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Chapter 1

The complexity of biological systems manifests itself in many features, including
the large number of components involved and the intricate interactions between
these components. As a consequence, reliable predictions can’t be made based on
intuition alone. Computational models can be combined with datasets containing
information on biological parameters and variables such as genes, protein, and
metabolites, to perform in silico simulations of complex biological systems [1].
This serves a variety of roles, including hypothesis testing and generating new
insight in the biological processes that underlie health and disease [2]. Various
computational modelling techniques exist, from mechanistic models to data-
driven approaches, each having their own advantages and disadvantages [3-5].
Data-driven approaches such as machine learning, examine patterns in data
to determine the best combination of input variables that predict the desired
outcomes [6, 7]. Most data-driven approaches, however, are ‘black box’, meaning
that a causal explanation for the prediction is absent. In contrast, mechanistic
models are based on rate equations and describe how quantities of interest change
in time, using an a priori understanding of the underlying biological system [8].
As biological processes are inherently dynamic, mechanistic modelling allows
simulation and insight in complex metabolic systems, such as the glucose-insulin
regulatory system, which includes various organs and tissues and maintains
blood glucose to ensure normal body function [9, 10].

FOOD INTAKE AND GLUCOSE HOMEOSTASIS

In the acute postprandial state, which means the period following meal intake,
the body absorbs nutrients from the gastro-intestinal tract. Carbohydrates are
the body’s primary energy source and are ingested as simple carbohydrates
like monosaccharides and disaccharides or as complex carbohydrates, such as
oligosaccharides and polysaccharides [11]. Various organs, for example the brain,
require a continues supply of the monosaccharide glucose to function properly
[12]. If glucose concentrations in the blood fall too low (hypoglycemia) or rise
too high (hyperglycemia) for a prolonged period of time, it can lead to major
health problems [13, 14]. As such, a tightly-regulated feedback system, consisting
of various hormones and neuropeptides released from the intestine, pancreas,
brain, liver, muscle and adipose tissue, ensures tight control of blood glucose
levels [15].
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GLUCOSE REGULATORY SYSTEM

The main processes involved in glucose regulation are illustrated in Figure 1.
One of the major determinants of how quickly glucose appears in the circulation
following ingestion of a meal is the gastric emptying rate, which is the speed
at which gastric contents leave the stomach after ingestion [16, 17]. The rate of
gastric emptying is mainly regulated by gastrointestinal peptide hormones,
such as cholecystokinin (CCK) and Glucagon-like-peptide 1 (GLP-1) [18-20]. One
of the roles of GLP-1 includes slowing down glucose entry into the bloodstream,
thus reducing postprandial fluctuations in blood glucose levels [21]. However, to
prevent an excessive increase in blood glucose concentrations after meal intake,
the increase in glucose delivery requires a comparable increase in the removal
of glucose from the circulation [22].

The most important hormones involved in blood glucose regulation are insulin,
glucagon and adrenaline [15]. Insulin is a peptide hormone secreted by the B-cells
of the pancreas that facilitates the uptake of glucose to insulin-dependent tissues,
such as skeletal muscle and adipose tissue, and inhibits glucose production in
the liver [23, 24].
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Figure 1. Glucose regulatory system. This figure depicts major processes involved in the
glucose regulatory system. The red arrows indicate the flow of glucose. The blue arrows
indicate the flow of insulin.

Glucose exerts insulin secretion from pancreatic f-cells by inducing a rise in
ATP/ADP ratio, suppressing ATP-sensitive potassium channels and leading to the
activation of voltage-gated Ca? channels. The subsequent calcium influx enables
exocytosis of the insulin granules from the B-cells [25, 26]. Glucagon is a peptide
hormone secreted by the a-cells of the pancreas and plays an important role
in maintaining glucose levels by stimulating liver glucose production [27]. In
contrast to the effects of insulin, glucagon acts as a glucose-mobilizing hormone,
which promotes the conversion of glycogen to glucose (glycogenolysis) in the
liver, stimulates de novo glucose synthesis from non-carbohydrate precursors
(gluconeogenesis) in the liver, and inhibits glucose breakdown (glycolysis) and
glycogen formation (glycogenesis). Circulating glucose acts as the most potent
regulator of glucagon secretion, as hypoglycemia stimulates the pancreatic
a-cells to secrete glucagon, whereas hyperglycemia inhibits glucagon secretion
[27]. Adrenaline is a hormone mainly produced in the adrenal glands and plays
an important role in regulating glucose metabolism [28]. Adrenaline increases
plasma glucose through promoting glycogenolysis in the liver and skeletal
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muscle, gluconeogenesis in the liver, and inhibition of glucose uptake by tissues
such as the skeletal muscle.

Thus, through the influence of various hormones, in particular the actions of
insulin, glucagon and adrenaline, blood glucose is tightly controlled under
different physiological conditions. Whilst providing a simplified overview of
the main processes involved in postprandial glucose metabolism, several other
factors have been shown to influence glucose metabolism, such as amino acids
(AAs). Not all of these factors are well understood, and interactions between
various physiological processes make it even more complex.

INSULIN RESISTANCE: A KEY FACTOR IN GLUCOSE
HOMEOSTASIS

In individuals with insulin resistance, the regulatory system that aims for
glucose homeostasis is not functioning properly [29]. Insulin resistance is
defined as an impairment in the uptake of glucose by the insulin-dependent
tissues, and may lead to the development of type 2 diabetes mellitus (T2DM),
which is characterized by persistent hyperglycemia [29, 30]. One of the major
causes of insulin resistance is obesity, which is the result of an imbalance
between energy intake and energy expenditure [31]. The long-term positive
energy balance contributes to adipose tissue dysfunction, ectopic fat storage
and may induce insulin resistance, in which the muscle, fat, and liver cells
fail to respond normally to the effects of insulin, resulting in a compensatory
increase in insulin secretion from B-cells [32]. Although insulin resistance
often develops simultaneously in multiple organs, its severity and phenotype
may differ between tissues [33]. Skeletal muscle, due to its high rate of insulin-
stimulated glucose uptake, represents an important tissue in the development
of insulin resistance [34, 35]. In individuals with the muscle insulin resistance
(MIR) phenotype, the insulin-stimulated glucose uptake by the skeletal muscle is
markedly impaired [36]. It is believed that this impaired glucose uptake, which
characterizes muscle insulin resistance, results from impaired insulin receptor
signaling and intracellular defects, including impaired glucose transport and
glucose phosphorylation, reduced glucose oxidation and glycogen synthesis
[36, 37]. Another important tissue in the development of insulin resistance is
the liver, which aims to maintain a balance between glucose production and
glucose storage in the form of glycogen [38]. In liver insulin resistance (LIR),
insulin fails to appropriately regulate liver metabolism, resulting in excess
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glucose production [39]. Furthermore, liver insulin resistance causes decreased
glycogen synthesis and increased lipid accumulation [40]. If insulin resistance
is left untreated and B-cell dysfunction is present, hyperglycemia is amplified
leading to the progression to T2DM [41].

THE EFFECTS OF PROTEIN AND AMINO ACID INTAKE
ON GLUCOSE HOMEOSTASIS

Besides carbohydrates, foods contain other nutrients such as fat, protein, and
fiber. Protein and their constituent AAs, which we focus on in the current
thesis, have been shown to have a notable impact on both acute and long-term
postprandial glucose metabolism [42]. AAs can be divided in various categories
(Table 1). Essential AAs are defined as AAs that cannot be synthesized by humans
and must come from the diet [43]. AAs can be glucogenic (i.e. AAs that can be
converted into glucose through gluconeogenesis), and/or ketogenic (i.e. AAs that
are converted into ketone bodies) [44]. Furthermore, there are the branched
chain amino acids (BCAAs) which all have protein anabolic properties (enhanced
protein synthesis and/or a decrease rate of protein degradation) [45, 46].

Table 1. List of amino acids

Amino acid Essential Glucogenic Ketogenic BCAA
v

Alanine
Arginine
Asparagine
Aspartic Acid
Cysteine
Glutamic acid
Glutamine
Glycine

Histidine

SRR NI N N N N NN

Isoleucine
Leucine
Lysine
Methionine

Phenylalanine
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Table 1. List of amino acids (continued)

Amino acid Essential Glucogenic Ketogenic BCAA

Proline
Serine
Threonine
Tryptophan

Tyrosine

AN N N N R N RN

Valine

In most cases, proteins are consumed as part of foods, and not as isolated
ingredients. The digestion of the majority of dietary proteins starts in the stomach
and continues in the small intestine [47]. Through a variety of digestive enzymes,
proteins are broken down into AAs that are absorbed across the small intestinal
enterocytes into the bloodstream. AAs are transported directly to the liver by the
liver portal vein [48]. AAs stimulate glucagon release from pancreatic a-cells to
allow AA uptake and metabolism in the liver, where they are used as substrates
for protein synthesis, nitrogen containing compounds, and gluconeogenesis
[27, 49, 50]. AAs that pass through the liver (mainly BCAAs), are metabolized
primarily in the peripheral tissues (particularly skeletal muscle), through the
effects of insulin release from pancreatic -cells [51-54]. Here, they are used
as substrates for protein synthesis and suppress the breakdown of protein into
smaller polypeptides or AAs (proteolysis) [55]. AAs exert some of their effects
on insulin secretion via B-cell metabolism, allowing a rise in ATP/ADP ratio,

suppression of ATP sensitive potassium (K,.,) channels and activation of voltage-

ATP
gated Ca% channels, leading to stimulation of insulin granule release [56].
Furthermore, several AAs have been shown to have distinct mechanismsleading
up to insulin secretion, as well as exert a synergistic effect on the postprandial
insulin response and attenuation of the glucose response when co-ingested
with glucose [57, 58]. The insulin secretion effect of AA intake has also been
demonstrated in patients with T2DM [59]. In the long term, high protein diets
have been shown to lead to a reduction in body weight, fat mass, and increase in

the glucose metabolic clearance rate [60-62].
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NUTRITIONAL MANAGEMENT OF BLOOD GLUCOSE

Nutritional management of blood glucose levels is an important target in the
prevention and management of metabolic diseases such as T2DM [63]. Dietary
interventions can have significant and clinically relevant effects on blood
glucose modulation. However, a large heterogeneity exists in an individual’s
response to a dietary intervention, which can be attributed to differences in
genetic, environmental, and lifestyle factors [64]. Recent findings indicate
that individuals with distinct metabolic phenotypes, for example, individuals
with MIR or LIR, may have different outcomes regarding glucose homeostasis
in response to dietary macronutrient modulation [65, 66]. The PERSonalized
glucose Optimization through Nutritional intervention (PERSON) study was
designed to investigate the effect of an optimal compared to a suboptimal dietary
intervention, according to tissue-specific insulin resistant phenotype, on glucose
metabolism and other metabolic health outcomes [67]. The participants of this
study were extensively phenotyped before and after the intervention, including
the use of various challenge tests (i.e. oral glucose tolerance test (OGTT) and
high-fat mixed meal challenge). Such challenge tests are widely used in clinical
metabolic research and diabetes drug development, and provide an assessment
of glucose tolerance and B-cell function [68, 69]. In an OGTT, a standard dose
of glucose is ingested orally and blood samples are collected at regular time-
intervals to allow assessment of postprandial glucose and insulin profiles
(illustrated in Figure 2). OGTTs have widely been used for evaluation of B-cell
dysfunction in obesity, prediabetes, and T2DM [70].

14
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Figure 2. Plasma glucose and insulin response following an OGTT. This figure depicts
plasma glucose (red) and insulin (blue) concentrations following an OGTT. Sampling points
are indicated with an asterisk (*).

A mixed meal challenge test consists of a high caloric mixture of carbohydrates,
fat, and protein. As nutrients other than glucose (e.g. protein, and fat) have been
shown to affect glucose homeostasis, these mixed meals induce physiologically
relevant postprandial responses and allow assessment of postprandial profiles
of AAs, triglycerides, non-esterified fatty acids and their interplay with glucose
and glucoregulatory hormones [71].

MECHANISTIC MODELLING OF GLUCOSE HOMEOSTASIS

Physiology-based mechanistic models of the glucose regulatory system, as
introduced before, are able to provide quantitative information on postprandial
glucose and insulin dynamics, whilst taking the underlying mechanisms into
account [10, 72]. Such models are constructed using a bottom up approach, using
a prioriunderstanding of the underlying biological system. The reactions in the
model are described by equations, and the rates at which each reaction occurs
are determined by parameters, often inferred from experimental data [73]. The
estimation of these parameters, by fitting the model simulation to the measured
time-series data, provides a parameter set corresponding to the state of the
underlying system [74].
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The glucose minimal model, developed by Bergman and colleagues [75], was
one of the earliest mechanistic glucose models able to describe the effect of
insulin action on glucose uptake and suppression of liver glucose production
following an intravenous glucose tolerance test. More extensive models, like the
meal simulation model from Dalla-Man and colleagues [9], were able to provide
detailed information on the underlying processes governing glucose utilization
in the postprandial state. The Dalla-Man meal model was parameterized on a
population of healthy individuals and individuals with T2DM using gold-standard
triple glucose tracer data and was approved by the FDA for in silico pre-clinical
trials, for example to test closed loop control systems for Type 1 Diabetes Mellitus
[76]. The Eindhoven Diabetes Education Simulator (E-DES), developed by Anne
Maas and colleagues [10], provided a virtual practice environment for patients
with diabetes, incorporating the most important factors influencing glycemic
control. The E-DES model was developed through combining various models from
literature and allows accurate simulation of glucose and insulin concentrations
following an OGTT in healthy individuals, as well as type 1 and type 2 diabetes
patients [77]. Currently, computational glucose models, such as the E-DES model,
are able to only simulate glycemic responses to glucose ingestion, and do not
include effects of other nutrients such as AAs and protein on glucose regulation.

MACHINE LEARNING

Artificial intelligence, in particular machine learning, has seen a rapid growth
due to increased data-availability and growth of computational power in the
context of data-analysis [78, 79]. In contrast to bottom-up approaches, such as
mechanistic modelling, which rely on pre-existing knowledge of the underlying
system, machine-learning techniques are purely data-driven [80]. Machine
learning involves a broad range of algorithms that perform prediction by
utilizing patterns in the available data [81]. Machine learning is used in a wide
variety of applications, such as in predictive analytics and decision making,
E-commerce, cybersecurity, and healthcare [82]. In the field of nutrition, Zeevi
and colleagues [64] devised a machine learning algorithm, integrating blood
parameters, physical activity, dietary habits, gut microbiota and anthropometrics
to provide a personalized postprandial prediction of glycemic responses to meals.
However, while machine-learning based approaches are useful for prediction,
they only provide limited insight into the biology underlying inter-individual
differences in glucose homeostasis [83]. Combining mechanistic models with
machine learning techniques might provide more detailed insight into the
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biology underlying these inter-individual differences than machine learning
approaches alone.

THESIS OUTLINE

A complex glucose regulatory system is in play to maintain and control blood
glucose levels under different physiological conditions. Current existing
whole-body mechanistic models of the postprandial glucose regulatory system
describe and provide quantitative information on glucose-insulin dynamics
whilst capturing the mechanistic link between glucose and insulin. However,
these models do not include the effect of AAs, which have been recognized as
important factors influencing glucose homeostasis in various health phenotypes.
In addition, these mechanistic models have mainly been applied to the population
level, disregarding the heterogeneity in individual responses. In this thesis, we
use a computational modelling approach to allow (personalized) simulation
of postprandial glucose, insulin, and AA responses following challenge tests
containing AAs or protein in various health phenotypes using a whole-body
mechanistic model of the glucose homeostasis. Furthermore, we explored
whether the addition of a data-driven model could improve the predictive
performance of (personalized) mechanistic models.

The research in Chapter 2 provides a systematic overview of the quantitative
effects of isolated AAs (with and without glucose co-ingestion) and AA mixtures
on postprandial glucose and insulin dynamics in humans with various health
phenotypes. Here, we identified, extracted, and compared time-series data from
intervention studies reporting glucose and insulin concentrations following
acute ingestion and/or intravenous infusion of AAs in healthy adults and those
living with obesity and/or type 2 diabetes. In Chapter 3, we personalized a
physiology-based mechanistic model of the glucose regulatory system (E-DES)
to elucidate the heterogeneity in individuals’ responses following an OGTT
using a large population of overweight/obese individuals from the DIOGenes
study. In Chapter 4, we developed a mechanistic model of the glucose regulatory
system (E-DES-PROT), which incorporates and captures the postprandial effects
of AAs and protein intake. New terms, to account for the effect of AAs on insulin
secretion and liver glucose production, were introduced and the novel model was
applied to postprandial glucose and insulin time-series data following different
AA challenges (identified in Chapter 2) and dried milk protein ingredients, and
dairy products from a randomized, single-blind crossover trial.
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While both “bottom-up” mechanistic and “top-down” data-driven techniques
offer distinct benefits in untangling the complex interactions underlying
disturbances in glucose homeostasis, a combined approach has yet to be
explored. In Chapter 5, we use a sequential combination of a mechanistic (E-
DES) and data-driven modelling approach to quantify individuals’ glucose and
insulin responses to an OGTT, using data from a large observational prospective
population-based cohort, the Maastricht Study. In Chapter 6, we applied the
novel E-DES-PROT model to simulate and understand mechanistic differences
between MIR and LIR, using postprandial glucose, insulin, and AA time-series
data following a high-fat-mixed meal in individuals from the PERSON study. An
overall evaluation of the findings can be found in Chapter 7.
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ABSTRACT

Different amino acids (AAs) may exert distinct effects on postprandial glucose
and insulin concentrations. A quantitative comparison of the effects of AAs on
glucose and insulin kinetics in humans is currently lacking. PubMed was queried
to identify intervention studies reporting glucose and insulin concentrations
after acute ingestion and/or intravenous infusion of AAs in healthy adults and
those living with obesity and/or type 2 diabetes (T2DM). The systematic literature
search identified 55 studies that examined the effects of L-leucine, L-isoleucine,
L-alanine, L-glutamine, L-arginine, L-lysine, glycine, L-proline, L-phenylalanine,
L-glutamate, branched-chain AAs (i.e. L-leucine, L-isoleucine, and L-valine), and
multiple individual L-AAs on glucose and insulin concentrations. Oral ingestion
of most individual AAs induced an insulin response but did not alter glucose
concentrations in healthy participants. Specific AAs (i.e. leucine, and isoleucine)
co-ingested with glucose exerted a synergistic effect on the postprandial insulin
response, and attenuated the glucose response compared to glucose intake alone
in healthy participants. Oral AAs ingestion as well as intravenous AA infusion
was able to stimulate an insulin response and decrease glucose concentrations
in T2DM and obese individuals. The extracted information is publicly available
and can serve multiple purposes such as computational modelling.
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INTRODUCTION

Glucose is a key substrate for many different types of cells and tissues, and as such
plays an important role in human metabolism [1]. Blood glucose concentrations
are tightly regulated to prevent hypoglycemia and hyperglycemia, thereby
ensuring normal body functions. Glucagon and adrenalin are the key hormones
responsible for elevating blood glucose concentration (for example during fasting
or exercise), whereas insulin lowers blood glucose concentrations (for example
following meal intake) [2]. This complex regulatory system involves various
organs, including the gut, pancreas, liver, adipose tissue and skeletal muscle.
Impairment of glucose homeostasis increases the risk of developing chronic
cardiometabolic diseases such as type 2 diabetes (T2DM) and cardiovascular
disease, highlighting the importance of adequate control of blood glucose
concentrations [3].

Amino acids (AAs) are involved in the regulation of insulin secretion through
their effects on B-cells, causing a rise in the ATP/ADP ratio, suppression of ATP-
sensitive potassium channels and activation of voltage-gated Ca2+ channels [4].
The resulting calcium influx allows exocytosis of insulin granules from the
B-cells. The insulinotropic effect of AA administration in humans was studied
already in the 1960s by Floyd and colleagues [5, 6]. An intravenous infusion of an
AA mixture, consisting of essential L-AA increased plasma insulin concentration
and subsequently lowered blood glucose concentrations in healthy people [5].
A similar response was also demonstrated following infusion of single AAs [5,
6]. Interestingly, however, there seemed to be large differences in the capacity
of the various AAs to stimulate insulin secretion [5]. A synergistic effect of
simultaneous glucose and AA ingestion was found in several studies, where co-
ingestion of AAs with glucose increased insulin secretion more than the sum of
the individual effects [6-9]. The insulinotropic effect of AA administration has
also been demonstrated in patients with T2DM. For example, co-ingestion of a
protein hydrolysate/AA mixture with carbohydrates induced a more pronounced
increase in plasma insulin concentrations compared to intake of carbohydrates
alone, not only in healthy people but also in patients with T2DM [9]. Of note, the
metabolic phenotype may influence the magnitude of the glucose and insulin
responses following ingestion of AAs.

Despite decades of research, there is no quantitative overview available that

describes the effects of individual AAs on glucose and insulin kinetics in
individuals with different metabolic phenotypes. These data are needed as
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the type and amount of AA intake, the administration route (i.e. oral versus
intravenous) and study population seems to affect the insulin and glucose
responses to AAs. We hypothesize that AAs exert distinct effects on glucose and
insulin dynamics, which is further influenced by the metabolic phenotype as well
asroute of administration. A better mechanistic understanding would therefore
allow for more targeted nutrition studies. This information could also aid in the
improvement of physiology-based computational models of the glucose regulatory
system, which have been developed and approved for pre-clinical research
[10]. Therefore, we performed a systematic literature search and extracted the
original data, which we made publicly available, to obtain better insight into the
quantitative acute effects of individual AAs on postprandial glucose and insulin
dynamics in humans, taking the metabolic phenotype into account.

MATERIALS AND METHODS

Details of the systematic review were registered in the PROSPERO
International Prospective Register of Systematic Reviews (registration number
CRD42020155067).

Search Strategy

Studies assessing the quantitative acute effects of AAs on postprandial plasma
glucose and insulin concentrations were retrieved from the PubMed database
between February 2018 and February 2020. The search strategy contained
multiple (combinations of) main keywords appropriate for the topic of interest
((“Amino acids” AND “Postprandial” AND (“Glucose” OR “Insulin”)). The detailed
search strategy is provided in the Supplemental File 1. Searches were not limited
by article publication date. From the identified articles, the titles and abstract
were assessed first, and if considered relevant for the present systematic review,
the full text of the article was examined in detail.

Selection Criteria

Criteria for study inclusion were set according to the Population-Intervention-
Comparator-Outcomes-Study design (PICOS) format (Table 1). Eligible studies
included healthy adults as well as people living with overweight/obesity and
T2DM. Only acute studies that evaluated the effects of oral AA ingestion and/
or intravenous AA administration on glucose and insulin concentrations were
included. Studies had to be original research and be written in English. Labels
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were added to the eligible articles, describing the subject characteristics, type
of AA and route of AA administration.

Table 1. Selection criteria.

Inclusion criteria

Exclusion criteria

Population

Intervention

Comparison

Outcomes

Trial design

Type of publication

Healthy adults
Adults with T2DM

Adults with overweight/obesity

Oral AA ingestion
Intravenous AA infusion
Control (i.e. water, saline)

Glucose concentrations (repeated
measurements)

Insulin concentrations (repeated
measurements)

Intervention study
Original research articles

Published in a peer-reviewed

international journal, regardless of

publication year

Children and adolescents

Pregnant females

Animals

Cells

Non-English articles

Review articles

T2DM: Type 2 diabetes mellitus, AA: Amino acid.

Data extraction

Data were extracted from eligible studies and entered into an Excel (2016,
Microsoft Corporation) spreadsheet. The following items were extracted:
bibliographic details (title; authors; year; journal), study population (health
status; number of subjects; sex; age; body mass index (BMI); weight), intervention
(type; dose; method of administration; duration), study design and the outcome
measurements of interest (glucose concentrations; insulin concentrations).
In the absence of exact numerical values for the outcome measurements of
interest in the original articles, figures were digitized using a graph digitizing
software (Graph Grabber version 2.0, Quintessa). After loading the figures in
the digitizing software, the x- and y-axis was set to correctly map the image
pixels to the corresponding data values in the figure. Data points (i.e. means and

their corresponding standard errors or standard deviations) were determined
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by manually clicking them and were subsequently stored in Excel data sheets for
further processing. The extracted data from the 55 studies is publicly available
(https://doi.org/10.34894/RNZI0A) and can serve multiple purposes such as
computational modelling.

Data processing

The extracted data was imported into MATLAB [11]. Measurements units were
converted to mg/dL for glucose and pU/mL for insulin. The iAUC was calculated
according to the trapezoidal rule in MATLAB, and normalized to one minute
by dividing with the time span of the response. The time to glucose and insulin
peaks, and their concentrations were identified from the extracted data by
selecting the data-points with the highest glucose and insulin concentrations,
and their corresponding time points in MATLAB. No statistical analysis was
performed. The mention of significance in this review refers to the statistical
analysis performed in the original studies.

RESULTS

Literature search

The PubMed search identified 10311 unique records (Figure 1). Titles and/
or abstracts were screened, which resulted in the exclusion of 9678 studies.
Three additional records were identified through searching reference lists.
The remaining 636 full-text articles were retrieved and assessed for eligibility
based on the selection criteria (Table 1). From these full-text articles, a total
of 548 articles were excluded. Reasons for exclusion were related to the target
population, intervention, time-scale, outcome parameters, and article language.
An additional 33 articles were excluded due to accessibility restrictions and
could not be retrieved via the university library. Thus, a total of 55 studies were
included in the analysis. In the studies, the effects of L-leucine (n=6), L-isoleucine
(n=1), L-alanine (n=6), L-glutamine (n=1), L-arginine (n=28), L-lysine (n=1), glycine
(n=2), L-proline (n=1), L-phenylalanine (n=1), L-glutamate (n=3), branched-chain
AAs (BCAAs) (i.e. L-leucine, L-isoleucine, and L-valine) (n=4), multiple L-AAs
ingested separately (i.e. L-leucine, L-arginine, L-lysine, and L-phenylalanine)
(n=1) on postprandial glucose and insulin concentrations were determined.
When mentioning the different AAs throughout the present manuscript, with
the exception of glycine that has no enantiomers because it has two hydrogen
atoms attached to the central carbon atom, we refer to the L-isoforms of the
respective AA.
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Figure 1. Flow diagram of the systematic literature search

Leucine

Leucine study details are provided in Table 2 (section A). The time series data and
the calculated kinetic parameters are visualized in Figure 2. The effect of oral
leucine intake (Figure 2-A) has only been examined in healthy individuals [8, 12,
13]. Two out of the three studies showed increased insulin concentrations (AUC
range, 0.85 t0 0.95 puU/mL/min) from baseline [12] and compared to a water control
group (0.28 uU/mL/min) [8]. Glucose concentrations were unchanged compared
to the water control group. The study with the lowest oral leucine dose showed
decreased insulin (1AUC, -1.22 pU/mL/min) [13]. Here, the insulin reached a peak
(5.35 pU/mL at 15 min), followed by a decrease below baseline values.

Kalogeropoulou et al. [8] demonstrated that co-ingestion of leucine+glucose
(Figure 2-B) increased the insulin concentration (iAUC, 21.25 pU/mL/min) more
than the sum of their individual effects (i1AUC, 12.87 and 0.95 yU/mL/min for
glucose and leucine ingestion, respectively), and attenuated the glucose response.
The insulin concentrations increased more rapidly and reached a higher insulin
peak (53.1 yU/mL) after co-ingestion of leucine+glucose compared to glucose
ingestion alone (31.0 yU/mL).

The effect of intravenous leucine infusion (Figure 2-C) has also been examined
in healthy people only [14-17]. Three out of the four studies showed increased
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insulin (IAUC range, 4.47 to 8.90 uU/mL/min) [14, 15, 17], and decreased glucose
concentrations (1AUC range, -2.52 to -6.31 mg/dL/min) compared to baseline. The
study with the lowest intravenous leucine dose did not show increased insulin
concentrations (1AUC, -0.45 pU/mL/min) [16]. To our knowledge, no kinetic data
are available concerning leucine intake in people with obesity and/or T2DM.

32



The impact of amino acids on postprandial glucose and insulin kinetics

TeIIqNIANUY

sardures

pooiq
[eL1a)1y

ureA
urIeaIoy
snoauen)

puey
93 Jo paq
Axerrrded
[esiop
W0y poorq
PazIfelIslay

urea
ULIeaI0J 10
TeIIqNIUY

uraa
urIealoy 1o
[eyNqnILIuyY
uraa
UIIeaI0j I0
[eNqnaaIuY
uraa
urIealoy 1o
1eIIgNIAUY
urea
UrIearog

urea
urIearoj
urea
urreasog
urea
wrIearoj

eWISE[d

wnias

ewserd

rWISE[d

rWISE[d

wnias

wniasg

wnJias

wnias

eWISE[d

rwISe[d

eWISE[d

rWISE[d

ewIse[d

poorg

ewIse[d

poorg

ewIse[d

wnias

wniag

wnias

wniag

poord

poorg

poord

poord

0S1-0

00€-0

Inoy

Inoy

oy

?Inoy

Inoy

?Inoy

0€-0

0€-0

0€-0

0€-0

Al

Al

210

1ex0

210

[e10

210

1e10

Al

Al

Al

Al

39'g

8z

8zve

85z

357+
8L

8L
861
861
361

8st

auronaT

QuIdNaT

aurona

QuIdNaT

QuIdNaT

J9)eM

ENeRlE)

asoonn
+9UTONAT

aurNa
autuereTAULYJ
QursA
aurursay

QUIdNaT

AyiresH

AyqyesH

AyiresH

AqiresH

AyqiresH

AqresH

AyiresH

AqiresH

AyqiresH
AqiresH
AyqiresH
Ayqiresq

AqiresH

1s

1S

1s

1s

6°0L

6'0L

6°0L

6'0L

9'0¥S¢

Ve

Ve

144

Ve

€0+1¢

144

ve

144

Ve

6CC

6°CC

6CC

6CC

8T

€1l

0T

€T

€l

€l

€1l

11

121

11

11

8L6T “UIMIBYS
[sT]
€861 “UOSSNLIT

71l
7861 ‘peIwnqy

[€T1810T TTYsox

[z1] €T0C
“UOSUN[IM

[8] 800Z
‘nornodotadorey

[L1] 0L6T ‘PAOTd

v

Surdures
poorg

Sjudwaanseaw sjuauraInseaur

ursug

?¥soINn[H

(urw)
uonyeanQq

uonjeIISTUTUIPE

Jo anoy

asoq

dnoan

uonIpuod
19[qng

[€2)

ssewtr
£poq
uea]

(€2 0)

WSem

Apog

(u

/B ING (s1f) a8y u

uoned[qng
Jo aeax
‘aoyne 3sary

uor1)d3s

S9IPNIS PIPNIIUT GG A JO SITISTIIIRIRYD T d[qRL



Chapter 2

ﬁmznmumuﬁw euIseld ewseld /NIy 1e10 s0¢ surureny Nazi - 9021 S'9%G°8¢€ 8+5°8¢ 8
ureA
[BIqndLIuYy euIse[d euse|d ANdY 1e10 TWo0¢g I91eM Aypiresy - 9'8¥€'0L T'C¥6'lC  8'G¥0E 8
ureA [s2]
[eNqnIsIuY rwserd rwIseld Moy ®I10 So¢ aurwremn AqiresH - 9'8¥€'0L TT¥6'IC  8'SF0E 8 800T ‘PlEYUAID a
urea
wrearog rWISR[d eused z-0 Al 868 uruery 9s3q0 - 71+68 €¥¢'IE S'€¥8C 9
ureA 0¥
urrearog rUIS®[d rwseld Z0 Al 8¢5 uruery AqiresH - SFES 86T L'0¥TT 6 [¥2] 6861 ‘ouesy
[ez]
- euIseld ewse[d /NIy 1810 S0s QuIuelYy 95990 - 9'6EF1ST - €6¥5CVy 9 €L6T ‘qInuan
- rWISR[d ewse[d Iy e1o 878 auruery NazL - - - 1L-0v 01
- ewIse[d euIserd /MOy 1exo0 85°LE uruery WdazlL - - - CL-0T [U%
- ruIserd rwIserd amoy 810 288°9 aurue[y AqiresH - - - 9%-0z 0T
[zz]
- euIseld BuwIse[d MOy 1e10 88°¢€ QuIuelYy AqiresH - - - 9¥%-0¢ o1 PL6T YINULD
ureA
Teyqnoanuy ruIse[d poord amavy 1exo0 8979 utuery Ayyresq - - - ST S [12] 0861 ‘01eS
urea
urresrog euIseld ewseld /MIVY e10 3611 JQUIUeTY AqiresH - 9°G*5°6S - 7+EC €1 [02] LL6T @s0d
urea
[eIqNIAUY wnias poorg 09-0 AL 301 auTuely Ayqiresq - - - 7€-02 9
uteA [6T]
[eNgnIANUY wniss poord oy ®I10 Sot aurTue[y AqyresH - - - 2€-0C 9 SL6T ‘TuIssoy b]
ureA €CI*S
Teyqnosiuy unJaas euseld NIy 110 - I91eM AqiresH ‘9S 8'0C+18 9'9%8C G'9¥8'€E 6
ureA €TIF
reaqnoLdnuy wnJias ewIse[d aAmIv 1810 85z as0dn[o Aypiresy §9S  8'0C+18 9'9¥87  S'9¥8EE 6
urea 357+ 950dN[H+d AL
Teqnosiuy wnJaas ewseld NIV 1e10 StL umnafost AqyresH ‘9S 8'0C+18 9'9%8¢ S'9¥8'€E 6
urea [RA L [81]
reyqnoajuy wnisg ewserd Ndy 1e10 8L auNI0s] KyresH 98 8'0C+1I8 9'9¥87  G'9¥8'EE 6 8007 ‘[[eNNN q
(3
ssewr EM) uonedNqng
Surpdures sjUdUIdINSEOWN SJUSWIdINSBAUI  (UTUI) UOTIRIISTUTUIPE uonipuod Apoq IYSOM (;ux FORGE)Y
poorg urnsuy asoon[n uoneinq Jo ainoy asoq dnoxn 199[qng  uea1 Apog /SN ING (s1h) a8y u ‘Ioyine }sIry  UoI1dag

(PaNUNIU02) SATPNIS PAPNIIUT GS a1 JO SITISTIAIdRIRY) “Z d[(RL )



The impact of amino acids on postprandial glucose and insulin kinetics

(sardures
poorq
PpazI[eLIa)ae)
ureA puey
TesIop e ut
uondAIIP paurenun
apeidonay BwIse[d ewIse[d 06-0 Al 8%'89 aururday -AqiresH - 9L (YA (44 L [1€] 0661 ‘B[
urea
Teiqnaauy poord poord /MOy Al TuE aurfes AqiresH - - 6°0¥1'6C T'€¥€8C L
ureA [o€]
TeyqnoaLuy poorg poord 0€-0 Al 37€ auruIday AqiresH - - 6'0¥1'6C T1'€¥€8C L £00¢ ‘orisoag
urea
[e3qnaauY - poord 0€-0 Al 80¢ sururdry AqiesH - - - se-¥z %I [62] L661 ©0110)
[82]
urea [esioq BWSE[d Buseld 0€-0 AI S0¢ auruIsay AqyresH - 8'T+L9 7'0%€T 152744 0T L66T ‘ouer[Snin
- wniss wnaiss |Indy 1810 Tao0e I91eM AqiresH - 8'9¥8'9S ¥'C¥0'1C LE¥S0€ 8
- urnag wnJiag oy [®10 8. asoonyn Kpresy - 8978'9S ¥'ZF0TIC L'EFS0E 8
35+ 9s0oN[H+
- wnuiss wnaIas Moy 1e10 S0¢ auIuIs1y AyyresH - 8'9¥8'9S  ¥'CF0OTC L'€FS0E 8
- wniss wnuias /Moy 1e10 80¢ auruIs1y AqiresH - 8'9¥8'9S  ¥7¥0'IC L€¥S0¢ 8  [LTl€T0CT ‘Suel
urea
waearog urniss ewISeld 1oy [e10 - Ialem Aypresy 19 SL §076'ST 7SI 6
urea
urrearog urmnias rwise[d oy 810 8sz asoonyn Aypiresy 19 SL S'0¥6'szc 7SIz 6
urea 85z+ 9s0dN[H+
urresroq umnJaas 'wseld /INdVY 1e10 8901 aurursay AqiresH 19 SL S'0¥6°ST 7512 6
uraa [92]
urIeaiog urniag eurse[d amoy 810 8901 autuifay AyiresH 19 SL §'0¥6'SZ  ¢S-IZ 6  C00Z ‘uouuen ki
ETN
Teaqnosiuy BWSEId 'use(d MOV 1e10 Twoo0e I9leM 9830 - 8FVI+90T ¥ ¥+S¥E 8'6¥6€ 8
urea
rexqnaxnuy BwISeld ewIse[d ?/INdy 1810 S0¢ surureind 9830 - 8'FY1+90T ¥ ¥+S¥E 8'6¥6¢€ 8
ureA VT
Teyqnoanuy BuIse|d rwseld ?/INdy 1e10 Twooe I9leM Nazli - 9021 §'9%9°8€ 8+59°8¢€ 8
()
ssewt (S1) uonyedrqng
Surpdures SJUAUIAINSEOWI SJUIWIAINSBAUWI  (UTUI) UOTIRIISTUTWIPE uonipuod Apoq IYSOM (cux FORCEYY
poorg ursug asoonn uoneanq Jo ainoy asoq dnoan 109[qng  uea] Apog  /SM)INA (saf)#8y u  ‘ToymeIsIry UOIIIAS

(PONUTIUO0D) SaTPNIS PAPNTOUT GG 93 JO SOTISTIIoRIR) 'g S[(eL



Chapter 2

wieazod wnias poord 0%-0 Al 851 aurursay AqiresH - - - Ge-8T 9
uraA
wIealog wniss poord 0%-0 Al 8s1 auTuIsIy AyyesH - - - se-81 ¥ [6€]6961 @1dng
- wnias poord 0%-0 Al 86'¢ auruiday AqiresH - - - - 9
- wnias pooig 0%-0 AL 3s1 aurursay AqresH - - - - €1 [8€] 8961 ‘21dnq
[L€]
- euwIse[d poorg 0€-0 Al 3o0¢ aurursay AqiresH - - - - 6 $L61 ‘108199
LNETN
urIesaxoj
‘urnsuj
poorq
Axernided [9€]1 9002
195009 ewserd poord 0€-0 Al So¢ aururday AqiresH - - 6¥¢ 6¢ ST ‘Velqressed
LIETN
[eNqnaauy ewise[d poorg S-0 AL 80¢ aurursay Aqiresy - - - - ST [S€]19L6T “eanuiy
SNOUsA
oneday
urnsug i23]
Teraayae 6L61 ‘UrexxeNy
:95000[9 - poord 0€-0 Al LG aurursy AyiresH - - - wie 6 -yosnierg
uraA
[eagnIauy - poorg 02-0 Al E(14 autursay AqresH - - - 0S5-€C 9
uraA
[eNqnda Uy - poord 02-0 AL 80z auruIsay AqiresH - - - 05-€2 9 [€€l TL6T ‘UIAdT
ureA
[eroydrrad - eurse[d 0€-0 Al - aures AqiresH - €¥YI¥5'69 - - 8
ureA 43|
rezaydiaad - euwIse[d 0€-0 Al Sve aurtursay AqiresH - €FI¥569 - - 8  40L61 Auusg
(sardures
pooiq
PoOZI[eLId)IR)
ureA puey
TesIop e ur
UoTIdIIP paureal
apexdonay ruISe[d ewIseld 06-0 Al 3¢9 auruIsay -AqireaH - oL 9’12 [¥4 L
€3]
sseur [€3)) uonednqnd
Surpdures sjUdUIdINSEOWN SJUSWIdINSBAUI  (UTUI) UOTIRIISTUTUIPE uonipuod Apoq IYSOM (rux Jo Ieax
poorg urnsuy asoon[n uoneinq Jo ainoy asoq dnoxn 199[qng  uea1 Apog /SN ING (s1h) a8y u ‘Ioyine }sIry  UoI1dag
(panuUIIuo0d) SATPNIS PIaPNIUIL GG 9] JO SITISLILIdeIRY) ‘g d[qel

o



The impact of amino acids on postprandial glucose and insulin kinetics

[6¥]
- - poorg 0€-0 AL S0¢ aurursay NAzL - 9'€¥0°LS - €€¥6'8S ¢TI 700z ‘ewileey
ureA [87]
[eNqnIsIuY rwserd rwIseld 0%-0 Al 80z autuIday NAzL - S8 - 34 9 9L6T ‘upsey
[L¥]
urea [esioq rwise(d ewseld 0€-0 Al S0¢ autuIday INAZL - 67¥8L  LOFI'8T  8'0FLF 0T 9661 ‘®I[PJIBIN
uraA
[eNgnIAIUY wniag rwIseld 0€-0 AL £89°0S aurursay 98370 - - 9'7FE'8E TS €T L
ureA [97]
[eIqnIaIuY unias ewiseld 0€-0 Al 8T°LT aurturday AyiresH - - €T79°07  2€9Z L 9661 ‘OLIBIIBIN
ureA
[eagnIauy euIserd poorg 0€-0 Al 8€°C¢ aurursay NAzL - - - 1L-8% L
sardures
poorq [s¥]
SNOUIA wnisg poord 0€-0 AL 8€°2¢ auTuIs1y AqresH - - - 0£-S7 6 S86T ‘TIowreme)]
sordures
poorq
SNOUIA wnisg poorg 0€-0 AL L aurursay NAzL - 6¥99 - €¥LS 9
sardures
poorq (i47]
SNOUBA wniss pooid 0€-0 Al S0¢ auruIday AqiresH - £%99 - 157 0T L96T ‘syaeds
uraA
[eagnIauy euserd poorg 0€-0 Al 85°€€ aurursay NAzL - - - 0L-8% S
urea [e7]
[eNqnIaIuy rwseld poord 0€-0 Al 8€°2¢ aurtursay AypiesH - - - §€-S7 6 0861 ‘TIoweme)]
LETN
[eryoelg ewrse|d poord 0€-0 AL 288°62 aurursay INAZL - - - €GI¥G9E 9
urea [zv]
[eryoerg rwise|d poorg 0€-0 AL 86'LT autursay AqiresH - - - PFF9°0€ L PL6T OTpuSyd
[1%]
- ewse[d poorg 0€-0 Al 80¢ aururday AqiresH - - - - 8 7L6L ‘®pauyo
ureA [o7]
LI CUREI ewse[d ewise[d 0€-0 Al 88°T¢ aurursay AqiresH - - - 8S S 100¢ “TdquIn
(€3]
sseur [6>))] uonednqnd
Surpdwres  sjudWIdINSEIWI SJUWIdINSEAIWI  (UTWI) UOTIRIISTUTWIpPR uonipuod Apoq WYSoM (zux Jo xeax
poorg urmsuy asoon[n uoneanq Jo anoy asoq dnoan 109[qnsg  ueay Apog /1SN ING (sak)a8vy u ‘aoyne IsIry  uordag

(PONUTIUO0D) SaTPNIS PAPNTOUT GG 93 JO SOTISTIIoRIR) 'g S[(eL

37



Chapter 2

urresrog wnias rWISE[d anay 18I0 39 aurjoxd AqireoH €S 08 €T 8T 8 002 ‘TTeNnN H
sardures
pooiq
STIOUBA wnJisg poord NIy e1o 852z aunAD AyqiresH - - - 0L-0C 61 [9S]8L6T ‘Tesey
ureA
wIearoj wnias rWISE[d anay TeI0 - I91eM AqiresH 19 SL 5'0%6'SC 7512 6
ureA
urrearoq wnass BwIse[d /NIy 1810 85z 9s0oN[H AqiresH 19 SL S'0¥6°SC 512 6
urea 852+ asoonnH
urres1o wnissg ewse[d amay 810 39% +AUDIA[D AqresH 19 SL §0%6'ST  TSIT 6
ureA [sS]
wrearoq unJrss 'wseld /NIy 1810 89'% QUIIATD AqresH 19 SL S'0¥6°S¢ ¢S-1¢ 6 200Z ‘uouuen o
ETN
[eIqnoaIuy wnas wnias amoy 1810 - I9)eM AqireaH 09 08 97 0¢ 3
ureA
TeyqnIauUy wniag wnJIas anay 18I0 35z 9s0on[H AqireoH 09 08 97 0g €T
uteA 857+
[eNqnIsIuY wniag wniag amoy 810 81T esoonpo +dursAT  AyiesH 09 08 97 3 e1
ureA [¥S]1 6002
TeIqnILIUY wnaiss wnaiss ENbav 1e10 311 QuIsAT Aqireay 09 08 92 0¢g ¢1 nornodoiagorey E
ureA [es]
[eNqnIaIuy wniss wnias 1-0 Al 8¢ aurursay 98370 - LTT-SET - 0792 S 0861 “I181[eM
[zs]
- umnJisg euIsed 0€-0 Al 8¢°6¥% autuIday 98970 - - - - 9  L661 ‘OLIBIIR
(poorq
snouaa
Ppazifelialie)
UTaA [BISTP [1S1 1002
urrearoy ewised ewise[d 0€-SL°0- Al S0¢ aurturday 98370 - - 61729  TFHF ¥ ‘Tenuadie)
ETN
[eaqnoalue
urmsug
poorq
Kxerrides [os]
:9500N[D rwiseld poord 0€-0 Al S0¢ aurtuiday INAZL - - - 6'S¥Z’€9 S SL6L ‘BpauyQ
(8)
sseur EM) uoned[qng
Surpdwres  sjUdWIdINSLIWI SJUdUIdINSLIWI  (UTWI) UOTIRIISTUTWIPE uonrpuod Apoq IYSom (@11 Jo aeax
poorg urnsuy asoon[n uoneinq Jo ainoy asoq dnoxn 199[qng  uea1 Apog /SN ING (s1h) a8y u ‘Ioyine }sIry  UoI1dag

(PaNUNIU02) SATPNIS PAPNIIUT GS a1 JO SITISTIAIdRIRY) “Z d[(RL ®



The impact of amino acids on postprandial glucose and insulin kinetics

ureA [T9]
reyqnoanuy BWISe[d - NIV e1o 3511 |jewreIn(H Ayireay - 6'9L - 92 6 000 ‘weyern
(DS Jo
PeaISUl aPLIOTYD
wnipos 8¢
Bururejuod)
EIRITENN
- BuIse|d 'uIse(d /MOy 1e10 Twooe paloaey p1od AqiresH - SL¥L6L  8TF1L'ST  T'P*¥9'ST 8
[09]
- BWSEId euIseld /NIy 1e10 8Lzt ajewreIn(d AqiresH - S’LFL6L  8'TFI'ST  THF9'ST 8 9661 ‘WONSUId]
(sernsded
DS 8yl utse
suonyzodoad
aures ay)
uroeN
gururejuoo)
uraa sarnsded
1eyNqnIANUY wnas wnias amoy 1810 - urjeren AqireaH - 677'6L ¥'7¥S7  6'1F6°'€T 6
urea [6s] €102
[eaqnosiuy wnJras wnaas MV 1e10 86°1T ajewreIn(d AqiresH - 6+7°6L A4 6°'1¥6'€C 6 ‘ouenseqes 1q [
ureA
1eyNqnINUY wnas euwse[d anoy 1810 - I9)eM AyqiresH 6S - 24 92 9
ETN
TeNqnIAUY wnisg rwISe[d amoy 1810 85z 9s0on[H AqireaH 6S - 4 92 9
urea g7+ 9soon[n
[eNqnaaIuy uniss ewse[d aInoy 810 816 +duruerelfusyd  AyieeH 6S - 44 97 9
ureA [8¢]
[eIqnaaIuy wnas euse[d amoy 1810 316 suruerefAuayd  AyifesH 6S - 44 92 9 9002 ‘[leNNN 1
ureA
wIearoj wnias rWISE[d amoay 18I0 - I91eM Aqiresq €S 08 €T 82 8
[ETN
wIealrog wnas ewse[d Ellb 1810 85z 3so0an[n AqireaH €S 08 €T 8T 8
ETN 9s0on[H
urreaxoj wnaiss rwIse[d ENbav 1e10 857+89 +ourI[o1d Aqireay €g 08 [¥4 87 8
(€3]
sseur [6>))] uonednqnd
Suridwres  sjudUIOINSEAUI SJUSUIAINSEAWI  (UTWI) UOTIBIISTUTWIPE uonipuod Apoq WYSoM (;wx Jo aeax
pooig urnsug asoon[n uoneanq Jo ainoy asoq dnoxn 193lqng  uea1 Apog /SM) ING (s1h) a8V u ‘IoOyINe ISIL] UOTIIAS

(PONMUTIUO0D) SaTPNIS PAPNTOUT GG 93 JO SOTISTIIoRIR) ‘g S[(eL

39



Chapter 2

(sordures
poorq
snouaa
PpazZI[erIalie)
ureA puey
Tes1oq

(sardures
poorq
snouaa
PazZI[erIalie)
ureA puey
Tes1oq

ewse[d poorgd 015-0 Al 85¢°9T

ewrseqq poorg 015-0 Al 85°81

Sr1F

wnisg euse[d 021-0 Al L0g

wnJias rwIsed Inoy 1’10 -

St

wnias rwIse[d Inoy 1’10 TL0E

rWISe[d ewIse[d Inoy 1’10 35

pWISE[d ewIse[d oy 1’1o 31

(aUTONATOST pUE
UTONI ‘duI[eA
JO dINIXTW
Jejowrrnba)
vvod

(3UTONATOST puEe
uTONa ‘dureA
JO dINIXTW
Jerowrrnba)
vvod

(durrea
%ES ‘BUTONI[OST
%P uronay
%EY) VVOd

(Koewrxeyd
[eydsoq
Ayszaatun
Aq paxedaad
‘ansded
uneras ur
9so[NI[I[AYIaUT)
a[nsde) uneen

(aurrea
%S ‘OUIINA[0ST
%S¢ ‘ouTInay
%05) VVod

(duIrea :2uIINa|
: 9UTINI[OST
10J7T:€T

T Joonex
WS1eM) VVIL

(duIrea :2uIINa|
1 9UTINI[OST
10J7T:€T

T Joonex
WS1eM) VVIL

rex

ApresH 7Ty

sex

AqyesH  9L¥

AqiresH -

Ayqiresq -

AyiresH -

AyiresH -

AyiresH -

€EFLTL  L'0FSYT  T'TFLOL

TYFSVL 1+¥'¥¢ 8'0+%'€C

9°CFL'IL - V'1+8°SC

9'CFLIL - 7'1¥5°SC

9CFLIL - ¥1+5°5C

L'6T S¢-T¢

€¥19 L'6T S¢-T¢

(4"

(45

8T

8T

8T

w0

%91
0107 ‘Bedie],

[€9] LT0T ‘EploD

[29] 1107 ‘SuryZ .

Surpdures
poord

SJUIUWIAINSEIWI SIUIUIIINSBIUL
urnsug asoon[

(utur)
uonexnq

uonjeIsiuTUIpe

Jo a1noy asoq

dnoan

(3
sseur
Apoq
uea

uonIpPuU0d
walqng

(€20)
Sem
Apog

(@

/8M) INE (s1f) a8V u

uonedIqnd
JO xedx

‘Ioyine }sIry  UoI1dag

(PaNUNIU02) SATPNIS PAPNIIUT GS a1 JO SITISTIAIdRIRY) “Z d[(RL

(=]
<



parizodaiiou eie( :- ‘syuedroniaed Jo Joquinu :u ‘spIde ouruIe Ureyd-payoueig

1VVO4 ‘sni[ew sa1aqerp g 9dAL (NAZL ‘SnousaAeIIu] (A ‘Xopu] SSBIN Apod :IINF ‘SoneA sa1Ias auIrl SUISSTUL 01 aNP PIPN[IXd 9JI9M S123[qNS OM L,
‘[89] se[ewIa) pue safewW 10J YS9y aeIaA® U0 Paseq parewnsd ¢ *[L9]

SO[RWIdJ PUE SI[BWI 10] Sa[q el W ST1aM/1yS1aY Uo paseq parewnisy ; ‘[99] sa[euraj pue sa[eur 10J eaxe adeJans Apoq a8eIaAe ) Uo paseq pajewnsy ;

The impact of amino acids on postprandial glucose and insulin kinetics

(9UTONATOST pue
aurINay ‘aurrea
JO dIMIXTW
sordures Jejowrrnba) [s9]
[e1I81IY rwIse[d poord 08T1-0 Al 8h'¢ vvad AyiresH - - - - 0T 0661 ‘PIeNOT
(sardures
poorq
snouaa
PpazIferIalae)
ureA puey TeF
[estoa BuIse[d poord 01S-0 Al - aurfes Aqiresy (44 €ECFLCTL  L0FSYT  T'TFLOL T1
(sardures
poorq
snouaa
PpazIfelIa)ae)
ureA puey g'eF
Testoq ruIse[d poord 01S-0 Al - aurfes AqiresH 9Ly TYFSYL 1+¥'v¢ 8°0¥v'€C Tl
()
ssewt (S1) uonyedrqng
Surpdures SJUAUIdINSEOWI SJUIWIAINSBAUI  (UTUI) UOTIRIISTUTWIPE uonrpuod Apoq IWYSoM (;wx Jo aeax
pooig urnsug asoon[n uonjeanq Jo ainoy asoq dnoxn 193lqng  uea1 Apog  /SM)ING (S1f)a8y u  ‘IoyIneISII] UOIIAS

(PONMUTIUO0D) SaTPNIS PAPNTOUT GG 93 JO SOTISTIIoRIR) ‘g S[(eL

41



Chapter 2

Figure 2. Leucine infograph consisting of study details with postprandial glucose and
insulin time-series data and iAUC after oral leucine ingestion (A), leucine co-ingested
with glucose (B), and intravenous leucine infusion (C) in healthy individuals. No data are
available for T2DM patients, and obese individuals.
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The impact of amino acids on postprandial glucose and insulin kinetics

Isoleucine

Isoleucine study details are provided in Table 2 (section B). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure 1.
Nuttall et al. [18] demonstrated that oral isoleucine ingestion alone (Supplemental
Figure 1-A) had no significant effect on insulin concentrations, but decreased
glucose (1IAUC, -4.15 mg/dL/min) compared to ingestion of water (iIAUC, 0.30 mg/
dL/min) in healthy individuals. Co-ingestion of isoleucine+glucose (Supplemental
Figure 1-B) increased the insulin concentrations 1AUC, 21.38 yU/mL/min) more
than the sum of their individual effects (iAUC, 19.0 and 0.00 pU/mL/min for
glucose, and isoleucine ingestion respectively), and attenuated the glucose-
stimulated glucose response in healthy individuals [18]. To our knowledge, no
kinetic data are available concerning intravenous isoleucine infusion, nor for
isoleucine intake in people with obesity and/or T2DM.

Alanine

Alanine study details are provided in Table 2 (section C). The time series data and
the calculated kinetic parameters are visualized in Supplemental Figure 2. The
effect of oral alanine ingestion has been examined in healthy individuals [19-22],
T2DM patients [22], and obese individuals [23] (Supplemental Figure 2-A). All four
studies showed increased insulin concentrations (iAUC range, 1.01 to 10.53 pU/
mL/min) from baseline following oral ingestion of alanine in healthy individuals.
Alanine was found to lower glucose concentrations (1AUC, -3.33 mg/dL/min) in
one study [21] that had the highest alanine dose. Genuth et al. [22] demonstrated
that the effect of oral ingestion of alanine on insulin is dose-dependent, with high
dosing (33.8g) leading to a larger postprandial insulin response (1AUC, 10.53 pU/
mL/min) compared to low dosing (6.8g) (i1AUC, 1.01 yU/mL/min). Plasma glucose
concentrations were unchanged in both interventions, with the exception of
a slight but significant decrease in glucose concentrations 240 min after oral
ingestion for the low alanine dose. The initial insulin response to oral alanine
ingestion was similar in healthy individuals and T2DM patients, but the insulin
concentrations remained elevated over a prolonged period of time in the latter
[22]. Glucose concentrations were decreased (1IAUC range, -12.99 to -12.29 mg/dL/
min) from baseline in T2DM patients. Oral ingestion of alanine also increased
insulin (1AUC, 42.67 pU/mL/min), and decreased glucose concentrations (1AUC,
-10.49 mg/dL/min) from baseline in people with obesity [23]. To our knowledge,
no kinetic data are available concerning co-ingestion of alanine with glucose in
individuals.
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Additionally, the effect of intravenous alanine infusion was examined in healthy
[19, 24] and obese individuals [24] (Supplemental Figure 2-C). Rossini et al. [19]
showed that, in contrast to oral alanine ingestion, intravenous alanine infusion
did not alter insulin and glucose concentrations from baseline. Asano et al.
[24] showed increased insulin concentrations in both obese participants (iAUC,
12.02 pU/mL/min) and healthy individuals (iAUC, 3.42 pU/mL/min). Glucose
concentrations were also increased, despite not being different between groups.

Glutamine

Glutamine study details are provided in Table 2 (section D). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure 3.
Greenfield et al. [25] demonstrated that oral ingestion of glutamine increased
insulin concentrations compared to ingestion of water only in healthy, T2DM
and obese individuals (Supplemental Figure 3-A). The effects found were most
pronounced in T2DM individuals (1AUC, 13.35 and -0.23 pU/mL/min for glutamine,
and water ingestion, respectively), intermediate in obese individuals (iAUC,
6.16 and -2.73 pU/mL/min for glutamine, and water ingestion, respectively), and
modest in healthy individuals (iAUC, 1.62 and -1.06 pU/mL/min for glutamine, and
water ingestion, respectively). The glucose concentrations were comparable to
water ingestion in these groups. To our knowledge, no kinetic data are available
concerning individuals co-ingesting glutamine with glucose, nor for intravenous
glutamine infusion.

Arginine

Arginine study details are provided in Table 2 (section E). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure
4. The effects of oral arginine ingestion have been investigated in healthy
individuals only [26, 27] (Supplemental Figure 4-A). One out of the two studies
[27], with the largest oral arginine dose, showed increased insulin concentrations
(1AUC, 1.41 pU/mL/min) compared to water intake (1AUC, 0.06 pU/mL/min), with
no significant effect on glucose concentrations.

Co-ingestion of arginine+glucose (Supplemental Figure 4-B) resulted in a
similar iAUC for insulin compared to glucose ingestion alone and attenuated
the glucose-stimulated glucose response [26]. Despite the lower insulin peak, the
insulin concentrations remained elevated for a longer time after co-ingestion of
arginine+glucose. Tang et al. [27] showed a non-significant increase in insulin
concentrations when glucose was co-ingested with arginine (iAUC, 28.62 pU/
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mL/min) compared to glucose ingestion alone (1AUC, 19.05 pU/mL/min). Glucose
concentrations were unchanged.

The effect of intravenous arginine infusion has been examined in healthy
individuals [17, 28-46], T2DM patients [42-45, 47-50], and obese individuals [46,
51-53] (Supplemental Figure 4-C). All twenty studies [17, 28-46] on intravenous
arginine infusion in healthy individuals showed increased insulin concentrations
(1AUC range, 1.58 to 45.75 yU/mL/min) from baseline. Glucose concentrations
increased (IAUC range, 1.79 to 18.65 mg/dL/min) from baseline in fourteen studies
[17, 28, 29, 31, 33-35, 38-43, 45]. Four additional studies showed an increase in
glucose concentrations in the beginning of the study followed by a drop below
baseline, resulting in a negative iAUC [36, 37, 44, 46]. Two studies [30, 32] included
an intravenous saline infusion control group and showed increased insulin
concentrations after intravenous arginine infusion (1AUC, 11.42 and 25.98 pU/
mL/min, respectively) compared to intravenous saline infusion (iAUC, -0.64 and
5.33 uU/mL/min, respectively). Broglio et al. [30] also showed increased glucose
concentrations (iAUC, 4.45 mg/dL/min) after intravenous arginine infusion
compared to intravenous saline infusion (1AUC, -1.64 mg/dL/min), however no
dynamic data were provided for both insulin and glucose. Dela et al. [31] found
that intravenous arginine infusion increased insulin and glucose concentrations
from baseline in trained and untrained, healthy individuals, with lower insulin
concentrations in trained males 1AUC, 18.40 pU/mL/min and 45.75 pU/mL/min,
for trained and untrained individuals respectively). The glucose concentrations
did not differ between the two groups.

All eight studies [42-45, 47-50] investigating intravenous arginine infusion in
T2DM individuals showed increased insulin 1AUC range, 4.09 to 21.66 pU/mL/
min) and glucose concentrations (iAUC range, 5.00 to 29.75 mg/dL/min). Three
studies [43-45] demonstrated that insulin responses were lower in T2DM patients
(1AUC range, 4.09 to 13.17 pU/mL/min) compared to healthy individuals (iIAUC
range, 21.84 to 31.25 yU/mL/min) during intravenous arginine infusion. Efendi¢
et al. [42] demonstrated a slightly lower insulin response in T2DM patients
(1AUC, 21.66 pU/mL/min) compared to healthy individuals (1AUC, 22.49 pU/mL/
min) who received intravenous arginine infusion, but the insulin concentrations
remained elevated over a prolonged period of time in T2DM patients. Glucose
concentrations were increased from baseline in both healthy individuals GAUC,
5.04 mg/dL/min) and T2DM patients (1AUC, 8.44 mg/dL/min). All four studies [46,
51-53] on intravenous arginine infusion in obese individuals showed increased
insulin (IAUC range, 6.10 to 22.07 uU/mL/min) and glucose concentrations (AUC
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range, 1.37 t0 9.08 mg/dL/min). Maccario et al. [46] demonstrated that the arginine
induced insulin response was higher in obese participants (iAUC, 22.07 pU/mL/
min) than in healthy individuals GAUC, 8.30 uU/mL/min). Glucose concentrations
did not decrease below baseline values in obese participants (iAUC, 1.60 mg/dL/
min) compared to healthy individuals (1AUC, -3.20 mg/dL/min).

Lysine

Lysine study details are provided in Table 2 (section F). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure
5. The effects of oral lysine ingestion [54] (Supplemental Figure 5-A) and
intravenous lysine infusion [17] (Supplemental Figure 5-C) were examined in
healthy individuals. Kalogeropoulou et al. [54] demonstrated that oral ingestion
of lysine increased insulin (iAUC, 0.67 pU/mL/min) and decreased glucose
concentrations (iAUC, -1.73 mg/dL/min) compared to individuals that ingested
water (1IAUC, -0.62 yU/mL/min, 0.35 mg/dL/min). Co-ingestion of lysine+glucose
(Supplemental Figure 5-B) resulted in a similar iAUC for insulin compared to
glucose ingestion alone and attenuated the glucose-stimulated glucose response.
However, insulin concentrations increased more rapidly and reached higher
peak insulin concentrations (38.7 yU/mL) compared to glucose ingestion alone
(35.4 uU/mL).

Intravenous lysine infusion (Supplemental Figure 5-C) increased insulin 1AUC,
8.83 uU/mL/min) and decreased glucose concentrations (1AUC, -2.23 mg/dL/min)
from baseline in healthy individuals [17]. To our knowledge, no kinetic data are
available concerning lysine intake in people with obesity and/or T2DM.

Glycine

Glycine study details are provided in Table 2 (section G). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure 6.
The effects of oral glycine ingestion have been examined in healthy individuals
[55, 56] (Supplemental Figure 6-A). One out of the two studies showed increased
insulin concentrations (1IAUC, 2.29 pU/mL/min) compared to water (1IAUC, -1.66
uU/mL/min), with no change in glucose concentrations [55]. Co-ingestion of
glycine+glucose (Supplemental Figure 6-B) resulted in a similar iAUC for insulin
compared to glucose ingestion alone and attenuated the glucose-stimulated
glucose response. However, insulin concentrations increased more slowly and
reached lower peak insulin concentrations (76.7 uU/mL) compared to glucose
ingestion alone (92.4 pU/mL). To our knowledge, no kinetic data are available
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concerning intravenous glycine infusion, nor for glycine intake in people with
obesity and/or T2DM patients.

Proline

Proline study details are provided in Table 2 (section H). The time series data and
the calculated kinetic parameters are visualized in Supplemental Figure 7. Nuttall
et al. [57] demonstrated that oral ingestion of proline (Supplemental Figure 7-A)
increased insulin (iAUC, 0.46 uU/mL/min) compared to intake of water (iAUC, -0.99
uU/mL/min), with no change in glucose concentrations in healthy individuals. Co-
ingestion of proline+glucose (Supplemental Figure 7-B) resulted in a comparable
1AUC for insulin compared to glucose ingestion alone, and attenuated the glucose-
stimulated glucose response. However, insulin concentrations increased more
rapidly and reached higher peak insulin concentrations (41.2 yU/mL) compared
to glucose ingestion alone (33.0 pU/mL) in healthy individuals. To our knowledge,
no kinetic data are available concerning intravenous proline infusion, nor for
proline intake in people with obesity and/or T2DM patients.

Phenylalanine

Phenylalanine study details are provided in Table 2 (section I). The time series
data and the calculated kinetic parameters are visualized in Supplemental Figure
8. The effect of oral phenylalanine ingestion [58] (Supplemental Figure 8-A) and
intravenous phenylalanine infusion [17] (Supplemental Figure 8-C) has been
examined in healthy individuals. Nuttal et al. [58] found that oral phenylalanine
ingestion increased insulin concentrations (1AUC, 3.88 pU/mL/min) compared to
water (1AUC, -1.52 pU/mL/min), while glucose concentrations remained unaltered.
Co-ingestion of phenylalanine+glucose (Supplemental Figure 8-B) resulted in a
similar iAUC for insulin compared to glucose ingestion alone, and attenuated
the glucose-stimulated glucose response. However, insulin concentrations
increased more rapidly and reached higher peak insulin concentrations (64.8
uU/mL) compared to glucose ingestion alone (49.3 uU/mL). Finally, intravenous
phenylalanine infusion increased insulin (1AUC, 6.48 uU/mL/min), and decreased
glucose concentrations (iAUC, -2.89 mg/dL/min) from baseline in healthy
individuals [17]. To our knowledge, no kinetic data are available concerning
phenylalanine intake in people with obesity and/or T2DM.

Glutamate

Glutamate study details are provided in Table 2 (section ). The time series data
and the calculated kinetic parameters are visualized in Supplemental Figure 9.
The effects of oral glutamate ingestion have been examined in healthy individuals
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only [59-61] (Supplemental Figure 9-A).Two out of three studies showed that
oral glutamate ingestion increased insulin concentrations (1AUC range, 1.95 to
3.80 puU/mL/min) from baseline [60, 61]. Fernstrom et al. [60] showed increased
insulin concentrations (1IAUC, 1.95 uU/mL/min) after oral glutamate ingestion,
compared to the control, whereas the control (a cold flavored vehicle containing
3g sodium chloride instead of glutamate) did not (iAUC, -0.95 pU/mL/min).
Glucose values were not reported. Di Sebastiano [59] showed a non-significant
increase in insulin 1AUC, 1.70 pU/mL/min) compared to the control group (gelatin
capsules containing NaCl) (iAUC, 0.21 pU/mL/min). Glucose concentrations were
unchanged compared to the control group. To our knowledge, no kinetic data are
available concerning intravenous glutamate infusion, nor for glutamate intake
in people with obesity and/or T2DM patients.

Branched-chain amino acids

BCAA study details (including BCAA composition) are provided in Table 2 (section
K). The time series data and the calculated kinetic parameters are visualized in
Supplemental Figure 10. The effect of oral BCAA ingestion (mixtures containing
leucine, isoleucine, and valine) has been investigated in healthy individuals only
[62, 63] (Supplemental Figure 10-A). Both studies (excluding the low dose, 1g,
BCAA dose intervention [62]), showed that oral BCAA ingestion increased insulin
(iIAUCrange, 0.47 to 1.51 pU/mL/min), and decreased glucose concentrations (i1AUC,
-9.22 to -3.67 mg/dL/min) from baseline and the control group (1AUC, -0.29 uU/
mL/min, -0.30 mg/dL/min). Furthermore, the 5g BCAA dose resulted in a higher
insulin peak concentration (8.5 yU/mL) than the 1g BCAA dose (7.3 uU/mL) [62].
The highest insulin response was observed in the study that had the largest
BCAA dose [63].

The effect of intravenous BCAA infusion (mixtures containing leucine,
isoleucine, and valine) has also been investigated in healthy individuals [63-
65] (Supplemental Figure 10-C). Two out of the three studies showed increased
insulin GAUC range, 0.18 to 0.50 pU/mL/min) [63, 64]. Glucose concentrations
consistently decreased from baseline in these studies (1AUC, range, -12.05 to -8.37
mg/dL/min). Gojda et al. [63] demonstrated that oral BCAA ingestion increased
insulin concentrations (iAUC, 1.51 yU/mL/min) more than the same dose (30.7g)
infused intravenously in healthy individuals (iAUC, 0.42 pU/mL/min). Glucose
concentrations declined in the same pattern during both BCAA tests. To our
knowledge, no kinetic data are available concerning BCAA intake in people with
obesity and/or T2DM.
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DISCUSSION

AAshave beenrecognized as important factors involved in glucose homeostasis.

In the present systematic review, we aimed to provide a detailed overview of the

quantitative effects of oral ingestion and intravenous administration of AAs on

postprandial glucose and insulin concentrations in humans. A summary of the
results is provided in Table 3.

Table 3. Summary of the findings.

All studies show decrease from control/baseline

++

AA

Leucine
Isoleucine
Alanine
Glutamine
Arginine
Lysine
Glycine
Proline
Phenylalanine
Glutamate

BCAA mixture
(leucine,
isoleucine,
and valine)

One or more studies show decrease from control/baseline

No change from control/baseline; contrasting outcomes

One or more studies show increase from control/baseline

All studies show increase from control/baseline

Oralingestion

Healthy T2DM Obese

I
+
+/.
++
++
+
++
+
++

++

G I G I G
+/-
- ++ - -
+- A+ H[- -
+/-
+/_
+/-
+/-
+/-

Co-ingestion with glucose

++

++

+-
+-
+-
+-
+-

Healthy

Intravenous infusion
Healthy T2DM Obese
I G I G I G

+ -

+ + 4+

++ + ++ o+t

++ -

++ -

AA: Amino acid, T2DM: Type 2 diabetes mellitus, BCAA: Branched-chain amino acids, G:
Glucose concentrations, I: Insulin concentrations. An overview of the studies is provided

in Table 2.

In total, 55 studies that assessed the effects of 10 AAs, i.e. leucine, isoleucine,
alanine, glutamine, arginine, lysine, glycine, proline, phenylalanine, glutamate,
and BCAA mixtures were included in this review. The majority of orally ingested
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AAs, except isoleucine, induced an insulin response when ingested in isolation.
Glucose concentrations, with the exception of isoleucine, and lysine, remained
unchanged.

The increase in insulin concentrations through AAs has long been recognized,
though their mechanisms of action are diverse and not fully elucidated yet [4, 69].
It has been shown that AAs affect B-cell insulin secretion through mitochondrial
metabolism linked to the TCA cycle, and subsequent generation of ATP (e.g. for
leucine, glutamine, and alanine) [70, 71]. The rise in the ATP/ADP ratio suppresses
ATP-sensitive potassium channels, causing depolarization of the B-cell plasma
membrane. This in turn activates voltage-gated Ca?' channels, and through the
influx of Ca? leads to insulin exocytosis. Other AAs, like arginine via its mCAT2A
AA transporter, directly depolarize the B-cell plasma membrane ([4, 72]. Co-
transport of AA with Na*(e.g. alanine, and proline) also depolarize the B-cell
plasma membrane, ultimately leading to Ca? activated insulin exocytosis [69,
73-75]. The seemingly unaffected glucose concentrations despite the presence of
an insulin response are somewhat surprising. However, compensatory glucagon
production and gluconeogenesis to prevent hypoglycemia may at least partly
explain these observations [76]. Indeed, multiple studies included in the present
systematic review showed increased glucagon concentrations after ingestion
of isolated AAs [8, 18, 19, 24-26, 28, 29, 31, 34, 36, 37, 41, 43, 45, 48, 50, 53-55, 58].
Digitizing postprandial glucagon responses found in these studies was, however,
outside the scope of the present review. Furthermore, the carbon chain of AA
can be used in the liver for gluconeogenesis (i.e. generating glucose from non-
carbohydrate carbon substrates), which might further contribute to the lack in
suppression of postprandial glucose concentrations [25].

While oral ingestion of most AAs did not alter postprandial glucose responses,
oral intake of isoleucine, lysine and BCAA mixtures evoked a clear decrease
in plasma glucose concentrations. Remarkably, the decrease in glucose
concentration following isoleucine ingestion occurred without a change in
insulin concentrations, suggesting glucose uptake by tissues independent of
insulin, as has previously been found in vivo [77]. In the latter study, isoleucine
increased glucose uptake in rat skeletal muscle cells through activation of
phosphatidylinositol 3-kinase, and independent of mTOR, indicative of insulin-
independent glucose uptake.

Co-ingestion of most identified AAs (lysine, glycine, proline, phenylalanine)
with glucose did not significantly increase the insulin response compared to
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the ingestion of glucose alone. However, for these AAs, co-ingestion with glucose
prompted a reduction in the glucose response of up to ~70% for phenylalanine.
The mechanisms remain to be determined, as it is unclear whether the
attenuation of glucose is due to an increased removal rate of glucose (i.e.
insulin-independent mechanisms), or due to decreased endogenous glucose
production by the liver [55]. Despite the unchanged insulin responses (iAUCs),
the postprandial insulin dynamics were frequently altered, indicating a sharper,
and more pronounced peak after co-ingestion of AAs (i.e. lysine, proline, and
phenylalanine) with glucose as compared to glucose ingesting alone. The greater
early rise in insulin concentrations observed after co-ingestion of AAs may imply
increased first-phase insulin secretion [54, 58], which certainly influences the
postprandial glucose concentrations. Co-ingestion of glucose with leucine or
isoleucine increased the postprandial insulin concentrations more than the
sum of their individual effects, reaching a ~50% increase in iAUC for leucine [8].
This synergistic stimulating effect of the combined intake of AAs and glucose on
plasma insulin concentrations was already described by Floyd et al. [6] many
years ago. Maximizing insulin secretion could be important in the treatment
of T2DM to promote glucose disposal and improve glucose homeostasis [69].
Van Loon and colleagues [9] showed that co-ingestion of a mixture of protein
hydrolysate, leucine, and phenylalanine in long-term T2DM patients, resulted
in a considerable (+189%) increase in insulin response compared to the healthy
control group (+114%), implying functional B-cells secretory capacity to stimuli
other than glucose. Manders and coworkers [78] applied continuous infusion
with labeled [6,6-2H,] glucose to determine blood glucose appearance and
disappearance rates following carbohydrate ingestion with or without addition
of a protein, leucine, and phenylalanine mixture in T2DM patients. A substantial
(~3-fold) greater insulin response was observed following co-ingestion of
carbohydrates with AA/protein, with a 28% reduction in blood glucose response,
attributed to an increase in plasma glucose disposal.

Intravenous infusion of leucine, arginine, lysine, phenylalanine, and BCAAs
infusion induced a plasma insulin response, and with the exception of arginine,
evoked a decrease in plasma glucose concentrations. These AAs were thus able
to induce a substantial increase in insulin response, also observed after oral
ingestion, independent from the gut. However, intravenous alanine infusion,
unlike oral alanine ingestion, did not induce an insulin response, suggesting that
alanine may increase postprandial insulin concentrations through an incretin
effect [19]. An incretin effect indicates the release of insulin-inducing substances
from the gut and plays a major part in the regulation of postprandial glucose
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concentrations [79, 80]. Incretin hormones, like gastric inhibitory polypeptide
(GIP) and glucagon-like peptide-1 (GLP-1), are shown to rapidly stimulate insulin
secretion from B-cells in response to nutrients in order to control meal-related
glycemic excursions [81]. This incretin effect was also observed by others [82,
83], demonstrating that oral ingestion of an AA mixture increased insulin
concentrations more than comparable intravenous AA infusion, with increased
GIP concentrations. A large number of studies were found that investigated
the effects of intravenous arginine infusion, which is often used to evaluate
B-cell function (i.e. during hyperglycemic clamp) and allows for simultaneous
examination of acute insulin, c-peptide, and glucagon response [84]. Intravenous
arginine infusion stimulated insulin release to a greater extent than oral arginine
ingestion, however, studies comparing oral and intravenous administrations are
lacking. The larger arginine content in the blood circulation, by avoiding gut
metabolism, might have led to increased B-cell stimulation [85, 86].

Although limited data are available on the effect of AAs on glucose and insulin
responses across different population, studies in obese and T2DM individuals
focused on alanine, glutamine, and arginine. Abnormalities in B-cell function
are present in prediabetes and T2DM, whereas insulin sensitivity already
declines decades before T2DM onset [87]. Furthermore, insulin resistance
through excess adiposity is linked to several abnormalities, impacting p-cell
function and viability [4]. The studies included here showed that AAs are able
to stimulate insulin secretion and lower glucose concentrations in T2DM, and
obese individuals. Greenfield et al. [25] observed the greatest insulin response
after oral glutamine ingestion in T2DM patients, followed by obese and healthy
people. In addition, increased GLP-1 concentrations were found following oral
ingestion of glutamine, with no significant differences between T2DM, obese,
and healthy individuals. Samocha-Bonet et al. [88] showed that in patients with
well-controlled T2DM, the stimulatory action of GLP-1 on insulin secretion is
preserved, reducing the postprandial glycemia in T2DM [89]. Whereas oral
ingestion of alanine resulted in a comparable insulin response in both healthy
and T2DM patients, the insulin dynamics showed considerable differences. More
specific, a lower but prolonged elevation in insulin concentrations was ohserved
in T2DM patients [22]. This prolonged elevation in insulin was also observed
in obese individuals following intravenous alanine infusion [24]. Intravenous
infusion of arginine showed a blunted insulin response in T2DM, as compared
to healthy individuals in three out the four studies. This impairment in insulin
secretion might be explained by insufficient B-cell mass, and/or functional
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defects within the B-cells themselves, in patients with T2DM and individuals at
risk for diabetes [4].

In this review, we systematically investigated the effects of AAs on postprandial
insulin and glucose dynamics. An extensive approach, consisting of the
extraction and utilization of time series data, with a focus on the link between
glucose and insulin kinetics was employed. In the present review, the effects of
ten distinct AAs and BCAA mixtures from 55 articles were included. As the AA
composition in protein and whole foods largely contributes to the variability
observed in glycemic responses, we decided to focus on the glycemic effects of
individual AAs. However, the diversity of the included studies, e.g. differences in
study set-up, participant characteristics, and measurement instruments, made
it difficult to draw quantitative conclusions based on the data. Furthermore, the
large heterogeneity in AA dosages used in the studies was not accounted for, when
calculating and comparing the postprandial responses, as this would incorrectly
assume a linear relationship between AA dosage and postprandial glucose and
insulin responses, which we believe is not true. Nevertheless, this might have
contributed to a certain extent to the variability observed in postprandial
glucose and insulin responses between the different studies. While glucagon
measurements were outside the scope of the present systematic review, future
studies investigating the effect of AAs on glucose and insulin responses should
also include postprandial glucagon concentrations. Notably, since we have made
the digitized data on insulin and glucose concentrations publicly available, other
parameters such as glucagon concentrations can easily be incorporated in this
database. A large difference in the number of identified studies per AA was found
in the literature. There was ample information on some AAs (e.g. 28 articles on
arginine) and very little information on others (e.g. 1 article on isoleucine), yet
several distinct effects were found for the studied AAs. Furthermore, a better
understanding of the effects of different AAs on postprandial plasma glucose
and insulin responses, as well as putative synergistic effects of co-ingestion of
different AAs with glucose, may contribute to the development of more optimal
dietary intervention to improve (postprandial) glucose homeostasis.
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SUPPLEMENTARY MATERIAL

Supplemental File 1: PubMed search strategy: (“Amino Acids” [MeSH Terms]
OR “Amino Acid” OR “Amino Acids” OR “Branched-Chain Amino Acids” OR
“Branched-Chain Amino Acid” OR Alanine OR Arginine OR Asparagine OR
“Aspartic Acid” OR Cysteine OR Glutamine OR “Glutamic Acid” OR Glycine OR
Histidine OR Isoleucine OR Leucine OR Lysine OR Methionine OR Phenylalanine
OR Proline OR Serine OR Threonine OR Tryptophan OR Tyrosine OR Valine
OR Whey OR Casein) AND (Ingestion OR Ingested OR Infused OR Infusion OR
Infusions OR Response OR Stimulation OR Elevation OR Elevated OR Oral OR
Altered OR Alter OR Absorption OR Absorbed OR Postprandial OR Post-Prandial
OR “Post Prandial” OR Supplemented OR Supplementation OR Supplement OR
Eating OR Administration OR Administered OR Intravenous OR Intravenously
OR Intake OR Food OR Consumption OR Consumed OR Dynamics OR Dynamic
OR “Glucose Tolerance Test” OR “Tolerance Test” OR “Challenge Test”) AND
(Insulinotropic OR Insulin OR Glucose OR Glycaemic OR Glycemia OR Glycaemia
OR “Glycemic Control”) AND (Glucose [ti] OR Insulin [ti] OR Glycaemic [ti] OR
Glycemia [ti] OR Glycaemia [ti] OR “Glycemic Control” [ti] OR “Amino Acids” [ti]
OR “Amino Acid” [ti] OR Whey [ti] OR Casein [ti] OR Protein [ti] OR Proteins [ti] OR
Alanine [ti] OR Arginine [ti] OR Asparagine [ti] OR “Aspartic Acid” [ti] OR Cysteine
[ti] OR Glutamine [ti] OR “Glutamic Acid” [ti] OR Glycine [ti] OR Histidine [ti] OR
Isoleucine [ti] OR Leucine [ti] OR Lysine [ti] OR Methionine [ti] OR Phenylalanine
[ti] OR Proline [ti] OR Serine [ti] OR Threonine [ti] OR Tryptophan [ti] OR Tyrosine
[ti] OR Valine [ti]) NOT Review [ptyp] AND English AND “loattrfull text”[sh] AND
humans)

Supplemental Figure 1-10: The following are available online at http:/www.
mdpi.com/2072-6643/12/10/3211/s1 (Zip, 8917KB). Figure S1: Isoleucine infograph,
Figure S2: Alanine infograph, Figure S3: Glutamine infograph, Figure S4:
Arginine infograph, Figure S5: Lysine infograph, Figure S6: Glycine infograph,
Figure S7: Proline infograph, Figure S8: Phenylalanine infograph, Figure S9:
Glutamate infograph, Figure S10: BCAA infograph.
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Chapter 3

ABSTRACT

Plasma glucose and insulin responses following an oral glucose challenge are
representative of glucose tolerance and insulin resistance, key indicators of
type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals’
challenge test responses has been shown to underlie the effectiveness of lifestyle
intervention. Currently, this heterogeneity is overlooked due to a lack of methods
to quantify the interconnected dynamics in the glucose and insulin time-courses.
Here, a physiology-based mathematical model of the human glucose-insulin
system is personalized to elucidate the heterogeneity in individuals’ responses
using a large population of overweight/obese individuals (n = 738) from the
DIOGenes study. The personalized models are derived from population level
models through a systematic parameter selection pipeline that may be generalized
to other biological systems. The resulting personalized models showed a 4-5 fold
decrease in discrepancy between measurements and model simulation compared
to population level. The estimated model parameters capture relevant features
of individuals’ metabolic health such as gastric emptying, endogenous insulin
secretion and insulin-dependent glucose disposal into tissues, with the latter also
showing a significant association with the Insulinogenic index and the Matsuda
insulin sensitivity index, respectively.
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INTRODUCTION

Glucose homeostasis is maintained by the complex interplay between several
tissues and organs including the brain, pancreas, skeletal muscle, liver and
adipose tissue. The evolution of plasma glucose and insulin concentrations
during an oral glucose tolerance test (OGTT) provide a readout of the metabolic
health of these underlying tissues capturing the effects of insulin sensitivity
and metabolic resilience status [1]. Certain features of the standard 75g OGTT
response curves are widely accepted to be representative of glycemic control,
most notably the fasting and 2 hour post-load glucose values are used in the
diagnosis of prediabetes and type 2 diabetes mellitus (T2DM) [2]. The area under
the plasma glucose/insulin response curve (AUC) is an extensively employed
measure to compare responses [3] and has been successfully used in targeted and
even personalized nutrition approaches [4-6]. However, the AUC is a somewhat
crude measure that may often lead to ambiguous classifications [7]. Therefore,
certain dynamic properties of the glucose response curves e.g. peak time, have
been nominated as relevant for pathophysiological characterization [6, 8-11].
In addition, the post-load glucose and insulin trajectories may be used to derive
proxy measures of whole-body and tissue-specific insulin sensitivity to serve as
a surrogate to the hyperinsulinemic-euglycemic clamp. The HOMA-IR [12] and
Matsuda insulin sensitivity indices [13, 14] have been widely utilized to quantify
whole-body insulin resistance from fasting and average postprandial glucose/
insulin levels, respectively. In recent years, the increased recognition of tissue-
specific insulin resistance [15] leading to metabolically distinct phenotypes, has
resulted in the development of the HIRI and MISI indices, quantifying hepatic
and skeletal muscle insulin resistance from OGTT responses [16-18]. While these
measures capture certain aspects of metabolic resilience, they rely upon single
time-point or average glucose and insulin values taken from the response curves,
as a result the dynamics of the time-courses are largely disregarded. Recently,
Hulman et al. have shown that using a latent class mixed models framework, the
glucose trajectories of healthy individuals following an OGTT may be classified
into four distinct insulin sensitive phenotypes [19]. This approach—making use
of the complete time-courses—highlights the importance of the dynamics of the
glucose responses, however it does not allow for an individualized exploration
due to the limited number of prospective classes.

The move towards personalized interventions requires the characterization of

the large heterogeneity in individuals’ glycemic regulation. Therefore, a holistic
approach, accounting for the dynamic properties of the response curves is
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needed on the individual level. Furthermore, the close interplay between plasma
glucose and insulin concentrations calls for the evaluation of glucose and insulin
trajectories as a whole, rather than as disjoint indicators.

Physiology-based mathematical models of the human glucose-insulin regulatory
system can provide quantitative information on the dynamics while capturing the
mechanisticlink between glucose and insulin. Such models are built to describe
the physiological processes by which insulin regulates glucose levels using a
priori understanding of the underlying biological system. The detail to which
the model can accurately simulate the glucose-insulin response mechanism
depends on the desired scope and the availability of quantitative data. The
Bergman model, a simplistic model of glucose disappearance containing only 5
parameters, has been extensively used to approximate insulin sensitivity and
B-cell function using plasma glucose and insulin values following a frequently
sampled intravenous glucose tolerance test [20]. The integrated glucose-insulin
model has been used to describe population as well as individual responses
to a frequently sampled OGTT [21], however its applicability (to nutritional
and metabolic studies) is limited due to the complexity in the model’s glucose
absorption term that is made possible by an unusually frequent sampling
strategy. A more complex model built by Dalla-Man et al. provides a detailed
account of the underlying processes governing glucose utilization following a
meal [22]. Here, the complexity of the model is enabled by the availability of
triple tracer glucose data, quantifying the glucose fluxes between tissues. While
the Bergman model can be applied to individual data, the Dalla-Man model has
mostly been applied to population average data for in silico simulation and testing
of insulin pump systems. The Eindhoven-Diabetes Education Simulator (E-DES)
is a comparatively simple multi-compartmental model containing 12 parameters
that has been used to describe the dynamics of the glucose homeostasis in healthy,
type 1 and type 2 diabetic populations [23, 24].

Quantifying uncertainty in model parameters is essential to understand the
limitations and predictive power of the model [25]. It is particularly important
to consider parameter identifiability when estimating model parameters on the
individual level—where sensitivity to measurement error may be high—to retain
parameters that can be reliably estimated. Identifiability analysis may be carried
out through methods such as Profile Likelihood Analysis (PLA) to evaluate how
well parameter values can be determined given the available data [26, 27].
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The aim of the current work is to explore the heterogeneity in the glucose and
insulin responses to an OGTT in a large population of individuals by developing
personalized dynamic models of the insulin mediated glucose metabolism,
using an adapted E-DES model. The model parameters are estimated from
measured postprandial trajectories of both glucose and insulin, and represent
physiologically relevant properties that in turn may be used in the early
identification of deterioration in the glucose homeostasis. Furthermore, the
workflow presented here for transitioning a dynamic model away from describing
population averages and towards individual response patterns may prove useful
in numerous other applications, as it is generalizable to other biological models
and systems.

MATERIALS AND METHODS

Ethics statement

The Medical Ethical Committees of the respective countries approved the
DIOGenes study protocol. Participants provided informed written consent, and
all procedures were conducted in accordance with the Declaration of Helsinki.
Trial registration number: NCT00390637.

Data

Data from the DIOGenes study (NCT00390637), a pan-European, multi-center,
randomized controlled dietary intervention study were used in this work
[28]. At the baseline of the intervention, following an overnight fast (n = 1118)
overweight/obese (BMI > 27kg/m?) but otherwise healthy adult participants
underwent a two hour 75g OGTT, with plasma samples taken at the fasting state
(t=0) and 30, 60, 90 and 120 minutes after the glucose ingestion. The plasma
samples were subsequently analyzed for glucose and insulin concentrations.
Responses at the baseline of the intervention were used. Individuals with an
incomplete set of glucose and/or insulin measurements were excluded from the
analysis.

Adapted E-DES model

The Eindhoven-Diabetes Education Simulator is a physiology-based mathematical
model of the human insulin mediated glucose regulatory system in healthy, type
1 diabetes, and T2DM phenotypes [24]. The two compartment model describes
the following physiological processes through coupled differential equations
(see model schematic and details in S1 Fig, S1 and S2 Appendices): Glucose mass
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is emptied into the gut according to an exponential decay function, followed by
uptake into the plasma proportionally to the amount of glucose present in the
gut. Both glucose and insulin fluxes are considered in the plasma compartment.
Insulin secretion from the pancreas is modelled through a proportional-integral-
derivative (PID) controller, responding to elevated plasma glucose levels. The
insulin response facilitates the insulin-dependent glucose disposal to tissues such
as the muscle. In addition, there is a constant glucose removal from the plasma
by obligate glucose oxidizers such as the brain or the red blood cells. While the
plasma glucose levels are elevated, endogenous glucose production (EGP) in the
liver is suppressed. Finally, insulin is cleared by the liver proportionally to the
plasma insulin concentration, as well as by a transfer and degradation in the
interstitial fluid. The parameters corresponding to these physiological parameters
control the rate of change in glucose or insulin concentrations. Through
modulation of the parameters, responses of metabolically different phenotypes
may be simulated in silico. The model has been previously parameterized and
validated on multiple OGTT data sets from healthy populations [24]. The E-DES
model was implemented and analyzed in MATLAB 2018b (The Mathworks,
Inc., Natick, Massachusetts, United States). For the current study population,
an adapted E-DES model is used. Model equations, including a description of
parameters and modifications are described in detail in S1 Appendix.

Parameter estimation

Parameters were estimated through minimizing the combined sum of squared
residual (SSR) in the model prediction for glucose and insulin (Eq. 1) using
Isqnonlin, a non-linear least squares solver in MATLAB. To avoid becoming
trapped in erroneous local minima, the optimal parameter sets were obtained
following fifty initializations of the optimization algorithm with 25% random
noise starting from the original parameter value for the average healthy
population from the publication [24].

m N

SSR = )" > (r((:16) - dy ))?

j=1i=1

Where m, and N represent the number of metabolites and the number of time-
points, respectively. The measured data point is denoted by d, while y is the
corresponding model prediction given the parameter vector 5 . A weight factor
y = 0.1 was used in the case of insulin (y = 1 in case of glucose) to account for the
unit difference (mmol/L, mU/L for glucose and insulin, respectively) between
the molecules.
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Model selection

A model selection approach was implemented in order to systematically identify
parameters for personalized model fitting. The aim of the approach is to maintain
parameter functionality and identifiability when transitioning from modelling
population average responses to individual responses. The workflow involves
systematically reducing the number of parameters to estimate for each individual
response to ensure reliable, accurate parameter estimates. The parameters that
are not selected in the approach for personalized fitting are fixed to reference
population values [24] across all individuals. The subset of model parameters
to be estimated was selected based on the following criteria: the selected
parameters had to (i) exhibit high sensitivity, (ii) demonstrate good model fit
while maintaining parsimony, (iii) be identifiable. The steps to meet these criteria
are detailed below and a flowchart of the approach is shown on Fig 1.

(1). Sensitivity analysis. We carried out local parameter sensitivity analysis (LPSA)
by varying one parameter in both directions while maintaining the others at a
constant value, inspecting the effect on the resulting model outcome. A threshold
of 75% in both directions compared to the average healthy population values was
selected as the limit of sensitivity. Parameters that exhibit sensitivity at this level
are expected to have a large modulatory effect on the model outcome. Parameters
that are not sensitive at the threshold were fixed as a constant to their respective
values (reported in [24]), as they have little impact on the model behavior. Only
sensitive parameters were considered in subsequent steps of the model selection.

(ii). Model fit. The set of all possible combinations of 3 or more sensitive parameters
were generated. Subsequently models were fit on a set of representative responses
from the DIOGenes data set with these candidate parameter sets estimated
from the data, while the rest of the parameters were fixed to the population
reference values. The representative responses comprised of the median normal
glucose tolerant (NGT), impaired fasting glucose (IFG), impaired glucose tolerant
(IGT), both IFG and IGT (IFG&IGT) and T2DM responses in the data, based on
the American Diabetes Association (ADA) diagnosis criteria [29]. The median
responses were calculated by taking the median glucose and insulin values per
time-point across all individuals in the respective groups. In addition to the
median responses, both extreme responses (largest and smallest response in the
data set by area under the glucose curve) were also included. The model with the
candidate parameter set that showed the lowest Akaike Information Criterion
(AIC) score across the set of representative curves (i.e. NGT, IFG, IGT, IFG&IGT,
T2DM, Min, Max) was selected as most parsimonious model.
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(iii). Parameter identifiability. The parameter set that produced the most
parsimonious model was finally evaluated for identifiability using Profile
Likelihood Analysis (PLA) [27]. In PLA the value of one parameter is changed
iteratively from its optimal value and the remaining parameters are re-estimated.
An increase in the cost function (SSR) for the model fit indicates that a reliable
parameter estimate has been obtained and the parameter is identifiable given
the model structure and data. Confidence intervals were derived using a Chi-
squared threshold on the likelihood (Eq. 2).

B L(p1) 2
210g<£—(§0pt)> < x“(a,df)

Where x2 (a, df) is the a quantile of the x2-distribution with df degrees of
freedom, §PL and §Opt are the profiled path and optimal parameter vectors,
respectively. The threshold a was set to 0.95 and df equals one or the number of
parameters (see S3 and S4 Figs)

Figure 1. Flowchart of the model selection approach.

Principal component analysis

The parameter space of the personalized E-DES model is visualized by reducing
the number of dimensions from the number of estimated parameters to two
dimensions using principal component analysis (PCA). Prior to PCA, the
parameter values were normalized to zero mean and unit standard deviation.
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RESULTS

A total of 738 participants were included in the analysis, after excluding
participants with incomplete OGTT measurements (n = 373) and participants
with physiologically implausible responses (i.e. where the OGTT failed; n = 7).
The identification of physiologically implausible responses was carried out by
independent experts. The remaining 738 responses were characterized by the
ADA criterion for prediabetes and diabetes as summarized in Table 1.

Table 1. Classification of participant’s responses based on ADA diabetes criteria

Diagnosis! NGT IFG IGT IFG&IGT T2DM
N 496 42 41 119 40
Age?[years] 40.7 (6.4) 42.0(5.3) 43.6 (4.8) 41.8 (6.2) 45.0 (6.7)
Sex [%female] 65.8 42.9 53.7 68.1 55.0
BMI? [kg m™?] 34.5(4.8) 34.7 (4.5) 36.5(5.8) 34.2 (4.5) 35.1(5.1)

1 NGT: normal glucose tolerant, IFG: impaired fasting glucose, IGT: impaired glucose
tolerant, T2DM: type 2 diabetes mellitus. For details about the criteria, see S1 Table. 2 Age
and BMI are reported as mean and (standard deviation).

In general, DIOGenes contains overweight/obese but otherwise healthy
participants [28]. However, characterization by the ADA guidelines shows that
in fact, several participants may be diagnosed as prediabetic or type 2 diabetic.

Model selection

Out of the eleven parameters contained in the adjusted E-DES model, only the
physiological parameters k1 to k9 (defined in Table C of S1 Appendix) were
considered in the personalization, while the two remaining parameters, the
shape factor and Michaelis-Menten constant for glucose uptake, were fixed
to their respective population values. As the first step of the model selection
approach local parameter sensitivity analysis was carried out. The outcome of
the sensitivity analysis on the plasma glucose response is shown in Fig 2. The
effect on plasma insulin can be seen in S2 Fig.
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Figure 2. Local parameter sensitivity analysis demonstrated on simulated plasma

glucose response.

Parameters k1, k4, k5, k6, k8, k9 were found to be sensitive at the +75% threshold,
and therefore were considered for further analyses, while the remainder of the
parameters were kept constant in all subsequent analysis. As the second step of
the model selection, the set of all possible combinations of 3, 4, 5, and 6 sensitive
parameters were generated and models with these parameters estimated from
data were assessed. This way a total of 42 different models were examined for
model fit according to AIC on the median NGT, IFG, IGT, IFG&IGT, and T2DM
responses as well as the largest and smallest response in the data set. The ten
best per- forming candidate models with the resulting SSR and AIC values are
shown in S2 Table.

The highest scoring model according to our criteria contained the parameters k1,
k5, k6, and k8 with a SSR of 41.39. Visual inspection of the model output displayed
good accordance with the majority of the data on the various group median and
extreme responses as seen in Fig 3. The extreme responses are simulated less
accurately compared to the median responses. Specifically, the model struggles
with accurately capturing the part of the response that goes below basal. The
best scoring model was subsequently evaluated for parameter identifiability in
the last step of the model selection approach.
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Figure 3. Plasma glucose and insulin simulation of the set of representative responses
in the DIOGenes study with estimated parameters k1, k5, k6, k8.

The median responses were calculated as the median plasma glucose value of the
ADA diabetes classification group at each time point (A). The ‘Min’ and ‘Max’ are
the smallest and largest glucose responses in the data set, determined by area
under the curve (B). Median measured values are shown as black dashes with
the interquartile range and measured responses are indicated by black crosses.

The identifiability of the parameters k1, k5, k6, k8 was assessed on the median
NGT, IFG, IGT, IFG&IGT, T2DM and the extreme responses to infer the reliability
in estimating the selected parameters. The PLA profiles indicated that parameters
were identifiable, with the exception of parameters k6 and k8, which were
practically non-identifiable [27] for the lowest response. The parameter profiles
can be found in S3 Fig. Additionally, to verify the choice of the 4 parameter model,
the best performing 5 parameter candidate model (with parameters k1, k5, k6,
k8, k9) was also evaluated for parameter identifiability. The PLA profiles from
the 5 parameter model indicate that k9 was structurally non-identifiable in 6 out
of 7 representative responses, with further two parameters (k6 and k8) proving
to be non-identifiable in 2 out of 7 cases (S4 Fig).

The model selection pipeline resulted in a model with parameters k1, k5, k6, k8

to be estimated from experimental data in personalized models. The selected
parameters describe the rate constant of glucose appearance in the gut (k1), the
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rate constant of insulin-dependent glucose uptake (k5), the proportional rate
constant of insulin secretion due to the difference in the actual plasma glucose
level compared to baseline (k6), and the insulin secretion dependent of the rate
of change in plasma glucose (k8).

Individual simulation

A population of 738 personalized models were generated in silico through
estimating the selected parameters on post-load time series of glucose and
insulin in participants from the DIOGenes study. To evaluate the success of
simulating individual responses, we compared the discrepancy of population
specific simulations to that of individualized simulations. The median response
was calculated in every group (NGT, IFG, IGT, IFG&IGT, and T2DM) and the
selected 4 parameter model was used to simulate the median glucose and insulin
trajectories on the calculated responses. The individuals’ measured data were
then compared to the median simulations per group. The SSRs in the personalized
model simulations were substantially lower than those of the median simulations
in every group (Table 2), indicating that the personalized models were able to
capture a wide range of response curves.

Table 2. Mean (standard deviation) of sum of squared residuals in the model
simulations

NGT IFG IGT IFG&IGT T2DM

Group simulation 149.87 213.52  205.15 153.46 195.93
(153.11) (205.15)  (134.92) (126.97) (181.90)

Individual simulation 32.37 44.29 35.33 43.54 36.69
(36.26) (32.11) (47.89) (29.92) (33.56)

The best and worst personalized model simulations by SSR are shown in Fig
4A and 4B, respectively. While the measured glucose and insulin responses
ranged from 1.8 to 18.3 mmol/L and from 2.0 to 749.0 mU/L, the simulations
show good agreement with the measured data in most cases. To highlight other
striking model behavior, additional, hand selected example responses and their
corresponding simulations are shown in Fig 4C.
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Figure 4. Time courses of plasma glucose and insulin concentrations for individuals
with the lowest and highest simulation error (quantified by the SSR) in each ADA
category, and other interesting model behaviour (A, B and C respectively). Black
crosses and orange/blue lines correspond to measurement and model simulation of glucose/
insulin, respectively.

In particular, metabolite responses with an intermediate dip between two
values were found to be difficult to capture using the 4 parameter model (e.g.
participant 183, Fig 4C). However, there were cases of such bi-phasic curves, that
the model could replicate accurately (e.g. participant 513, Fig 4C). In some cases,
the model predicted a fast response, with a probable peak between the 0 and 30
minute measurements (e.g. participants 129, Fig 4C). Furthermore, the success of
simulating complex shapes appeared to depend on the scale of the insulin values
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in the responses, where higher insulin values lead to difficulties in accurately
fitting the glucose response (e.g. participant 175, Fig 4C).

The distribution of parameter values estimated from individuals’ responses are
shown by subgroup in Fig 5. In general, the range of estimated parameters was
greatest in the group that was NGT according to the ADA diabetes criteria, with
values spanning the whole range of the other groups. The rate constant of glucose
appearance in the gut (k1) was largest in the NGT and IFG groups. Similarly,
insulin-dependent glucose uptake (k5), and glucose-dependent insulin production
(k6) were lower in the IGT, IFG&IGT, and T2DM groups compared to the NGT and
the IFG groups. The plasma glucose rate of change-dependent insulin production
(k8) was lower in the IFG&IGT, and T2DM groups compared to the other groups.
Additionally, the association of the parameter values with frequently used
measures of insulin secretion and insulin resistance were evaluated to assess
model structure. Parameters k6 and k8 associated with the insulinogenic index
(r=0.56,p < 0.001 and r =0.49, p < 0.001, respectively; S7 Fig), a frequently
used measure of first-phase insulin secretion [30]. Additionally, parameter k5,
describing insulin mediated uptake of glucose into the periphery showed a
significant positive correlation with the Matsuda index (Pearsonr =0.68, p <
0.001; S7 Fig).
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Figure 5. The distribution of the estimated parameters k1, k5, k6, k8 by subgroup
based on ADA diabetes criteria. k1—rate constant of glucose appearance in the gut, k5—
rate constant of insulin-dependent glucose uptake, k6—rate constant of insulin secretion
proportional to glucose elevation, k8—rate constant of insulin secretion by the rate
of change in glucose elevation. For details, see S1 Appendix. Observations outside the
interquartile range of the 25% and 75" percentile of each group are visualized in S5 Fig.
The boxes represent the 25th and 75th percentiles, the whiskers represent the min, and
max values, and the horizontal line represents the median.

A better grasp of the parameter space of the model can be obtained by visualizing
it after reducing the four dimensional space to two dimensions via principal
component analysis. The personalized models in the resulting space are shown
in Fig 6. The unique parameter set in each model defines the model’s place in
the parameter space, where the model is colored according to the ADA criteria
(A) and the participants’ Matsuda index (B). The explained variance and the
loading vectors indicate that the parameters pertain to distinct mechanisms
and retain their functionality (Fig 6B insert). The spread over the first two
principal components demonstrate the large heterogeneity in the modelled
population. Furthermore, the additional insight gained by the personalized
models is illustrated when coloring the parameter space by the ADA criterion
for prediabetes and diabetes (Fig 6A). The featured examples highlight the large
heterogeneity that remains hidden when considering only the single time-point
measures of the diagnosis categories, but is captured by the person specific
models. Fig 6B shows examples of participants with different states of insulin
sensitivity. The examples positioned along the direction of the loading vectors
of k5 show responses with increasing insulin sensitivity noted by the rapid
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clearance of glucose from plasma (i.e. curve rapidly approaching baseline) as well
as lower insulin secretion. Responses of individuals with varying levels of first-
phase insulin secretion are shown on S8 Fig with the corresponding models in the
parameter space colored by the insulinogenic index. Responses along the loading
vectors of both k6 and k8 indicate increasing first-phase secretion of insulin, with
highlighted examples of low (e.g. participant 347) moderate (e.g. participant 693)
and high (e.g. participant 51) secretion. Additionally, S9 Fig highlights examples
in the parameter space colored by the error in the simulation of the individual
as measured by SSR.

Figure 6. Individual parameter sets in the parameter space of the model colored by
the ADA diabetes criterion (A) and the Matsuda index (B) after reduction to 2d via
principal component analysis. The personalized model simulations of five participants’
responses are highlighted (individuals 21, 388, 378, 715, 339 on panel A and 522, 308,
730, 693, 605 on panel B). Orange and blue lines correspond to glucose and insulin model
simulation, while crosses represent measured data. The loading vectors of k1, k5, k6, and
k8 are shown in the purple insert in panel B.

DISCUSSION

In this work, we implemented a pipeline to convert a physiological model of
the postprandial glucose-insulin dynamics describing population averages
into a personalizable model. A key aspect of the parameter selection process
was to maintain certainty in the parameter estimates and consequent model
predictions by systematically reducing the number of parameters to be estimated
in personalized models, taking into account the availability of quantitative data.
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Furthermore, our approach allows the comparison of personalized models due
to retaining the same model structure across individuals. The protocol does
not require biological knowledge and may be generalized to models of other
systems. The resulting personalized models were able to accurately describe
a wide variety of responses from the DIOGenes data set, a large population of
overweight/obese but otherwise healthy individuals. Furthermore, the estimated
parameter values of the model allowed mechanistic insight into the differences
in individuals’ glucose metabolism.

Parameters exhibiting high sensitivity exert a large effect on model outcome,
whereas not sensitive parameters may be fixed to a constant value. Sensitivity
of the parameters was assessed through their modulatory effect on glucose and
insulin concentrations of an average healthy simulation, to keep in line with the
study population. Due to the structure of the model, different responses might
indicate different parameters to be sensitive, such as the parameter controlling
the rate of endogenous glucose production, which is expected to behave
differently when the glucose response goes below the basal level. However, in
the current study population such behavior is rare (66/738 responses) and thus
an average healthy simulation was considered adequate for sensitivity analysis.
Following the selection of the sensitive parameters, parsimony and model fit
was considered. The ADA group median and extreme responses were chosen to
promote the model to be able to fit a wide range of responses. We hypothesize,
that these responses are representative of the parameter space that we aim to
capture with the model. Thus, if the model is able to capture these responses
accurately, it is likely to be able to simulate arbitrary responses in intermediate
states as well. In order to impose a criterion towards parsimony, we used the
AIC to introduce a penalty term on the number of parameters in the model. As
shown in S2 Table, candidate models with more parameters had a lower SSR.
However, the top 5 and 6 parameter models performed only marginally better
than the 4 parameter ones, with a SSR of 37.02, 35.20, 41.39 respectively. The
best scoring 3 parameter model (k1, k5, k9) had more than twice the SSR (87.00)
of the best 4 parameter model. Based on the AIC, the 4 parameter candidate
model containing parameters k1, k5, k6 and k8 to be estimated was selected as
the most parsimonious model. Finally, the identifiability of the candidate model
was examined via PLA on the representative median and extreme responses.
Besides the smallest response, PLA profiles showed that the parameters were
identifiable (S3 Fig) indicating that a unique solution exists in the tested range.
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The parameters identified in the model selection process indicate that the most
discriminating processes in this population are transition of glucose from the
stomach to the gut (k1), the insulin-dependent glucose uptake to the periphery
(k5), and the processes representative of insulin secretion (k6 and k8). It is known
that gastric emptying is a major determinant of postprandial glycemia that has
been shown to exhibit large intra- and interindividual variability [31, 32]. The
decline in insulin mediated glucose disposal into tissues such as the muscle,
liver or adipose tissue is acknowledged as one of the key process leading to
the development of T2DM [15]. Furthermore, defects in the first phase insulin
secretion are known to appear in the early stages of deteriorating glucose control
compared to abnormalities in second phase insulin secretion, which is more
prevalent in advanced stages of T2DM [33]. The ability to potentially quantify
these otherwise difficult to measure processes from time-series of postprandial
glucose and insulin using a computation model may prove incredibly useful
in the advent of personalized medicine and targeted nutritional interventions.

Following the identification of the model structure to be personalized, we
elected to generate our population of personalized models by fitting the model
to the individuals’ corresponding meal response data via maximum likelihood
estimation (MLE) while fixing other parameters to population averages. Here, it
isimportant to note that, approaches such as non-linear mixed effects modelling,
where population and individual level dynamics are estimated simultaneously,
may provide a valuable alternative to our approach [34, 35]. In addition, future
applications may benefit from integrating regularization in the MLE as proposed
by Dolejsch et al. [36].

The personalized models showed a 4-5 fold decrease in SSRin all groups compared
to group simulations, confirming that the model personalization was successful,
as well as re-enforcing the need for a personalized approach when assessing
such dynamic responses. A good accordance with data was further confirmed
by visually inspecting the model output (Fig 3 and S6 Fig). However, the SSR
does not always give a realistic overview of the model fit, for instance, it can be
susceptible to bias towards responses with extreme glucose and especially insulin
values. Thus, to further highlight the limits of the model, a manual selection
of responses and corresponding model simulations were shown in Fig 4C. The
model frequently struggled with accurately predicting an intermediate dip in
the glucose response (e.g. participant 183, Fig 4C). The more complex bi-phasic
shapes were only accurately modelled in a few cases (e.g. participants 513, Fig
40), although it is thought that, this lack of fit could be avoided by estimating
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additional parameters. Responses with high insulin values drove the model to fail
at accurately capturing the glucose response. This is partly due to the combined
glucose and insulin error function used in model fitting, in which insulin values
were multiplied by 0.1 to account for the difference in scale compared to glucose.
However, in case of extremely high insulin responses, the insulin values are
still favored during the optimization (e.g. participants 175, 556, Fig 4B and 4C).
By estimating additional glucose parameters, such as the parameter handling
endogenous glucose production (k3), these responses might be captured more
accurately. Additionally, in some cases where the glucose levels quickly returned
below the basal value the model exhibited oscillatory behaviour (e.g. participants
129, Fig 4C). This may originate from the parameter estimates relating to the
insulin secretion term in the model, however further examination of this was
outside the scope of the current study. Furthermore, it is worth noting that the
outlying parameter estimates not necessarily indicate erroneous simulations
but rather unusual or extreme responses as can be seen on Fig 6, S8 and S9 Figs.

Each of the 738 personalized models contain a unique parameter set pertaining
to the physiological state of the participant’s glucose homeostasis. The largest
range for all of the estimated parameters was found in the NGT group, which
could partly be explained due to the data set containing more normo-glycemic
individuals (see Table 1) resulting in a larger variability. Furthermore, normo-
glycemic individuals are also known to be more likely to exhibit bi-phasic
responses [11], raising the variability of responses, and thereby the range of
estimated parameters values in this category. In addition, the groupings defined
by the ADA criteria only consider the fasting and 2h plasma glucose values while
ignoring the insulin levels. Thus, individuals that exhibit normal glucose levels
at the fasting and 2h time-points due to unusually high insulin values still end up
in the NGT group. This lack of consideration for the dynamics and insulin values
make it difficult to detect early deterioration in individuals’ responses indicative
of insulin resistance. However, taking into account the complete dynamics of both
glucose and insulin the personalized models outlined here are able to indicate
such transitions before they are detected by steady state or single time-point
measures (e.g. 221, 522 Fig 6). By screening for the parameter estimates of k6 and
k8 one can identify cases where the glucose response appears normoglycemic,
however the insulin levels are abnormally high.

Variation in gastric emptying linked to obesity has been previously reported,

however we found no difference in the parameter estimates for k1 between
overweight and obese participants as well as no association between the
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parameter k1 and BMI [37]. Importantly, the model parameters corresponding to
insulin secretion (k6, k8) were found to be lower for individuals with more severe
metabolic conditions (IGT, IFG&IGT, T2DM). The insulin secretion parameters
also showed a significant association with the insulinogenic index, a frequently
used measure of insulin secretion. While the parameter controlling the insulin-
dependent glucose uptake k5 was lower in IGT, IFG&IGT and T2DM compared to
the other groups and showed a significant association with the Matsuda index.
These findings reinforce that the model structure captures relevant features
of the insulin mediated glucose homeostasis and the personalized models can
distinguish between divergent impairments in the insulin regulated glucose
control. Therefore, our modelling framework might prove beneficial in revealing
nuanced behaviour specifically for the early detection of decline in the glucose
homeostasis from a standard five time-point OGTT. Moreover, the personalized
models may be used to assess the effects of lifestyle and diet interventions, where
the observed effects can be quite subtle. Our results also highlights the possibility
of using such an approach to generate cohorts of virtual patients with varying
glucose homeostasis for potential in silico testing.

The population in the study may be considered relatively homogeneous in terms
of glucose homeostasis, as measured by current single time-point measures such
as the ADA criterion. However, the personalized models utilizing the dynamic,
intertwined plasma glucose and insulin responses of individuals, allowed
the quantification of an immense heterogeneity in the responses even within
the ADA groups. Furthermore, the mechanistic nature of the model promotes
the identification and allows comparison of distinctive processes underlying
individuals’ metabolic health. We believe that such personalized modelling
approaches will be essential in advancing personalized nutrition.

CONCLUSION

The systematic model selection pipeline implemented in this work allows the
personalization of a mathematical model through reducing the number of
parameters to be estimated in personalized models. The approach results in the
most parsimonious model that contains identifiable parameters. The selection
pipeline is generalizable in the sense, that it does not require biological insight
to implement, therefore it may be applied to other systems or models to gain
insight on the individual level. The E-DES model, a computational model of
the human glucose-insulin system, was personalized using the approach and
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subsequently a population of personalized models were simulated from a large
data set of overweight/obese but otherwise healthy individuals. The personalized
models, consisting of only four parameters estimated from experimental data
were capable of simulating a wide variety of postprandial glucose and insulin
responses to a standard OGTT from the DIOGenes data set. Taking advantage
of a frequently sampled time-series of both glucose and insulin the dynamic
models were able to capture a large, previously overlooked heterogeneity in
the population. The mechanistic aspect of the model allows the description and
comparison of the physiological state of the individuals’ glucose homeostasis
and provide mechanistic insight into the glycemic variability observed in the
responses.
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SUPPLEMENTARY MATERIAL

S1Fig. Schematic of the E-DES model in use

S2Fig. Local parameter sensitivity analysis on the simulated plasma insulin response
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S3 Fig. Profile Likelihood Analysis results of the 4 parameter model (k1, k5, k6, k8)
on the median NGT, IFG, IGT, IFG&IGT, T2DM, min and max responses. The red star
indicates the SSR of the model fitted using the optimal parameter values estimated from
data, while the blue line corresponds to the error as the other parameter values are being
re-estimated after adjusting the parameter value iteratively. The dashed lines indicate
confidence intervals where the degrees of freedom equals one (lower), and the number of
parameters (upper), respectively.
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S4 Fig. Profile Likelihood Analysis results of the 5 parameter model (k1, k5, k6, k8, k9)
on the median NGT, IFG, IGT, IFG&IGT, T2DM, min and max responses. The red star
indicates the SSR of the model fitted using the optimal parameter values estimated from
data, while the blue line corresponds to the error as the other parameter values are being
re-estimated after adjusting the parameter value iteratively. The dashed lines indicate
confidence intervals where the degrees of freedom equals one (lower), and the number of
parameters (upper), respectively.
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S5 Fig. The distribution of parameters k1, k5, k6, k8 by subgroup (based on ADA
diabetes criteria) with the outliers highlighted. The boxes represent the 25th and 75th
percentiles, the whiskers represent the min, and max values, and the horizontal line
represents the median.

S6 Fig. Pooled residuals in the personalized models per time-point per metabolite,
colored by the ADA prediabetes and diabetes diagnosis criteria.
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S7 Fig. Pairwise scatter plots and density plots of the personalized model parameters,
the Insulinogenic index and the Matsuda index from the DIOGenes study colored by
the ADA prediabetes and diabetes diagnosis criteria.
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S8 Fig. Personalized models colored by the Insulinogenic index in the parameter space
of the model after reduction to 2d via principal component analysis. The personalized
model simulations of five participants with varying first-phase insulin secretion are
highlighted (individuals 51, 45, 347, 430, 693). Orange and blue lines correspond to plasma
glucose and insulin model simulation, while crosses represent measured data.
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S9 Fig. Personalized models colored by SSR in the parameter space of the model after
reduction to 2d via principal component analysis. The personalized model simulations
of five participants with varying first-phase insulin secretion are highlighted (individuals
175, 738, 556, 676, 445). Orange and blue lines correspond to plasma glucose and insulin
model simulation, while crosses represent measured data.
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S1Table: Criteria for prediabetes and diabetes classification used in this study. Based
on the standard two hour OGTT by the American Diabetes Association [1].

Group! Fasting plasma glucose 2hr plasma glucose
IFG 5.6 - 6.9 mmol/L -

IGT - 7.8 -11.0 mmol/L
IFG&IGT 5.6 - 6.9 mmol/L 7.8 —11.0 mmol/L
T2DM 7.0 mmol/L < 11.1 mmol/L <

IFG: impaired fasting glucose, IGT: impaired glucose tolerant, T2DM: type 2 diabetes
mellitus
[1] American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes

Care. 2015;38(Supplement_1):S8- S16. d0i:10.2337/dc15-S005.

S2 Table: Results of step two of the model selection approach. Sum of squared residuals
(SSR) and Akaike Information Criterion (AIC) of the ten best performing candidate models.

Rank Estimated parameters SSR AIC
1 k1, k5, k6, k8 41.39 20.44
2 k1, k5, k8, k9 44.46 20.94
3 k1, k5, k6, k8, k9 37.02 21.66
4 k1, k4, k5, k6, k8 39.15 22.05
5 k1, k4, k5, k8, k9 42.57 22.64
6 k1, k4, k5, k6, k8, k9 35.20 23.31
7 k1, k5, k9 87.00 23.64
8 k1, k5, k6 89.75 23.86
9 k1, k5, k6, k9 67.94 23.91
10 k5, k6, k8 93.84 24.17

S1 Appendix: E-DES model structure, fluxes, inputs, parameters and constants is available
online at https://doi.org/10.1371/journal.pcbi.1008852.s010

S2 Appendix: MATLAB implementation of the model used in the manuscript is available
online at https://doi.org/10.1371/journal.pcbi.1008852.s011 (Zip, 110KB)
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SUMMARY

Current computational models of whole-body glucose homeostasis describe
physiological processes by which insulin regulates circulating glucose
concentrations. While these models perform well in response to oral glucose
challenges, interaction with other nutrients that impact postprandial glucose
metabolism, such as amino acids (AAs), are not considered. Here, we developed
a computational model of the human glucose-insulin system, which incorporates
the effects of AAs on insulin secretion and hepatic glucose production. This model
was applied to postprandial glucose and insulin time-series data following
different AA challenges (with and without co-ingestion of glucose), dried milk
protein ingredients, and dairy products. Our findings demonstrate that this
model allows accurate description of postprandial glucose and insulin dynamics
and provides insight into the physiological processes underlying meal responses.
This model may facilitate the development of computational models that describe
glucose homeostasis following the intake of multiple macronutrients, whilst
capturing relevant features of an individual’s metabolic health.
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INTRODUCTION

Glucose homeostasis is primarily regulated by the hormones insulin and
glucagon, which act in antagonistic fashion to maintain circulating glucose
concentrations within a healthy range (Qaid and Abdelrahman, 2016; Roder et
al., 2016). When glucose concentrations are elevated (i.e. following meal intake),
pancreatic B-cells secrete insulin to suppress hepatic glucose output and promote
glucose uptake in peripheral organs, predominantly in the skeletal muscle
(Chadt and Al-Hasani, 2020). In contrast, when glucose concentrations drop
(i.e. during fasting or physical exercise), pancreatic a-cells secrete glucagon to
stimulate glycogen breakdown and gluconeogenesis (formation of glucose from
non-carbohydrate precursors), allowing glucose release from the liver into the
circulation, thereby preventing hypoglycemia (Rix et al., 2015). As such, glucagon
and insulin exert opposing actions on glucose metabolism and are part of a
tightly-regulated feedback system to maintain glucose homeostasis.

Computational models of whole-body glucose homeostasis describe and
incorporate the current mechanistic understanding of insulin-mediated
regulation of circulating glucose concentrations (Bergman et al., 1979; Dalla
Man et al., 2007; Maas et al., 2015). These processes are represented by model
parameters, which can be estimated from postprandial time-series data without
requiring direct invasive measurements. One of the earliest computational
glucose models, the Bergman minimal model (Bergman et al., 1979), was able
to determine insulin sensitivity (i.e. the capability of insulin to suppress hepatic
glucose output and increase glucose disposal in insulin-sensitive tissues) and
glucose effectiveness (i.e. the ability of glucose to enhance its own disposal at
basal insulin levels) in response to an intravenous glucose tolerance test. The
Bergman minimal model formed the basis of the Food and Drug Administration
approved glucose-insulin model by Dalla Man and colleagues (Dalla Man et al,,
2007; Kovatchev et al., 2009), which is used for in silico simulation and testing of
insulin pump systems. The Dalla Man model has been parameterized using triple
tracer glucose data to allow quantification of glucose fluxes between tissues.

The Eindhoven-Diabetes Education Simulator (E-DES), a multi-compartmental
ordinary differential equation model, has been used to describe glucose
dynamics following a glucose challenge in healthy individuals as well as patients
with type 1 and type 2 diabetes (Maas, 2017; Maas et al., 2015; Rozendaal et al.,
2018). We have previously individualized the E-DES model to allow accurate
description of individual postprandial responses compared to population-based
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models, demonstrating it is capable of providing mechanistic insight into glucose
homeostasis of individuals (Erdds et al., 2021). Whilst the E-DES model performs
very well in response to an oral glucose challenge, modelling the response to
more complex meals is still challenging because these contain fat and protein,
which also influence glucose homeostasis.

Dietary protein consists of amino acids (AAs) which are used for synthesis of
body protein and of nitrogen-containing compounds, such as creatine, peptide
hormones, and several neurotransmitters (Case et al., 2011). AAs have been shown
to influence glucose metabolism by inducing insulin secretion to facilitate AA
uptake and incorporation into protein in muscle tissue, and secreting glucagon to
enhance hepatic AA uptake, production of ketone bodies from AAs, and formation
of glucose from AAs (i.e. gluconeogenesis) (Qaid and Abdelrahman, 2016; Rix et
al., 2015). In a systematic review, we have recently summarized available studies
describing postprandial glucose and insulin responses to AAs (van Sloun et al.,,
2020).

In the present study, we aimed to extend an existing computational model of
the glucose-insulin regulatory system to account for the postprandial effects of
AAs. To parameterize the model, we used time-series data of postprandial AA,
glucose and insulin concentrations following AA challenges (with and without
glucose), dried milk protein ingredients, and dairy products, derived both from a
previously performed randomized, single-blind crossover trial (Horstman et al.,
2021) as well as data extracted from available literature (van Sloun et al., 2020).
Here, we show that this novel model, which we termed E-DES-PROT, accurately
describes postprandial glucose and insulin dynamics, outperforms the original
E-DES model and allows insight into the physiological processes underlying meal
responses.

RESULTS

Postprandial simulation of AA, glucose, and insulin dynamics
following AA challenges and intake of protein ingredients

We investigated whether our newly developed model was able to capture AA
and protein challenges, estimating only the model parameters accounting for
AAs (k11-k13). The parameters pertaining to the original E-DES model were
kept to their healthy average population value and the measured plasma AA
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concentration (pertaining to the challenge) were interpolated and provided to
the model as an input (Rozendaal et al., 2018).

The simulated glucose and insulin responses, parameterized on the AA challenges
(1 mmol/kg body weight) are shown in Figure S1. The simulated glucose and
insulin responses, parameterized on the milk protein ingredients (i.e. WPC,
MCI) containing 25g of protein in a 700mL solution, are shown in Figure 1. Here,
the leftmost column pertains to the average population responses, whereas the
other columns show selected individual responses highlighting striking model
behavior. The complete overview of all the individual glucose and insulin
responses is shown in Supplemental Section S1.
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Figure 1. Plasma glucose and insulin simulation following intake of whey protein
concentrate (WPC) and micellar casein isolate (MCI) in the average healthy study
population and selected individuals. The model parameters pertaining to amino
acids (AAs, k11-k13) were estimated, whereas the other model parameters were kept to
their original population value. The tAA input is shown in black (data and polynomial
interpolation). The simulated glucose and insulin concentrations are shown in red and
blue, respectively. The measured concentrations, obtained from (Horstman et al., 2021), are
shown as black asterisks with corresponding standard errors of the means. The leftmost
column in panel A & B pertains to average study population, whereas the other columns
represent selected individuals.
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Visual inspection of the plasma glucose and insulin simulations following
the AA challenges and protein ingredients displays good agreement with the
measured data. In general, our new model is able to capture the postprandial
glucose and insulin following AA challenges, as well as protein ingredients.
In addition, our model is also able to capture individual glucose and insulin
concentrations following the intake of protein ingredients, being able to capture
more pronounced glucose and insulin responses (Figure 1A, subject 9), but also
less prominent responses (Figure 1A, subject 3).

E-DES-PROT improves upon the original E-DES model in capturing
glucose dynamics following the intake of AA+glucose and dairy
products

We investigated whether our newly developed model was able to capture meals
that in addition to AAs and protein also contained glucose and carbohydrates.
The E-DES-PROT model was compared to the original E-DES model using the AIC
and BIC, with the lowest AIC and BIC value pertaining to the preferred model.

Amino acids + glucose challenge

The simulated glucose and insulin responses using the original E-DES and the
newly developed E-DES-PROT model, parameterized on the AA+glucose challenges
(1 mmol/kg body weight + 25g glucose), are shown in Figure 2. For the original
E-DES model, parameters (k1, k5, k6, k8) were estimated. For the E-DES-PROT
model, these model parameters were estimated in conjunction with the model
parameters accounting for AAs (k11-k13). The measured plasma AA concentration
(pertaining to the challenge) were interpolated and provided to the model as an
input (Rozendaal et al., 2018).
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Figure 2. Plasma glucose and insulin simulation following intake of different amino
acids (AAs) together with glucose in healthy individuals, using the original E-DES and
E-DES-PROT model. The AA input is shown in black (data and polynomial interpolation).
The simulated glucose and insulin concentrations following parameter estimation (k1, k5,
k6, k8) using the original E-DES model, are shown in dashed red and blue, respectively.
The simulated glucose and insulin concentrations following parameter estimation (k1,
k5, k6, k8, k11-k13) using the E-DES-PROT model, are shown in red and blue, respectively.
The other model parameters were kept to their original population value. The measured
concentrations, obtained from (van Sloun et al., 2020), are shown as black asterisks with

corresponding standard errors of the means.
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Visual inspection of the plasma glucose and insulin simulations following the
AA+glucose challenges displays good agreement with the measured data using
the E-DES and E-DES-PROT model. The E-DES-PROT model is able to capture
AA+glucose challenges and improves in capturing the measured postprandial
glucose data (Figure 2, AIC, 1.05 and -1.45; BIC, 3.31 and 2.50 for E-DES, and E-DES-
PROT, respectively across all challenges). For glycine+glucose (Figure 2A), the
improvement pertained to the period from 60 min after intake onwards, whereas
the E-DES-PROT model improved the overall postprandial glucose response
for isoleucine+glucose (Figure 2B). The postprandial insulin data was nicely
captured using both models. Thus, both the E-DES and E-DES-PROT model are
able to describe postprandial responses to simple meal challenges consisting of
single AAs co-ingested with glucose. The complete overview of the AIC and BIC
for the AA+glucose challenges using the E-DES and E-DES-PROT model is shown
in Table S1.

Dairy products

The simulated glucose and insulin responses using the original E-DES and the
newly developed E-DES-PROT model, parameterized on responses to selected
dairy food products (i.e. LF-UHT and yoghurt) containing 25g of protein and
a variable amount of carbohydrates in a 700mL solution are shown in Figure
3. Here, the leftmost column pertains to the average population responses,
whereas the other columns show selected individual responses highlighting
striking model behavior. The complete overview of the individual glucose and
insulin responses for the dairy products (i.e. LF-UHT, LF-PAS, FF-UHT, FF-PAS,
and yoghurt) are shown in Supplemental Section S2. For the original E-DES model,
parameters (k1, k5, k6, k8) were estimated. For the E-DES-PROT model, these
parameters were estimated in conjunction with the model parameters accounting
for AAs (k11-k13). The measured plasma AA concentration (pertaining to the
challenge) were interpolated and provided to the model as an input (Rozendaal
etal., 2018).
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Fig 3. Plasma glucose and insulin simulation following intake of low-fat untreated
treated milk (LF-UHT) and Yoghurt in the average healthy study population and
selected individuals using the original E-DES and E-DES-PROT model. The tAA input
isshown in black (data and polynomial interpolation). The simulated glucose and insulin
concentrations following parameter estimation (k1, k5, k6, k8) using the original E-DES
model, are shown in dashed red and blue, respectively. The simulated glucose and insulin
concentrations following parameter estimation (k1, k5, k6, k8, k11-k13) using the E-DES-
PROT model, are shown in red and blue, respectively. The other model parameters were
kept to their original population value. The measured concentrations, obtained from
(Horstman et al., 2021), are shown as black asterisks with corresponding standard errors
of the means. The leftmost column in panel A & B pertains to average study population,
whereas the other columns represent selected individuals.

The plasma glucose and insulin simulations following LF-UHT and yoghurt
ingestion are in good agreement with the measured data using the E-DES-PROT
model. In particular, the original E-DES model was less able to capture the
measured postprandial glucose data compared the E-DES-PROT model (Figure
3, AIC, 16.01 and -5.44; BIC, 17.21 and -3.32 for E-DES and E-DES-PROT, respectively,
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across all challenges). Whereas the first glucose data point after intake (t=15min)
is accurately captured with the original E-DES model, the remainder of the
response is not, and appears to overshoot the measured concentration. The
postprandial insulin data was captured well using both models. Looking at
the individual level, the E-DES-PROT model was able capture a wide variety of
measured postprandial glucose and insulin responses. Here, the E-DES-PROT
model was better able to capture the measured data, for instance for subject 3,
10 (Figure 3A) and subject 3, 5 (Figure 3B). The E-DES-PROT model thus allows
capture of more complex meals containing protein as well as carbohydrates,
which the original E-DES model was unable to do. The complete overview of the
AIC and BIC for the dairy products using the E-DES and E-DES-PROT model is
shown in Table S2.

Model fluxes were compared between E-DES-PROT and the original E-DES
model following LF-UHT intake in the average healthy population (Figure S2).
The fluxes for endogenous glucose production and insulin-dependent glucose
uptake increased more in the E-DES-PROT model compared to the original E-DES
model. Despite the small increase in the insulin-dependent glucose uptake flux, a
minor change greatly affects the postprandial glucose and insulin concentrations
(Figure S3). In addition, model fluxes were compared for different