.55.

[324] J. B. F. Mulder, Rapid Enterprise Design., PhD thesis, Delft University
of Technology, 2006.

[325] M. A. T. Mulder, Enabling the automatic verification and exchange of
DEMO models, PhD thesis, Radboud University Nijmegen, 2022. https:

//repository.ubn.ru.nl/handle/2066/247698.

[326] N. Mustafa and Y. Labiche, The Need for Traceability in Heterogeneous
Systems: A Systematic Literature Review, in IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), vol. 1, 2017, pp. 305–
310. 10.1109/COMPSAC.2017.237.

[327] R. N. Nagel and R. Dove, Twenty-First CenturyManufacturing Enter-
prise Strategy: An Industry-LedView, tech. rep., Iacocca Institute, Lehigh
University, 1991.

[328] S. Newman, Building Microservices, O’Reilly Media, Inc., 2015.

[329] E. Niemi, Enterprise Architecture Benefits: Perceptions from Literature
and Practice, in Proceedings of the 7th IBIMA Conference Internet & In-
formation Systems in the Digital Age, 2006.

[330] D. Norman, The Design of Everyday Things, Basic Books, revised and
expanded ed., 2013.

[331] A. Noureen, A. Amjad, and F. Azam, Model Driven Architecture -
Issues, Challenges and Future Directions, Journal of Software, 11 (2016),
pp. 924–933.

188

https://doi.org/10.1109/ICoCS.2019.8930755
https://doi.org/10.1109/ICoCS.2019.8930755
https://doi.org/10.1007/978-3-319-57955-9_7
https://doi.org/10.1016/j.is.2009.02.006
https://doi.org/10.1109/RE.2008.55
https://repository.ubn.ru.nl/handle/2066/247698
https://repository.ubn.ru.nl/handle/2066/247698
https://doi.org/10.1109/COMPSAC.2017.237

BIBLIOGRAPHY

[332] B. Nuseibeh and S. Easterbrook, Requirements engineering: a
roadmap, in Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, New York, NY, USA, 2000, ACM, pp. 35–46.
10.1145/336512.336523.

[333] OASIS, Web Services Business Process Execution Language Version 2.0,
tech. rep., OASIS, Apr. 2007. http://docs.oasis-open.org/wsbpel/2.

0/OS/wsbpel-v2.0-OS.html.

[334] Object Management Group, Business Motivation Model, tech. rep.,
Object Management Group, Aug. 2008. Version 1.0. http://www.omg.

org/spec/BMM/1.0/PDF/.

[335] , Model Driven Architecture (MDA) Guide, tech. rep., Object Manage-
ment Group, June 2014. Rev. 2.0. https://www.omg.org/cgi-bin/doc?

ormsc/14-06-01.

[336] T. Offerman, Improving IT Supported Organizational Change; Formal-
izing Organizational Implementation Fundamentals, Master’s thesis, Uni-
versiteit Leiden, 2014. https://theses.liacs.nl/pdf/Offerman-Tyron-
non-confidential.pdf.

[337] I. Oliver, Applying UML and MDA to real systems design, in Design,
Automation and Test in Europe, vol. 1, 2005, pp. 70–71. 10.1109/DATE.

2005.65.

[338] M. Op ’t Land, Toward Evidence Based Splitting of Organizations, in Pro-
ceedings of the IFIPWG 8.1 Working Conference on Situational Method En-
gineering (ME07), Fundamentals and Experiences, J. Ralyté, S. Brinkkem-
per, and B. Henderson-Sellers, eds., vol. IFIP 244 of IFIP Series, Geneva,
Switzerland, Sept. 2007, Springer-Verlag Berlin Heidelberg 2007, pp. 328–
342.

[339] , Applying Architecture and Ontology to the Splitting and Allying of
Enterprises, PhD thesis, Delft University of Technology, June 2008. http://
resolver.tudelft.nl/uuid:0edd0472-39df-4296-b692-e9916e79fb1e.

[340] M. Op ’t Land and J. L. G. Dietz, Benefits of Enterprise Ontology
in Governing Complex Enterprise Transformations, in Proceedings of the
2nd Enterprise Engineering Working Conference (EEWC-2012), A. Albani,
D. Aveiro, and J. Barjis, eds., LNBIP 110, Springer, Heidelberg, May
2012, pp. 77–92. http://resolver.tudelft.nl/uuid:18d90cf6-fddc-

48ae-8101-e9eda186a72c.

[341] M. Op ’t Land and M. R. Krouwel, Exploring Organizational Imple-
mentation Fundamentals, in EEWC 2013: Advances in Enterprise Engi-
neering VII, H. A. Proper, D. Aveiro, and K. Gaaloul, eds., vol. 146 of
Lecture Notes in Business Information Processing, Springer-Verlag Berlin
Heidelberg, 2013, pp. 28–42. 10.1007/978-3-642-38117-1_3.

189

https://doi.org/10.1145/336512.336523
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BMM/1.0/PDF/
http://www.omg.org/spec/BMM/1.0/PDF/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://theses.liacs.nl/pdf/Offerman-Tyron-non-confidential.pdf
https://theses.liacs.nl/pdf/Offerman-Tyron-non-confidential.pdf
https://doi.org/10.1109/DATE.2005.65
https://doi.org/10.1109/DATE.2005.65
http://resolver.tudelft.nl/uuid:0edd0472-39df-4296-b692-e9916e79fb1e
http://resolver.tudelft.nl/uuid:0edd0472-39df-4296-b692-e9916e79fb1e
http://resolver.tudelft.nl/uuid:18d90cf6-fddc-48ae-8101-e9eda186a72c
http://resolver.tudelft.nl/uuid:18d90cf6-fddc-48ae-8101-e9eda186a72c
https://doi.org/10.1007/978-3-642-38117-1_3

BIBLIOGRAPHY

[342] M. Op ’t Land, M. R. Krouwel, and S. Gort, Testing the Concept of
the RUN-Time Adaptive Enterprise - Combining Organization and IT Ag-
nostic Enterprise Models with Organization Implementation Variables and
Low Code Technology, in EEWC 2020: Advances in Enterprise Engineering
XIV, D. Aveiro, G. Guizzardi, R. Pergl, and H. A. Proper, eds., vol. 411
of Lecture Notes in Business Information Processing, Springer, Apr. 2021,
pp. 228–242. 10.1007/978-3-030-74196-9_13.

[343] M. Op ’t Land, M. R. Krouwel, E. van Dipten, and J. Ver-
elst, Exploring Normalized Systems Potential for Dutch MoD’s Agility –
A Proof of Concept on Flexibility, Time-to-Market, Productivity and Qual-
ity, in PRET 2011: Practice-Driven Research on Enterprise Transforma-
tion, F. Harmsen, K. Grahlmann, and E. Proper, eds., vol. 89 of Lecture
Notes in Business Information Processing, Springer, Sept. 2011, pp. 110–
121. 10.1007/978-3-642-23388-3_5.

[344] M. Op ’t Land and J. Pombinho, Strengthening the Foundations Un-
derlying the Enterprise Engineering Manifesto, in Proceedings of the 2nd
Enterprise Engineering Working Conference (EEWC-2012), A. Albani,
D. Aveiro, and J. Barjis, eds., LNBIP 110, Springer, Heidelberg, May
2012, pp. 1–14. http://resolver.tudelft.nl/uuid:6d36c4d9-5489-

44bb-8223-a7f4bd7693cf.

[345] M. Op ’t Land and H. A. Proper, Impact of Principles on Enterprise
Engineering., in Proceedings of the 15th European Conference on Infor-
mation Systems, H. Österle, J. Schelp, and R. Winter, eds., St. Gallen,
Switzerland, June 2007, University of St. Gallen, pp. 1965–1976. http://

resolver.tudelft.nl/uuid:577a88b0-9b5a-49f4-94ec-0e7dbb00c1ab.

[346] M. Op ’t Land, H. Zwitzer, P. Ensink, and Q. Lebel, Towards
a Fast Enterprise Ontology Based Method for Post Merger Integration, in
Proceedings of the 2009 ACM symposium on Applied Computing (SAC-
ACM2009), SAC ’09, New York, NY, USA, Mar. 2009, ACM, pp. 245–252.
10.1145/1529282.1529336.

[347] D. L. Orlovskyi and A. M. Kopp, Towards the business process model
as code approach, in Proceedings of the International Science-tech Confer-
ence, 2020, pp. 6–9. http://repository.kpi.kharkov.ua/handle/KhPI-
Press/50038.

[348] E. Overby, A. Bharadwaj, and V. Sambamurthy, Enterprise agility
and the enabling role of information technology, Eur. J. Inf. Syst., 15 (2006),
pp. 120–131. 10.1057/palgrave.ejis.3000600.

[349] D. Pacheco, D. Aveiro, B. Gouveia, and D. Pinto, Evaluation of the
Perceived Quality and Functionality of Fact Model Diagrams in DEMO, in
Advances in Enterprise Engineering XV, D. Aveiro, H. A. Proper, S. Guer-
reiro, and M. de Vries, eds., vol. 441 of Lecture Notes in Business Informa-

190

https://doi.org/10.1007/978-3-030-74196-9_13
https://doi.org/10.1007/978-3-642-23388-3_5
http://resolver.tudelft.nl/uuid:6d36c4d9-5489-44bb-8223-a7f4bd7693cf
http://resolver.tudelft.nl/uuid:6d36c4d9-5489-44bb-8223-a7f4bd7693cf
http://resolver.tudelft.nl/uuid:577a88b0-9b5a-49f4-94ec-0e7dbb00c1ab
http://resolver.tudelft.nl/uuid:577a88b0-9b5a-49f4-94ec-0e7dbb00c1ab
https://doi.org/10.1145/1529282.1529336
http://repository.kpi.kharkov.ua/handle/KhPI-Press/50038
http://repository.kpi.kharkov.ua/handle/KhPI-Press/50038
https://doi.org/10.1057/palgrave.ejis.3000600

BIBLIOGRAPHY

tion Processing, Springer, 2022, pp. 114–128. 10.1007/978-3-031-11520-
2_8.

[350] D. Pacheco, D. Aveiro, D. Pinto, and B. Gouveia, Towards the
X-Theory: An Evaluation of the Perceived Quality and Functionality
of DEMO’s Process Model, in Advances in Enterprise Engineering XV,
D. Aveiro, H. A. Proper, S. Guerreiro, and M. de Vries, eds., vol. 441 of Lec-
ture Notes in Business Information Processing, Springer, 2022, pp. 129–148.
10.1007/978-3-031-11520-2_9.

[351] J. Pacheco, S. Garbatov, and M. Goulão, Improving Collaboration
Efficiency Between UX/UI Designers and Developers in a Low-Code Plat-
form, in 2021 ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), 2021, pp. 138–
147. 10.1109/MODELS-C53483.2021.00025.

[352] P. Parviainen, J. Takalo, S. Teppola, and M. Tihinen,Model-Driven
Development: Processes and practices, no. 114 in VTT Working Papers,
VTT Technical Research Centre of Finland, Feb. 2009.

[353] C. Páscoa, P. Sousa, and J. Tribolet, Ontology Construction: Rep-
resenting Dietz “Process” and “State” Models Using BPMN Diagrams,
in Enterprise Information Systems Design, Implementation and Manage-
ment: Organizational Applications, M. M. Cruz-Cunha and J. Varajao,
eds., Information Science Reference, July 2010. 10.4018/978-1-61692-

020-3.ch004.

[354] N. Passos and J. L. Pereira, Business Process Modeling: how CMMN
and DMN complement BPMN, in CAPSI 2018 Proceedings, vol. 7, 2018.

[355] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatter-
jee, A Design Science Research Methodology for Information Systems Re-
search, Journal of Management Information Systems, 24 (2007), pp. 45–77.
10.2753/MIS0742-1222240302.

[356] A. M. Petersson and J. Lundberg, Applying Action Design Research
(ADR) to Develop Concept Generation and Selection Methods, Procedia
CIRP, 50 (2016), pp. 222–227. 10.1016/j.procir.2016.05.024.

[357] M. Pidd, Tools for Thinking - Modeling in Management Science, Wiley,
1997.

[358] D. Pinto, D. Aveiro, D. Pacheco, B. Gouveia, and D. Gouveia,
Fact Model in DEMO - Urban Law Case and Proposal of Representation Im-
provements, in Advances in Enterprise Engineering XIV, D. Aveiro, G. Guiz-
zardi, R. Pergl, and H. A. Proper, eds., vol. 411 of Lecture Notes in Business
Information Processing, Springer, 2021, pp. 173–190. 10.1007/978-3-030-
74196-9_10.

191

https://doi.org/10.1007/978-3-031-11520-2_8
https://doi.org/10.1007/978-3-031-11520-2_8
https://doi.org/10.1007/978-3-031-11520-2_9
https://doi.org/10.1109/MODELS-C53483.2021.00025
https://doi.org/10.4018/978-1-61692-020-3.ch004
https://doi.org/10.4018/978-1-61692-020-3.ch004
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.procir.2016.05.024
https://doi.org/10.1007/978-3-030-74196-9_10
https://doi.org/10.1007/978-3-030-74196-9_10

BIBLIOGRAPHY

[359] , Validation of DEMO’s Conciseness Quality and Proposal of Improve-
ments to the Process Model, in Advances in Enterprise Engineering XIV,
D. Aveiro, G. Guizzardi, R. Pergl, and H. A. Proper, eds., vol. 411 of Lec-
ture Notes in Business Information Processing, Springer, 2021, pp. 133–152.
10.1007/978-3-030-74196-9_8.

[360] K. Pohl, Process-Centered Requirements Engineering, John Wiley Re-
search Science Press, 1996.

[361] B. Porter and R. R. Filho, Losing Control: The Case for Emergent
Software Systems Using Autonomous Assembly, Perception, and Learning,
in 2016 IEEE 10th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 2016, pp. 40–49. 10.1109/SASO.2016.10.

[362] J. Prieler, T. Aicher, and B. Vogel-Heuser, Increasing adapt-
ability of automation control software for automated material flow sys-
tems via software modularization, in IECON 2017 - 43rd Annual Con-
ference of the IEEE Industrial Electronics Society, 2017, pp. 3951–3956.
10.1109/IECON.2017.8216676.

[363] H. A. Proper and D. Greefhorst, Principles in an Enterprise Archi-
tecture Context, Journal of Enterprise Architecture, (2011).

[364] H. A. Proper and M. Op ’t Land, Lines in the Water – The Line of
Reasoning in an Enterprise Engineering Case Study from the Public Sector,
in Working Conference on Practice-Driven Research on Enterprise Trans-
formation, Springer, 2010, pp. 193–216.

[365] P. Rai and S. Dhir, Impact of Different Methodologies in Software Devel-
opment Process, International Journal of Computer Science and Information
Technologies, 5 (2014), pp. 1112–1116.

[366] A. Raj, P. Tadinada, and S. Hendryx, Transformation of SBVR
business design to UML models, in Proceeding of the 1st Annual In-
dia Software Engineering Conference (ISEC 2008), Feb. 2008, pp. 29–38.
10.1145/1342211.1342221.

[367] J. Ralyté, R. Deneckère, and C. Rolland, Towards a Generic Model
for Situational Method Engineering, in Proceedings of the 15th International
Conference on Advanced Information Systems Engineering (CAiSE 2003),
J. Eder and M. Missikoff, eds., vol. 2681 of Lecture Notes in Computer
Science, Springer, June 2003, pp. 95–110. 10.1007/3-540-45017-3_9.

[368] J. Ralyté and C. Rolland, An Assembly Process Model for Method
Engineering, in Advanced Information Systems Engineering, K. R. Dittrich,
A. Geppert, and M. C. Norrie, eds., Berlin, Heidelberg, June 2001, Springer
Berlin Heidelberg, pp. 267–283. 10.1007/3-540-45341-5_18.

[369] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards, Requirements
traceability: Theory and practice, Annals of Software Engineering, 3 (1997),
pp. 397–415. 10.1023/A:1018969401055.

192

https://doi.org/10.1007/978-3-030-74196-9_8
https://doi.org/10.1109/SASO.2016.10
https://doi.org/10.1109/IECON.2017.8216676
https://doi.org/10.1145/1342211.1342221
https://doi.org/10.1007/3-540-45017-3_9
https://doi.org/10.1007/3-540-45341-5_18
https://doi.org/10.1023/A:1018969401055

BIBLIOGRAPHY

[370] J. Recker, M. Indulska, M. Rosemann, and P. Green, How Good
Is BPMN Really? Insights from Theory and Practice, in Proceedings of
the 14th European Conference on Information Systems, J. Ljungberg and
M. Andersson, eds., Goeteborg, Sweden, 2006, pp. 1582–1593.

[371] G. Regev, P. Soffer, and R. Schmidt, Taxonomy of Flexibility in
Business Processes, in BPMDS, G. Regev, P. Soffer, and R. Schmidt, eds.,
vol. 236 of CEUR Workshop Proceedings, CEUR-WS.org, June 2006.

[372] K. Reilly, What is low code development. Online, Aug. 2019. Ac-
cessed 2020-Aug-31. https://medium.com/swlh/what-is-low-code-

development-f45550c3243d.

[373] D. G. Reinertsen, Taking the Fuzziness Out of the Fuzzy Front End,
Research-Technology Management, 42 (1999), pp. 25–31. 10.1080/

08956308.1999.11671314.

[374] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Aste-
siano, On the effectiveness of screen mockups in requirements engineering:
Results from an internal replication, in Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2010), G. Succi, M. Morisio, and N. Nagappan, eds., ACM,
Sept. 2010. 10.1145/1852786.1852809.

[375] C. Richardson and J. R. Rymer, New Development Platforms Emerge
For Customer-Facing Applications, tech. rep., Forrester, 2014.

[376] , Vendor Landscape: The Fractured, Fertile Terrain Of Low-Code Ap-
plication Platforms, tech. rep., Forrester, Jan. 2016.

[377] J. Rivero, G. Rossi, J. Grigera, E. Robles Luna, and A. Navarro,
From Interface Mockups to Web Application Models, in Web Information
System Engineering - WISE 2011, A. Bouguettaya, M. Hauswirth, and
L. Liu, eds., vol. 6997 of Lecture Notes in Computer Science, Jan. 2011,
pp. 257–264. 10.1007/978-3-642-24434-6_20.

[378] J. M. Rivero, J. Grigera, G. Rossi, E. Robles Luna, F. Montero,
and M. Gaedke, Mockup-Driven Development: Providing agile support
for Model-Driven Web Engineering, Information and Software Technology,
56 (2014), pp. 670–687. 10.1016/j.infsof.2014.01.011.

[379] N. Roberts and V. Grover, Investigating firm’s customer agility and
firm performance: The importance of aligning sense and respond capabil-
ities, Journal of Business Research, 65 (2012), pp. 579–585. 10.1016/j.

jbusres.2011.02.009.

[380] A. Rochfeld and H. Tardieu, MERISE: An information system de-
sign and development methodology, Information & Management, 6 (1983),
pp. 143–159. 10.1016/0378-7206(83)90032-0.

193

https://medium.com/swlh/what-is-low-code-development-f45550c3243d
https://medium.com/swlh/what-is-low-code-development-f45550c3243d
https://doi.org/10.1080/08956308.1999.11671314
https://doi.org/10.1080/08956308.1999.11671314
https://doi.org/10.1145/1852786.1852809
https://doi.org/10.1007/978-3-642-24434-6_20
https://doi.org/10.1016/j.infsof.2014.01.011
https://doi.org/10.1016/j.jbusres.2011.02.009
https://doi.org/10.1016/j.jbusres.2011.02.009
https://doi.org/10.1016/0378-7206(83)90032-0

BIBLIOGRAPHY

[381] K. Rokis and M. Kirikova, Challenges of Low-Code/No-Code Software
Development: A Literature Review, in Perspectives in Business Informatics
Research, Ē. Nazaruka, K. Sandkuhl, and U. Seigerroth, eds., vol. 462 of
Lecture Notes in Business Information Processing, Springer International
Publishing, 2022, pp. 3–17. 10.1007/978-3-031-16947-2_1.

[382] C. Rolland, V. Plihon, and J. Ralyté, Specifying the reuse context
of scenario method chunks, in Advanced Information Systems Engineering.
CAiSE 1998, B. Pernici and C. Thanos, eds., vol. 1413 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, June 1998, pp. 191–218.
10.1007/BFb0054226.

[383] F. Rosique, P. Sánchez, D. Alonso, and M. Jiménez-Buend́ıa,
Traceability Support for MDE Development of Home Automation Systems,
in Proceedings of the 7th International Conference on Software Para-
digm Trends (ICSOFT), SciTePress, July 2012, pp. 224–229. 10.5220/

0004081302240229.

[384] D. Ross and K. Schoman, Structured Analysis for Requirements Defini-
tion, IEEE Transactions on Software Engineering, 3 (1977).

[385] R. G. Ross, Principles of the Business Rule Approach, Information Tech-
nology Series, Addison-Wesley Professional, 2003.

[386] , The Business Rule Approach, IT SYSTEMS PERSPECTIVE, (2003).

[387] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz,
The Programmer’s Assistant: Conversational Interaction with a Large Lan-
guage Model for Software Development, in Proceedings of the 28th In-
ternational Conference on Intelligent User Interfaces, IUI ’23, New York,
NY, USA, 2023, Association for Computing Machinery, pp. 491–514.
10.1145/3581641.3584037.

[388] D. C. F. Rothengatter, Engineering situational methods for professional
service organizations: An action design research approach, PhD thesis, Uni-
versity of Twente, 2012.

[389] E. Rovida and M. Fargnoli, Some Considerations about Design Educa-
tion, in International Design Conference - DESIGN 2004, May 2004.

[390] N. B. Ruparelia, Software Development Lifecycle Models, ACM SIG-
SOFT Software Engineering Notes, 35 (2010), pp. 8–13. 10.1145/1764810.
1764814.

[391] I. Rychkova, Towards Automated Support for Case Management Processes
with Declarative Configurable Specifications, in Business Process Manage-
ment Workshops, M. Rosa and P. Soffer, eds., vol. 132 of Lecture Notes in
Business Information Processing, Springer Berlin Heidelberg, 2013, pp. 65–
76. 10.1007/978-3-642-36285-9_9.

194

https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1007/BFb0054226
https://doi.org/10.5220/0004081302240229
https://doi.org/10.5220/0004081302240229
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1007/978-3-642-36285-9_9

BIBLIOGRAPHY

[392] V. Sambamurthy, A. S. Bharadwaj, and V. Grover, Shaping Agility
Through Digital Options: Reconceptualizing the Role of Information Tech-
nology in Contemporary Firms, MIS Quarterly, 27 (2003), pp. 237–263.
10.2307/30036530.

[393] R. Sanchis, Ó. Garćıa-Perales, F. Fraile, and P. Poler, Low-Code
as Enabler of Digital Transformation in Manufacturing Industry, Applied
Sciences, 10 (2019), p. 12. 10.3390/app10010012.

[394] K. Sandkuhl, J. Stirna, A. Persson, and M. Wißotzki, Enterprise
Modeling: Tackling Business Challenges with the 4EM Method, Springer,
Sept. 2014. 10.1007/978-3-662-43725-4.

[395] K. Sandoval, Ultimate Guide To 9 Common HTTP Methods. Online, Jan.
2020. Accessed 2022-Jan-04. https://nordicapis.com/ultimate-guide-
to-all-9-standard-http-methods/.

[396] I. Santiago, Á. Jiménez, J. M. Vara, V. de Castro, V. A. Bol-
lati, and E. Marcos, Model-Driven Engineering as a new landscape for
traceability management: A systematic literature review, Information and
Software Technology, 54 (2012), pp. 1340–1356. 10.1016/j.infsof.2012.
07.008.

[397] J. Sarkis, Benchmarking for agility, Benchmarking: An International Jour-
nal, 8 (2001), pp. 88–107. 10.1108/14635770110389816.

[398] S. Sattari Khavas, The adoption of DEMO in practice, Master’s the-
sis, TU Delft, 2010. http://repository.tudelft.nl/view/ir/uuid%

3A7bf74f2c-0cd3-4eb8-b9eb-2f931cae3694/.

[399] A. Schatten and J. Schiefer, Agile Business Process Management with
Sense and Respond, in IEEE International Conference on e-Business Engi-
neering (ICEBE’07), 2007, pp. 319–322. 10.1109/ICEBE.2007.43.

[400] A.-W. Scheer and M. Nüttgens, ARIS Architecture and Reference
Models for Business Process Management, in Business Process Manage-
ment, Models, Techniques, and Empirical Studies (BPM2000), W. M. P.
van der Aalst, J. Desel, and A. Oberweis, eds., vol. 1806 of Lecture Notes
in Computer Science, Springer, Jan. 2000, pp. 376–389. 10.1007/3-540-

45594-9_24.

[401] A.-W. Scheer, O. Thomas, and O. Adam, Process Modeling us-
ing Event-Driven Process Chains, in Process-Aware Information Systems:
Bridging People and Software through Process Technology, M. Dumas,
W. M. P. van der Aalst, and A. H. M. ter Hofstede, eds., John Wiley
& Sons, Inc., 2005, pp. 119–145. 10.1002/0471741442.ch6.

195

https://doi.org/10.2307/30036530
https://doi.org/10.3390/app10010012
https://doi.org/10.1007/978-3-662-43725-4
https://nordicapis.com/ultimate-guide-to-all-9-standard-http-methods/
https://nordicapis.com/ultimate-guide-to-all-9-standard-http-methods/
https://doi.org/10.1016/j.infsof.2012.07.008
https://doi.org/10.1016/j.infsof.2012.07.008
https://doi.org/10.1108/14635770110389816
http://repository.tudelft.nl/view/ir/uuid%3A7bf74f2c-0cd3-4eb8-b9eb-2f931cae3694/
http://repository.tudelft.nl/view/ir/uuid%3A7bf74f2c-0cd3-4eb8-b9eb-2f931cae3694/
https://doi.org/10.1109/ICEBE.2007.43
https://doi.org/10.1007/3-540-45594-9_24
https://doi.org/10.1007/3-540-45594-9_24
https://doi.org/10.1002/0471741442.ch6

BIBLIOGRAPHY

[402] G. Scheithauer and S. Hellmann, Analysis and Documentation of
Knowledge-Intensive Processes, in Business Process Management Work-
shops, M. Rosa and P. Soffer, eds., vol. 132 of Lecture Notes in Busi-
ness Information Processing, Springer Berlin Heidelberg, 2013, pp. 3–11.
10.1007/978-3-642-36285-9_2.

[403] D. C. Schmidt, Guest Editor’s Introduction: Model-Driven Engineering,
Computer, 39 (2006), pp. 25–31. 10.1109/MC.2006.58.

[404] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P.
van der Aalst, Towards a Taxonomy of Process Flexibility, in CAiSE
Forum, Z. Bellahsène, C. Woo, E. Hunt, X. Franch, and R. Coletta,
eds., vol. 344 of CEUR Workshop Proceedings, CEUR-WS.org, June 2008,
pp. 81–84.

[405] C. Schroth, The service-oriented enterprise, Journal of Enterprise Archi-
tecture, 3 (2007), pp. 73–80.

[406] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cam-
bridge University Press, Cambridge, London, 1969.

[407] G. Sebastián, J. A. Gallud, and R. Tesoriero, Code generation using
model driven architecture: A systematic mapping study, Journal of Com-
puter Languages, 56 (2020). 10.1016/j.cola.2019.100935.

[408] E. Seidewitz, What models mean, IEEE Software, 20 (2003), pp. 26–32.
10.1109/MS.2003.1231147.

[409] M. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren,
Action Design Research, MIS Quarterly, 35 (2011), pp. 37–56. 10.2307/

23043488.

[410] B. Selic, The pragmatics of model-driven development, IEEE Software, 20
(2003), pp. 19–25. 10.1109/MS.2003.1231146.

[411] P. S. Seligman, G. M. Wijers, and H. G. Sol, Analyzing the structure
of I.S. methodologies; an alternative approach., Proceedings of the First
Dutch Conference on Information Systems, (1989).

[412] S. Sendall and W. Kozaczynski, Model transformation: the heart
and soul of model-driven software development, IEEE Software, 20 (2003),
pp. 42–45. 10.1109/MS.2003.1231150.

[413] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and
Quasi-Experimental Research for Generalized Causal Inference, Houghton
Mifflin, Boston, MA, second ed., 2002.

[414] B. Sherehiy, W. Karwowski, and J. K. Layer, A review of enterprise
agility: Concepts, frameworks, and attributes, International Journal of In-
dustrial Ergonomics, 37 (2007), pp. 445–460. 10.1016/j.ergon.2007.01.
007.

196

https://doi.org/10.1007/978-3-642-36285-9_2
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1016/j.cola.2019.100935
https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.2307/23043488
https://doi.org/10.2307/23043488
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1016/j.ergon.2007.01.007
https://doi.org/10.1016/j.ergon.2007.01.007

BIBLIOGRAPHY

[415] A. Shutov, Y. Laryushina, N. Ponomarev, and O. Radzinskaia,
Extending DEMO with an opportunity for simulation, in Information Sys-
tems Development and Applications, S. Wrycza, ed., University of Gdańsk,
2015.

[416] J. Sijtstra, Quantifying low-code development platforms effectiveness in
the Dutch public sector, mathesis, Leiden University, June 2022. https:

//theses.liacs.nl/2221.

[417] H. A. Simon, The shape of automation for men and management, Harper
& Row, 1965.

[418] , The Sciences of the Artificial, MIT Press, Cambridge, MA, USA,
third ed., 1996.

[419] Y. Singh and M. Sood, Model Driven Architecture: A Perspective, in 2009
IEEE International Advance Computing Conference, 2009, pp. 1644–1652.
10.1109/IADCC.2009.4809264.

[420] A. Skander, L. Roucoules, and J.-S. Klein Meyer, Design and
manufacturing interface modelling formanufacturing processes selection and
knowledgesynthesis in design, The International Journal of Advanced Manu-
facturing Technology, 37 (2008), pp. 443–454. 10.1007/s00170-007-1003-
2.

[421] M. Skotnica, S. J. H. van Kervel, and R. Pergl, Towards the On-
tological Foundations for the Software Executable DEMO Action and Fact
Models, in Advances in Enterprise Engineering X (EEWC 2016), D. Aveiro,
R. Pergl, and D. Gouveia, eds., vol. 252 of Lecture Notes in Business In-
formation Processing, Springer, 2016, pp. 151–165. 10.1007/978-3-319-

39567-810.

[422] J. Smeds, K. Nybom, and I. Porres, DevOps: A Definition and Per-
ceived Adoption Impediments, in XP 2015: Agile Processes in Software Engi-
neering and Extreme Programming, C. Lassenius, T. Dingsøyr, and M. Paa-
sivaara, eds., vol. 212 of Lecture Notes in Business Information Processing,
Springer, 2015, pp. 166–177. 10.1007/978-3-319-18612-2_14.

[423] R. P. Smith and J. A. Morrow, Product development process modeling,
Design Studies, 20 (1999), pp. 237–261. 10.1016/S0142-694X(98)00018-0.

[424] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, The pains
and gains of microservices: A Systematic grey literature review, Journal of
Systems and Software, 146 (2018), pp. 215–232. 10.1016/j.jss.2018.09.
082.

[425] M. Söylemez, B. Tekinerdogan, and A. Kolukısa Tarhan, Chal-
lenges and Solution Directions of Microservice Architectures: A Systematic
Literature Review, Applied Sciences, 12 (2022). 10.3390/app12115507.

197

https://theses.liacs.nl/2221
https://theses.liacs.nl/2221
https://doi.org/10.1109/IADCC.2009.4809264
https://doi.org/10.1007/s00170-007-1003-2
https://doi.org/10.1007/s00170-007-1003-2
https://doi.org/10.1007/978-3-319-39567-8 10
https://doi.org/10.1007/978-3-319-39567-8 10
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1016/S0142-694X(98)00018-0
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.3390/app12115507

BIBLIOGRAPHY

[426] G. Spanoudakis and A. Zisman, Software Traceability: A Roadmap,
Handbook of Software Engineering and Knowledge Engineering, 3 (2005).
10.1142/9789812775245_0014.

[427] P. Spyns, R. Meersman, and M. Jarrar, Data Modelling versus On-
tology Engineering, SIGMOD Rec., 31 (2002), pp. 12–17. 10.1145/637411.
637413.

[428] T. Stahl and M. Völter, Model-Driven Software Development: Tech-
nology, Engineering, Management, John Wiley & Sons, Inc., Hoboken, NJ,
United States, May 2006.

[429] I. Stanev and M. Koleva, Why the standard methods, 5GL, common
platforms and reusable components are the four pillars of the new computa-
tional paradigm Programming without programmers, International Journal
of Education and Information Technologies, 13 (2019), pp. 49–58.

[430] L. Starr, A. Mangogna, and S. J. Mellor, Models to Code - With No
Mysterious Gaps, Apress Berkeley, 2017. 10.1007/978-1-4842-2217-1.

[431] C. Steghuis, Service granularity in SOA-projects : a trade-off analysis,
Master’s thesis, University of Twente, June 2006. http://essay.utwente.
nl/57339/.

[432] E. Stevens, Fuzzy front-end learning strategies: Exploration of a high-tech
company, Technovation, 34 (2014), pp. 431–440. Risk and Uncertainty Man-
agement in Technological Innovation. 10.1016/j.technovation.2013.12.
006.

[433] V. Stirbu, M. Raatikainen, J. Röntynen, V. Sokolov, T. Lehto-
nen, and T. Mikkonen, Towards multi-concern software development with
Everything-as-Code, IEEE Software, (2022).

[434] J. Stirna, A. Person, and K. Sandkuhl, Participative Enterprise Mod-
eling: Experiences and Recommendations, in Advanced Information Sys-
tems Engineering, 19th International Conference, CAiSE 2007, vol. 4495 of
Lecture Notes in Computer Science, 2007, pp. 546–560. 10.1007/978-3-

540-72988-4_38.

[435] J. Stirna and A. Persson, Enterprise Modeling: Facilitating the Process
and the People, Springer Cham, Oct. 2018. 10.1007/978-3-319-94857-7.

[436] R. Studer, V. R. Benjamins, and D. Fensel, Knowledge engineering:
Principles and methods, Data & Knowledge Engineering, 25 (1998), pp. 161–
197. 10.1016/S0169-023X(97)00056-6.

[437] S. Sushil and E. A. Stohr, eds., The Flexible Enterprise, Flexible Sys-
tems Management, Springer India, Jan. 2014. 10.1007/978-81-322-1560-
8.

198

https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1145/637411.637413
https://doi.org/10.1145/637411.637413
https://doi.org/10.1007/978-1-4842-2217-1
http://essay.utwente.nl/57339/
http://essay.utwente.nl/57339/
https://doi.org/10.1016/j.technovation.2013.12.006
https://doi.org/10.1016/j.technovation.2013.12.006
https://doi.org/10.1007/978-3-540-72988-4_38
https://doi.org/10.1007/978-3-540-72988-4_38
https://doi.org/10.1007/978-3-319-94857-7
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1007/978-81-322-1560-8
https://doi.org/10.1007/978-81-322-1560-8

BIBLIOGRAPHY

[438] G. I. Susman and R. D. Evered, An Assessment of the Scientific Merits
of Action Research, Administrative Science Quarterly, 23 (1978), pp. 582–
603. 10.2307/2392581.

[439] J. Sztipanovits, Model-based Software Development, in ESMD-SW Work-
shop, Mar. 2007.

[440] T. Tamm, P. B. Seddon, G. Shanks, and P. Reynolds, How Does
Enterprise Architecture Add Value to Organisations?, Communications of
the Association for Information Systems, 28 (2011), pp. 141–168. 10.17705/
1CAIS.02810.

[441] D. J. Teece, Explicating dynamic capabilities: the nature and of (sus-
tainable) enterprise performance, Strategic Management Journal, 4 (2007),
pp. 1319–1350.

[442] S. Teegavarapu, J. D. Summers, and G. M. Mocko, Case Study
Method for Design Research: A Justification, in International Design En-
gineering Technical Conferences and Computers and Information in Engi-
neering Conference, 2008, pp. 495–503. 10.1115/DETC2008-49980.

[443] A. H. M. ter Hofstede and H. A. Proper, How to Formalize It? For-
malization Principles for Information System Development Methods, Infor-
mation and Software Technology, 40 (1998), pp. 519–540.

[444] L. I. Terlouw and A. Albani, An Enterprise Ontology-Based Ap-
proach to Service Specification, IEEE Transactions on Services Computing,
6 (2013), pp. 89–101. 10.1109/TSC.2011.38.

[445] B. Thalheim and H. Jaakola, Model-Based Fifth Generation Pro-
gramming, in Information Modelling and Knowledge Bases XXXI, A. Da-
hanayake, J. Huiskonen, Y. Kiyoki, B. Thalheim, H. Jaakola, and
N. Yoshida, eds., vol. 321 of Frontiers in Artificial Intelligence and Ap-
plications, IOS Press, 2020, pp. 381–400.

[446] B. Thalheim, A. N. Sotnikov, and I. Fiodorov, Models : The Main
Tool of True Fifth Generation Programming, in Proceedings of the XXII
International Conference Enterprise Engineering and Knowledge Manage-
ment, G. Osipov, Y. Telnov, and I. Fiodorov, eds., vol. 2413 of CEUR
Workshop Proceedings, 2019, pp. 161–170. https://ceur-ws.org/Vol-

2413/paper19.pdf.

[447] The Open Group, Microservices Architecture. Online, 2016. Accessed
2021-Nov-21. http://www.opengroup.org/soa/source-book/msawp/.

[448] , TOGAF – The Open Group Architectural Framework. Online, 2018.
Accessed 2020-Aug-31. http://www.togaf.org.

[449] , ArchiMate 3.2 Specification, Van Haren, 2023.

199

https://doi.org/10.2307/2392581
https://doi.org/10.17705/1CAIS.02810
https://doi.org/10.17705/1CAIS.02810
https://doi.org/10.1115/DETC2008-49980
https://doi.org/10.1109/TSC.2011.38
https://ceur-ws.org/Vol-2413/paper19.pdf
https://ceur-ws.org/Vol-2413/paper19.pdf
http://www.opengroup.org/soa/source-book/msawp/
http://www.togaf.org

BIBLIOGRAPHY

[450] O. Thomas and M. Fellmann, Semantic EPC: Enhancing Process Mod-
eling Using Ontology Languages, in Semantic Business Processand Product
Lifecycle Management. Proceedings of the Workshop SBPM 2007, M. Hepp,
K. Hinkelmann, D. Karagiannis, R. Klein, and N. Stojanovic, eds., vol. 251,
Jan. 2007.

[451] S. H. Thomke, The role of flexibility in the development of new products:
An empirical study, Research Policy, 26 (1997), pp. 105–119. 10.1016/

S0048-7333(96)00918-3.

[452] Q.-N. N. Tran and G. Low, MOBMAS: A methodology for ontology-
based multi-agent systems development, Information and Software Technol-
ogy, 50 (2008), pp. 697–722. 10.1016/j.infsof.2007.07.005.

[453] L. Tratt, Model transformations and tool integration, Software and System
Modeling, 4 (2005), pp. 112–122. 10.1007/s10270-004-0070-1.

[454] J. Tribolet, An Engineering Approach to Natural Enterprise Dynamics:
From Top-down Purposeful Systemic Steering to Bottom-up Adaptive Guid-
ance Control, in 9th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), S. Hammoudi, L. A. Maciaszek,
and J. Cordeiro, eds., Apr. 2014.

[455] N. C. Tsourveloudis and K. P. Valavanis, On the Measurement of
Enterprise Agility, Journal of Intelligent and Robotic Systems, 33 (2002),
pp. 329–342. 10.1023/A:1015096909316.

[456] M. Uschold and M. King, Towards a Methodology for Building Ontolo-
gies, in Proceedings of the Workshop on Basic Ontological Issues in Knowl-
edge Sharing, International Joint Conference on Artificial Intelligence, Mon-
treal, 1995, 1995.

[457] J. E. van Aken and A. P. Nagel, Organising and managing the fuzzy
front end of new product development, vol. 04.12 of ECIS working paper
series, Technische Universiteit Eindhoven, 2004.

[458] S. van Bockhooven and M. Op ’t Land, Organization Implementation
Fundamentals: a Case Study Validation in the Youthcare Sector, in Com-
plementary Proceedings of the Workshops TEE, CoBI, and XOC-BPM at
IEEE-COBI 2015, vol. 1408 of CEUR Workshop Proceedings, Lisbon, Por-
tugal, July 2015. http://ceur-ws.org/Vol-1408/paper3-tee.pdf.

[459] H. van den Berg, H. Franken, and H. Jonkers, eds., Handboek Busi-
ness Process Engineering, BiZZdesign Academy B.V., 2008. In Dutch.

[460] W. van der Aalst, J. Desel, and E. Kindler, On the semantics of
EPCs: A vicious circle, in Proceedings of the EPK 2002: Business Process
Management using EPCs, Dec. 2002, pp. 71–80.

200

https://doi.org/10.1016/S0048-7333(96)00918-3
https://doi.org/10.1016/S0048-7333(96)00918-3
https://doi.org/10.1016/j.infsof.2007.07.005
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.1023/A:1015096909316
http://ceur-ws.org/Vol-1408/paper3-tee.pdf

BIBLIOGRAPHY

[461] P. van der Horst, From business transactions to business processes work-
flows: Using DEMO and BPMN, Master’s thesis, Delft University of Tech-
nology, 2010.

[462] R. Van Der Straeten, T. Mens, and S. Van Baelen, Challenges
in Model-Driven Software Engineering, in Models in Software Engineering,
M. R. V. Chaudron, ed., Berlin, Heidelberg, 2009, Springer Berlin Heidel-
berg, pp. 35–47. 10.1007/978-3-642-01648-6_4.

[463] A. van Deursen, P. Klint, and J. Visser, Domain-Specific Languages:
An Annotated Bibliography, ACM SIGPLAN Notices, 35 (2000), pp. 26–36.

[464] T. van Eijndhoven, M.-E. Iacob, and M. L. Ponisio, Achieving Busi-
ness Process Flexibility with Business Rules, in 12th International IEEE
Enterprise Distributed Object Computing Conference, IEEE, 2008, pp. 95–
104. 10.1109/EDOC.2008.23.

[465] S. J. H. van Kervel, Ontology driven Enterprise Information Systems
Engineering, PhD thesis, TU Delft, 2012.

[466] S. J. H. van Kervel, J. L. G. Dietz, J. Hintzen, T. van Meeuwen,
and B. Zijlstra, Enterprise Ontology Driven Software Engineering, in
Proceedings of the 7th International Conference on Software Paradigm
Trends (ICSOFT-2012), 2012, pp. 205–210. 10.5220/0004080902050210.

[467] D. Van Nuffel, Towards designing modular and evolvable business pro-
cesses, PhD thesis, University of Antwerp, 2011.

[468] D. Van Nuffel, P. Huysmans, D. Bellens, and K. Ven, Translat-
ing Ontological Business Transactions into Evolvable Information Systems,
in 5th InternationalConference on Software Engineering Advances (ICSEA
2010), Aug. 2010.

[469] D. Van Nuffel, H. Mulder, and S. van Kervel, Enhancing the Formal
Foundations of BPMN by Enterprise Ontology, in CIAO! 2009, EOMAS
2009: Advances in Enterprise Engineering III, A. Albani, J. Barjis, and
J. L. G. Dietz, eds., vol. 34 of Business Information Processing, Springer,
2009, pp. 115–129. 10.1007/978-3-642-01915-9_9.

[470] M. van Oosterhout, Business Agility and Information Technology in
Service Organizations, PhD thesis, Erasmus University Rotterdam, June
2010.

[471] M. van Oosterhout, E. Waarts, and J. van Hillegersberg, Change
Factors requiring agility and implications for IT, European journal of in-
formation systems, 15 (2006), pp. 132–145. 10.1057/palgrave.ejis.

3000601.

[472] V. E. Van Reijswoud, The structure of business communication: Theory,
model and application, PhD thesis, Delft University of Technology, 1996.

201

https://doi.org/10.1007/978-3-642-01648-6_4
https://doi.org/10.1109/EDOC.2008.23
https://doi.org/10.5220/0004080902050210
https://doi.org/10.1007/978-3-642-01915-9_9
https://doi.org/10.1057/palgrave.ejis.3000601
https://doi.org/10.1057/palgrave.ejis.3000601

BIBLIOGRAPHY

[473] V. E. van Reijswoud, J. B. F. Mulder, and J. L. G. Dietz, Com-
municative Action Based Business Process and Information Modelling with
DEMO, The Information Systems Journal, 9 (1999), pp. 117–138.

[474] J. van’t Wout, M. Waage, H. Hartman, M. Stahlecker, and
A. Hofman, The Integrated Architecture Framework Explained: Why,
What, How, Springer, 2010. 10.1007/978-3-642-11518-9.

[475] F. Vernadat, Enterprise Modelling, Production Planning & Control, 12
(2001), pp. 107–109. 10.1080/09537280150501202.

[476] P. Verschuren and R. Hartog, Evaluation in Design-Oriented Re-
search, Quality and Quantity, 39 (2005), pp. 733–762. 10.1007/s11135-

005-3150-6.

[477] C. Vetterli, W. Brenner, F. Uebernickel, and C. Petrie, From
Palaces to Yurts - Why Requirements Engineering Needs Design Thinking,
IEEE Internet Computing, 17 (2013). 10.1109/MIC.2013.32.

[478] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czar-
necki, and B. von Stockfleth, Model-Driven Software Development:
Technology, Engineering, Management, Wiley Software Patterns Series, Wi-
ley, 2013.

[479] Y. Wand and R. Weber, Research Commentary: Information Systems
and Conceptual Modeling - A Research Agenda, Information Systems Re-
search, 13 (2002), pp. 363–376.

[480] P. T. Ward and S. J. Mellor, Structured Development for Real-time
Systems: Introduction & tools, Structured Development for Real-time Sys-
tems, Yourdon Press, 1985.

[481] R. Waszkowski, Low-code platform for automating business processes in
manufacturing, IFAC-PapersOnLine, 52 (2019), pp. 376–381. 13th IFAC
Workshop on Intelligent Manufacturing Systems IMS 2019. 10.1016/j.

ifacol.2019.10.060.

[482] H. Weigand, Two decades of language/action perspective, Natural Lan-
guage Engineering, 49 (2006), pp. 45–46.

[483] T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, Model-Based
System Architecture, Wiley Series in Systems Engineering and Management,
Wiley, 2022. https://books.google.nl/books?id=1GNoEAAAQBAJ.

[484] S. A. White, Process Modeling Notations and Workflow Patterns, BP-
Trends, (2004).

[485] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering, Springer Berlin, Heidelberg, Dec. 2014. 10.1007/

978-3-662-43839-8.

202

https://doi.org/10.1007/978-3-642-11518-9
https://doi.org/10.1080/09537280150501202
https://doi.org/10.1007/s11135-005-3150-6
https://doi.org/10.1007/s11135-005-3150-6
https://doi.org/10.1109/MIC.2013.32
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060
https://books.google.nl/books?id=1GNoEAAAQBAJ
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

BIBLIOGRAPHY

[486] R. Wiersma and P. Ravesteyn, A method for defining optimum service
granularity, in 21st Annual International Information Management Associ-
ation (IIMA), Utrecht, The Netherlands, 2010.

[487] G. M. Wijers, Modelling support in information systems development,
PhD thesis, Delft University of Technology, 1991.

[488] G. M. Wijers and H. Heijes, Automated support of the modelling pro-
cess: A view based on experiments with expert information engineers, in
CAiSE 1990: Advanced Information Systems Engineering, B. Steinholtz,
A. Sølvberg, and L. Bergman, eds., vol. 436 of Lecture Notes in Computer
Science, Springer, Berlin, 1990, pp. 88–108. 10.1007/BFb0000588.

[489] Y. Windarto, R. Hersant, and E. Putro, Developing Home Service
System; Business Process Reengineering for Motorcycle Workshop, Indone-
sian Journal of Information Systems, 3 (2021), pp. 94–104. 10.24002/ijis.
v3i2.4144.

[490] R. Winter, Design Solution Analysis for the Construction of Situational
Design Methods, in Engineering Methods in the Service-Oriented Context,
J. Ralyté, I. Mirbel, and R. Deneckère, eds., Berlin, Heidelberg, 2011,
Springer Berlin Heidelberg, pp. 19–33.

[491] J. J. V. R. Wintraecken, Informatie-analyse volgens NIAM: in theorie
en praktijk, Academic Service, Den Haag, second ed., 1985. In Dutch.

[492] E. Wolff, Microservices: Flexible Software Architecture, Addison-Wesley
Professional, 2016.

[493] P. Y. H. Wong and J. Gibbons, A Process Semantics for BPMN,
in Formal Methods and Software Engineering, S. Liu, T. Maibaum, and
K. Araki, eds., vol. 5256 of Lecture Notes in Computer Science, Berlin, Hei-
delberg, 2008, Springer Berlin Heidelberg, pp. 355–374. 10.1007/978-3-

540-88194-0_22.

[494] F. Wu, L. Priscilla, M. Gao, F. Caron, W. De Roover, and
J. Vanthienen, Modeling Decision Structures and Dependencies, in On the
Move to Meaningful Internet Systems: OTM 2012 Workshops., vol. 7567 of
Lecture Notes in Computer Science, 2012. 10.1007/978-3-642-33618-

8_69.

[495] A. W. Wymore, Model-Based Systems Engineering, CRC Press, first ed.,
1993. 10.1201/9780203746936.

[496] L. Xu, H. Liu, S. Wang, and K. Wang, Modelling and analysis tech-
niques for cross-organizational workflow systems, Systems Research and Be-
havioral Science, 26 (2009), pp. 367–389. 10.1002/sres.978.

[497] R. K. Yin, Case study research, Design and Methods., vol. 5 of Applied
Social Research Methods, Sage Publications, fourth ed., 2009.

203

https://doi.org/10.1007/BFb0000588
https://doi.org/10.24002/ijis.v3i2.4144
https://doi.org/10.24002/ijis.v3i2.4144
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1007/978-3-642-33618-8_69
https://doi.org/10.1007/978-3-642-33618-8_69
https://doi.org/10.1201/9780203746936
https://doi.org/10.1002/sres.978

BIBLIOGRAPHY

[498] E. Yourdon, Modern Structured Analysis, Prentice Hall, 1988.

[499] , Just Enough Structured Analysis, Yourdon, 2006.

[500] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design, Prentice Hall,
1978.

[501] J. A. Zachman, Conceptual, logical, physical: It is simple, Zachman Inter-
national, 36 (2000).

[502] I. Zayour, I. Moukadem, and I. Moghrabi, Complexity is in the Brain
of the Beholder: A Psychological Perspective on Software Engineering’s Ul-
timate Challenge, Journal of Software, 8 (2013).

[503] B. P. Zeigler, S. Mittal, and M. K. Traore, MBSE with/out Sim-
ulation: State of the Art and Way Forward, Systems, 6 (2018). 10.3390/

systems6040040.

[504] M. Zgorzelski and P. Zeno, Flowcharts, data flows, SADT, IDEF and
NIAM for enterprise engineering, in Modelling Techniques for Business Pro-
cess Re-engineering and Benchmarking, G. Doumeingts and J. Browne, eds.,
IFIP Advances in Information and Communication Technology, Springer,
Boston, MA, 1997. 10.1007/978-0-387-35067-7_7.

[505] J. Zhang and B. H. C. Cheng, Model-Based Development of Dynamically
Adaptive Software, in Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, New York, NY, USA, 2006, Association for
Computing Machinery, pp. 371–380. 10.1145/1134285.1134337.

[506] K. X. Zhu and Z. Z. Zhou, Research Note - Lock-In Strategy in Software
Competition: Open-Source Software vs. Proprietary Software, Information
Systems Research, 23 (2011), pp. 536–545. 10.1287/isre.1110.0358.

[507] I. Zikra, J. Stirna, and J. Zdravkovic, Bringing Enterprise Model-
ing Closer to Model-Driven Development, in The Practice of Enterprise
Modeling - 4th IFIP WG 8.1 Working Conference (PoEM 2011), P. Jo-
hannesson, J. Krogstie, and A. L. Opdahl, eds., vol. 92 of Lecture Notes
in Business Information Processing, Springer, Nov. 2011, pp. 268–282.
10.1007/978-3-642-24849-8_20.

[508] O. Zimmermann, Microservices tenets - Agile approach to service devel-
opment and deployment. Online, Springer-Verlag Berlin Heidelberg, Nov.
2016. 10.1007/s00450-016-0337-0.

[509] , Domain Specific Service Decomposition with Microservice API Pat-
terns. Online, Feb. 2019. Accessed 2021-Nov-11. https://www.conf-

micro.services/2019/slides//keynotes/Zimmerman.pdf.

204

https://doi.org/10.3390/systems6040040
https://doi.org/10.3390/systems6040040
https://doi.org/10.1007/978-0-387-35067-7_7
https://doi.org/10.1145/1134285.1134337
https://doi.org/10.1287/isre.1110.0358
https://doi.org/10.1007/978-3-642-24849-8_20
https://doi.org/10.1007/s00450-016-0337-0
https://www.conf-micro.services/2019/slides//keynotes/Zimmerman.pdf
https://www.conf-micro.services/2019/slides//keynotes/Zimmerman.pdf

BIBLIOGRAPHY

[510] M. Zoet, J. Versendaal, P. Ravesteyn, and R. Welke, Alignment
of Business Process Management and Business Rules, in ECIS 2011 Pro-
ceedings, 2011.

[511] A. Z. Zrnec, M. Bajec, and M. Krisper, Enterprise modelling with
UML, Electrotechnical Review, 68 (2001), pp. 109–114.

[512] M. zur Muehlen, M. Indulska, and K. Kittel, Towards Integrated
Modeling of Business Processes and Business Rules, in ACIS 2008 Proceed-
ings, 2008.

205

206

List of Figures

1.1 Connections between enterprise (agility) and software (agility) . 3
1.2 Fixed versus flexible product . 4
1.3 Aspects of a method . 9
1.4 The creation of (situational) methods 11

2.1 Design Science Research Cycles 21
2.2 Action Research Spiral . 22
2.3 Action Design Research stages 23
2.4 Nested ADR approach for this research 25

3.1 Model kinds . 31
3.2 Possible relationships between modeling and coding 32
3.3 The General System Development Process 33
3.4 Venn diagrams of the different axes in the domain of MBE 35
3.5 Model transformation and the role of metamodels 39
3.6 (Micro)service metamodel and example 43
3.7 Normalized Systems metamodel 45
3.8 Low-code metamodel . 48

4.1 Relationships between different enterprise modeling perspectives 51
4.2 Structure and example of a C-act and C-fact 59
4.3 Complete transaction pattern . 61
4.4 Denotation of actor role and transaction kind 62
4.5 Operating cycle of actors . 63
4.6 Ontological aspect models . 65
4.7 DEMO metamodel . 67
4.8 Example OIVs and their relations 70

6.1 Visualization of the mapping from DEMO to API specifications . 87
6.2 CSD for Social Housing . 90
6.3 OFD for Social Housing . 90
6.4 Specification of TK01request, agendaForAR01, and CFact 93

7.1 DEMO model for a fictitious membership office 100
7.2 Mockup to perform a TK01 request for the membership office . . 101
7.3 Mockup to respond to a TK01 request for the membership office 102
7.4 Example mockup for patent requesting 105

207

LIST OF FIGURES

7.5 Example of capturing implicit/explicit 107
7.6 DEMO CM of patent granting 107

8.1 NS basic workflow patterns for a DEMO transaction kind 117
8.2 CSD for subsidy granting . 118
8.3 OFD for subsidy granting . 119
8.4 ERD of identified NS data elements for subsidy granting 120
8.5 Workflow for the T01exec data element 121

9.1 Descriptor file in JSON format for Social Housing 130
9.2 Project outline of the generated Mendix application 131
9.3 Domain (data) model of the generated Mendix application 132
9.4 Mendix implementation of the truth part of ARS01 132
9.5 Example screen for AR01 to deal with TK01/rq 133

A.1 Sub models of the 4EM approach 220
A.2 Example goal model of the 4EM approach 220
A.3 Example ArchiMate model . 221
A.4 Example BPMN process model 222
A.5 Example DMN decision table . 222
A.6 Example and legend of EPC . 223
A.7 MEMO example of interrelated enterprise diagrams 224
A.8 SBVR schema and example . 225
A.9 Example UML class diagram . 225
A.10 Example UML activity diagram 226
A.11 Example UML use case diagram 227
A.12 Example UML sequence diagram 228

208

List of Tables

1.1 Outline of this thesis related to ADR stages and research questions 14

2.1 Usability of different research approaches for this research 23
2.2 How the research questions are answered by the research approach 24
2.3 Links between the ECSs, target technologies, needs, and cases . . 26

3.1 Mentions of MBE and related notions in literature 36

4.1 Overview of enterprise modeling techniques 57
4.2 Overview of the model kinds, layers, and types of enterprise change 72

5.1 Identified existing method fragments categorized 79

6.1 TPT for Social Housing . 90
6.2 DFS for Social Housing . 91
6.3 ARS01 for AR01 (TK01/rq) . 91
6.4 Full list of APIs for Social Housing 92

7.1 TPT for a fictitious membership office 101
7.2 DFS for a fictitious membership office 101
7.3 ARS01 for AR01 (TK01/rq) of a fictitious membership office . . 102
7.4 Excerpt of the results of the implicit/explicit analysis 106

8.1 Mapping from DEMO concepts to NS elements 116
8.2 TPT for subsidy granting . 118

9.1 Mendix (metamodel) units related to the low-code metamodel . . 127
9.2 Mapping from the DEMO metamodel to the Mendix metamodel 128

10.1 Method fragments from literature and exploratory case studies . 145

B.1 ARS01 (executed by AR01) . 230
B.2 ARS02 (executed by AR01) . 230
B.3 ARS03 (executed by AR02) . 231
B.4 ARS04 (executed by AR01) . 231
B.5 ARS05 (executed by AR03) . 231
B.6 ARS06 (executed by AR03) . 232
B.7 ARS07 (executed by AR04) . 232

209

LIST OF TABLES

B.8 ARS08 (executed by AR04) . 232
B.9 ARS09 (executed by AR04) . 233
B.10 ARS10 (executed by AR04) . 233
B.11 ARS11 (executed by AR04) . 233

E.1 ARS01 (executed by AR01) . 269
E.2 ARS02 (executed by AR01) . 270
E.3 ARS03 (executed by AR01) . 270
E.4 ARS04 (executed by AR01) . 270
E.5 ARS05 (executed by AR01) . 271
E.6 ARS06 (executed by AR01) . 271
E.7 ARS07 (executed by AR01) . 271
E.8 ARS08 (executed by AR01) . 272

210

List of Acronyms

1GL First-Generation Programming Language 37

2GL Second-Generation Programming Language 37

3GL Third-Generation Programming Language 37, 38

4EM For Enterprise Modeling 53, 57, 220

4GL Fourth-Generation Programming Language 37, 38, 150

5GL Fifth-Generation Programming Language 38, 150

ADM Architecture Development Method 53

ADR Action Design Research xi, xiv, xviii, 13–15, 22–25, 139, 156, 157

AI Artificial Intelligence xv, 6, 155, 159

AM Action Model 62, 65, 67, 86, 88, 115, 128, 150

API Application Programming Interface 41–43, 46–48, 84–87, 89, 92, 94–96, 126,
127, 129, 134, 157

ARIS Architecture of Integrated Information Systems 52–57, 219

ARS Action Rule Specification 65, 86, 88, 91, 92, 104, 115, 116, 119, 120, 127,
209, 210, 229, 231–233, 269

BCI-3D Three Dimensional method for Business Components Identification 76

BPEL Business Process Execution Language 54

BPMN Business Process Modeling and Notation 54, 55, 57, 156, 159, 219, 222

C-act coordination act 59, 60, 62, 63, 65, 69, 76, 86, 88, 94, 95, 100, 103–106,
110, 122, 130, 154

C-fact coordination fact 59, 60, 62, 63, 65, 77

CASE Computer-aided Software Engineering 9, 10, 37

CI/CD Continuous Integration and Continuous Development 8

211

LIST OF ACRONYMS

CM Cooperation Model 60, 65–67, 86, 89, 103–108, 115, 116, 128

CMMN Case Management Modeling and Notation 54

CMS Content Management System 98, 105, 273

CogNIAM Cognition enhanced Natural language Information Analysis Method
50, 54, 57, 219

CPU Central Processing Unit 38

CRUD Create, Read, Update, and Delete 127, 129, 130

CSD Coordination Structure Diagram 65, 89, 90, 100, 118

CTP Complete Transaction Pattern 58–60, 65, 66, 76, 78, 79, 86, 103, 109, 115,
127, 129, 133, 145

DEMO Design and Engineering Methodology for Organizations vii, ix–xi, xiv–
xvi, xviii–xx, xxx, xxxi, 54, 55, 57–59, 62, 66, 67, 71, 72, 76, 78, 79, 83,
85–87, 92, 94–100, 103, 105–107, 109–111, 113–117, 122–124, 126–130, 133,
135, 141–150, 152, 153, 155–159, 212, 219, 235, 273

DEMO-SL DEMO Specification Language 55, 66, 86, 158

DFD Data Flow Diagram 9, 49

DFS Derived Fact Specification 65, 86, 88, 91, 101, 119, 127, 129

DMN Decision Modeling and Notation 54, 219, 222

DMS Document Management System 98, 105

DSL Domain Specific Language 38, 40

ECS exploratory case study 15, 24, 26, 141, 157

EIF Enterprise Implementation Framework xi, xiv, 58, 68, 71, 72, 96, 109, 123,
124, 141, 144, 147, 148, 154, 156

EMDSD Enterprise Model-driven Software Development xi, 40, 48, 50, 52, 57–
59, 71, 77, 140, 141, 146–148, 154, 155, 159, 273

EPC Event-driven Process Chain 54–57, 219, 223

ER Entity-Relationship 54, 212

ERD Entity-Relationship Diagram 8, 45, 49

ERP Enterprise Resource Planning 98

FM Fact Model 65–67, 86, 104, 105, 115, 119, 127–129

212

LIST OF ACRONYMS

GERAM Generalized Enterprise Reference Architecture and Methodology 52

GSDP General System Development Process 29, 33–35, 37, 40, 48, 58, 68, 71,
79, 98, 99, 140, 144–146, 154, 155, 207

HTTP Hypertext Transfer Protocol 42, 43, 94, 95

IAF Integrated Architecture Framework 52

ICT Information and Communication Technology 3, 84, 213

ICTU Stichting ICT Uitvoeringsorganisatie ix, 26, 83–85, 89

IS Information System 3, 36

ISDM Information Systems Development Method 8

IT Information Technology xvii, xviii, xx, 3, 5, 22, 23, 26, 34, 47, 53, 64, 68, 74,
75, 77, 78, 84, 95, 98, 106, 110, 142, 149, 151, 152, 154, 158, 273

JSON JavaScript Object Notation 66, 79, 92, 96, 130, 145, 158, 235

LLM Large Language Model xv, 155, 159

MBE Model-based Engineering xiii, 2, 9, 10, 29, 35–37, 40, 48, 139, 140, 146,
147

MDA Model-driven Architecture xiii, 9, 35, 143, 156

MDD Model-driven Development 35, 37, 38, 46, 142

MDE Model-driven Engineering 35

MDSD Model-driven Software Development vii, xi, xiv, 35, 37–41, 44, 47–49,
51, 71, 79, 125, 126, 133, 134, 140–146, 153–156, 273

MEMO Multi-Perspective Enterprise Modeling 56, 57, 224

MoD Ministry of Defense ix, 114, 123

MTK Multiple Transaction Kind 127

NIAM Natural language Information Analysis Method 30, 54

NS Normalized System xv, xix, xxx, 7, 15, 26, 29, 43, 44, 47, 48, 71, 76, 78, 94,
113–117, 120–124, 134, 142, 146, 154, 155, 160, 273

O-AA Open Agile Architecture 273

OAS OpenAPI Specification 42, 43, 92–96, 157, 158

213

LIST OF ACRONYMS

OER Organizational Essence Revealing 55, 79, 145

OFD Object Fact Diagram 65, 86, 88, 90, 91, 95, 96, 100, 119

OIV Organization Implementation Variable xiv, xv, xix, 58, 68–72, 79, 109, 123,
126–128, 130, 133–135, 141, 143, 145–148, 157, 160

OMG Object Management Group 54, 56

OMI Open Model Initiative 52

OS Object System 33, 34, 68

P-act production act 59, 65, 76, 86, 100

P-fact production fact 59, 60, 63, 77

PHP PHP: Hypertext Preprocessor 214, 273

PM Process Model 65–67, 103–105, 116, 120, 128

PRINCE2 Projects in Controlled Environments, version 2 52, 156

PSD Process Structure Diagram 65

ROME Return On Modeling Effort 55, 97, 98, 109, 110

SADT Structured Analysis and Design Technique 8, 37, 49

SAFe Scaled Agile Framework 273

SBVR Semantics of Business Vocabulary and Business Rules 54, 56, 57, 219,
225

SDK Software Development Kit 126, 133

SOA Service Oriented Architecture 42, 76, 85

SQL Structured Query Language 273

SSD Structured System Design 8, 37

STD State Transition Diagram 9, 117

SysML System Modeling Language 56, 57

TOGAF The Open Group Architecture Framework 52, 53, 156, 273

TPD Transaction Pattern Diagram 65, 100

TPT Transactor Product Table 65, 89, 90, 101, 118

UI user interface 39–41, 134, 141, 142, 155

214

LIST OF ACRONYMS

UML Unified Modeling Language 9, 35, 50, 52, 54, 56, 57, 143, 156, 159, 225–228

US Using System 33, 34

VSM Viable System Model 33, 144

WIS Work Instruction Specification 65

WoC Way of Controlling 8, 9, 52, 146, 156, 159

WoM Way of Modeling 8, 9, 51, 141, 146

WoS Way of Supporting 8, 9, 51, 141, 146

WoT Way of Thinking 8, 9, 29, 40, 51, 53, 54, 56, 57, 141, 146, 154, 156

WoW Way of Working 8, 9, 51, 53, 55–57, 141, 146

WS-BPEL Web Services Business Process Execution Language 76

XML Extensible Markup Language 53, 66, 79, 145

YAML YAML Ain’t Markup Language 42, 92, 237

215

216

Part IV

Appendices

217

A
Enterprise Modeling Techniques -

Examples

This chapter contains examples of the discussed enterprise modeling techniques in
Chapter 4. Examples for ARIS and CogNIAM are left out; instead, examples for
BPMN, DMN, EPC and SBVR are included. Examples for DEMO are left out as
they can be found in Section 4.2 and Part II. The given examples are considered
self-explanatory. For further information the reader is referred to Section 4.1 and
the provided references.

219

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.1: Sub models of the 4EM approach, taken from [394]

Figure A.2: Example goal model of the 4EM approach, taken from [394]

220

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.3: Example ArchiMate model, taken from [278]

221

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.4: Example BPMN process model, taken from [108]

Figure A.5: Example DMN decision table, taken from [108]

222

APPENDIX A. ENTERPRISE MODELING EXAMPLES

(a) Example EPC (b) Legend of EPCs

Figure A.6: Example and legend of EPC, taken from [401]

223

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.7: MEMO example of interrelated diagrams representing an enterprise
model, taken from [49]

224

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.8: SBVR schema and example, taken from [366]

Figure A.9: Example UML class diagram, taken from [180]

225

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.10: Example UML activity diagram, taken from [229]

226

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.11: Example UML use case diagram, taken from [489]

227

APPENDIX A. ENTERPRISE MODELING EXAMPLES

Figure A.12: Example UML sequence diagram, taken from [420]

228

B
Action Rule Specifications for Social

Housing

This addendum lists all (relevant) Action Rule Specifications for the area of reg-
istration within the Social Housing Domain.

229

APPENDIX B. ARSS FOR SOCIAL HOUSING

when registration starting for [registration] is requested (TK01/rq)

with the starting day of [registration] is some day;
the member of [registration] is some person;
the payer of [registration] is some person

if rightness: the performer of the request is the member of [registration];

the addressee of the request is a registration starter

sincerity: * no specific condition *
truth: the age of member of [registration] on starting day

of [registration] is greater than or equal to 18;
nationality of member of [registration] is Dutch;
NOT member of [registration] has active registration

on the starting day of [registration];
the year of the starting day of [registration] is greater than

or equal to the year of Now

if performing the action after then is considered justifiable
then promise registration starting for [registration] [TK01/pm]

to the performer of the request

else decline registration starting for [registration] [TK01/dc]
to the performer of the request

with * reason for declining *

Table B.1: ARS01 (executed by AR01)

when registration starting for [registration] is promised (TK01/pm)

if rightness: the performer of the promise is a registration starter;

the addressee of the promise is the member of [registration]

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then request registration paying for [registration] in the year [TK02/rq]

of the starting day of [registration]
to the payer of [registration]
with the requested paid amount of [registration] in the year

of the starting day of [registration] is equal to the standard
registration fee in the year of the starting day of [registration]

Table B.2: ARS02 (executed by AR01)

230

APPENDIX B. ARSS FOR SOCIAL HOUSING

when registration paying for [registration] in [year] is declared (TK02/da)

if rightness: the performer of the declaration is the payer of [registration];

the addressee of the declaration is the registration starter
of [registration]

sincerity: * no specific condition *
truth: the declared paid amount of registration paying for [registration]

in [year] is equal to the requested paid amount of registration

paying for [registration] in [year]

if performing the action after then is considered justifiable
then accept registration paying for [registration] in [year] [TK02/ac]

to the performer of the declaration

else reject registration paying for [registration] in [year] [TK02/rj]

to the performer of the declaration

with * reason for rejecting *

Table B.3: ARS03 (executed by AR02)

when registration starting for [registration] is promised (TK01/pm)

while registration paying for [registration] in the year (TK02/ac)
of the starting day of [registration] is accepted

if rightness: * no specific condition *
sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then execute registration starting for [registration]; [TK01/ex]

declare registration starting for [registration] [TK01/da]
to the addressee of the promise

Table B.4: ARS04 (executed by AR01)

when registration ending for [registration] is requested (TK03/rq)

with the ending day of [registration] is some day

if rightness: the performer of the request is the member of [registration]

or the performer of the request is a registration manager;

the addressee of the request is a registration ender

sincerity: * no specific condition *
truth: the ending day of [registration] is greater than or equal to

the starting day of [registration]

if performing the action after then is considered justifiable
then promise registration ending for [registration] [TK03/pm]

to the performer of the request

then decline registration ending for [registration] [TK03/dc]
to the performer of the request

with * reason for declining *

Table B.5: ARS05 (executed by AR03)

231

APPENDIX B. ARSS FOR SOCIAL HOUSING

when registration ending for [registration] is promised (TK03/pm)

if rightness: the performer of the promise is a registration ender;

the addressee of the promise is the member of [registration]

or the addressee of the promise is a registration manager

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then execute registration ending for [registration]; [TK03/ex]

declare registration ending for [registration] [TK03/da]
to the addressee of the promise

Table B.6: ARS06 (executed by AR03)

when registration management for [year] is requested (TK04/rq)

if rightness: the performer of the request is the registration manager

of [year] minus 1;
the addressee of the request is the registration manager of [year]

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then promise registration management for [year] [TK04/pm]

to the performer of the request;

request registration management for [year] plus 1 [TK04/rq]

to the registration manager of [year] plus 1
else decline registration management for [year] [TK04/dc]

to the performer of the request

with * reason for declining * ;
request registration management for [year] plus 1 [TK04/rq]

to the registration manager of [year] plus 1

Table B.7: ARS07 (executed by AR04)

when registration management for [year] is promised (TK04/pm)

if rightness: the performer of the promise is the registration manager of [year];

the addressee of the promise is the registration manager of [year]

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then for each [registration] choose:

to-be-renewed:
request registration paying for [registration] in [year] (TK02/rq)

to the payer of [registration]
with the requested paid amount of [registration] in [year]

is equal to the standard renewal fee in [year]
to-be-ended:

request registration ending for [registration] (TK03/rq)

to some registration ender
with the ending day of [registration] is Now

other: * no action needed *

Table B.8: ARS08 (executed by AR04)

232

APPENDIX B. ARSS FOR SOCIAL HOUSING

when registration ending for [registration] is declared (TK03/da)

if rightness: the performer of the declaration is the payer of [registration];

the addressee of the declaration is the registration starter
of [registration] in [year]

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then accept registration paying for [registration] in [year] [TK02/ac]

to the performer of the declaration

else reject registration paying for [registration] in [year] [TK02/rj]

to the performer of the declaration

with * reason for rejecting *

Table B.9: ARS09 (executed by AR04)

when registration management for [year] is promised (TK04/pm)

while for each [registration] in registrations in [year] choose:
to-be-renewed:

registration paying for [registration] in [year] is accepted (TK02/ac)

to-be-ended:
registration ending for [registration] is accepted (TK03/ac)

other: * no specific condition *

if rightness: the performer of the promise is the registration manager of [year];

the addressee of the promise is the registration manager of [year]

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then execute registration management for [year]; (TK04/ex)

declare registration management for [year] (TK04/da)
to the addressee of the promise

Table B.10: ARS10 (executed by AR04)

when registration management for [year] is declared (TK04/da)

if rightness: the performer of the declaration is the registration manager of [year];

the addressee of the declaration is the registration manager of [year]
sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then accept registration management for [year] [TK04/ac]

to the performer of the declaration

else reject registration management for [year] [TK04/rj]

to the performer of the declaration

with * reason for rejecting *

Table B.11: ARS11 (executed by AR04)

233

234

C
JSON file for Social Housing

This addendum shows the (manually) created JSON file representing the DEMO
model of the area of registration within the Social Housing Domain.

{
"transactionkinds": [

{"id": "TK01", "name": "registration starting", "type": "elementary", "in": true, "casekinds": ["

Registration"], "product": "registration is started", "productname": "StartedRegistration"},
{"id": "TK02", "name": "registration paying", "type": "elementary", "in": false, "casekinds": ["

Registration", "YearE"], "product": "the fee for registration in year is paid", "productname": "

AnnualRegistrationPayment"},
{"id": "TK03", "name": "registration ending", "type": "elementary", "in": true, "casekinds": ["

Registration"], "product": "registration is ended", "productname": "EndedRegistration"},
{"id": "TK04", "name": "registration management", "type": "elementary", "in": true, "casekinds": ["

YearE"], "product": "registration management for year is done", "productname": "TK04product"}
],

"actorroles": [

{"id": "CTAR01", "name": "(aspirant) member", "type": "composite"},
{"id": "AR01", "name": "registration starter", "type": "elementary", "focus": "in"},
{"id": "AR02", "name": "registration payer", "type": "elementary", "focus": "out"},
{"id": "AR03", "name": "registration ender", "type": "elementary", "focus": "in"},
{"id": "AR04", "name": "registration manager", "type": "elementary", "focus": "in"}

],

"factkinds": [

{"name": "Registration", "type": "entitytype", "focus": "in"},
{"name": "Person", "type": "entitytype", "focus": "out"},
{"name": "YearV", "type": "valuetype", "primitive": "integer"},
{"name": "YearE", "type": "entitytype", "focus": "out"},
{"name": "Nationality", "type": "valuetype", "values": "NL, EN", "primitive": "string"},
{"name": "Day", "type": "valuetype", "primitive": "datetime"},
{"name": "Money", "type": "valuetype", "primitive": "number"},
{"name": "member", "type": "propertytype", "domain": "Registration", "range": "Person"},
{"name": "payer", "type": "propertytype", "domain": "Registration", "range": "Person"},
{"name": "starting day", "type": "attributetype", "domain": "StartedRegistration", "range": "Day"},
{"name": "ending day", "type": "attributetype", "domain": "EndedRegistration", "range": "Day"},
{"name": "year", "type": "attributetype", "domain": "YearE", "range": "YearV"},
{"name": "standard registration fee", "type": "attributetype", "domain": "YearE", "range": "Money"},
{"name": "standard renewal fee", "type": "attributetype", "domain": "YearE", "range": "Money"},
{"name": "day of birth", "type": "attributetype", "domain": "Person", "range": "Day"},
{"name": "paid amount", "type": "attributetype", "domain": "AnnualRegistrationPayment", "range": "

Money"},
{"name": "nationality", "type": "attributetype", "domain": "Person", "range": "Nationality"},
{"name": "PersonAge", "type": "derived", "parameters": ["Person", "Day"], "result": "primitive:integer

"},
{"name": "PersonHasActiveRegistration", "type": "derived", "parameters": ["Person", "Day"], "result":

"primitive:boolean"}
],

"actionrules":

[

{"id": "ARS01", "actorrole": "AR01", "when": "TK01rq", "while": [], "respond": ["TK01pm"], "

respondelse": ["TK01dc"]},

235

APPENDIX C. JSON FILE FOR SOCIAL HOUSING

{"id": "ARS02", "actorrole": "AR01", "when": "TK01pm", "while": [], "respond": ["TK02rq"]},
{"id": "ARS03", "actorrole": "AR01", "when": "TK02da", "while": [], "respond": ["TK02ac"], "

respondelse": ["TK02rj"]},
{"id": "ARS04", "actorrole": "AR01", "when": "TK01pm", "while": ["TK02ac"], "respond": ["TK01ex", "TK0

1da"]},
{"id": "ARS05", "actorrole": "AR03", "when": "TK03rq", "while": [], "respond": ["TK03pm"], "

respondelse": ["TK03dc"]},
{"id": "ARS06", "actorrole": "AR03", "when": "TK03pm", "while": [], "respond": ["TK03ex", "TK03da"]},
{"id": "ARS07", "actorrole": "AR04", "when": "TK04rq", "while": [], "respond": ["TK04pm", "TK04rq"], "

respondelse": ["TK04dc", "TK04rq"]},
{"id": "ARS08", "actorrole": "AR04", "when": "TK04pm", "while": [], "respond" : ["TK02rq, TK03rq"]},
{"id": "ARS09", "actorrole": "AR04", "when": "TK03da", "while": [], "respond": ["TK03ac"], "

respondelse": ["TK03rj"]},
{"id": "ARS10", "actorrole": "AR04", "when": "TK04pm", "whileall": ["TK02ac", "TK03ac"], "respond": ["

TK04ex", "TK04da"]},
{"id": "ARS11", "actorrole": "AR04", "when": "TK04da", "while": [], "respond": ["TK04ac"], "

respondelse": ["TK04rj"]}
],

"oivs": [

{"name": "functionary type"},
{"name": "organizational unit"},
{"name": "authorization"}

]

}

236

D
Generated YAML file for Social Housing

This addendum lists the generated YAML Ain’t Markup Language (YAML) file
for the area of registration within the Social Housing Domain.

openapi : 3 . 0 . 0
i n f o :
v e r s i on : 1 . 0 . 0
t i t l e : t e s t

paths :
/TK01rq :
post :
summary : c r e a t e s a new TK01=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=rq :
post :
summary : c r e a t e s a new TK01=rv=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :

237

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=rq=a l :
post :
summary : c r e a t e s a new TK01=rv=rq=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=rq=r f :
post :
summary : c r e a t e s a new TK01=rv=rq=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01pm:
post :
summary : c r e a t e s a new TK01=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=pm:
post :
summary : c r e a t e s a new TK01=rv=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :

238

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=pm=a l :
post :
summary : c r e a t e s a new TK01=rv=pm=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=pm=r f :
post :
summary : c r e a t e s a new TK01=rv=pm=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01da :
post :
summary : c r e a t e s a new TK01=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=da :
post :
summary : c r e a t e s a new TK01=rv=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :

239

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=da=a l :
post :
summary : c r e a t e s a new TK01=rv=da=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=da=r f :
post :
summary : c r e a t e s a new TK01=rv=da=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01ac :
post :
summary : c r e a t e s a new TK01=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=ac :
post :
summary : c r e a t e s a new TK01=rv=ac
requestBody :

240

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=ac=a l :
post :
summary : c r e a t e s a new TK01=rv=ac=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rv=ac=r f :
post :
summary : c r e a t e s a new TK01=rv=ac=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01dc :
post :
summary : c r e a t e s a new TK01=dc
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01rj :

241

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

post :
summary : c r e a t e s a new TK01=r j
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK01ex :
post :
summary : c r e a t e s a new TK01=ex
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rq :
post :
summary : c r e a t e s a new TK02=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=rq :
post :
summary : c r e a t e s a new TK02=rv=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

242

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=rq=a l :
post :
summary : c r e a t e s a new TK02=rv=rq=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=rq=r f :
post :
summary : c r e a t e s a new TK02=rv=rq=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02pm:
post :
summary : c r e a t e s a new TK02=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=pm:
post :
summary : c r e a t e s a new TK02=rv=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :

243

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=pm=a l :
post :
summary : c r e a t e s a new TK02=rv=pm=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=pm=r f :
post :
summary : c r e a t e s a new TK02=rv=pm=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02da :
post :
summary : c r e a t e s a new TK02=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=da :
post :
summary : c r e a t e s a new TK02=rv=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/AnnualRegistrationPayment '

r e sponse s :

244

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=da=a l :
post :
summary : c r e a t e s a new TK02=rv=da=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=da=r f :
post :
summary : c r e a t e s a new TK02=rv=da=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02ac :
post :
summary : c r e a t e s a new TK02=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=ac :
post :
summary : c r e a t e s a new TK02=rv=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :

245

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=ac=a l :
post :
summary : c r e a t e s a new TK02=rv=ac=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rv=ac=r f :
post :
summary : c r e a t e s a new TK02=rv=ac=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02dc :
post :
summary : c r e a t e s a new TK02=dc
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02rj :
post :
summary : c r e a t e s a new TK02=r j
requestBody :

246

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK02ex :
post :
summary : c r e a t e s a new TK02=ex
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rq :
post :
summary : c r e a t e s a new TK03=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=rq :
post :
summary : c r e a t e s a new TK03=rv=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=rq=a l :

247

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

post :
summary : c r e a t e s a new TK03=rv=rq=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=rq=r f :
post :
summary : c r e a t e s a new TK03=rv=rq=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03pm:
post :
summary : c r e a t e s a new TK03=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=pm:
post :
summary : c r e a t e s a new TK03=rv=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

248

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=pm=a l :
post :
summary : c r e a t e s a new TK03=rv=pm=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=pm=r f :
post :
summary : c r e a t e s a new TK03=rv=pm=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03da :
post :
summary : c r e a t e s a new TK03=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=da :
post :
summary : c r e a t e s a new TK03=rv=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :

249

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=da=a l :
post :
summary : c r e a t e s a new TK03=rv=da=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=da=r f :
post :
summary : c r e a t e s a new TK03=rv=da=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03ac :
post :
summary : c r e a t e s a new TK03=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=ac :
post :
summary : c r e a t e s a new TK03=rv=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :

250

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=ac=a l :
post :
summary : c r e a t e s a new TK03=rv=ac=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rv=ac=r f :
post :
summary : c r e a t e s a new TK03=rv=ac=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03dc :
post :
summary : c r e a t e s a new TK03=dc
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03rj :
post :
summary : c r e a t e s a new TK03=r j
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :

251

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK03ex :
post :
summary : c r e a t e s a new TK03=ex
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/EndedRegistrat ion '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rq :
post :
summary : c r e a t e s a new TK04=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=rq :
post :
summary : c r e a t e s a new TK04=rv=rq
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=rq=a l :
post :
summary : c r e a t e s a new TK04=rv=rq=a l
requestBody :

252

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=rq=r f :
post :
summary : c r e a t e s a new TK04=rv=rq=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04pm:
post :
summary : c r e a t e s a new TK04=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=pm:
post :
summary : c r e a t e s a new TK04=rv=pm
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=pm=a l :

253

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

post :
summary : c r e a t e s a new TK04=rv=pm=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=pm=r f :
post :
summary : c r e a t e s a new TK04=rv=pm=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04da :
post :
summary : c r e a t e s a new TK04=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=da :
post :
summary : c r e a t e s a new TK04=rv=da
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

254

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=da=a l :
post :
summary : c r e a t e s a new TK04=rv=da=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=da=r f :
post :
summary : c r e a t e s a new TK04=rv=da=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04ac :
post :
summary : c r e a t e s a new TK04=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=ac :
post :
summary : c r e a t e s a new TK04=rv=ac
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :

255

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=ac=a l :
post :
summary : c r e a t e s a new TK04=rv=ac=a l
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rv=ac=r f :
post :
summary : c r e a t e s a new TK04=rv=ac=r f
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04dc :
post :
summary : c r e a t e s a new TK04=dc
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04rj :
post :
summary : c r e a t e s a new TK04=r j
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/ schemas/TK04product '

r e sponse s :

256

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/TK04ex :
post :
summary : c r e a t e s a new TK04=ex
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/TK04product '

r e sponse s :
'201 ' :
d e s c r i p t i o n : C=f a c t c reated
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/CFact '

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/ Reg i s t r a t i on /{Reg i s t ra t ionID } :
get :
summary : r e tu rns Reg i s t r a t i on data f o r g iven ID i f i t e x i s t s
parameters :
= in : path

name : Reg i s t ra t ion ID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : Reg i s t r a t i on found
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/Reg i s t ra t i on '

'400 ' :
d e s c r i p t i o n : Reg i s t r a t i on not found

/ Reg i s t r a t i on :
post :
summary : c r e a t e s Reg i s t r a t i on
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
$ r e f : '#/components/schemas/Reg i s t ra t i on '

r e sponse s :
'200 ' :
d e s c r i p t i o n : Reg i s t r a t i on created
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/Person /{PersonID } :
get :
summary : r e tu rns Person data f o r g iven ID i f i t e x i s t s
parameters :
= in : path

name : PersonID
schema :

257

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

type : i n t e g e r
r equ i r ed : t rue

r e sponse s :
'200 ' :
d e s c r i p t i o n : Person found
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/Person '

'400 ' :
d e s c r i p t i o n : Person not found

/YearE/{YearEID } :
get :
summary : r e tu rn s YearE data f o r g iven ID i f i t e x i s t s
parameters :
= in : path

name : YearEID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : YearE found
content :
app l i c a t i on \ j son :
schema :
$ r e f : '#/components/schemas/YearE '

'400 ' :
d e s c r i p t i o n : YearE not found

/ ca lcu latePersonAge :
get :
summary : r e tu rn s PersonAge data f o r g iven input
parameters :
= in : query

name : Person
schema :
$ r e f : '#/components/schemas/Person '

r equ i r ed : t rue
= in : query

name : Day
schema :
$ r e f : '#/components/schemas/Day '

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : PersonAge ca l cu l a t ed
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/ ca l cu l a t ePer sonHasAct iveReg i s t ra t i on :
get :
summary : r e tu rn s PersonHasAct iveReg i s t rat ion data f o r g iven input
parameters :
= in : query

name : Person
schema :
$ r e f : '#/components/schemas/Person '

r equ i r ed : t rue
= in : query

name : Day
schema :
$ r e f : '#/components/schemas/Day '

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : PersonHasAct iveReg i s t rat ion ca l cu l a t ed

258

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

content :
app l i c a t i on \ j son :
schema :
type : boolean

'400 ' :
d e s c r i p t i o n : i n v a l i d input

/assessARS01/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS01 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS01 :
post :
summary : performs the response part o f ARS01 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS02/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS02 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS02 :
post :

259

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

summary : performs the response part o f ARS02 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS03/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS03 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS03 :
post :
summary : performs the response part o f ARS03 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS04/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS04 f o r g iven C=act

260

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS04 :
post :
summary : performs the response part o f ARS04 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS05/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS05 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS05 :
post :
summary : performs the response part o f ARS05 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :

261

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

$ r e f : '#/components/schemas/CFact '
de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS06/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS06 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS06 :
post :
summary : performs the response part o f ARS06 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS07/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS07 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t

262

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS07 :
post :
summary : performs the response part o f ARS07 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS08/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS08 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS08 :
post :
summary : performs the response part o f ARS08 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :

263

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS09/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS09 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS09 :
post :
summary : performs the response part o f ARS09 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS10/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS10 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS10 :
post :
summary : performs the response part o f ARS10 f o r g iven C=act and d e c i s i o n

264

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/assessARS11/{ cactID } :
get :
summary : eva lua t e s a s s e s s part o f ARS11 f o r g iven C=act
parameters :
= in : path

name : cactID
schema :
type : i n t e g e r

r equ i r ed : t rue
r e sponse s :
'200 ' :
d e s c r i p t i o n : assessment performed with r e s u l t
content :
app l i c a t i on \ j son :
schema :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : assessment f a i l e d

/responseARS11 :
post :
summary : performs the response part o f ARS11 f o r g iven C=act and d e c i s i o n
requestBody :
r equ i r ed : t rue
content :
app l i c a t i on / j son :
schema :
type : ob j e c t
p r op e r t i e s :
cact :
$ r e f : '#/components/schemas/CFact '

de c i s i o n :
type : i n t e g e r

r e sponse s :
'201 ' :
d e s c r i p t i o n : re sponse part performed
content :
app l i c a t i on \ j son :
schema :
type : array
items :
type : i n t e g e r

'400 ' :
d e s c r i p t i o n : per forming response part f a i l e d

/agendaForCTAR01 :
get :
summary : r e t r i e v e s agenda f o r CTAR01
re sponse s :

265

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

'200 ' :
d e s c r i p t i o n : agenda f o r CTAR01 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

/agendaForAR01 :
get :
summary : r e t r i e v e s agenda f o r AR01
re sponse s :
'200 ' :
d e s c r i p t i o n : agenda f o r AR01 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

/agendaForAR02 :
get :
summary : r e t r i e v e s agenda f o r AR02
re sponse s :
'200 ' :
d e s c r i p t i o n : agenda f o r AR02 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

/agendaForAR03 :
get :
summary : r e t r i e v e s agenda f o r AR03
re sponse s :
'200 ' :
d e s c r i p t i o n : agenda f o r AR03 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

/agendaForAR04 :
get :
summary : r e t r i e v e s agenda f o r AR04
re sponse s :
'200 ' :
d e s c r i p t i o n : agenda f o r AR04 r e t r i e v e d
content :
app l i c a t i on \ j son :
schema :
type : array
items :
$ r e f : '#/components/schemas/CFact '

components :
schemas :
CFact :
type : ob j e c t
p r op e r t i e s :
per former :
type : s t r i n g
example : 'Martin '

addres see :
type : s t r i n g
example : 'Erik '

i n t en t i on :
type : s t r i n g

266

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

example : rq
product :
$ r e f : '#/components/schemas/ProductKind '

ProductKind :
type : ob j e c t
oneOf :
= type : ob j e c t

p r op e r t i e s :
S t a r t edReg i s t r a t i on :
$ r e f : '#/components/schemas/ Sta r t edReg i s t ra t i on '

= type : ob j e c t
p r op e r t i e s :
AnnualRegistrationPayment :
$ r e f : '#/components/schemas/AnnualRegistrationPayment '

= type : ob j e c t
p r op e r t i e s :
EndedRegistrat ion :
$ r e f : '#/components/schemas/EndedRegistrat ion '

= type : ob j e c t
p r op e r t i e s :
TK04product :
$ r e f : '#/components/schemas/TK04product '

Sta r t edReg i s t r a t i on :
type : ob j e c t
p r op e r t i e s :
Reg i s t r a t i on :
$ r e f : '#/components/ schemas/Reg i s t ra t i on '

s t a r t i n g day :
$ r e f : '#/components/schemas/Day '

AnnualRegistrationPayment :
type : ob j e c t
p r op e r t i e s :
Reg i s t r a t i on :
$ r e f : '#/components/schemas/Reg i s t ra t i on '

YearE :
$ r e f : '#/components/schemas/YearE '

paid amount :
$ r e f : '#/components/schemas/Money '

EndedRegistrat ion :
type : ob j e c t
p r op e r t i e s :
Reg i s t r a t i on :
$ r e f : '#/components/schemas/Reg i s t ra t i on '

ending day :
$ r e f : '#/components/schemas/Day '

TK04product :
type : ob j e c t
p r op e r t i e s :
YearE :
$ r e f : '#/components/schemas/YearE '

Reg i s t r a t i on :
type : ob j e c t
p r op e r t i e s :
member :

$ r e f : '#/components/schemas/Person '

payer :
$ r e f : '#/components/schemas/Person '

Person :
type : ob j e c t
p r op e r t i e s :
day o f b i r th :

$ r e f : '#/components/schemas/Day '
na t i o n a l i t y :

$ r e f : '#/components/schemas/Nat iona l i ty '

YearV :
type : i n t e g e r

YearE :
type : ob j e c t
p r op e r t i e s :

267

APPENDIX D. GENERATED YAML FILE FOR SOCIAL HOUSING

year :
$ r e f : '#/components/schemas/YearV '

standard r e g i s t r a t i o n f e e :
$ r e f : '#/components/schemas/Money '

standard renewal f e e :
$ r e f : '#/components/schemas/Money '

Nat i ona l i t y :
type : s t r i n g

Day :
type : s t r i n g
format : date=time

Money :
type : number

268

E
Action Rule Specifications for Subsidy

Granting

This addendum lists all (relevant) Action Rule Specifications for AR01 (subsidy
granter).

when subsidy granting for [subsidy] is requested (TK01/rq)

with check relevant details

if rightness: the performer of the request is someone related to the subsidy

the addressee of the request is a subsidy granter

sincerity: * no specific condition *
truth: the calculated verdict of subsidy is equal to ‘positive’

if performing the action after then is considered justifiable
then request subsidy evaluation for [subsidy] [TK02/rq]

to a subsidy evaluator
else decline subsidy granting for [subsidy] [TK01/dc]

to the performer of the request

with * reason for declining *

Table E.1: ARS01 (executed by AR01)

269

APPENDIX E. ARSS FOR SUBSIDY GRANTING

when subsidy evaluation for [subsidy] is declared (TK02/da)

if rightness: the performer of the declaration is a subsidy evaluator

the addressee of the declaration is a subsidy granter
sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then accept subsidy evaluation for [subsidy] [TK02/ac]

to the performer of the declaration

else reject subsidy evaluation for [subsidy] [TK02/rj]

to the performer of the declaration

with * reason for rejecting *

Table E.2: ARS02 (executed by AR01)

when subsidy granting for [subsidy] is requested (TK01/rq)

while subsidy evaluation for [subsidy] is accepted (TK02/ac)

if rightness: * no specific condition *
sincerity: * no specific condition *
truth: the verdict of subsidy is equal to ‘positive’

if performing the action after then is considered justifiable
then promise subsidy granting for [subsidy] [TK01/pm]

to the performer of the request

else decline subsidy granting for [subsidy] [TK01/dc]
to the performer of the request

with * reason for declining *

Table E.3: ARS03 (executed by AR01)

when subsidy granting for [subsidy] is promised (TK01/pm)

if rightness: the performer of the promise is a subsidy granter

the addressee of the promise is someone related to the subsidy

sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then request amount determination for [subsidy] [TK03/rq]

to an amount determiner

Table E.4: ARS04 (executed by AR01)

270

APPENDIX E. ARSS FOR SUBSIDY GRANTING

when amount determination for [subsidy] is declared (TK03/da)

if rightness: the performer of the declaration is an amount determiner

the addressee of the declaration is a subsidy granter
sincerity: * no specific condition *
truth: the amount of subsidy is smaller or equal to the

calculated maximum amount of subsidy

if performing the action after then is considered justifiable
then accept amount determination for [subsidy] [TK03/ac]

to the performer of the declaration

else reject amount determination for [subsidy] [TK03/rj]

to the performer of the declaration

with * reason for rejecting *

Table E.5: ARS05 (executed by AR01)

when subsidy granting for [subsidy] is promised (TK01/pm)

while amount determination for [subsidy] is accepted (TK03/ac)

if rightness: * no specific condition *
sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then request subsidy payment for [subsidy] [TK04/rq]

to a subsidy payer

Table E.6: ARS06 (executed by AR01)

when subsidy payment for [subsidy] is declared (TK04/da)

if rightness: the performer of the declaration is a subsidy payer

the addressee of the declaration is a subsidy granter
sincerity: * no specific condition *
truth: the paid amount of subsidy is equal to the

(determined) amount of subsidy

if performing the action after then is considered justifiable
then accept subsidy payment for [subsidy] [TK04/ac]

to the performer of the declaration

else reject subsidy payment for [subsidy] [TK04/rj]

to the performer of the declaration

with * reason for rejecting *

Table E.7: ARS07 (executed by AR01)

271

APPENDIX E. ARSS FOR SUBSIDY GRANTING

when subsidy granting for [subsidy] is promised (TK01/pm)

while subsidy payment for [subsidy] is accepted (TK04/ac)

if rightness: the performer of the promise is a subsidy granter

the * no specific condition *
sincerity: * no specific condition *
truth: * no specific condition *

if performing the action after then is considered justifiable
then execute subsidy granting for [subsidy] [TK01/ex]

to the performer of the request

declare subsidy granting for [subsidy] [TK01/da]
to the performer of the request

Table E.8: ARS08 (executed by AR01)

272

Curriculum Vitae

Marien Rolin Krouwel

Marien1 (1986) has been solving (math) puzzles since his
early childhood. Around 2000, he built his own PHP-based
web CMS that was abstracted from a specific database and
applied principles from model interpretation to generate
SQL statements. In 2004 Marien started studying Math-
ematics and Computer Science at Utrecht University. After
he had built an application to convert visual programming
blocks into executable code for a high-tech customer, Marien received his bache-
lor’s degree in 2008. He decided to continue his Computer Science study at TU
Delft, specializing in Information Architecture, a joint track with Policy Man-
agement. In 2010 Marien received his master’s degree, after he had built a first
convertor from DEMO models to a Normalized System in a project together with
University of Antwerp and Capgemini. During his studies, Marien taught math-
ematics and programming to students.

After graduation, Marien started working at Capgemini as business analyst
and architect. In twelve years, he held several roles, including software developer,
solution architect, people manager, department lead, presales architect, low-code
expert, and lead trainer for the architecture portfolio. With more than 10 years of
experience in enterprise IT architecture and with cloud, integration, and low-code
platforms specifically, Marien supports organizations to apply new technologies
in modern (microservice) architectures in order to grasp new business opportuni-
ties, by initiating innovative projects and setting up low-code competence centers.
He is certified in Mendix, OutSystems, DEMO, TOGAF, ArchiMate, SAFe and
O-AA and is certified trainer for Capgemini Academy. Marien regularly provides
architecture courses and is an active author and researcher in the field of Enter-
prise Engineering and Model-driven Software Development. In 2023, he started
his own company, focused on Enterprise Model-driven Software Development and
low code to quickly support new business ideas with software.

In his spare time, Marien plays the cello, reads detective thrillers and books on
leadership. He likes to cycle, practice yoga, and travel to places to surf. Marien
is married to Janneke. Together they have 2 children.

1https://www.linkedin.com/in/marienkrouwel/

273

https://www.linkedin.com/in/marienkrouwel/

Colophon

Distributed by:
Marien Krouwel
Make IT Right B.V.
Valeriaanweg 265
3541 TT Utrecht
The Netherlands
marien.krouwel@make-it-right.nl

Cover: Maxim Pashchenko, https://mipashchenko.com/

ISBN: 978-94-6473-242-9

©2023, Marien R. Krouwel. All rights reserved.

274

mailto:marien.krouwel@make-it-right.nl
https://mipashchenko.com/

	Dutch cover
	English cover
	The Oak and the Reeds
	Preface
	Acknowledgements
	Abstract
	Summary
	Nederlandse samenvatting
	Contents
	Publications
	Conference and Journal Publications
	Other Publications
	Mapping From Papers to Thesis

	1 Introduction
	1.1 Background
	1.1.1 Enterprise Agility
	1.1.2 Needs in Software Development
	1.1.3 Partial Answers

	1.2 The Need for a (New) Method
	1.3 Research Challenge, Questions and Deliverables
	1.3.1 Research Challenge
	1.3.2 Research Questions
	1.3.3 Deliverables

	1.4 Outline

	I Theoretical Background
	2 Research Approach
	2.1 Possible Research Approaches
	2.1.1 Experiments
	2.1.2 Case Studies
	2.1.3 Design Science Research
	2.1.4 Action Research
	2.1.5 Action Design Research

	2.2 Approach as Applied in This Research
	2.2.1 Adopting a Nested ADR Approach
	2.2.2 Choosing the Exploratory Case Studies

	3 Software Development
	3.1 Models and Its Relationship With Software
	3.1.1 Model Kinds
	3.1.2 Relationships Between Models and Software

	3.2 General System Development Process
	3.2.1 System Design
	3.2.2 Technical Design
	3.2.3 System Implementation
	3.2.4 System Architecture

	3.3 Model-based Engineering
	3.3.1 MBE and Related Notions
	3.3.2 Model-driven Software Development

	3.4 Target Technologies
	3.4.1 Mockups
	3.4.2 Microservices
	3.4.3 Normalized Systems
	3.4.4 Low Code

	3.5 Conclusions

	4 Enterprise Modeling
	4.1 Choosing an Enterprise Modeling Technique
	4.1.1 Enterprise Modeling Perspectives
	4.1.2 Criteria
	4.1.3 Enterprise Modeling Techniques
	4.1.4 Choice for This Research

	4.2 Enterprise Ontology
	4.2.1 Complete Transaction Pattern
	4.2.2 Actor Cycle
	4.2.3 Organizational Layering
	4.2.4 Ontological Aspect Models
	4.2.5 DEMO Metamodel

	4.3 Enterprise Implementation
	4.3.1 Implementation Layers
	4.3.2 Examples
	4.3.3 Benefits
	4.3.4 Implications for Software Development

	4.4 Conclusions

	5 Towards a Method
	5.1 Method Engineering
	5.1.1 Method Fragments
	5.1.2 Situational Method Engineering
	5.1.3 Implications for This Research

	5.2 Existing Method Fragments
	5.2.1 DEMO to Services
	5.2.2 DEMO to Components
	5.2.3 DEMO to Normalized Systems
	5.2.4 Realization: From O to I to D
	5.2.5 DEMO CTP Engine

	5.3 Conclusions

	II Exploratory Case Studies
	6 ECS 1: Specifying Microservices
	6.1 Problem Formulation
	6.2 Building, Intervention and Evaluation
	6.2.1 Deducing the Algorithm From the Actor Cycle
	6.2.2 Evaluating the Algorithm

	6.3 Reflection and Learning
	6.3.1 Reflecting on the Criteria
	6.3.2 Reflecting on the Design Decisions

	6.4 Formalization of Learnings
	6.4.1 Identified Fragments
	6.4.2 Implications For Future Research

	7 ECS 2: Using Mockups to Validate Reqs
	7.1 Problem Formulation
	7.2 Building, Intervention and Evaluation
	7.2.1 Similar Enterprises
	7.2.2 Working Principles and Design Choices
	7.2.3 Procedure
	7.2.4 Evaluating the Procedure

	7.3 Reflection and Learning
	7.4 Formalization of Learnings
	7.4.1 Identified Fragments
	7.4.2 Implications For Future Research

	8 ECS 3: Deriving a Normalized System
	8.1 Problem Formulation
	8.2 Building, Intervention and Evaluation
	8.2.1 Theoretical Comparison
	8.2.2 Algorithm
	8.2.3 Evaluation: Dutch Governmental Subsidy Schemes

	8.3 Reflection and Learning
	8.4 Formalization of Learnings
	8.4.1 Identified Fragments
	8.4.2 Implications For Future Research

	9 ECS 4: Generating Mendix Applications
	9.1 Problem Formulation
	9.2 Building, Intervention and Evaluation
	9.3 Reflection and Learning
	9.4 Formalization of Learnings
	9.4.1 Identified Fragments

	III Results
	10 Conclusions
	10.1 Answers to Research Questions
	10.1.1 Answers to Theoretical Research Questions
	10.1.2 Answers to Practical Research Questions
	10.1.3 Reflection on Main Research Challenge

	10.2 Research Contributions
	10.2.1 Scientific Contributions
	10.2.2 Practical Contributions

	10.3 Impact
	10.3.1 Research Goal and Results
	10.3.2 Contributions
	10.3.3 Relevance

	11 Discussion
	11.1 Reflections
	11.1.1 The Choice for MDSD
	11.1.2 The Selection of Technologies
	11.1.3 The Choice for DEMO
	11.1.4 Research Approach and Case Selection

	11.2 Limitations
	11.3 Future Research
	11.3.1 DEMO Support
	11.3.2 Embedding in Existing Approaches
	11.3.3 Enterprise Agility

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms
	IV Appendices
	A Enterprise Modeling Examples
	B ARSs for Social Housing
	C JSON file for Social Housing
	D Generated YAML file for Social Housing
	E ARSs for Subsidy Granting

	Curriculum Vitae
	Colophon

