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SEMANTICS AND COMPUTABILITY OF THE EVOLUTION OF
HYBRID SYSTEMS∗

PIETER COLLINS†

Abstract. In this paper we consider the semantics for the evolution of hybrid systems, and
the computability of the evolution with respect to these semantics. We show that with respect to
lower semantics, the finite-time reachable sets are lower-semicomputable, and with respect to upper
semantics, the finite-time reachable sets are upper-semicomputable. We use the framework of type-
two Turing computability theory and computable analysis, which deal with obtaining approximation
results with guaranteed error bounds from approximate data. We show that, in general, we cannot
find a semantics for which the evolution is both lower- and upper-semicomputable, unless the system
is free from tangential and corner contact with the guard sets. We highlight the main points of the
theory with simple examples illustrating the subtleties involved.

Key words. computable analysis, hybrid automaton, reachable set

AMS subject classifications. 93B03, 93-04, 68Q17, 93B40

DOI. 10.1137/080716955

1. Introduction. Hybrid systems are dynamic systems in which the evolution
has both discrete-time (instantaneous) and continuous-time elements. Hybrid models
are becoming increasingly prevalent in industry, and there is a need for tools which can
perform reliable simulation and verification analysis of hybrid automata. The inter-
play between the continuous and discrete dynamics causes difficulties in the analysis
of hybrid automata which do not occur in discrete- or continuous-time systems, and
which lend hybrid automata a distinctive character.

Many questions about the behavior of a hybrid automaton can be framed in the
context of reachable sets and the reachability relation. In particular, for systems where
the input represents a control signal, the reachable set from a given point represents
the set which can be attained by some open-loop control. It has long been known
that the reachability relation for hybrid automata is undecidable [2], except for the
class of timed automata (and slight generalizations), for which reachable sets can
be computed exactly [44]. Rather than considering decidability of the reachability
relation, we consider the related question of computability of the reachable set. For
more complicated systems, symbolic computations are infeasible and approximate
numerical computations are required. This motivates the study of what is possible
to compute using approximations to the exact problem data if it is only necessary to
compute the result approximately.

In this paper, we base our computability results on the theory of computable
analysis of Weihrauch [49] and coworkers, which is equivalent to that of [28] based
on Scott domain theory and of [36] based on oracle machines. All computations are
performed using ordinary Turing machines, and hence can be implemented using ex-
isting digital computers. (This is unlike the real-RAM theory of [11], which cannot
be effectively implemented.) In order to allow computation on uncountable sets, we
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allow computations to run indefinitely, writing an output stream which represents
successively more accurate approximations to the result. We say a quantity is com-
putable if it can be computed to arbitrary (metric) accuracy and semicomputable if it
is possible to compute convergent approximations from above or below. The theory
is closely related to general topology (see [41] for a good introduction); in particular,
only continuous operators can be computable. We note that uncomputability in the
framework of computable analysis does not necessarily imply uncomputability in some
algebraic framework in which the objects of interest can be specified exactly.

We will see that computability of the reachable set is strongly related to topo-
logical properties of the invariants and guard sets, and to continuity properties of the
continuous and discrete dynamics. In order to separate technical issues relating to the
solution of differential equations and differential inclusions from the intrinsic difficul-
ties of hybrid automata, we first compute the continuous dynamics as a (multi-)flow
from the defining differential relation. Upper-semicontinuity of solutions of hybrid
automata has been considered in [4, 30]. Lower-semicontinuity of the solutions of
Lipschitz differential inclusions and hybrid automata has been studied in [15, 16].
Viability in hybrid systems, which is related to lower-semicontinuity of the evolution,
is studies in [37]. Existence and continuity of solutions has been studied in [40].

Unlike purely discrete- or continuous-time systems, for which there is a well-
defined notion of solution, for hybrid automata we need to use different solution
concepts for computing lower- and upper-approximations to the reachable set. The
upper solution concept may necessarily impose nondeterministic (multivalued) so-
lutions to an otherwise deterministic system, whereas lower solution concepts may
impose blocking. Reliable simulation imposes the need to consider multiple possible
evolutions, each of a qualitatively different nature.

Computability of the evolution is closely related with decidability of certain prop-
erties of the dynamics. It follows immediately from basic results of computable analy-
sis that the evolution is upper-semicomputable if, and only if, every finite-time safety
problem for an open set of safe states is verifiable. Conversely, the evolution being
lower-semicomputable is equivalent to verifiability of every control-to-target problem
for an open set of target states.

The results in this paper extend those of [23] and provide full proofs. Similar
results on the computability of reachable sets for discrete-time systems were given
in [19]. The computability of solutions of hybrid automata was also considered in [26]
in the context of the Scott-domain approach. The results are weaker than those pre-
sented here, since the assumptions prohibit the discontinuities described in sections 2
and 4. An alternative approach [10] to semantics of hybrid systems uses nonstandard
analysis to give a semantics for use in simulation. The emphasis is on providing a
time-discretization for solving differential equations and scheduling crossings. The
resulting semantics is not computable in the sense used here, since issues regarding
the representation of points in the state space are not considered.

There are other tools available for computing reachable sets of hybrid automata,
such as d/dt [1], Hy(per)tech [32], VeriShift [12], Checkmate [5], and Phaver [27].
However, these tools are mainly restricted to systems with affine dynamics and guard
sets (apart from CheckMate, which allows nonlinear dynamics) and can only compute
over-approximations to the reachable set. Computation of the solution of discrete-
time hybrid systems using the software package GAIO [25] has been considered in [31],
but the analysis does not straightforwardly extend to the continuous-time case. To
remedy this situation, a software tool, Ariadne [6], is being developed to implement
the computable operations of this paper.
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The paper is structured as follows. In section 2 we give an introduction to hy-
brid automata theory, introducing the class of hybrid automata and standard solution
concepts. In section 3 we give an introduction to computability theory as applied to
topology and analysis. In section 4 we present the ways in which the evolution of a
hybrid automaton may fail to be continuous. In section 5 we present the main theo-
rems on semicomputability of the evolution. In section 6 we present some modeling
frameworks for hybrid automata and discuss reliable simulation and implementation
issues. Finally, in section 7 we state some conclusions and give directions for further
research.

2. Hybrid systems. Hybrid systems are dynamic systems comprising both
continuous- and discrete-time behavior. See [48] for an general introduction to hybrid
systems and [42] for a discussion of hybrid models.

2.1. Continuous- and hybrid-time systems. One of the most important re-
sults in the theory of continuous-time systems is the existence and uniqueness result
for Lipschitz differential equations ẋ = f(x). Further, if Φ : X × R → X is the
solution flow of the differential equation, then Φ is continuous, and can be effectively
approximated, in the sense that given the function f , the initial condition x0, and the
integration time t, we can compute Φ(x0, t) arbitrarily accurately on a digital com-
puter. In many situations, the data f , x0 and t may not be known exactly. However,
even in this case, given a sufficiently accurate description of f , x0, and t, we can still
compute the evolution Φ.

Compare the situation for differential equations with that for deterministic hybrid
automata. If we denote the solution of a hybrid automaton with initial condition x0
at time t by ψ(x0, t), we see that there are a number of situations in which the ψ may
vary discontinuously in x0 and t (Figure 1).

Time discontinuity at discrete transitions. Whenever the state of the system
is reset during a discrete transition, there is a discontinuity in the time evolution. If
this occurs for the initial condition x0 at time t, then there is a discontinuity in
dependence of the current state on x0 and t.

The standard way of handling time discontinuities at discrete transitions, intro-
duced in [39], is to consider hybrid trajectories as continuous functions of a discon-
nected domain, such as a subset of R+ ×Z+. In this way, time discontinuities can be
regularized, though there are still discontinuities in reachable sets.

Spatial discontinuity at tangencies and corner collisions. If the continuous
evolution touches a guard set tangentially near x, then some points near x undergo a
discrete transition, whereas other points undergo further continuous evolution. The
same phenomenon may occur if the continuous evolution touches a corner of a guard
set.

Spatial discontinuity at switching boundaries. If x lies on the boundary of
two guard sets, then some points near x undergo one transition, and others undergo
the other transition.

Spacial discontinuity at instantaneous transitions. Suppose that after a
discrete transition, the state x lies on the boundary of the switching set. Then some
points near x immediately undergo a second transition, whereas other points may flow
away from the guard set and do not undergo the transition.

All these situations may occur generically, which means that they persist under
small perturbations of the parameters defining the system. From the viewpoint of
dynamics, it is these discontinuities which distinguish hybrid automata from purely
discrete-time or continuous-time systems. In many cases, the spatial discontinuities
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(a) (b)

(c) (d)

Fig. 1. Spatial discontinuities. (a) At a tangency; (b) at a corner collision; (c) at a switching
boundary; and (d) at an instantaneous transition.

occur only for a “small” (measure zero) set of initial conditions, and therefore might
not be considered of physical interest. However, spatial discontinuities may still occur
on a (locally) dense set of initial conditions. If the exact solution passes very near a
discontinuity point at time t, then the presence of even a small numerical error may
cause the computed solution after time t to differ drastically from the exact solution.
As we shall see, it is important to handle these situations correctly in the development
of a sound numerical theory of hybrid automata.

2.2. Autonomous hybrid automata. The most commonly used framework
for describing hybrid automaton models is that of hybrid automata. Informally, the
hybrid automaton model is based on a discrete automaton with discrete states and
discrete events, with continuous dynamics associated to each discrete state, with guard
conditions determining the discrete events which occur, and with reset maps deter-
mining the way the continuous part of the state changes during a discrete event.

We now give a fairly standard formal definition of a hybrid automaton. Write
f : X ���Y to indicate that f is a partial function from X to Y , and write F : X ⇒ Y
for a multivalued function.

Definition 2.1 (hybrid automaton). A hybrid automaton is a tuple

(1) H = (Q,E, γ, {Xq, Iq, Fq, Pq | q ∈ Q}, {Rq,e, Gq,e | (q, e) ∈ dom γ}, EU),

where
1. Q is a finite set of discrete states,
2. E is a finite set of discrete events,
3. γ : Q× E ���Q is a partial discrete transition function with domain domγ;

for each q ∈ Q,
4. Xq is a differentiable manifold giving the continuous state space for discrete

state q,
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5. Iq ⊂ Xq is the invariant for the continuous state,
6. Fq : Xq ⇒ TXq is a differential inclusion giving the continuous dynamics,
7. Pq ⊂ Xq is the progress predicate for the continuous dynamics;

for each (q, e) ∈ dom γ,
7. Rq,e : Xq ⇒ Xγ(q,e) is a multivalued reset map,
8. Gq,e ⊂ Xq is a guard set;

and
9. EU ⊂ E is a set of urgent events.

We use differential inclusions and allow multivalued resets to permit the modeling
of control or disturbance inputs.

When considering the dynamical behavior of a hybrid automaton, the distinc-
tion between the discrete and continuous part of the state is often irrelevant and
complicates the notation. We define the state space X of a hybrid automaton H by

(2) X =
⋃

q∈Q {q} ×Xq.

Using this equation, we write

(3)

I =
⋃

q∈Q

(
{q} × Iq

)
;

F (q, x) = Fq(x);

P =
⋃

q∈Q

(
{q} × Pq

)
;

Re(q, x) = (γ(q, e), Rq,e(x));

Ge =
⋃

q∈Q

(
{q} ×Gq,e

)
.

Note that during continuous evolution, the discrete state q is constant; implicitly
q̇ = 0. The resulting system is described by the tuple

(4) (E,X, I, F, P, {Re, Ge | e ∈ E}, EU ),

or simply,

(5) (E,X, I, F, P,Re, Ge, EU ).

We henceforth use the form (4) when developing the theory and use (1) in examples.
We will sometimes restrict our attention to subclasses of hybrid automata. If

there is a single event e which is not urgent, then the hybrid automaton is described
by a tuple

(6) H = (X, I, F, P,R,G).

If the invariant I is empty, we write

(7) H = (X,F, P,R,G).

If the invariant I and progress predicate P equal the whole space X , and there is
a single event e which is urgent, then the hybrid automaton is described by a tuple

(8) H = (X,F,R,G)

and is an impulse differential inclusion as defined in [4]. If, additionally, the dynamic
F is a Lipschitz differential equation ẋ = f(x), the reset R is a single-valued map
x′ = r(x), and the guard G is {x ∈ X | g(x) � 0}, then the resulting system

(9) H = (X, f, r, g)

is a deterministic hybrid automaton.
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2.3. Evolution of a hybrid automaton. To represent a trajectory of a hybrid
automaton, we need to take into account the possibility that more than one discrete
event occurs at a given time. To capture the intermediate states, we use the following
definition of hybrid trajectory [18, 29], which is based on the work of [39].

Definition 2.2 (hybrid trajectory). Let (ti)i<∞ be a (not necessarily strictly)
increasing sequence in R+∪{∞} with t0 = 0. Then the ti define a hybrid time domain
T ⊂ R+ × Z+ by

T = {(t, n) ∈ R+ × Z+ | tn � t � tn+1} =

∞⋃
n=0

[tn, tn+1]× {n}.

A hybrid trajectory is a continuous function ξ : T → X for some hybrid time domain
T = dom(ξ). The trajectory ξ is Zeno if limn→∞ tn < ∞, and it has finitely many
events if tn = ∞ for some n. We let Ξ(X) be the set of all hybrid trajectories in the
state space X.

Note that the continuity condition on ξ is equivalent to requiring that for all n,
the function t �→ ξ(t, n) is continuous on [tn, tn+1].

The natural topology on the space of hybrid trajectories is a compact-open topol-
ogy with an additional reparametrization to account for the fact that “nearby” tra-
jectories may have slightly different event times. In other words, trajectories are
considered “close” if, after a small reparametrization of the time domain, they are
uniformly close on a large compact set. This idea can be seen in the Skorohod topol-
ogy of [16] and is made explicit in the compact-open hybrid Skorohod topology of [18]
and the three-parameter uniformity of [24]. It can be easily seen, though we shall not
prove, that this is the finest topology under which the solutions of a switching system
vary continuously with respect to the initial state, the system parameters, and the
switching times.

In this article, we instead use the graph topology introduced in [29], which is
equivalent, by results of [24], to the compact-open hybrid Skorohod topology but
technically easier to handle.

Definition 2.3 (hybrid trajectory space). The graph of a hybrid trajectory
ξ : T → X is the set

(10) graph(ξ) = {(t, n, x) | (t, n) ∈ dom(ξ) and x = ξ(t, n)}.

The topology on the space of hybrid trajectories is the Fell topology (see [9]) on closed
sets. This is the topology defined by the basic open sets {A | A ∩ U 	= ∅} and {A |
A ∩ C = ∅}, where U is open and C compact in R+ × Z+ ×X.

Definition 2.4 (executions of a hybrid automaton). An execution of the hybrid
automaton H = (E,X, I, F, P,Re, Ge, EU ) with the standard semantics is a hybrid
trajectory ξ : T → X such that there exist events e1, e2, . . . with

(SS 1) ξ(t, n) ∈ I whenever t ∈ [tn, tn+1],
(SS 2) ξ̇(t, n) ∈ F (ξ(t, x)) for almost every t ∈ [tn, tn+1],
(SS 3) ξ(tn, n) ∈ Ren(ξ(tn, n−1)) for all n,
(SS 4) ξ(t, n) ∈ P whenever t ∈ [tn, tn+1[,
(SS 5) ξ(tn, n− 1) ∈ Gen , and
(SS 6) ξ(t, n) 	∈ Gu whenever t ∈ [tn, tn+1[ and u ∈ EU .
In other words, the evolution of the system proceeds via the continuous dynamics

ẋ ∈ F (x) until an event e occurs, at which point the state jumps to x′ ∈ Re(x).
The state must satisfy the invariant x ∈ I at all times, including immediately before
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and immediately after a transition. The event e may only occur if x ∈ Ge, and an
event must occur at x if either x 	∈ P or x ∈ Gu for some urgent event u. Note that
we do not insist that the urgent event u itself occur; this is unreasonable given the
possibility that two urgent events u1 and u2 become active at exactly the same time.

The definitions of invariant and progress predicate used here are equivalent to
those used in the Compositional Interchange Format (CIF) for hybrid automata [47].
The difference is that an invariant must hold at all states along a trajectory, whereas a
progress predicate need not hold if a discrete transition occurs immediately. In terms
of the standard semantics, there is no difference between an urgent action with guard
Gu, and a nonurgent action with guard Ge and a progress condition X \Ge. However,
the difference is important in the definition of crossing semantics given in section 5.3.

If the event e is urgent, then the guard set Ge should always be taken as a
closed set. If Ge were open, then there would be no possibility for e to be activated
during a continuous evolution, for at the activation time tn+1, we would already have
ξ(t, n) ∈ Ge for some t < tn+1, contradicting condition (SS6).

Notice that we have two types of restrictions on the continuous dynamics, namely,
those given by the invariants and those given by the guards of urgent events. We also
have two types of discrete dynamics, namely, those given by the urgent events and
those given by the nonurgent events. When computing upper-approximations to the
evolution, we will be able to effectively consider an urgent action e with guard set
Ge as a nonurgent action, but with an extra invariant cl(X \Ge). Computing lower-
approximations to the evolution is more challenging, since we have to treat urgent
transitions in a special way.

We have the following simplifications in the description of a hybrid automaton.
The proofs are straightforward from the definitions.

Lemma 2.5. Let H = (E,X, I, F, P,Re, Ge, EU ) be a hybrid automaton.
1. The executions of H are the same as those of the hybrid automaton (X, I, F, P\⋃

u∈U Gu, Re, Ge, ∅).
2. If EU = ∅, then the executions of H are the same as those of the single-event

hybrid automaton (X, I, F, P,R,G) with G =
⋃

e∈E Ge and R(x) =
⋃
{Re(x) |

x ∈ Ge}.
3. If H is a single-event hybrid automaton, then executions of H with initial

state x0 ∈ I are the same as those of the single-event hybrid automaton
(X, ∅, F, P ∩ I, R|I , G), where R|I is defined by R|I(x) = R(x) ∩ I.

We are often not concerned with computing the full set of trajectories, except in
the points which can be reached by evolution up to a certain time.

Definition 2.6. Given a hybrid automaton H, the evolution operator ΨH :
X × R+ ⇒ X is defined by
(11)
ΨH(x, t) = {y ∈ X | ∃ execution ξ of H, n ∈ Z+ s.t. ξ(0, 0) = x and ξ(t, n) = y}.

In other words, the evolution operator ΨH of a hybrid automatonH is the function
taking a point x and time t to the set of all points which can be reached from x by
an execution of duration t. The reachability operator is defined to be the map

(12) (X0, T ) �→ ΨH(X0, T ) =
⋃

{ΨH(x0, t) | x0 ∈ X0 ∧ t ∈ T },

where X0 ⊂ X and T ⊂ R+.
In this paper, we will consider the following main problem.
Problem 2.7. Compute the evolution ΨH(x, t) of a hybrid automaton H.
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Remark 2.8. It would also be possible to consider the solution operator ΘH

defined by

(13) ΘH(x) = {ξ | ξ is an execution of H and ξ(0, 0) = x},

though we do not do so to avoid additional technical complications of dealing with
the hybrid trajectory space.

3. Computable analysis.

3.1. Overview of computability theory. We have seen that hybrid automata
may exhibit discontinuities in the evolution, and intuitively we expect that the pres-
ence of discontinuities will cause difficulties in computing the system evolution, even
to the extent that it is impossible to compute the evolution to arbitrary accuracy.
However, to actually prove that a certain computational task is impossible, we need
a formal theory of computation, which requires specifying a computational model,
and also the input and output data that the computational model works with. We
compare this motivation with Turing’s motivation for introducing his computing ma-
chines, which was to prove the impossibility of an algorithmic solution of Hilbert’s
Entscheidungsproblem. Since we are interested in algorithmic solutions to problems
concerning hybrid automata, if the general form of our problem turns out to be unsolv-
able, we want to know which problem instances are solvable, or find related problems
which are completely solvable.

In this paper, we use the theory of computable analysis as developed by Weihrauch
[49] and coworkers. In this theory, computation is performed by ordinary Turing ma-
chines acting on streams of data. The data stream encodes a sequence of approxima-
tions to some quantity, such as a subset of the state space, or a function describing
a system. A function or operator is computable if, given a data stream encoding a
sequence of approximations converging to the input, it is possible to calculate a data
stream encoding a sequence of approximations converging to the output. In practice,
finite computations can be obtained by terminating whenever a given accuracy crite-
rion is met. However, it is theoretically very convenient to consider the computations
to be infinite, since we can talk about computing the mathematical objects them-
selves. Two encodings or representations of the same class of mathematical object
are equivalent if each can be transformed into the other by a Turing machine; this
makes it possible to relate results on representations which are easy to work with
theoretically to representations which are efficient to work with in implementations.

The representations used in computable analysis are related to a topology on the
set of objects under consideration, and so give a clean link between approximability,
continuity, and formal computability. The fundamental theorem is that only contin-
uous functions with respect to a given topology can be computable with respect to
representations based on that topology. Hence if we can prove that a function is dis-
continuous, then it is uncomputable. For “naturally” defined functions the converse is
typically also true, that is, continuous functions are computable. It is worth empha-
sizing that a function which is uncomputable with respect to one representation may
be computable with respect to a representation based on a different topology. This
corresponds to giving more information in the input or requiring less information in
the output. We shall see later that the use of the correct topology/representation is
vital when considering computability for hybrid automata.

Since objects are described by sequences of symbols, we can represent sets of
continuum cardinality. This includes points in Euclidean space; open, closed, and
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compact subsets; continuous functions; and semicontinuous multivalued functions,
but not arbitrary subsets of space or arbitrary discontinuous functions. It is also
possible to represent Borel probability measures and measurable functions, though in
this article, we consider only computations involving points and sets. In particular,
we will require the data describing our systems to be in terms of open/closed sets and
(semi-)continuous functions.

The representations used must allow information about the objects they describe
to be obtained from a finite amount of data. Consider a computation whose result
is some real number x. In traditional numerical analysis, it is usual to compute a
floating-point or rational approximation xn to x based on some accuracy parameter(s).
Often some order of convergence is given, such as |x−xn| = O(1/nk) for some integer
k. Unfortunately, in this model, knowing some particular approximation xn gives in
theory no information on the value of x. To gain information about x, we also need to
know an error bound εn for the approximation, such that |x−xn| < εn. If εn → 0, then
we can compute an approximation to x with arbitrary known accuracy. We say that
xn converges effectively to x. In some problems, especially optimization problems, we
merely seek a sequence of approximations xn converging to x from above (or below).
In this case, we cannot give metric bounds on x but can still deduce properties of x,
such as x > xn.

In theoretical work, especially when making a link between computation and
topology, it is more convenient to work with properties of objects. For example, if
]a, b[ is an open interval, then x ∈]a, b[ is a property of x. Further, such properties
should be robust, in the sense that if some property holds for x, then it holds for all
y near x. Topologically, this means that a property corresponds to membership of an
open set.

To describe arbitrary objects in some space, we first choose a countable collection
σ = {I1, I2, . . .} of basic open sets (properties) such that x is determined uniquely
by its properties. For example, if we take σ to be the collection of all open intervals
]a, b[ with rational endpoints, then determining whether x ∈]a, b[ for all ]a, b[∈ σ is
sufficient to determine the real number x. Usually, we need only know a subset of
properties to determine x and all of its properties uniquely. For example, if we can
enumerate a sequence of open rational intervals ]an, bn[ such that x ∈]an, bn[ for all
n and limn→∞ bn − an = 0, then we can determine all other intervals ]a, b[ such
that x ∈]a, b[. Notice that the information given by approximations is equivalent to
the information given by properties. For if we know x ∈]a, b[, then (a + b)/2 is an
approximation to x with error ε = (b − a)/2.

In practice, we cannot determine all properties of x or compute an infinite se-
quence of approximations to x. Instead, we are usually content to compute sufficient
information about x to be able to approximate x to some desired accuracy (which can
be checked a posteriori). However, it is useful to know that x can be approximated to
any desired accuracy. Further, by describing x by a list of all its properties, we can
often conceptually work with the object x itself rather than with approximations to
x, a considerable simplification.

While the model of computation, being based on Turing machines, subsumes or-
dinary, finite computation, the main purpose of computable analysis theory is to deal
with approximations. In particular, the data describing the systems is interpreted as
being approximate. This can drastically change the computability properties. Con-
sider the following simple example.

Example 3.1. Consider the differential equation ẋ = x2 + ε with initial condition
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x(0) = −1. We wish to determine whether the solution remains bounded. If ε is taken
to be a rational number which is described exactly, the problem is always solvable;
the solution is bounded if and only if ε � 0. However, if the only information we have
about ε is approximate (possibly ε is an experimental parameter), then if ε = 0, then
no matter how accurate the approximation to ε, we cannot eliminate the possibility
that ε > 0 and that the solution is unbounded.

To summarize, boundedness of the solution in the case ε = 0 is undecidable when
using approximate data but decidable using exact data. Further, if ε is very close to
0, we need a very accurate approximation to ε in order to determine boundedness.
Even in the exact model, if ε = 0, then a very small amount of noise in the system
will destroy boundedness.

The interested reader is strongly advised to read [49] for more details.

3.2. Machine computability. We now outline how to describe objects such as
points, sets, and functions in the framework of computable analysis. The material in
this section can be found in [49, 19].

We let Σ be a finite alphabet (such as the binary digits {0, 1}; the exact choice is
unimportant). In “ordinary” computability theory, we consider computation by Tur-
ing machines working on finite words, i.e., elements of Σ∗. We consider computation
by type-two Turing machines which work with inputs which are infinite streams of
data, represented by elements of Σω. We have natural tupling operations on Σω, given
by p = 〈p1, . . . , pk〉 with pjk+i = (pi)j for i = 0, . . . , k − 1 and j = 0, 1, . . .. We can
also construct an infinite tuple p = 〈p1, p2, . . .〉 by pg(i,j) = (pi)j , where g : N×N → N

is the bijective Cantor pairing g(i, j) = (i + j)(i+ j + 1)/2 + j.
We say that a stream function is a partial function Σω × · · · × Σω → Σω. A

type-two Turing machine M computes a stream function ηM . The domain of ηM
is the set of inputs for which the machine runs forever and writes infinitely many
symbols to the output tape. It can be shown that the domain of ηM is always a
Gδ-set (a countable intersection of open sets), and that the function ηM is continuous
with respect to the product topology on Σω. We therefore have a set of machine-
computable stream functions, which is a subset of the set of all continuous stream
functions with Gδ domain. Since there are uncountably many continuous stream
functions and countably many Turing machines, not all continuous stream functions
are machine-computable.

In this article we do not need a precise characterization of machine-computable
functions, but will need the following properties:

1. If η : (Σω)m ���Σω is computable, and each ζi : (Σ
ω)n ���Σω is computable

for i = 1, . . . ,m, then so is the function η ◦ (ζ1, . . . , ζm).
2. There is a surjective function ϕ : Σω → Cp(Σ

ω; Σω) and a machine-computable
function ε : Σω × Σω ���Σω such that ε(p, q) = ϕ(p)(q).

3. For every computable function f : Σω×Σω → Σω, there is a total computable
function f̂ : Σω → Σω such that f(p, q) = ε(f̂(p), q), where ε is as in (2).

Part 1 asserts that computable functions are closed under composition. Part 2 asserts
the existence of a universal Turing machine, which, given an infinite program p,
computes the function determined by p. The function ε is the evaluation function,
and ε is a Gödel-type numbering of partial continuous stream functions, denoted
Cp(Σ

ω; Σω), which for technical reasons must be restricted to having Gδ-domain.
Part 3 is a type-two version of Kleene’s smn theorem on partial binding. It implies
that to compute the result of an operator returning a function, is suffices to show that
we can evaluate the function at every point on its domain.
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3.3. Notation and representations. We relate stream functions to functions
on arbitrary spaces by means of notation and representations.

A notation of a (necessarily countable) set W is a partial surjective function
ν : Σ∗ ���W . Note that if W has a notation, then W must be denumerable. We say
v ∈ Σ∗ is a ν-name of w ∈W if ν(v) = w.

We say a notation is prefix-free if no element of dom(ν) is a prefix of another. If
ν is a prefix-free notation, then concatenation of words (wn)n∈N in dom ν to obtain a
sequence p = w0w1w2 · · · is an injective function (dom ν)ω → Σω, and so the elements
w0, w1, . . . can be recovered from p.

A representation of a set X is a partial surjective function δ : Σω ���X . If X has
a representation, then it must have at most continuum cardinality. We say p ∈ Σω is
a δ-name of x ∈ X if δ(p) = x.

Let X0, X1, . . . , Xk be sets, and let δi be a representation of Xi for i = 0, . . . , k.
We say that a function f : X1 × · · · × Xk → X0 is (δ1, . . . , δk; δ0)-computable if
there is a machine-computable partial function ηM : Σω × · · · × Σω ���Σω such that
δ0(ηM (p1, . . . , pk)) = f(δ1(p1), . . . , δk(pk)) whenever the right-hand side is defined.
The function η is said to be a (δ1, . . . , δk; δ0)-realizer of f . If the representations
δ0, δ1, . . . , δk are clear from the context, we will simply say that f is computable. If f
is computable, x0 = f(x1, . . . , xk), and δi names of the xi, i = 1, . . . , k are available,
we will sometimes say that x0 is δ0-computable.

We say a representation δ1 of a set X reduces to δ2 if there is a machine-
computable function η : Σω ���σω such that δ2 ◦ η|dom(δ1) = δ1. This means that the
information about an element x of X provided by a δ1-name is enough to compute a
δ2-name. We say δ1 and δ2 are equivalent, denoted δ1 ≡ δ2, if δ1 reduces to δ2 and δ2
reduces to δ1. Equivalent representations induce the same computability theory on a
set X .

Given representations δ1 and δ2 for sets X1 andX2, we can define a representation
δ1 × δ2 for X1 ×X2 by interleaving names of x1 ∈ X1 and x2 ∈ X2. Similarly, given
a representation of δ of X , we can define a representation δω of Xω via a numbering
of N× N.

Given representations δX and δY for X and Y , we can define a representation
δX→Y of the space of functions X → Y by saying δX→Y (p) = f if δY (ϕ(p)(q)) =
f(δX(q)) for all q ∈ dom(ε(p, ·)), where ϕ and ε are as defined in section 3.2. In
other words, δX→Y (p) = f if, and only if, ϕ(p) is a (δX ; δY )-realizer of f . This
implies that the evaluation operator (f, x) �→ f(x) is (δX→Y , δX ; δY )-computable. If

f : A×X → Y is (δA, δX ; δY )-computable, then the function f̂ : A→ (X → Y ) given

by f̂(a)(x) is (δA; δX→Y )-computable by the smn theorem.
Using the above remarks, we obtain the following useful general principles for

proving computability.
Theorem 3.2.

1. In order to compute a δ(X→Y )-name of f , we need only show how to compute
a δY -name of f(x) from a δX-name of x.

2. In order to compute a δ(X→Y )-name of a parametrized function fa from a
δA-name of a, we need only show how to compute a δY -name of fa(x) from
a δX-name of x and the δA-name of a.

3.4. Computable topological spaces. Let X be a topological space whose
topology τ is generated by a countable collection of open sets σ = {I0, I1, . . .}, and
let ν : Σ∗ ��� σ be a notation of σ with prefix-free domain. Then δ is the standard
representation of (X, τ, σ, ν) if a δ-name p of x ∈ X has the form p = w0w1w2 . . . with
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each wi ∈ dom(ν) such that {w0, w1, w2, . . .} = {w ∈ dom(ν) | x ∈ ν(w)}. Informally,
we say that a δ-name of x encodes a list of all I ∈ σ such that x ∈ I. We say a
representation is admissible if it is equivalent to the standard representation.

In general, a given topological space has many equivalence classes of admissible
representation, corresponding to different choice of sub-basic sets σ and notation ν.
However, by a result of Bauer [7, Theorem 5.5.18], there is a unique equivalence
class of representations of R compatible with the topology, making 1 a computable
number, arithmetic operations +,−,×,÷ computable, and strict comparison x > 0
verifiable. We can therefore speak of a canonical computable real number type. From
this canonical representation of R, we can build canonical representations of Rn by
tupling, and build canonical representations of functions and sets.

A concrete way of building a standard representation of X with sub-base σ
using binary digits is to take dom(ν) = 1∗0, with ν(1n0) = In. The sequence
1n001n101n20 · · · encodes the sequence of generators In0 , In1 , In2 , . . ., which (if ν is
injective) is a name for x if {Inj | j ∈ N} = {I ∈ σ | x ∈ I}.

We will restrict our attention to hybrid automata such that the state space X
is a locally compact countably based Hausdorff space. We take σ = β, where β is
a countable base for X consisting of sets with compact closure. For convenience, we
will sometimes write β for {I | I ∈ β}, where I denotes the closure of I. We denote
the standard representation of (X, τ, β, ν) by ρX , which we abbreviate to ρ when the
space X is clear from the context.

As in Brattka and Presser [13] we use the following effectivity properties of the
notation ν of β. These are necessary in order to perform certain computations on sets
and functions.

1. (Disjointness) The set of pairs (I, J) ∈ β2 such that I ∩ J = ∅ is recursively
enumerable.

2. (Overlap) The set of pairs (I, J) ∈ β2 such that I ∩ J 	= ∅ is recursively
enumerable.

3. (Subset) The set of pairs (I, J) ∈ β2 such that I ⊂ J is recursively enumer-
able.

4. (Cover) The set of tuples (I, J1, . . . , Jk) ∈ β∗ such that I ⊂
⋃k

i=1 Ji is recur-
sively enumerable.

For Euclidean space X = Rn, we take β to be the collection of all open bounded
boxes with rational endpoints; ]a1, b1[×]a2, b2[× · · ·×]an, bn[ with ai, bi ∈ Q for i =
1, 2, . . . , n. Using any “reasonable” notation ν of β gives the canonical representation
of Rn.

3.5. Computability for continuous functions. We now wish to give concrete
representations for spaces of continuous functions C(X ;Y ) and continuous partial
functions Cp(X ;Y ). If the domain of the function is a locally compact Hausdorff
space, then the standard way of doing this is via the compact-open representation.
For if f : X → Y is continuous, and J ⊂ Y is open, then f−1(Y ) is open. Hence if I is
compact, then the property I ⊂ f−1(J) is robust. Alternatively, if I is compact, then
f(I) is compact, so the property f(I) ⊂ J is robust and equivalent to I ⊂ f−1(J).

Definition 3.3.

1. A γ(X;Y )-name of continuous f : X → Y encodes a list of all (I, J) ∈ βX×βY
such that I ⊂ f−1(J).

If the domain and codomain of the functions are clear from the context, we simply
write γ instead of γ(X;Y ).
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We can extend the compact-open names to partial functions with open or closed
domains.

2. A γ<-name of a continuous partial function f : X ���Y with open domain U
encodes a list of all pairs (I, J) ∈ βX × βY such that I ⊂ U and f(I) ⊂ J .

3. A γ>-name of a continuous partial function f : X ���Y with closed domain
A encodes a list of all pairs (I, J) ∈ βX × βY such that f(I ∩ A) ⊂ J .

For the case of functions defined on intervals in R+, we will also need to consider
half-open intervals. Hence a γ≶-name of a continuous function f : [0, t[→ Y encodes

a list of all pairs (I, J) ∈ βR × βY such that I ⊂ (−∞, t) and f(I ∩ [0, t[) ⊂ J .

Note that in 2 a name of f implicitly contains a description of the domain U , since
U =

⋃
{I ∈ β | I ⊂ U and ∃ J ∈ βY such that f(I) ⊂ J}. In 3, a name of f implicitly

contains a description of the domain A since X \A =
⋃
{I ∈ β | f(I ∩A) ⊂ ∅}.

The following result is part of [49, Theorem 6.1.7].

Theorem 3.4. If X is a locally compact Hausdorff space, then the compact-open
representation γ(X;Y ) is equivalent to the representation δX→Y . In particular,

1. function evaluation C(X ;Y )×X → Y is (γ(X;Y ), ρX ; ρY )-computable;
2. if f : X → Y , and it is possible to compute a ρY -name of f(x) from a

ρX-name of x, then it is possible to compute a γ(X;Y ) name of f̂ .

In other words, the information provided by a γ(X;Y )-name of f is precisely the
information needed to evaluate f .

3.6. Computability theory for sets. When considering reachability analysis,
we will need to have a way of describing the reachable sets themselves and to also
guard sets and set-valued operators used in the system description. The following
representations of open, closed, and compact sets, which are given in [49, section 5.1]
are most useful.

Definition 3.5. Let X be a locally compact Hausdorff space with a countable
base β of open sets with compact closures.

1. A θ<-name of open U ⊂ X encodes a list of all I ∈ β such that I ⊂ U .
2. A ψ>-name of closed A ⊂ X encodes a list of all I ∈ β such that I ∩ A = ∅.
3. A ψ<-name of closed A ⊂ X encodes a list of all I ∈ β such that I ∩ A 	= ∅.
4. A κ>-name of compact C ⊂ X encodes a list of all tuples (I1, . . . , Ik) ∈ β∗

such that C ⊂
⋃k

i=1 Ij .

Informally we say that a set-valued operator is lower-semicomputable if it is possible
to compute a lower (θ< or ψ<) name of the result, and upper-semicomputable if it
is possible to compute an upper (ψ> or κ>) name.

It is easy to see that each of the properties encoded is robust with respect to a
small change in the set being described. For example, if I is a subset of some open
set U , then I is also a subset of V for any sufficiently small perturbation V of U .
The information given by θ< is sufficient to compute a sequence of sets (described as
finite unions of boxes) converging to U from inside, and the information given by κ>
is sufficient to compute a convergent sequence of outer-approximations to C. Notice
that the information provided by a θ<-name of U is exactly the same as that provided
by a ψ>-name of X \ U .

In general, we use θ< and ψ>-names for sets used as invariant and guard sets in
the system description. In practice, a set D used as a guard for an urgent transition
will usually be regular, which means that cl(D) = cl(int(D)) and int(D) = int(cl(D)).
In this case, we can give both a θ<-name of int(D) and a ψ>-name of cl(D). We use
ψ< and κ> as names for initial and reachable sets.
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The information about an open set U provided by θ< allows U to be constructed as
a countable union of basic sets. In particular, if β consists of successively finer pavings
of Euclidean space (see [33, Chapter 3]), then it is possible to extract from a θ<-name
of U a list of nonoverlapping boxes Ji such that U =

⋃∞
i=1 J i. The information given

by κ> is sufficient to give a sequence of successively finer outer-approximations to a
compact set C within a bounded domain. The information provided by ψ< is not
sufficient to give an under-approximation to a closed set A, but this should not be
seen as surprising, since a compact set may have empty interior. Instead, for a fixed
ε > 0, we can provide an under-approximation Aε to the ε-neighborhood Nε(A), and
for a sequence εi → 0, we can give under-approximations Ai to Nεi(A) such that Ai

converges to A as i → ∞. The information given by both ψ< and κ> is sufficient to
compute a compact set C to arbitrary accuracy in the Hausdorff metric.

Using these representations, the first natural question to ask is which geometric
operations (union, intersection) are computable. We will need the following results.

Theorem 3.6 (computable set-based operators).

1. Finite union is computable, i.e., (θ<, θ<; θ<)-computable, (ψ<, ψ<;ψ<)-
computable, (ψ>, ψ>;ψ>)-computable, and (κ>, κ>;κ>)-computable.

2. Finite intersection of open sets is lower-semicomputable, i.e., (θ<, θ<; θ<)-
computable, and finite intersection of closed sets is upper-semicomputable,
i.e., (ψ>, ψ>;ψ>)-computable.

3. The closure of the intersection of an open and a closed set is lower-
semicomputable, i.e., (U,A) �→ cl(U ∩ A) is (θ<, ψ<;ψ<)-computable.

4. The intersection of a closed and a compact set is upper-semicomputable, i.e.,
(A,C) �→ A ∩ C is (ψ>, κ>;κ>)-computable.

5. Countable union of open sets, and countable closed union of closed sets are
lower-semicomputable, i.e., (U1, U2, . . .) �→

⋃∞
n=1 Ui is (θω<; θ<)-computable

and (A1, A2, . . .) �→ cl(
⋃∞

n=1An) is (ψω
<;ψ<)-computable.

6. The countable intersection of closed sets is upper-semicomputable i.e.,
(A1, A2, . . .) �→ cl(

⋃∞
n=1An) is (ψω

>;ψ>)-computable.
7. The singleton set operator x �→ {x} is (ρ;ψ<)-computable and (ρ;κ>)-

computable.
8. The closed set-image operator (f,A) �→ cl(f(A)) is (γ, ψ<;ψ<)-computable

and the set-image operator (f, C) �→ f(C) is (γ, κ>;κ>)-computable.
9. The set-preimage operator (f, U) �→ f−1(U) is (γ, θ<; θ<)-computable.

The following operations are uncomputable in general:

1. The intersection of two closed sets (A,B) �→ A∩B is not lower-semicomputable,
i.e., not (ψ<, ψ<;ψ<)-computable.

2. The interior of a closed set is not (ψ<; θ<)-computable.
3. The interior of the image of an open set under a continuous function (f, U) �→

int(f(U)) is not lower-semicomputable, i.e., not (γ, θ<; θ<)-computable.
4. The closure of the image of a closed set under a continuous function (f,A) �→

cl(f(A)) is not upper-semicomputable, i.e., not (γ, ψ>;ψ>)-computable.

The most important restriction is that on lower-semicomputability of the intersection
of two closed sets. This states that it is not possible to enumerate all basic open sets
I ∈ β such that (A ∩ B) ∩ I 	= ∅ from similar enumerations for A and B. However,
if U is open, then we can lower-compute cl(A ∩ U), and this is usually sufficient in
practice.

3.7. Computability theory for multivalued maps. In many applications, it
is convenient to represent systems by nondeterministic models defined by multivalued
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functions. Further, as we shall see, nondeterminism is unavoidable if we are to give a
framework for hybrid automata under which we can compute the evolution.

We say F is a multivalued function from X to Y , denoted F : X ⇒ Y , if F
associates to each x ∈ X a subset F (x) of Y . If A ⊂ X , we define F (A) =

⋃
x∈A F (x).

If F : X ⇒ Y and G : Y ⇒ Z, we define G ◦ F : X ⇒ Z by G ◦ F (x) := G(F (x)) =⋃
y∈F (x)G(y). If F1, F2 : X ⇒ Y , we define F1 ∪F2 by (F1 ∪ F2)(x) = F1(x) ∪F2(x).

If A ⊂ X , we define F |A by FA(x) = F ({x} ∩ A), and if B ⊂ Y , define F |B by
F |B(x) = F (x) ∩ B. The (weak) preimage F−1 : Y ⇒ X of a multivalued function
F : X ⇒ Y is defined by F−1(B) = {x ∈ X | F (x) ∩ B 	= ∅}. The strong preimage
F⇐ : Y ⇒ X is defined by F⇐(B) = {x ∈ X | F (x) ⊂ B}. Note that F⇐(B) =
X \ (F−1(Y \ B)). We say F is lower-semicontinuous if F−1(V ) is open whenever
V is open, and upper-semicontinuous if F−1(B) is closed whenever B is closed. F is
continuous if it is both lower- and upper-semicontinuous.

Note that if F : X ⇒ Y is closed-valued lower-semicontinuous and C is compact,
then F (C) need not be closed, but for any set A, we have F (cl(A)) ⊂ cl(F (A)).

Remark 3.7. The definitions of upper- and lower-semicontinuity used here are
standard [35]. The notion of outer-semicontinuity was used in [30], based on defini-
tions in [46]. A closed-valued function is outer-semicontinuous if lim supn→∞ F (xn) =
F (x∞) for all convergent sequences xn → x∞. Equivalently, F is outer-semicontinuous
if F−1(C) is closed whenever C is compact, or if graph(F ) is a closed set. A function is
upper-semicontinuous if, and only if, it is outer-semicontinuous and locally bounded.

For dynamical systems, upper-semicontinuity is more appropriate than outer-
semicontinuity. For if F is compact-valued upper-semicontinuous and C is
compact, then F (C) is also compact, whereas if F is compact-valued but merely
outer-semicontinuous, then A = F (C) is closed, and then F (A) need not be closed
and cannot be computed.

If f : X × U → X is continuous, we can define F (x) = f(x, U), so mul-
tivalued functions can be used to model systems with control or disturbance in-
puts. The function x �→ cl(F (x)) is closed-valued lower-semicontinuous, and F is
compact-valued upper-semicontinuous if U is compact. In control theory, lower-
semicontinuous functions are appropriate for modeling control systems with input,
and upper-semicontinuous functions are appropriate to model systems with distur-
bances. Indeed, lower-semicontinuity is required to prove that a trajectory with some
property exists, whereas upper-semicontinuity is required to prove that all trajectories
have some property.

We have the following representations of multivalued maps.

Definition 3.8.

1. A μ< name of a lower-semicontinuous map F : X ⇒ Y with closed values
encodes a list of all pairs (I, J) ∈ βX × βY such that I ⊂ F−1(J).

2. A μ> name of an upper-semicontinuous map F : X ⇒ Y with compact values
encodes a list of all tuples (I, J1, . . . , Jk) ∈ βX×β∗

Y such that F (I) ⊂
⋃k

i=1 Ji.

Theorem 3.9 (computability for multivalued maps).

1. The representation μ< of closed-valued lower-semicontinuous F : X ⇒ Y
is equivalent to the δ(X→A(Y )) representation of F , i.e., the representation
of f as a map X → A(Y ) induced by the ρ-representation on X and the
ψ<-representation on A(Y ).

2. The representation μ> of compact-valued upper-semicontinuous F : X ⇒ Y
is equivalent to the δ(X→K(Y )) representation of F .

3. The (weak) preimage of an open set under a closed-valued lower-semicontinuous
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function is lower-semicomputable, i.e., (F, V ) �→ F−1(V ) is (μ<, θ<; θ<)-
computable.

4. The (weak) preimage of a closed set under a compact-valued upper-semicon-
tinuous function is upper-semicomputable, i.e., (F,B) �→ F−1(B) is (μ>, ψ>;
ψ>)-computable. Equivalently, the strong preimage of an open set is lower-
semicomputable i.e., (F, V ) �→ F⇐(V ) is (μ>, θ<; θ<)-computable.

5. The closure of the image of a closed set under a closed-valued lower-semicon-
tinuous function is lower-semicomputable, i.e., (F,A) �→ cl(F (A)) is (μ<, ψ<

;ψ<)-computable.
6. The image of a compact set under a compact-valued upper-semicontinuous

function is upper-semicomputable, i.e., (F,C) �→ cl(F (A)) is (μ>, κ>;κ>)-
computable.

By property 1, if we have a closed-valued lower-semicontinuous multivalued func-
tion F and can compute x �→ F (x) in the sense that given a ρ-name of x we have an
algorithm to generate a ψ<-name of F (x), then we can generate a μ<-name of F . An
analogous result holds for compact-valued upper-semicontinuous F .

We obtain similar results for partial functions.

Lemma 3.10. Let f : X ���Y be a partial function with domain D, let C be com-
pact, and let A be closed. Then the map (f, C) �→ f(C∩D) is (γ>, κ>;κ>)-computable
if D is closed, and the map (f,A) �→ cl(f(A ∩D)) is (γ<, θ<;ψ<)-computable if D is
open.

Proof. f(C ∩ D) ⊂ J if, and only if, there is a finite cover of C by open sets Ik
such that f(Ik ∩D) ⊂ J for all k.

f(A ∩D) intersects J if, and only if, there exists x ∈ A ∩D such that f(x) ∈ J .
Then there exists I such that I ⊂ D, x ∈ I, and f(I ∩ A) ⊂ J .

3.8. Computability theory for multivalued flows. A multivalued flow or
multiflow can be thought of as a function assigning to each initial point x ∈ X a set
of continuous trajectories η : R+ ��� X . In other words, a multiflow is a function
Φ : X ⇒ C(R+;X) such that

1. η(0) = x for all η ∈ Φ(x).

We also require multivalued versions of the standard semiflow properties as follows:

2. If η ∈ Φ(x) and s ∈ R+, then the function ζ defined by ζ(t) = η(t + s) is in
Φ(η(s)).

3. If η1 ∈ Φ(x) and η2 ∈ Φ(η1(s)), then the function ζ defined by ζ(t) = ξ1(t)
for t � s and ζ(t) = ξ2(t− s) for t � s is in Φ(x).

Property 2 means that the system is time-invariant, and property 3 is the property of
state. Such properties are well known in the dynamical systems and control theory
literature; see, e.g., Kalman, Falb, and Arbib [34] or Polderman and Willems [43,
Definitions 1.4.2 and 4.3.3]. Multivalued flows are the natural objects to represent
solutions of nondeterministic continuous-time systems, such as differential inclusions.

Since we are interested only in continuous behavior between two events, we
need to consider trajectories which are defined on subintervals of R. For lower-
semicontinuous multiflows, we consider continuous trajectories η : [0, T [→ X , and
for upper-semicontinuous multiflows we consider η : [0, T ] → X or η : [0,∞[→ X .
As usual, semicontinuity is defined in terms of preimages of open/closed subsets of
C(R+;X).

We have the following representations of multivalued flows.
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Definition 3.11.

1. A φ<-name of a lower-semicontinuous multivalued flow Φ encodes a list of
all (I, J1,K1, . . . , Jm,Km) ∈ βX × (βR × βX)∗ such that for all x ∈ I, there
is a solution ξ such that ξ(0) = x, and, for all i = 1, . . . ,m, J i ⊂ dom(ξ) and
ξ(J i) ⊂ Ki.

2. A φ>-name of an upper-semicontinuous multivalued flow Φ encodes a list of
all (I, J,K1, . . . ,Km) ∈ βX × βR × β∗

X such that for all x ∈ I, and all curves
ξ such that ξ(0) = x, ξ(J ∩ dom(ξ)) ⊂

⋃m
i=1Ki.

Given a multiflow Φ, we can define a function Φ̃ : X × R+ ⇒ X by Φ̃(x, t) = {ξ(t) |
ξ ∈ Φ(x) and t ∈ dom(ξ)}. In other words, Φ̃(x, t) is the set of points reachable from
x at time t. The standard representations of Φ̃ are the representation μ< and μ> of
Φ̃ as a multivalued map. Explicitly,

3. a μ<-name of a lower-semicontinuous closed-valued multiflow Φ encodes a list
of all (I, J,K) ∈ βX × βR × βX such that for all x ∈ I and t ∈ J , there is a
solution ξ such that ξ(0) = x and ξ(t) ∈ K.

The information given by a φ>-name of an upper-semicontinuous compact-valued mul-
tiflow Φ is exactly the same the information provided by a μ>-name of Φ̃ considered
as a multivalued function Φ : X ×R+ ⇒ X , but the information given by a φ<-name
of a lower-semicontinuous multiflow Φ is strictly stronger than the information pro-
vided by a μ<-name of Φ̃. It turns out that the information given by a μ<-name of
Φ̃ is insufficient for studying reachable sets of hybrid automata, since it encodes only
information about the reachable sets and not about the trajectory in between.

In order to work with multiflows, the following result will be useful.

Proposition 3.12.

1. Let Φ be an upper-semicontinuous multiflow, and let F : C(R+;X) ⇒ Y be
compact-valued upper-semicontinuous. Then a μ>-name of F ◦ Φ : X ⇒ Y
can be computed from a φ>-name of Φ and a μ>-name of F .

2. Let Φ be a lower-semicontinuous multiflow, and let F : C(R+;X) ⇒ Y be
closed-valued lower-semicontinuous. Then a μ<-name of F ◦Φ : X ⇒ Y can
be computed from a φ<-name of Φ and a μ<-name of F .

Proof.

1. Suppose F (η) ∈
⋃m

i=1 Li whenever η(J i) ⊂ Ki,j for all i = 1, . . . ,m and
j = 1, . . . , ni. Suppose further that η(J i) ⊂

⋃ni

j=1Ki,j whenever η ∈ Φ(I).

Then F (Φ(I)) ⊂
⋃m

i=1 Li. Further, if F (Φ(I)) ⊂
⋃m

i=1 Li, then such Ji and
Ki,j exist. The result follows from the definitions of the representations μ>

and φ>.
2. Suppose F (η) ∩ L 	= ∅ whenever η(J i) ⊂ Ki for all i = 1, . . . ,m. Suppose

further that η(J i) ⊂ Ki whenever η ∈ Φ(I). Then F (Φ(x)) ∩ L 	= ∅ for all
x ∈ I; equivalently, I ⊂ (F ◦Φ)−1(L). Further, F (Φ(x))∩L 	= ∅ for all x ∈ I,
when such Ji and Ki exist. The result follows from the definitions of the
representations μ< and φ<.

The most common way of modeling continuous dynamics is as a differential
system—either a differential equation ẋ = f(x) or a differential inclusion ẋ ∈ F (x).
A solution to the differential inclusion ẋ ∈ F (x) is an absolutely continuous function
ξ : T → X , where T is an interval in R containing 0, such that ξ̇(t) ∈ F (ξ(t)) for
almost all t ∈ T . The flow Φ of ẋ ∈ F (x) takes x to the set of solution trajectories
starting at x.

There is considerable work in the literature on semicontinuity properties of
the solutions of a differential inclusion; see [3] for an overview. The solution of
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a general locally Lipschitz continuous differential inclusion was shown to be com-
putable (using different terminology) in [45]. We can refine this result and consider
lower-semicomputability and upper-semicomputability separately; see [22]. We say
F : X ⇒ TX has linear growth if there exists a constant c such that ||y|| � c(1 + |x|)
for all x ∈ X and y ∈ F (x), where |x| denotes the d(x, x0) from an arbitrary base-point
x0.

Theorem 3.13 (computability of differential inclusions). Let Φ : X ⇒ C(R+;X)
denote the flow of the differential inclusion ẋ ∈ F (x).

1. If F is upper-semicontinuous with compact convex values and linear growth,
then the solution operator F �→ Φ is upper-semicomputable; more precisely,
F �→ Φ is (μ>;φ>)-computable..

2. If F is locally Lipschitz lower-semicontinuous with closed convex values, then
the solution operator F �→ Φ is lower-semicomputable; more precisely, F �→ Φ
is (μ<;φ<)-computable.

For the theoretical results of this paper, we work with multiflows to avoid the
technical complications of dealing with differential inclusions.

If D ⊂ X , we define the restriction of the trajectory ξ to D by setting

(14) ξ|D = ξ|{t∈R+|ξ([0,t])⊂D}.

Note that dom(ξ|D) is open in R+ if D is open in X , and closed if D is closed. For a
multiflow Φ, we define Φ|D(x) = {ξ|D | ξ ∈ Φ(x)}.

4. Uncomputability of the evolution of hybrid automata. We now con-
sider computability of the evolution operator ΦH of a hybrid automaton H , as given
by Problem 2.7. The main aim of this section is to show that, in general, it is im-
possible to compute the solutions of a general hybrid system to arbitrary accuracy.
Since we are trying to prove uncomputability results, we obtain the strongest results
by restricting our attention to the simplest class of systems, namely deterministic
hybrid automata with dynamic ẋ = fq(x), resets re(q, x), and guards ge(q, x) � 0.
We take state space X =

⋃
q∈Q

(
{q} × Rnq

)
and set Xi = Rnqi . We denote states by

(q, x1, . . . , xnq ); in particular, the state is written as (q) if nq = 0 and as (q, x1, x2) or
(q, x, y) if nq = 2.

4.1. Temporal discontinuities. We first give a trivial example to show that
the evolution may vary discontinuously in time.

Example 4.1. Let H be the deterministic hybrid automaton with two modes, q1
and q2, with X1 = R and X2 = R0. The dynamics in X1 is constant, ẋ = c. There
is a single event with reset map r(q1, x) = (q2) with guard g(q1, x) = x − a, yielding
guard set G = {x | x− a � 0}. See Figure 2.

Let the initial condition be x(0) = x0. Then if x0 > a, the event is immediately
activated and the final state is (q2) for all t > 0. If x0 < a and c > 0, then the event
e occurs when t = t1 = (a− x0)/c. Hence for t < t1, the state is (q1, x0 + ct), and for
t > t1, the state is (q2). Hence the evolution is discontinuous in t.

Of course, time discontinuities are the essence of hybrid automaton dynamics.
In section 5 we see that temporal discontinuities can be handled as long as they
do not occur at the final evolution time and are not also associated with spatial
discontinuities.

4.2. Spatial discontinuities. We now give several examples to show that the
evolved sets vary discontinuously with system parameters and initial condition, even
when no transition occurs at the final evolution time.
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X1 X2

Fig. 2. A hybrid automaton with two discrete modes and piecewise-constant dynamics exhibiting
a temporal discontinuity.

Example 4.2 (discontinuity induced by tangency with guard set). Let H be a hy-
brid automaton with two modes q1 and q2, with X1 = R2 and X2 = R0. The dynamics
in X1 is affine, (ẋ, ẏ) = (2y,−1). There is a single reset map with r(q1, x, y) = (q2)
with guard g(q1, x) = x−a which is active when x � a. The solution to the continuous
dynamics in mode q1 is (x(t), y(t)) = (x0 + 2y0t− t2, y0 − t). The maximum value of
x is x0 + y20 and is attained when t = y0. See Figure 3.

Suppose the initial condition is (q1, x0, y0) with x0 = −1 and y0 = +1. Then
x(t) reaches a maximum value of 0 at t = 1. Consider the set ΨH((q1, x0, y0), t) with
t = 2. Then if a > 0, the constraint g(x) � 0 is not satisfied, and the reached state is
(q1,−1,−1). However, if a < 0, the guard condition is satisfied for some t < 1, and
the state at time t = 2 is (q2). Hence the evolution is discontinuous in the parameter
a.

Now suppose that a is fixed at 0, and the initial condition is (q1, x0, 1) with x0 < 0.
Then for x0 < −1, the maximum value of x is 1 + x0, which is less than a, so the
event is never active and the reached state is (q1, x0,−1). However, if x0 > −1, then
the guard condition is satisfied at some t < 1 and the reached state is (q2). Hence the
evolution is discontinuous in the parameter a.

X1

X2

Fig. 3. A hybrid automaton with two discrete modes and piecewise-affine dynamics exhibiting
a grazing discontinuity.

Example 4.3 (discontinuity induced by corner collisions). Let H be a hybrid
automaton with three modes q1, q2, and q3, with X1 = R2 and X2 = X3 = R0. The
dynamics in X1 has constant derivative, (ẋ, ẏ) = (1, 1). There are two events, e2 and
e3, with reset maps, r2 and r3 with r2(q1, x, y) = (q2) and r3(q1, x, y) = (q3), and
guards g2(q1, x, y) = x− a and g3(q1, x, y) = y − b. See Figure 4.

Suppose the initial condition is (q1, x0, y0) with x0 = y0 = 0. Then if 0 < a <
b < 1, the event e2 is activated before e3, and the state at time t = 1 is (q2). If
0 < b < a < 1, then event e3 is activated before e2, and the state at time t = 1 is (q3).
Hence the evolution is discontinuous in the parameters a and b. In a similar way, we
can show that the evolution is discontinuous in the initial state.

Example 4.4 (discontinuity induced by immediately activated events). Let H be
a hybrid automaton with three modes q1, q2, and q3 with X1 = R2, X2 = R1, and
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X1 X3

X2

Fig. 4. A hybrid automaton with three discrete modes, affine guard sets, and piecewise-constant
dynamics exhibiting a corner discontinuity.

X3 = R0, and two events e1 and e2. The dynamics in X1 has constant derivative,
(ẋ, ẏ) = (1, 0), and the dynamics in X2 is ẋ = 1. The event e1 may occur in mode
q1, with guard x � a and reset r1(q1, x, y) = (q2, x + y). The event e2 may occur in
mode q2, with guard x � 0 and reset r2(q2, z) = (q3). See Figure 5.

Suppose the initial condition is (q1, x0, y0) with x0 = −1 and y0 = 0. Then the
event e1 is activated at (q1, a, 0) and the state is reset to (q2, a). If a < 0, event e2
is immediately activated, and a transition occurs to state (q3). If a > 0, then the
continuous state z in mode q2 satisfies z � a > 0, and so event e2 is never activated,
and the state at time t for t > 1 is (q2, t− 1). Hence the evolution is discontinuous in
the parameters.

If the initial state is (q1,−1, y0), then the event e1 is activated at (q1, a, y0) and
the state is reset to (q2, z) with z = a+ y0. If y0 > −a, the state remains in mode q2,
whereas if y0 < −a, then z < 0 and event e2 is immediately activated and the state
is reset to (q3). Hence the evolution is discontinuous in the initial state.

X1

X2

X3

Fig. 5. A hybrid automaton with three discrete modes, affine guard sets, and piecewise-constant
dynamics exhibiting a discontinuity caused by an immediately activated event.

4.3. Coherent semantics of evolution. We have seen that the evolution op-
erator ΨH of a non-Zeno hybrid automaton may be discontinuous in both space and
time, even for affine systems. By the fundamental theorem of computable analysis,
this means that the evolution is uncomputable, at least near the discontinuity points.
This does not in itself rule out the possibility of regularizing the evolution in some
way so that the evolution becomes computable. In section 5 we shall show that by
using appropriately defined nondeterministic semantics, we can make the evolution
semicomputable. In this subsection we prove that it is impossible to regularize the
evolution near continuity points to make the evolution fully computable, i.e., both
lower- and upper-semicomputable.

Definition 4.5 (coherent semantics of evolution). Let H = (X, f, r, g) be a
deterministic hybrid automaton, and let U ⊂ X × R+ be the domain of continuity
of the evolution operator ΨH : X × R+ → X. We say that a set-valued evolution
operator Ψ̂ : X × R+ ⇒ X has coherent semantics with respect to the domain U if
Ψ̂(x, t) = {ΨH(x, t)} for all (x, t) ∈ U .
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In other words, away from discontinuities, the evolution operator Ψ̂ must be
single-valued, with the value given by ΨH . This condition eliminates trivial approxi-
mations, such as taking Ψ̂(x, t) = X for all x ∈ X , t ∈ R+. For maximum flexibility,
we give no restrictions on the discontinuity set.

Theorem 4.6 (uncomputability of the evolution of hybrid automata). Let H be
a class of hybrid automata. Then for any coherent semantics of evolution, the finite-
time evolution of a hybrid automaton is uncomputable. This result holds even if we
restrict our attention to (x, t)-values for which no event occurs at time t.

In particular, the operator (x0, t) �→ ΨH(x0, t) is not (ρX , ρR+ ;κX)-computable.
Further, even if no event is possible at time t, the operator x �→ ΨH(x, t) is not in
general (ρX ;κX)-computable.

The result is immediate from the following general lemma, since from Exam-
ples 4.2, 4.3, and 4.4 the evolution may have unremovable discontinuities, even away
from discrete events. For a function f : U → Y where U ⊂ X , a single-valued ex-
tension of f over X is a function f̂ : X → Y such that f̂(x) = f(x) for all x ∈ U .

A multivalued extension of f over X is a multivalued function F̂ : X ⇒ Y such that
F̂ (x) = {y} for all x ∈ U .

Lemma 4.7. Let f : U → Y be single-valued and continuous on an open, dense
subset U of X, and let Y be compact. Suppose f has no continuous single-valued
extension over X. Then f has no continuous multivalued extension F̂ over X.

Proof. Since f has no continuous single-valued extension over X , there ex-
ists x ∈ X \ U such that every extension of f over X is discontinuous at x. Let

A =
⋂

V 
x cl(f(V ∩ U)). Suppose F̂ (x) ⊂	= A, let y ∈ A \ F̂ (x), and take a closed

neighborhood B of y such that A ∩ B = ∅. Then F̂−1(B) does not contain x but

contains points arbitrarily close to x, so F̂ would not be upper-semicontinuous. Sup-
pose F̂ (x) ⊃ A and that A has two distinct elements y and z. Let W be an open

neighborhood of y such that cl(W ) is disjoint from z. Then F̂−1(W ) contains x but

does not contain points in F̂−1(X \ cl(W )), which come arbitrarily close to x, so F̂ is
not lower-semicontinuous.

4.4. Sliding along switching boundaries. A particularly nasty form of dis-
continuity occurs when a solution slides along the boundary of a guard set before
crossing.

Example 4.8 (discontinuity caused by sliding). Consider a hybrid automaton in
two dimensions with a guard set y � 0. Consider the flow ẋ = 1, and

ẏ =

⎧⎪⎨
⎪⎩
a+ 3x2 − y if x � 0;

a− y if 0 � x � b;

a+ 3(x− b)2 − y if x � b.

For a = 0, let (x0, y0) be a point with x0 < 0 such that the continuous orbit starting
at (x0, y0) exactly reaches the point (0, 0). Then for b > 0, the continuous evolution
starting at (x0, y0) slides along the surface y = 0 for 0 � x � b, and then crosses
into y > 0. The hybrid orbit therefore undergoes a discrete transition at the point
(0, 0) with 0 � x � b. For a > 0, we see that ẏ > 0 when y = 0, and the orbit
starting at (x0, y0) undergoes a discrete transition with x < 0, whereas for a < 0,
the orbit starting at (x0, y0) undergoes a discrete transition with x > b. Hence the
spacial evolution is discontinuous at the parameter value a = 0. Since for a lower-
approximation to the solution we may consider only solutions which persist under
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(b)(a) (c)

Fig. 6. Sliding along a guard set. The discontinuity in (b) can be perturbed to give a con-
tinuous system in (a) and (c), but the evolution of the original discontinuity point depends on the
perturbation.

(a) (b)

Fig. 7. A C0-perturbation of the guard set at a transverse crossing (a) can result in sliding at
any point (b). The evolution cannot be continued, since we cannot rule out the presence of sliding.

perturbations, the hybrid evolution starting at (x0, y0) cannot be continued past the
point (0, 0). See Figure 6.

Now consider the case where a = 0 and b = 0, which is the limit of the cases
a = 0 and b > 0. Since the hybrid orbit starting at (x0, y0) is blocked at (0, 0) for
b > 0, the orbit must also be blocked at (0, 0) in the limit b = 0 when computing
lower-approximations.

Hence for this parametrized family of systems, we cannot compute the evolution
past the crossing point for the initial condition (x0, y0), even for the case a = b = 0 for
which the dynamics in this case is given by the differential equation (ẋ, ẏ) = (1, 3x2−y)
and all crossings are topologically transverse.

The above example shows that topological transversality of crossing a guard set
is not in itself sufficient to ensure that a discrete transition is enabled at the crossing
point. However, even with differentially transverse crossings we need to be careful if
we allow C0-perturbations.

Example 4.9 (sliding under C0-perturbation). Now consider the flow (ẋ, ẏ) =
(1, 0), the guard set x = y, and reset map (x, y, q0) �→ (y, q1). The flow is transverse
to the guard set, and if the initial state is (x, c, q0) with x < y, then after the first
reset the new state is (c, q1). However, it is possible to make a C0-perturbation of the
guard set, so that the flow is parallel to the guard set for y = a. See Figure 7.

By the discussion following Example 4.8, this means that the evolution of the
perturbed hybrid automaton cannot undergo a discrete transition for initial conditions
with y0 = a. Since we wish to compute lower approximations to the flow which persist
under perturbation, this means that the evolution of the original hybrid automaton
cannot undergo a discrete transition if y0 = a. Since the above argument holds for
arbitrary a, the evolution of the original hybrid automaton cannot undergo a discrete
transition at any point of the guard set.

We have therefore demonstrated that, at least without additional information on
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the behavior, the evolution of a hybrid automaton cannot be allowed to undergo a dis-
crete transition at a crossing of a guard set if we are to compute lower-approximations
to the evolution which are robust with respect to C0-perturbations. However, the
above situation is pathological in the sense that “most” hybrid systems do not exhibit
this kind of sliding behavior. Further, transverse crossings are generic for hybrid au-
tomata with differentiable flows (such as from a Lipschitz differential equation) and
differentiable guard sets, and in the C1 topology on the guard condition and flow,
transverse crossings cannot be perturbed away. This suggests that this pathological
behavior can be treated numerically by computing derivatives, and this is indeed the
case. However, trajectories which slide along the guard set can occur even in Cr flows
with Cr guard sets in the neighborhood of a Cr singularity, and such singularities
occur generically in r-dimensional hybrid automata. Hence, even taking higher-order
derivatives might not be enough in some cases.

In this paper, we resolve the difficulty by giving a topological definition of a “de-
tectable” crossing (which is weaker than topological transversality and allows tangen-
cies) and show that if we restrict our attention to systems with detectable crossings,
then it is possible to compute the evolution. It is possible to prove that crossings are
detectable numerically by computing derivatives of the flow and guard set.

In the above example, a discontinuity in the evolution resulting in a loss of lower-
semicomputability can occur at a degree-d crossing if perturbations of order d− 1 are
allowed. Hence, a purely topological approach to lower-approximations in systems
with crossings of guard sets is bound to fail.

4.5. Urgent transitions. In approaches to hybrid systems modeling using only
invariants (or progress predicates) and (nonurgent) guards, a transition which occurs
as soon as the value of a variable x increases to a threshold value c is modeled using
the invariant x � c and the guard x � c. Syntactically, this is no different from an
invariant x � a and a guard x � b, where a and b have the same value c. This causes
a discontinuity in the evolution with respect to the system parameters.

Example 4.10 (uncomputability caused by aliasing). Consider a system with
initial condition x(0) = x0, dynamic ẋ = 1, invariant x � a, and guard x � b with
a, b > x0. If a < b, then the invariant is violated before the transition is activated,
and further evolution is blocked. If a > b, then the transition is activated before the
invariant is violated, and a transition may provably occur at any time b < x(t) < a. If
a = b and we are computing an over-approximation to the evolution, then a transition
must occur exactly when x(t) = a, or equivalently, x(t) = b. However, if we are
computing a lower-approximation to the evolution, we need to consider the possibility
that a is slightly less than b. Hence a lower-approximation to the evolution must block,
since this is the worst-case scenario. See Figure 8.

At first sight, it may seem that the evolution “should” continue for a = b. How-
ever, when considering lower-approximation, we cannot prove that continuation is
possible since equality of a and b is undecidable. From the modeling viewpoint, if
the invariant (or progress condition) and guard are determined by independent pa-
rameters, then it is only a coincidence that the transition is activated at exactly the
same point as the continuous evolution is prevented, and under a small change in the
parameters, the evolution may be blocked. It is only when we give the additional,
combinatorial information that the invariant and guard boundaries lie exactly at the
same point, and that we can deduce that the evolution may continue. This combina-
torial information can be given by specifying that the event is urgent, which implicitly
introduces an invariant for the continuous evolution. From an implementation stand-
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(b)(a) (c)

Fig. 8. Discrete transitions may be blocked even at a transverse crossing. In (a) the invariant
and guard regions overlap and crossings are possible. In (b) the boundaries of the invariant and
guard regions touch, and discrete transitions are forced with upper semantics but disallowed using
inner semantics. An arbitrarily small perturbation gives (c) in which no transitions are possible.

point, we see that x � a and x � b are aliases for the same constraint x � c with
c = a = b.

5. Semicontinuity of evolution of hybrid automata. In this section we
state and prove the main results on semicomputability of system evolution. We first
consider the case of upper-semicomputability, since this is more straightforward, and
then consider lower-semicomputability. Recall that we consider the class of hybrid
automata given by Definition 2.1 with the semantics given by Definition 2.4, and
wish to compute the evolution operator ΨH of a hybrid automaton H as given in
Definition 2.6.

In order to compute upper- or lower-approximations to the solution, we need to
convert the system into either upper- or lower-semicontinuous form. We can do this
by regularizing the guard sets to be open or closed and regularizing the flows and
resets to be upper- or lower-semicontinuous maps.

Definition 5.1. Let F : X ⇒ Y be a multivalued function. Define the following:

• F =
⋂
{F̂ | F̂ is upper-semicontinuous and F̂ ⊃ F}, and

• F =
⋃
{F̃ | F̃ is lower-semicontinuous and F̃ ⊂ F}.

An alternative definition of F is in terms of its graph; graph(F ) =
⋂

ε>0Nε(graph(F )).

It is easy to show that if F locally takes precompact values (i.e., cl(F (I)) is compact
for any compact I), then F is compact-valued upper-semicontinuous, and that F is
closed-valued lower-semicontinuous. Further, it is trivial that F = F if F is upper-
semicontinuous, and that F = F if F is lower-semicontinuous.

Throughout this section, we shall denote the interior of a set D by D◦.
In order to compute the continuous evolution of a hybrid system, we need to

restrict our attention to the invariant domain. Given a multiflow Φ, a subset D, a
time t, and point x, define

(15) rs(Φ, D)(x, t) = Φ|Dt (x) = {y ∈ X | ∃ξ ∈ Φ(x) s.t. ξ([0, t]) ⊂ D and ξ(t) = y}.

For a trajectory η, define dm(η,D) = {t ∈ R+ | η([0, t]) ⊂ D} and rs(η,D)(t) =
η|D(t) = η({t} ∩ dm(η,D)); note that η|D(t) = {η(t)} if η([0, t]) ⊂ D and η|D(t) = ∅
otherwise.

5.1. Upper-semicomputability of the evolution and closure semantics.
In this section, we consider conditions under which the evolution of a hybrid sys-
tem is upper-semicomputable, i.e., the values of the evolution ΨH(x0, t) are κ>-
computable as compact sets. We observe that there are two main obstructions to
upper-semicomputability:
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1. The data describing the system need not be of the form required for com-
puting over-approximations. A minimal requirement is that the guards and
invariants are closed, and the dynamic and resets are compact-valued upper-
semicontinuous.

2. An urgent transition occurs as soon as the guard is satisfied, even if this is a
tangential contact with the guard set and so cannot be effectively detected.

In order to overcome these obstructions, we define a new semantics of evolution.
Definition 5.2 (closure semantics). An execution of the hybrid automaton H =

(E,X, I, F, P,Re, Ge, EU ) with the closure semantics is a hybrid trajectory ξ : T → X
such that there exist events e1, e2, . . . with

(CS1) ξ(t, n) ∈ I whenever t ∈ [tn, tn+1],
(CS2) ξ̇(t, n) ∈ F (ξ(t, x)) for almost every t ∈ [tn, tn+1],
(CS3) ξ(tn, n) ∈ Ren(ξ(tn, n−1)),
(CS4) ξ(t, n) ∈ P whenever t ∈ [tn, tn+1[,
(CS5) ξ(tn, n− 1) ∈ Gen , and
(CS6) ξ(t, n) 	∈ G◦

u whenever t ∈ [tn, tn+1[ and u ∈ EU .
Note that if I, P , and all Ge’s are closed, and F and Re are upper-semicontinuous,

then the only change is in (CS6), where the condition ξ(t, n) 	∈ Gu whenever t ∈
[tn, tn+1[ is replaced by ξ(t, n) 	∈ G◦

u whenever t ∈ [tn, tn+1[ (equivalently, ξ(t, n) ∈
X \Gu).

If D is a closed set, then the condition ξ(t, n) ∈ D whenever t ∈ [tn, tn+1[ is
equivalent to ξ(t, n) ∈ D whenever t ∈]tn, tn+1[ and to the condition tn = tn+1 or
ξ(t, n) ∈ D whenever t ∈ [tn, tn+1].

Combining results in Lemma 2.5, we see that the evolution of the hybrid system
H = (E,X, I, F, P,Re, Ge, EU ) using closure semantics is the same as the evolution
of the single-event system

(16)
(
X,F, I ∩ P \

⋃
e∈EU

G◦
e, (

⋃
e∈E Re|Ge

)|I ,
⋃

e∈E Ge, ∅
)

using standard semantics.
Definition 5.3. A hybrid automaton H = (E,X, I, F, P,Re, Ge, ∅) is upper-

semicontinuous if
1. I, P , and all Ge’s are closed sets,
2. F and all Re’s are upper-semicontinuous functions with compact values, and
3. F has linear growth.

To prove upper-semicomputability using closure semantics, it suffices to show that
the evolution is upper-semicomputable for a subclass of single-event hybrid automata.
Upper-semicontinuity of the evolution for a similar class of hybrid automata was
proved in [30]; the result given above gives upper-semicomputability as well as upper-
semicontinuity.

Theorem 5.4. Let H = (X, I, F, P,R,G) be an upper-semicontinuous single-
event hybrid automaton. Then the evolution ΦH using standard semantics is upper-
semicomputable.

More precisely, let x0 ⊂ X be a compact initial state set, T ⊂ R+ a com-
pact set of times, and N a bound on the number of events. Then the operator
(I, F, P,R,G, x0, t) �→ ΨH(x0, t) is (ψ>, μ>, ψ>, μ>, ψ>, ρ, ρ;κ>)-computable. Equiv-
alently, the operator (I, F, P,R,G) �→ ΨH is (ψ>, μ>, ψ>, μ>, ψ>;μ>)-computable.

The basic idea of the proof is to restrict the continuous dynamics to trajectories
which remain in I, and the discrete dynamics to points in G. We encapsulate these
parts into lemmas and give proofs in terms of the computable operations.
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Lemma 5.5. Let R : X ⇒ Y be a compact-valued upper-semicontinuous map,
and let A ⊂ X be a closed set. Then the operator (R,A) �→ R|A is (μ>, ψ>;μ>)-
computable.

Let R : X ⇒ Y be a compact-valued upper-semicontinuous map, and let B ⊂ Y
be a closed set. Then the operator (R,B) �→ R|B is (μ>, ψ>;μ>)-computable.

Let R1, R2 : X ⇒ Y be compact-valued upper-semicontinuous maps. Then the
operator (R1, R2) �→ R1 ∪R2, is (μ>, μ>;μ>)-computable.

Proof. For any compact set, R|A(C) = R(C ∩ A). Given a ψ>-name of A and
a κ>-name of C, we can compute a κ>-name of C ∩ A by Theorem 3.6(4). Given a
μ>-name of R and a κ>-name of C ∩A, we can compute a κ>-name of R(C ∩A) by
Theorem 3.9(6).

For any x ∈ X , R|B(x) = R(x) ∩ A. Given a μ>-name of R and a ρ-name of x,
we can compute a κ>-name of R(x) by Theorem 3.9(6). Given a ψ>-name of B and
a κ>-name of R(x), we can compute a κ>-name of R(x) ∩B by Theorem 3.6(4).

For any compact set C, (R1 ∪R2)(C) = R1(C) ∪R2(C). By Theorem 3.9(6) we
can compute κ>-names of R1(C) and R2(C). By Theorem 3.6(4), we can compute a
κ>-name of R1(C) ∪R2(C).

Lemma 5.6. Let Φ be an upper-semicontinuous compact-valued flow, and let D
be a closed set. Then the operator (Φ, D) �→ (Φ|D) is (φ>, ψ>;μ>)-computable.

Proof. For η ∈ C(R+;X), the set dm(η,D) = {t ∈ R+ | η([0, t]) ⊂ D} is ψ>-
computable given a γ-name of η and a ψ>-name of D by Theorem 3.9(3) since we can
compute a ψ<-name of [0, t] from a ρR+ -name of t, and hence a ψ<-name of η([0, t]).
Since rs(η,D)(t) = η({t} ∩ dm(η,D)), we can compute a κ>-name of rs(η,D)(t),
since we can compute a κ>-name of {t} from a ρ-name of t by Theorem 3.6(7), a
κ>-name of {t} ∩ dm(η,D) by Theorem 3.6(4), and a κ>-name of η({t} ∩ dm(η,D))
by Theorem 3.6(8).

Hence the function (η,D, t) �→ η|D(t) is (γ, θ<, ρ;κ>)-computable. By Proposi-
tion 3.12(2), we can compute a κ>-name of Φ|Dt (x) =

⋃
{η|D(t) | η ∈ Φ(x)}.

Proof of Theorem 5.4. Define R|IG : X ⇒ X by R|IG(x) = R({x} ∩ G) ∩ I. By
Lemma 5.5, we can compute a μ>-name of R|IG from a μ>-name of R and ψ>-names
of I and G. By Lemma 5.6, we can obtain a μ>-name of the restricted flow evolutions
Φ|P∩I

t . It remains to compute a μ>-name of the evolution Ψ = ΨH .
Define

Ψ(x, t, (t1, . . . , tn)) = {y ∈ X | ∃ execution ξ of H with event

times t1 � · · · � tn � t s.t. ξ(0, 0) = x and ξ(t, n) = y}.

Then since we can write

Ψ(x, t, (t1, . . . , tn)) = Φ|P∩I
t−tn ◦R|IG ◦ Φ|P∩I

tn−tn−1
◦ · · · ◦R|IG ◦ Φ|P∩I

t1 (x),

we see that the map (x, t, (t1, . . . , tn)) �→ Ψ(x, t, (t1, . . . , tn)) is a composition of func-
tions for which we have μ>-names, and hence we can compute μ>-name of Ψ(x, t).
We can write Ψ(x, t, n) = Ψ(x, t, Tt,n) where Tt,n = {(t1, . . . , tn) ∈ Rn | for all i, 0 �
ti � ti+1 � t}. Since t �→ Tt,n is (ρ, κ>)-computable, we can compute a μ>-
name of the function (x, t, n) �→ Ψ(x, t, n). Then Ψ(x, t, [0, N ]) =

⋃∞
n=0 Ψ(x, t, n) =⋃N

n=0 Ψ(x, t, n) is a finite union of μ>-computable functions. Hence we can compute
a μ>-name of Ψ.

We say a system is uniformly non-Zeno if there exist (T,N) such that for any
execution, there occur at most N discrete events in any time interval of length at most



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

916 PIETER COLLINS

T . As shown in [30], any non-Zeno upper-semicontinuous hybrid automaton with a
compact global attractor must be uniformly non-Zeno. For non-Zeno systems, we can
drop the bounds on the number of events.

Corollary 5.7 (upper-semicomputability for non-Zeno hybrid automata). Let
H = (E,X, I, F, P,Re, Ge, EU ) be a hybrid automaton which is uniformly non-Zeno
using closure semantics. Let X0 ⊂ I be a compact initial state set, and let T ⊂ R+

be a compact set of times. Then the operator (I, F, P,Re, Ge, X0, t) �→ ΨH(X0, T ) is
(ψ>, μ>, ψ>, μ>, ψ>, κ>, ρ;κ>)-computable.

By results in [20], the smallest compact-valued upper-semicomputable over-
approximation to a multivalued map R : X ⇒ Y is R, and the smallest compact-
valued upper-semicomputable over-approximation to the flow Φ of F : X ⇒ X
is the flow of F , assuming F has linear growth. We now extend these results to
hybrid systems and show that H is a “smallest” hybrid automaton for which the
evolution is upper-semicomputable. In other words, any attempt to compute an
over-approximation to the evolved set using approximative methods must necessarily
compute an over-approximation to the evolved set of H .

Theorem 5.8. Let H = (E,X, I, F, P,Re, Ge, ∅) be a uniformly non-Zeno hy-
brid automaton, and suppose that Ψ̂ : X × R �→ K(X) is upper-semicomputable and
Ψ̂(x, t) ⊃ ΨH(x, t) for all x, t. Then Ψ̂(x, t) ⊃ ΨH(x, t).

Proof. Suppose yk ∈ ΨH(xk, tk) and xk → x∞, tk → t∞, and yk → y∞ as k → ∞.
Then there exist executions ξn of H and nk ∈ N such that ξk(tk, nk) = yk for all k.

Since Ψ̂ is upper-semicontinuous, we must have y∞ ∈ Ψ̂(x∞, t∞) . Further,
by restricting our attention to a subsequence, we can ensure that all ξk have the
same events ei up to time tk, that the ith-event times tk,i converge to t∞,i, and, by
boundedness of the Re and linear growth of F , that the ξk converge to ξ∞.

Then since ξk(t, i) ∈ I and ξ∞(·, i) = limk→∞ ξk(·, i), we must have ξ∞(t, i) ∈ I
for all t ∈ [t∞,i, t∞,i+1]. If t ∈ [ti, ti+1[, then since ξk(t, i) ∈ P , we must have
ξ∞(t, i) ∈ P for all t ∈ [t∞,i, t∞,i+1]. Since ξk(tk,i, i− 1) ∈ Gei and ξ∞(t∞,i, i −
1) = limk→∞ ξk(tk,i, i− 1), we must have ξ∞(t∞,i, i − 1) ∈ Gei . Since ξk(tk,i, i) ∈
Rei(ξk(tk,i, i− 1)) for all k, we have ξ∞(t∞,i, i) ∈ Rei(ξ∞(t∞,i, i− 1)). Finally, using

methods similar to those of [20], we can show that ξ̇∞(t, i) ∈ F (ξ∞(t, i)) a.e. Hence
y∞ ∈ ΨH(x∞, t∞).

5.2. Lower-semicomputability of evolution. We now define a new semantics
of evolution, interior semantics, and show that the evolution is lower-semicomputable
using this semantics.

Definition 5.9 (interior semantics). An execution of the hybrid automaton H =
(E,X, F, I, Re, Ge, U) with the interior semantics is a hybrid trajectory ξ : T → X
such that there exist events e1, e2, . . . with

(IS 1) ξ(t, n) ∈ I◦ whenever t ∈ [tn, tn+1],
(IS 2) ξ̇(t, n) ∈ F (ξ(t, x)) for almost every t ∈ [tn, tn+1],
(IS 3) ξ(tn, n) ∈ Ren(ξ(tn, n−1)),
(IS 4) if tn+1 > tn, then ξ(t, n) ∈ P ◦ whenever t ∈ [tn, tn+1],
(IS 5) ξ(tn, n− 1) ∈ G◦

en , and

(IS 6) if tn+1 > tn, then ξ(t, n) 	∈ Gu whenever t ∈ [tn, tn+1] and u ∈ EU .
Note that if I, P , and all Ge’s are open, and all the F and Re are lower-

semicontinuous, then the only changes are in (IS4), where the condition ξ(t, n) ∈ P
to t ∈ [tn, tn+1[ is replaced by tn = tn+1 or ξ(t, n) ∈ P ◦ for t ∈ [tn, tn+1], and in (IS6),
where the condition ξ(t, n) 	∈ Gu whenever t ∈ [tn, tn+1[ is replaced by tn = tn+1

or ξ(t, n) 	∈ G◦
u whenever t ∈ [tn, tn+1]. Unfortunately, this latter change causes a
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difficulty, since G◦
u and (X \Gu)

◦ are disjoint open sets, so a trajectory cannot cross
from (X \ Gu)

◦ to G◦
u. For this reason, interior semantics is only really useful for

systems with no urgent events. We shall return to this difficulty in section 4.5 and
give an improved semantics in section 5.3.

Combining with Lemma 2.5, we see that the evolution of the hybrid automaton
H = (E,X, I, F, P,Re, Ge, ∅) using interior semantics is the same as the evolution of
the single-event hybrid automaton

(17)
(
X,F, P ◦ ∩ I◦, (

⋃
e∈E Re|G◦

e
)|I◦

,
⋃

e∈E G
◦
e

)
using standard semantics.

Definition 5.10. A hybrid automaton H = (E,X, I, F, P,Re, Ge, ∅) is lower-
semicontinuous if

• I, P , and all Ge’s are open sets,
• F and all Re’s are lower-semicontinuous with closed values, and
• F is one-sided-Lipschitz with convex values.

In this situation, we have the following computability result.

Theorem 5.11. The evolution of a lower-semicontinuous hybrid automaton is
lower-semicomputable.

More precisely, let H = (X, I, F, P,R,G) be a single-event hybrid automaton
where I, P , and G are open, F defines a lower-semicontinuous multivalued flow Φ, and
the R : X ⇒ X are lower-semicontinuous. Let x0 ∈ X be closed, and let t ∈ R+. Then
the operator (I, F, P,R,G, x0, t) �→ cl(ΨH(x0, t)) is (θ<, μ<, θ<, μ<, θ< ρ, ρ;ψ<)-
computable.

The proof is very similar to that of Theorem 5.4.

Lemma 5.12. Let R : X ⇒ Y be a closed-valued lower-semicontinuous map,
and let U ⊂ X and V ⊂ Y be open sets. Then the operators (R,U) �→ R|U and
(R,U) �→ cl(R|V ) are (μ<, θ<;μ<)-computable.

Proof. We have I ⊂ R|−1
U (J) if, and only if, I ⊂ U ∩ R−1(J). Since J is basic,

we have access to a θ<-name of J . By Theorem 3.9(3) we can compute a θ<-name
of R−1(J) from a μ<-name of R and a θ<-name of J . By Theorem 3.6(1), we can
compute a θ<-name of U ∩ R−1(J). Since I is basic, we have access to a κ>-name
of I. Since, given a κ>-name of compact C and a θ<-name of open U , we can verify
C ⊂ U , we can enumerate all (I, J) such that I ⊂ R|−1

U (J).

Given a ρ-name of x, we can compute a ψ<-name of R(x) by Theorem 3.9(1),
and hence a ψ<-name of cl(R(x) ∩ V ) by Theorem 3.6(1).

Lemma 5.13. Let Φ be a lower-semicontinuous closed-valued flow, and let D be
an open set. Then the operator (Φ, D, t) �→ Φ|Dt is (φ<, θ<, ρ;μ<)-computable.

Proof. We first claim that the operator (η,D) �→ dm(η,D) is (γ, θ<; θ<)-computable.
Recall dm(η,D) = {t ∈ R+ | η([0, t] ⊂ D}. Since the operator t �→ [0, t] is
(ρ;κ>)-computable, by Theorem 3.6(8), the operator (η, t) �→ η([0, t]) is (γ, ρ;κ>)-
computable. By Theorem 3.9(2,3), the operator (η,D) �→ {t | η([0, t]) ⊂ D} is
(γ, θ<; θ<)-computable. By Theorem 3.6(3), the operator (η,D, t) �→ {t} ∩ {s |
η([0, s]) ⊂ D} is (γ, θ<, ρ;ψ<)-computable. By Theorem 3.6(8), the operator (η,D, t) �→
η({t} ∩ σ(η,D)) is (γ, θ<, ρ;ψ<)-computable. By Proposition 3.12(2), the operator
(Φ, D, t, x) �→ Φ|Dt (x) is (γ, θ<, ρ, ρ;ψ<)-computable. Hence the operator (Φ, D, t) �→
Φ|Dt is (φ<, θ<, ρ;μ<)-computable.

Proof of Theorem 5.11. Define R|IG : X ⇒ X by R|IG(x) = cl(R({x}∩G)∩ I). By
Lemma 5.12, we can compute a μ<-name of R|IG from a μ<-name of R and θ<-name
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of G. By Lemma 5.13, we can obtain a μ<-name of the restricted flow evolutions
Φ|P∩I

t . It remains to compute a μ<-name of the evolution Ψ = ΨH .
Define

Ψ(x, t, (t1, . . . , tn)) = {y ∈ X | ∃ execution ξ of H with event

times t1 � · · · � tn � t s.t. ξ(0, 0) = x and ξ(t, n) = y}.

Then since we can write

Ψ(x, t, (t1, . . . , tn)) = Φ|P∩I
t−tn ◦R|IG ◦ Φ|P∩I

tn−tn−1
◦ · · · ◦R|IG ◦Φ|P∩I

t1 (x)

we see that the map (x, t, (t1, . . . , tn)) �→ Ψ(x, t, (t1, . . . , tn)) is a composition of
functions for which we have μ<-names, and hence we can compute a μ<-name of
Ψ(x, t, (t1, . . . , tn)). We can write Ψ(x, t, n) = Ψ(x, t, Tt,n), where Tt,n = {(t1, . . . , tn) ∈
Rn | for all i, 0 � ti � ti+1 � t}. Since t �→ Tt,n is (ρ, ψ<)-computable, we can
compute a μ<-name of the function (x, t, n) �→ Ψ(x, t, n). Then Ψ(x, t, [0, N ]) =⋃∞

n=0 Ψ(x, t, n) =
⋃N

n=0 Ψ(x, t, n) is a countable union of μ<-computable functions.
Hence we can compute a μ<-name of Ψ.

Similar to the case of upper-semicomputability, we have an optimality result for
lower-semicomputability.

Theorem 5.14. Let H = (E,X, I, F, P,Re, Ge, EU ) be a hybrid automaton with
EU = ∅, and suppose that Ψ : X ×R �→ A(X) is lower-semicomputable and Ψ(x, t) ⊂
cl(ΨH(x, t)) for all x, t. Then Ψ(x, t) ⊂ cl(ΨH(x, t)).

The proof is similar to that of Theorem 5.8 and is omitted.

5.3. Lower-semicomputability of hybrid automata using crossing se-
mantics. Let Φ be a lower-semicontinuous multiflow, and suppose B, A, and D are
open sets with D = B ∪ A and that Φ is closed-valued lower-semicontinuous. We
would like to know when trajectories of Φ cross instantaneously from B to A within
D.

Definition 5.15. A continuous trajectory η crosses from B to A at time t and
point x in D if η(t) ∈ D and for all δ > 0, η(]t−δ, t[)∩B 	= ∅ and η(]t, t+δ[)∩A 	= ∅.
We say that x is a crossing point for η.

Note that trivially if x ∈ B ∩ A, then x is a crossing point for any trajectory
through it. If x 	∈ cl(B) ∩ cl(A), then x cannot be a crossing point. The requirement
that x ∈ D, which implies x ∈ (B ∪ A)◦, is to ensure that perturbations of η remain
in B ∪ A near x.

The real interest is when x lies in ∂B and ∂A. By the observations of Exam-
ple 4.10, if B and A are disjoint, then by a small perturbation, we can make their
boundaries disjoint, and so any lower approximation to the flow has a blocking tra-
jectory. We therefore need more information about the sets B and A given by a
θ<-name.

Let us first consider the case in which B and A form a topological partition of
X ; that is, B ∩ A = ∅ and cl(B) ∪ cl(A) = X . Suppose η is a trajectory such that
η(t1) ∈ B and ξ(t2) ∈ A for t1 < t2, so η leaves B and enters A at some time
t ∈]t1, t2[. We would like to be able to deduce that η crosses from B to A in the sense
of Definition 5.15. Unfortunately, from Example 4.8, it may be the case that η slides
inside ∂B ∩ ∂A rather than crossing transversely, and, as we have seen, we cannot
handle sliding solutions.

Definition 5.16. Let Φ be a flow, B and A be open sets, and δ > 0. We say
Φ has δ-detectable crossings if for all trajectories η of Φ such that η(0) ∈ B and
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η(t) ∈ A for some t < δ, there exists c ∈ R and ζ ∈ Φ such that ζ(t) = η(t) for
t ∈ [0, c], ζ([0, c[) ⊂ B, ζ(c) ∈ (B ∪ A)◦, and for all ε > 0, ζ(]c, c+ ε[) ∩ A 	= ∅.

We say Φ has effectively detectable crossings if it has δ-detectable crossings for
some known δ.

In other words, if there is a trajectory η which moves from B to A in time less
than δ, then from the point where the state leaves B, there is a possibly different
trajectory ζ which immediately enters A. Note that the condition of detectable cross-
ings precludes the degenerate situation in which a solution slides along a common
boundary of B and A for time less than δ, and also the case of Example 4.10 in which
the solution leaves B briefly before entering A.

Remark 5.17. A sufficient condition for a single-valued flow φ to have detectable
crossings of a manifold G = {x ∈ X | g(x) = 0} is that φ and g are analytic. In this
case, any trajectory either slides along G or touches/crosses at a single point.

We now define a new notion of solution for hybrid automata which allows the
lower-approximation of the evolution for hybrid automata with urgent transitions.

Definition 5.18. An execution of the hybrid automaton H = (E,X, F, I, Re, Ge, U)
with the crossing semantics is a hybrid trajectory ξ : T → X such that there exist
events e1, e2, . . . with

(XS 1) ξ(t, n) ∈ I whenever t ∈ [tn, tn+1],
(XS 2) ξ̇(t, n) ∈ F (ξ(t, x)) for almost every t ∈ [tn, tn+1],
(XS 3) ξ(tn, n) ∈ Ren(ξ(tn, n−1)),
(XS 4) if tn < tn+1, then ξ(t, n) ∈ I whenever t ∈ [tn, tn+1],

(XS 5) ξ(tn, n− 1) ∈ G◦
en if en 	∈ EU ,

(XS 6) ξ(t, n) 	∈ Gu whenever t ∈ [tn, tn+1[ and u ∈ EU , and
(XS 7) ξ(tn, n− 1) is a crossing point of ∂Gen if en ∈ EU .
Intuitively, between discrete events, solutions must remain in the interior of I, P ,

and X \ Gu for u ∈ EU ; this prevents grazing contact with guard sets. A discrete
event may occur at the boundary of Gu if it is possible to continue the trajectory
instantaneously into (X \Gu)

◦.
Using this notion of solution, we can prove the following result.
Theorem 5.19 (lower-semicomputability of the evolution of hybrid automata

with detectable crossings). Let H be a lower-semicontinuous hybrid automaton with
δ-detectable crossings. Then the evolution H �→ ΨH(x, t) is lower-semicomputable
using crossing semantics.

More precisely, let H = (E,X, I, F, P,Re, Ge, EU ) be a hybrid automaton where
I, P , and all Ge’s are open sets and F and R are lower-semicontinuous with closed
values. Suppose that crossings of the flow Φ|F from G◦

u to (X \Gu)
◦ are detectable for

each u ∈ EU . Let X0 be a closed set of initial states, and let T be an open set of times.

Then the operator (I, F, P,Re, Ge, Gu) �→ clΨH is (θ<, μ<, θ<, μ
|E|
< , θ

|E|
< , ψ

|EU |
> ;μ<)-

computable.

The main difference between the proof of Theorem 5.19 and that of Theorem 5.11
is that we cannot apply the reset Ru for an urgent event u at the correct time by
restricting our attention to the crossing set, since this is a subset of ∂Gu and hence not
open. We therefore have to compute the possible times and locations of the events
for a given initial state directly. The simplest way of organizing the computation
is to extend the state with the current time and perform an untimed reachability
computation. For timed reachability, we can project onto the desired set of times.

We use the following lemma, which shows that the crossing points can be
computed.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

920 PIETER COLLINS

Lemma 5.20. Let D, A, and B be open sets such that D = A ∪B, and let
Φ be a lower-semicontinuous closed-valued flow. Define the activation function Γ =
Γ(B,A,D,Φ) : X ⇒ X by

(18)

Γ(x) = {y ∈ X | ∃ η ∈ Φ(x), t ∈ R+ s.t. η(t) = y, η([0, t[) ⊂ B, η(t) ∈ D, and

η(]t, t+ ε[) ∩ A 	= ∅ for all ε > 0}.

Suppose that the crossings of trajectories of Φ from B to A in D are δ-detectable.
Then the function (B,A,D,Φ) �→ Γ is (θ<, θ<, θ<, φ<;μ<)-computable.

Proof. It suffices to prove that Γ(x) is ψ<-computable given a ρ-name of x. We
consider two cases, t = 0 and t > 0.

Suppose η ∈ Φ(x) and t1, t2 ∈ Q+ are such that η([0, t1]) ⊂ B, η([t1, t2]) ⊂ D and
η(t2) ∈ A and 0 < t1 < t2 < t1+δ. Then since crossings from B to A are δ-detectable,
there is a crossing of η at time c ∈ (t1, t2). Conversely, if there is a crossing of η at
time t > 0, then we can find such t1, t2.

Suppose η ∈ Φ(x) and t2 ∈ Q+ are such that η([0, t2]) ⊂ D and η(t2) ∈ A and
0 < t2 < δ. Then there is a crossing of η at time c = inf{t � 0 | η([t, t2]) ⊂ A} and
c ∈ [0, t2[, which is open in R+. Conversely, if there is a crossing of η at time 0, then
we can find such a t2.

We can therefore compute all open rational intervals ]t1, t2[ or [0, t2[ containing
crossing times of η, so the set of crossing times of η is ψ<-computable in R+ by
Definition 3.5. The set of crossing points of η is the image of the set of crossing
times, so it is computable by Theorem 3.6(8). The set of crossing points starting
at x is the union of all crossing points of curves in Φ(x), so it is computable by
Proposition 3.12(2).

We will use the above result with B and A disjoint, D = (B ∪A)◦ for urgent
events, and D = B ∪A for nonurgent events.

We can use Lemma 5.20 to prove computability of the untimed reachable set.
Lemma 5.21. Under the conditions of Theorem 5.19, the untimed reachable set

ΨH(X0,R
+) is ψ<-computable.

Proof. The set of states reachable starting at state x after event e is given by
Re(Γ(Be, Ae, D,Φ)(x)) ∩ I, where Be = I ∩ P \

⋃
u∈EU

Gu, Ae = Ge \
⋃

u∈EU\{e}Gu,

and D = I \
⋃

u∈EU\eGu. Since we can compute a μ<-name of Γ(Be, Ae, D,Φ) by
Lemma 5.20, we can compute a ψ<-name of the set reachable after any event. The
(untimed) reachable set is then

Ψ̂(X0,R
+) =

⋃
(e1,...,ek)∈E∗

(Φ|D ◦Ren ◦ Γ(F,D,Aen) ◦ · · · ◦Re1 ◦ Γ(F,D,Ae1 ))(X0)

which is ψ<-computable, being a countable union of ψ<-computable sets.
Proof of Theorem 5.19. We first enhance the hybrid system by taking state space

X̂ = X × (R+ � {∞}), adding an explicit time variable τ , and yielding a new state x̂.
The new dynamic is F̂ (x, t) = F (x)× {1}, the new resets are R̂e(x, t) = Re(x)× {t},
the new invariant is Î = I × R, the new progress condition is P̂ = P × R, and the
new guards are Ĝe = Ge × R. Further, we add a new urgent event ê with guard
Ĝê = {(x, τ) | τ � t} and reset R̂ê(x, τ) = (x,∞). When τ = ∞, there is no further
dynamics.

The result follows, since the reachable set of H at time t is simply the component
of the reachable set of Ĥ with t = ∞.
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Remark 5.22. The strategy of the proof of Theorem 5.19 could also be applied
to prove Theorems 5.4 and 5.11, but at some cost in complexity.

6. Modeling, simulation, implementation, and control.

6.1. Modeling hybrid automata. The description of hybrid automata intro-
duced in section 2 is sufficient to define the dynamic evolution but is inexpressive
as a modeling framework. Many hybrid automaton models are not written in terms
of invariant and guard sets, but using invariant and guard predicates. Further, the
continuous evolution is usually written using differential equations, possibly with dis-
turbance input variables, rather than differential inclusions. However, it is easy to
convert from standard modeling frameworks to sets and differential inclusions.

Sets can be conveniently described using constraint functions. A constraint is
a continuous function c : X → R, and we say a constraint is regular if {x ∈ X |
c(x) = 0} is a codimension-1 topological manifold. If c is differentiable and ∇c(x) 	= 0
whenever c(x) = 0, then c is regular and changes sign on a differentiable manifold.
A constraint defines sets {x ∈ X | c(x) ≶ 0} and {x ∈ X | c(x) � 0}. The operator
c �→ {x | c(x) < 0} is (γ; θ<)-computable, and the operator c �→ {x | c(x) � 0} is
(γ;ψ>)-computable.

Differential inclusions can be conveniently described using differential equations
with bounded noise. Let X be a subset of Rn, and let V be a compact subset of Rp.
We can specify the continuous dynamics ẋ(t) = f(x(t), v(t)), where f is continuous
and Lipschitz in x, and v(t) is a measurable function from R+ to V . Using the
standard Filippov solution concept, we can rewrite this system as ẋ(t) ∈ F (x(t)),
where F (x) = conv(f(x, V )). Then it is possible to compute a μ>-name of F from a
γ-name of f and a κ>-name of V .

We note that the semantics are only specified for a complete hybrid system model.
In a compositional modeling framework, we also need to define models with inputs
and consider parallel composition of different components.

6.2. Reliable simulation of hybrid automata. We wish to be able to reli-
ably simulate the trajectory of a deterministic hybrid automaton starting at some
initial point x. Away from discontinuity points in the spatial dependence of the evo-
lution, the meaning of a simulation is clear; there is a unique trajectory, which we can
compute using either upper or lower semantics. However, at the discontinuity points,
there are at least two possible choices for how to continue the evolution; at a graz-
ing or external corner collision point, we must choose between carrying on with the
continuous dynamics or applying a discrete reset. At a point where multiple events
are activated, we must choose between which of the two or more events occurs. Even
near the discontinuity points, we may not be able to reliably distinguish which of the
possible continuations occurs due to numerical error.

One way of resolving these different possibilities is to either make a random choice,
or rank the possible events in some order and apply the preferred event. However,
this runs the risk of missing qualitatively different evolutions. Another option is to
continue with all possible different evolutions. This is feasible only if the discontinuity
set is entered at a discrete set of time instances.

If crossings with the guard set G = ∂D ∩ ∂A are δ-detectable, then we can
compute the set of grazing points as G0 = {x ∈ G | Φ(x, [0, δ/2]) ⊂ D}, which is ψ<-
computable from Φ and D. Taking e0 to be the special grazing event with guard G0,
we can compute the discontinuity set as the union of all intersections of pairs of guard
sets. Hence the discontinuity set is

⋃
(ei,ej)∈E∪{e0}Gi∩Gj and is ψ<-computable from

the system data.
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We can think of simulation as computing the evolution Ψ of the system from
a single initial point. In order to distinguish between the multiple possibilities at
branching points, we need only store a list of event labels and times. Since we can
compactify R+ by adding the point at infinity, the set E × (R+ ∪ {∞}) is itself
countably based and locally compact in the product topology. By extending the state
variable with the time t, and the reset relation by updating the list of events whenever
a reset occurs, we obtain a new hybrid automaton in which the evolution operator
stores the sequence of discrete events and the total time used to reach a particular
state, from which the entire trajectory can be completely reconstructed.

Hence by Theorem 5.4, we can compute the set of all possible distinct evolutions
from a given initial point for a uniformly non-Zeno hybrid automaton.

6.3. Implementation issues. Throughout the paper, every effort has been
made to present the minimal assumptions necessary in order to perform a compu-
tation. In particular, no assumptions on the differentiability of various objects were
made. Further, the counterexamples to computability were all based on simple affine
systems, so adding differentiability assumptions makes no difference in the ability to
compute arbitrarily accurate approximations to the evolution. However, efficient nu-
merical methods require differentiability assumptions on the inputs in order to obtain
high-order convergence. Therefore, when implementing the operations involved, par-
ticularly the algorithms for computing system evolution and crossing of guard sets,
it is important to use differentiability to obtain efficient algorithms. As an example,
the crossing time to a transverse guard set can be computed to an order which is the
maximum differentiability of the guard constraint and the flow. This can allow more
efficient stepping over guard constraints than methods relying purely on checking for
crossing using set inclusions.

The theory presented in this paper has been implemented in the tool Ariadne

for reachability analysis of hybrid automata. Examples of computations performed
using Ariadne can be found in [6].

6.4. Implications for control. The results of this paper are directly relevant
to the analysis of hybrid systems with control inputs and indirectly to control design.
The results on lower-semicomputability can be interpreted as controllability results if
the nondeterminism in the continuous dynamics, the switching, and the resets describe
possible control inputs. In this case, the reachable set ΨH(x0,R

+) represents the set
of points y for which we can prove the existence of a solution of H from x0 to y.
Further, since ΨH is lower-semicomputable, if T ⊂ X is an open set of target points,
then by Theorem 3.9(3), the set {x0 ∈ X | ΨH(x0,R

+) ∩ T 	= ∅} is computable
and is the provably controllable set to T . See [21] for more details. The results on
upper-semicomputability can correspondingly be used to show that a control problem
is unsolvable.

Where the nondeterminism in the system description represents the effect of en-
vironmental disturbances or noise, the upper-semicomputability results show that the
closure semantics is the appropriate semantics for proving correctness of a closed-loop
system. This may be extremely useful when considering control design of a continuous
plant with a discrete controller.

7. Concluding remarks. In this paper, we have considered the computability
of the evolution of a hybrid automaton, in which input and output data are specified
by arbitrarily accurate approximations to the exact values.
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The main points are summarized below:

1. It is impossible in general to compute the evolution (simulation, reachable
sets) of a hybrid automaton to arbitrary accuracy, and this holds even for
simple classes of hybrid automaton, such as piecewise-constant derivative
systems.

2. The obstruction to computability is due to discontinuities in the temporal
evolution and in the spatial dependence on the initial conditions. Away from
discontinuity points, the evolution is computable. Essentially, the only hybrid
automata for which the evolution can be computed to arbitrary accuracy for
any initial condition are those for which every trajectory starting in a given
mode undergoes the same sequence of discrete events.

3. It is possible to regularize any hybrid automaton such that it is possible to
compute convergent approximations to the evolution from above (“closure
semantics”) or below (“interior semantics”), but the regularizations admit
different solution sets. The regularization of a deterministic system necessar-
ily either is nondeterministic or admits blocking.

4. The regularization using interior semantics cannot handle crossings of guard
sets properly. Instead, we need to use a different regularization “crossing
semantics.” Under a regularity condition on the crossings of the guard sets,
it is possible to compute convergent lower-approximations to the evolution;
otherwise spurious solutions may be introduced.

5. The semicomputability results are valid for general classes of systems, includ-
ing nonsmooth, discontinuous, and nondeterministic systems. Restricting our
attention to a special subclass of hybrid automata does not change what is
possible to compute, but may allow for more efficient algorithms.

6. The framework of “computable analysis” is a powerful machinery for dis-
cussing computational aspects of hybrid automata theory. It provides a clear
notion of what we should be aiming to compute about a given mathematical
object, which can be interpreted in terms of convergent sequences of approxi-
mations. It gives natural topological conditions under which the computation
can be proved to be impossible. It also provides a methodology of proving
computability results using natural mathematical language without having
to resort to the details of ε-δ style proofs.

There are many interesting areas for further research, especially in the analysis of
lower-semicomputability. In particular, it would be useful to have generic verifiable
conditions under which all crossings are detectable. For general systems, it would
also be interesting to give an exact classification of the computability of the evolution
with respect to the arithmetic hierarchy. It would also be interesting to extend this
analysis to other problems, such as verification and control synthesis, and to other
classes of systems. There is some evidence to suggest that stochastic systems with
a diffusion term [17, 8] may have better computability properties than deterministic
systems. It would also be interesting to compare decidability of system properties
in the framework of computable analysis, in which only approximations to the in-
put are considered, with computability in some algebraic framework in which exact
computations are possible. In light of previous work on piecewise-constant derivative
systems [2] and (non-)o-minimal affine systems [38, 14], it seems likely that while
there are specific problem instances which can be decided using algebraic methods,
using exact descriptions does not fundamentally change the class of solvable problems.
Finally, it is vital to develop more efficient numerical algorithms for the computation
of upper- and lower-approximations to the system evolution.
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