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Chapter 1

The complexity of biological systems manifests itself in many features, including 
the large number of components involved and the intricate interactions between 
these components. As a consequence, reliable predictions can’t be made based on 
intuition alone. Computational models can be combined with datasets containing 
information on biological parameters and variables such as genes, protein, and 
metabolites, to perform in silico simulations of complex biological systems [1]. 
This serves a variety of roles, including hypothesis testing and generating new 
insight in the biological processes that underlie health and disease [2]. Various 
computational modelling techniques exist, from mechanistic models to data-
driven approaches, each having their own advantages and disadvantages [3-5]. 
Data-driven approaches such as machine learning, examine patterns in data 
to determine the best combination of input variables that predict the desired 
outcomes [6, 7]. Most data-driven approaches, however, are ‘black box’, meaning 
that a causal explanation for the prediction is absent. In contrast, mechanistic 
models are based on rate equations and describe how quantities of interest change 
in time, using an a priori understanding of the underlying biological system [8]. 
As biological processes are inherently dynamic, mechanistic modelling allows 
simulation and insight in complex metabolic systems, such as the glucose-insulin 
regulatory system, which includes various organs and tissues and maintains 
blood glucose to ensure normal body function [9, 10].

FOOD INTAKE AND GLUCOSE HOMEOSTASIS

In the acute postprandial state, which means the period following meal intake, 
the body absorbs nutrients from the gastro-intestinal tract. Carbohydrates are 
the body’s primary energy source and are ingested as simple carbohydrates 
like monosaccharides and disaccharides or as complex carbohydrates, such as 
oligosaccharides and polysaccharides [11]. Various organs, for example the brain, 
require a continues supply of the monosaccharide glucose to function properly 
[12]. If glucose concentrations in the blood fall too low (hypoglycemia) or rise 
too high (hyperglycemia) for a prolonged period of time, it can lead to major 
health problems [13, 14]. As such, a tightly-regulated feedback system, consisting 
of various hormones and neuropeptides released from the intestine, pancreas, 
brain, liver, muscle and adipose tissue, ensures tight control of blood glucose 
levels [15].
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GLUCOSE REGULATORY SYSTEM

The main processes involved in glucose regulation are illustrated in Figure 1. 
One of the major determinants of how quickly glucose appears in the circulation 
following ingestion of a meal is the gastric emptying rate, which is the speed 
at which gastric contents leave the stomach after ingestion [16, 17]. The rate of 
gastric emptying is mainly regulated by gastrointestinal peptide hormones, 
such as cholecystokinin (CCK) and Glucagon-like-peptide 1 (GLP-1) [18-20]. One 
of the roles of GLP-1 includes slowing down glucose entry into the bloodstream, 
thus reducing postprandial fluctuations in blood glucose levels [21]. However, to 
prevent an excessive increase in blood glucose concentrations after meal intake, 
the increase in glucose delivery requires a comparable increase in the removal 
of glucose from the circulation [22].

The most important hormones involved in blood glucose regulation are insulin, 
glucagon and adrenaline [15]. Insulin is a peptide hormone secreted by the β-cells 
of the pancreas that facilitates the uptake of glucose to insulin-dependent tissues, 
such as skeletal muscle and adipose tissue, and inhibits glucose production in 
the liver [23, 24].

1



10

Chapter 1

Figure 1. Glucose regulatory system. This figure depicts major processes involved in the 
glucose regulatory system. The red arrows indicate the flow of glucose. The blue arrows 
indicate the flow of insulin.

Glucose exerts insulin secretion from pancreatic β-cells by inducing a rise in 
ATP/ADP ratio, suppressing ATP-sensitive potassium channels and leading to the 
activation of voltage-gated Ca2+ channels. The subsequent calcium influx enables 
exocytosis of the insulin granules from the β-cells [25, 26]. Glucagon is a peptide 
hormone secreted by the α-cells of the pancreas and plays an important role 
in maintaining glucose levels by stimulating liver glucose production [27]. In 
contrast to the effects of insulin, glucagon acts as a glucose-mobilizing hormone, 
which promotes the conversion of glycogen to glucose (glycogenolysis) in the 
liver, stimulates de novo glucose synthesis from non-carbohydrate precursors 
(gluconeogenesis) in the liver, and inhibits glucose breakdown (glycolysis) and 
glycogen formation (glycogenesis). Circulating glucose acts as the most potent 
regulator of glucagon secretion, as hypoglycemia stimulates the pancreatic 
α-cells to secrete glucagon, whereas hyperglycemia inhibits glucagon secretion 
[27]. Adrenaline is a hormone mainly produced in the adrenal glands and plays 
an important role in regulating glucose metabolism [28]. Adrenaline increases 
plasma glucose through promoting glycogenolysis in the liver and skeletal 
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muscle, gluconeogenesis in the liver, and inhibition of glucose uptake by tissues 
such as the skeletal muscle.

Thus, through the influence of various hormones, in particular the actions of 
insulin, glucagon and adrenaline, blood glucose is tightly controlled under 
different physiological conditions. Whilst providing a simplified overview of 
the main processes involved in postprandial glucose metabolism, several other 
factors have been shown to influence glucose metabolism, such as amino acids 
(AAs). Not all of these factors are well understood, and interactions between 
various physiological processes make it even more complex.

INSULIN RESISTANCE: A KEY FACTOR IN GLUCOSE 
HOMEOSTASIS

In individuals with insulin resistance, the regulatory system that aims for 
glucose homeostasis is not functioning properly [29]. Insulin resistance is 
defined as an impairment in the uptake of glucose by the insulin-dependent 
tissues, and may lead to the development of type 2 diabetes mellitus (T2DM), 
which is characterized by persistent hyperglycemia [29, 30]. One of the major 
causes of insulin resistance is obesity, which is the result of an imbalance 
between energy intake and energy expenditure [31]. The long-term positive 
energy balance contributes to adipose tissue dysfunction, ectopic fat storage 
and may induce insulin resistance, in which the muscle, fat, and liver cells 
fail to respond normally to the effects of insulin, resulting in a compensatory 
increase in insulin secretion from β-cells [32]. Although insulin resistance 
often develops simultaneously in multiple organs, its severity and phenotype 
may differ between tissues [33]. Skeletal muscle, due to its high rate of insulin-
stimulated glucose uptake, represents an important tissue in the development 
of insulin resistance [34, 35]. In individuals with the muscle insulin resistance 
(MIR) phenotype, the insulin-stimulated glucose uptake by the skeletal muscle is 
markedly impaired [36]. It is believed that this impaired glucose uptake, which 
characterizes muscle insulin resistance, results from impaired insulin receptor 
signaling and intracellular defects, including impaired glucose transport and 
glucose phosphorylation, reduced glucose oxidation and glycogen synthesis 
[36, 37]. Another important tissue in the development of insulin resistance is 
the liver, which aims to maintain a balance between glucose production and 
glucose storage in the form of glycogen [38]. In liver insulin resistance (LIR), 
insulin fails to appropriately regulate liver metabolism, resulting in excess 

1
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glucose production [39]. Furthermore, liver insulin resistance causes decreased 
glycogen synthesis and increased lipid accumulation [40]. If insulin resistance 
is left untreated and β-cell dysfunction is present, hyperglycemia is amplified 
leading to the progression to T2DM [41].

THE EFFECTS OF PROTEIN AND AMINO ACID INTAKE 
ON GLUCOSE HOMEOSTASIS

Besides carbohydrates, foods contain other nutrients such as fat, protein, and 
fiber. Protein and their constituent AAs, which we focus on in the current 
thesis, have been shown to have a notable impact on both acute and long-term 
postprandial glucose metabolism [42]. AAs can be divided in various categories 
(Table 1). Essential AAs are defined as AAs that cannot be synthesized by humans 
and must come from the diet [43]. AAs can be glucogenic (i.e. AAs that can be 
converted into glucose through gluconeogenesis), and/or ketogenic (i.e. AAs that 
are converted into ketone bodies) [44]. Furthermore, there are the branched 
chain amino acids (BCAAs) which all have protein anabolic properties (enhanced 
protein synthesis and/or a decrease rate of protein degradation) [45, 46].

Table 1. List of amino acids

Amino acid Essential Glucogenic Ketogenic BCAA

Alanine 

Arginine 

Asparagine 

Aspartic Acid 

Cysteine 

Glutamic acid 

Glutamine 

Glycine 

Histidine  

Isoleucine    

Leucine   

Lysine  

Methionine  

Phenylalanine   
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Table 1. List of amino acids (continued)

Amino acid Essential Glucogenic Ketogenic BCAA

Proline 

Serine 

Threonine   

Tryptophan   

Tyrosine  

Valine   

In most cases, proteins are consumed as part of foods, and not as isolated 
ingredients. The digestion of the majority of dietary proteins starts in the stomach 
and continues in the small intestine [47]. Through a variety of digestive enzymes, 
proteins are broken down into AAs that are absorbed across the small intestinal 
enterocytes into the bloodstream. AAs are transported directly to the liver by the 
liver portal vein [48]. AAs stimulate glucagon release from pancreatic α-cells to 
allow AA uptake and metabolism in the liver, where they are used as substrates 
for protein synthesis, nitrogen containing compounds, and gluconeogenesis 
[27, 49, 50]. AAs that pass through the liver (mainly BCAAs), are metabolized 
primarily in the peripheral tissues (particularly skeletal muscle), through the 
effects of insulin release from pancreatic β-cells [51-54]. Here, they are used 
as substrates for protein synthesis and suppress the breakdown of protein into 
smaller polypeptides or AAs (proteolysis) [55]. AAs exert some of their effects 
on insulin secretion via β-cell metabolism, allowing a rise in ATP/ADP ratio, 
suppression of ATP sensitive potassium (KATP) channels and activation of voltage-
gated Ca2+ channels, leading to stimulation of insulin granule release [56]. 
Furthermore, several AAs have been shown to have distinct mechanisms leading 
up to insulin secretion, as well as exert a synergistic effect on the postprandial 
insulin response and attenuation of the glucose response when co-ingested 
with glucose [57, 58]. The insulin secretion effect of AA intake has also been 
demonstrated in patients with T2DM [59]. In the long term, high protein diets 
have been shown to lead to a reduction in body weight, fat mass, and increase in 
the glucose metabolic clearance rate [60-62].

1
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NUTRITIONAL MANAGEMENT OF BLOOD GLUCOSE

Nutritional management of blood glucose levels is an important target in the 
prevention and management of metabolic diseases such as T2DM [63]. Dietary 
interventions can have significant and clinically relevant effects on blood 
glucose modulation. However, a large heterogeneity exists in an individual’s 
response to a dietary intervention, which can be attributed to differences in 
genetic, environmental, and lifestyle factors [64]. Recent findings indicate 
that individuals with distinct metabolic phenotypes, for example, individuals 
with MIR or LIR, may have different outcomes regarding glucose homeostasis 
in response to dietary macronutrient modulation [65, 66]. The PERSonalized 
glucose Optimization through Nutritional intervention (PERSON) study was 
designed to investigate the effect of an optimal compared to a suboptimal dietary 
intervention, according to tissue-specific insulin resistant phenotype, on glucose 
metabolism and other metabolic health outcomes [67]. The participants of this 
study were extensively phenotyped before and after the intervention, including 
the use of various challenge tests (i.e. oral glucose tolerance test (OGTT) and 
high-fat mixed meal challenge). Such challenge tests are widely used in clinical 
metabolic research and diabetes drug development, and provide an assessment 
of glucose tolerance and β-cell function [68, 69]. In an OGTT, a standard dose 
of glucose is ingested orally and blood samples are collected at regular time-
intervals to allow assessment of postprandial glucose and insulin profiles 
(illustrated in Figure 2). OGTTs have widely been used for evaluation of β-cell 
dysfunction in obesity, prediabetes, and T2DM [70].
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Figure 2. Plasma glucose and insulin response following an OGTT. This figure depicts 
plasma glucose (red) and insulin (blue) concentrations following an OGTT. Sampling points 
are indicated with an asterisk (٭).

A mixed meal challenge test consists of a high caloric mixture of carbohydrates, 
fat, and protein. As nutrients other than glucose (e.g. protein, and fat) have been 
shown to affect glucose homeostasis, these mixed meals induce physiologically 
relevant postprandial responses and allow assessment of postprandial profiles 
of AAs, triglycerides, non-esterified fatty acids and their interplay with glucose 
and glucoregulatory hormones [71].

MECHANISTIC MODELLING OF GLUCOSE HOMEOSTASIS

Physiology-based mechanistic models of the glucose regulatory system, as 
introduced before, are able to provide quantitative information on postprandial 
glucose and insulin dynamics, whilst taking the underlying mechanisms into 
account [10, 72]. Such models are constructed using a bottom up approach, using 
a priori understanding of the underlying biological system. The reactions in the 
model are described by equations, and the rates at which each reaction occurs 
are determined by parameters, often inferred from experimental data [73]. The 
estimation of these parameters, by fitting the model simulation to the measured 
time-series data, provides a parameter set corresponding to the state of the 
underlying system [74].

1
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The glucose minimal model, developed by Bergman and colleagues [75], was 
one of the earliest mechanistic glucose models able to describe the effect of 
insulin action on glucose uptake and suppression of liver glucose production 
following an intravenous glucose tolerance test. More extensive models, like the 
meal simulation model from Dalla-Man and colleagues [9], were able to provide 
detailed information on the underlying processes governing glucose utilization 
in the postprandial state. The Dalla-Man meal model was parameterized on a 
population of healthy individuals and individuals with T2DM using gold-standard 
triple glucose tracer data and was approved by the FDA for in silico pre-clinical 
trials, for example to test closed loop control systems for Type 1 Diabetes Mellitus 
[76]. The Eindhoven Diabetes Education Simulator (E-DES), developed by Anne 
Maas and colleagues [10], provided a virtual practice environment for patients 
with diabetes, incorporating the most important factors influencing glycemic 
control. The E-DES model was developed through combining various models from 
literature and allows accurate simulation of glucose and insulin concentrations 
following an OGTT in healthy individuals, as well as type 1 and type 2 diabetes 
patients [77]. Currently, computational glucose models, such as the E-DES model, 
are able to only simulate glycemic responses to glucose ingestion, and do not 
include effects of other nutrients such as AAs and protein on glucose regulation.

MACHINE LEARNING

Artificial intelligence, in particular machine learning, has seen a rapid growth 
due to increased data-availability and growth of computational power in the 
context of data-analysis [78, 79]. In contrast to bottom-up approaches, such as 
mechanistic modelling, which rely on pre-existing knowledge of the underlying 
system, machine-learning techniques are purely data-driven [80]. Machine 
learning involves a broad range of algorithms that perform prediction by 
utilizing patterns in the available data [81]. Machine learning is used in a wide 
variety of applications, such as in predictive analytics and decision making, 
E-commerce, cybersecurity, and healthcare [82]. In the field of nutrition, Zeevi
and colleagues [64] devised a machine learning algorithm, integrating blood
parameters, physical activity, dietary habits, gut microbiota and anthropometrics 
to provide a personalized postprandial prediction of glycemic responses to meals. 
However, while machine-learning based approaches are useful for prediction,
they only provide limited insight into the biology underlying inter-individual
differences in glucose homeostasis [83]. Combining mechanistic models with
machine learning techniques might provide more detailed insight into the
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biology underlying these inter-individual differences than machine learning 
approaches alone.

THESIS OUTLINE

A complex glucose regulatory system is in play to maintain and control blood 
glucose levels under different physiological conditions. Current existing 
whole-body mechanistic models of the postprandial glucose regulatory system 
describe and provide quantitative information on glucose-insulin dynamics 
whilst capturing the mechanistic link between glucose and insulin. However, 
these models do not include the effect of AAs, which have been recognized as 
important factors influencing glucose homeostasis in various health phenotypes. 
In addition, these mechanistic models have mainly been applied to the population 
level, disregarding the heterogeneity in individual responses. In this thesis, we 
use a computational modelling approach to allow (personalized) simulation 
of postprandial glucose, insulin, and AA responses following challenge tests 
containing AAs or protein in various health phenotypes using a whole-body 
mechanistic model of the glucose homeostasis. Furthermore, we explored 
whether the addition of a data-driven model could improve the predictive 
performance of (personalized) mechanistic models.

The research in Chapter 2 provides a systematic overview of the quantitative 
effects of isolated AAs (with and without glucose co-ingestion) and AA mixtures 
on postprandial glucose and insulin dynamics in humans with various health 
phenotypes. Here, we identified, extracted, and compared time-series data from 
intervention studies reporting glucose and insulin concentrations following 
acute ingestion and/or intravenous infusion of AAs in healthy adults and those 
living with obesity and/or type 2 diabetes. In Chapter 3, we personalized a 
physiology-based mechanistic model of the glucose regulatory system (E-DES) 
to elucidate the heterogeneity in individuals’ responses following an OGTT 
using a large population of overweight/obese individuals from the DIOGenes 
study. In Chapter 4, we developed a mechanistic model of the glucose regulatory 
system (E-DES-PROT), which incorporates and captures the postprandial effects 
of AAs and protein intake. New terms, to account for the effect of AAs on insulin 
secretion and liver glucose production, were introduced and the novel model was 
applied to postprandial glucose and insulin time-series data following different 
AA challenges (identified in Chapter 2) and dried milk protein ingredients, and 
dairy products from a randomized, single-blind crossover trial.

1



18

Chapter 1

While both “bottom-up” mechanistic and “top-down” data-driven techniques 
offer distinct benefits in untangling the complex interactions underlying 
disturbances in glucose homeostasis, a combined approach has yet to be 
explored. In Chapter 5, we use a sequential combination of a mechanistic (E-
DES) and data-driven modelling approach to quantify individuals’ glucose and 
insulin responses to an OGTT, using data from a large observational prospective 
population-based cohort, the Maastricht Study. In Chapter 6, we applied the 
novel E-DES-PROT model to simulate and understand mechanistic differences 
between MIR and LIR, using postprandial glucose, insulin, and AA time-series 
data following a high-fat-mixed meal in individuals from the PERSON study. An 
overall evaluation of the findings can be found in Chapter 7.
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ABSTRACT

Different amino acids (AAs) may exert distinct effects on postprandial glucose 
and insulin concentrations. A quantitative comparison of the effects of AAs on 
glucose and insulin kinetics in humans is currently lacking. PubMed was queried 
to identify intervention studies reporting glucose and insulin concentrations 
after acute ingestion and/or intravenous infusion of AAs in healthy adults and 
those living with obesity and/or type 2 diabetes (T2DM). The systematic literature 
search identified 55 studies that examined the effects of L-leucine, L-isoleucine, 
L-alanine, L-glutamine, L-arginine, L-lysine, glycine, L-proline, L-phenylalanine,
L-glutamate, branched-chain AAs (i.e. L-leucine, L-isoleucine, and L-valine), and
multiple individual L-AAs on glucose and insulin concentrations. Oral ingestion
of most individual AAs induced an insulin response but did not alter glucose
concentrations in healthy participants. Specific AAs (i.e. leucine, and isoleucine)
co-ingested with glucose exerted a synergistic effect on the postprandial insulin
response, and attenuated the glucose response compared to glucose intake alone
in healthy participants. Oral AAs ingestion as well as intravenous AA infusion
was able to stimulate an insulin response and decrease glucose concentrations
in T2DM and obese individuals. The extracted information is publicly available
and can serve multiple purposes such as computational modelling.
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INTRODUCTION

Glucose is a key substrate for many different types of cells and tissues, and as such 
plays an important role in human metabolism [1]. Blood glucose concentrations 
are tightly regulated to prevent hypoglycemia and hyperglycemia, thereby 
ensuring normal body functions. Glucagon and adrenalin are the key hormones 
responsible for elevating blood glucose concentration (for example during fasting 
or exercise), whereas insulin lowers blood glucose concentrations (for example 
following meal intake) [2]. This complex regulatory system involves various 
organs, including the gut, pancreas, liver, adipose tissue and skeletal muscle. 
Impairment of glucose homeostasis increases the risk of developing chronic 
cardiometabolic diseases such as type 2 diabetes (T2DM) and cardiovascular 
disease, highlighting the importance of adequate control of blood glucose 
concentrations [3].

Amino acids (AAs) are involved in the regulation of insulin secretion through 
their effects on β-cells, causing a rise in the ATP/ADP ratio, suppression of ATP-
sensitive potassium channels and activation of voltage-gated Ca2+ channels [4]. 
The resulting calcium influx allows exocytosis of insulin granules from the 
β-cells. The insulinotropic effect of AA administration in humans was studied 
already in the 1960s by Floyd and colleagues [5, 6]. An intravenous infusion of an 
AA mixture, consisting of essential L-AA increased plasma insulin concentration 
and subsequently lowered blood glucose concentrations in healthy people [5]. 
A similar response was also demonstrated following infusion of single AAs [5, 
6]. Interestingly, however, there seemed to be large differences in the capacity 
of the various AAs to stimulate insulin secretion [5]. A synergistic effect of 
simultaneous glucose and AA ingestion was found in several studies, where co-
ingestion of AAs with glucose increased insulin secretion more than the sum of 
the individual effects [6-9]. The insulinotropic effect of AA administration has 
also been demonstrated in patients with T2DM. For example, co-ingestion of a 
protein hydrolysate/AA mixture with carbohydrates induced a more pronounced 
increase in plasma insulin concentrations compared to intake of carbohydrates 
alone, not only in healthy people but also in patients with T2DM [9]. Of note, the 
metabolic phenotype may influence the magnitude of the glucose and insulin 
responses following ingestion of AAs.

Despite decades of research, there is no quantitative overview available that 
describes the effects of individual AAs on glucose and insulin kinetics in 
individuals with different metabolic phenotypes. These data are needed as 
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the type and amount of AA intake, the administration route (i.e. oral versus 
intravenous) and study population seems to affect the insulin and glucose 
responses to AAs. We hypothesize that AAs exert distinct effects on glucose and 
insulin dynamics, which is further influenced by the metabolic phenotype as well 
as route of administration. A better mechanistic understanding would therefore 
allow for more targeted nutrition studies. This information could also aid in the 
improvement of physiology-based computational models of the glucose regulatory 
system, which have been developed and approved for pre-clinical research 
[10]. Therefore, we performed a systematic literature search and extracted the 
original data, which we made publicly available, to obtain better insight into the 
quantitative acute effects of individual AAs on postprandial glucose and insulin 
dynamics in humans, taking the metabolic phenotype into account.

MATERIALS AND METHODS

Details of the systematic review were registered in the PROSPERO 
International Prospective Register of Systematic Reviews (registration number 
CRD42020155067).

Search Strategy
Studies assessing the quantitative acute effects of AAs on postprandial plasma 
glucose and insulin concentrations were retrieved from the PubMed database 
between February 2018 and February 2020. The search strategy contained 
multiple (combinations of) main keywords appropriate for the topic of interest 
((“Amino acids” AND “Postprandial” AND (“Glucose” OR “Insulin”)). The detailed 
search strategy is provided in the Supplemental File 1. Searches were not limited 
by article publication date. From the identified articles, the titles and abstract 
were assessed first, and if considered relevant for the present systematic review, 
the full text of the article was examined in detail.

Selection Criteria
Criteria for study inclusion were set according to the Population-Intervention-
Comparator-Outcomes-Study design (PICOS) format (Table 1). Eligible studies 
included healthy adults as well as people living with overweight/obesity and 
T2DM. Only acute studies that evaluated the effects of oral AA ingestion and/
or intravenous AA administration on glucose and insulin concentrations were 
included. Studies had to be original research and be written in English. Labels 
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were added to the eligible articles, describing the subject characteristics, type 
of AA and route of AA administration.

Table 1. Selection criteria.

Inclusion criteria Exclusion criteria

Population Healthy adults Children and adolescents

Adults with T2DM Pregnant females

Adults with overweight/obesity Animals

Cells

Intervention Oral AA ingestion

Intravenous AA infusion

Comparison Control (i.e. water, saline)

Outcomes Glucose concentrations (repeated 
measurements)

Insulin concentrations (repeated 
measurements)

Trial design Intervention study

Type of publication Original research articles Non-English articles

Published in a peer-reviewed 
international journal, regardless of 

publication year

Review articles

T2DM: Type 2 diabetes mellitus, AA: Amino acid.

Data extraction
Data were extracted from eligible studies and entered into an Excel (2016, 
Microsoft Corporation) spreadsheet. The following items were extracted: 
bibliographic details (title; authors; year; journal), study population (health 
status; number of subjects; sex; age; body mass index (BMI); weight), intervention 
(type; dose; method of administration; duration), study design and the outcome 
measurements of interest (glucose concentrations; insulin concentrations). 
In the absence of exact numerical values for the outcome measurements of 
interest in the original articles, figures were digitized using a graph digitizing 
software (Graph Grabber version 2.0, Quintessa). After loading the figures in 
the digitizing software, the x- and y-axis was set to correctly map the image 
pixels to the corresponding data values in the figure. Data points (i.e. means and 
their corresponding standard errors or standard deviations) were determined 
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by manually clicking them and were subsequently stored in Excel data sheets for 
further processing. The extracted data from the 55 studies is publicly available 
(https://doi.org/10.34894/RNZI0A) and can serve multiple purposes such as 
computational modelling.

Data processing
The extracted data was imported into MATLAB [11]. Measurements units were 
converted to mg/dL for glucose and µU/mL for insulin. The iAUC was calculated 
according to the trapezoidal rule in MATLAB, and normalized to one minute 
by dividing with the time span of the response. The time to glucose and insulin 
peaks, and their concentrations were identified from the extracted data by 
selecting the data-points with the highest glucose and insulin concentrations, 
and their corresponding time points in MATLAB. No statistical analysis was 
performed. The mention of significance in this review refers to the statistical 
analysis performed in the original studies.

RESULTS

Literature search
The PubMed search identified 10311 unique records (Figure 1). Titles and/
or abstracts were screened, which resulted in the exclusion of 9678  studies. 
Three additional records were identified through searching reference lists. 
The remaining 636 full-text articles were retrieved and assessed for eligibility 
based on the selection criteria (Table 1). From these full-text articles, a total 
of 548  articles were excluded. Reasons for exclusion were related to the target 
population, intervention, time-scale, outcome parameters, and article language. 
An additional 33 articles were excluded due to accessibility restrictions and 
could not be retrieved via the university library. Thus, a total of 55 studies were 
included in the analysis. In the studies, the effects of L-leucine (n=6), L-isoleucine 
(n=1), L-alanine (n=6), L-glutamine (n=1), L-arginine (n=28), L-lysine (n=1), glycine 
(n=2), L-proline (n=1), L-phenylalanine (n=1), L-glutamate (n=3), branched-chain 
AAs (BCAAs) (i.e. L-leucine, L-isoleucine, and L-valine) (n=4), multiple L-AAs 
ingested separately (i.e. L-leucine, L-arginine, L-lysine, and L-phenylalanine) 
(n=1) on postprandial glucose and insulin concentrations were determined. 
When mentioning the different AAs throughout the present manuscript, with 
the exception of glycine that has no enantiomers because it has two hydrogen 
atoms attached to the central carbon atom, we refer to the L-isoforms of the 
respective AA.
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Figure 1. Flow diagram of the systematic literature search

Leucine
Leucine study details are provided in Table 2 (section A). The time series data and 
the calculated kinetic parameters are visualized in Figure 2. The effect of oral 
leucine intake (Figure 2-A) has only been examined in healthy individuals [8, 12, 
13]. Two out of the three studies showed increased insulin concentrations (iAUC 
range, 0.85 to 0.95 µU/mL/min) from baseline [12] and compared to a water control 
group (0.28 µU/mL/min) [8]. Glucose concentrations were unchanged compared 
to the water control group. The study with the lowest oral leucine dose showed 
decreased insulin (iAUC, -1.22 µU/mL/min) [13]. Here, the insulin reached a peak 
(5.35 µU/mL at 15 min), followed by a decrease below baseline values.

Kalogeropoulou et al. [8] demonstrated that co-ingestion of leucine+glucose 
(Figure 2-B) increased the insulin concentration (iAUC, 21.25 µU/mL/min) more 
than the sum of their individual effects (iAUC, 12.87 and 0.95 µU/mL/min for 
glucose and leucine ingestion, respectively), and attenuated the glucose response. 
The insulin concentrations increased more rapidly and reached a higher insulin 
peak (53.1 µU/mL) after co-ingestion of leucine+glucose compared to glucose 
ingestion alone (31.0 µU/mL).

The effect of intravenous leucine infusion (Figure 2-C) has also been examined 
in healthy people only [14-17]. Three out of the four studies showed increased 
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insulin (iAUC range, 4.47 to 8.90 µU/mL/min) [14, 15, 17], and decreased glucose 
concentrations (iAUC range, -2.52 to -6.31 mg/dL/min) compared to baseline. The 
study with the lowest intravenous leucine dose did not show increased insulin 
concentrations (iAUC, -0.45 µU/mL/min) [16]. To our knowledge, no kinetic data 
are available concerning leucine intake in people with obesity and/or T2DM.
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Figure 2. Leucine infograph consisting of study details with postprandial glucose and 
insulin time-series data and iAUC after oral leucine ingestion (A), leucine co-ingested 
with glucose (B), and intravenous leucine infusion (C) in healthy individuals. No data are 
available for T2DM patients, and obese individuals.
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Isoleucine
Isoleucine study details are provided in Table 2 (section B). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 1. 
Nuttall et al. [18] demonstrated that oral isoleucine ingestion alone (Supplemental 
Figure 1-A) had no significant effect on insulin concentrations, but decreased 
glucose (iAUC, -4.15 mg/dL/min) compared to ingestion of water (iAUC, 0.30 mg/
dL/min) in healthy individuals. Co-ingestion of isoleucine+glucose (Supplemental 
Figure 1-B) increased the insulin concentrations (iAUC, 21.38 µU/mL/min) more 
than the sum of their individual effects (iAUC, 19.0 and 0.00 µU/mL/min for 
glucose, and isoleucine ingestion respectively), and attenuated the glucose-
stimulated glucose response in healthy individuals [18]. To our knowledge, no 
kinetic data are available concerning intravenous isoleucine infusion, nor for 
isoleucine intake in people with obesity and/or T2DM.

Alanine
Alanine study details are provided in Table 2 (section C). The time series data and 
the calculated kinetic parameters are visualized in Supplemental Figure 2. The 
effect of oral alanine ingestion has been examined in healthy individuals [19-22], 
T2DM patients [22], and obese individuals [23] (Supplemental Figure 2-A). All four 
studies showed increased insulin concentrations (iAUC range, 1.01 to 10.53 µU/
mL/min) from baseline following oral ingestion of alanine in healthy individuals. 
Alanine was found to lower glucose concentrations (iAUC, -3.33 mg/dL/min) in 
one study [21] that had the highest alanine dose. Genuth et al. [22] demonstrated 
that the effect of oral ingestion of alanine on insulin is dose-dependent, with high 
dosing (33.8g) leading to a larger postprandial insulin response (iAUC, 10.53 µU/
mL/min) compared to low dosing (6.8g) (iAUC, 1.01 µU/mL/min). Plasma glucose 
concentrations were unchanged in both interventions, with the exception of 
a slight but significant decrease in glucose concentrations 240 min after oral 
ingestion for the low alanine dose. The initial insulin response to oral alanine 
ingestion was similar in healthy individuals and T2DM patients, but the insulin 
concentrations remained elevated over a prolonged period of time in the latter 
[22]. Glucose concentrations were decreased (iAUC range, -12.99 to -12.29 mg/dL/
min) from baseline in T2DM patients. Oral ingestion of alanine also increased 
insulin (iAUC, 42.67 µU/mL/min), and decreased glucose concentrations (iAUC, 
-10.49 mg/dL/min) from baseline in people with obesity [23]. To our knowledge,
no kinetic data are available concerning co-ingestion of alanine with glucose in
individuals.

2
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Additionally, the effect of intravenous alanine infusion was examined in healthy 
[19, 24] and obese individuals [24] (Supplemental Figure 2-C). Rossini et al. [19] 
showed that, in contrast to oral alanine ingestion, intravenous alanine infusion 
did not alter insulin and glucose concentrations from baseline. Asano et al. 
[24] showed increased insulin concentrations in both obese participants (iAUC,
12.02 µU/mL/min) and healthy individuals (iAUC, 3.42 µU/mL/min). Glucose
concentrations were also increased, despite not being different between groups.

Glutamine
Glutamine study details are provided in Table 2 (section D). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 3. 
Greenfield et al. [25] demonstrated that oral ingestion of glutamine increased 
insulin concentrations compared to ingestion of water only in healthy, T2DM 
and obese individuals (Supplemental Figure 3-A). The effects found were most 
pronounced in T2DM individuals (iAUC, 13.35 and -0.23 µU/mL/min for glutamine, 
and water ingestion, respectively), intermediate in obese individuals (iAUC, 
6.16 and -2.73 µU/mL/min for glutamine, and water ingestion, respectively), and 
modest in healthy individuals (iAUC, 1.62 and -1.06 µU/mL/min for glutamine, and 
water ingestion, respectively). The glucose concentrations were comparable to 
water ingestion in these groups. To our knowledge, no kinetic data are available 
concerning individuals co-ingesting glutamine with glucose, nor for intravenous 
glutamine infusion.

Arginine
Arginine study details are provided in Table 2 (section E). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 
4. The effects of oral arginine ingestion have been investigated in healthy
individuals only [26, 27] (Supplemental Figure 4-A). One out of the two studies
[27], with the largest oral arginine dose, showed increased insulin concentrations
(iAUC, 1.41 µU/mL/min) compared to water intake (iAUC, 0.06 µU/mL/min), with
no significant effect on glucose concentrations.

Co-ingestion of arginine+glucose (Supplemental Figure 4-B) resulted in a 
similar iAUC for insulin compared to glucose ingestion alone and attenuated 
the glucose-stimulated glucose response [26]. Despite the lower insulin peak, the 
insulin concentrations remained elevated for a longer time after co-ingestion of 
arginine+glucose. Tang et al. [27] showed a non-significant increase in insulin 
concentrations when glucose was co-ingested with arginine (iAUC, 28.62 µU/
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mL/min) compared to glucose ingestion alone (iAUC, 19.05 µU/mL/min). Glucose 
concentrations were unchanged.

The effect of intravenous arginine infusion has been examined in healthy 
individuals [17, 28-46], T2DM patients [42-45, 47-50], and obese individuals [46, 
51-53] (Supplemental Figure 4-C). All twenty studies [17, 28-46] on intravenous
arginine infusion in healthy individuals showed increased insulin concentrations 
(iAUC range, 1.58 to 45.75 µU/mL/min) from baseline. Glucose concentrations
increased (iAUC range, 1.79 to 18.65 mg/dL/min) from baseline in fourteen studies
[17, 28, 29, 31, 33-35, 38-43, 45]. Four additional studies showed an increase in
glucose concentrations in the beginning of the study followed by a drop below
baseline, resulting in a negative iAUC [36, 37, 44, 46]. Two studies [30, 32] included
an intravenous saline infusion control group and showed increased insulin
concentrations after intravenous arginine infusion (iAUC, 11.42 and 25.98 µU/
mL/min, respectively) compared to intravenous saline infusion (iAUC, -0.64 and
5.33 µU/mL/min, respectively). Broglio et al. [30] also showed increased glucose
concentrations (iAUC, 4.45 mg/dL/min) after intravenous arginine infusion
compared to intravenous saline infusion (iAUC, -1.64 mg/dL/min), however no
dynamic data were provided for both insulin and glucose. Dela et al. [31] found
that intravenous arginine infusion increased insulin and glucose concentrations
from baseline in trained and untrained, healthy individuals, with lower insulin
concentrations in trained males (iAUC, 18.40 µU/mL/min and 45.75 µU/mL/min,
for trained and untrained individuals respectively). The glucose concentrations
did not differ between the two groups.

All eight studies [42-45, 47-50] investigating intravenous arginine infusion in 
T2DM individuals showed increased insulin (iAUC range, 4.09 to 21.66 µU/mL/
min) and glucose concentrations (iAUC range, 5.00 to 29.75 mg/dL/min). Three 
studies [43-45] demonstrated that insulin responses were lower in T2DM patients 
(iAUC range, 4.09 to 13.17 µU/mL/min) compared to healthy individuals (iAUC 
range, 21.84 to 31.25 µU/mL/min) during intravenous arginine infusion. Efendić 
et al. [42] demonstrated a slightly lower insulin response in T2DM patients 
(iAUC, 21.66 µU/mL/min) compared to healthy individuals (iAUC, 22.49 µU/mL/
min) who received intravenous arginine infusion, but the insulin concentrations 
remained elevated over a prolonged period of time in T2DM patients. Glucose 
concentrations were increased from baseline in both healthy individuals (iAUC, 
5.04 mg/dL/min) and T2DM patients (iAUC, 8.44 mg/dL/min). All four studies [46, 
51-53] on intravenous arginine infusion in obese individuals showed increased
insulin (iAUC range, 6.10 to 22.07 µU/mL/min) and glucose concentrations (iAUC

2
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range, 1.37 to 9.08 mg/dL/min). Maccario et al. [46] demonstrated that the arginine 
induced insulin response was higher in obese participants (iAUC, 22.07 µU/mL/
min) than in healthy individuals (iAUC, 8.30 µU/mL/min). Glucose concentrations 
did not decrease below baseline values in obese participants (iAUC, 1.60 mg/dL/
min) compared to healthy individuals (iAUC, -3.20 mg/dL/min).

Lysine
Lysine study details are provided in Table 2 (section F). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 
5. The effects of oral lysine ingestion [54] (Supplemental Figure 5-A) and
intravenous lysine infusion [17] (Supplemental Figure 5-C) were examined in
healthy individuals. Kalogeropoulou et al. [54] demonstrated that oral ingestion
of lysine increased insulin (iAUC, 0.67 µU/mL/min) and decreased glucose
concentrations (iAUC, -1.73 mg/dL/min) compared to individuals that ingested
water (iAUC, -0.62 µU/mL/min, 0.35 mg/dL/min). Co-ingestion of lysine+glucose
(Supplemental Figure 5-B) resulted in a similar iAUC for insulin compared to
glucose ingestion alone and attenuated the glucose-stimulated glucose response.
However, insulin concentrations increased more rapidly and reached higher
peak insulin concentrations (38.7 µU/mL) compared to glucose ingestion alone
(35.4 µU/mL).

Intravenous lysine infusion (Supplemental Figure 5-C) increased insulin (iAUC, 
8.83 µU/mL/min) and decreased glucose concentrations (iAUC, -2.23 mg/dL/min) 
from baseline in healthy individuals [17]. To our knowledge, no kinetic data are 
available concerning lysine intake in people with obesity and/or T2DM.

Glycine
Glycine study details are provided in Table 2 (section G). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 6. 
The effects of oral glycine ingestion have been examined in healthy individuals 
[55, 56] (Supplemental Figure 6-A). One out of the two studies showed increased 
insulin concentrations (iAUC, 2.29 µU/mL/min) compared to water (iAUC, -1.66 
µU/mL/min), with no change in glucose concentrations [55]. Co-ingestion of 
glycine+glucose (Supplemental Figure 6-B) resulted in a similar iAUC for insulin 
compared to glucose ingestion alone and attenuated the glucose-stimulated 
glucose response. However, insulin concentrations increased more slowly and 
reached lower peak insulin concentrations (76.7 µU/mL) compared to glucose 
ingestion alone (92.4 µU/mL). To our knowledge, no kinetic data are available 
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concerning intravenous glycine infusion, nor for glycine intake in people with 
obesity and/or T2DM patients.

Proline
Proline study details are provided in Table 2 (section H). The time series data and 
the calculated kinetic parameters are visualized in Supplemental Figure 7. Nuttall 
et al. [57] demonstrated that oral ingestion of proline (Supplemental Figure 7-A) 
increased insulin (iAUC, 0.46 µU/mL/min) compared to intake of water (iAUC, -0.99 
µU/mL/min), with no change in glucose concentrations in healthy individuals. Co-
ingestion of proline+glucose (Supplemental Figure 7-B) resulted in a comparable 
iAUC for insulin compared to glucose ingestion alone, and attenuated the glucose-
stimulated glucose response. However, insulin concentrations increased more 
rapidly and reached higher peak insulin concentrations (41.2 µU/mL) compared 
to glucose ingestion alone (33.0 µU/mL) in healthy individuals. To our knowledge, 
no kinetic data are available concerning intravenous proline infusion, nor for 
proline intake in people with obesity and/or T2DM patients.

Phenylalanine
Phenylalanine study details are provided in Table 2 (section I). The time series 
data and the calculated kinetic parameters are visualized in Supplemental Figure 
8. The effect of oral phenylalanine ingestion [58] (Supplemental Figure 8-A) and
intravenous phenylalanine infusion [17] (Supplemental Figure 8-C) has been
examined in healthy individuals. Nuttal et al. [58] found that oral phenylalanine
ingestion increased insulin concentrations (iAUC, 3.88 µU/mL/min) compared to
water (iAUC, -1.52 µU/mL/min), while glucose concentrations remained unaltered.
Co-ingestion of phenylalanine+glucose (Supplemental Figure 8-B) resulted in a
similar iAUC for insulin compared to glucose ingestion alone, and attenuated
the glucose-stimulated glucose response. However, insulin concentrations
increased more rapidly and reached higher peak insulin concentrations (64.8
µU/mL) compared to glucose ingestion alone (49.3 µU/mL). Finally, intravenous
phenylalanine infusion increased insulin (iAUC, 6.48 µU/mL/min), and decreased
glucose concentrations (iAUC, -2.89 mg/dL/min) from baseline in healthy
individuals [17]. To our knowledge, no kinetic data are available concerning
phenylalanine intake in people with obesity and/or T2DM.

Glutamate
Glutamate study details are provided in Table 2 (section J). The time series data 
and the calculated kinetic parameters are visualized in Supplemental Figure 9. 
The effects of oral glutamate ingestion have been examined in healthy individuals 

2
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only [59-61] (Supplemental Figure 9-A).Two out of three studies showed that 
oral glutamate ingestion increased insulin concentrations (iAUC range, 1.95 to 
3.80 µU/mL/min) from baseline [60, 61]. Fernstrom et al. [60] showed increased 
insulin concentrations (iAUC, 1.95 µU/mL/min) after oral glutamate ingestion, 
compared to the control, whereas the control (a cold flavored vehicle containing 
3g sodium chloride instead of glutamate) did not (iAUC, -0.95 µU/mL/min). 
Glucose values were not reported. Di Sebastiano [59] showed a non-significant 
increase in insulin (iAUC, 1.70 µU/mL/min) compared to the control group (gelatin 
capsules containing NaCl) (iAUC, 0.21 µU/mL/min). Glucose concentrations were 
unchanged compared to the control group. To our knowledge, no kinetic data are 
available concerning intravenous glutamate infusion, nor for glutamate intake 
in people with obesity and/or T2DM patients.

Branched-chain amino acids
BCAA study details (including BCAA composition) are provided in Table 2 (section 
K). The time series data and the calculated kinetic parameters are visualized in 
Supplemental Figure 10. The effect of oral BCAA ingestion (mixtures containing 
leucine, isoleucine, and valine) has been investigated in healthy individuals only 
[62, 63] (Supplemental Figure 10-A). Both studies (excluding the low dose, 1g, 
BCAA dose intervention [62]), showed that oral BCAA ingestion increased insulin 
(iAUC range, 0.47 to 1.51 µU/mL/min), and decreased glucose concentrations (iAUC, 
-9.22 to -3.67 mg/dL/min) from baseline and the control group (iAUC, -0.29 µU/
mL/min, -0.30 mg/dL/min). Furthermore, the 5g BCAA dose resulted in a higher
insulin peak concentration (8.5 µU/mL) than the 1g BCAA dose (7.3 µU/mL) [62].
The highest insulin response was observed in the study that had the largest
BCAA dose [63].

The effect of intravenous BCAA infusion (mixtures containing leucine, 
isoleucine, and valine) has also been investigated in healthy individuals [63-
65] (Supplemental Figure 10-C). Two out of the three studies showed increased
insulin (iAUC range, 0.18 to 0.50 µU/mL/min) [63, 64]. Glucose concentrations
consistently decreased from baseline in these studies (iAUC, range, -12.05 to -8.37
mg/dL/min). Gojda et al. [63] demonstrated that oral BCAA ingestion increased
insulin concentrations (iAUC, 1.51 µU/mL/min) more than the same dose (30.7g)
infused intravenously in healthy individuals (iAUC, 0.42 µU/mL/min). Glucose
concentrations declined in the same pattern during both BCAA tests. To our
knowledge, no kinetic data are available concerning BCAA intake in people with
obesity and/or T2DM.
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DISCUSSION

AAs have been recognized as important factors involved in glucose homeostasis. 
In the present systematic review, we aimed to provide a detailed overview of the 
quantitative effects of oral ingestion and intravenous administration of AAs on 
postprandial glucose and insulin concentrations in humans. A summary of the 
results is provided in Table 3.

Table 3. Summary of the findings.

-- All studies show decrease from control/baseline

- One or more studies show decrease from control/baseline

+/- No change from control/baseline; contrasting outcomes

+ One or more studies show increase from control/baseline

++ All studies show increase from control/baseline

AA Oral ingestion Co-ingestion with glucose Intravenous infusion

Healthy T2DM Obese Healthy Healthy T2DM Obese

I G I G I G I G I G I G I G

Leucine + +/- ++ -- + --

Isoleucine +/- -- ++ --

Alanine ++ - ++ -- ++ -- + + ++ ++

Glutamine ++ +/- ++ +/- ++ +/-

Arginine + +/- +/- +/- ++ + ++ ++ ++ ++

Lysine ++ -- +/- -- ++ --

Glycine + +/- +/- --

Proline ++ +/- +/- --

Phenylalanine ++ +/- +/- -- ++ --

Glutamate + +/-

BCAA mixture 
(leucine, 

isoleucine, 
and valine)

+ -- + --

AA: Amino acid, T2DM: Type 2 diabetes mellitus, BCAA: Branched-chain amino acids, G: 
Glucose concentrations, I: Insulin concentrations. An overview of the studies is provided 
in Table 2.

In total, 55 studies that assessed the effects of 10 AAs, i.e. leucine, isoleucine, 
alanine, glutamine, arginine, lysine, glycine, proline, phenylalanine, glutamate, 
and BCAA mixtures were included in this review. The majority of orally ingested 
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AAs, except isoleucine, induced an insulin response when ingested in isolation. 
Glucose concentrations, with the exception of isoleucine, and lysine, remained 
unchanged.

The increase in insulin concentrations through AAs has long been recognized, 
though their mechanisms of action are diverse and not fully elucidated yet [4, 69]. 
It has been shown that AAs affect β-cell insulin secretion through mitochondrial 
metabolism linked to the TCA cycle, and subsequent generation of ATP (e.g. for 
leucine, glutamine, and alanine) [70, 71]. The rise in the ATP/ADP ratio suppresses 
ATP-sensitive potassium channels, causing depolarization of the β-cell plasma 
membrane. This in turn activates voltage-gated Ca2+ channels, and through the 
influx of Ca2+ leads to insulin exocytosis. Other AAs, like arginine via its mCAT2A 
AA transporter, directly depolarize the β-cell plasma membrane ([4, 72]. Co-
transport of AA with Na+ (e.g. alanine, and proline) also depolarize the β-cell 
plasma membrane, ultimately leading to Ca2+ activated insulin exocytosis [69, 
73-75]. The seemingly unaffected glucose concentrations despite the presence of 
an insulin response are somewhat surprising. However, compensatory glucagon 
production and gluconeogenesis to prevent hypoglycemia may at least partly 
explain these observations [76]. Indeed, multiple studies included in the present 
systematic review showed increased glucagon concentrations after ingestion 
of isolated AAs [8, 18, 19, 24-26, 28, 29, 31, 34, 36, 37, 41, 43, 45, 48, 50, 53-55, 58]. 
Digitizing postprandial glucagon responses found in these studies was, however, 
outside the scope of the present review. Furthermore, the carbon chain of AA 
can be used in the liver for gluconeogenesis (i.e. generating glucose from non-
carbohydrate carbon substrates), which might further contribute to the lack in 
suppression of postprandial glucose concentrations [25].

While oral ingestion of most AAs did not alter postprandial glucose responses, 
oral intake of isoleucine, lysine and BCAA mixtures evoked a clear decrease 
in plasma glucose concentrations. Remarkably, the decrease in glucose 
concentration following isoleucine ingestion occurred without a change in 
insulin concentrations, suggesting glucose uptake by tissues independent of 
insulin, as has previously been found in vivo [77]. In the latter study, isoleucine 
increased glucose uptake in rat skeletal muscle cells through activation of 
phosphatidylinositol 3-kinase, and independent of mTOR, indicative of insulin-
independent glucose uptake.

Co-ingestion of most identified AAs (lysine, glycine, proline, phenylalanine) 
with glucose did not significantly increase the insulin response compared to 
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the ingestion of glucose alone. However, for these AAs, co-ingestion with glucose 
prompted a reduction in the glucose response of up to ~70% for phenylalanine. 
The mechanisms remain to be determined, as it is unclear whether the 
attenuation of glucose is due to an increased removal rate of glucose (i.e. 
insulin-independent mechanisms), or due to decreased endogenous glucose 
production by the liver [55]. Despite the unchanged insulin responses (iAUCs), 
the postprandial insulin dynamics were frequently altered, indicating a sharper, 
and more pronounced peak after co-ingestion of AAs (i.e. lysine, proline, and 
phenylalanine) with glucose as compared to glucose ingesting alone. The greater 
early rise in insulin concentrations observed after co-ingestion of AAs may imply 
increased first-phase insulin secretion [54, 58], which certainly influences the 
postprandial glucose concentrations. Co-ingestion of glucose with leucine or 
isoleucine increased the postprandial insulin concentrations more than the 
sum of their individual effects, reaching a ~50% increase in iAUC for leucine [8]. 
This synergistic stimulating effect of the combined intake of AAs and glucose on 
plasma insulin concentrations was already described by Floyd et al. [6] many 
years ago. Maximizing insulin secretion could be important in the treatment 
of T2DM to promote glucose disposal and improve glucose homeostasis [69]. 
Van Loon and colleagues [9] showed that co-ingestion of a mixture of protein 
hydrolysate, leucine, and phenylalanine in long-term T2DM patients, resulted 
in a considerable (+189%) increase in insulin response compared to the healthy 
control group (+114%), implying functional β-cells secretory capacity to stimuli 
other than glucose. Manders and coworkers [78] applied continuous infusion 
with labeled [6,6-2H2] glucose to determine blood glucose appearance and 
disappearance rates following carbohydrate ingestion with or without addition 
of a protein, leucine, and phenylalanine mixture in T2DM patients. A substantial 
(~3-fold) greater insulin response was observed following co-ingestion of 
carbohydrates with AA/protein, with a 28% reduction in blood glucose response, 
attributed to an increase in plasma glucose disposal.

Intravenous infusion of leucine, arginine, lysine, phenylalanine, and BCAAs 
infusion induced a plasma insulin response, and with the exception of arginine, 
evoked a decrease in plasma glucose concentrations. These AAs were thus able 
to induce a substantial increase in insulin response, also observed after oral 
ingestion, independent from the gut. However, intravenous alanine infusion, 
unlike oral alanine ingestion, did not induce an insulin response, suggesting that 
alanine may increase postprandial insulin concentrations through an incretin 
effect [19]. An incretin effect indicates the release of insulin-inducing substances 
from the gut and plays a major part in the regulation of postprandial glucose 
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concentrations [79, 80]. Incretin hormones, like gastric inhibitory polypeptide 
(GIP) and glucagon-like peptide-1 (GLP-1), are shown to rapidly stimulate insulin 
secretion from β-cells in response to nutrients in order to control meal-related 
glycemic excursions [81]. This incretin effect was also observed by others [82, 
83], demonstrating that oral ingestion of an AA mixture increased insulin 
concentrations more than comparable intravenous AA infusion, with increased 
GIP concentrations. A large number of studies were found that investigated 
the effects of intravenous arginine infusion, which is often used to evaluate 
β-cell function (i.e. during hyperglycemic clamp) and allows for simultaneous 
examination of acute insulin, c-peptide, and glucagon response [84]. Intravenous 
arginine infusion stimulated insulin release to a greater extent than oral arginine 
ingestion, however, studies comparing oral and intravenous administrations are 
lacking. The larger arginine content in the blood circulation, by avoiding gut 
metabolism, might have led to increased β-cell stimulation [85, 86].

Although limited data are available on the effect of AAs on glucose and insulin 
responses across different population, studies in obese and T2DM individuals 
focused on alanine, glutamine, and arginine. Abnormalities in β-cell function 
are present in prediabetes and T2DM, whereas insulin sensitivity already 
declines decades before T2DM onset [87]. Furthermore, insulin resistance 
through excess adiposity is linked to several abnormalities, impacting β-cell 
function and viability [4]. The studies included here showed that AAs are able 
to stimulate insulin secretion and lower glucose concentrations in T2DM, and 
obese individuals. Greenfield et al. [25] observed the greatest insulin response 
after oral glutamine ingestion in T2DM patients, followed by obese and healthy 
people. In addition, increased GLP-1 concentrations were found following oral 
ingestion of glutamine, with no significant differences between T2DM, obese, 
and healthy individuals. Samocha-Bonet et al. [88] showed that in patients with 
well-controlled T2DM, the stimulatory action of GLP-1 on insulin secretion is 
preserved, reducing the postprandial glycemia in T2DM [89]. Whereas oral 
ingestion of alanine resulted in a comparable insulin response in both healthy 
and T2DM patients, the insulin dynamics showed considerable differences. More 
specific, a lower but prolonged elevation in insulin concentrations was observed 
in T2DM patients [22]. This prolonged elevation in insulin was also observed 
in obese individuals following intravenous alanine infusion [24]. Intravenous 
infusion of arginine showed a blunted insulin response in T2DM, as compared 
to healthy individuals in three out the four studies. This impairment in insulin 
secretion might be explained by insufficient β-cell mass, and/or functional 
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defects within the β-cells themselves, in patients with T2DM and individuals at 
risk for diabetes [4].

In this review, we systematically investigated the effects of AAs on postprandial 
insulin and glucose dynamics. An extensive approach, consisting of the 
extraction and utilization of time series data, with a focus on the link between 
glucose and insulin kinetics was employed. In the present review, the effects of 
ten distinct AAs and BCAA mixtures from 55 articles were included. As the AA 
composition in protein and whole foods largely contributes to the variability 
observed in glycemic responses, we decided to focus on the glycemic effects of 
individual AAs. However, the diversity of the included studies, e.g. differences in 
study set-up, participant characteristics, and measurement instruments, made 
it difficult to draw quantitative conclusions based on the data. Furthermore, the 
large heterogeneity in AA dosages used in the studies was not accounted for, when 
calculating and comparing the postprandial responses, as this would incorrectly 
assume a linear relationship between AA dosage and postprandial glucose and 
insulin responses, which we believe is not true. Nevertheless, this might have 
contributed to a certain extent to the variability observed in postprandial 
glucose and insulin responses between the different studies. While glucagon 
measurements were outside the scope of the present systematic review, future 
studies investigating the effect of AAs on glucose and insulin responses should 
also include postprandial glucagon concentrations. Notably, since we have made 
the digitized data on insulin and glucose concentrations publicly available, other 
parameters such as glucagon concentrations can easily be incorporated in this 
database. A large difference in the number of identified studies per AA was found 
in the literature. There was ample information on some AAs (e.g. 28 articles on 
arginine) and very little information on others (e.g. 1 article on isoleucine), yet 
several distinct effects were found for the studied AAs. Furthermore, a better 
understanding of the effects of different AAs on postprandial plasma glucose 
and insulin responses, as well as putative synergistic effects of co-ingestion of 
different AAs with glucose, may contribute to the development of more optimal 
dietary intervention to improve (postprandial) glucose homeostasis.
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SUPPLEMENTARY MATERIAL

Supplemental File 1: PubMed search strategy: ((“Amino Acids” [MeSH Terms] 
OR “Amino Acid” OR “Amino Acids” OR “Branched-Chain Amino Acids” OR 
“Branched-Chain Amino Acid” OR Alanine OR Arginine OR Asparagine OR 
“Aspartic Acid” OR Cysteine OR Glutamine OR “Glutamic Acid” OR Glycine OR 
Histidine OR Isoleucine OR Leucine OR Lysine OR Methionine OR Phenylalanine 
OR Proline OR Serine OR Threonine OR Tryptophan OR Tyrosine OR Valine 
OR Whey OR Casein) AND (Ingestion OR Ingested OR Infused OR Infusion OR 
Infusions OR Response OR Stimulation OR Elevation OR Elevated OR Oral OR 
Altered OR Alter OR Absorption OR Absorbed OR Postprandial OR Post-Prandial 
OR “Post Prandial” OR Supplemented OR Supplementation OR Supplement OR 
Eating OR Administration OR Administered OR Intravenous OR Intravenously 
OR Intake OR Food OR Consumption OR Consumed OR Dynamics OR Dynamic 
OR “Glucose Tolerance Test” OR “Tolerance Test” OR “Challenge Test”) AND 
(Insulinotropic OR Insulin OR Glucose OR Glycaemic OR Glycemia OR Glycaemia 
OR “Glycemic Control”) AND (Glucose [ti] OR Insulin [ti] OR Glycaemic [ti] OR 
Glycemia [ti] OR Glycaemia [ti] OR “Glycemic Control” [ti] OR “Amino Acids” [ti] 
OR “Amino Acid” [ti] OR Whey [ti] OR Casein [ti] OR Protein [ti] OR Proteins [ti] OR 
Alanine [ti] OR Arginine [ti] OR Asparagine [ti] OR “Aspartic Acid” [ti] OR Cysteine 
[ti] OR Glutamine [ti] OR “Glutamic Acid” [ti] OR Glycine [ti] OR Histidine [ti] OR 
Isoleucine [ti] OR Leucine [ti] OR Lysine [ti] OR Methionine [ti] OR Phenylalanine 
[ti] OR Proline [ti] OR Serine [ti] OR Threonine [ti] OR Tryptophan [ti] OR Tyrosine 
[ti] OR Valine [ti]) NOT Review [ptyp] AND English AND “loattrfull text”[sb] AND 
humans)

Supplemental Figure 1-10: The following are available online at http://www.
mdpi.com/2072-6643/12/10/3211/s1 (Zip, 8917KB). Figure S1: Isoleucine infograph, 
Figure S2: Alanine infograph, Figure S3: Glutamine infograph, Figure S4: 
Arginine infograph, Figure S5: Lysine infograph, Figure S6: Glycine infograph, 
Figure S7: Proline infograph, Figure S8: Phenylalanine infograph, Figure S9: 
Glutamate infograph, Figure S10: BCAA infograph.
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ABSTRACT

Plasma glucose and insulin responses following an oral glucose challenge are 
representative of glucose tolerance and insulin resistance, key indicators of 
type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals’ 
challenge test responses has been shown to underlie the effectiveness of lifestyle 
intervention. Currently, this heterogeneity is overlooked due to a lack of methods 
to quantify the interconnected dynamics in the glucose and insulin time-courses. 
Here, a physiology-based mathematical model of the human glucose-insulin 
system is personalized to elucidate the heterogeneity in individuals’ responses 
using a large population of overweight/obese individuals (n = 738) from the 
DIOGenes study. The personalized models are derived from population level 
models through a systematic parameter selection pipeline that may be generalized 
to other biological systems. The resulting personalized models showed a 4-5 fold 
decrease in discrepancy between measurements and model simulation compared 
to population level. The estimated model parameters capture relevant features 
of individuals’ metabolic health such as gastric emptying, endogenous insulin 
secretion and insulin-dependent glucose disposal into tissues, with the latter also 
showing a significant association with the Insulinogenic index and the Matsuda 
insulin sensitivity index, respectively.
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INTRODUCTION

Glucose homeostasis is maintained by the complex interplay between several 
tissues and organs including the brain, pancreas, skeletal muscle, liver and 
adipose tissue. The evolution of plasma glucose and insulin concentrations 
during an oral glucose tolerance test (OGTT) provide a readout of the metabolic 
health of these underlying tissues capturing the effects of insulin sensitivity 
and metabolic resilience status [1]. Certain features of the standard 75g OGTT 
response curves are widely accepted to be representative of glycemic control, 
most notably the fasting and 2 hour post-load glucose values are used in the 
diagnosis of prediabetes and type 2 diabetes mellitus (T2DM) [2]. The area under 
the plasma glucose/insulin response curve (AUC) is an extensively employed 
measure to compare responses [3] and has been successfully used in targeted and 
even personalized nutrition approaches [4–6]. However, the AUC is a somewhat 
crude measure that may often lead to ambiguous classifications [7]. Therefore, 
certain dynamic properties of the glucose response curves e.g. peak time, have 
been nominated as relevant for pathophysiological characterization [6, 8–11]. 
In addition, the post-load glucose and insulin trajectories may be used to derive 
proxy measures of whole-body and tissue-specific insulin sensitivity to serve as 
a surrogate to the hyperinsulinemic-euglycemic clamp. The HOMA-IR [12] and 
Matsuda insulin sensitivity indices [13, 14] have been widely utilized to quantify 
whole-body insulin resistance from fasting and average postprandial glucose/
insulin levels, respectively. In recent years, the increased recognition of tissue-
specific insulin resistance [15] leading to metabolically distinct phenotypes, has 
resulted in the development of the HIRI and MISI indices, quantifying hepatic 
and skeletal muscle insulin resistance from OGTT responses [16–18]. While these 
measures capture certain aspects of metabolic resilience, they rely upon single 
time-point or average glucose and insulin values taken from the response curves, 
as a result the dynamics of the time-courses are largely disregarded. Recently, 
Hulman et al. have shown that using a latent class mixed models framework, the 
glucose trajectories of healthy individuals following an OGTT may be classified 
into four distinct insulin sensitive phenotypes [19]. This approach—making use 
of the complete time-courses—highlights the importance of the dynamics of the 
glucose responses, however it does not allow for an individualized exploration 
due to the limited number of prospective classes.

The move towards personalized interventions requires the characterization of 
the large heterogeneity in individuals’ glycemic regulation. Therefore, a holistic 
approach, accounting for the dynamic properties of the response curves is 
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needed on the individual level. Furthermore, the close interplay between plasma 
glucose and insulin concentrations calls for the evaluation of glucose and insulin 
trajectories as a whole, rather than as disjoint indicators.

Physiology-based mathematical models of the human glucose-insulin regulatory 
system can provide quantitative information on the dynamics while capturing the 
mechanistic link between glucose and insulin. Such models are built to describe 
the physiological processes by which insulin regulates glucose levels using a 
priori understanding of the underlying biological system. The detail to which 
the model can accurately simulate the glucose-insulin response mechanism 
depends on the desired scope and the availability of quantitative data. The 
Bergman model, a simplistic model of glucose disappearance containing only 5 
parameters, has been extensively used to approximate insulin sensitivity and 
β-cell function using plasma glucose and insulin values following a frequently 
sampled intravenous glucose tolerance test [20]. The integrated glucose-insulin 
model has been used to describe population as well as individual responses 
to a frequently sampled OGTT [21], however its applicability (to nutritional 
and metabolic studies) is limited due to the complexity in the model’s glucose 
absorption term that is made possible by an unusually frequent sampling 
strategy. A more complex model built by Dalla-Man et al. provides a detailed 
account of the underlying processes governing glucose utilization following a 
meal [22]. Here, the complexity of the model is enabled by the availability of 
triple tracer glucose data, quantifying the glucose fluxes between tissues. While 
the Bergman model can be applied to individual data, the Dalla-Man model has 
mostly been applied to population average data for in silico simulation and testing 
of insulin pump systems. The Eindhoven-Diabetes Education Simulator (E-DES) 
is a comparatively simple multi-compartmental model containing 12 parameters 
that has been used to describe the dynamics of the glucose homeostasis in healthy, 
type 1 and type 2 diabetic populations [23, 24].

Quantifying uncertainty in model parameters is essential to understand the 
limitations and predictive power of the model [25]. It is particularly important 
to consider parameter identifiability when estimating model parameters on the 
individual level—where sensitivity to measurement error may be high—to retain 
parameters that can be reliably estimated. Identifiability analysis may be carried 
out through methods such as Profile Likelihood Analysis (PLA) to evaluate how 
well parameter values can be determined given the available data [26, 27].



67

Personalized model quantifies heterogeneity in glucose responses

The aim of the current work is to explore the heterogeneity in the glucose and 
insulin responses to an OGTT in a large population of individuals by developing 
personalized dynamic models of the insulin mediated glucose metabolism, 
using an adapted E-DES model. The model parameters are estimated from 
measured postprandial trajectories of both glucose and insulin, and represent 
physiologically relevant properties that in turn may be used in the early 
identification of deterioration in the glucose homeostasis. Furthermore, the 
workflow presented here for transitioning a dynamic model away from describing 
population averages and towards individual response patterns may prove useful 
in numerous other applications, as it is generalizable to other biological models 
and systems.

MATERIALS AND METHODS

Ethics statement
The Medical Ethical Committees of the respective countries approved the 
DIOGenes study protocol. Participants provided informed written consent, and 
all procedures were conducted in accordance with the Declaration of Helsinki. 
Trial registration number: NCT00390637.

Data
Data from the DIOGenes study (NCT00390637), a pan-European, multi-center, 
randomized controlled dietary intervention study were used in this work 
[28]. At the baseline of the intervention, following an overnight fast (n = 1118) 
overweight/obese (BMI > 27kg/m2) but otherwise healthy adult participants 
underwent a two hour 75g OGTT, with plasma samples taken at the fasting state 
(t = 0) and 30, 60, 90 and 120 minutes after the glucose ingestion. The plasma 
samples were subsequently analyzed for glucose and insulin concentrations. 
Responses at the baseline of the intervention were used. Individuals with an 
incomplete set of glucose and/or insulin measurements were excluded from the 
analysis.

Adapted E-DES model
The Eindhoven-Diabetes Education Simulator is a physiology-based mathematical 
model of the human insulin mediated glucose regulatory system in healthy, type 
1 diabetes, and T2DM phenotypes [24]. The two compartment model describes 
the following physiological processes through coupled differential equations 
(see model schematic and details in S1 Fig, S1 and S2 Appendices): Glucose mass 
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is emptied into the gut according to an exponential decay function, followed by 
uptake into the plasma proportionally to the amount of glucose present in the 
gut. Both glucose and insulin fluxes are considered in the plasma compartment. 
Insulin secretion from the pancreas is modelled through a proportional-integral-
derivative (PID) controller, responding to elevated plasma glucose levels. The 
insulin response facilitates the insulin-dependent glucose disposal to tissues such 
as the muscle. In addition, there is a constant glucose removal from the plasma 
by obligate glucose oxidizers such as the brain or the red blood cells. While the 
plasma glucose levels are elevated, endogenous glucose production (EGP) in the 
liver is suppressed. Finally, insulin is cleared by the liver proportionally to the 
plasma insulin concentration, as well as by a transfer and degradation in the 
interstitial fluid. The parameters corresponding to these physiological parameters 
control the rate of change in glucose or insulin concentrations. Through 
modulation of the parameters, responses of metabolically different phenotypes 
may be simulated in silico. The model has been previously parameterized and 
validated on multiple OGTT data sets from healthy populations [24]. The E-DES 
model was implemented and analyzed in MATLAB 2018b (The Mathworks, 
Inc., Natick, Massachusetts, United States). For the current study population, 
an adapted E-DES model is used. Model equations, including a description of 
parameters and modifications are described in detail in S1 Appendix.

Parameter estimation
Parameters were estimated through minimizing the combined sum of squared 
residual (SSR) in the model prediction for glucose and insulin (Eq. 1) using 
lsqnonlin, a non-linear least squares solver in MATLAB. To avoid becoming 
trapped in erroneous local minima, the optimal parameter sets were obtained 
following fifty initializations of the optimization algorithm with 25% random 
noise starting from the original parameter value for the average healthy 
population from the publication [24].
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Where m, and N represent the number of metabolites and the number of time-
points, respectively. The measured data point is denoted by d, while y is the 
corresponding model prediction given the parameter vector 
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. A weight factor
γ = 0.1 was used in the case of insulin (γ = 1 in case of glucose) to account for the
unit difference (mmol/L, mU/L for glucose and insulin, respectively) between
the molecules.
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Model selection
A model selection approach was implemented in order to systematically identify 
parameters for personalized model fitting. The aim of the approach is to maintain 
parameter functionality and identifiability when transitioning from modelling 
population average responses to individual responses. The workflow involves 
systematically reducing the number of parameters to estimate for each individual 
response to ensure reliable, accurate parameter estimates. The parameters that 
are not selected in the approach for personalized fitting are fixed to reference 
population values [24] across all individuals. The subset of model parameters 
to be estimated was selected based on the following criteria: the selected 
parameters had to (i) exhibit high sensitivity, (ii) demonstrate good model fit 
while maintaining parsimony, (iii) be identifiable. The steps to meet these criteria 
are detailed below and a flowchart of the approach is shown on Fig 1.

(i). Sensitivity analysis. We carried out local parameter sensitivity analysis (LPSA) 
by varying one parameter in both directions while maintaining the others at a 
constant value, inspecting the effect on the resulting model outcome. A threshold 
of 75% in both directions compared to the average healthy population values was 
selected as the limit of sensitivity. Parameters that exhibit sensitivity at this level 
are expected to have a large modulatory effect on the model outcome. Parameters 
that are not sensitive at the threshold were fixed as a constant to their respective 
values (reported in [24]), as they have little impact on the model behavior. Only 
sensitive parameters were considered in subsequent steps of the model selection.

(ii). Model fit. The set of all possible combinations of 3 or more sensitive parameters 
were generated. Subsequently models were fit on a set of representative responses 
from the DIOGenes data set with these candidate parameter sets estimated 
from the data, while the rest of the parameters were fixed to the population 
reference values. The representative responses comprised of the median normal 
glucose tolerant (NGT), impaired fasting glucose (IFG), impaired glucose tolerant 
(IGT), both IFG and IGT (IFG&IGT) and T2DM responses in the data, based on 
the American Diabetes Association (ADA) diagnosis criteria [29]. The median 
responses were calculated by taking the median glucose and insulin values per 
time-point across all individuals in the respective groups. In addition to the 
median responses, both extreme responses (largest and smallest response in the 
data set by area under the glucose curve) were also included. The model with the 
candidate parameter set that showed the lowest Akaike Information Criterion 
(AIC) score across the set of representative curves (i.e. NGT, IFG, IGT, IFG&IGT, 
T2DM, Min, Max) was selected as most parsimonious model.
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(iii). Parameter identifiability. The parameter set that produced the most 
parsimonious model was finally evaluated for identifiability using Profile 
Likelihood Analysis (PLA) [27]. In PLA the value of one parameter is changed 
iteratively from its optimal value and the remaining parameters are re-estimated. 
An increase in the cost function (SSR) for the model fit indicates that a reliable 
parameter estimate has been obtained and the parameter is identifiable given 
the model structure and data. Confidence intervals were derived using a Chi-
squared threshold on the likelihood (Eq. 2).

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑(𝛾𝛾((𝑦𝑦𝑖𝑖,𝑗𝑗|𝜃𝜃) − 𝑑𝑑𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖=1

𝑚𝑚

𝑗𝑗=1
))2

�⃗�𝜃

−2 log ( ℒ(𝜃𝜃𝑃𝑃𝑃𝑃)
ℒ(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜)

) ≤  𝑥𝑥2(𝛼𝛼, 𝑑𝑑𝑑𝑑)

𝑥𝑥2

�⃗�𝜃𝑃𝑃𝑃𝑃

�⃗�𝜃𝑜𝑜𝑜𝑜𝑜𝑜 a

Where 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑(𝛾𝛾((𝑦𝑦𝑖𝑖,𝑗𝑗|𝜃𝜃) − 𝑑𝑑𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖=1

𝑚𝑚

𝑗𝑗=1
))2

�⃗�𝜃

−2 log ( ℒ(𝜃𝜃𝑃𝑃𝑃𝑃)
ℒ(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜)

) ≤ 𝑥𝑥2(𝛼𝛼, 𝑑𝑑𝑑𝑑)

𝑥𝑥2

�⃗�𝜃𝑃𝑃𝑃𝑃

�⃗�𝜃𝑜𝑜𝑜𝑜𝑜𝑜 a

(α, df ) is the α quantile of the 
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-distribution with df degrees of 
freedom, 
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  and 
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respectively. The threshold α was set to 0.95 and df equals one or the number of 
parameters (see S3 and S4 Figs)

Figure 1. Flowchart of the model selection approach.

Principal component analysis
The parameter space of the personalized E-DES model is visualized by reducing 
the number of dimensions from the number of estimated parameters to two 
dimensions using principal component analysis (PCA). Prior to PCA, the 
parameter values were normalized to zero mean and unit standard deviation.
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RESULTS

A total of 738 participants were included in the analysis, after excluding 
participants with incomplete OGTT measurements (n = 373) and participants 
with physiologically implausible responses (i.e. where the OGTT failed; n = 7). 
The identification of physiologically implausible responses was carried out by 
independent experts. The remaining 738 responses were characterized by the 
ADA criterion for prediabetes and diabetes as summarized in Table 1.

Table 1. Classification of participant’s responses based on ADA diabetes criteria

Diagnosis1 NGT IFG IGT IFG&IGT T2DM

N 496 42 41 119 40

Age2[years] 40.7 (6.4) 42.0 (5.3) 43.6 (4.8) 41.8 (6.2) 45.0 (6.7)

Sex [%female] 65.8 42.9 53.7 68.1 55.0

BMI2 [kg m−2] 34.5 (4.8) 34.7 (4.5) 36.5 (5.8) 34.2 (4.5) 35.1 (5.1)
1 NGT: normal glucose tolerant, IFG: impaired fasting glucose, IGT: impaired glucose 
tolerant, T2DM: type 2 diabetes mellitus. For details about the criteria, see S1 Table. 2 Age 
and BMI are reported as mean and (standard deviation).

In general, DIOGenes contains overweight/obese but otherwise healthy 
participants [28]. However, characterization by the ADA guidelines shows that 
in fact, several participants may be diagnosed as prediabetic or type 2 diabetic.

Model selection
Out of the eleven parameters contained in the adjusted E-DES model, only the 
physiological parameters k1 to k9 (defined in Table C of S1 Appendix) were 
considered in the personalization, while the two remaining parameters, the 
shape factor and Michaelis-Menten constant for glucose uptake, were fixed 
to their respective population values. As the first step of the model selection 
approach local parameter sensitivity analysis was carried out. The outcome of 
the sensitivity analysis on the plasma glucose response is shown in Fig 2. The 
effect on plasma insulin can be seen in S2 Fig.
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Figure 2. Local parameter sensitivity analysis demonstrated on simulated plasma 
glucose response.

Parameters k1, k4, k5, k6, k8, k9 were found to be sensitive at the ±75% threshold, 
and therefore were considered for further analyses, while the remainder of the 
parameters were kept constant in all subsequent analysis. As the second step of 
the model selection, the set of all possible combinations of 3, 4, 5, and 6 sensitive 
parameters were generated and models with these parameters estimated from 
data were assessed. This way a total of 42 different models were examined for 
model fit according to AIC on the median NGT, IFG, IGT, IFG&IGT, and T2DM 
responses as well as the largest and smallest response in the data set. The ten 
best per- forming candidate models with the resulting SSR and AIC values are 
shown in S2 Table.

The highest scoring model according to our criteria contained the parameters k1, 
k5, k6, and k8 with a SSR of 41.39. Visual inspection of the model output displayed 
good accordance with the majority of the data on the various group median and 
extreme responses as seen in Fig 3. The extreme responses are simulated less 
accurately compared to the median responses. Specifically, the model struggles 
with accurately capturing the part of the response that goes below basal. The 
best scoring model was subsequently evaluated for parameter identifiability in 
the last step of the model selection approach.
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Figure 3. Plasma glucose and insulin simulation of the set of representative responses 
in the DIOGenes study with estimated parameters k1, k5, k6, k8. 

The median responses were calculated as the median plasma glucose value of the 
ADA diabetes classification group at each time point (A). The ‘Min’ and ‘Max’ are 
the smallest and largest glucose responses in the data set, determined by area 
under the curve (B). Median measured values are shown as black dashes with 
the interquartile range and measured responses are indicated by black crosses.

The identifiability of the parameters k1, k5, k6, k8 was assessed on the median 
NGT, IFG, IGT, IFG&IGT, T2DM and the extreme responses to infer the reliability 
in estimating the selected parameters. The PLA profiles indicated that parameters 
were identifiable, with the exception of parameters k6 and k8, which were 
practically non-identifiable [27] for the lowest response. The parameter profiles 
can be found in S3 Fig. Additionally, to verify the choice of the 4 parameter model, 
the best performing 5 parameter candidate model (with parameters k1, k5, k6, 
k8, k9) was also evaluated for parameter identifiability. The PLA profiles from 
the 5 parameter model indicate that k9 was structurally non-identifiable in 6 out 
of 7 representative responses, with further two parameters (k6 and k8) proving 
to be non-identifiable in 2 out of 7 cases (S4 Fig).

The model selection pipeline resulted in a model with parameters k1, k5, k6, k8 
to be estimated from experimental data in personalized models. The selected 
parameters describe the rate constant of glucose appearance in the gut (k1), the 
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rate constant of insulin-dependent glucose uptake (k5), the proportional rate 
constant of insulin secretion due to the difference in the actual plasma glucose 
level compared to baseline (k6), and the insulin secretion dependent of the rate 
of change in plasma glucose (k8).

Individual simulation
A population of 738 personalized models were generated in silico through 
estimating the selected parameters on post-load time series of glucose and 
insulin in participants from the DIOGenes study. To evaluate the success of 
simulating individual responses, we compared the discrepancy of population 
specific simulations to that of individualized simulations. The median response 
was calculated in every group (NGT, IFG, IGT, IFG&IGT, and T2DM) and the 
selected 4 parameter model was used to simulate the median glucose and insulin 
trajectories on the calculated responses. The individuals’ measured data were 
then compared to the median simulations per group. The SSRs in the personalized 
model simulations were substantially lower than those of the median simulations 
in every group (Table 2), indicating that the personalized models were able to 
capture a wide range of response curves.

Table 2. Mean (standard deviation) of sum of squared residuals in the model 
simulations

NGT IFG IGT IFG&IGT T2DM

Group simulation 149.87 213.52 205.15 153.46 195.93

(153.11) (205.15) (134.92) (126.97) (181.90)

Individual simulation 32.37 44.29 35.33 43.54 36.69

(36.26) (32.11) (47.89) (29.92) (33.56)

The best and worst personalized model simulations by SSR are shown in Fig 
4A and 4B, respectively. While the measured glucose and insulin responses 
ranged from 1.8 to 18.3 mmol/L and from 2.0 to 749.0 mU/L, the simulations 
show good agreement with the measured data in most cases. To highlight other 
striking model behavior, additional, hand selected example responses and their 
corresponding simulations are shown in Fig 4C.
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Figure 4. Time courses of plasma glucose and insulin concentrations for individuals 
with the lowest and highest simulation error (quantified by the SSR) in each ADA 
category, and other interesting model behaviour (A, B and C respectively). Black 
crosses and orange/blue lines correspond to measurement and model simulation of glucose/
insulin, respectively.

In particular, metabolite responses with an intermediate dip between two 
values were found to be difficult to capture using the 4 parameter model (e.g. 
participant 183, Fig 4C). However, there were cases of such bi-phasic curves, that 
the model could replicate accurately (e.g. participant 513, Fig 4C). In some cases, 
the model predicted a fast response, with a probable peak between the 0 and 30 
minute measurements (e.g. participants 129, Fig 4C). Furthermore, the success of 
simulating complex shapes appeared to depend on the scale of the insulin values 
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in the responses, where higher insulin values lead to difficulties in accurately 
fitting the glucose response (e.g. participant 175, Fig 4C).

The distribution of parameter values estimated from individuals’ responses are 
shown by subgroup in Fig 5. In general, the range of estimated parameters was 
greatest in the group that was NGT according to the ADA diabetes criteria, with 
values spanning the whole range of the other groups. The rate constant of glucose 
appearance in the gut (k1) was largest in the NGT and IFG groups. Similarly, 
insulin-dependent glucose uptake (k5), and glucose-dependent insulin production 
(k6) were lower in the IGT, IFG&IGT, and T2DM groups compared to the NGT and 
the IFG groups. The plasma glucose rate of change-dependent insulin production 
(k8) was lower in the IFG&IGT, and T2DM groups compared to the other groups. 
Additionally, the association of the parameter values with frequently used 
measures of insulin secretion and insulin resistance were evaluated to assess 
model structure. Parameters k6 and k8 associated with the insulinogenic index 
(r = 0.56, p < 0.001 and r = 0.49, p < 0.001, respectively; S7 Fig), a frequently 
used measure of first-phase insulin secretion [30]. Additionally, parameter k5, 
describing insulin mediated uptake of glucose into the periphery showed a 
significant positive correlation with the Matsuda index (Pearson r = 0.68, p < 
0.001; S7 Fig).
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Figure 5. The distribution of the estimated parameters k1, k5, k6, k8 by subgroup 
based on ADA diabetes criteria. k1—rate constant of glucose appearance in the gut, k5—
rate constant of insulin-dependent glucose uptake, k6—rate constant of insulin secretion 
proportional to glucose elevation, k8—rate constant of insulin secretion by the rate 
of change in glucose elevation. For details, see S1 Appendix. Observations outside the 
interquartile range of the 25th and 75th percentile of each group are visualized in S5 Fig. 
The boxes represent the 25th and 75th percentiles, the whiskers represent the min, and 
max values, and the horizontal line represents the median.

A better grasp of the parameter space of the model can be obtained by visualizing 
it after reducing the four dimensional space to two dimensions via principal 
component analysis. The personalized models in the resulting space are shown 
in Fig 6. The unique parameter set in each model defines the model’s place in 
the parameter space, where the model is colored according to the ADA criteria 
(A) and the participants’ Matsuda index (B). The explained variance and the
loading vectors indicate that the parameters pertain to distinct mechanisms
and retain their functionality (Fig 6B insert). The spread over the first two
principal components demonstrate the large heterogeneity in the modelled
population. Furthermore, the additional insight gained by the personalized
models is illustrated when coloring the parameter space by the ADA criterion
for prediabetes and diabetes (Fig 6A). The featured examples highlight the large
heterogeneity that remains hidden when considering only the single time-point
measures of the diagnosis categories, but is captured by the person specific
models. Fig 6B shows examples of participants with different states of insulin
sensitivity. The examples positioned along the direction of the loading vectors
of k5 show responses with increasing insulin sensitivity noted by the rapid
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clearance of glucose from plasma (i.e. curve rapidly approaching baseline) as well 
as lower insulin secretion. Responses of individuals with varying levels of first-
phase insulin secretion are shown on S8 Fig with the corresponding models in the 
parameter space colored by the insulinogenic index. Responses along the loading 
vectors of both k6 and k8 indicate increasing first-phase secretion of insulin, with 
highlighted examples of low (e.g. participant 347) moderate (e.g. participant 693) 
and high (e.g. participant 51) secretion. Additionally, S9 Fig highlights examples 
in the parameter space colored by the error in the simulation of the individual 
as measured by SSR.

Figure 6. Individual parameter sets in the parameter space of the model colored by 
the ADA diabetes criterion (A) and the Matsuda index (B) after reduction to 2d via 
principal component analysis. The personalized model simulations of five participants’ 
responses are highlighted (individuals 21, 388, 378, 715, 339 on panel A and 522, 308, 
730, 693, 605 on panel B). Orange and blue lines correspond to glucose and insulin model 
simulation, while crosses represent measured data. The loading vectors of k1, k5, k6, and 
k8 are shown in the purple insert in panel B.

DISCUSSION

In this work, we implemented a pipeline to convert a physiological model of 
the postprandial glucose-insulin dynamics describing population averages 
into a personalizable model. A key aspect of the parameter selection process 
was to maintain certainty in the parameter estimates and consequent model 
predictions by systematically reducing the number of parameters to be estimated 
in personalized models, taking into account the availability of quantitative data. 
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Furthermore, our approach allows the comparison of personalized models due 
to retaining the same model structure across individuals. The protocol does 
not require biological knowledge and may be generalized to models of other 
systems. The resulting personalized models were able to accurately describe 
a wide variety of responses from the DIOGenes data set, a large population of 
overweight/obese but otherwise healthy individuals. Furthermore, the estimated 
parameter values of the model allowed mechanistic insight into the differences 
in individuals’ glucose metabolism.

Parameters exhibiting high sensitivity exert a large effect on model outcome, 
whereas not sensitive parameters may be fixed to a constant value. Sensitivity 
of the parameters was assessed through their modulatory effect on glucose and 
insulin concentrations of an average healthy simulation, to keep in line with the 
study population. Due to the structure of the model, different responses might 
indicate different parameters to be sensitive, such as the parameter controlling 
the rate of endogenous glucose production, which is expected to behave 
differently when the glucose response goes below the basal level. However, in 
the current study population such behavior is rare (66/738 responses) and thus 
an average healthy simulation was considered adequate for sensitivity analysis. 
Following the selection of the sensitive parameters, parsimony and model fit 
was considered. The ADA group median and extreme responses were chosen to 
promote the model to be able to fit a wide range of responses. We hypothesize, 
that these responses are representative of the parameter space that we aim to 
capture with the model. Thus, if the model is able to capture these responses 
accurately, it is likely to be able to simulate arbitrary responses in intermediate 
states as well. In order to impose a criterion towards parsimony, we used the 
AIC to introduce a penalty term on the number of parameters in the model. As 
shown in S2 Table, candidate models with more parameters had a lower SSR. 
However, the top 5 and 6 parameter models performed only marginally better 
than the 4 parameter ones, with a SSR of 37.02, 35.20, 41.39 respectively. The 
best scoring 3 parameter model (k1, k5, k9) had more than twice the SSR (87.00) 
of the best 4 parameter model. Based on the AIC, the 4 parameter candidate 
model containing parameters k1, k5, k6 and k8 to be estimated was selected as 
the most parsimonious model. Finally, the identifiability of the candidate model 
was examined via PLA on the representative median and extreme responses. 
Besides the smallest response, PLA profiles showed that the parameters were 
identifiable (S3 Fig) indicating that a unique solution exists in the tested range.
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The parameters identified in the model selection process indicate that the most 
discriminating processes in this population are transition of glucose from the 
stomach to the gut (k1), the insulin-dependent glucose uptake to the periphery 
(k5), and the processes representative of insulin secretion (k6 and k8). It is known 
that gastric emptying is a major determinant of postprandial glycemia that has 
been shown to exhibit large intra- and interindividual variability [31, 32]. The 
decline in insulin mediated glucose disposal into tissues such as the muscle, 
liver or adipose tissue is acknowledged as one of the key process leading to 
the development of T2DM [15]. Furthermore, defects in the first phase insulin 
secretion are known to appear in the early stages of deteriorating glucose control 
compared to abnormalities in second phase insulin secretion, which is more 
prevalent in advanced stages of T2DM [33]. The ability to potentially quantify 
these otherwise difficult to measure processes from time-series of postprandial 
glucose and insulin using a computation model may prove incredibly useful 
in the advent of personalized medicine and targeted nutritional interventions.

Following the identification of the model structure to be personalized, we 
elected to generate our population of personalized models by fitting the model 
to the individuals’ corresponding meal response data via maximum likelihood 
estimation (MLE) while fixing other parameters to population averages. Here, it 
is important to note that, approaches such as non-linear mixed effects modelling, 
where population and individual level dynamics are estimated simultaneously, 
may provide a valuable alternative to our approach [34, 35]. In addition, future 
applications may benefit from integrating regularization in the MLE as proposed 
by Dolejsch et al. [36].

The personalized models showed a 4-5 fold decrease in SSR in all groups compared 
to group simulations, confirming that the model personalization was successful, 
as well as re-enforcing the need for a personalized approach when assessing 
such dynamic responses. A good accordance with data was further confirmed 
by visually inspecting the model output (Fig 3 and S6 Fig). However, the SSR 
does not always give a realistic overview of the model fit, for instance, it can be 
susceptible to bias towards responses with extreme glucose and especially insulin 
values. Thus, to further highlight the limits of the model, a manual selection 
of responses and corresponding model simulations were shown in Fig 4C. The 
model frequently struggled with accurately predicting an intermediate dip in 
the glucose response (e.g. participant 183, Fig 4C). The more complex bi-phasic 
shapes were only accurately modelled in a few cases (e.g. participants 513, Fig 
4C), although it is thought that, this lack of fit could be avoided by estimating 
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additional parameters. Responses with high insulin values drove the model to fail 
at accurately capturing the glucose response. This is partly due to the combined 
glucose and insulin error function used in model fitting, in which insulin values 
were multiplied by 0.1 to account for the difference in scale compared to glucose. 
However, in case of extremely high insulin responses, the insulin values are 
still favored during the optimization (e.g. participants 175, 556, Fig 4B and 4C). 
By estimating additional glucose parameters, such as the parameter handling 
endogenous glucose production (k3), these responses might be captured more 
accurately. Additionally, in some cases where the glucose levels quickly returned 
below the basal value the model exhibited oscillatory behaviour (e.g. participants 
129, Fig 4C). This may originate from the parameter estimates relating to the 
insulin secretion term in the model, however further examination of this was 
outside the scope of the current study. Furthermore, it is worth noting that the 
outlying parameter estimates not necessarily indicate erroneous simulations 
but rather unusual or extreme responses as can be seen on Fig 6, S8 and S9 Figs.

Each of the 738 personalized models contain a unique parameter set pertaining 
to the physiological state of the participant’s glucose homeostasis. The largest 
range for all of the estimated parameters was found in the NGT group, which 
could partly be explained due to the data set containing more normo-glycemic 
individuals (see Table 1) resulting in a larger variability. Furthermore, normo-
glycemic individuals are also known to be more likely to exhibit bi-phasic 
responses [11], raising the variability of responses, and thereby the range of 
estimated parameters values in this category. In addition, the groupings defined 
by the ADA criteria only consider the fasting and 2h plasma glucose values while 
ignoring the insulin levels. Thus, individuals that exhibit normal glucose levels 
at the fasting and 2h time-points due to unusually high insulin values still end up 
in the NGT group. This lack of consideration for the dynamics and insulin values 
make it difficult to detect early deterioration in individuals’ responses indicative 
of insulin resistance. However, taking into account the complete dynamics of both 
glucose and insulin the personalized models outlined here are able to indicate 
such transitions before they are detected by steady state or single time-point 
measures (e.g. 221, 522 Fig 6). By screening for the parameter estimates of k6 and 
k8 one can identify cases where the glucose response appears normoglycemic, 
however the insulin levels are abnormally high.

Variation in gastric emptying linked to obesity has been previously reported, 
however we found no difference in the parameter estimates for k1 between 
overweight and obese participants as well as no association between the 
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parameter k1 and BMI [37]. Importantly, the model parameters corresponding to 
insulin secretion (k6, k8) were found to be lower for individuals with more severe 
metabolic conditions (IGT, IFG&IGT, T2DM). The insulin secretion parameters 
also showed a significant association with the insulinogenic index, a frequently 
used measure of insulin secretion. While the parameter controlling the insulin-
dependent glucose uptake k5 was lower in IGT, IFG&IGT and T2DM compared to 
the other groups and showed a significant association with the Matsuda index. 
These findings reinforce that the model structure captures relevant features 
of the insulin mediated glucose homeostasis and the personalized models can 
distinguish between divergent impairments in the insulin regulated glucose 
control. Therefore, our modelling framework might prove beneficial in revealing 
nuanced behaviour specifically for the early detection of decline in the glucose 
homeostasis from a standard five time-point OGTT. Moreover, the personalized 
models may be used to assess the effects of lifestyle and diet interventions, where 
the observed effects can be quite subtle. Our results also highlights the possibility 
of using such an approach to generate cohorts of virtual patients with varying 
glucose homeostasis for potential in silico testing.

The population in the study may be considered relatively homogeneous in terms 
of glucose homeostasis, as measured by current single time-point measures such 
as the ADA criterion. However, the personalized models utilizing the dynamic, 
intertwined plasma glucose and insulin responses of individuals, allowed 
the quantification of an immense heterogeneity in the responses even within 
the ADA groups. Furthermore, the mechanistic nature of the model promotes 
the identification and allows comparison of distinctive processes underlying 
individuals’ metabolic health. We believe that such personalized modelling 
approaches will be essential in advancing personalized nutrition.

CONCLUSION

The systematic model selection pipeline implemented in this work allows the 
personalization of a mathematical model through reducing the number of 
parameters to be estimated in personalized models. The approach results in the 
most parsimonious model that contains identifiable parameters. The selection 
pipeline is generalizable in the sense, that it does not require biological insight 
to implement, therefore it may be applied to other systems or models to gain 
insight on the individual level. The E-DES model, a computational model of 
the human glucose-insulin system, was personalized using the approach and 
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subsequently a population of personalized models were simulated from a large 
data set of overweight/obese but otherwise healthy individuals. The personalized 
models, consisting of only four parameters estimated from experimental data 
were capable of simulating a wide variety of postprandial glucose and insulin 
responses to a standard OGTT from the DIOGenes data set. Taking advantage 
of a frequently sampled time-series of both glucose and insulin the dynamic 
models were able to capture a large, previously overlooked heterogeneity in 
the population. The mechanistic aspect of the model allows the description and 
comparison of the physiological state of the individuals’ glucose homeostasis 
and provide mechanistic insight into the glycemic variability observed in the 
responses.
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SUPPLEMENTARY MATERIAL

S1 Fig. Schematic of the E-DES model in use

S2 Fig. Local parameter sensitivity analysis on the simulated plasma insulin response
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S3 Fig. Profile Likelihood Analysis results of the 4 parameter model (k1, k5, k6, k8) 
on the median NGT, IFG, IGT, IFG&IGT, T2DM, min and max responses. The red star 
indicates the SSR of the model fitted using the optimal parameter values estimated from 
data, while the blue line corresponds to the error as the other parameter values are being 
re-estimated after adjusting the parameter value iteratively. The dashed lines indicate 
confidence intervals where the degrees of freedom equals one (lower), and the number of 
parameters (upper), respectively.
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S4 Fig. Profile Likelihood Analysis results of the 5 parameter model (k1, k5, k6, k8, k9) 
on the median NGT, IFG, IGT, IFG&IGT, T2DM, min and max responses. The red star 
indicates the SSR of the model fitted using the optimal parameter values estimated from 
data, while the blue line corresponds to the error as the other parameter values are being 
re-estimated after adjusting the parameter value iteratively. The dashed lines indicate 
confidence intervals where the degrees of freedom equals one (lower), and the number of 
parameters (upper), respectively.
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S5 Fig. The distribution of parameters k1, k5, k6, k8 by subgroup (based on ADA 
diabetes criteria) with the outliers highlighted. The boxes represent the 25th and 75th 
percentiles, the whiskers represent the min, and max values, and the horizontal line 
represents the median.

S6 Fig. Pooled residuals in the personalized models per time-point per metabolite, 
colored by the ADA prediabetes and diabetes diagnosis criteria.
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S7 Fig. Pairwise scatter plots and density plots of the personalized model parameters, 
the Insulinogenic index and the Matsuda index from the DIOGenes study colored by 
the ADA prediabetes and diabetes diagnosis criteria.
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S8 Fig. Personalized models colored by the Insulinogenic index in the parameter space 
of the model after reduction to 2d via principal component analysis. The personalized 
model simulations of five participants with varying first-phase insulin secretion are 
highlighted (individuals 51, 45, 347, 430, 693). Orange and blue lines correspond to plasma 
glucose and insulin model simulation, while crosses represent measured data.
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S9 Fig. Personalized models colored by SSR in the parameter space of the model after 
reduction to 2d via principal component analysis. The personalized model simulations 
of five participants with varying first-phase insulin secretion are highlighted (individuals 
175, 738, 556, 676, 445). Orange and blue lines correspond to plasma glucose and insulin 
model simulation, while crosses represent measured data.
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S1 Table: Criteria for prediabetes and diabetes classification used in this study. Based 
on the standard two hour OGTT by the American Diabetes Association [1].

Group1 Fasting plasma glucose 2hr plasma glucose

IFG 5.6 – 6.9 mmol/L -

IGT - 7.8 – 11.0 mmol/L

IFG&IGT 5.6 – 6.9 mmol/L 7.8 – 11.0 mmol/L

T2DM 7.0 mmol/L ≤ 11.1 mmol/L ≤
1IFG: impaired fasting glucose, IGT: impaired glucose tolerant, T2DM: type 2 diabetes 
mellitus
[1] American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes
Care. 2015;38(Supplement_1):S8– S16. doi:10.2337/dc15-S005.

S2 Table: Results of step two of the model selection approach. Sum of squared residuals 
(SSR) and Akaike Information Criterion (AIC) of the ten best performing candidate models.

Rank Estimated parameters SSR AIC

1 k1, k5, k6, k8 41.39 20.44

2 k1, k5, k8, k9 44.46 20.94

3 k1, k5, k6, k8, k9 37.02 21.66

4 k1, k4, k5, k6, k8 39.15 22.05

5 k1, k4, k5, k8, k9 42.57 22.64

6 k1, k4, k5, k6, k8, k9 35.20 23.31

7 k1, k5, k9 87.00 23.64

8 k1, k5, k6 89.75 23.86

9 k1, k5, k6, k9 67.94 23.91

10 k5, k6, k8 93.84 24.17

S1 Appendix: E-DES model structure, fluxes, inputs, parameters and constants is available 
online at https://doi.org/10.1371/journal.pcbi.1008852.s010

S2 Appendix: MATLAB implementation of the model used in the manuscript is available 
online at https://doi.org/10.1371/journal.pcbi.1008852.s011 (Zip, 110KB)
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SUMMARY

Current computational models of whole-body glucose homeostasis describe 
physiological processes by which insulin regulates circulating glucose 
concentrations. While these models perform well in response to oral glucose 
challenges, interaction with other nutrients that impact postprandial glucose 
metabolism, such as amino acids (AAs), are not considered. Here, we developed 
a computational model of the human glucose-insulin system, which incorporates 
the effects of AAs on insulin secretion and hepatic glucose production. This model 
was applied to postprandial glucose and insulin time-series data following 
different AA challenges (with and without co-ingestion of glucose), dried milk 
protein ingredients, and dairy products. Our findings demonstrate that this 
model allows accurate description of postprandial glucose and insulin dynamics 
and provides insight into the physiological processes underlying meal responses. 
This model may facilitate the development of computational models that describe 
glucose homeostasis following the intake of multiple macronutrients, whilst 
capturing relevant features of an individual’s metabolic health.
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INTRODUCTION

Glucose homeostasis is primarily regulated by the hormones insulin and 
glucagon, which act in antagonistic fashion to maintain circulating glucose 
concentrations within a healthy range (Qaid and Abdelrahman, 2016; Röder et 
al., 2016). When glucose concentrations are elevated (i.e. following meal intake), 
pancreatic β-cells secrete insulin to suppress hepatic glucose output and promote 
glucose uptake in peripheral organs, predominantly in the skeletal muscle 
(Chadt and Al-Hasani, 2020). In contrast, when glucose concentrations drop 
(i.e. during fasting or physical exercise), pancreatic α-cells secrete glucagon to 
stimulate glycogen breakdown and gluconeogenesis (formation of glucose from 
non-carbohydrate precursors), allowing glucose release from the liver into the 
circulation, thereby preventing hypoglycemia (Rix et al., 2015). As such, glucagon 
and insulin exert opposing actions on glucose metabolism and are part of a 
tightly-regulated feedback system to maintain glucose homeostasis.

Computational models of whole-body glucose homeostasis describe and 
incorporate the current mechanistic understanding of insulin-mediated 
regulation of circulating glucose concentrations (Bergman et al., 1979; Dalla 
Man et al., 2007; Maas et al., 2015). These processes are represented by model 
parameters, which can be estimated from postprandial time-series data without 
requiring direct invasive measurements. One of the earliest computational 
glucose models, the Bergman minimal model (Bergman et al., 1979), was able 
to determine insulin sensitivity (i.e. the capability of insulin to suppress hepatic 
glucose output and increase glucose disposal in insulin-sensitive tissues) and 
glucose effectiveness (i.e. the ability of glucose to enhance its own disposal at 
basal insulin levels) in response to an intravenous glucose tolerance test. The 
Bergman minimal model formed the basis of the Food and Drug Administration 
approved glucose-insulin model by Dalla Man and colleagues (Dalla Man et al., 
2007; Kovatchev et al., 2009), which is used for in silico simulation and testing of 
insulin pump systems. The Dalla Man model has been parameterized using triple 
tracer glucose data to allow quantification of glucose fluxes between tissues.

The Eindhoven-Diabetes Education Simulator (E-DES), a multi-compartmental 
ordinary differential equation model, has been used to describe glucose 
dynamics following a glucose challenge in healthy individuals as well as patients 
with type 1 and type 2 diabetes (Maas, 2017; Maas et al., 2015; Rozendaal et al., 
2018). We have previously individualized the E-DES model to allow accurate 
description of individual postprandial responses compared to population-based 
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models, demonstrating it is capable of providing mechanistic insight into glucose 
homeostasis of individuals (Erdős et al., 2021). Whilst the E-DES model performs 
very well in response to an oral glucose challenge, modelling the response to 
more complex meals is still challenging because these contain fat and protein, 
which also influence glucose homeostasis.

Dietary protein consists of amino acids (AAs) which are used for synthesis of 
body protein and of nitrogen-containing compounds, such as creatine, peptide 
hormones, and several neurotransmitters (Case et al., 2011). AAs have been shown 
to influence glucose metabolism by inducing insulin secretion to facilitate AA 
uptake and incorporation into protein in muscle tissue, and secreting glucagon to 
enhance hepatic AA uptake, production of ketone bodies from AAs, and formation 
of glucose from AAs (i.e. gluconeogenesis) (Qaid and Abdelrahman, 2016; Rix et 
al., 2015). In a systematic review, we have recently summarized available studies 
describing postprandial glucose and insulin responses to AAs (van Sloun et al., 
2020).

In the present study, we aimed to extend an existing computational model of 
the glucose-insulin regulatory system to account for the postprandial effects of 
AAs. To parameterize the model, we used time-series data of postprandial AA, 
glucose and insulin concentrations following AA challenges (with and without 
glucose), dried milk protein ingredients, and dairy products, derived both from a 
previously performed randomized, single-blind crossover trial (Horstman et al., 
2021) as well as data extracted from available literature (van Sloun et al., 2020). 
Here, we show that this novel model, which we termed E-DES-PROT, accurately 
describes postprandial glucose and insulin dynamics, outperforms the original 
E-DES model and allows insight into the physiological processes underlying meal
responses.

RESULTS

Postprandial simulation of AA, glucose, and insulin dynamics 
following AA challenges and intake of protein ingredients
We investigated whether our newly developed model was able to capture AA 
and protein challenges, estimating only the model parameters accounting for 
AAs (k11-k13). The parameters pertaining to the original E-DES model were 
kept to their healthy average population value and the measured plasma AA 
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concentration (pertaining to the challenge) were interpolated and provided to 
the model as an input (Rozendaal et al., 2018).

The simulated glucose and insulin responses, parameterized on the AA challenges 
(1 mmol/kg body weight) are shown in Figure S1. The simulated glucose and 
insulin responses, parameterized on the milk protein ingredients (i.e. WPC, 
MCI) containing 25g of protein in a 700mL solution, are shown in Figure 1. Here,
the leftmost column pertains to the average population responses, whereas the
other columns show selected individual responses highlighting striking model
behavior. The complete overview of all the individual glucose and insulin
responses is shown in Supplemental Section S1.
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Figure 1. Plasma glucose and insulin simulation following intake of whey protein 
concentrate (WPC) and micellar casein isolate (MCI) in the average healthy study 
population and selected individuals. The model parameters pertaining to amino 
acids (AAs, k11-k13) were estimated, whereas the other model parameters were kept to 
their original population value. The tAA input is shown in black (data and polynomial 
interpolation). The simulated glucose and insulin concentrations are shown in red and 
blue, respectively. The measured concentrations, obtained from (Horstman et al., 2021), are 
shown as black asterisks with corresponding standard errors of the means. The leftmost 
column in panel A & B pertains to average study population, whereas the other columns 
represent selected individuals.
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Visual inspection of the plasma glucose and insulin simulations following 
the AA challenges and protein ingredients displays good agreement with the 
measured data. In general, our new model is able to capture the postprandial 
glucose and insulin following AA challenges, as well as protein ingredients. 
In addition, our model is also able to capture individual glucose and insulin 
concentrations following the intake of protein ingredients, being able to capture 
more pronounced glucose and insulin responses (Figure 1A, subject 9), but also 
less prominent responses (Figure 1A, subject 3).

E-DES-PROT improves upon the original E-DES model in capturing
glucose dynamics following the intake of AA+glucose and dairy
products
We investigated whether our newly developed model was able to capture meals
that in addition to AAs and protein also contained glucose and carbohydrates.
The E-DES-PROT model was compared to the original E-DES model using the AIC
and BIC, with the lowest AIC and BIC value pertaining to the preferred model.

Amino acids + glucose challenge
The simulated glucose and insulin responses using the original E-DES and the 
newly developed E-DES-PROT model, parameterized on the AA+glucose challenges 
(1 mmol/kg body weight + 25g glucose), are shown in Figure 2. For the original 
E-DES model, parameters (k1, k5, k6, k8) were estimated. For the E-DES-PROT
model, these model parameters were estimated in conjunction with the model
parameters accounting for AAs (k11-k13). The measured plasma AA concentration 
(pertaining to the challenge) were interpolated and provided to the model as an
input (Rozendaal et al., 2018).
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Figure 2. Plasma glucose and insulin simulation following intake of different amino 
acids (AAs) together with glucose in healthy individuals, using the original E-DES and 
E-DES-PROT model. The AA input is shown in black (data and polynomial interpolation). 
The simulated glucose and insulin concentrations following parameter estimation (k1, k5,
k6, k8) using the original E-DES model, are shown in dashed red and blue, respectively.
The simulated glucose and insulin concentrations following parameter estimation (k1,
k5, k6, k8, k11-k13) using the E-DES-PROT model, are shown in red and blue, respectively. 
The other model parameters were kept to their original population value. The measured
concentrations, obtained from (van Sloun et al., 2020), are shown as black asterisks with
corresponding standard errors of the means.
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Visual inspection of the plasma glucose and insulin simulations following the 
AA+glucose challenges displays good agreement with the measured data using 
the E-DES and E-DES-PROT model. The E-DES-PROT model is able to capture 
AA+glucose challenges and improves in capturing the measured postprandial 
glucose data (Figure 2, AIC, 1.05 and -1.45; BIC, 3.31 and 2.50 for E-DES, and E-DES-
PROT, respectively across all challenges). For glycine+glucose (Figure 2A), the 
improvement pertained to the period from 60 min after intake onwards, whereas 
the E-DES-PROT model improved the overall postprandial glucose response 
for isoleucine+glucose (Figure 2B). The postprandial insulin data was nicely 
captured using both models. Thus, both the E-DES and E-DES-PROT model are 
able to describe postprandial responses to simple meal challenges consisting of 
single AAs co-ingested with glucose. The complete overview of the AIC and BIC 
for the AA+glucose challenges using the E-DES and E-DES-PROT model is shown 
in Table S1.

Dairy products
The simulated glucose and insulin responses using the original E-DES and the 
newly developed E-DES-PROT model, parameterized on responses to selected 
dairy food products (i.e. LF-UHT and yoghurt) containing 25g of protein and 
a variable amount of carbohydrates in a 700mL solution are shown in Figure 
3. Here, the leftmost column pertains to the average population responses,
whereas the other columns show selected individual responses highlighting
striking model behavior. The complete overview of the individual glucose and
insulin responses for the dairy products (i.e. LF-UHT, LF-PAS, FF-UHT, FF-PAS,
and yoghurt) are shown in Supplemental Section S2. For the original E-DES model, 
parameters (k1, k5, k6, k8) were estimated. For the E-DES-PROT model, these
parameters were estimated in conjunction with the model parameters accounting 
for AAs (k11-k13). The measured plasma AA concentration (pertaining to the
challenge) were interpolated and provided to the model as an input (Rozendaal
et al., 2018).
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Fig 3. Plasma glucose and insulin simulation following intake of low-fat untreated 
treated milk (LF-UHT) and Yoghurt in the average healthy study population and 
selected individuals using the original E-DES and E-DES-PROT model. The tAA input 
is shown in black (data and polynomial interpolation). The simulated glucose and insulin 
concentrations following parameter estimation (k1, k5, k6, k8) using the original E-DES 
model, are shown in dashed red and blue, respectively. The simulated glucose and insulin 
concentrations following parameter estimation (k1, k5, k6, k8, k11-k13) using the E-DES-
PROT model, are shown in red and blue, respectively. The other model parameters were 
kept to their original population value. The measured concentrations, obtained from 
(Horstman et al., 2021), are shown as black asterisks with corresponding standard errors 
of the means. The leftmost column in panel A & B pertains to average study population, 
whereas the other columns represent selected individuals.

The plasma glucose and insulin simulations following LF-UHT and yoghurt 
ingestion are in good agreement with the measured data using the E-DES-PROT 
model. In particular, the original E-DES model was less able to capture the 
measured postprandial glucose data compared the E-DES-PROT model (Figure 
3, AIC, 16.01 and -5.44; BIC, 17.21 and -3.32 for E-DES and E-DES-PROT, respectively, 
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across all challenges). Whereas the first glucose data point after intake (t=15min) 
is accurately captured with the original E-DES model, the remainder of the 
response is not, and appears to overshoot the measured concentration. The 
postprandial insulin data was captured well using both models. Looking at 
the individual level, the E-DES-PROT model was able capture a wide variety of 
measured postprandial glucose and insulin responses. Here, the E-DES-PROT 
model was better able to capture the measured data, for instance for subject 3, 
10 (Figure 3A) and subject 3, 5 (Figure 3B). The E-DES-PROT model thus allows 
capture of more complex meals containing protein as well as carbohydrates, 
which the original E-DES model was unable to do. The complete overview of the 
AIC and BIC for the dairy products using the E-DES and E-DES-PROT model is 
shown in Table S2.

Model fluxes were compared between E-DES-PROT and the original E-DES 
model following LF-UHT intake in the average healthy population (Figure S2). 
The fluxes for endogenous glucose production and insulin-dependent glucose 
uptake increased more in the E-DES-PROT model compared to the original E-DES 
model. Despite the small increase in the insulin-dependent glucose uptake flux, a 
minor change greatly affects the postprandial glucose and insulin concentrations 
(Figure S3). In addition, model fluxes were compared for different types of 
meals, ranging from simple AA challenges to more complex dairy products in 
the average healthy study populations, using the E-DES-PROT model (Figure 4).
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Figure 4. Model fluxes following intake of various meal challenges in the average 
healthy study populations using the E-DES-PROT model. The corresponding model fluxes 
pertaining to the E-DES-PROT model simulations for leucine (green), micellar casein isolate 
(blue), leucine+glucose (brown), and LF-UHT (red) intake are shown in panels A, B, C, and D.

The glucose appearance in the gut appears to be more spread out following 
LF-UHT intake, as compared to leucine+glucose co-ingestion, which has an earlier 
peak. Insulin secretion and insulin-dependent glucose uptake are substantially 
lower for leucine and micellar casein isolate ingestion compared to co-ingestion 
of leucine with glucose and LF-UHT intake, with the largest peak in insulin 
secretion in the latter. Furthermore, a clear increase from baseline in endogenous 
glucose production is observed for micellar casein isolate intake, in contrast to 
LF-UHT and in particular leucine+glucose, which shows the largest decrease from 
baseline. Leucine ingestion alone only slightly increased endogenous glucose 
production.

DISCUSSION

Dietary protein and AAs play an important role in glucose metabolism through 
stimulating both insulin and glucagon secretion (Ang et al., 2019; Lindgren et al., 
2015; van Sloun et al., 2020). In this study, we developed a novel computational 
model of the glucose-insulin regulatory system, taking the effects of AAs into 
account, and used this novel model to describe postprandial glucose and insulin 
dynamics following a variety of simple to complex meals containing AAs and 
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protein. Here, we show that our E-DES-PROT model accurately describes the 
measured glucose and insulin concentrations, allows insight into the underlying 
model fluxes, and outperforms the original E-DES model that only takes the 
postprandial effects of glucose ingestion into account.

The Eindhoven-Diabetes Education Simulator (E-DES) model by Maas et al. 
(Maas et al., 2015) was selected as a basis for model extension due to its relatively 
simple description of glucose metabolism. Other models that have previously 
been reported such as the model of Dalla Man et al. (Dalla Man et al., 2007) 
requires data derived from complex, costly measurements (i.e. stable isotope 
studies) to allow estimation of its model parameters, making it challenging 
models to parameterize. In contrast, the E-DES model is less complex in terms 
of the number of parameters included in the model, and has so far been shown 
to describe glucose homeostasis in different populations as well as individuals, 
whilst including the most important metabolic fluxes (Erdős et al., 2021; Maas 
et al., 2015; Rozendaal et al., 2018). The present E-DES-PROT model introduces 
several novel terms accounting for the postprandial effects of both individual 
and total AAs on glucose and insulin regulation. More specifically, the equation 
regulating liver glucose production was extended to increase glucose output with 
increasing plasma AA levels, representing the physiological effects of AAs on 
glucagon secretion, and consequently hepatic glucose output (Holst et al., 2017). 
Secondly, the equation regulating pancreatic insulin secretion was extended 
to increase insulin secretion with increasing plasma AA levels, representing 
the physiological effects of AAs on β-cells, causing a rise in the ATP/ADP ratio, 
ultimately leading to the stimulation of insulin granule exocytosis (Newsholme 
and Krause, 2012). These extensions were necessary to capture the characteristics 
of the postprandial data, whilst adhering to established human physiology (Holst 
et al., 2017; Newsholme et al., 2007). To prevent the development of an overly 
complex model, we modeled these processes using simple linear and derivative 
terms; in this way the model can still be readily individualized using standard 
plasma glucose, insulin, and AA measurements. With the addition of only three 
parameters, the E-DES-PROT model was able to accurately capture postprandial 
glucose and insulin data following various challenge tests containing AAs and 
protein ingredients. The E-DES-PROT model outperforms the original E-DES 
model in capturing postprandial glucose data, particularly in the case of the 
dairy challenges, where both AIC and BIC showed a preference for the E-DES-
PROT model. For the AA+glucose challenges, both E-DES and E-DES-PROT were 
able to accurately capture the insulin response, explaining why the AIC and BIC 
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preferred the E-DES model. However, in contrast to the insulin response, the 
E-DES model was not able to accurately capture the glucose response.

These results confirm the necessity of including the effects of AAs and protein in 
the models to be able to capture glycemic responses to foods such as to yoghurt. A 
model based on E-DES that incorporates dietary fat has been developed in parallel 
and was recently published (O’Donovan et al., 2022). A next step would be to 
merge these two models into a model able to fully capture the effects of a complex 
meal, taking into account all three macronutrient classes (i.e. carbohydrate, 
protein, and fat) (Laxminarayan et al., 2015).

Despite only slightly improving in capturing the glucose response following 
AA+glucose challenges, the E-DES-PROT model is physiologically more accurate 
and provides more detailed insight into the underlying physiological processes 
(i.e. insulin secretion and endogenous glucose production). Besides being able to 
describe average postprandial responses to the various challenges, the E-DES-
PROT showed the ability to reproduce a wide variety of individual postprandial 
glucose and insulin responses as well. However, there were some exceptions 
in which the model did not perfectly capture certain individual postprandial 
responses. This was observed for responses in which the data points following 
meal ingestion (t=0) were below basal glucose concentration (e.g. participant 
5, Figure 3B). Furthermore, the model struggled accurately predicting an 
intermediate dip in the glucose response (e.g. participant 5, Figure 3A).

The mechanistic nature of the model also allows the investigation of non-
measured variables such as metabolite fluxes between tissues. Inspecting the 
metabolite fluxes, we found that there was an increase in insulin-dependent 
glucose uptake using the E-DES-PROT model compared to the original E-DES 
model, resulting in accurate description of the postprandial glucose data. 
The model fluxes calculated for various meals included in this study provide 
information on physiological processes underlying the dynamic responses. For 
example, glucose appearance in the gut seems to be more spread out for the 
dairy product (i.e. LF-UHT) compared to the more simple AA+glucose co-ingestion 
test (i.e. leucine + glucose). Furthermore, endogenous glucose production was 
increased for protein only meals (i.e. micellar casein isolate), corresponding with 
findings from literature (Ang et al., 2019; Khan et al., 1992). Whilst beyond the 
scope of the present study, investigating model parameters and corresponding 
fluxes at the individual level with the new E-DES-PROT model might provide 
further insight into the glucometabolic status of individuals.
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In conclusion, we present a new physiology-based computational model of 
the glucose homeostasis that extends the E-DES model with the postprandial 
effects of AAs and protein. The E-DES-PROT model allows, for the first time, to 
accurately describe postprandial responses following different AA challenges 
(with and without co-ingestion of glucose), dried milk protein ingredients and 
dairy challenges, and is able to provide information on physiological processes 
underlying the meal responses. Introducing AAs in these models is important to 
move towards describing physiologically relevant complex meals. In addition, our 
model outperforms the original E-DES model in terms of describing postprandial 
glucose responses following dairy products. As the model covers two out of three 
macronutrient classes (carbohydrates and protein), future studies should explore 
the possibility to further extend the E-DES-PROT model with fat to allow model-
based prediction of glucose responses to complex meals varying in macronutrient 
composition and content.

LIMITATIONS OF THE STUDY

The increased liver glucose output was modeled to be dependent on the AA 
concentration in the plasma. However, AAs are known to stimulate glucagon 
secretion, which in turn increases liver glucose output (Holst et al., 2017). As 
glucagon is not explicitly accounted for in the E-DES model, future work should 
consider incorporating glucagon in the E-DES model, as has been implemented 
before in the Dalla Man model (Man et al., 2014). Secondly, as the objective of 
our research was to quantify the effect of AAs on postprandial glucose-insulin 
dynamics, a forcing function is used to describe the rate of appearance of AAs in 
E-DES-PROT. In future research, the addition of a function to explicitly describe
the rate of appearance could increase the functionality of our model. This rate
of appearance function would allow simulation of plasma AAs, without the need
for measured plasma AAs to be provided as input. Furthermore, this would allow
refinement of the glucose rate of appearance, as protein (and fat) have been
known to delay gastric emptying (Sun et al., 2017).

Individual AAs have been shown to have distinct effects on the glucose and 
insulin response (Newsholme et al., 2007; van Sloun et al., 2020), but also interact 
with each other when provided together (Iverson et al., 2014). In this study, we 
added up the AA profiles (tAA) for the protein ingredients and dairy products, 
and did not include possible interactions between individual AAs in the E-DES-
PROT model. Furthermore, not only AAs but also fat influences the blood glucose 

4



112

Chapter 4

response in response to complex meals (Garonzi et al., 2021; Savage et al., 2007). 
However, incorporating the postprandial effects of fat on glucose metabolism 
was beyond the scope of this present study. Identifiability analysis showed that 
the parameters related to AAs (k11 – k13) were identifiable for AA challenges and 
milk protein ingredients (examples are shown in Figure S4). However, for the 
AA+glucose challenges as well as for the dairy products, only the parameters k1, 
k5, k6, k8, and k13 were consistently deemed identifiable. The unidentifiability 
of the k11 and k12 parameter in several of these challenges might have resulted 
from functional relationships between parameters.

STAR⋆METHODS

Study workflow
The study workflow is illustrated in Figure S5. Briefly, the existing E-DES model 
was extended to a model that accounts for the postprandial effects of AAs and 
protein on glucose and insulin dynamics. Model equations were adjusted and 
additional parameters were introduced to take the effects of AAs on insulin 
secretion and liver glucose production, as observed from literature, into account. 
Subsequently, postprandial time-series data, extracted from the literature (van 
Sloun et al., 2020), and obtained from a previously performed randomized, single-
blind crossover trial in healthy elderly males and females (RCT; NCT02546141) 
(Horstman et al., 2021) were used to estimate the model parameters. The ability 
of the model to describe the measured data was evaluated using the sum of 
squared residuals (SSR), the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC). Model fluxes were compared between the E-DES and 
the newly developed E-DES-PROT model, as well as for various meal challenges.

Collection of data
Publicly available datasets, containing postprandial time-series data of AAs, 
glucose, and insulin following various AA challenge tests (leucine, isoleucine, 
lysine, glycine, proline, and phenylalanine; with or without glucose) in healthy 
individuals were included in the present study (summarized in (van Sloun et 
al., 2020)). In all experiments, plasma samples were taken from the antecubital 
vein in the fasting state (t=0) and 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 
and 150 minutes after ingestion of 1 mmol AA per kg of lean body weight (with 
or without 25g glucose). In addition, we used data on postprandial AAs (arginine, 
glutamine, serine, asparagine, glycine, threonine, alanine, methionine, proline, 
lysine, aspartic acid, histidine, valine, glutamic acid, tryptophan, leucine, 
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phenylalanine, isoleucine, cysteine and tyrosine), glucose, and insulin time-series 
from a randomized single-blind crossover trial (RCT; NCT02546141), in which ten 
participants (five male) received two spray dried milk protein ingredients (whey 
protein concentrate, WPC; micellar casein isolate, MCI) and six dairy products 
(low-fat untreated milk (LF-UHT); low-fat pasteurized milk (LF-PAS); full-fat 
untreated milk (FF-UHT); full-fat pasteurized milk (FF-PAS); low-fat yoghurt; 
full-fat cheese) in random order, as previously described (Horstman et al., 2021). 
The dairy products and protein ingredients were supplied on eight separate test 
days, with a one-week washout period in between. For each meal, an appropriate 
amount of the product to ensure 25g of protein intake was consumed. For the 
milk protein ingredients (i.e. WPC and MCI), this was achieved by dissolving an 
appropriate amount of powder in water to attain a solution of 700mL containing 
25g of protein. To standardize the volume for all products, water was added 
to a total of 700mL of volume ingested. Plasma samples were taken from the 
antecubital vein in the fasting state (t=0) and 15, 30, 45, 60, 75, 90, 105, 120, 150, 
180, 210, 240, and 300 minutes after ingesting the protein ingredients and dairy 
products. An overview of the datasets included in the present study is given in 
Table S3.

Development of a novel physiology-based computational model of 
glucose homeostasis
The Eindhoven Diabetes Education Simulator (E-DES, version 1.1) published by 
Maas et al. (Maas et al., 2015; Rozendaal et al., 2018) formed the basis for the model 
extension with AAs in the present study. The E-DES model is a physiology-based 
computational model of the glucose regulatory system in healthy individuals 
and patients with type 1 and type 2 diabetes (Maas, 2017). It consists of a system 
of coupled differential equations, which describe the change of the mass or 
concentration of either glucose or insulin over time. Each of these equations 
consists of a positive inflow and negative outflow term and can be summarized as 
follows: (i) glucose balance in the gut is determined through the inflow of glucose 
mass from the stomach and glucose leaving the gut through uptake by the plasma 
(ii) glucose balance in the plasma is determined by glucose inflow from the gut
in conjunction with glucose output from the liver and glucose uptake by insulin-
(in)dependent tissues (iii) insulin balance in the plasma is determined by inflow
of endogenously produced insulin from the pancreas and uptake of insulin by
the interstitial fluid (iv) insulin balance in the interstitial fluid is determined by
insulin inflow from the plasma and removal of insulin from the interstitial fluid
proportional to the interstitial insulin fluid concentration. The rates through
which these processes occur are controlled by parameters (denoted with k),
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which have been estimated and validated on multiple oral glucose tolerance tests 
(OGTTs) in healthy populations (Maas, 2017). The model parameters are described 
in Table S4. The model inputs, equations, fluxes, constants are described in detail 
in Supplemental Section S3.

Model development
In this study, we extended the previously developed E-DES model to also account 
for the postprandial effects of AAs on glucose and insulin dynamics (illustrated 
in Figure S6). Firstly, the equation regulating glucose production from the liver 
(Eq. 1) was extended with a proportional (k11) term to accommodate an increase 
in liver glucose production proportional to the AA concentration present in the 
plasma (AApl(t)) relative to the basal concentration (AAb

pl).

 (1)

Secondly, the equation regulating insulin secretion from the pancreas (Eq. 2) was 
extended with a derivative (k12) and proportional (k13) term to accommodate an 
increase in insulin secretion (i) based on the rate of change of plasma AAs 
and (ii) proportional to the AA concentration present in the plasma (AApl(t)) 
relative to the basal concentration (AAb

pl).

(2)

The extended equations (1) and (2) described above require plasma AA 
concentrations as model input. Therefore, measured AA concentrations following 
the challenge tests were interpolated via a fitted piecewise cubic Hermite 
interpolating polynomial (pchip), and provided to the model as AApl(t). For the 
RCT (NCT02546141), the following AA measurements were added up, interpolated, 
and denoted as total AA (tAA): arginine, glutamine, serine, asparagine, glycine, 
threonine, alanine, methionine, proline, lysine, aspartic acid, histidine, valine, 
glutamic acid, tryptophan, leucine, phenylalanine, isoleucine, cysteine, and 
tyrosine.

Model calibration
Model calibration was performed by generating parameter values that resulted 
in an optimal description of measured data. This was done through minimizing 
a cost function, representing the sum of squared residual (SSR) in the model 
prediction for glucose and insulin (Eq. 3). The SSR is minimized using lsqnonlin, 
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a local, gradient-based least squares solver in MATLAB (Version R2018b). Optimal 
parameter sets were obtained using twenty-five initializations of the optimization 
algorithm with 25% random noise starting from the original parameter value 
for the average healthy population (Rozendaal et al., 2018).

 (3)

Where m, and N represent the number of metabolites and the number of time-
points, respectively. The measured data is denoted by d, while y is the 
corresponding model prediction given the parameter vector . A weight factor 

γ = 0.1 was used in the case of insulin (γ = 1 in case of glucose) to account for the 
unit difference (mmol/L, mU/L for glucose and insulin, respectively) between the 
molecules. As the lsqnonlin function, that minimizes the sum of squared error, 
does this simultaneously for glucose and insulin, the γ factor aims to bring the 
units for glucose and insulin closer together to avoid prioritizing one or the other 
in the optimization process.

Model selection and analysis
Visual inspection was performed to evaluate the goodness-of-fit of the simulated 
glucose and insulin responses to the measured data. In order to compare the 
E-DES and the E-DES-PROT model, we selected the parameters identified from
our previous work (Erdős et al., 2021). In that work, a systematic model selection
pipeline was implemented to allow personalization of the E-DES model through
reducing the number of parameters to be estimated, resulting in a model
containing parameters k1, k5, k6, and k8 (sensitivity is shown in Figure S7).
In the current work, we estimated those parameters, both for the systematic
review datasets and the randomized single-blind crossover trial. The selected
parameters represent distinct physiological processes involved in glucose and
insulin regulation, described in Table 2. For the E-DES-PROT model simulation,
the AA parameters (k11-k13) were also estimated. Parameters Gb

pl and Ib
pl

(sensitivity is shown in Figure S8) were set to be equal to the first data-point
(t = 0 min) of the measured responses, whereas the other parameters were set to
the average healthy population values from the original publication (Rozendaal
et al., 2018).
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Model performance was evaluated using the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC), in which model complexity (i.e. 
number of estimated parameters) was penalized (Eq. 4 & 5 respectively).

(4)

(5)

N represents the number of observations, and K the number of parameters. Given 
a set of candidate models that describe the postprandial time-series data, the 
preferred model is the one with the lowest AIC and BIC value, indicating the 
better-fit model whilst taking the number of parameters into account. In addition, 
model fluxes were calculated and compared between the E-DES and E-DES-PROT 
model, as well as for the various meal challenges. Parameter identifiability 
was assessed using Profile Likelihood Analysis (PLA). In PLA, the value of one 
parameter is changed iteratively from its optimal value and the remaining 
parameters are re-estimated. An increase in the cost function for the model fit 
indicates that a reliable parameter estimate has been obtained and the parameter 
is identifiable given the model structure and data.

Computer software
The model was implemented and analyzed in MATLAB (MATLAB, Version 
R2018b, The Mathworks, Inc., Natick, Massachusetts, United States). The ordinary 
differential equation model was simulated using the variable step solver ode15s.
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SUPPLEMENTAL INFORMATION

Supplemental Figure S1: Simulated postprandial responses in the literature study 
following ingestion of amino acids as described in the Results section. The model 
parameters pertaining to amino acids (AAs, k11-k13) were estimated, whereas the 
other model parameters were kept to their original population value. The tAA input is 
shown in black (data and polynomial interpolation). The simulated glucose and insulin 
concentrations are shown in red and blue, respectively. The measured concentrations, 
obtained from (van Sloun et al., 2020) are shown as black asterisk with corresponding 
standard errors of the means.
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Supplemental Table S1: Sum of squared residuals (SSR), Akaike Information Criterion 
(AIC), and Bayesian Information Criterion (BIC) of the AA+glucose challenges from 
literature datasets using the E-DES and E-DES-PROT model as described in the Results 
section.

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Glucose + Insulin response
Glucose + Insulin response

Leucine + 
Glucose

0.9853 -77.0958 -72.0634 Leucine + 
Glucose

0.8266 -75.6618 -66.8551

Isoleucine + 
Glucose

4.2394 -39.1555 -34.1231 Isoleucine + 
Glucose

4.7099 -30.4194 -21.6125

Lysine + 
Glucose

2.1334 -57.0094 -51.9771 Lysine + 
Glucose

1.5095 -60.0042 -51.1976

Phenylalanine + 
Glucose

3.3157 -45.5451 -40.5127 Phenylalanine + 
Glucose

3.4446 -38.5533 -29.7468

Glycine + 
Glucose

1.7085 -59.0821 -54.0498 Glycine + 
Glucose

2.0023 -45.6105 -37.3638

Proline + 
Glucose

1.6715 -63.3544 -58.3221 Proline + 
Glucose

1.5434 -59.4260 -50.6202

Across all co-
ingestion tests

14.0537  -7.9954 -2.9630 Across all co-
ingestion tests

14.0364 -2.0275 6.7792

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Glucose response Glucose response

Leucine + 
Glucose

0.5345 -33.4877 -31.2279 Leucine + 
Glucose

0.3426 -33.2711 -29.3164

Isoleucine + 
Glucose

3.1633 -10.3733 -8.1135 Isoleucine + 
Glucose

0.6546 -24.8533 -20.8982

Lysine + 
Glucose

0.4056 -37.0743 -34.8145 Lysine + 
Glucose

0.5807 -26.4106 -22.4555

Phenylalanine + 
Glucose

2.4123 -13.8971 -11.6373 Phenylalanine + 
Glucose

1.6784 -12.6121 -8.6578

Glycine + 
Glucose

0.9126 -22.9169 -20.6571 Glycine + 
Glucose

0.5694 -22.5770 -19.1826

Proline + 
Glucose

0.1894 -46.9771 -44.7173 Proline + 
Glucose

0.1350 -45.3792 -41.4219

Across all co-
ingestion tests

7.6176 1.0517 3.3115 Across all co-
ingestion tests

3.9607 -1.4509 2.5038

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Insulin response Insulin response

Leucine + 
Glucose

0.4508 -35.7023 -33.4425 Leucine + 
Glucose

0.4840 -28.7772 -24.8226

Isoleucine + 
Glucose

1.0761 -24.3910 -22.1312 Isoleucine + 
Glucose

4.0553 -1.1440 2.8106

Lysine + 
Glucose

1.7278 -18.2353 -15.9755 Lysine + 
Glucose

0.9288 -20.3042 -16.3499

Phenylalanine + 
Glucose

0.9034 -26.6643 -24.4045 Phenylalanine + 
Glucose

1.7662 -11.9496 -7.9949

Glycine + 
Glucose

0.7959 -24.5583 -22.2985 Glycine + 
Glucose

1.4329 -11.5027 -8.1081

Proline + 
Glucose

1.4821 -20.2295 -17.9697 Proline + 
Glucose

1.4085 -14.8917 -10.9369

Across all co-
ingestion tests

6.4361 -1.1393 1.1205 Across all co-
ingestion tests

10.0757 10.6873 14.6419
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Supplemental Table S2: Sum of squared residuals (SSR), Akaike Information Criterion 
(AIC), and Bayesian Information Criterion (BIC) of the dairy challenges of the 
randomized single-blind crossover trial study dataset using E-DES and E-DES-PROT 
model as described in the Results section.

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Glucose + Insulin response
Glucose + Insulin response

LF-UHT 4.7395 -16.0199 -12.4584 LF-UHT 0.5840 -47.7081 -41.4755
LF-PAS 3.7143 -20.4073 -16.8458 LF-PAS 0.2709 -61.5370 -55.3022
FF-UHT 6.1975 -11.1921 -7.6306 FF-UHT 0.7732 -42.6566 -36.4240
FF-PAS 5.7793 -12.4495 -8.8881 FF-PAS 0.8822 -40.2827 -34.0501
Yoghurt 5.3701 -13.7713 -10.2100 Yoghurt 1.3470 -32.6649 -26.4323
Across all 
challenges

25.8008 14.4806 18.0421 Across all 
challenges

3.8573 -13.7273 -7.4947

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Glucose response Glucose response

LF-UHT 4.4449 -0.1083 1.1021 LF-UHT 0.2395 -23.3196 -21.1998
LF-PAS 3.2612 -3.2048 -1.9946 LF-PAS 0.1317 -29.2981 -27.1800
FF-UHT 5.3515 1.7479 2.9583 FF-UHT 0.3138 -20.6166 -18.4977
FF-PAS 5.0361 1.1406 2.3508 FF-PAS 0.4418 -17.1954 -15.0767
Yoghurt 4.1821 -0.7177 -0.4926 Yoghurt 0.3043 -20.9242 -18.8052
Across all 
challenges

22.2758 16.0092 17.2195 Across all 
challenges

1.4311 -5.4414 -3.3233

E-DES SSR AIC BIC E-DES-PROT SSR AIC BIC
Insulin response Insulin response

LF-UHT 0.2946 -18.4126 -18.0949 LF-UHT 0.3446 -11.1585 -10.6024
LF-PAS 0.4530 -14.9704 -14.6527 LF-PAS 0.1392 -18.4103 -17.8542
FF-UHT 0.8460 -16.6983 -15.4879 FF-UHT 0.4595 -8.8565 -8.3004
FF-PAS 0.7432 -11.0099 -10.6921 FF-PAS 0.4404 -9.1956 -8.6400
Yoghurt 1.1881 -7.2567 -6.9389 Yoghurt 1.0427 -2.3009 -1.7449
Across all 
challenges

3.5249 1.4433 1.7611 Across all 
challenges

2.4264 4.4557 5.0118
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Supplemental Figure S2: Simulated model fluxes following LF-UHT intake as described 
in the Results section. The leftmost column pertains to the average LF-UHT simulation. 
Panel A, B, C, describe the insulin secretion, endogenous glucose production and insulin-
dependent glucose uptake flux, respectively, using the original E-DES model (dashed black) 
and the E-DES-PROT model (black)
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Supplemental Figure S3: Varying the insulin-dependent glucose uptake flux following 
LF-UHT intake as described in the Results section. Panel A and B show a 15% increase 
and decrease in the insulin-dependent glucose uptake flux, with the corresponding model 
simulation in red and blue for glucose and insulin, respectively.
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Supplemental Figure S4: Profile likelihood analysis of leucine, WPC, leucine+glucose, 
and LF-UHT intake as described in the Limitations of the study section. The red asterisk 
indicates the SSR of the model fitted using the optimal parameter values estimated from 
data, while the blue line corresponds to the error as the other parameter values are being 
re-estimated after adjusting the parameter value iteratively.
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Supplementary Figure S5: Overview of the study workflow as described in the 
STAR Methods section. The E-DES model was extended (E-DES-PROT) to account for the 
postprandial effects of AAs and protein on glucose and insulin dynamics. Model equations 
were adjusted and additional parameters were introduced. Postprandial AA, glucose, and 
insulin time-series data from the literature and the randomized, single-blind crossover 
trial (RCT; NCT02546141) were used for parameter estimation. The models were evaluated 
using the sum of squared residuals (SSR), the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). Model fluxes were compared between the E-DES and 
the newly developed E-DES-PROT model, as well as for various meal challenges.
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Supplementary Table S3: Overview of the datasets described in the STAR Methods 
section.

Author Challenge Dosage N M/F Mean 
Age (yrs)

Mean 
BMI 
(kg/
m2)

#G #I #AA

Kalogeropoulou 
(Kalogeropoulou et 
al., 2008)

AA 7g Leucine 13 6/7 24 24 14 14 5

AA+Glucose 7g Leucine + 25g 
Glucose

13 6/7 24 24 14 14 5

Nuttall (Nuttall et 
al., 2008)

AA 7.4g Isoleucine 9 3/6 33.8 28 14 14 5

AA+Glucose 7.4g Isoleucine + 
25g Glucose

9 3/6 33.8 28 14 14 5

Kalogeropoulou 
(Kalogeropoulou et 
al., 2009)

AA 11g Lysine 13 6/7 30 26 14 14 5

AA+Glucose 11g Lysine + 25g 
Glucose

13 6/7 30 26 14 14 5

Gannon (Gannon et 
al., 2002)

AA 4.6g Glycine 9 5/4 21-52 25.9 13 13 5

AA+Glucose 4.6g Glycine +25g 
Glucose

9 5/4 21-52 25.9 13 13 5

Nuttall (Nuttall et 
al., 2004)

AA 6.0g Proline 8 4/4 28 23 14 14 5

AA+Glucose 6.0g Proline + 25g 
Glucose

8 4/4 28 23 14 14 5

Nuttall (Nuttall et 
al., 2006)

AA 9.7g Phenylalanine 6 3/3 26 24 14 14 5

AA+Glucose 9.7g Phenylalanine 
+ 25g Glucose

6 3/3 26 24 14 14 5

Horstman 
(Horstman et al., 
2021)

Protein 
ingredient

31g WPC: 24.8g 
protein,
2g carbohydrate, 
1.6g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Protein 
ingredient

29g MCI: 25.2g 
protein, 2.9g 
carbohydrate, 
0.3g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Dairy 
product

676 mL LF-UHT: 
25g protein, 33.8g 
carbohydrate, 
0.7g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Dairy 
product

694 mL LF-PAS: 
25g protein, 32.6g 
carbohydrate, 
0.7g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Dairy 
product

694 mL FF-UHT: 
25g protein, 32.6g 
carbohydrate, 
25g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14
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Supplementary Table S3: Overview of the datasets described in the STAR Methods 
section. (continued)

Author Challenge Dosage N M/F Mean 
Age (yrs)

Mean 
BMI 
(kg/
m2)

#G #I #AA

Dairy 
product

694 mL FF-PAS: 
25g protein, 32.6g 
carbohydrate, 
25g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Dairy 
product

532 mL Yoghurt: 
25g protein, 21.3g 
carbohydrate, 
0g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Dairy 
product

97g Cheese: 
24.9g protein, 0g 
carbohydrate, 
32.5g fat

10 5/5 66.7± 4.3 25.6± 
2.6

14 9 14

Abbreviations are: BMI: Body Mass Index; #G: Number of glucose measurement time-
points; #I: Number of insulin measurement time-points; #AA: Number of AA measurement 
time-points; N: Number of study participants; M: Males; F: Females; WPC: Whey protein 
concentrate; MCI: Micellar casein isolate; LF-UHT: Low-fat untreated treated milk; LF-
PAS: Low-fat pasteurized milk; FF-UHT: Full-fat untreated-treated milk; FF-PAS: Full-fat 
pasteurized milk

Supplementary Table S4: Overview of the E-DES-PROT model parameters as outlined 
in the STAR Methods section.

Name Description Units

k1 Rate constant of glucose appearance in the gut 1/min

k2 Rate constant of gut emptying 1/min

k3 Rate constant of ΔG suppression of EGP when Gpl > Gb
pl 1/min

k4 Rate constant of Iif-dependent suppression of EGP 1/min

k5 Rate constant of insulin-dependent glucose uptake 1/min

k6 Rate constant of ΔG dependent insulin production 1/min

k7 Rate constant of ʃG dependent insulin production 1/min

k8
Rate constant of  dependent insulin production

1/min

k9 Rate constant of insulin outflow from plasma to interstitial fluid 1/min

k10 Rate constant of interstitial fluid insulin utilization 1/min

k11 Rate constant of ΔAA increase of EGP when AApl > AAb
pl 1/min
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Supplementary Table S4: Overview of the E-DES-PROT model parameters as outlined 
in the STAR Methods section. (continued)

Name Description Units

k12
Rate constant of  dependent insulin production

1/min

k13 Rate constant of ΔAA dependent insulin production 1/min

σ Shape factor of the gastric emptying pattern dimensionless

Km Michaelis-Menten constant for glucose uptake mg/dL

k11-k13 are included as additional parameters for the E-DES-PROT model, indicated in 
bold. Abbreviations are: G: Glucose; pl: Plasma; b: Basal; I: Insulin; if: Interstitial fluid; 
AA: Amino acids.

Supplementary Fig S6: Schematic representation of the E-DES-PROT model as described 
in the STAR Methods section. The dark-gray areas show the three model compartments 
(i.e. the gut, plasma, and interstitial fluid) used in the model. The black arrows denote the 
model fluxes, with corresponding parameters denoted with k. In the model, glucose enters 
the system via simulated ingestion in the gut (Qgut). Plasma amino acid (AApl) concentration 
are provided as input via fitted piecewise cubic Hermite interpolating polynomial of the 
measured AA data. Full model equations are described in Supplemental Section S3.
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Supplemental Figure S7: Local parameter sensitivity analysis on the simulated plasma 
glucose and insulin response following 75g glucose ingestion in the E-DES model as 
described in the STAR Methods section. The E-DES model parameters are varied in 
both directions while maintaining others at a constant value. A threshold of 95% in both 
directions compared to the average healthy population values was selected as the limit 
of sensitivity.
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Supplemental Figure S8: Gb
pl and Ib

pl sensitivity in the E-DES-PROT model as described 
in the STAR Methods section. Gb

pl and Ib
pl were varied in both directions. A threshold of 

25% in both directions compared to the average healthy population values was selected 
as the limit of sensitivity.
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SUPPLEMENTAL SECTION S1

Simulated postprandial responses for all individual in the randomized 
single-blind crossover trial study following ingestion of protein ingredients 
(WPC, MCI) and cheese as described in the Results section. The model 
parameters pertaining to amino acids (AAs, k11-k13) were estimated, whereas 
the other model parameters were kept to their original population value. The 
tAA input is shown in black (data and polynomial interpolation). The simulated 
glucose and insulin concentrations are shown in red and blue, respectively. The 
measured concentrations, obtained from (Horstman et al., 2021), are shown as 
black asterisks with corresponding standard errors of the means. The leftmost 
column in panel A, B, and C pertains to average study population, whereas the 
other columns represent the individuals

4



132

Chapter 4



133

E-DES-PROT: Modelling the amino acid effect on glucose and insulin

SUPPLEMENTAL SECTION S2

Simulated postprandial responses for all individuals in the randomized 
single-blind crossover trial study following ingestion of dairy products 
(LF-UHT, LF-PAS, FF-UHT, FF-PAS, and Yoghurt) as described in the Results 
section. The tAA input is shown in black (data and polynomial interpolation). The 
simulated glucose and insulin concentrations following parameter estimation 
(k1, k5, k6, k8) using the original E-DES model, are shown in dashed red and 
blue, respectively. The simulated glucose and insulin concentrations following 
parameter estimation (k1, k5, k6, k8, k11-k13) using the E-DES-PROT model, are 
shown in red and blue, respectively. The other model parameters were kept to 
their original population value. The measured concentrations, obtained from 
(Horstman et al., 2021), are shown as black asterisks with corresponding standard 
errors of the means. The leftmost column in panel A, B, C, D, and E pertains to 
average study population, whereas the other columns represent the individuals. 4
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SUPPLEMENTAL SECTION S3

The current model has been adapted from [1].

E-DES-PROT MODEL STRUCTURE

Glucose in the gut

Glucose in the plasma
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Insulin in the plasma

Insulin in the interstitial fluid

E-DES-PROT MODEL INPUTS, FLUXES AND CONSTANTS

Table 1: Overview of the E-DES-PROT model (input) variables

Name Description Units

Time min

Glucose mass in the gut mg

Plasma glucose concentration mmol/L

Plasma insulin concentration mU/L

Plasma amino acid concentration µmol/L

Interstitial fluid insulin concentration mU/L

Glucose intake mg

Body mass kg

4
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Table 2: Overview of the E-DES-PROT model fluxes

Name Description Units

Glucose mass entering from stomach mg/min

Glucose mass leaving to plasma mg/min

Glucose production by the liver (EGP) mmol/L/min

Glucose entering from the gut mmol/L/min

Glucose uptake by insulin-independent tissue mmol/L/min

Glucose uptake by insulin-dependent tissue mmol/L/min

Renal glucose elimination mmol/L/min

Pancreas insulin secretion mU/L/min

Insulin flowing into interstitial fluid mU/L/min

Insulin uptake by the liver mU/L/min

Insulin usage by insulin-dependent tissue mU/L/min

Table 3: Overview of the E-DES-PROT model constants

Name Description Units Value

Basal plasma glucose mmol/L

Basal plasma insulin mU/L

Basal plasma amino acid µmol/L

Basal endogenous glucose production mmol/L/min 0.043

Renal threshold mmol/L 9

VG Glucose distribution volume in plasma L/kg 17/70

β Unit conversion factor from glucose to 
insulin

(mmol/L)/(mU/L) 1

f Unit conversion factor from mmol to mg 
glucose

mmol/mg 0.005551

τi Integral time constant min 31

τd Derivative time constant min 3

c1 Rate constant of glomerular filtration 1/min 0.1
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E-DES-PROT MODEL PARAMETER VALUES

Table 4: Parameter values for reference simulation: Average LF-UHT

Name Description Units Value

k1 Rate constant of glucose appearance in the gut 1/min 0.0155

k2 Rate constant of gut emptying 1/min 0.28

k3 Rate constant of ΔG suppression of EGP 
when 

1/min 6.07e-3

k4 Rate constant of -dependent suppression of EGP 1/min 2.35e-4

k5 Rate constant of insulin-dependent glucose uptake 1/min 0.087

k6 Rate constant of ΔG dependent insulin production 1/min 3.01

k7 Rate constant of ʃG dependent insulin production 1/min 1.15

k8 Rate constant of dG/dt dependent insulin production 1/min 10.99

k9 Rate constant of insulin outflow from plasma to 
interstitial fluid

1/min 3.83e-2

k10 Rate constant of interstitial fluid insulin utilization 1/min 0.28

k11 Rate constant of ΔAA increase of EGP 
when 

1/min 1.25e-7

k12 Rate constant of dAA/dt dependent insulin production 1/min 1.85e-3

k13 Rate constant of ΔAA dependent insulin production 1/min 3.40e-2

σ Shape factor of the gastric emptying pattern dimensionless 1.34

Km Michaelis-Menten constant for glucose uptake mg/dL 13.2

REFERENCES

[1] Rozendaal, Y.J. (2018). Model-based analysis of postprandial glycemic response
dynamics for different types of food.

SUPPLEMENTAL SECTION S4

The MATLAB implementation of the E-DES-PROT model code has been deposited 
in GitHub (https://github.com/BartvSloun/E-DES-PROT)
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ABSTRACT

Computational models of human glucose homeostasis can provide insight into 
the physiological processes underlying the observed inter-individual variability 
in glucose regulation. A range of modelling approaches, including ”bottom-
up” mechanistic and ”top-down” data-driven techniques have been applied 
to untangle the complex interactions underlying progressive disturbances in 
glucose homeostasis. While both approaches offer distinct benefits, a combined 
approach taking the best of both worlds has yet to be explored. Here, we 
propose a sequential combination of a mechanistic and a data-driven modelling 
approach to quantify individuals’ glucose and insulin responses to an oral 
glucose tolerance test, using cross sectional data from 2968 individuals from a 
large observational prospective population-based cohort, the Maastricht Study. 
The best predictive performance, measured by R2 and mean squared error of 
prediction, was achieved with personalized mechanistic models alone. The 
addition of a data-driven model did not improve predictive performance. The 
personalized mechanistic models consistently outperformed the data-driven and 
the combined model approaches, demonstrating the strength and suitability of 
bottom-up mechanistic models in describing the dynamic glucose and insulin 
response to oral glucose tolerance tests.
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INTRODUCTION

Maintaining glucose homeostasis within a narrow physiological range is 
essential for normal body function. When glucose levels are elevated (i.e. 
following meal intake), the hormone insulin is secreted from pancreatic β-cells 
to promote glucose uptake in peripheral organs and suppress hepatic glucose 
production [1]. In individuals with insulin resistance there is an impairment 
in the uptake of glucose by the insulin-dependent tissues (i.e. muscle, and fat), 
and in the suppression of hepatic glucose production. The increased demand 
on pancreatic β-cell to produce and secrete more insulin may eventually lead 
to β-cell dysfunction, which is the key factor in the development of type 2 
diabetes mellitus (T2DM), and is characterized by persistent hyperglycemia [2]. 
The pathophysiology of T2DM is known to be heterogeneous with differences 
in the severity of insulin resistance and progression of β-cell dysfunction [3]. 
Physiology-based mathematical models of the glucose-insulin regulatory system 
have long been used to provide qualitative and quantitative information on 
relevant physiological processes governing postprandial glucose and insulin 
dynamics [4–6]. The Eindhoven-Diabetes-Education simulator (eDES) is a 
comparatively simple model of human insulin-regulated glucose metabolism 
describing the most crucial reactions involved in postprandial glucose regulation 
through a system of coupled differential equations [6, 7]. The reactions described 
by this model are regulated by rate parameters, which can be estimated from 
postprandial glucose and insulin time-series data. In our previous work, we 
successfully applied a parsimonious eDES model estimating only 4 parameters 
governing gastric emptying, endogenous insulin secretion and insulin-dependent 
glucose disposal into tissues, to quantify the postprandial glucose and insulin 
responses following the intake of an oral glucose load in a large population of 
overweight or obese but otherwise healthy individuals [8]. Our results showed 
that most of the individuals’ responses were accurately estimated with the eDES 
model, nevertheless we have identified some cases where the mechanistic model 
struggled to capture the response. While, the intra-individual variability in the 
postprandial responses can be largely explained by the mechanisms of glucose 
regulation encoded in the eDES model, it is known that other factors such as 
diet, physical activity, sleep and stress may affect glucose regulation [9, 10]. 
However, such factors are not directly included in the eDES model and their 
implementations within the mechanistic model may be inconvenient requiring 
excessive experimentation.

5
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Besides physiology-based mathematical models, the application of data-driven 
prediction models have gained substantial interest in diabetes research, 
providing insight into factors contributing to, as well as predicting glucose 
responses to nutrient intake [11–14]. Such approaches aim to exploit the large 
amounts of heterogeneous data available, to find informative patterns in a 
data-driven way. Notably, Zeevi and colleagues [14] have shown that a machine-
learning model trained on a wide variety of phenotypic information was able 
to accurately predict the magnitude of postprandial glucose excursions. While 
mechanistic models of the glucose regulatory system describe the change in 
glucose (and insulin) levels according to known physiological phenomena, they 
are limited in their scope and accuracy by the understanding of the underlying 
physiology as well as the availability of invasive measurements in model 
building. In comparison, data-driven models allow a convenient framework to 
integrate diverse data that may have relevance in glucose regulation without the 
need for a causal understanding. Recently, the bottom up and top down modelling 
strategies outlined above have been successfully combined to improve simulation 
accuracy in the field of systems biology [15–17]. Here, we combine a mechanistic 
model with a data-driven model to identify factors predictive of inter-individual 
differences in glucose and insulin dynamics following an oral glucose tolerance 
test (OGTT) in a large group (n=2968) of individuals with various glucometabolic 
status (including normal glucose metabolism (NGM), prediabetes, as well as 
T2DM) participating in a population-based cohort study (The Maastricht Study) 
[18]. The aim of the present study was to investigate the predictive performance 
(explained variance, error of prediction) in simulating the postprandial glucose 
and insulin levels following an OGTT in individuals using the mechanistic eDES 
model, a data-driven model and a hybrid combination of the two. In addition, we 
compared the predictive performance between the various models and evaluated 
the factors underlying the inter-individual differences in the responses as derived 
from the models.

METHODS

Data availability
The data of this study derive from The Maastricht Study, but restrictions apply 
to the availability of these data, which were used under license for the current 
study. Data are, however, available from the authors upon reasonable request 
and with permission of The Maastricht Study management team.
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Data
Data from The Maastricht Study, an observational prospective population-based 
cohort study [18] was used in this work. Briefly, The Maastricht Study focuses on 
the etiology, pathophysiology, complications, and comorbidities of T2DM, and is 
characterized by an extensive phenotyping approach. Individuals aged between 
40 and 75 years and living in the southern part of the Netherlands were eligible 
for participation. Participants were recruited through mass media campaigns 
and from mailings through the municipal registries and the regional Diabetes 
Patient Registry. Known T2DM status was used in stratifying the recruitment 
process for efficiency. The present report includes data from the first 3451 
participants who completed the baseline survey between November 2010 and 
September 2013. All examinations were performed within a three-month time 
window; the OGTT and vascular measurements were performed during different 
research visits. The study has been approved by the institutional medical ethical 
committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the 
Netherlands (Permit 131088–105234-PG). All participants gave written informed 
consent.

Oral glucose tolerance test
Following an overnight fast, participants underwent a standardized two-hour 
75 g oral glucose tolerance test (OGTT) in order to determine glucose metabolism 
status [18]. Blood samples were taken under fasting conditions (t=0) and 15, 30, 45, 
60, 90 and 120 minutes after ingestion of the glucose drink and plasma glucose 
and insulin concentrations were determined. Individuals relying on external 
insulin did not undergo the OGTT. Furthermore, individuals with more than two 
missing samples or missing samples at baseline (t=0) or 2 hour post-load were 
excluded from the analysis.

Deep phenotyping features
A selection of health-related features from The Maastricht Study were used in 
order to provide a holistic picture of the individuals’ health state. These features 
pertain to health behavior (e.g. diet, physical activity, smoking), cardiovascular 
health, musculoskeletal health, metabolic and demographic characteristics, body 
composition and biomarkers. In total 49 features were selected by a set of co-
authors who are experts in the field of metabolism/diabetes. The continuous 
variables were transformed to zero mean and unit variance, while the categorical 
variables were dummy coded prior to modelling. Details about the measurements 
can be found in [18]. A complete list of the features used in this work is provided 
in the S1 Appendix of the Supplementary Material.

5
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Computational modelling of glucose regulation

Models
In the present study, a variety of modelling scenarios were explored, including 
mechanistic models, data-driven models, and a hybrid combination of both 
models.

Eindhoven Diabetes Education Simulator
The Eindhoven Diabetes Education Simulator (eDES, version 2.0) published 
by Maas and colleagues [6, 7] was employed in this study. The eDES model is a 
physiology-based mathematical model of the glucose regulatory system in healthy 
people and people with type 1 and type 2 diabetes. The eDES model consists of 
a gut and plasma compartment, in which the change in mass or concentration 
of either glucose or insulin over time is described using coupled differential 
equation (full details provided in [8]). The reactions included in the model are 
controlled by rate parameters, which have been estimated and validated using 
OGTTs from multiple healthy populations [7]. The eDES model was implemented 
and analysed in MATLAB 2018b (The Mathworks, Inc., Natick, Massachusetts, 
United states). Model parameters were estimated through minimizing the sum 
of squared residuals (SSR) in the model prediction for glucose and insulin using 
a non-linear least squares solver in MATLAB (lsqnonlin).

In order to provide personalized simulation of glucose and insulin concentrations 
using the eDES model, we implemented the model selection approach that we 
have developed previously [8]. Briefly, the workflow reduces the number of 
model parameters estimated to provide an accurate and reliable description 
of individual postprandial glucose and insulin responses. To obtain the most 
sensitive, parsimonious and identifiable model parameter set, the following steps 
were undertaken (full details available in [8]). First, a local parameter sensitivity 
analysis (LPSA) was performed to identify the most sensitive parameters for 
estimation. Second, a set of all the possible combinations of 3 or more sensitive 
parameters were generated. These were then fit on representative responses 
to oral glucose intake of individuals with different glucometabolic status (i.e. 
normal glucose metabolism (NGM), impaired fasting glucose (IFG), impaired 
glucose tolerant (IGT), both IFG and IGT (IFG&IGT), and T2DM); based on the 
American Diabetes Association (ADA) diagnosis criteria values [19], the most 
extreme responses of the Maastricht Study dataset, and on the largest and 
smallest response in the dataset by area under the glucose curve (Min, Max). The 
initial values for glucose and insulin in the eDES model were set to be equal to the 
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t=0 measurement of the response, and the setpoint parameters  (basal plasma 
glucose) and  (basal plasma insulin) were also set to these initial values (t=0). 
The candidate model with the lowest Akaike Information Criterion (AIC) score 
across the set of representative curves was selected as most parsimonious model, 
which was further evaluated for identifiability using Profile Likelihood Analysis 
(PLA) [20]. The estimated model parameters resulting from the model selection 
pertain to gut emptying (k1), insulin sensitivity (k5) or insulin secretion (k6 & 
k8) described in Table S1 and in more detail in [8].

The parameter space of the personalized eDES model is visualized by reducing 
the number of dimensions from the number of estimated parameters to two 
dimensions using principal component analysis (PCA). Prior to PCA, the 
parameter values were log-transformed and normalized to zero mean and unit 
standard deviation.

Gradient boosting regression and training scheme
The targets of the data-driven prediction model were the postprandial glucose 
and insulin concentrations following the OGTT or the corresponding glucose and 
insulin simulation using the mechanistic model depending on the modelling 
scenario. In order to allow non-linear relationships between the targets and the 
predictors (i.e. features), we built XGBoost models based on gradient boosting 
regression (GBR) [21, 22]. GBR works by combining the prediction of many 
different decision trees that were inferred sequentially by training the tree on 
the residual of the previous trees. A wide range of phenotypic, demographic and 
lifestyle characteristics of the individuals (full details in supplementary material) 
were selected and used as predictors in the gradient boosting regression models.

The GBR models were trained in a nested cross-validation framework in order to 
provide an unbiased estimation of model performance as described by Cawley and 
Talbot [23]. Standardization of the numeric features was carried out within each 
fold to avoid introducing positive bias to the estimates. Hyperparameter tuning 
was carried out with the options described in Table S3 of the supplementary 
material. The objective function to be minimized in training was the mean 
squared error. The reported performance estimates are the mean squared error 
of prediction (MSE) and the coefficient of determination (R2). The accuracy (R2) 
and prediction error (MSE) in the model predictions of the outlined scenarios 
are than evaluated at the time points of the OGTT and compared for the different 
approaches. The performance estimates were calculated in the outer 5-fold 
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cross validation (CV), with the inner loop (also 5-fold CV) carrying out a limited 
hyperparameter search independently of the model training procedure. Relative 
feature importances are reported as the variance (MSE) reduction weighted by 
the proportion of samples reaching the node across all trees [24].

Hybrid approach
In addition to using the eDES and GBR models separately, we also employed a 
hybrid approach combining these two models. This hybrid model consists of 
sequentially joining the prediction of the eDES model and a GBR model. First, 
the eDES model is used to capture measured postprandial glucose and insulin 
time series data, from which we determine and store the residuals (i.e. difference 
between predicted and measured data-points). Gradient boosting regression 
models are than built to predict these residuals independently per time-point 
of the postprandial glucose and insulin measurements thereby linking the two 
models together.

Modelling scenarios
A variety of modelling scenarios are evaluated and compared in terms of 
coefficient of determination (R2) and mean squared error of prediction (MSE). The 
modelling scenarios are selected in order to allow the comparison of mechanistic 
with data-driven as well as their sequential combinations. The underlying 
models used in this work are the Eindhoven Diabetes Education Simulator 
(eDES) and Gradient Boosting Regression (GBR). All models work by predicting 
the postprandial glucose and insulin concentrations of the OGTT. The modelling 
scenarios are detailed below.

• Reference healthy eDES
• Reference GBR
• Hybrid I. (reference eDES + GBR)
• Personalized eDES model
• Hybrid II. (personalized eDES + GBR)

For the Reference healthy eDES scenario, the median glucose and insulin 
responses to the OGTT in the Maastricht Study are calculated by taking the 
median of the measurements per time-point of the OGTT across NGM individuals. 
The eDES model parameters identified in the model selection are then estimated 
on the median glucose and insulin responses. The Reference GBR scenario 
consists of GBR models estimated for each time-point of the OGTT response to 
predict the corresponding glucose and insulin concentrations, using the approach 
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described in Section Gradient boosting regression & training scheme. In the 
Hybrid I scenario, a combined approach is used in which the residuals in the 
individuals’ OGTT response resulting from the reference healthy eDES are used 
as targets for the GBR models, thereby sequentially joining the two approaches. 
In the Personalized eDES model scenario, the eDES is personalized using the 
approach described in Section Eindhoven-Diabetes Education Simulator for 
individuals in the Maastricht Study. For the Hybrid II scenario, the residuals in 
the individual OGTT responses resulting from the personalized eDES models are 
used as targets for the GBR models.

RESULTS

A total of 2968 participants were included in the analysis after excluding 
individuals with missing data on 2 or more time points of the 7-points OGTT 
measurements, missing measurement at baseline (t=0) or 2 hours post-load 
(n=483). Out of the 2968 included individuals 1436 (48%) were normoglycaemic, 
906 (31%) demonstrated impaired glucose metabolism (IFG and/or IGT) and 625 
(21%) had type 2 diabetes. The characteristics of the study population are depicted 
in Table 1.

Prediction task properties
To demonstrate the prediction task, an example of an individual’s OGTT response 
with corresponding simulation using the different modelling scenarios is 
provided in Fig 1. The various modelling scenarios aimed to capture the measured 
data, denoted with black crosses. The discrepancy between the simulated glucose 
and insulin responses (in blue and orange, respectively) and the measured data-
points, termed residuals, were summarized across individuals by calculating 
the error of prediction (MSE) and the explained variance (R2), and were used 
as comparison between the different modelling approaches in the following 
paragraph. As observed from this example, the personalized eDES and Hybrid 
II approaches produced perfect predictions of the first (t=0) glucose and insulin 
time-points. However, this resulted from the first measurement being supplied to 
the eDES model as initial values. Therefore, in these scenarios the performance 
measures (MSE, R2) were not reported.

5
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Table 1. Descriptive characteristics of the study population

Total NGM IFG IGT IFG&IGT T2DM

Characteristic n=2968 n=1436 n=529 n=134 n=243 n=625

Sex (%male) 51 39 65 37 55 68

Age (years) 59.8 (8.2) 57.6 (8.3) 59.7 (7.6) 60.9 (8.1) 63.3 (7.1) 63.1 (7.4)

BMI (kg/m2) 26.8 (4.3) 25.2 (3.5) 27.1 (3.9) 27.1 (4.1) 28.7 (4.5) 29.4 (4.7)

HbA1c (mmol/mol) 39.3 (6.9) 35.7 (3.7) 38.1 (4.1) 37.0 (4.0) 40.3 (4.7) 48.7 (7.0)

Matsuda index 4.0 (2.7) 5.2 (2.8) 3.4 (2.0) 3.4 (1.9) 2.5 (2.0) 2.3 (1.7)

NGM: normal glucose metabolism, IFG: impaired fasting glucose, IGT: impaired glucose 
tolerance, T2DM: type 2 diabetes mellitus
Matsuda index is calculated as 10000/(Gt0 ∗ It0 ∗ G ∗ I )1/2, where Gt0, G and It0, I are the t=0
and average glucose and insulin measurements of the 7-point OGTT in mg/dl and µU/L, 
respectively. Calculated when t=0 and t=120 measurements were available. Values are 
means (standard deviations)

Modelling Scenarios: Explained variance and error of prediction
An overall comparison of how well the different modelling scenarios (Reference 
healthy eDES model, Reference GBR, Hybrid I, Personalized eDES model, and 
Hybrid II) perform in predicting the postprandial glucose and insulin levels 
is shown in Fig 2 and in Table S2 of the supplementary material. The R2 (Fig 2, 
panel A) and MSE (Fig 2, panel B) are provided for all the glucose and insulin 
time-points following the OGTT. The first glucose and insulin time-point for the 
personalized eDES model and Hybrid II approach are not provided as these are 
used as initial values for glucose and insulin simulation via the eDES model.

For the Reference healthy eDES scenario, the eDES model parameters k1, k5, k6, k8 
were estimated on the NGM median OGTT response. The MSE ranged between 1.79 
and 29.35 for glucose, 73.95 and 7205.55 for insulin, across all time-points (MSE 
and R2 values are provided in the supplementary table). The MSE appeared to 
increase with respect to time, up until the 6th time-point. The R2 ranges between 
-0.62 and -0.30 for glucose, -0.03 and -0.25 for insulin, across all time-points. The
negative explained variance indicates that the model is likely mis-specified for
the majority of the OGTT responses. For the Reference GBR scenario, the GBR
models were estimated for each time-point of the OGTT responses to predict the
corresponding glucose and insulin concentrations using the features outlined in
the methods section. The MSE ranges between 0.37 and 4.88 for glucose, 32.59 and
3857.80 for insulin, across all time-points. The MSE appears to increase with time,
up until the 6th time-point. The R2 ranges between 0.58 and 0.77 for glucose, 0.21
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and 0.46 for insulin, across all time-points. For the Hybrid I scenario, a hybrid 
approach was used in which the residuals in the individuals’ OGTT responses as 
predicted by the reference healthy eDES are used as targets for the GBR models. 
The MSE ranges between 0.38 and 4.87 for glucose, 32.73 and 3877.16 for insulin, 
across all time-points.

Figure 1. Simulated glucose (blue line) and insulin (orange line) responses of a study 
participant following an OGTT using the modelling scenarios. The crosses denote the 
measured glucose and insulin concentrations.

The MSE appears to increase with time, up until the 6th time-points. The R2 ranges 
between 0.58 and 0.77 and 0.21 and 0.45 for glucose and insulin respectively, 
across all time-points. For the Personalized eDES model scenario, the eDES model 
is personalized through estimating eDES model parameters 1,5,6,8 for individual 
OGTT responses in the Maastricht Study. The MSE ranges between 0.49 and 0.77 
for glucose, 161.03 and 1177.05 for insulin, across all time-points. The MSE appears 
to increase with time, up until the last (7th) time-point. The R2 ranges between 
0.75 and 0.97 for glucose, 0.78 and 0.91 for insulin, across all time-points. For the 
Hybrid II scenario, the residuals in the individual OGTT responses obtained by 
the personalized eDES models are used as targets for the GBR models. The MSE 
ranges between 0.47 and 0.77 for glucose, 148.30 and 1220.46 for insulin, across 
all time-points. The MSE appears to increase with time, up until the 7th time-
points. The R2 ranges between 0.77 and 0.97 for glucose, 0.79 and 0.91 for insulin, 
across all time-points.

When comparing the different modelling scenarios, the reference eDES model 
appeared to perform the worst across all glucose and insulin time-points, 
showing the largest MSE and the lowest R2. The data-driven XGBoost performed 
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better than the reference eDES model (81% and 42% decrease in MSE and 248% 
and 325% increase in R2 for glucose and insulin across all time-points). Combining 
the reference eDES model with XGBoost (Hybrid I) resulted in an almost identical 
performance (81% and 42% decrease in MSE and 248% and 323% increase in R2 
for glucose and insulin across all time-points). The personalized eDES model 
performed much better than the reference eDES model or the XGBoost model 
(96% and 85% decrease in MSE and 296% and 690% increase in R2 for glucose 
and insulin across all time-points when compared to the reference eDES model). 
Combining the personalized eDES model with XGBoost (Hybrid II) resulted in an 
almost identical performance (96% and 85% decrease in MSE and 298% and 693% 
increase R2 for glucose and insulin across all time-points).

Figure 2. Explained variance (R2 ; panel A) and mean squared error (MSE; panel B) per 
glucose and insulin time-points following OGTT for the modelling scenarios

Modelling Scenarios: Derivable information
Both the mechanistic models and the data-driven models allow insight into 
factors underlying the OGTT responses. In the case of the mechanistic eDES 
model the tuned model parameters represent physiological properties such as gut 
emptying or insulin secretion. Whereas the data-driven XGBoost models are able 
to derive the features that were used to predict the responses. Since the reference 
eDES model represents the population median response, the model parameters 
provide no distinction between individuals. The personalized eDES models allow 
a comparison between individuals based on the estimated parameter values. In 
Fig 3, the individuals in the parameter space of the personalized eDES models 
are shown after dimensionality reduction via PCA. The estimated parameter set 
of individuals can be used to quantify inter-individual variability. In addition, 
the parameters represent physiological processes such as gut emptying or insulin 
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secretion, therefore where the individuals lie in the parameter space can be 
directly associated with these physiological properties. However, a detailed 
exploration of the eDES parameters values is outside of the scope of this work, as 
the aim here was to explore novel features using an hybrid modelling approach. 
We previously explored these parameters in [8].

In the case of the XGBoost model, we can calculate the relative feature 
importances to derive the contribution of each feature to the model prediction. 
Fig 4 shows the relative feature importances of the 20 most important features 
(ordered by relative feature importance in the t=0 model) in the XGBoost model 
predicting the postprandial glucose levels at all time-points. The relative feature 
importances per insulin time-point are shown in Fig S3.

Figure 3. Individual parameter sets (n=2968) in the parameter space of the model. The 
parameter space spanning the direction of the estimated model parameters k1, k5, k6 
and k8 is shown after dimensionality reduction via principal component analysis. Dots 
represent the estimated parameter sets of individuals from the Maastricht Study and 
arrows represent the loadings.
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Figure 4. Relative feature importances of the 20 most important features for the seven time 
points of the OGTT (decreasing order by relative feature importance at t=0) in the XGBoost 
models predicting the postprandial glucose levels. The relative feature importances (x-
axes) are calculated as the variance (MSE) reduction weighted by the proportion of samples 
reaching the node across all trees. Error bars represent the standard deviation across 
cross-validation folds.

Across all time-points the most important features to the model predictions 
of glucose levels were whether the individual was taking glucose lowering 
medication (MED_glu), followed by HbA1c, presence of metabolic syndrome 
(MetSyn), and diabetes duration (DM_dur). In case of predicting the insulin 
levels, the most informative features were the presence of metabolic syndrome 
for all the time-points, BMI and the MISI score for time-points 2-6 and whether 
the individual was taking glucose lowering medication for time-points 2-4. 
Additional features seem to add to the model prediction in certain time-points, 
such as total cholesterol-to-HDL cholesterol ratio (Chol_r) at the 2nd time-point 
or the inflammation marker IL-8 at the 4th time-point.

The features importances in the data-driven part of the Hybrid I scenario largely 
agree with those in case of the pure XGBoost model. In the Hybrid II scenario, 
the personalized eDES models showed good prediction performance, however 
the data-driven models had low predictive performance (Table S2). Therefore, in 
contrast to the Hybrid I scenario, the interpretation of the feature importances 
in the Hybrid II scenario is hindered by a low explained variances observed in 
the data-driven models (Fig S6 and S7).
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DISCUSSION

In the present study, we investigated various modelling scenarios to predict 
glucose and insulin concentrations following an OGTT comparing mechanistic 
modelling with data-driven models as well as the combination of the two 
approaches in order to evaluate predictive performance (measured as coefficient 
of determination, R2 and mean squared error of prediction, MSE) and to identify 
factors underlying inter-individual differences in the responses. In addition, 
we assessed whether the variance explained by a mechanistic model could be 
improved by explicitly accounting for additional factors such as body composition, 
lifestyle related factors, and cardiometabolic health-related parameters, using 
a data-driven model. We showed that a mechanistic model, tuned on a large 
number of individual’s data from The Maastricht Study was suited to accurately 
capture individual OGTT responses, whereas the combination with the data-
driven model did not improve the prediction further.

The mechanistic glucose model used in this study employs time series data to 
estimate rate parameters related to glucose metabolism. The reference eDES 
model, in which selected parameters were estimated on the median OGTT 
responses, performed the worst of all the modelling scenarios for both R2 and 
MSE. In this approach, the estimated parameters represented a median OGTT 
response. Therefore, the large MSE and low R2 were not surprising, given the 
heterogeneity in individual OGTT responses. Nevertheless, the reference eDES 
model highlights the flaw in one-size fits all approaches, as well as providing 
us with a reference model that is not personalized. Using the individualization 
approach briefly described in the methods, we were able to accurately capture 
glucose and insulin concentrations using only 4 estimated model parameters. 
As expected, the model performance in terms of MSE and R2 was much better 
than the reference eDES model. In addition to being able to capture dynamic 
glucose and insulin responses, the mechanistic nature of this model provides 
quantitative information on the encoded processes linked to glucose metabolism. 
The individualization approach employed on the current data set resulted in the 
same sensitive, parsimonious, and identifiable parameter set as employed in our 
previous work, describing the rate constant of glucose appearance in the gut (k1), 
the rate constant of insulin-dependent glucose uptake (k5), the proportional rate 
constant of insulin secretion due to the difference in the actual plasma glucose 
level compared to baseline (k6), and the insulin secretion dependent on the rate 
of change in plasma glucose (k8).

5
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As opposed to mechanistic models of glucose homeostasis, data-driven models 
make no assumption about the underlying physiological properties of glucose 
homeostasis. Instead, the large amounts of heterogenous data are explored to find 
patterns associated with glucose and insulin levels in a hypothesis generating 
way. Glucose predictor models have been gaining ground in diabetes prevention 
and management with increasing success [14, 25]. Here, we trained gradient 
boosting regression models to predict glucose and insulin concentrations after 
an OGTT using the deep phenotyping features from the Maastricht Study. A 
nested cross-validation training scheme was used in order to provide unbiased 
performance estimates. The XGBoost models were able to explain a large part of 
the variance (Table S2), however their predictive performance was considerably 
lower than the performance of the personalized eDES models. The explained 
variances for insulin concentrations were much lower, indicating that the 
features used in the models are more predictive of glucose, rather than insulin 
concentrations. In addition, the prediction error of the XGBoost model was much 
higher than the personalized eDES models. An advantage of the data-driven 
modelling used in this work is that a large number of features representing a 
wide range of characteristics can be used as predictors in the models, however 
in contrast to the mechanistic model, no time-dependency structures are taken 
into account. This independent time-point-wise modelling of the glucose and 
insulin concentrations disregard the correlation between glucose and insulin 
measurements at consecutive time-points of the OGTT in the same individual 
likely leading to less accurate predictions. Furthermore, as opposed to the eDES 
model, the XGBoost models did not account for the correlation between glucose 
and insulin measurements made in the same individual either. The feature 
importances of the XGBoost models indicate that the most predictive features of 
glucose concentrations (Fig 4) were well known measures of glucose homeostasis 
such as HbA1c or a prescription of diabetes medication leading to no novel 
insights. While the feature importances in the case of insulin predictions (Fig 
S3) may show some interesting features to contribute to the predictions, however, 
the low coefficient of determination and high prediction error undermine their 
relevance.

In an attempt to evaluate whether the glucose and insulin predictions of the eDES 
model can be further improved by accounting for characteristics of individuals 
that are not explicitly modeled in the eDES model we combined the prediction 
of the eDES models with those of XGBoost models. The results of this proof-of-
concept study showed that these hybrid models (models Hybrid I and Hybrid 
II) present little benefit in combining the two models indicated by the lack of
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improvement in either R2 or MSE. In the case of Hybrid I the data-driven part 
of the model is almost equivalent to the standalone XGBoost models (Table S2, 
Fig S4 and S5) implying there is no benefit to combining the predictions with 
the reference eDES model. While, in the case of Hybrid II the personalized eDES 
models performed very well and there seems to be no additional insight gained 
by adding the data-driven models to the prediction task (Table S2, Fig S6 and S7). 
The lack of improvement in prediction performance may originate from the lack 
of time-dependency structure in the data-driven models, the choice of feature set 
but also from the features used in the data-driven model falling into the same 
causal pathway as the parameters of the eDES model. While the eDES model does 
not explicitly account for many of the features used in the data-driven modelling, 
it does account for high-level physiological processes that may encompass the 
information in those features, therefore leading to an issue of representations 
of the same causal pathways. For example, the estimated parameters of the 
eDES model in this work attribute the variance in the OGTT responses between 
individuals to differences in gut emptying (k1), insulin sensitivity (k5) or insulin 
secretion (k6 & k8). It is biologically plausible that the effect of certain features 
(e.g. physical activity) on the glucose and insulin predictions are already realized 
through one or a combination of parameter estimates of the eDES model (e.g. 
the value for k5; insulin sensitivity). Therefore, combining a mechanistic and 
a data-driven model in a sequential manner may not be appropriate, instead a 
parallel approach should be explored. In addition, the mechanistic model, that 
was employed in this study, was able to accurately describe the responses to 
standardized OGTTs. However, for complex meals containing varying amounts 
of macronutrients as well as meals in free-living conditions, the resulting glucose 
and insulin excursions may not be accurately captured. In such conditions, an 
approach combining a mechanistic model with a data-driven model may yield 
more informative results. A strength of this proof-of-concept study was the large 
and heterogeneous study population from The Maastricht Study. Individuals 
(n=2968) with varying glycemic regulation including normoglycemia, prediabetes 
(impaired fasting glucose, impaired glucose tolerant or both conditions) as well 
as type 2 diabetes were present in the study population. Furthermore, the 7 
time-point OGTT facilitates the observation of nuanced dynamics in the glucose 
and insulin profiles compared to the more prevalent 5 time-point measurements. 
In addition, the comprehensive profiling of the study participants included 
health behavior, cardiovascular health, musculoskeletal health, metabolic and 
demographic characteristics as well as body fat composition and biomarkers. The 
comprehensive phenotypic information of such a large number of individuals 

5
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allowed the use of data-driven models to find patterns that may provide additional 
insight about the glucose regulation on top of the OGTT response.

CONCLUSIONS

In the present study, we compared the predictive performance of mechanistic 
models with well-defined temporal dependencies (eDES), data-driven models 
with no temporal dependencies (XGBoost) and the sequential combination of the 
two (Hybrid I and Hybrid II). Our results suggest, that a 4 parameter model with 
appropriate temporal structure can vastly outperform a naive model built on a 
cross sectional phenotypic profile of an individual in predicting postprandial 
glucose and insulin concentrations. In addition, a sequential combination of a 
mechanistic and a data-driven approach may not be suitable when studying the 
underlying factors of inter-individual variance. Nevertheless, we show that the 
eDES model is especially convenient when temporal dynamics in the glucose and 
insulin responses are to be quantified. Furthermore, the findings presented in 
this work corroborate our previous results indicating that the personalized eDES 
models are suitable to capture nuanced dynamics in the responses.
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SUPPLEMENTARY MATERIAL

Table S1: Explanation of estimated eDES model parameters

Name Description Units

k1 Rate constant of glucose appearance in the gut 1/min

k5 Rate constant of insulin-dependent glucose uptake 1/min

k6 Rate constant of ΔG dependant insulin production 1/min

k8 Rate constant of dependant insulin production 1/min

where G is plasma glucose concentration. For details see [1].

[1] Balázs Erdõs et al. “Personalized computational model quantifies heterogeneity
in postprandial responses to oral glucose challenge”. In: PLoS computational
biology 17.3 (2021), e1008852
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S1 APPENDIX: LIST OF PHENOTYPIC VARIABLES

Anthropometrics
Age: Age at visit (years), Sex_male: Sex, BMI: Body Mass Index, Body_fat: Total 
body fat percentage (%), Smoke_never/former: Smoking status (3 categories)

Demographics
Ethnicity: Ethnicity, Education_low/medium: Educational level categories

Health behaviour
MVPA_t: mean MVPA wake minutes per day total, STEP_t: mean step wake minutes 
per day total, Wmax: Estimated maximal power output adjusted for body weight 
(Wkg−1), MVPA: moderate to vigorous physical activity per week (hours/week), 
Alcohol: Alcohol total (g/day), Protein: Protein total (g/day), Energy: Energy (KJ), 
Carbohydrate: Carbohydrates total (g/day), Fat: Fat total (g/day), Fibre: Dietary 
fibre total (g/day), Dairy: dairy products with probiotics (g)

Medication
MED_glu: Glucose-lowering medication (oral only), Glucose-lowering medication 
or insulin, MED_HT: Blood pressure lowering medication (all types),MED_LP: 
Lipid-modifying medication

Cardiovascular health
CVD: history of cardiovascular disease, ODBP: Diastolic Blood Pressure, OSBP: 
Systolic Blood Pressure

Metabolic health
Matsuda index, HIRI index ((mmol/L)(pmol/L)(hour)2), c-peptidogenic index 
t30, Fasting plasma Glucose (mmol/L), glucose tolerance status (WHO), HOMA2, 
MetSyn: metabolic syndrome, MVD: Microvacular disease, DM_dur: Duration of 
type 2 diabetes in years, MISI: MISI index (umol/L/min/pmol/L),

Biomarkers
HDL: Serum HDL cholesterol (mmol/l), Chol_r: Total cholesterol-to-HDL 
cholesterol ratio, HbA1c: HbA1c (mmol/mol), Alb_creat_r: Albumin-creatinine 
ratio (g/molcreatinine), bOHBut: 3-hydroxybutyrate (mmol/l), CK: Creatine kinase 
in serum (U/L), GFR_CKDEPI: Glomerular filtration rate (ml/min/1.73m2), CKDEPI 
using serum creatinine, FA: Total fatty acids (mmol/l), TG: Serum triglycerides 
(mmol/l)
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Inflammation markers
CRP: C-reactive protein (g/ml), IL6: Human interleukin-6 (pg/ml), IL8: Human 
interleukin-8 (pg/ml), SICAM1: Soluble intercellular adhesion molecule-1 (ng/ml), 
TNF: Human tumor necrosis factor alpha (pg/ml), SAA: Serum amyloid A (g/ml)

Self reported quality of life
SF36_GH: SF36 general health, SF36_MCS: SF36 Mental component summary 
score, SF36_MH: SF36 mental health, SF36_PCS: SF36 Physical component 
summary score

5
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Table S3: Hyperparameter search details

parameter range number of equidistant samples

n_estimators 150-200 10

max_depth 2-15 7

learning_rate 0.01-0.05 11

subsample 0.7-0.9 21

colsample_bytree 0.48-0.98 11

min_child_weight 1-9 8

5
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Figure S1. Measured versus predicted glucose and insulin concentrations at the time points 
of the OGTT in the case of the modelling scenarios
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Figure S2. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models in the Ref. GBR scenario predicting the 
postprandial glucose levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.

5
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Figure S3. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models in the Ref. GBR scenario predicting the 
postprandial insulin levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.
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Figure S4. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models of the Hybrid I scenario predicting the 
postprandial glucose levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.
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Figure S5. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models of the Hybrid I scenario predicting the 
postprandial insulin levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.
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Figure S6. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models of the Hybrid II scenario predicting the 
postprandial glucose levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.

5
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Figure S7. Relative feature importances of the features (decreasing order by relative fea-
ture importance at t=0) in the XGBoost models of the Hybrid II scenario predicting the 
postprandial insulin levels. The relative feature importances (x-axes) are calculated as 
the variance (MSE) reduction weighted by the proportion of samples reaching the node 
across all trees. Error bars represent the standard deviation across CV folds.
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Chapter 7

Computational models are able to provide insight into biological processes that 
underlie health and disease [1]. Different modelling techniques exist, from the 
‘bottom up’ mechanistic models to the ‘top down’ data-driven approaches, each 
having their own advantages and disadvantages [2]. Mechanistic modelling 
allows simulation of complex biological systems, such as the glucose-insulin 
regulatory system, which includes various organs and tissues that work together 
to regulate blood glucose levels to ensure normal body function [3, 4]. The research 
described in this thesis aimed to further develop and apply various computational 
modelling techniques for analysis of the glucose-insulin regulatory system. This 
involved the use of ordinary differential equation (ODE) based mechanistic 
models and their combination with machine learning. We developed a pipeline 
for the personalization of a mechanistic model, highlighting the heterogeneity 
in individuals’ responses. Furthermore, we extended the mechanistic model to 
allow for the description of dietary amino acids (AAs) and protein, and their 
interactions with circulating insulin and glucose concentrations. This made 
it possible to accurately describe individual responses to complex meals and 
investigate physiological differences between individuals with distinct tissue-
specific insulin resistance phenotypes. In this chapter, we discuss the various 
components developed and applied over the course of this thesis.

MODEL BUILDING

Personalized models of the glucose regulatory system
The move towards personalized nutritional interventions requires 
characterization of the large heterogeneity in individuals’ glycemic regulation. 
To explore this heterogeneity, personalized mechanistic models are required that 
capture individual responses and provide insight into the variability in glucose 
homeostasis between individuals. In Chapter 3, we developed a workflow to 
transition from describing population averages towards individualized glucose 
and insulin response patterns, generalizable to other biological models and 
systems. The workflow involves systematically reducing the number of model 
parameters to estimate for each individual response to ensure reliable, accurate 
parameter estimates. The subset of model parameters to be estimated was 
selected based on the following criteria: the selected parameters had to (i) exhibit 
high sensitivity, (ii) demonstrate good model fit while maintaining parsimony, 
(iii) be identifiable.



215

General Discussion

We assessed the sensitivity of model parameters by increasing and decreasing 
its value while maintaining the others at a constant value, and inspecting the 
effect on the resulting model outcome (i.e. glucose and insulin concentrations). A 
threshold of 75% in both directions (i.e. increase/decrease in parameter values) 
compared to the average healthy population values was selected as the limit of 
sensitivity. Parameters that were not sensitive at this threshold were fixed to their 
respective values [5]. Second, parsimony and model fit were considered. A set of 
all possible combinations of three or more sensitive parameters was generated. 
With the set of parameter combinations as ‘free parameters’, models were 
selected and fitted on representative responses obtained from individuals that 
participated in the European DIOGenes study to promote the model to be able to fit 
a wide range of responses. To impose parsimony, we used the Akaike Information 
Criterion (AIC) to introduce a penalty term on the number of parameters in the 
model. The AIC estimates the amount of information lost by a given model, and 
deals with the trade-off between the goodness of fit and the simplicity of the 
model (parsimony). We used the AIC in our approach to identify the models with 
the lowest AIC value. This approach is desired as it discourages overfitting, as the 
increase in model parameters almost always improves the goodness of fit. Our 
results described in Chapter 3 showed that the top five and six parameter models 
performed only marginally better than the four parameter model. Based on the 
AIC, the four-parameter model containing parameters k1, k5, k6, k8 was selected 
as the most parsimonious model. These 4 parameters describe the transition of 
glucose from the stomach to the gut (k1), the insulin-dependent glucose uptake 
to the periphery (k5), and the processes representative of insulin secretion (k6 
and k8). Quantifying uncertainty in parameters is essential to understand the 
predictive power of the model. Mechanistic models are, in principle, prone to 
overfitting, and it is often not possible to reliably estimate multiple parameters 
[6]. Therefore, Profile Likelihood Analysis (PLA) was carried out to evaluate 
how well parameter values can be determined given the available data. The 
results from the PLA showed that the selected parameters were identifiable, 
indicating that a unique solution exists in the tested range. The personalized 
models were capable of simulating a wide variety of postprandial glucose and 
insulin responses following the intake of a glucose drink (standard Oral Glucose 
Tolerance Test (OGTT)) in study participants of the DIOGenes study. Each of the 
738 personalized models contained a unique parameter set pertaining to the 
physiological state of the participant’s glucose homeostasis.

The model parameters corresponding to insulin secretion (k6, k8) were found to 
be lower in individuals with more severe perturbations in glucose homeostasis 
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such as type 2 diabetes. Furthermore, the insulin secretion parameters showed 
a significant association with the insulinogeneic index, which is a frequently 
used measure of insulin secretion. The insulin-dependent glucose uptake 
parameter (k5) was also lower in individuals with more severe impairments in 
glucose homeostasis compared to individuals with normal glucose homeostasis, 
and showed a significant association with the Matsuda index (index of whole-
body insulin sensitivity). These findings demonstrate that the model structure 
captures relevant features of the insulin-mediated glucose homeostasis and that 
the personalized models can distinguish between diverse impairments in the 
insulin-regulated glucose control.

Model extension with amino acids
Whilst we showed that the original E-DES model was able to capture a wide 
variety of postprandial glucose and insulin responses to an OGTT using the 
individualization workflow described in the previous paragraph, it is unable to 
provide mechanistic insight in processes underlying complex meal challenges 
(also containing fat and protein). In Chapter 4, we developed a computational 
model of the human glucose-insulin system, incorporating the effects of amino 
acids (AAs) and protein on insulin secretion and hepatic glucose production. We 
used the postprandial time-series data of AAs, glucose, and insulin following 
ingestion of AAs and AAs in combination with glucose (AA+glucose) extracted 
from literature as described in Chapter 2, as well as additional data from the 
Postprandial Plasma Amino Acid Concentrations after Dairy Consumption 
(PARROT) study [7] containing postprandial time-series following ingestion of 
dried milk protein ingredients and dairy products. To prevent the development 
of an overly complex model, which might be challenging to parameterize and 
more prone to overfitting, processes accounting for the postprandial effects 
of individual and total AAs were modeled using simple linear and derivative 
terms. The original E-DES model, which does not account for AAs and protein, 
was unable to accurately capture the postprandial data when AAs or protein 
were present in the (meal) challenge. Our E-DES-PROT model was not only able 
to describe postprandial responses to the various challenges, but also showed 
the ability to reproduce a wide variety of individual postprandial glucose and 
insulin responses as well. In our work described in Chapter 4, we employed a 
forcing function to describe the rate of appearance of AAs in E-DES-PROT. This 
means that measured plasma AAs have to be provided to the model as an input. 
Future work should focus on adding a function that explicitly describes the rate 
of appearance, allowing simulation of postprandial profiles (e.g. specifying the 
amount of ingested protein) without the need for measured AAs to be provided 
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as model input. Here, a (simple) machine learning model might be employed and 
is worthwhile investigating.

Hybrid models
Besides the physiology-based mechanistic models, the application of data-driven 
prediction has gained substantial interest in diabetes research [8]. Mechanistic 
models of the glucose regulatory system describe the change in glucose and 
insulin levels according to known physiological phenomena, while data-driven 
models provide a framework to integrate diverse data that may have relevance in 
glucose regulation without the need for a causal understanding [9-11]. In Chapter 
3, we showed that the majority of the individual responses to an OGTT were 
accurately estimated with the E-DES model. However, we identified some cases in 
which the model was not able to adequately capture the postprandial responses. 
While the intra-individual variability in the responses can be largely explained 
by the mechanisms encoded in the E-DES model, it is known that other factors 
such as diet, physical activity, sleep, and stress may affect glucose regulation. 
Therefore, we developed a hybrid model, combining the mechanistic E-DES model 
with a data-driven machine-learning model to identify factors predictive of inter-
individual differences in glucose and insulin dynamics following an OGTT.

We selected and investigated different modelling scenarios in order to compare 
a mechanistic and data-driven model as well as their sequential combination. 
In Chapter 5, we therefore implemented the model selection approach that 
was developed in Chapter 3 to obtain the most sensitive, parsimonious, and 
identifiable model parameter set. This workflow again resulted in model 
parameters pertaining to gut emptying (k1), insulin sensitivity (k5), and insulin 
secretion (k6, k8). For machine learning, we used a gradient boosting regression 
model. In addition to using these models separately, we employed a hybrid 
approach of combining the two models. Here, the mechanistic E-DES model 
was used to capture the measured postprandial glucose and insulin time-series 
data, whereas the stored residuals (i.e. difference between the predicted and 
measured data) were used as targets for the gradient boosted regression model. 
As expected, the model performance of the personalized E-DES models was much 
better than the average reference E-DES model. The gradient boosted regression 
model was able to explain a large part of the variance, but its predictive power 
was considerably lower than the personalized E-DES models. To evaluate 
whether the performance of the E-DES model could further be improved by 
accounting for characteristics of individuals that are not explicitly modeled in 
the E-DES model, we combined the predictions of the E-DES model with those of 
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the gradient boosted regression model. The results, however, showed that this 
hybrid combination provided little benefit in terms of prediction accuracy over 
the personalized E-DES models.

The lack of improvement in prediction performance may stem from the choice 
of feature set, including features falling into the same causal pathway as the 
E-DES model parameters. The mechanistic E-DES model was able to accurately
describe the responses to standardized OGTTs. For complex meals containing
varying amounts of macronutrients as well as meals in free-living conditions,
the resulting glucose and insulin excursions may not be accurately captured.
Here, a hybrid combination of a mechanistic and data-driven model may yield
more informative results and may provide directions for improvement of the
mechanistic model.

MECHANISTIC INSIGHT

Mechanistic models consist of coupled ordinary differential equations (ODEs) 
that describe how the concentrations of various biological entities in the system 
change over time [12]. Such equations are typically constructed using a priori 
information of the underlying biological system to define how the key players 
interact, allowing investigation of the underlying processes. The behavior of 
the mechanistic models is governed by the equations themselves, defining how 
species interact, and the set of parameter values, which define the rate at which 
the reactions occur. Computer-based numerical solvers allow estimation of these 
parameters by fitting model simulations to measured time-series data, such 
as postprandial metabolomics data. This ensures that parameters, describing 
states of the underlying biological system, can be identified directly from data. 
Mechanistic models thus enable the analysis of the dynamics of the system and 
provide insight in the presence of perturbations [13].

The use of mechanistic models to analyze measured time-series data is not a novel 
concept. The glucose minimal model developed by Bergman et al. [14] in 1979 
was used to approximate insulin sensitivity and β-cell function using plasma 
glucose and insulin measurements following a frequently sampled intravenous 
glucose tolerance test. The Bergman model formed the basis of many other models 
including E-DES. The E-DES model has been used to describe the dynamics of 
glucose homeostasis in healthy, type 1 and type 2 diabetic populations [15]. While 
the E-DES model performs well in response to oral glucose challenges, interactions 
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with other nutrients that affect postprandial glucose metabolism, such as amino 
acids (AAs), are not considered. AAs have distinct effects on glucose regulation in 
various phenotypes, which we extensively described showed in Chapter 2 [16]. 
In Chapter 6, the time-series data extracted in Chapter 2, as well as additional 
data obtained from the PARROT study [7], allowed us to develop a model that 
was used to explore underlying physiological processes between distinct tissue-
specific phenotypes in response to a high-fat mixed meal. The results from this 
study [17] highlight the beneficial relationship between experimental data and 
computational modelling, with the model being a powerful tool for interpretation 
and quantification of meal challenge data. The model predicted a faster glucose 
appearance from the gut in individuals with liver insulin resistance, as well as 
increased insulin secretion and insulin-dependent glucose uptake compared 
to individuals with muscle insulin resistance. A better understanding of how 
individuals respond to diet at the mechanistic level may eventually lead to 
more personalized dietary advice and targeted nutritional intervention, which, 
I believe will be essential in advancing personalized nutrition.

CONCLUSION AND FUTURE PERSPECTIVES

Mechanistic models are regularly applied across disciplines to study dynamic 
behavior of biological systems and, unlike black box machine learning algorithms, 
allow for physiological interpretability of their parameters. Currently, the 
majority of mechanistic models have been applied on population average data. 
In the present work, we developed personalized mechanistic models and showed 
their ability to capture postprandial responses more accurately compared to 
population level mechanistic models. Also, these mechanistic models provided 
quantitative information on relevant features of individuals’ metabolic health 
such as gastric emptying, endogenous insulin secretion, and insulin-dependent 
glucose disposal.

This modelling framework, where we move from population to individual 
models, may prove beneficial in revealing (the mechanisms underlying) early 
deteriorations in the glucose regulatory system at the individual level using 
parameters that are relatively easy to determine. Furthermore, insight into the 
biological mechanisms underlying tissue-specific insulin resistance phenotypes 
is important, as the severity of insulin resistance at the tissue level may play a 
role in the differential response to lifestyle (i.e. dietary interventions [18]) and 
pharmacological interventions that aim to increase cardiometabolic health 
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and/or insulin sensitivity. Future studies should therefore investigate how 
individuals respond to different diets (or other interventions) at the mechanistic 
level. In this way, personalized models could allow for individualized assessment 
of intervention success but also prevent further deteriorations in the glucose 
regulatory system (e.g. by providing dietary advice), thus supporting the 
transition towards personalized nutrition.

Towards this goal, we extended a mechanistic model of the glucose-insulin 
system with the postprandial effects of AAs and protein, which were shown 
to impact postprandial glucose metabolism [16]. Future studies should focus 
on incorporating the effects of dietary fat in the model [19], which would then 
cover the three macronutrient classes (carbohydrates, fat, protein). This would 
allow in silico prediction of glycemic responses of individuals (represented by 
the individualized models) to modified or new food products. In addition, it 
would make it possible to simulate how changes in physiological processes (i.e. 
described by model parameters) modulate glycemic responses to particular foods. 
As such, personalized models might contribute to more personalized dietary 
advice and targeted nutritional interventions.

Another opportunity lies in the use of data-driven techniques. Future studies 
should also focus on integrating machine-learning with the mechanistic models, 
to include additional individual features that are not taken into account by the 
mechanistic models [20, 21]. Such hybrid combinations of mechanistic and data-
driven models might prove valuable in providing further insight into the biology 
underlying inter-individual differences in glucose homeostasis. This could allow 
for the most accurate prediction of metabolic responses at the individual level, 
thus creating a ‘digital twin’. In this respect, open science is also important, as 
(our) models are dependent on good quality data. Therefore, researchers should 
be stimulated to make their datasets and model codes publicly available to allow 
further advancements in science.
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IMPACT PARAGRAPH

Computational modelling is a powerful tool that has greatly improved our 
understanding of the human system. Computational models can be combined 
with (biological) datasets to perform in silico predictions across different spatial 
and temporal scales. The increasing amount of data allows the development of 
models that link different levels of biological organization to study complex 
system behavior and provide insight into the processes underlying health and 
disease. In this thesis, “Modelling of postprandial glucose and insulin dynamics: 
the role of amino acids”, we focused on personalizing computational models of 
the glucose-insulin regulatory system and investigating factors influencing this 
system, in particular the effects of amino acids (AAs).

Personalized complex meal models
The increasing prevalence of obesity and overweight, defined as abnormal or 
excessive fat accumulation, has a large impact on health and well-being [1]. Obesity 
results from an imbalance between energy intake and energy expenditure and 
is one of the major causes of insulin resistance. An increased insulin secretion 
by the pancreatic β-cells can often compensate for insulin resistance. However, 
over time, the increased demand on the β-cells to produce more insulin may lead 
to β-cell dysfunction and the development of type 2 diabetes mellitus (T2DM), 
which is characterized by high blood glucose levels [2]. Type 2 diabetes mellitus 
(T2DM) may eventually lead to disorders of the circulatory, nervous, and immune 
system, adversely affecting the life of patients as well as causing a large socio-
economic impact. Large efforts are being undertaken by governmental and 
public health bodies to educate the general public on the importance of a healthy 
lifestyle, including diet and physical activity [3, 4]. While nutritional and lifestyle 
interventions may improve glucose homeostasis, a large heterogeneity exists 
in an individual’s response to such interventions, which can be attributed to 
differences in genetic, environmental, and lifestyle factors [5]. In this thesis, we 
transitioned from a population average glucose homeostasis model (E-DES) to a 
personalized model, enabling insight into inter-individual differences in glucose 
metabolism. Together with an extension made to the model that allows for 
description of AAs and protein (E-DES-PROT), we can now describe and simulate 
the response of a person to a complex meal. This makes our work interesting 
for both consumers as well as for the food industry. The mechanistic nature of 
the model allows study and comparison of physiological processes contributing 
to postprandial glucose and insulin dynamics. A better understanding of how 
individuals respond to various foods at the mechanistic level may lead to 
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personalized dietary advice as well as targeted nutritional interventions. It also 
provides the opportunity to adjust and develop new food products with varying 
macronutrient composition targeted for specific phenotypes. This might further 
contribute to improved healthcare and reduction of the socio-economic impact of 
metabolic diseases such as T2DM. In addition, mechanistic models can easily be 
modified and adapted for various conditions, allowing researchers to simulate 
their own experiments or procedures, potentially reducing costs and the use of 
animal experiments.

Hybrid models
While the intra-individual variability in postprandial glucose and insulin 
responses can be largely explained by mechanisms of glucose regulation encoded 
in mechanistic models, it is known that other factors such as body composition, 
diet, physical activity, and cardio-metabolic health related parameters may also 
affect glucose regulation [6, 7]. Zeevi et al. [8] showed that large inter-individual 
differences exist in response to identical meals, and that a machine learning 
model trained on a wide variety of phenotypic information was able to accurately 
predict the magnitude of postprandial glucose excursions. Machine learning 
methods allow a convenient framework to integrate diverse data that may have 
relevance in glucose regulation without the need for a causal understanding. 
While machine learning based approaches are useful for prediction, they only 
provide limited insight into the biology underlying inter-individual differences 
in glucose homeostasis [9]. Thus, a hybrid approach in which machine learning 
is combined with mechanistic modelling may circumvent the disadvantages of 
these standalone methods. Such a hybrid approach may yield more insight into 
the biology underlying inter-individual differences in glucose homeostasis. In 
our work, we developed and applied, for the first time, a hybrid combination of 
a machine-learning model with the mechanistic E-DES model to identify factors 
predictive of inter-individual differences in glucose and insulin following a 
glucose drink in a large group of individuals with various glucometabolic status. 
Whilst, a naïve sequential combination may not be suitable when studying 
underlying factors of inter-individual variance, a parallel approach should be 
explored in glycemic responses following complex meals containing varying 
amount of macronutrients as well as meals in free-living conditions. In the 
future, hybrid models may play a crucial role in the advancement towards ‘digital 
twins’ by providing simulative decision-support.
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Open source data and software
Open science is the movement to make scientific research and its results accessible 
to allow verification of scientific claims by others, but also to allow data from 
many different sources to be integrated to obtain new insights. There is a growing 
realization that scientific research depends more and more on computer code for 
simulation, calculations, analysis, visualization, and general data processing. It 
is important to have access to this code as well as to usable datasets. This allows 
researchers, for example, to apply models to their own data and further build 
and improve upon them. In our work, we made the computational modelling code 
publically available and detailed the computational software with corresponding 
versions and libraries. Furthermore, the modelling individualization pipeline 
was made available and was constructed in a generalized manner, requiring no 
biological insight to implement. As such, these computational techniques can be 
readily applied to other systems or models for analysis. We extracted dynamic 
time-series data from papers spanning over multiple decades going back to the 
late 60’s. We made this data reusable and publically available to support data-
sharing and allowing other researchers to use and employ the data.
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SUMMARY

A complex regulatory system is in play to maintain and control blood glucose 
levels under different physiological conditions. Currently existing whole-body 
mechanistic models of the glucose regulatory system generate quantitative 
information on glucose-insulin dynamics whilst capturing the mechanistic link 
between glucose and insulin. However, these models do not include the effect of 
amino acids (AAs), which have been recognized as important dietary components 
influencing glucose regulation in various health phenotypes. Incorporating 
the postprandial effect of AAs and protein is essential given their impact on 
both acute and long-term postprandial glucose metabolism. In addition, these 
mechanistic models have mainly been used to describe population averages, 
thus disregarding the heterogeneity in individual responses. In this thesis, we 
used a computational modelling approach to allow personalized simulation 
of postprandial glucose, insulin, and AA responses following challenge tests 
containing AAs or protein in various health phenotypes using a whole-body 
mechanistic model of glucose homeostasis. Furthermore, we explored whether 
the addition of a data-driven model could improve the predictive performance 
of the mechanistic models.

In Chapter 2, we performed a systematic literature search to identify intervention 
studies reporting glucose and insulin concentrations following acute ingestion 
and/or intravenous infusion of AAs in healthy adults and those living with 
obesity and/or type 2 diabetes (T2DM). We identified and extracted glucose and 
insulin time-series data from 55 studies that examined the effects of leucine 
(n=6), isoleucine (n=1), alanine (n=6), glutamine (n=1), arginine (n=28), lysine 
(n=1), glycine (n=2), proline (n=1), phenylalanine (n=1), glutamate (n=3), branched-
chain AAs (n=4), and multiple individual AAs (n=1) on glucose and insulin 
concentrations. The data showed that oral ingestion of most individual AAs 
induced an insulin response but did not alter glucose concentrations in healthy 
participants. Specific AAs, such as leucine and isoleucine, when co-ingested with 
glucose exerted a synergistic effect on the postprandial insulin response, and 
attenuated the glucose response more compared to glucose intake alone in healthy 
participants. Furthermore, oral AA ingestion as well as intravenous AA infusion 
was able to stimulate an insulin response and decrease glucose concentrations 
in T2DM and obese individuals. The extracted glucose and insulin time-series 
data was made publicly available.



231

Summary

The postprandial glucose and insulin responses to identical meals can vary 
significantly across individuals. Certain dynamic features of these responses 
have been shown to be indicative of the state of the glucose regulatory 
system and therefore relevant for targeted lifestyle intervention. Currently, 
this heterogeneity is overlooked due to a lack of methods to quantify the 
interconnected dynamics in the glucose and insulin time-courses. In Chapter 3, 
we personalized a physiology-based mechanistic model of the glucose regulatory 
system to elucidate the heterogeneity in individuals’ postprandial responses to 
an oral glucose tolerance test (OGTT) using a large population of people who 
have overweight or obesity (n = 738) from the DIOGenes study. To transition 
from population averages towards describing individual response patterns, we 
developed a systematic parameter selection pipeline that may also be generalized 
to other biological systems. We showed that personalized models were able 
to capture the postprandial glucose and insulin responses more accurately 
compared to the population-level models. Furthermore, the estimated model 
parameters captured relevant features of individuals’ metabolic health such as 
gastric emptying, endogenous insulin secretion, and insulin-dependent glucose 
disposal into tissues. The latter two also showed a significant association with 
the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.

While physiology-based mechanistic models perform well in response to oral 
glucose challenges, interactions with other nutrients, like AAs and protein have 
not been considered yet. In Chapter 4, we developed a mechanistic model of the 
glucose homeostasis that incorporates and captures the postprandial effects of 
AAs and protein intake. New terms, accounting for the effect of AAs on insulin 
secretion and liver glucose production were introduced and the model was 
applied to postprandial glucose and insulin time-series data following different 
AA challenges (with and without co-ingestion of glucose), dried milk protein 
ingredients, and dairy products. We showed that this novel model was able 
to accurately describe the postprandial glucose and insulin dynamics, whilst 
providing insight into the physiological processes underlying meal responses.

While both “bottom-up” mechanistic and “top-down” data-driven techniques 
offer distinct benefits in untangling the complex interactions underlying 
disturbances in glucose homeostasis, a combined approach has yet to be 
explored. In Chapter 5, we used a sequential combination of a mechanistic and 
a data-driven modelling approach to quantify individuals’ glucose and insulin 
responses to an OGTT, using cross-sectional data from a large observational 
population-based cohort, the Maastricht Study. We showed that the addition of 
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a data-driven machine learning model did not improve predictive performance. 
The personalized mechanistic models consistently outperformed the data-driven 
and the combined model approaches, demonstrating the strength and suitability 
of “bottom-up” mechanistic models in describing the dynamic glucose and 
insulin responses to OGTTs.

Tissue-specific insulin resistance phenotypes (predominantly muscle or liver) 
have been shown to interact with diet to determine changes in metabolic outcome 
and have shown distinct glycemic responses to challenge tests. In Chapter 6, we 
applied our novel model (developed in Chapter 4), to simulate and understand 
mechanistic differences between muscle insulin resistance and liver insulin 
resistance, using postprandial glucose, insulin, and AA time-series data following 
a high-fat-mixed meal in individuals from the PERSON study. We showed that 
our model accurately simulated glucose and insulin response following ingestion 
of a high-fat mixed meal, and predicted a difference in physiological processes 
such as gastric emptying and insulin-dependent glucose uptake into tissues, and 
insulin secretion between tissue-specific insulin-resistant metabolic phenotypes. 
Insight into the biological mechanisms underlying tissue-specific insulin 
resistance phenotypes is important due to the differential response to lifestyle 
and pharmacological interventions aimed to increase cardiometabolic health 
and/or insulin sensitivity. Personalized models could therefore play a key role 
in the transition towards precision nutrition, not only by assessing the effects 
of an intervention, but also providing dietary advice aimed to prevent (further) 
deteriorations in the glucose regulatory system.
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