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Explainable Robotics
applied to bipedal walking gait development

Nico Roos and Zhenglong Sun

Data Science and Knowledge Engineering, Maastricht University, The Netherlands
roos@maastrichtuniversity.nl

Abstract. Explainability is becoming an important topic in artificial
intelligence (AI). A well explainable system can increase the trust in the
application of that system. The same holds for robotics where the walking
gait controller can be some AI system. We will show that a simple and
explainable controller that enables an energy efficient walking gait and
can handle uneven terrains, can be developed by a well structured design
method. The main part of the controller consist of three simple neural
networks with 4, 6 and 8 neurons. So, although creating a stable and
energy efficient walking gait is a complex problem, it can be generated
without some deep neural network or some complex mathematical model.

1 Introduction

Stability and energy efficiency are two important aspects of a robot’s waking
gait. Without sufficient stability, the robot will regularly fall, which limits the
applicability of the robot. Energy efficiency is important because the available
energy stored in the robot’s battery is limited and walking is a main source of
energy consumption. A more energy efficient gait will increase the time the robot
can operate without recharging.

How can we generate an energy efficient bipedal walking gait that is stable
on uneven terrains, is an important question in robotics. If we would ask this
question to todays students in artificial intelligence, then most most of them
would propose some approach based on deep reinforcement learning ; e.g.: [12,
13]. The use of deep neural networks is a hype and many seem to think that it is
the solution to all problems. Traditional approaches are based on an abstract or
detailed mathematical model of the robot [10, 9, 8, 1, 3, 2, 14] usually combined
with the zero moment point (ZMP) stability criterium [18].

There are important differences between the two approaches. If sufficient
training is possible, the deep neural networks based approach may reach a higher
energy efficiency and and robustness when walking on uneven terrains. Collecting
a large amount of training data using a real robot is however time consuming,
and therefore high quality simulators are needed. A major disadvantage is that
deep neural networks sometimes fail for unknown reasons.

1 Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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The approaches based on mathematical models are well understood and pro-
vide clear conditions under which a stable walking gait can be realized. The most
advanced mathematics-based approaches can realize a high degree of stability on
many different types of terrains. The latter approaches require a detailed math-
ematical models of the robot. When the robot carries some object, model needs
to be adapted. The mathematical models are also computational demanding.
Energy efficiency is not consider since the focus is on stability.

Is there middle road between the two extremes outline above? An approach
that guarantees a stable gait on different types of terrains, is energy efficient,
and can easily be explained? Below we will see that the answer is ‘yes’. We take
inspirations from a partially passive dynamic walkers [4, 5]. These types of robots
have body configuration that are designed to produce a stable gait with minimal
control while they are unstable according to well known stability criteria such
as the zero moment point. Their walking gait can be analyzed by a Poincaré
map [6]. The idea behind the use of a Poincaré map is to look at the state of a
robot at some fixed moment in successive steps. The heel strike is an often used
moment in a step where we determine the state of the robot. So, at the heel
strike of step i we determine the robot state si. The Poincaré map P (si) = si+1

is a non-linear mapping between successive states. There exists a stable walking
gait if the Poincaré map has a ‘fixed point’: P (s∗) = s∗ and is asymptotically
stable in region around the fixed point s∗. These types of stable walking gaits are
denoted as Limit Cycle Walking [7]. Unfortunately, these robots have drawbacks
such as a limited range of walking motions and inadequate robustness of control.
They generally excel however in the energy efficiency compared to robots with
full control over all degrees of freedom.

In the following sections we will see that it is possible to design a very simple
but flexible gait controller that produces an energy efficient bipedal walking gait
that is stable on uneven terrains for robots that have full control over all degrees
of freedom. Like the partially passive dynamic walkers with specially designed
body configurations, the gait is not stable according to well known stability
criteria such as the ZMP but the corresponding Poincaré map is asymptotically
stable. The approach consists of five steps.

1. Use a simple abstract model to identify how the length of the stance leg
must change during a step to realize a stable and energy efficient gait.

2. Use the identified behavior of the stance leg to create a controller with control
parameters implementing a gait on a bipedal robot1. Different parameters
are used for each of the two legs.

3. Optimize the parameters of controller for different walking speeds on a flat
ground using reinforcement learning by letting the robot walk in a simulator2

or in the real world.

1 We used the Nao robot produced by Softbank’s Aldebaran Robotics company in our
experiments.

2 We used the robot simulator Webots initially developed at the Laboratoire de Micro-
Informatique (LAMI) of the Swiss Federal Institute of Technology, Lausanne, and
currently developed by Cyberbotics.
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Fig. 1. The abstract Inverted Pendulum Model

4. View walking on an uneven terrain as walking on a slope. Consider slopes in
the sagittal and the lateral direction (walking up or down hill, and walking
perpendicular to direction slope). Finally optimize the parameters for the
two directions and for different slope angles.

5. An analysis of the parameter values shows that we need to control the move-
ment of the stance leg, and the force of the swing leg in the double support
phase as function of the height difference of the two feet. Three simple neural
networks (only one hidden layer) suffices to create a robust controller the
enables an energy efficient gait on uneven terrains.

2 Inverted Pendulum Model

Srinivasan and Ruina [15] showed that the most energy efficient walking gait
identified using an Inverted Pendulum Model with telescopic legs corresponds
with the human walking gait. We investigate whether a similar model as de-
scribed by Srinivasan and Ruina can be used for identifying an energy efficient
gait for humanoid robots such as a Nao robot, despite differences between hu-
mans and humanoid robots. First, unlike muscles, motors of a robot do not
behave like springs. Second, our experiments with a Nao robot show that the
energy consumption of a motor mainly depends on the torques of joints and
that the work that is done can be ignored. Srinivasan and Ruina only considered
the work done. Third, a human need not bend the knee of the stance leg while
walking because (s)he can toe-off using the foot and the calf muscle. In this way
the human can increase the length of the leg without torque on the knee joint.
A robot such as a Nao robot cannot toe-off, because it can not bend its foot.
This difference makes it possible to ignore the torque in the human model, but
not in models of certain robots such as a Nao robot.

Inverted pendulum model To reduce the total energy cost, we set the stiffness
on both ankle joints to zero. Thus, the stance leg of the robot can freely rotate
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around the ankle joints, and the area of support reduces to a point. Apart from
reducing the energy cost, zero ankle stiffness also allows the robot to adapt to
an uneven floor.

To analyze the energy consumption, we use an Inverted Pendulum Model
with telescopic legs [16, 17] (see Figure 1). This model, which is based on the
work of [15], ignores the physical structure of both legs, and use an imaginary
massless segment, the virtual leg, connecting the point mass to a ground contact
point instead. Furthermore, this model allows the length of the virtual support
leg to vary during a step. A leg-length policy δ : [−π2 ,

π
2 ] → [0, 1] determines

how much the virtual support leg will be shortened as a function of the angle
α between the (virtual) stance leg and the vertical axis. The shortening of the
stance leg is realized by bending the knee joint.

We use the leg-length policy of the stance leg to determine the radial force
F sr on the mass m located and the CoM in the direction of the virtual leg, and
tangential force F st on m perpendicular to F sr . Note that F st works perpendicular
to the telescopic leg while the path of the mass m need not be perpendicular to
the leg because the length of the leg may change. The superscript s in F st refers
to the single support phase. Using the force F st , we can determine the second
derivative of the position of xt w.r.t. the time t which is given by: F st = ma =

md2xt

dt . F st is determined by the component of the gravity working perpendicular

to the stance leg: mg sinα and the friction: bdxt

dt . The air friction and the ankle
joint friction (if an ankle is present) reduce the forward speed of a walking robot.
The air friction is quadratic in the speed but can assumed to be linear because of
the low walking speed. The ankle joint friction depends on the connected gearbox
and motor. This friction is also assumed to be linear in the speed. The constant

b captures both types of friction. Hence, we get: d2xt

dt2 + b
m
dxt

dt − g sinα = 0. We
can transform this equation into a differential equation of the angle α:

d2α

dt2
+

1

δ(α)

dδ(α)

dα

(
dα

dt

)2

+
b

m

dα

dt
− g

δ(α)l
sinα = 0 (1)

The above differential equation also enables us to determine the radial force
F sr that needs to be generated by the stance leg.

F sr = mg cosα+ml

(
d2δ(α)

dα2

(
dα

dt

)2

+
dδ(α)

dα

d2α

dt2

)
(2)

A stable gait (limited cycle walking) When the swing foot impacts with the
ground at the end of a step, the direction in which the mass m is moving may
change. We assume an inelastic collision of the swing foot with the ground. This
implies that the speed of the mass m in the radial direction of the swing leg
becomes equal to the radial speed vb,r of the stance leg at the beginning of a
step. To ensure a constant walking speed, the tangential speed of the swing leg
at the end of a step must be the same as the tangential speed vb,t of the stance
leg at the beginning of a step. To compute the tangential speed of the swing
leg at the end of a step, we first compute the tangential and radial speed of
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the mass m w.r.t. the stance leg: vt = lδ(α)dαdt and vr = dlδ(α)
dt = l dδ(α)dα

dα
dt ,

and next the corresponding speeds in the Cartesian coordinate system: vx =
vt cos(α) + vr sin(α) and vz = vt sin(α) + vr cos(α). The robot is walking at a
constant speed if the following equation holds:

vt,b = (vz,e sin(αb) + vx,e cos(αb))

The subscript b and e denote the beginning and the end of a step respectively.

Heel strike The law of momentum conservation applies to the impact of the
swing leg with the ground. Therefore, the sum of the moments before and after
the foot impacts with the ground must be 0. This does not imply that the impulse
generated by the reaction force of the leg when it impacts with the ground is 0.
The inelastic collision implies that the impulse must stop the movement in the
radial direction of the swing leg (the new stance leg). The impulse generated by
the reaction force of the new stance leg is determined by the change in speed of
m in the direction of the new stance leg: Ir = vr,bm−vr,em. Here Ir denotes the
impulse in the radial direction of the new stance leg, vr,b denotes the radial speed
of the new stance leg at the beginning of a step, and vr,e denotes the radial speed
of the swing leg at the end of a step. After the foot impacts with the ground,
the speed in the radial direction of the new stance leg is completely determined
by the leg-length policy because of the inelastic collision; i.e., no bounce occurs:

vr,b = dlδ(α)
dt (tb). So, the impulse produced by the leg becomes:

Ir = m

(
dlδ(α)

dt
(tb)−

(
vx,e sin(αb) + vz,e cos(αb)

))
The impulse also equals: Ir =

∫
Fi dt. In an ideal situation, the impact time

timp with the ground is infinitely small implying an infinitely large reaction force
produced by the leg on the mass m. We assume that the reaction force is constant
during the impact. So, Fi = Ir

timp

Energy consumption and optimal leg-length policy To identify the leg-length pol-
icy that minimizes the energy consumption of a robot, we make use of the fact
that the robot has to bend the knee in order to shorten the leg. The energy
consumption is observed to be proportional to the torque of these joints in ex-
periments with a Nao robot. So, a stretched leg requires a minimal amount
of energy while a largely bent leg requires a maximum amount of energy. The
experiments also showed that the contribution of the positive work can be ig-
nored. We will use these observations to determine the energy consumption in
the model. For each leg-length there is a corresponding bending of the knee
joint, and a corresponding torque. The torque on the knee joint is determined
by the radial force and arm of this force w.r.t. the knee joint. The arm is given by:
r = 1

2 l
√

1− δ(α)2. Ignoring the positive work, we define the energy consumption
as:

Eic = lim
timp→0

E ∝ 1

2
l
√

1− δ(αb)2Ir +

∫ ts

0

1

2
l
√

1− δ(α)2F sr dt
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Fig. 2. The optimal leg-length pol-
icy

Fig. 3. The kinematics of the optimal sagittal
motion

where ts is the duration of a step.
The above described model has been used to identify an energy efficient gait

by evaluating different leg-length policies. Figure 2 shows the leg-length policy
δ(α) as a function of the angle α from the beginning till the end of the step and
Figure 3 right shows the realization using the 5-link model. We can see that the
swing leg may touch the ground before it takes over the support of the robot.
Since the swing leg only takes over the support of the robot at the end of a
step, the knee joint of the swing leg is under-actuated during the double support
phase in this planar model.

The effect of the double support phase on the leg-length policy In the double
support phase (DSP) the robot has to shift its weight from the stance leg to
the swing leg. In order to be balanced in the lateral direction at the end of
the double support phase, the robot must put force on the swing leg to stop the
lateral movement in time. This force also influences the movement in the sagittal
plane.

The results of the new simulations that considered the force generated by the
swing leg during the DSP, showed that the shape of the leg-length policy does
not change, the stance (rear) leg stays fully stretched (δ(α) = 1) in the DSP.

Stability analysis The stability of a gait is the most important aspect. Since
the ankle joins are under-actuated, stability criteria, such as the ZMP criterion,
cannot be used to analyze the stability of the gait. In the identified energy
efficient gait, the robot falls forward till the swing leg takes over the support.
Therefore, to analyze the stability of the gait we will apply the Poincaré map.

The simulation described in this section determines a Poincaré map. The
state variable in the Poincaré map is the speed v of the CoM at the start of the
single support phase. The Poincaré map itself depends on the leg-length policy
δ : [−π2 ,

π
2 ] → [0, 1]. The optimal leg-length policy δ∗ determines a fixed point

v∗ of the Poincaré map: P (v∗; δ∗) = v∗. In other words, the speed of the CoM
at the start of the single support phase (the leftmost abstract representation in
Figure 3) is the same as the speed at the start of the single support phase of the
next step (the rightmost abstract representation in Figure 3).
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Fig. 5. A Quadratic Bezier Curve
specifying the stiffness as a func-
tion of the angle β

To assess the stability of the fixed point solution, we varied the initial speed
at the start of the single support phase while using the leg-length policy δ∗

that corresponds with the fixed point solution. For small variations ε in the
initial speed, the difference with the fixed point speed decreases after one step;
|P (v∗ + ε; δ∗)− v∗| < |ε|. Hence, the walking gait is asymptotically stable.

3 Kinematics Model in Lateral Direction

For a simple forward step, it is insufficient to only consider 2D dynamics in the
sagittal direction. We also need to consider the dynamics in the frontal plane
(the lateral direction). We use an inverted pendulum model shown in Figure 4.

We assume that during the single support phase, the robot is perfectly bal-
anced in the lateral direction. Therefore, at the beginning of the DSP, the CoM
is vertically above the center of the stance foot, and in the frontal plane there
is no torque to make the CoM rotate around the sole of the stance leg. So, the
angle β between the virtual telescopic stance leg and the vertical axis in the
frontal plane is equal to 0, as illustrated in Figure 4.

In order to balance the CoM in the lateral direction above the swing foot (the
next stance foot) at the end of the DSP, we need a torque τ rotating the CoM in
the frontal plane while the stance leg is fully stretched. So the angle β changes
from 0 to βe. To generate the torque τ , we manipulate the upper body to bend
slightly inwards at the angle θ8 for 100 ms. The bending θ8 disrupts the balance
enabling gravity to create a torque τ > 0. We manipulate the force generated by
the swing leg to control the rotation of the CoM with a non-zero angular velocity
β̇ and to stop the rotation at the position (β = βe) where the robot can put its
whole body weight on the new stance leg and keep it stable. The problem is to
control the torque τ appropriately. We do this by controlling the force generated
by the swing leg by means of a force policy γ : [− 1

2π,
1
2π]→ [0, 1]. We define the

force policy with respect to the angle β of the telescopic leg with the vertical
axis in the frontal plane.
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We use the force policy γ(β) to control the stiffness of the swing leg’s knee
joint, and thereby control the force generated by the swing leg on the CoM.
At the beginning of the DSP, ideally, the force policy γ(β) imposes no force on
the swing leg. Therefore the torque τ generated by the slightly inward bending
θ8 of the upper body, is needed to start the lateral movement of the CoM.
(In our experiments, the bending lasts for 100 ms.) As β increases, the force
policy controls the force of the swing leg to gradually decrease the β̇(t), and
stops the CoM movement when β = βe. When β = βe, the angular velocity
β̇ and acceleration β̈ become 0, therefore the CoM stabilizes above the swing
leg (the new stance leg). The shape of the force policy is determined by means
of a Quadratic Bezier curve, as illustrated in Figure 5. This Quadratic Bezier
curve is defined by 3 points in the interval of the DSP. The start point and the
end point are fixed, so we start with no force generated by the swing leg and
stop with the full weight of the robot on the swing leg, after which it becomes
the new stance leg. We assume a smooth transition between these two points
which is determined by the middle point θ7 of the Quadratic Bezier curve. So
we have to determine the optimal point θ7. The optimization of the point θ7 will
be discussed in the Section 4.

4 The Gait Controller

Gait parameters We designed a controller which implements the gait identified
in the previous sections on an Aldebaran Nao robot. The controller for walking
on flat ground has 9 basic parameters that are essential in controlling the gait.
To enable walking on a slope, several parameters are split into a parameter for
the left leg and a parameter for the right leg.

– Step Length (θ1): Defines the distance over which the Nao moves in a singe
step (sagittal).

– Step Height (θ2): Defines the maximal altitude between the ground and a
lifted foot. A high step height requires a faster movement of the swing leg,
which may cause instabilities. A low step height increases the possibility of
tripping and limits the step length.

– Knee Bending (θL3 , θ
R
3 ): Defines the maximum bending of the swing leg (left

and right) at the beginning of the double support phase which determines the
value of δ(αb), see Figure 2. This parameter determines the sagittal velocity
and the energy cost.

– Step Time (θ4): Defines how long a single step lasts. This parameter deter-
mines the sagittal walking velocity.

– Stretch Time (θL5 , θ
R
5 ): Defines how long it takes for the stance leg to stretch

from θL3 and θR3 (angle of bent knee left and right) to its full length at the
beginning of the single support phase, see Figure 2.

– Torso Pitch Inclination (θL6 , θ
R
6 ): Defines the maximum angle that the torso

leans in the sagittal direction at the beginning of the first step. If positive,
it will move the center of mass (CoM) in the sagittal direction. If it is not



Explainable Robotics applied to bipedal walking gait development 9

set appropriately, a fall will occur. In our experiments, the inclination lasts
for 200 ms.

– Quadratic Bezier point (θL7 , θ
R
7 ): Defines the magnitude of the middle points

in Quadratic Bezier Curves, see Figure 5, which determines the force policy
of the swing leg (left and right) introduced in Section 2.

– Torso Roll Inclination (θL8 , θ
R
8 ): Defines the maximum angle that the torso

leans in the lateral direction. If positive, it will move the center of mass
(CoM) towards the swing leg in the frontal plane as discussed in Section 2.

– Proportion of single support duration (θL9 , θ
R
9 ): Defines how long the single

support phase lasts in one single step. The single support phase duration
equals the product of this parameter and the step time θ4.

All parameters except θ1 (the step length) will be optimized in the exper-
iments. We do not consider the optimization of the step length, because we
determine the parameters for a fixed walking velocity. We manually set a dif-
ferent walking velocity v in each experiment and determined the optimal Step
Time θ4. The corresponding step length is given by: θ1 = vθ4.

Fitness function To optimize the parameters, we need a fitness function F . The
fitness function should address two objective, (1) the stability of the gait, and (2)
energy consumption of the gait. We measure the stability of the gait by letting
the robot walk a maximum distance D and measuring the actual distance d
that the robot walks without falling. The energy consumption is evaluated by
comparing the actual power consumption with the maximum power consumption
of the robot. The stability has a preference over the energy consumption with a
ratio of 7 to 3. We use F(θ) to denote the fitness of the gait determined by the
vector θ of control parameter values.

Ankle stiffness Initial experiments with the Nao robot showed that it is not
possible to set the ankle pitch stiffness to 0. The Nao robot starts to walk on
its heels and has not enough grip to propel itself. An ankle pitch stiffness of 0.1
solved the problem. This low stiffness still allows free rotation around the ankle
joint.

Learning the Controller Parameters We use a Policy Gradient Reinforcement
Learning (PGRL) method presented by Kohl et al. [11] to optimize the gait
parameters. We chose this version of PGRL because we cannot calculate the
gradient exactly.

Optimal parameter values To identify the optimal gait parameters and validate
the gait’s performance, we uploaded the controller of our proposed gait together
with an implementation of the policy gradient algorithm into the Webots simu-
lator3. We learned an optimal set of parameter values starting from a randomly

3 The Webots software was initially developed at the Laboratoire de Micro-
Informatique (LAMI) of the Swiss Federal Institute of Technology, Lausanne,
Switzerland (EPFL). The Webots robotic simulation software is currently developed
by Cyberbotics.
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Table 1. The optimized parameters of for walking on a flat ground at different velocities

Velocity θ1(cm) θ2(cm) θ3 θ4(ms) θ5(ms) θ6 θ7 θ8 θ9
2 cm/s 2.3 3.24 6.2◦ 1150 53 4.3◦ (0.9,0.2) 6.8◦ 0.7
3 cm/s 2.9 3.24 8.7◦ 980 59 5.6◦ (0.9,0.2) 6.8◦ 0.7
4 cm/s 3.2 3.24 11.5◦ 800 67 6.1◦ (0.9,0.2) 6.8◦ 0.7
5 cm/s 3.4 3.24 12.3◦ 680 71 7.5◦ (0.9,0.2) 6.8◦ 0.8
6 cm/s 3.6 3.24 14.2◦ 600 78 8.9◦ (0.9,0.2) 6.5◦ 0.8
7 cm/s 3.7 3.24 15.6◦ 530 81 9.2◦ (0.9,0.2) 6.5◦ 0.8
8 cm/s 3.8 3.24 16.7◦ 480 83 9.4◦ (0.9,0.2) 6.3◦ 0.9
9 cm/s 3.8 3.24 16.7◦ 430 83 9.6◦ (0.9,0.2) 6.3◦ 0.9
10 cm/s 3.8 3.24 16.7◦ 380 83 9.6◦ (0.9,0.2) 6.3◦ 0.9
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Fig. 6. The estimated energy consumption (the blue dots) for walking a distance of 75
cm, and the corresponding optimal step length (the red dots).

chosen parameter vector θ. We repeated this learning process 500 times, which
took 3 weeks of computation time on a standard PC with CPU: Intel Core i5-
2400 3.10GHz, and operating system: Windows 7 Enterprise. In all cases the
algorithm converged to the same set of optimal parameter values. This is a
strong indication that the parameter values represent a global optimum. Each
evaluation required around 1200 learning steps.

Table 1 shows the parameter values for different walking speeds on a flat
ground. We also verified the robustness of the identified parameter values. No
parameter was on the edge of a stable region.

We computed the energy consumption of each gait. Figure 6 shows the total
energy needed to walk a distance of 75 cm as well as the corresponding optimal
step size of the gait. The figure shows that the most energy efficient walking
speed for traversing a specified distance is 6 cm/s.

Experiments with the real Nao robot We evaluated the most energy efficient
walking speed on a real Nao robot, version 5. The new walking gait enabled
the Nao robot to walk on a wooden plank floor that is not completely flat, and
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Fig. 7. A complex terrain can be modeled as the discrete slopes.

reduced the power consumption by 41% compared to standard gait of the Nao
provided by Aldebaran. The accompanying video material4 shows the Nao robot
walking on a flat ground with our proposed gait controller at a speed of 6 cm/s.

5 Walking on uneven terrains

Since a step on uneven terrain causes a difference in altitude for the two feet of
the biped robot, we assume that each step of the walk on an uneven ground can
be viewed as a step on a (virtual) slope (see Figure 7). The angle of the slope is
determined by the difference in altitude of both feet when they are firmly placed
on the ground. In the sagittal direction, this corresponds to walking up or down
a flat slope. In the lateral direction, this corresponds to walking perpendicular to
the slope direction at a constant height. We define the slope angle to be positive
if left foot is landed higher than the right foot in the frontal plane, or the new
support foot is landed higher than the rear foot in the sagittal plane. Hence,
the complex terrain with obstacles, including bumps, pits and slopes, can be
modeled as slopes of variable angles.

We designed two series of experiments in the simulator Webots to obtain
the optimal control parameters while walking on a specified slope type. In the
experiments, also PGRL [11] is used to find the proper control parameters that
can generate a stable walking gait on different slopes. In the first series of exper-
iments the robot walks on slopes where the slope angle varies from -0.17 rad to
0.17 rad in the sagittal plane, which corresponds to -10° to 10°. We repeatedly
let the robot walk 10 steps while running the reinforcement learning algorithm.
We did not fixed walking speed of the robot as we did in the previous section.
Instead, we choose to fix the step size θ1 at 3.6 cm and the step time θ4 at 650
ms, which determine the most energy efficient speed of 6 cm/s on a horizontal
flat ground. Table 2 shows the learned parameter values for a stable walk.

In the second series of experiments required the robot to stand on slopes
for which the tilt angle varied from 0 rad to 0.09 rad in the robot’s frontal
plane, which corresponds to -0° to 5°. Since in frontal plane, slopes with negative
tilt angles are opposite to those with positive angles, the results of left leg on

4 https://project.dke.maastrichtuniversity.nl/robotlab/wp-content/

uploads/naowalk.mp4
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Table 2. Experimentally learned control parameters for different slopes in the sagittal
direction. p is the angle of the slopes. h is the height different of the feet, which is
determined by h = θ1 sin(p). h is positive in an uphill step, negative in a downhill step.
Parameter θ1, θ2, θ4 and θ9 are fixed.

p h(cm) θ2(cm) θ3 θ4(ms) θ5(ms) θ6 θ7 θ8 θ9
-10° -0.63 3.24 8.5° 650 64 0° (0.92 0.28) 9.5° 0.8
-7° -0.44 3.24 9.2° 650 68 1.4° (0.91 0.27) 7.5° 0.8
-5° -0.31 3.24 11.7° 650 70 4.1° (0.91 0.26) 7.1° 0.8
-3° -0.19 3.24 13.7° 650 75 5.7° (0.90 0.22) 6.9° 0.8
0° 0.00 3.24 14.2° 650 78 8.9° (0.90 0.20) 6.5° 0.8
3° 0.19 3.24 14.4° 650 76 10.2° (0.86 0.16) 5.2° 0.8
5° 0.31 3.24 15.2° 650 75 13.5° (0.85 0.14) 3.4° 0.8
7° 0.44 3.24 15.7° 650 74 14.9° (0.82 0.14) 2.2° 0.8
10° 0.63 3.24 16.1° 650 73 16.3° (0.78 0.12) 1.5° 0.8

slopes with negative angle are identical to the results of right leg on slopes with
positive angle and vice versa. We repeatedly let the robot walk for 5 seconds
while running the reinforcement learning algorithm. Table 3 shows the learned
parameter values for a stable walk.

The Sagittal Controller The main task of the sagittal controller is to generate a
leg-length policy that is able to adapt to unknown slopes. The leg-length policy
is determined by two parameters: θ3 (Knee Bending) and θ5 (Stretch Time).
The parameter θ3 is determined by the bending of the knee of the swing leg at
the end of the double support phase. So, the only parameter of the leg-length
policy that can be controlled, is θ5.

Although θ5 depends on the slope angle p, we would like to make a more
robust controller that can compensate for disturbances during a step; e.g., strong
wind, collisions with other robots, etc., which may have a similar effect as walking
on a slope. We therefore chose to use α (the angle between a virtual leg and its
vertical line, see Figure 1), angular velocity α̇, angular acceleration α̈ and θ3 to
determine the leg-length lδ(α) of the stance leg directly. So, we no longer need
the parameter θ5. The inputs α, α̇ and α̈, which can be determined using the
Inertia Measurement Unit (IMU) of the Nao robot, implicitly identify the slope
angle p. The mapping from (α, α̇, α̈, θ3) to a knee-angle, which determines the
leg-length, is realized by a simple neural network with only 8 neurons and 1
hidden layer.

Lateral Controller The main task of the lateral controller is to ensure that the
robot is balanced during the double support phase. The lateral stability is de-
termined by the parameters θ7 (Quadratic Bezier point) and θ8 (Torso Roll In-
clination). Both parameters depend on the hight difference between the two feet
(h in Table 2 and k in Table 3). Observe that the same height difference results
in the same values for the parameters θ7 and θ8. To create a robust controller
that can compensate for disturbances during a step; e.g., strong wind, collisions
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Table 3. Experimentally learned control parameters for different slopes in the lateral
direction. q is the angle of the slopes. h is the height different of the feet, which is
determined by the distance of 10 cm between the feet and the angle q: k = 10 sin(q).
Parameter θ1, θ2, θ4 and θ9 are fixed.

q k(cm) θL2 (cm) θL3 θ4(ms) θL5 (ms) θL6 θL7 θL8 θL9
0° 0.00 3.24 14.2° 650 78 8.9° (0.90,0.20) 6.5° 0.8
1° 0.17 3.24 14.5° 650 76 10.1° (0.86 0.16) 5.5° 0.8
2° 0.33 3.24 15.3° 650 75 13.5° (0.84 0.14) 3.5° 0.8
3° 0.50 3.24 15.5° 650 74 15.1° (0.80 0.12) 2.0° 0.8
4° 0.66 3.24 16.1° 650 72 16.8° (0.78 0.12) 1.5° 0.8
5° 0.83 3.24 16.4° 650 70 17.3° (0.76 0.12) 1.5° 0.8

q k(cm) θR2 (cm) θR3 θ4(ms) θR5 (ms) θR6 θR7 θR8 θR9
0° 0.00 3.24 14.2° 650 78 8.9° (0.90,0.20) 6.5° 0.8
1° -0.17 3.24 13.5° 650 74 5.8° (0.90 0.22) 6.7° 0.8
2° -0.33 3.24 11.7° 650 70 4.0° (0.91 0.26) 7.1° 0.8
3° -0.50 3.24 9.6° 650 68 1.3° (0.92 0.28) 8.5° 0.8
4° -0.66 3.24 8.5° 650 65 0.0° (0.92 0.29) 9.5° 0.8
5° -0.83 3.24 8.2° 650 65 0.0° (0.94 0.29) 9.5° 0.8

with other robots, etc., we generate the force policy directly instead of setting
the parameter θ7. We therefore use β′ (the angle between the swing leg and the
vertical axis in the frontal plane), angular velocity β̇ and angular acceleration β̈,
which can be determined by the IMU, as inputs for the lateral controller. The
mapping from (β′, β̇, β̈) to a knee stiffness, which determines the force generated
by the swing leg, is realized by a simple neural network with only 6 neurons and
1 hidden layer. Finally, we use θ3, which encodes information about the height
difference between the two feet, to determine the parameter θ8. The mapping is
realized be a neural network with 4 neurons and 1 hidden layer.

Controller design Figure 8 show the controller for walking on an uneven terrain.
The accompanying video material5 shows the Nao robot walking on an uneven
terrain with our proposed gait controller in the simulator Webots

6 Conclusion

A design method for developing a controller that enables an energy efficient gait
capable of walking on uneven terrains was presented in the paper. The resulting
controller consists three simple neural networks. Based on these results we can
draw the following conclusions:

– An energy efficient gait capable of walking on uneven terrains can be devel-
oped without making use of some complex mathematical model, and without
some deep reinforcement learning approach, which is not always well under-
stood and requires a large amount of training data. The proposed approach is

5 https://youtu.be/owHiGQm8WSg
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Fig. 8. Structure of the controller for the single and the double support phase. The top
neural network outputs the sampled values of the stance leg’s knee angle, the middle
neural network outputs the sampled values of the swing leg’s knee join stiffness, and
the bottom neural network determines Torso Roll Inclination

well explainable. The controller exploits the physical properties of the robot
without the special design of the partially passive dynamic walker.

– A simple abstract inverted pendulum model can be used to identify an energy
efficient walking gait for a Nao robot. The gait can, after fine-tuning, also be
used for other robots with a similar design. We conjecture that the approach
can also be used for robots with a different design, such as robots that can
toe-off, after adapting the function of the energy consumption.

Future research should focus on different types of robots, including those the can
toe-off. Looking at the final controller, we observe that its simplicity is based on
exploiting the physical properties of the robot. It would therefore be interesting
to see whether the human neural network has a similar property. Since humans
learn to walk quite easily, we conjecture that the answer is yes.

References

1. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., de Wit, C.C.,
Grizzle, J.: RABBIT: a testbed for advanced control theory. IEEE Control Systems
Magazine 23(5), 57–79 (2003). https://doi.org/10.1109/MCS.2003.1234651

2. Chevallereau, C., Grizzle, J.W., Shih, C.L.: Asymptotically stable walking of a
five-link underactuated 3-D bipedal robot. IEEE Transactions on Robotics 25(1),
37–50 (2009). https://doi.org/10.1109/TRO.2008.2010366

3. Chevallereau, C., Grizzle, J.W., Shih, C.L.: Steering of a 3D bipedal
robot with an underactuated ankle. In: 2010 IEEE/RSJ International Con-



Explainable Robotics applied to bipedal walking gait development 15

ference on Intelligent Robots and Systems (IROS). pp. 1242–1247 (2010).
https://doi.org/10.1109/IROS.2010.5648801

4. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots
based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005).
https://doi.org/10.1126/science.1107799

5. Collins, S.H., Ruina, A.: A bipedal walking robot with efficient and human-like gait.
In: roceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion. pp. 1983–1988 (2005). https://doi.org/10.1109/ROBOT.2005.1570404

6. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.J.: The simplest walking model:
stability, complexity, and scaling. Journal of Biomechanical Engineering 120(2),
281–8 (1998)

7. Hobbelen, D.G., Wisse, M.: Limit cycle walking. In: Hackel, M. (ed.) Humanoid
Robots, chap. 14. IntechOpen, Rijeka (2007). https://doi.org/10.5772/4808

8. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped walking pattern generation by using preview control of zero-
moment point. In: 2003 IEEE International Conference on Robotics and Automa-
tion. vol. 2, pp. 1620–1626. IEEE (2003)

9. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear in-
verted pendulum mode: A simple modeling for a biped walking pattern generation.
In: 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). vol. 1, pp. 239–246 (2001). https://doi.org/10.1109/IROS.2001.973365

10. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode. In: 1991 IEEE
International Conference on Robotics and Automation. pp. 1405–1411 (1991).
https://doi.org/10.1109/ROBOT.1991.131811

11. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal
locomotion. In: IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. vol. 3, pp. 2619–2624 (2004).
https://doi.org/10.1109/ROBOT.2004.1307456

12. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. In: NIPS Deep
Learning Workshop (2013)

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (02 2015). https://doi.org/10.1038/nature14236

14. Pratt, J., Chew, C.M., Torres, A., Dilworth, P., Pratt, G.: Virtual model con-
trol: An intuitive approach for bipedal locomotion. The International Journal of
Robotics Research 20(2), 129–143 (2001)

15. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped
model discovers walking and running. Nature 439, 72–75 (2006).
https://doi.org/doi:10.1038/nature04113

16. Sun, Z., Roos, N.: An energy efficient gait for a nao robot. BNAIC (2013)
17. Sun, Z., Roos, N.: An energy efficient dynamic gait for a nao robot. In: 2014

IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC). pp. 267–272 (2014). https://doi.org/10.1109/ICARSC.2014.6849797

18. Vukobratovic, M., Borovac, B., Surla, D., Stokic, D.: Biped locomotion: dynam-
ics, stability, control and application, Scientific Fundamentals of Robotics, vol. 7.
Springer-Verlag (1990)


