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Background: Thigh-worn accelerometers have established reliability and validity for measurement of free-living physical
activity-related behaviors. However, comparisons of methods for measuring sleep and time in bed using the thigh-worn
accelerometer are rare. The authors compared the thigh-worn accelerometer algorithm that estimates time in bed with the output
of a sleep diary (time in bed and time asleep). Methods: Participants (N = 5,498), from the 1970 British Cohort Study, wore an
activPAL device on their thigh continuously for 7 days and completed a sleep diary. Bland–Altman plots and Pearson correlation
coefficients were used to examine associations between the algorithm derived and diary time in bed and asleep. Results: The
algorithm estimated acceptable levels of agreement with time in bed when compared with diary time in bed (mean bias of
−11.4 min; limits of agreement −264.6 to 241.8). The algorithm-derived time in bed overestimated diary sleep time (mean bias of
55.2 min; limits of agreement −204.5 to 314.8 min). Algorithm and sleep diary are reasonably correlated (ρ = .48, 95%
confidence interval [.45, .52] for women and ρ = .51, 95% confidence interval [.47, .55] for men) and provide broadly comparable
estimates of time in bed but not for sleep time.Conclusions: The algorithm showed acceptable estimates of time in bed compared
with diary at the group level. However, about half of the participants were outside of the ±30 min difference of a clinically
relevant limit at an individual level.

Keywords: activPAL, sleep, sleep diary

Lifestyle behaviors are associatedwith a multitude of health out-
comes, including cardiovascular diseases and mortality (Hoevenaar-
Blom, Spijkerman, Kromhout, & Verschuren, 2014; Xiao, Keadle,
Hollenbeck, & Matthews, 2014). Among them, the potential health
impacts of sleep, as reflected by sleep duration, quality, and timing,
are less well explored (Barbaresko, Rienks, & Nöthlings, 2018),
possibly due to the difficulties with robustly measuring sleep-related

exposures, including sleep duration. Self-reported sleep duration
(short or long sleep duration) is linked to adverse health outcomes
including obesity, diabetes, cardiovascular diseases, mood disorders,
and mortality (Grandner, 2017). Although laboratory-based poly-
somnography is the gold standard of objective sleep measurement,
it is impractical in free-living epidemiological studies considering
the cost, professional monitoring, and large resource demands due to
its specialized equipment (Van de Water, Holmes, & Hurley, 2011).
Diaries are common low-cost/low-tech alternatives for sleep moni-
toring in population research. However, diary-based methods could
be burdensome for participants and subject to recall bias (Tonetti,
Mingozzi, & Natale, 2016), among other limitations (Riemann,
2012). A 24-hr device-based measurement methods might be a less
burdensome option to estimate sleep duration in large-scale epide-
miological studies with the added advantage of not being subject to
recall bias.

Wearable devices, noninvasive and inexpensive methods
for use in nonlaboratory settings, have been increasingly used to
estimate sleep, and several studies have examined the agreement
between self-reported measures and accelerometer data in different
populations (Arora, Broglia, Pushpakumar, Lodhi, & Taheri, 2013;
Girschik, Fritschi, Heyworth, & Waters, 2012; McCrae et al.,
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2005). Although the thigh-worn accelerometer is considered as
the gold standard for free-living measurements of sitting time
and posture (Dahlgren, Carlsson, Moorhead, Häger-Ross, &
McDonough, 2010; Lyden, Keadle, Staudenmayer, & Freedson,
2017; Oliver, Badland, Shepherd, & Schofield, 2011), their uptake
in sleep measurement studies is limited. Winkler et al. (2016) and
van der Berg et al. (2016) have recently developed automated
algorithms to isolate adults’ valid waking wear periods from thigh-
worn activPAL data collected with a continuous wear protocol. In
addition to these algorithms, other time in bed estimation algorithms
exist, for example, the “CREA” algorithm built into the activPAL
software (PAL Technologies, Glasgow, United Kingdom), which
considers 24-hr wear time, classifies lying time as primary (e.g.,
during the night) or secondary (e.g., during the day), and automati-
cally excludes sleeping time. Recent studies have used Winkler
et al.’s (2016) algorithm to calculate sleep duration (Biddle et al.,
2018; Ezeugwu & Manns, 2017). Biddle et al. (2018) have sug-
gested an agreement between results of algorithm-derived and
diary-based sleep duration in their study; for example, the algo-
rithm-derived and diary-based sleep time association estimates with
fasting glucose were nearly identical (1.01, 95% confidence interval
[CI] [0.95, 1.07] and 1.02, 95% CI [0.96, 1.08], respectively).

Despite the increasingly frequent (Biddle et al., 2018;
Ezeugwu & Manns, 2017) use of this algorithm for estimating
time in bed, very few studies have compared algorithm-derived
time in bed with other common measures such as diaries (van der
Berg et al., 2016; Winkler et al., 2016) of sleep time. These studies
generally show a correlation between algorithm-derived time in
bed and sleep diary-derived time in bed (van der Berg et al., 2016;
Winkler et al., 2016), although none of them made direct compar-
isons with sleep time. The aim of this study was to compare
Winkler et al.’s (2016) algorithm-based method that uses the
thigh-worn accelerometer data with diary estimates of time in
bed and time asleep in a large and established population birth
cohort from Britain.

Methods

Participants and Design

These secondary analyses of available aggregate data have been
conducted using the 1970 British Cohort Study (BCS70) data. The
BCS70 is an observational prospective population-based cohort
study, following the lives of 17,287 people born in a single week of
1970 in England, Scotland, and Wales. In 2016–18, a new wave of
data collection was conducted when participants were aged 46–48
years. This comprised of computer-assisted personal interviewing
to collect the self-reported information via interviews during the
home visit (1970 British Cohort Study, 2019). Nurses conducted
physical examinations and placed the activity monitor on partici-
pants. The rationale and sampling methods used in the BCS70 are
described in detail elsewhere (1970 British Cohort Study, 2019;
Elliott & Shepherd, 2006). All participants gave written informed
consent, and the age-46 biomedical survey received ethics from
National Research Ethics Service Committee South East Coast—
Brighton and Sussex (Ref 15/LO/1446).

Measurements

Computer-assisted personal interviews collected data on partici-
pants’ self-rated general health, disability/limitations, smoking,
and occupation. The disability/physical limitation was assessed

using the European Statistics on Income and Living Conditions
(Arora et al., 2015). During the home visit, a nurse took partici-
pant’s anthropometric measurements including height and weight.
Body mass index was calculated as weight (in kilogram) divided by
height squared (in meter square).

Participants were asked to wear an activPAL3 device (PAL
Technologies) on their thigh for the 7 days following their nurse
visit. At the end of the visit, nurses placed and attached the devices
to the thigh using a medical dressing. The device is a triaxial
accelerometer that provides estimated body posture (sitting/reclining/
lying and standing) and stepping speed (cadence) based on 3D-
acceleration information with a sampling frequency of 20 Hz.
Devices were waterproofed to allow for continuous wear 24 hr/day.
Participants were asked to wear the device for seven consecutive
days without removing it at any time. After the device was returned,
data were downloaded and processed using an open-source pro-
gram that incorporates the Winkler et al. (2016) algorithm to
quantify valid waking wear times by the custodians (Winkler
et al., 2016). The Winkler et al. (2016) algorithm was setup to
identify time as either (a) time in bed or nonwear on a valid day,
(b) waking wear time on a valid day, and (c) any time on an invalid
day. This algorithm was developed for use with 24-hr wear
protocols in adults to classify activity bouts recorded in activPAL
“Events” files as “sleep”/nonwear (or not) and on a valid day (or
not). This automated approach excludes long periods without
posture change/movement, adjacent low-active periods, and days
with minimal movement and wear based on a simple algorithm.
Briefly, development of an algorithm to estimate valid waking wear
protocols has four steps including identifying bouts, examining
surrounding bouts, identifying other invalid data, and quality con-
trol such as checking and error correction. The algorithm was
validated based on a minimum of four valid wear days with at least
10 hr of waking wear data and >500 steps (Winkler et al., 2016).
The algorithm aimed to measure in bed and nonwear time versus
waking wear time. We used in bed and nonwear time together in our
analysis. We excluded the first day of data and defined subsequent
days as the 24 hr between consecutive midnights. Participants
providing at least one valid day, defined as waking wear time of
more than 10 hr/day were included in the core analysis (van der
Velde et al., 2018). Figure 1 illustrates each stage of the algorithm.

Participants were also asked to complete a sleep diary for each
day that they wore the monitor. The diary recorded some key
information including the exact times (in hours: minutes) they went
to bed, fell asleep, woke up, and got out of bed. There were also
separate entries on how many times participants got up during the
night and self-rated sleep quality. The full diary is shown in
Supplemental Material 1 (available online).

Data Handling

As the algorithm was designed to distinguish waking wear time
from time in bed (Winkler et al., 2016), the algorithm-derived
time in bed is computed by subtracting valid waking wear time
from 24 hr (Biddle et al., 2018). We made both day to day
comparisons and mean value comparisons of valid days for sleep
diary time in bed and sleep time data as well as algorithm-derived
time in bed data. As polysomnography can measure the sleep
accurately, we defined diary-reported sleep time as the time
participants’ wake-up minus the time they fall asleep. Diary
time in bed was defined as the time participants get out of bed
minus the time they go to bed. Both algorithm data and sleep diary
data were calculated as minutes.
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Statistical Analysis

Statistical analysis was performed using SPSS (version 26.0; IBM
Corp., Chicago, IL) and MedCalc software (MedCalc Software
Ltd., Ostend, Belgium). The accelerometer and sleep diary vari-
ables were analyzed as continuous variables. We ran the χ2 test and
analysis of variance to examine differences by sex for categorical
and continuous variables, respectively. Descriptive statistics were
calculated for demographic characteristics of participants. We
compared algorithm-derived time in bed versus bed time and sleep
duration of mean minute/day from diary using the paired sample
t test. We also used Schuirmann’s (1987) two one-sided tests
approach to test equivalence with a specified confidence level
between observations. We defined a priori differences between
algorithm and diary of ±30 min as satisfactory for time in bed and
sleep time and calculated 90% CI. If the entire range of 90% CI of
the mean difference lay within the rage of ±30 min, we concluded
that the two observations were equivalent. Pearson correlation
coefficients were calculated to test the association between the
algorithm derived and diary time in bed and sleep time. We used
bootstrapping methods to calculate 95% CIs. Differences in cor-
relations across subgroups were tested using Fisher’s z test. In

addition to Pearson correlation coefficients, we calculated absolute
intraclass correlation coefficients to assess reliability of repeated
measurements among different days as a sensitivity analysis. In
stratified analyses, we examined the correlation (Pearson coeffi-
cients) between the algorithm derived and diary time in bed and
asleep across different education groups and health statuses. We
conducted Bland–Altman plot with multiple measurements per
subject for daily data to examine the agreement of the algorithm-
and diary-derived times in bed and times asleep. Limits of agree-
ment (LoAs) were calculated as bias ±1.96 SD of the difference.
A positive value of the mean difference between algorithm and
diary indicates that algorithm overestimates diary data, whereas a
negative value indicates that algorithm underestimates diary data.
Similar to previous studies (de Zambotti, Baker, & Colrain, 2015;
Short, Gradisar, Lack, Wright, & Carskadon, 2012), we performed
additional Bland–Altman plots, where we defined a priori differ-
ences between algorithm and diary of ±30 min as satisfactory for
time in bed and sleep time. The percentage of participants falling
within this range is provided. We also performed Bland–Altman
plot to examine the agreement of the algorithm- and diary-derived
times in bed and times asleep for each day separately as sensitivity
analysis. In addition, we used the Bland–Altman plot to examine
the agreement of the algorithm- and diary-derived times in bed and
times asleep. We performed linear regression analysis to evaluate
proportional bias. We specified the difference between algorithm
and diary as the dependent variable, and the mean of the algorithm
and diary as the independent variable. In this analysis, a p < .05
model coefficient value indicated the presence of proportional
bias. In a sensitivity analysis, we repeated the above Bland–Altman
plots but included participants with at least >4 day of valid data and
at least 20 hr/day wear. We also calculated Pearson correlation
coefficients for each day. All statistical tests were two-tailed, and
values are reported as mean and 95% CIs.

Results

Table 1 shows participants’ demographic, health status, and life-
style health behaviors characteristics. There were no appreciable
differences in the accelerometer 24-hr waking wear time between
men and women (mean 24-hr waking wear time 16.0 hr/day, SD
1.3 hr/day and mean 24-hr waking wear time 15.7 hr/day, SD
1.3 hr/day, respectively). The mean nonwear time for valid days
was 8.1 hr/day.

Table 2 compares absolute accelerometer time in bed with the
diary-reported time in bed and asleep. The differences between
algorithm-derived and diary time in bed by sex were statistically
significant but practically small (mean −15.5 min/day for women
and −3.5 min for men). The differences between algorithm-derived
time in bed and diary sleep time were larger and also statistically
significant (mean 56.0 min for women and 57.4 min for men).
According to the two one-sided tests approach, we found that
algorithm-derived and diary time in bed was equivalent for total,
women and men (90% CI [−11.3, −8.2]; 90% CI [−17.6, −13.3];
and 90% CI [−5.7, −1.2], respectively), whereas the entire range of
90% CI of difference for algorithm-derived time in bed and diary
sleep time was not in the a priori defined limits of ±30 min. Table 3
presents Pearson’s correlation coefficient between algorithm-
derived time in bed and diary time in bed and sleep time (see
Supplementary Figure S1 [available online]). The correlation
coefficients between algorithm-derived time in bed and diary
time in bed were .48 in women (95% CI [.45, .52]) and .51 in
men (95% CI [.47, .55]). The correlation coefficients between

Figure 1 — Flow chart for the steps of algorithm.
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algorithm-derived time in bed and diary sleep time were lower for
both women (ρ = .34, 95% CI [.30, .38]) and men (ρ = .39, 95% CI
[.35, .43]). Pearson’s correlation coefficient for the association
between algorithm-derived time in bed and diary time in bed and
asleep for each day also produced similar results to the main
analysis (see Supplementary Table S1 [available online]). The
intraclass correlation coefficients were low for both women and
men (see Supplementary Table S2 [available online]). We also
compared absolute accelerometer time in bed with the diary-
reported time in bed and time asleep by health status (see

Supplementary Table S3 [available online]). The mean difference
between algorithm- and diary-derived time in bed was lowest for
healthy participants (−8.3 min), whereas it was the highest in
participants who were severely hampered in activities because
of health problems (−28.6 min).We presented correlations between
algorithm and diary time in bed and asleep by health status in
Supplementary Table S4 (available online). We also presented
absolute differences between mean amounts of time in bed from
the sleep diary and the accelerometer data by education level in
Supplementary Table S5 (available online) and correlation between
algorithm and diary for time in bed and asleep by education level in
Supplementary Table S6 (available online). The correlations coef-
ficient between algorithm-derived time in bed and diary time in bed
were .51 in the lowest education level and .55 in the highest
education level.

The LoAs between algorithm-derived time in bed and diary
time in bed are shown in the repeated measures of Bland–Altman
plots (Figure 2), which depicts a systematic error (with a mean bias
of −6.1 min; LoA −260.4 to 248.2 min for men and with a mean
bias of −16.1 min; LoA −268.0 to 235.8 min for women). Assum-
ing the diary is the reference method, the algorithm underestimated
the time spent in bed for both women and men. Furthermore, linear
regression analysis showed that this underestimation was statisti-
cally significant (95% CI [0.398, 0.426], p < .001; Table 4). Ac-
cording to a priori defined limits, 36.9% of the measurements were

Table 3 Correlation Between Algorithm and Diary
for Time in Bed and Sleep Time, by Sex

Algorithm, diary

Women
(n = 2,812) Men (n = 2,544)

p valueaρb 95% CIc ρb 95% CIc

Time in bed .48* [.45, 0.52] .51* [.47, 0.55] .207

Sleep time .34* [.30, 0.38] .39* [.35, 0.43] .023

Note. CIs = confidence intervals.
ap value for the difference between Pearson’s ρ for women and men, calculated
using Fisher’s z test. bPearson’s correlation coefficient. cCIs were computed using
a bootstrapping procedure.
*p < .001.

Figure 2 — (a–c) The repeated measures of Bland–Altman agreement between algorithm and diary for the duration of time in bed. Mean of the
differences between algorithm and diary time in bed and lower and upper agreement limits (mean difference ± 1.96 SD) are displayed for each Bland–
Altman plot. The bold lines represent the upper and lower a priori-set clinically satisfactory limits (±30 min from the zero line).

Table 4 Linear Regression Coefficients Between the Mean of the Algorithm- and Diary-Derived Time, and the
Difference Between the Algorithm- and Diary-Derived Time

Participants Coefficient 95% confidence interval p

Women

Time in bed (algorithm and diary) 0.341 [0.442, 0.481] <.001

Time in bed (algorithm) and sleep time (diary) 0.357 [0.517, 0.560] <.001

Men

Time in bed (algorithm and diary) 0.294 [0.371, 0.412] <.001

Time in bed (algorithm) and sleep time (diary) 0.327 [0.454, 0.499] <.001

Total

Time in bed (algorithm and diary) 0.310 [0.398, 0.426] <.001

Time in bed (algorithm) and sleep time (diary) 0.341 [0.487, 0.518] <.001
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in the range of ±30 min difference. The repeated measures of
Bland–Altman method for comparison between algorithm-derived
time in bed and diary sleep time showed a mean bias of 55.0 min
(LoA −205.0 to 315.1 min) for men and a mean bias of 55.3 min
(LoA −204.0 to 314.6 min) for women, indicating that algorithm-
derived time in bed overestimated sleep time in both sexes
(Figure 3). The proportion of the total measurements in the range
of clinically acceptable limits (±30 min difference) was 23.5%.
Linear regression analysis also demonstrated the presence of
proportional bias between algorithm-derived and diary for both
sexes indicating that algorithm-derived time in bed underestimated
the diary time in bed, whereas algorithm-derived time in bed
overestimated the diary sleep time. Overall, based on the observed
magnitude of the regression coefficients, proportional bias was
greater in women than men for all variables (Table 4). The sensi-
tivity analysis of day to day Bland–Altman method for comparison
between algorithm-derived time in bed with diary sleep time and
time in bed also produced similar results with the main analysis
of repeated measures of Bland–Altman plots (see Supplementary
Table S7 [available online]). In addition, Bland–Altman agreement
between algorithm time in bed and diary time in bed and sleep time
showed similar results with the main analysis (see Supplementary
Figures S2 and S3 [available online]). For instance, Bland–Altman
method for comparison between algorithm-derived time in bed and
diary time in bed showed a mean bias of −3.5 min (LoA −139.1 to
132.1 min) for men and a mean bias of −15.5 min (LoA −152.7 to
121.8 min) for women indicating an underestimation of time spent
in bed for both men and women (see Supplementary Figure S2
[available online]). Algorithm-derived time in bed also overesti-
mated the diary sleep time in the Bland–Altman plot with a mean
bias of 57.4 min (LoA −90.1 to 204.8 min) for men and 56.0 min
(LoA −96.1 to 208.0 min) for women (see Supplementary Figure
S3 [available online]).

In sensitivity analyses, we separately examined participants
with high (>4 day and >20 hr) and low (<4 day and <20 hr) wear
compliance; Bland–Altman plots are shown in Supplementary
Figure S4 (available online). We also reported participants’ time
in bed and sleep time according to valid wear days and valid hours
in Supplementary Tables S8 and S9 (available online). According
to Bland–Altman plots, algorithm-derived time in bed overesti-
mated the diary sleep time for both in participants who had more

than 4-day activPAL wearing days (a mean bias of 55.3 min, LoA
−82.1 to 192.6 min) and <4 day activPAL wearing days (a mean
bias of 69.9 min, LoA −169.3 to 309.1 min).

Discussion

To our knowledge, this study is the largest population cohort to
compare the thigh-worn accelerometer algorithm that estimates
time in bed with a sleep diary. The findings suggest that the
algorithm estimates acceptable diary time in bed on a group level.
However, about 36.9% of the measurements and about half of the
participants were in the range of ±30 min difference of a clinically
relevant limit at individual level. As expected, the correlations with
diary estimated sleep time data were lower concluding that the
algorithm estimates longer sleep time on a group level compared
with diary.

Average absolute differences in time in bed between the two
methods were generally small, for example, the algorithm-derived
time in bed was 9.8 min less than diary time in bed, which was
within the clinically acceptable range of ≤30 min difference.
Although Winkler et al. (2016) found a good correlation (Pearson
correlation coefficient = .67) between the algorithm and sleep diary
waking times, the algorithm overestimated waking wear time
relative to the diary thus resulting in underestimation of diary
time in bed. van der Berg et al. (2016) developed another algorithm
for the assessment of time in bed from activPAL data, which was
based on the number and duration of sedentary periods to identify
time in bed, and on the number and duration of active periods
(standing or stepping) to identify wake times. They showed that the
algorithm estimates of time in bed differed on average by <25 min
compared with the self-reported bedtimes. Their algorithm was
strongly associated with self-reported wake and time in bed (in-
traclass correlation coefficient = .79). We also found an acceptable
agreement on estimation of algorithm-derived time in bed and diary
time in bed on a group level although the LoAswere relatively wide.

The main potential use of a future activPAL algorithm will
be to evaluate associations between sleep duration and health
outcomes. It is therefore important to evaluate the capacity of
the algorithm to produce consistent results. For instance, Biddle
et al. (2018) examined the association between physical behaviors
(sleep, sitting, standing, and stepping) and markers of metabolic

Figure 3 — (a–c) The repeated measures of Bland–Altman agreement between algorithm and diary for the duration of time in bed and sleep time.
Mean of the differences between algorithm time in bed and diary sleep time and lower and upper agreement limits (mean difference ± 1.96 SD) are
displayed for each Bland–Altman plot. The bold lines represent the upper and lower a priori-set clinically satisfactory limits (±30 min from the zero line).
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health including fasting glucose and insulin, 2-hr glucose and
insulin. Sleep time was estimated with both the Winkler et al.’s
(2016) algorithm and sleep diary. It is encouraging that Biddle et al.
(2018) found that the results were materially the same when
associations of self-reported sleep time and cardiometabolic out-
comes were compared with those of algorithm-derived time in bed.
In our recent BCS70 analysis on the associations between different
sleep indicators and a range of cardiometabolic outcomes, we
found that there was no material difference between the algo-
rithm-derived time in bed and diary time in bed or sleep time
(Huang, Inan-Eroglu, Hamer, & Stamatakis, 2020). We found that
algorithm-derived time in bed was higher than diary sleep time by
approximately 1 hr in both men and women. Further development
in algorithms to estimate sleep duration from the thigh-worn
accelerometer data is needed. Studies that determine the time in
bed and sleep differences between diary and wrist actigraphy
produce different results. For instance, while some studies showed
that diary overestimated the total sleep time compared with acti-
graphy (Campanini et al., 2017), other studies showed an underes-
timation (Liu, Wong, Zwetsloot, Hsu, & Tsui, 2019). Yet, the
conclusion from these studies were that the levels of disagreement
are reasonable for the devices to be used interchangeably
(Campanini et al., 2017; Liu et al., 2019).

We showed that 23.5% of the participants were in the clinically
acceptable range (±30 min difference) for sleep time. Unlike our
study, the wrist-worn accelerometer study showed that 88% of the
participants were in the clinically satisfactory ranges for total sleep
time (de Zambotti, Rosas, Colrain, & Baker, 2019). The reason for
these different findings can be attributed to properties of the
devices. The thigh-worn accelerometer can detect sitting/lying
time, upright time, sitting/lying to upright transitions, and reduction
in sitting as well as distinguish standing from stepping (Edwardson
et al., 2017). However, the wrist-worn accelerometer measures
cannot use postural information when estimating sleep or waking
state, habitual physical activity, and energy expenditure (Doherty
et al., 2017).

Although wrist actigraphy has excellent concordance with
polysomnography in the measurement of sleep time in healthy
people (Martin & Hakim, 2011), wrist actigraphy is prone to
overestimating sleep time in different health conditions compared
with polysomnography (Blackwell, Ancoli-Israel, Redline, Stone,
& Osteoporotic Fractures in Men (MrOS) Study Group, 2011) and
is prone to underestimating sleep time compared with diary (Moore,
Schmiege, & Matthews, 2015). We also found that the health status
of participants influenced the comparisons of time in bed and sleep
time assessed by the thigh-worn accelerometer and diary. We
showed that the differences between algorithm and diary for
both time in bed and sleep time were higher in participants with
a long-standing health condition compared with those who did not
have a long-standing health condition. Theoretically at least, this
observation opens up the possibility that either healthy people report
sleep time more accurately or the algorithm works better for healthy
people. This finding requires further attention in future research.

Our study has several notable strengths, including the large
sample size and the population-based sample that increases gen-
eralizability of our findings. Another strength was that 63.5%
of participants provided at least 6 valid days of sleep diary and
the accelerometer data. Also, it is a strength that our participants
were asked for bedtime and wake-up time rather than for the
number of hours slept. The latter would entail a calculation by the
respondents and thus an increased risk of reporting error of
sleeping times.

Our study has limitations also. The sleep diary as a method
to measure time in bed and sleep time may be subject to recall
limitations or incompleteness. Because of the way participants
were instructed to complete the diary (on the following day), we
expect that recall bias is less pronounced than recall questionnaires
utilizing a specific time frame or inquire about “usual” sleep
duration. There is a need for studies that compare the algorithm
we used with the gold standard polysomnography. In addition,
because we only had the accelerometer data for Winkler et al.
(2016)’s algorithm, we could not make any comparison with other
algorithms. As we were only able to look at the agreement in total
time in bed, we could not test instance-level agreement. Therefore,
we were not able to shed light whether the correct portions of the
day were identified as in bed. Another limitation is that we had
algorithm data for duration of sleep and time in bed, not for the time
participants go to bed and the time they wake up.

Conclusions

In summary, the algorithm we tested showed acceptable estimates
of time in bed compared with diary at the group level. As such, the
algorithm is appropriate for use in large-scale population studies to
estimate time in bed at a group level. However, despite the limited
bias between algorithm and diary, the broad 95%LoAs suggest that
there may still be disparities between these measurement modali-
ties at individual participant levels in estimating time in bed and
sleep time. This was especially true for sleep time; as the average
value for sleep time increased, there appeared to be less agreement
between the measurements. The limited research to date suggests
that such disagreement has limited impact on estimates of associa-
tion between sleep and health outcomes. With the increasing use of
thigh-worn monitors in the field of physical activity, sedentary
behavior and sleep, automated estimation of sleep behavior param-
eters has several practical advantages and can maximize use of the
accelerometer data. More research is required to further refine the
different algorithms that estimate sleep duration from the thigh-
worn accelerometer data.
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