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Introduction 
 

Skeletal muscle tissue is required to allow physical function and contributes substantially to 

whole-body metabolism. Muscle tissue is in a constant state of turnover, with skeletal 

muscle protein synthesis and breakdown rates ranging between 1-2% per day [1-3]. 

Consequently, muscle maintenance is an active process that requires constant stimuli. Food 

intake and physical activity are the key anabolic stimuli that support muscle maintenance. 

Food intake, and protein intake in particular, is followed by an increase in circulating amino 

acid concentrations that directly stimulates muscle protein synthesis rates (Figure 1) [4, 5]. 

Furthermore, the protein-derived amino acids are used as precursors for de novo muscle 

protein synthesis [6, 7]. Physical activity, and especially exercise, represents another potent 

anabolic stimulus that increases skeletal muscle protein synthesis rates [8, 9]. Exercise 

performed prior to protein ingestion further augments the postprandial increase in muscle 

protein synthesis rates [10-12]. When combined, ample protein ingestion and physical 

activity will act synergistically to stimulate muscle protein accretion and support 

maintenance or an increase in muscle mass and strength.  

 
Figure 1. Effect of food intake on skeletal muscle protein synthesis and breakdown rates throughout the day. In 

the postabsorptive state, muscle protein breakdown rates exceed synthesis rates. Following protein ingestion 

muscle protein synthesis rates increase while breakdown rates decrease, allowing net muscle protein accretion 

during the postprandial period. MPB, muscle protein breakdown; MPS, muscle protein synthesis. Adapted from 

Hendriks et al., Curr Opin Clin Nutr Metab Care, 2021 [13]. 
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Demographics show that skeletal muscle mass and strength gradually decline after the age 

of 30 years. The age-related decline in muscle mass and strength has been estimated to 

occur at a rate of ∼1% and ∼3% per year, respectively [14, 15]. Low muscle mass and 

strength in older adults are associated with increased morbidity, higher mortality rates, and 

the development of chronic diseases [16, 17]. Ageing is associated with lower dietary 

protein intake levels and a more sedentary lifestyle, which are major contributors to the 

decline of muscle mass and strength in older adults [17, 18]. In addition, the age-related 

loss of muscle mass and function are further accelerated following the development and 

progression of chronic diseases, as depicted in Figure 2 [19, 20]. When compared to healthy 

age-matched adults, patients with chronic diseases such as diabetes mellitus, chronic 

obstructive pulmonary disease, cancer, and chronic kidney disease are consistently 

reported to have lower muscle mass and strength [21-24]. In these populations, dietary 

protein intake levels are generally low due to loss of appetite, change in taste perception, 

early satiety, and/or specific dietary restrictions [25]. Furthermore, fatigue and exercise 

intolerance are highly prevalent and represent important barriers to allow ample physical 

activity [26, 27]. Physical inactivity lowers daily muscle protein synthesis rates and results 

in the net loss of muscle mass and strength in both healthy [28, 29] and clinically 

compromised populations [30]. In addition, muscle protein breakdown is generally 

upregulated in patients with chronic diseases due to disease- and treatment-related factors, 

such as inflammation, medication, and renal replacement therapy (dialysis) [20, 31]. In 

combination with insufficient protein intake levels and sedentary behavior, this results in 

accelerated muscle loss and poor physical functioning among patients with chronic 

diseases. This loss of physical function prevents many patients from performing activities of 

daily living, reduces their level of independence, and lowers their quality of life [32]. 

Interventions to maintain, or even increase, muscle mass and strength are, therefore, 

essential in the prevention and treatment of chronic diseases. 
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Figure 2. Schematic overview of the effects of aging, insufficient protein intake combined with a sedentary lifestyle, 

and the development of a chronic disease on muscle strength and the consequences for functional status. 

 

Interventional nutritional strategies to prevent malnutrition and improve protein intake 

levels are increasingly implemented in clinical care to support muscle maintenance in 

clinically compromised populations. However, these interventions should be patient-

tailored as their applicability and effectivity may vary between different patient 

(sub)populations. It has been shown that the muscle protein synthetic response following 

protein ingestion is blunted among several clinically compromised populations [33, 34]. This 

phenomenon, coined anabolic resistance, has also been observed in healthy older adults 

and seems to be aggravated by the development and progression of chronic diseases [35]. 

In older adults, the anabolic resistance of skeletal muscle tissue can be, at least partly, 

overcome through ingestion of a greater amount (high-quality) protein [36]. In accordance, 

the recommended daily protein intake level to maintain muscle mass and strength for older 

adults is greater (1.0 - 1.2 g/kg body weight) when compared to younger adults (0.8 g/kg 

body weight) [37]. To overcome the anabolic resistance of skeletal muscle tissue and to 

compensate for the upregulated muscle protein breakdown in patients with chronic 

diseases, a daily protein intake level of 1.2 - 1.5 g/kg body weight is generally recommended 

to support muscle maintenance [37]. In healthy adults, several strategies to increase protein 

consumption have been developed, including (pre-sleep) protein supplementation [7], food 

fortification [38], and focus on the consumption of more protein-rich food products [39]. 

However, research on the efficacy of these strategies to support muscle maintenance in 

clinically compromised populations remains quite limited. 

Physical activity improves the anabolic sensitivity of skeletal muscle tissue to protein 

ingestion and is, therefore, also required to increase muscle protein accretion and achieve 

muscle maintenance. Structured physical activity, and resistance-type exercise training in 
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particular, has been proven effective to increase muscle mass and strength in older adults 

[40]. Furthermore, physical activity prior to protein ingestion has been shown to alleviate 

anabolic resistance in healthy older adults [41]. To achieve substantial health benefits, it is 

recommended that older adults perform at least 150 min of moderate-intensity endurance 

exercise and two sessions of resistance-type exercise per week [42]. Though patients with 

chronic diseases are likely to benefit most from an increase in physical activity, specific 

guidelines regarding physical activity and exercise are often lacking. Nonetheless, patient-

specific exercise interventions, especially when combined with adequate dietary protein 

consumption, may prove to be the only effective strategy to attenuate or even prevent the 

accelerated loss of skeletal muscle mass and strength in clinically compromised populations. 

Patients with end-stage renal disease undergoing hemodialysis represent one of the most 

vulnerable patient populations who experience a substantially accelerated loss of skeletal 

muscle mass and strength [20, 43]. During hemodialysis treatments, blood is pumped 

through a dialyzer in which blood and dialysate fluid are separated by a semipermeable 

membrane. This membrane allows metabolic waste products, which are small molecules, 

to diffuse from the blood into the dialysate while larger molecules such as proteins remain 

in the circulation. However, small-sized nutrients also diffuse through this membrane and 

are, therefore, removed from the body during hemodialysis [44, 45]. Especially the removal 

of amino acids, the building blocks of tissue proteins, stimulates muscle protein breakdown 

during and after hemodialysis treatment [31, 46]. Patients generally receive hemodialysis 

treatment two or three times per week. Therefore, they are frequently exposed to 

hemodialysis-associated muscle catabolism. In addition, other treatment-related factors 

such as prescribed dietary restrictions and disease-related factors including inflammation, 

reduced appetite, and oxidative stress further compromise the nutritional status of patients 

with end-stage renal disease [47]. A recent meta-analysis reported that the protein energy 

wasting syndrome (i.e. reduced or loss of (lean) body mass with insufficient dietary intake 

and reduced biochemical parameters such as serum albumin) was present in 28-54% of 

patients undergoing hemodialysis treatment globally [48, 49]. As protein energy wasting is 

closely associated with higher mortality rates in patients with end-stage renal disease, 

interventions to maintain and/or improve nutritional status tailored to this clinically 

compromised population are urgently required [50-52].  
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Outline of this thesis  

 
This thesis describes several studies that assessed the efficacy of dietary protein and 

exercise interventions during hemodialysis to support muscle maintenance in patients with 

end-stage renal disease. In Chapter 2 we conducted a literature study on habitual dietary 

protein intake and physical activity in patients with end-stage renal disease on chronic 

hemodialysis treatment. Furthermore, we identified possible dietary protein and physical 

activity interventions to support muscle mass maintenance in these patients. Subsequently, 

we quantified amino acid removal during hemodialysis in end-stage renal disease patients 

who were consuming their habitual diet throughout hemodialysis treatments (Chapter 3). 

This allowed us to provide end-stage renal disease patients with an evidence-based amount 

of protein during hemodialysis in Chapter 4 and assess whether this could compensate for 

amino acid removal. Furthermore, in this chapter we investigated the impact of performing 

intradialytic exercise prior to protein ingestion on circulating amino acid availability and 

amino acid removal throughout hemodialysis. We followed up on this work by assessing 

uremic toxin removal when patients performed exercise and/or ingested protein during 

hemodialysis in Chapter 5. It is clinically important that intradialytic anabolic interventions 

do not compromise the removal of uremic toxins during hemodialysis. Subsequently, we 

compared the effects of supplementing protein with and without keto-analogues of 

branched-chain amino acids throughout hemodialysis on circulating amino acid availability, 

amino acid removal, and amino acid oxidation. These data are addressed in Chapter 6. 

Lastly, the results of the studies described in this thesis are discussed in a broader context 

and implications for future research are provided in Chapter 7. 
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Abstract 

 
End-stage renal disease patients have insufficient renal clearance capacity left to 

adequately excrete metabolic waste products. Hemodialysis (HD) is often employed to 

partially replace renal clearance in these patients. However, skeletal muscle mass and 

strength start to decline at an accelerated rate after initiation of chronic HD therapy. An 

essential anabolic stimulus to allow muscle maintenance is dietary protein ingestion. 

Chronic HD patients generally fail to achieve recommended protein intake levels, in 

particular on dialysis days. Besides a low protein intake on dialysis days, the protein 

equivalent of a meal is extracted from the circulation during HD. Apart from protein 

ingestion, physical activity is essential to allow muscle maintenance. Unfortunately, most 

chronic HD patients have a sedentary lifestyle. Yet, physical activity and nutritional 

interventions to support muscle maintenance are generally not implemented in routine 

patient care. To support muscle maintenance in chronic HD patients, quantity and timing of 

protein intake should be optimized, in particular throughout dialysis days. Furthermore, 

implementing physical activity either during or between HD sessions may improve the 

muscle protein synthetic response to protein ingestion. A well-orchestrated combination of 

physical activity and nutritional interventions will be instrumental to preserve muscle mass 

in chronic HD patients. 
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Introduction 

 
Chronic kidney disease (CKD) is currently a public health problem with a global prevalence 

of 10% and the cause of approximately 33 million disability-adjusted life-years worldwide 

[1,2]. Development and progression of CKD are associated with the age-related decline in 

renal function, especially in individuals with hypertension and diabetes mellitus [3-5]. 

Therefore, the rapid ageing of our population is expected to further increase prevalence of 

CKD and its progression to end-stage renal disease (ESRD) [6,7]. The glomerular filtration 

rate in ESRD patients is below 15 mL/min/1.73m2 and insufficient to adequately remove 

metabolic waste products and fluids from the body [8,9]. Due to the accumulation of 

metabolic waste products in their body, ESRD patients experience phenotypic changes that 

resemble the ageing process, with a progressive loss of skeletal muscle mass and strength 

[10].  

To prevent lethal consequences of metabolic waste product accumulation in ESRD patients, 

hemodialysis (HD) can be used to partially replace renal solute removal [11]. Over the past 

decades, survival of patients undergoing HD has improved substantially [12,13]. However, 

prevention of the adverse effects of HD on body composition has made less progression. 

After initiation of chronic hemodialysis (CHD) therapy, the age-related loss of skeletal 

muscle mass and strength accelerates, and patients typically develop impairments in 

physical function [14-17]. Protein-energy wasting, a severe state of malnutrition, is 

observed in 28 – 54% of CHD patients [18,19]. Loss of skeletal muscle mass and strength 

predisposes CHD patients to frailty and substantially reduces their quality of life [20]. 

Furthermore, the decline in skeletal muscle mass and strength is associated with higher 

hospitalization and mortality rates in CHD patients [20-22]. As the duration of CHD 

treatment is associated with its detrimental effects on body composition, the improved 

survival rate of CHD patients will generate new challenges for healthcare [14]. This 

emphasizes the need to understand and counteract skeletal muscle mass and strength loss 

in CHD patients. 
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Muscle maintenance 

 
Skeletal muscle mass is regulated through a dynamic balance between continuous synthesis 

and breakdown of muscle proteins. The muscle protein pool has shown to possess a 

turnover rate of 1-2%, allowing skeletal muscle tissue to adapt to circumstances such as 

changes in physical activity pattern (e.g. muscle hypertrophy following resistance-type 

exercise training) [23]. Ingesting several protein-containing meals throughout the day 

results in a sinusoidal pattern of subsequent increases and decreases in skeletal muscle 

protein synthesis and breakdown rates [24]. Skeletal muscle protein synthesis rates are high 

during post-prandial periods and low during post-absorptive periods, whilst skeletal muscle 

protein breakdown rates follow a reverse pattern. Muscle maintenance is achieved when 

skeletal muscle protein synthesis rates equal skeletal muscle protein breakdown rates over 

a given period. 

Protein ingestion is an essential requirement to maintain skeletal muscle mass. After 

consumption, dietary protein is absorbed as amino acids in the intestine, with a large 

fraction being subsequently released into the circulation [25]. The release of amino acids 

into the circulation following protein ingestion elevates plasma amino acid concentrations 

for a post-prandial period of up to 5 h [26]. These circulating plasma amino acids serve as 

precursors for de novo synthesis of muscle protein [27]. However, amino acids are more 

than simply building blocks for muscle protein synthesis, as they can function as signaling 

molecules. The post-prandial increase in plasma essential amino acid concentrations, and 

leucine in particular, stimulates anabolic signaling through several molecular pathways, 

such as the mammalian target of rapamycin complex 1 (mTORC1) pathway [28,29]. This 

post-prandial anabolic signaling increases skeletal muscle protein synthesis rates and 

inhibits proteolysis, allowing net muscle protein accretion [27]. 

Muscle loss can be attributed both to an increase in muscle protein breakdown as well as 

to a decline in muscle protein synthesis rates. Previous work has reported increased muscle 

proteolysis in CHD patients due to inflammation, metabolic acidosis, and the dialysis 

procedure itself [30-33]. Furthermore, it has been suggested that the muscle protein 

synthetic response to feeding is impaired in patients with CKD [34]. Whereas a maximal 

post-prandial muscle protein synthetic response has been reported after ingesting up to 20 

g of a high-quality protein in healthy young adults, a lesser response has been observed in 

older individuals [27,35,36]. More recently, van Vliet et al. were unable to detect a 

measurable increase in skeletal muscle protein synthesis rates in CHD patients following 

ingestion of a meal containing 20 g protein [37]. The latter suggests that CHD patients suffer 

from a blunted muscle protein synthetic response to feeding, a phenomenon that has been 

coined anabolic resistance. In healthy elderly individuals, it has been shown that the 

anabolic resistance of skeletal muscle tissue can be overcome through ingesting a greater 
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amount of protein (at least 30 g of a high-quality protein) [38] and/or performing a bout of 

resistance-type exercise prior to feeding [39]. When tailored specific to CHD patients, these 

anabolic strategies may prove essential to attenuate or even prevent the accelerated loss 

of skeletal muscle mass and strength in ESRD patients undergoing HD. 

 

Dietary protein intake in end-stage renal disease patients on 

hemodialysis  

 
For healthy young adults, the recommended dietary protein intake to achieve a net balance 

between muscle protein synthesis and breakdown rates has been set at 0.8 g protein/kg 

body weight/day by the World Health Organization [40,41]. This level of protein intake may 

not be sufficient to support muscle maintenance in CHD patients. According to the National 

Kidney Foundation K/DOQI Clinical Practice Guidelines, these patients are recommended to 

ingest >1.2 g protein/kg body weight/day [42-45]. However, CHD patients generally do not 

meet this recommended level of protein intake. Previous studies in this population have 

observed a dietary protein intake of 0.9 – 1.0 g protein/kg body weight/day [46-51]. 

Especially on dialysis days, factors such as time constraints and reduced appetite make it 

difficult for patients to consume ample dietary protein [52]. As a result, dietary protein 

intake in CHD patients has been reported to be ∼0.8 g protein/kg body weight on dialysis 

days compared to ~1.0 g protein/kg body weight on non-dialysis days [50]. 

In addition to low protein intake, another factor compromises plasma amino acid 

availability on dialysis days. During HD, both metabolic waste products as well as circulating 

amino acids are able to diffuse through the semipermeable dialysis membrane [11]. The 

diffusion into the dialysate results in a considerable extraction of circulating amino acids 

throughout HD [30,53-56]. We have recently shown that during a single HD session, ∼12 g 

amino acids are extracted from the circulation in CHD patients who ingest their habitual 

diet during HD [57]. This amount equals the quantity of amino acids that is released into the 

circulation following ingestion of a typical meal (containing 20 – 25 g protein). Loss of 

circulating amino acids causes a significant decline of plasma amino acid concentrations 

throughout HD [55,57]. Moreover, Ikizler et al. showed that in fasting CHD patients, plasma 

amino acid concentrations remain low for at least 2 hours after cessation of HD [30]. The 

HD-induced decline in plasma amino acid concentrations has been shown to cause 

substantial catabolism of skeletal muscle tissue in fasted CHD patients [58,59]. The 

continuous extraction of amino acids throughout HD stimulates skeletal muscle tissue to 

release amino acids into the circulation [60,61]. This homeostatic process attenuates the 

decline in plasma amino acid concentrations and may prevent subsequent detrimental 

effects on organs that are necessary to sustain life [62]. In addition, the decline in plasma 
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amino acid concentrations reduces the availability of precursors for de novo synthesis of 

muscle proteins during and following HD. To allow a muscle protein synthetic response 

during this period, the extraction of circulating amino acids should be compensated for 

through amino acid and/or protein administration. 

Provision of protein-rich nutrition during HD is often recommended to increase dietary 

protein intake on dialysis days [63-66]. Ingestion of 40 – 60 g protein has been shown to 

prevent the HD-induced decline in plasma amino acid concentrations in multiple studies 

[58,59,67,68]. Furthermore, Pupim et al. demonstrated that ingestion of 57 g protein 

resulted in a positive forearm amino acid balance throughout HD [58]. Thus, HD-associated 

skeletal muscle catabolism may be prevented through ingestion of sufficient protein during 

HD. Several studies have also observed long-term beneficial effects of protein 

supplementation during HD, such as an increase in lean body mass, improvement in physical 

function, and decrease in mortality [69-71]. However, data from our lab [57] and others 

[56,67] indicate that protein ingestion during HD is also accompanied by an increase in 

amino acid extraction, presumably due to a higher subsequent plasma-dialysate diffusion 

gradient (Figure 1). Due to this extraction following protein ingestion during HD, less amino 

acids become available to stimulate muscle protein synthesis rates and serve as precursors 

for de novo synthesis of muscle protein. Considering the anabolic resistance of skeletal 

muscle tissue that is also present in this population, CHD patients will need to ingest well 

above 20 g high-quality protein during HD to allow a post-prandial increase in skeletal 

muscle protein synthesis and an inhibition of proteolysis. 

However, high quality (animal-derived) protein is rich in phosphorous [72]. In CHD patients, 

an increased dietary protein intake may lead to hyperphosphatemia or the need for 

phosphate binders. Furthermore, it has been suggested that an increased dietary protein 

intake in CHD patients provides more uremic toxin precursors and leads to higher uremic 

solute concentrations between HD sessions [73]. Recently, our laboratory has shown that 

the ingestion of branched-chain ketoacids, which contain no phosphorous or nitrogen, 

significantly stimulates skeletal muscle protein synthesis rates in healthy elderly individuals 

[74]. Ketoacid supplementation in CKD disease patients has been shown to reduce the 

generation of toxic metabolic waste products, while maintaining a good nutritional status 

[75]. However, it remains to be established whether ketoacid supplementation could 

support muscle maintenance in CHD patients. 
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Figure 1. Conceptual overview of the effects of hemodialysis, protein ingestion, and physical activity on the muscle 
protein synthetic and proteolytic response. The removal of amino acids during hemodialysis (HD) stimulates 
muscle protein breakdown (MPB) rates due to decreased plasma amino acid concentrations. Protein ingestion can 
maintain, or even increase, plasma amino acid concentrations throughout HD, which increases muscle protein 
synthesis (MPS) rates, while it may attenuate the HD-induced increase in MPB rates. However, elevated plasma 
amino acid concentrations also increase amino acid removal during HD. Physical activity before or during HD may 
increase the use of plasma amino acids for de novo MPS, and thereby reduce amino acid removal from the 
circulation during HD. Dashed lines in green represent processes that support muscle maintenance, whereas 
dashed lines in red represent processes that compromise muscle maintenance. 
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Physical activity in end-stage renal disease patients on 

hemodialysis  

 
Another key component for muscle maintenance is physical activity. Physical activity and 

exercise stimulate skeletal muscle protein synthesis rates, with post-absorptive muscle 

protein synthesis rates being elevated for up to 24 or even 48 hours [76,77]. Furthermore, 

physical activity performed prior to food intake augments the post-prandial muscle protein 

synthetic response to feeding [78-81]. In contrast, a decline in physical activity reduces the 

muscle protein synthetic response to feeding [82-84]. In other words, whereas physical 

activity makes skeletal muscle tissue more sensitive to the anabolic properties of amino 

acids, muscle disuse leads to anabolic resistance of skeletal muscle tissue [85]. In support, 

daily exercise has been shown to increase skeletal muscle protein synthesis rates 

throughout the day [86], while a decline in physical activity has been shown to lower daily 

muscle protein synthesis rates [87]. Consequently, ample physical activity has been 

associated with a reduced age-related loss of muscle mass and strength [88,89], whereas a 

decline in the level of physical activity (e.g. during bed rest or limb immobilization) has been 

shown to induce a rapid decline in muscle mass and strength [90,91].  

According to the Physical Activity Guidelines for Americans, patients with chronic diseases 

should follow the key physical activity guidelines for healthy adults to achieve substantial 

health benefits [92]. These guidelines recommend patients to perform at least 150 – 300 

min per week of moderate-intensity aerobic exercise, 75 – 150 min of vigorous-intensity 

aerobic exercise per week, or an equivalent combination of both. In addition, muscle-

strengthening activities that involve all major muscle groups should be performed at least 

twice per week. However, these guidelines do not contain specific recommendations for 

CHD patients. The Renal Association Clinical Practice Guideline on Hemodialysis 

recommends that all CHD patients without contraindication should perform at least 30 min 

of supervised moderate-intensity exercise during every dialysis session [93]. In addition, the 

guideline states that CHD patients should be encouraged to undertake physical activity on 

non-dialysis days. In line with this recommendation, it has recently been suggested that 

mortality rates are reduced in CHD patients who perform at least 4,000 steps on non-dialysis 

days [94].  

However, CHD patients typically adopt a sedentary lifestyle and spend less time being 

physically active than healthy adults [95,96]. In the United States, almost 50% of CHD 

patients perform exercise once or less than once per week [96]. A HD session represents a 

long (3 – 4 h) sedentary period, which often hinders CHD patients to engage in physical 

activity and, as such, dialysis treatments contribute to the lower physical activity levels 

[97,98]. Gomes et al. observed that CHD patients took 4362±2084 and 7007±3437 steps on 

dialysis and non-dialysis days, respectively, compared to 8792±2870 steps taken by age-
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matched healthy controls [98]. The low habitual physical activity level in these patients is 

another key factor responsible for the accelerated loss of muscle mass and strength in CHD 

patients [17]. Interventions in CHD patients targeted to preserve or even increase muscle 

mass should not only provide nutritional support but also increase physical activity levels to 

maximize their impact.  
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Interventions to support muscle maintenance in end-stage renal 

disease patients on hemodialysis  

 
Physical activity interventions for CHD patients may implement exercise during HD 

(intradialytic) or between HD sessions (interdialytic). A recent meta-analysis by Clarckson et 

al. reported no differences in the efficacy of intradialytic when compared with interdialytic 

exercise on improvements of physical function in CHD patients [99]. Due to exercise 

intolerance, CHD patients typically show low adherence and poor compliance to long-term 

unsupervised physical activity intervention programs [100]. HD sessions represent an 

opportunity to integrate supervised physical activity in the weekly routine of CHD patients. 

Intradialytic physical activity is considered safe and shows greater adherence rates than 

interdialytic physical activity [100-102]. Furthermore, supervision of intradialytic exercise 

sessions provides the opportunity to prescribe a patient-specific and progressive exercise 

program. Physical activity during HD has some limitations compared to interdialytic physical 

activity, such as constraints regarding exercise intensity and upper limb exercises. On the 

other hand, intradialytic physical activity provides distraction for CHD patients during their 

treatment and has been shown to improve their quality of life [101]. Therefore, we would 

advocate the implementation of an intradialytic exercise routine program in lifestyle 

interventions designed for (sedentary) CHD patients.  

In addition to timing, the type of exercise is an important determinant of its potential to 

support muscle maintenance. Resistance-type exercise training is considered most potent 

to augment muscle mass and strength. In healthy adults, resistance-type exercise training 

has been shown to induce a robust increase in both skeletal muscle mass as well as strength 

[103-105]. Furthermore, resistance-type exercise also sensitizes skeletal muscle tissue to 

the anabolic properties of amino acids and, as such, increases the post-prandial muscle 

protein synthetic response to feeding [78,79,81]. In support, it has been reported that a 

single bout of resistance-type exercise performed prior to HD increases amino acid uptake 

by muscle tissue following intradialytic protein ingestion [106]. Intradialytic resistance-type 

exercise programs have been shown to increase skeletal muscle strength, thereby 

improving physical function outcome measures such as the 6-min walk test [99,107-110]. In 

a systematic review of 9 trials that assessed progressive resistance-type exercise training in 

ESRD undergoing HD, Chan and Cheema concluded that resistance-type exercise training 

can effectively induce regional skeletal muscle hypertrophy [111]. However, due to 

inconsistent results of previous studies [69,112-118] it remains unclear whether resistance-

type exercise can increase skeletal muscle mass on a whole-body level in CHD patients.  

Protein ingestion during recovery from resistance-type exercise is required to achieve a 

positive net protein balance and, as such, to allow net muscle protein accretion [76]. Due 

to practical matters, the majority of studies that assessed the impact of resistance-type 
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exercise training in CHD patients implemented their training sessions before or during HD 

[119]. As circulating amino acids are extracted during HD, recovery from those exercise 

sessions typically occurred during conditions of reduced amino acid availability. This may 

have attenuated the anabolic effects of the exercise training programs. Furthermore, the 

combination of amino acid extraction during HD and the anabolic resistance of skeletal 

muscle tissue in CHD patients likely increases the amount of protein that is required 

following intradialytic resistance-type exercise. We suggest that at least 30 g protein should 

be provided to CHD patients during recovery from resistance-type exercise performed 

immediately prior or during HD to allow a muscle protein synthetic response.  

Besides protein ingestion during recovery from exercise, it has been advocated that every 

main meal (breakfast, lunch, and dinner) should contain 20 g high-quality protein to 

optimally stimulate muscle protein synthesis rates throughout the day [120,121]. We 

suggest that CHD patients should ingest well above 20 g high-quality protein per main meal 

to compensate for the blunted muscle protein synthetic response to feeding, recognizing 

that additional measures to prevent hyperphosphatemia might be necessary. In addition, 

ingesting a protein-rich snack prior to sleep, especially on training days, may further support 

muscle mass maintenance [24]. Though the impact of these nutritional strategies has not 

been assessed in CHD patients, they would likely be supplemental in the prevention of 

protein malnutrition in this population. Effectiveness of any nutritional intervention largely 

depends on long-term adherence and compliance. However, adherence to dietary 

interventions in CHD patients is often poor due to barriers such as dialysis time, motivation, 

and lack of social support [122]. Therefore, CHD patients should be advised on protein 

options that are easy to prepare, convenient to consume, and have an acceptable taste.  

A well-orchestrated lifestyle intervention program combining exercise and nutritional 

intervention for CHD patients is required to attenuate or even prevent the loss of muscle 

mass, strength, and functional capacity in this population. For such a multimodal 

interventional approach to be effective, a (more) personalized supervision of CHD patients 

provided by a team of healthcare specialists with physical activity and nutritional expertise 

is required. A close collaboration between nephrologists, physical therapists, and dietitians 

in both research and clinical care will be essential to improve the health and well-being of 

the growing number of CHD patients. 
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Conclusions  

 
The gradual loss of skeletal muscle mass in CHD patients accelerates after initiation of 

intermittent HD treatment. Muscle protein breakdown rates in CHD patients are 

increased, while muscle protein synthesis rates fail to match this increase due to 

insufficient protein ingestion, amino acid extraction during HD, and the prevalence of 

anabolic resistance. Protein intake of CHD patients should be increased on dialysis days to 

compensate for extraction of circulating amino acids during HD and to compensate for the 

blunted muscle protein synthetic response to feeding in these patients. Implementing 

structured physical activity in the daily routine of CHD patients represents a feasible 

strategy to increase the skeletal muscle protein synthetic response to protein ingestion 

and, as such, to alleviate anabolic resistance. More insight in the impact of protein 

ingestion and exercise in CHD patients on both dialysis as well as non-dialysis days is 

required to develop more effective nutritional and exercise intervention programs that 

can attenuate or even prevent muscle loss in CHD patients. 
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Abstract 

 
Background 

Poor nutritional status is frequently observed in end-stage renal disease patients and 

associated with adverse clinical outcomes and increased mortality. Loss of amino acids 

(AAs) during hemodialysis (HD) may contribute to protein malnutrition in these patients. 

 

Objective 

We aimed to assess the extent of AA loss during HD in end-stage renal disease patients 

consuming their habitual diet. 

 

Methods 

Ten anuric chronic HD patients (mean±SD age: 67.9±19.3 y, BMI: 23.2±3.5 kg/m2), 

undergoing HD 3 times per week, were selected to participate in this study. Spent dialysate 

was collected continuously and plasma samples were obtained directly before and after a 

single HD session in each participant. AA profiles in spent dialysate and in pre-HD and post-

HD plasma were measured through ultra-performance liquid chromatography to determine 

AA concentrations and, as such, net loss of AAs. In addition, dietary intake before and 

throughout HD was assessed using a 24-h food recall questionnaire during HD. Paired-

sample t tests were conducted to compare pre-HD and post-HD plasma AA concentrations. 

 

Results 

During an HD session, 11.95±0.69 g AAs were lost via the dialysate, of which 8.26±0.46 g 

were nonessential AAs, 3.69±0.31 g were essential AAs, and 1.64±0.17 g were branched-

chain AAs. As a consequence, plasma total and essential AA concentrations declined 

significantly from 2.88±0.15 and 0.80±0.05 mmol/L to 2.27±0.11 and 0.66±0.05 mmol/L, 

respectively (P<0.05). AA profiles of pre-HD plasma and spent dialysate were similar. 

Moreover, AA concentrations in pre-HD plasma and spent dialysate were strongly 

correlated (Spearman’s ρ=0.92, P<0.001). 

 
Conclusions 

During a single HD session, ∼12 g AAs are lost into the dialysate, causing a significant decline 

in plasma AA concentrations. AA loss during HD can contribute substantially to protein 

malnutrition in end-stage renal disease patients. 
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Introduction 

 
End-stage renal disease patients fail to adequately remove metabolic waste products and 

excess fluids from the body [1]. To prevent lethal consequences of waste product 

accumulation, hemodialysis (HD) is employed to replace 10 – 15% of renal clearance 

capacity [2]. However, patients undergoing chronic hemodialysis (CHD) treatment typically 

develop impairments in physical function due to a decline in lean tissue mass, 

cardiorespiratory capacity, and muscle strength [3-5]. Though muscle and strength loss can 

be part of the normal ageing process, the progressive loss of skeletal muscle mass is 

remarkably accelerated in CHD patients [6, 7]. Skeletal muscle wasting in CHD patients can 

be attributed to various factors, including inflammation, malnutrition, and nutrient loss 

during each HD session [8-10].  

Amino acids are among the nutrients lost in the dialysate during HD and of key importance 

for muscle maintenance [10, 11]. Previous work from our lab [12-15] as well as many others 

[16-21] has shown that skeletal muscle protein turnover is highly responsive to postprandial 

increases in plasma amino acid concentrations. In both healthy and clinical populations the 

postprandial rise in plasma amino acid concentrations stimulates muscle protein synthesis 

rates and inhibits protein breakdown, allowing net muscle protein accretion [14, 22]. In CHD 

patients muscle protein synthesis as well as breakdown rates are stimulated during HD [23, 

24]. Previous studies have shown that loss of amino acids during HD causes a decline in 

plasma amino acid concentrations in fasted patients [11, 25-29]. Moreover, HD induces a 

negative net forearm amino acid balance in fasting patients, which may be indicative of 

muscle proteolysis [24]. 

In contrast to clinical practice in North America, most CHD patients in Europe are allowed 

to eat and drink during their HD treatment [30]. There is an ongoing debate on the 

implementation of dietary protein intake during HD to counterbalance the HD-induced 

decline in plasma amino acid concentrations in routine care, as some nephrologists cite 

concerns regarding patient safety and increased staff burden. Moreover, it remains to be 

established whether habitual food intake before and during HD increases the subsequent 

loss of amino acids in the dialysate. Previous estimates may, therefore, not accurately 

reflect amino acid loss in CHD patients consuming their habitual diet during HD.  

Therefore, we selected ten CHD patients to participate in a study in which we obtained 

blood samples and spent dialysate during HD to assess the selective amino acid loss in the 

dialysate. Plasma and dialysate amino acid concentrations were measured to calculate 

individual amino acid extraction rates and to evaluate the relationship between basal 

plasma amino acid concentrations, food intake, and amino acid extraction during HD. This 

study provides insights in the amino acid extraction and nutritional requirements of CHD 

patients consuming their habitual diet during HD.  
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Methods 

 
Subjects 

Ten patients with a urine production below 100 mL/day, undergoing HD three times 

per week with high-flux membranes for at least 6 months, were recruited through the 

outpatient population visiting the HD department of Maastricht University Medical 

Center+, Maastricht, The Netherlands. Patients with an active infection, cognitive 

disorder, or missed HD session in the last month prior to the study period were 

excluded. Patients’ characteristics are presented in Table 1. Patients were informed of 

the nature of the experimental procedures prior to obtaining written informed 

consent. The current study was approved by the Medical Ethical Committee of the 

Maastricht University Medical Centre+ and registered at the Netherlands Trial Registry 

(NTR7101). The applied study design complies with the standards outlined in the most 

recent version of the Helsinki Declaration. 

 

Table 1. Characteristics of included chronic hemodialysis patients 

  Patients  

Age, y 67.9 ± 19.3 

Gender, male/female 7/3 

Cause of ESRD 4 Hypertension 

 2 Diabetes Mellitus 

 2 Auto-immune 

 2 Other 

Dialysis vintage, months  46.8 ± 28.4 

Height, cm 166 ± 9 

Weight, kg 64.4 ± 15.9 

Body mass index, kg/m2 23.2 ± 3.5 

Lean tissue index, kg/m2 11.7 ± 1.7 

Handgrip strength, kg 24.5 ± 11.7 

Serum albumin, g/L 33.5 ± 2.6 

All values are expressed as mean±SD, n=10. ESRD, end-stage renal disease. 

 

Study design 

A single test day per patient was scheduled during their second or third weekly HD 

session. Handgrip strength and body composition were measured before HD using a 

mechanical dynamometer (Jamar, Nottinghamshire, UK) and the Body Composition 

Monitor (Fresenius Medical Care, Bad Homburg, Germany), as described before [31]. 
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Directly before and after a 4-hour HD session, blood was sampled from the arterial 

side of the arteriovenous shunt for analysis of plasma amino acid concentrations. 

Throughout HD, spent dialysate was continuously collected at a rate of 1.00 L/h in a 

container using a reversed injection pump (Alaris GW, Rolle, Switzerland). Every 30 

min the container was replaced for a new one. After homogenization of the filled 

container, a sample of the collected dialysate was obtained. 

 

Hemodialysis treatment 

Patients’ prescribed blood (300 – 400 mL/min) and dialysate flow rates (500 – 600 mL/min) 

were used during HD. Desired ultrafiltration volume was determined by the treating 

nephrologist and averaged 1.75±0.71 L. HD sessions were performed with high-flux 

polysulfone (n=7; FX-100, Fresenius Medical Care, Bad Homburg, Germany) and 

polynephron (n=3; ELISO-17H, Nipro Medical Corporation, Osaka, Japan) membranes with 

surface areas of 2.2 and 1.7 square meter, respectively. Dialysate composition used was 

equal for all HD sessions and contained sodium (138 mM), potassium (2.00 mM), calcium 

(1.50 mM), magnesium (0.50 mM), chloride (109 mM), bicarbonate (32.0 mM), and glucose 

(1.00 g/L).  

 

Food intake 

Patients were encouraged to consume their habitual diet before and during the test day. 

Habitual food intake during HD consisted mainly of home-made sandwiches, cookies, 

coffee, and tea. During the fourth hour of the HD session, dietary intake records of the 

participants were acquired through a 24-h food recall questionnaire. One researcher, who 

had received training by a licensed dietician, carefully instructed patients on how to perform 

the food recall questionnaire. All ingested foods and beverages were reported in household 

measurements or specified as portion sizes. Subsequently, energy and macronutrient intake 

were calculated using free available software from the Dutch Nutrition Centre 

(mijn.voedingscentrum.nl) based upon product specifications provided by food suppliers 

and the Dutch Food Consumption Database 2016 (NEVO; RIVM; Bilthoven, the Netherlands) 

[32]. Reported food intake was calculated for the HD session and the 24-h period.  

 

Plasma amino acid concentrations 

Blood samples were collected in EDTA-containing tubes and centrifuged at 3500g at 4°C for 

10 min to obtain plasma. Aliquots of plasma were frozen in liquid nitrogen and stored in a 

freezer at -80°C until further analysis. For determination of plasma amino acid 

concentrations, 50 µL of blood plasma was deproteinized using 100 µL of 10% 5-

sulfosalicylic acid (SSA) with 50 µM of MSK-A2 internal standard (Cambridge Isotope 

Laboratories, Massachusetts, USA). Subsequently, 50 µL of ultra-pure demineralized water 

was added and this solution was centrifuged at 14000g at 4°C for 15 min. After 



Chapter 3 

44 

centrifugation, 10 µL of the supernatant was added to 70 µL Borate reaction buffer (Waters, 

Saint-Quentin, France). In addition, 20 µL of AccQ-Tag derivatizing reagent solution (Waters, 

Saint-Quentin, France) was added after which the mixture was heated to 55°C for 10 min. 

Amino acid profiles in the derivative were determined by ultra-performance liquid 

chromatography mass spectrometry (UPLC-MS; ACQUITY UPLC H-Class with QDa; Waters, 

Saint-Quentin, France) as described previously [33]. 

 

Dialysate amino acid concentrations 

Spent dialysate samples were collected in sterile tubes, immediately frozen in liquid 

nitrogen, and stored in a freezer at -80°C until further analysis. Collected dialysate was 

concentrated 5 times through freeze-drying 25 mL of the sample and dissolving the dried 

product in 5.0 mL 0.1 M hydrogen chloride. After homogenisation, 50 µL of the 

concentrated sample was deproteinized using 100 µL of 10% SSA with 50 µM of MSK-A2 

internal standard and processed in the same manner as plasma samples. Subsequently, 

amino acid profiles were determined through UPLC-MS. 

 

Calculations 

Amino acid loss in the dialysate (g) was calculated by multiplying the mean total amino acid 

(TAA) concentration of spent dialysate (g/L) with spent dialysate and ultrafiltration volume 

(L). Essential amino acid (EAA) values are the sum of histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine values. Non-essential amino 

acid (NEAA) values equal the sum of alanine, arginine, asparagine, aspartic acid, beta 

alanine, cystine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine. Branched-

chain amino acid (BCAA) values are the total of leucine, isoleucine, and valine values. 

 

Statistical analysis 

All data are expressed as mean±SEM unless indicated otherwise. Time-dependent variables 

(i.e. TAA, EAA, and individual amino acid loss per 30 min) were analysed by a one-factor 

repeated-measures ANOVA. If a statistically significant time-effect was found, post-hoc 

paired samples t tests were performed to locate the effects. Pre-HD and post-HD plasma 

amino acid concentrations were compared using paired-samples t test. Correlations 

between dialysate amino acid concentrations and pre-HD plasma amino acid 

concentrations, and dietary intake were assessed through determining the parametric 

Pearson’s or the nonparametric Spearman’s Rank Correlation Coefficients for normally and 

not normally distributed data, respectively. Statistical significance was set at P<0.05. All 

analyses were performed using SPSS Statistics software (version 24.0; IBM Corp., Armonk, 

NY, USA).  
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Results 

 
Plasma amino acid concentrations 

Pre-HD plasma TAA, NEAA, and EAA concentrations averaged 2.88±0.15, 2.08±0.11, and 

0.80±0.05 mmol/L, respectively. Post-HD plasma TAA, NEAA, and EAA concentrations were 

significantly reduced to 2.27±0.11, 1.62±0.07, and 0.66±0.05 mmol/L, respectively (P<0.05). 

Pre-HD and post-HD plasma BCAA concentrations were 0.35±0.03 and 0.30±0.03 mmol/L, 

respectively (P=0.11). Whereas most individual amino acid concentrations decreased during 

HD, we observed a significant increase in plasma tryptophan concentrations (Figure 1A; 

P=0.003). 

Figure 1. Amino acid concentrations in (A) pre- and post-hemodialysis plasma and (B) spent dialysate of chronic 
hemodialysis patients. Plasma concentrations of 22 amino acids are expressed as µmol/L. Values represent 
means+SEMs, n=10. *Post-HD plasma amino acid concentrations are significantly different from pre-HD plasma 
amino acid concentrations, P<0.05. AA, amino acid; HD, hemodialysis. 
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Figure 2. Amino acid loss during a single hemodialysis session in chronic hemodialysis patients. Filled circles 

represent individual data points and bars represent group means ± SEMs, n=10. BCAA, branched-chain amino acid; 

EAA, essential amino acid; HD, hemodialysis, NEAA, non-essential amino acid; TAA, total amino acid.  

 

 

Spent dialysate amino acid concentrations 

In the spent dialysate, the amino acids with the highest and lowest average concentrations 

were glutamine and aspartic acid, respectively (Figure 1B). Spent dialysate TAA 

concentrations averaged 0.73±0.03 mmol/L and did not differ between the 30-min sampling 

periods throughout the HD session (P=0.94). Spent dialysate volume per HD session 

averaged 128±5.05 L. TAA, NEAA, EAA, and BCAA losses during a single HD session are 

depicted in Figure 2. Amino acid concentrations in spent dialysate were strongly correlated 

with pre-HD plasma amino acid concentrations (Figure 3; Spearman’s ρ=0.92, P<0.001). 
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Figure 3. Correlation between amino acid profiles in spent dialysate and pre-hemodialysis plasma of chronic 

hemodialysis patients. Amino acid concentrations are expressed as µmol/L, n=10. Spearman’s rank correlation 

coefficients were determined to assess correlations. HD, hemodialysis; TAA, total amino acid. 

 

Dietary intake prior to and during hemodialysis 

Reported 24-h dietary protein and energy intake averaged 1.03±0.13 g/kg and 28.3±2.9 

kcal/kg, respectively (Table 2). All included patients consumed food and beverages during 

HD. Patients ingested 0.33±0.05 g protein/kg and 8.9±1.0 kcal/kg during a single HD 

session. Protein intake during HD was not associated with an attenuated decline in plasma 

amino acid concentrations over the HD session (P=0.22). Protein intake was positively 

correlated with the incremental area under the curve of spent dialysate BCAA 

concentrations (Figure 4A; Pearson’s r= 0.64, P=0.045). Furthermore, the correlation 

between of protein intake with the incremental area under the curve of spent dialysate 

TAA concentrations nearly reached statistical significance (Figure 4B; Pearson’s r=0.62, 

P=0.055). 

Table 2. Reported daily habitual energy and macronutrient intakes prior to and during 

hemodialysis in chronic hemodialysis patients consuming their habitual diet 

  24 h intake  During HD (4 h) 

Energy, kcal 1786 ± 189 553 ± 53 

Protein, g 64.6 ± 7.5 20.1 ± 2.9 

Fat, g 72.6 ± 6.8 21.5 ± 3.1 

Carbohydrates, g 213 ± 26.3 67.1 ± 6.5 

All values are expressed as mean ± SEM, n=10. HD, hemodialysis.  
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Figure 4. Correlations between protein intake during a single hemodialysis session and the incremental area’s 

under the curve of (A) spent dialysate branched-chain amino acid concentrations and (B) spent dialysate total 

amino acid concentrations in chronic hemodialysis patients. Protein intake levels are expressed as g/HD session, 

n=10. Pearson’s rank correlations coefficients were determined to assess correlations. BCAA, branched-chain 

amino acid; HD, hemodialysis; iAUC, incremental area under the curve; TAA, total amino acid. 
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Discussion 

 
This is the first study to show that CHD patients ingesting their habitual diet throughout HD 

lose ∼12 g of amino acids from the circulation during a single HD session. This is equivalent 

to the amount of amino acids being released into the circulation following ingestion of a 

typical meal (containing 20 – 25 g protein). The loss of amino acids during HD results in a 

significant decline in circulating plasma amino acid concentrations. 

HD is a life-saving treatment for end-stage renal disease patients with inadequate residual 

renal function [34]. Besides harmful substances, HD also extracts small-sized nutrients from 

the circulation [11]. We observed a decline in plasma concentrations of most amino acids 

during HD, which resulted in a ∼20% decrease of plasma TAA concentrations. Individual 

changes in plasma TAA, NEAA, EAA, and BCAA concentrations throughout HD are depicted 

in Supplemental Figure 1. Plasma TAA concentrations after HD were ∼20% lower in our 

patients when compared with post-absorptive plasma TAA concentrations in healthy older 

adults observed in our lab recently [35]. As depicted in Figure 1, amino acid profiles in pre-

HD plasma and spent dialysate showed the same pattern. Accordingly, the correlation 

between amino acid concentrations in pre-HD plasma and spent dialysate was very strong 

(Figure 3). Thus, all amino acids diffused through the HD membrane without selective 

restriction. During a single HD session, this resulted in an extraction of 11.95 ± 0.69 g amino 

acids from the circulation, of which ∼8 g NEAAs, ∼4 g EAAs, and ∼2 g BCAAs (Figure 2). This 

would be equivalent to the protein provided in a full meal containing 20 – 25 g protein, as 

only ∼50% of ingested dietary protein derived amino acids typically reach the circulation 

during the first few hours after meal ingestion [22, 36].  

It has been suggested that the extraction of amino acids from the circulation may be 

compensated for through eating during HD [37]. In the current study, patients ingested self-

selected foods during HD ad libitum, as they would do during usual care. Despite a mean 

protein intake of 20 g throughout HD sessions, we observed a significant decline in plasma 

amino acid concentrations. An overview of individual food intake and spent dialysate TAA 

concentrations throughout HD is presented in Supplemental Figure 2. Protein ingestion has 

been shown to increase plasma amino acid concentrations in a dose-dependent manner 

[12, 16, 38], which most likely increases diffusion of amino acids into the dialysate. In 

agreement, Veeneman et al. has previously shown that ingestion of protein-enriched meals 

throughout HD increases spent dialysate TAA concentrations [39]. Increased amino acid 

extraction following food intake during HD may prevent patients consuming their habitual 

diet from maintaining their plasma amino acid concentrations throughout HD. 

Current clinical guidelines recommend patients undergoing HD to consume at least 1.2 g 

protein/kg ideal body weight/day [40-42]. However, most CHD patients fail to ingest this 

amount of protein [43, 44]. In the current study, reported habitual dietary protein intake 
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was ∼1.0 g/kg ideal body weight/day and only three patients reported a protein intake of 

at least 1.2 g/kg ideal body weight/day. Inadequate dietary protein intake predisposes to 

the development and progression of protein malnutrition, which is frequently observed in 

CHD patients [45]. Especially on dialysis days, dietary protein intake is important to 

compensate for the HD-induced extraction of amino acids [46]. However, throughout 

dialysis days habitual food ingestion patterns are typically disrupted due to time restrains 

and fatigue caused by the HD session [47, 48]. These barriers to food intake result in a 

reduced dietary protein intake on dialysis days compared to non-dialysis days [43]. In many 

CHD patients, habitual dietary protein intake on dialysis days may not be sufficient to 

compensate for the HD-induced extraction of amino acids, contributing to the depletion of 

body protein stores. 

We would advocate that nutritional interventions to support muscle maintenance in CHD 

patients should aim to increase dietary protein intake on dialysis days. It has been suggested 

that protein intake on dialysis days can be increased through providing more protein-rich 

foods during HD [49]. Furthermore, previous studies have shown that supplementing 30 – 

60 g protein can maintain plasma amino acid concentrations throughout HD [37-39, 50, 51]. 

However, our results indicate that ingestion of a large protein dose during HD will also 

substantially increase amino acid extraction. Consequently, CHD patients who eat during 

HD should consume well over 1.2 g protein/kg (ideal) body weight on dialysis days to allow 

compensation for (additional) HD-based amino acid extraction. It remains to be established 

how much protein should be ingested during HD to optimally support muscle maintenance. 

To allow development of individualized nutritional guidelines for CHD patients, the impact 

of timing and distribution of protein ingestion throughout dialysis days still needs to be 

assessed. 

In conclusion, 8 – 15 g of amino acids are extracted from the circulation during a single HD 

session. Habitual food intake of Dutch CHD patients during HD cannot fully compensate for 

this loss, resulting in a significant decline in circulating plasma amino acid concentrations. 

The observed amino acid extraction contributes substantially to protein malnutrition in CHD 

patients and emphasizes the need to develop effective and individualized nutritional 

strategies to improve nutritional status in patients frequently undergoing HD. 
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Supplementary figure 1. Individual pre-HD and post-HD plasma total amino acid concentrations and protein intake 

throughout a hemodialysis session in ten chronic hemodialysis patients. Protein intake was achieved through 

habitual dietary consumption and is expressed as g, and plasma total amino acid concentrations are expressed as 

µmol/L. BCAA, branched-chain amino acid; EAA, essential amino acid; HD, hemodialysis, NEAA, non-essential 

amino acid; TAA, total amino acid. 
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Supplementary figure 1 (continued). Individual pre-HD and post-HD plasma total amino acid concentrations and 
protein intake throughout a hemodialysis session in ten chronic hemodialysis patients. Protein intake was achieved 
through habitual dietary consumption and is expressed as g, and plasma total amino acid concentrations are 
expressed as µmol/L. BCAA, branched-chain amino acid; EAA, essential amino acid; HD, hemodialysis, NEAA, non-
essential amino acid; TAA, total amino acid. 
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Supplementary figure 2. Individual pre-HD and post-HD plasma total amino acid concentrations and protein intake 

throughout a hemodialysis session in ten chronic hemodialysis patients. Protein intake was achieved through 

habitual dietary consumption and is expressed as g, and plasma total amino acid concentrations are expressed as 

µmol/L. BCAA, branched-chain amino acid; EAA, essential amino acid; HD, hemodialysis, NEAA, non-essential 

amino acid; TAA, total amino acid. 
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Supplementary figure 2 (continued). Individual pre-HD and post-HD plasma total amino acid concentrations and 

protein intake throughout a hemodialysis session in ten chronic hemodialysis patients. Protein intake was 

achieved through habitual dietary consumption and is expressed as g, and plasma total amino acid 

concentrations are expressed as µmol/L. BCAA, branched-chain amino acid; EAA, essential amino acid; HD, 

hemodialysis, NEAA, non-essential amino acid; TAA, total amino acid. 
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Abstract 

 
Background 

Patients with end-stage renal disease (ESRD) undergoing hemodialysis experience a rapid 

decline in skeletal muscle mass and strength. Hemodialysis removes amino acids (AAs) from 

the circulation, thereby lowering plasma AA concentrations and stimulating proteolysis. 

 

Objectives 

In the present study we evaluate the impact of intradialytic protein ingestion at rest and 

following exercise on AA removal and plasma AA availability in patients with ESRD. 

 

Methods 

Ten patients (age: 65±16 y, male/female: 8/2, BMI: 24.2±4.8 kg/m2, serum albumin: 3.4±0.3 

g/dL) with ESRD undergoing hemodialysis participated in this randomized controlled cross-

over trial. During four hemodialysis sessions, patients were assigned to ingest 40 g protein 

or a placebo 60 min after initiation, both at rest (PRO and PLA, respectively) and following 

exercise (PRO+EX and PLA+EX, respectively). Spent dialysate and blood samples were 

collected every 30 min throughout hemodialysis to assess AA removal and plasma AA 

availability. 

 

Results 

Plasma AA concentrations declined by 26.1±4.5% within 30 min after hemodialysis initiation 

during all interventions (P<0.001, η2
p>0.79). Protein ingestion, but not intradialytic exercise, 

increased AA removal throughout hemodialysis (9.8±2.0, 10.2±1.6, 16.7±2.2, and 17.3±2.3 

g during PLA, PLA+EX, PRO, and PRO+EX interventions, respectively; protein effect P<0.001, 

η2
p=0.97; exercise effect P=0.32, η2

p=0.11). Protein ingestion increased plasma AA 

concentrations until the end of hemodialysis, while placebo ingestion resulted in decreased 

plasma AA concentrations (time effect P<0.001, η2
p>0.84). Plasma AA availability (iAUC) was 

greater during PRO and PRO+EX interventions (49±87, and 70±34 mmol/L/240 min, 

respectively) when compared to PLA and PLA+EX interventions (-227±54 and -208±68 

mmol/L/240 min, respectively; protein effect P<0.001, η2
p=0.98; exercise effect P=0.21, 

η2
p=0.16). 

 

Conclusions 

Protein ingestion during hemodialysis compensates for AA removal and increases plasma 

AA availability both at rest and during recovery from intradialytic exercise. Intradialytic 

exercise does not compromise AA removal or reduce plasma AA availability during 

hemodialysis in a post-absorptive or post-prandial state.  



Protein and exercise during hemodialysis 

61 

Introduction 

 

Low muscle mass and strength are frequently observed among patients with end-stage 

renal disease (ESRD) undergoing hemodialysis, which leads to severe impairments in their 

physical function [1-4]. Hemodialysis itself is considered a key factor responsible for the 

accelerated loss of muscle mass and strength in patients with ESRD [5, 6]. Usually, patients 

undergo three 4-h hemodialysis sessions per week to remove metabolic waste products and 

excess fluids from their body. We [7] as well as others [8, 9] have reported that hemodialysis 

removes a considerable amount of amino acids (AAs) from the circulation, thereby lowering 

plasma AA concentrations. This decline in plasma AA availability is suggested to stimulate 

proteolysis, which further contributes to the loss of muscle mass in patients on chronic 

hemodialysis treatment [10, 11]. 

Recently, we have shown that ∼12 g AAs are removed from the circulation during a single 

hemodialysis session [7]. It has been suggested that provision of protein-rich meals or 

supplements is warranted to compensate for AA removal during hemodialysis [8, 12, 13]. 

Ingested protein is digested and AAs are absorbed in the gut, with 40-70% of the protein-

derived AAs being released into the circulation within the next 3 – 6 h [14-16]. However, a 

post-prandial increase in plasma AA concentrations during hemodialysis leads to a greater 

plasma-dialysate diffusion gradient and, as such, greater AA removal [7, 8]. Due to this 

greater AA removal, the efficacy of protein ingestion to compensate for plasma AA removal 

during hemodialysis remains to be determined. We hypothesize that ingestion of 40 g 

protein during hemodialysis will suffice to compensate for AA removal and, as such, prevent 

reduced plasma AA availability. 

Besides protein ingestion, intradialytic exercise (exercise during hemodialysis) has been 

proposed as an effective strategy to improve physical function in patients on chronic 

hemodialysis treatment [17, 18]. Intradialytic exercise is usually performed at a low to 

moderate intensity using a cycle ergometer placed in front of the treatment chair or through 

group-based physical activity sessions [17, 19, 20]. However, the potency of intradialytic 

exercise to support muscle maintenance is still a matter of debate [21-23]. It has been 

suggested that intradialytic exercise may actually enhance hemodialysis-initiated 

proteolysis and, as such, could even compromise muscle conditioning [21, 24]. We 

hypothesize that intradialytic exercise leads to greater AA removal during hemodialysis both 

in a post-prandial and post-absorptive state. 

The present study evaluates the impact of protein ingestion during hemodialysis at rest and 

during recovery from exercise on AA removal and plasma AA availability in patients with 

ESRD. Ten patients with ESRD on chronic hemodialysis treatment were selected to 

participate in a randomized cross-over design. This study provides a complete insight into 

the impact of both protein ingestion and intradialytic exercise on AA removal and plasma 

AA availability throughout hemodialysis in patients with ESRD.  



Chapter 4 

62 

Subjects 

 
Ten patients with ESRD and well-functioning arteriovenous shunts, undergoing 

hemodialysis in the morning or afternoon for at least 3 months, were recruited between 

March 2019 and August 2020 through the outpatient population visiting the dialysis 

department of Maastricht University Medical Centre+, Maastricht, The Netherlands (See 

Supplemental Figure 1 for the Consolidated Standards of Reporting Trials (CONSORT) flow 

diagram). Patients with an active infection, cognitive disorder, intolerance to food ingestion 

during hemodialysis, contraindication to intradialytic exercise, or missed hemodialysis 

session in the last month prior to the study period were excluded. After patients expressed 

willingness to participate to their nephrologist, they were informed by an investigator about 

the purpose of the study, experimental procedures, and possible risks prior to signing 

written informed consent. The Medical Research Ethics Committee Academic Hospital 

Maastricht/Maastricht University (NL65880.068.18) and the Hospital Board of the 

Academic Hospital Maastricht approved the current study and it was registered 

prospectively at the Netherlands Trial Register (NL7152). The present study design complies 

with the ethical standards stated in the latest version of the Helsinki Declaration of 1975 as 

revised in October 2013. 
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Methods 

 
Pre-testing 

A pre-testing session was scheduled during routine hemodialysis at least one week before 

the first test day to familiarize patients with intradialytic exercise and determine exercise 

capacity. In addition, patients’ medical history, physical examinations, lab analysis results, 

and hemodialysis regimen were registered. A dialysis cycle ergometer (Thera Riser, Medica 

Medizintechnik GmbH, Hochdorf, Germany) was placed in front of the treatment chair and 

adjusted until the patient was positioned properly. Blood pressure, heart rate, and an 

electrocardiogram were recorded and directly assessed for abnormalities by a physician 

throughout intradialytic exercise performance. After a 5-min warm-up, the resistance level 

of the dialysis cycle ergometer was increased until patients reported a score between 12 – 

15 on the 6 – 20 points Borg Ratings of Perceived Exertion scale [25]. Subsequently, patients 

were instructed to continue cycling at the same resistance level for 10 min. When patients 

reported a score <12 or >15 on the 6 – 20 points Borg Ratings of Perceived Exertion scale 

the resistance level was adjusted accordingly. The resistance level at which patients 

succeeded to perform 10 min of moderate-intensity exercise was used for the exercise 

protocol during test days.  

 

Dietary intake and physical activity 

All patients refrained from any sort of strenuous physical activity 48 h prior to each test day. 

Patients who underwent hemodialysis in the morning reported in an overnight fasted state. 

Those who underwent hemodialysis in the afternoon consumed the same standardized 

breakfast at least 3 h before initiation of their hemodialysis session (providing ∼250 kcal, 

with carbohydrate, fat and protein providing 65, 23, and 12 En%, respectively). Thereafter, 

patients were instructed to remain fasted and avoid caffeine consumption until the end of 

the experimental protocol, but were allowed to ingest water ad libitum. During each test 

day, dietary intake records were acquired through a 24-h food recall questionnaire. 

Furthermore, patients filled out a food diary and wore a SenseWear pro 3 armband 

(Bodymedia®, Pittsburg, PA, USA) for 6 days between the first and second test day to assess 

habitual dietary intake and physical activity levels. A licensed dietician carefully instructed 

patients on how to perform the 24-h food recall questionnaires and 6-d food diary. All 

ingested foods and beverages were reported in household measurements or specified as 

portion sizes. Subsequently, energy and macronutrient intake were calculated using free 

available software from the Dutch Nutrition Centre (http://mijn.voedingscentrum.nl) based 

upon product specifications provided by food suppliers and the Dutch Food Consumption 

Database 2019 [26].  

 

http://mijn.voedingscentrum.nl/
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Study design 

During four hemodialysis sessions, separated by a wash-out period of at least one week, all 

patients were assigned to ingest a placebo (PLA) or protein (PRO) beverage both in a rested 

state as well as following 30 min intradialytic exercise (PLA+EX and PRO+EX, respectively) in 

a randomized cross-over design. The cross-over design was chosen to minimize variability 

of outcome parameters in this heterogeneous population. An overview of test days, which 

were scheduled during patients’ second or third weekly hemodialysis session, is provided in 

Figure 1. Patients were randomly assigned to an order of interventions by an independent 

researcher using an online randomizer (http://www.randomizer.org) and the 

randomization order of test beverages was not shared with investigators, study staff, or 

participants until all procedures and statistical analyses of the primary and secondary 

outcomes were complete. The independent researcher was responsible for the preparation 

of test beverages, which were numbered according to participant and test day number 

before handing them to an investigator. The protein beverage contained 40 g of milk protein 

concentrate (Refit MPC 80, Friesland Campina, Amersfoort, The Netherlands) and two non-

aspartame containing sweeteners (Natrena, Douwe Egberts, Amsterdam, The Netherlands) 

dissolved in 300 mL water. The placebo beverage contained only the two sweeteners 

dissolved in 300 mL water. The independent researcher shared the order of exercise 

performance during test days with the investigators after pre-testing was completed. 

Though patients were blinded to the order of exercise performance, it was not possible to 

conceal the intervention during test days due to the nature of the exercise intervention. 

Patients started the intradialytic exercise by performing a 5-min warming-up on the dialysis 

cycle ergometer, during which they were instructed not to surpass a score of 9 on the 6 – 

20 points Borg Ratings of Perceived Exertion scale. Subsequently, the resistance level was 

increased to the previously determined value and patients continued cycling for 20 min. At 

the end of the intradialytic exercise, patients performed a cooling-down consisting of 3 min 

of cycling with a score between 9 – 12 and the last 2 min with a score below 9 on the 6 – 20 

points Borg Ratings of Perceived Exertion scale. 

 

 

 

 

http://www.randomizer.org/
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Figure 1. Schematic representation of study protocol. t=0 min represents the start of the hemodialysis session. 

During four hemodialysis sessions, patients ingested 40 g protein or placebo both at rest and during recovery 

from intradialytic exercise in a randomized cross-over design. This figure represents test days for the PLA+EX and 

PRO+EX interventions. The study protocol for PLA and PRO interventions was similar but without intradialytic 

exercise. 

 

Hemodialysis treatment 

Patients’ prescribed blood (300 – 400 mL/min) and dialysate flow rates (500 – 600 mL/min), 

dialysate composition, dialysis modality, and dialysis membranes were used during 

hemodialysis and kept constant throughout all test days. Desired ultrafiltration volume was 

determined by the treating nephrologist for each hemodialysis session. Patients were 

dialyzed through a well-functioning arteriovenous shunt in the arm using polysulfone (n=4; 

FX-100, Fresenius Medical Care, Bad Homburg, Germany), polynephron (n=3; Elisio 17H, 

Nipro Medical corporation, Osaka, Japan), and triacetate (n=2; SUREFLUX 19L and n=1; 

SURFLUX 19UX, Nipro Medical Corporation, Osaka, Japan) membranes. 

 

Experimental protocol 

After patients arrived at the dialysis department, their weight was recorded and a Body 

Composition Monitor (BCM®, Fresenius Medical Care, Bad Homburg, Germany) was used to 

assess their body composition, as described before [27]. Subsequently, the arteriovenous 

shunt was checked for recirculation and used to collect arterial plasma samples for AA 

concentrations analyses. After initiation of hemodialysis (t= 0 min), plasma samples were 

collected from the arterial line with 30-min intervals (at t= 30, 60, 90, 120, 150, 180, and 

210 min) and spent dialysate was collected continuously in a container at a rate of 1.0 L/h 

using a reversed injection pump (Alaris GW, Rolle, Switzerland). Every 30 min these 
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containers were replaced (at t= 30, 60, 90, 120, 150, 180, 210, and 240 min) and a 

homogenized sample of the spent dialysate collected over each 30-min period was 

obtained. Blood pressure and heart rate were measured frequently throughout 

hemodialysis. During the sessions including intradialytic exercise, patients started cycling 30 

min after hemodialysis initiation (t= 30 min) and additional measurements of blood 

pressure and heart rate were performed during and after exercise (at t= 40, 50, and 70 min). 

In all sessions, patients ingested the test beverage 1 h after hemodialysis initiation (t= 60 

min) and remained in a rested state thereafter. Directly after hemodialysis (t= 240 min), a 

plasma sample was collected from the arterial side of the arteriovenous shunt. Following 

the experimental procedures, patients consumed a standard meal before leaving the 

dialysis department. 

 

Plasma amino acid analysis 

Plasma samples were collected in ethylenediaminetetraacetic acid (EDTA)-containing tubes 

and centrifuged at 1000g at 4°C for 10 min to obtain plasma. Aliquots of plasma were frozen 

in liquid nitrogen and stored in a freezer at -80°C until further analysis. For determination 

of plasma AA concentrations, 50 µL of blood plasma was deproteinized using 100 µL of 10% 

5-sulfosalicylic acid with 50 µM of the metabolomics AA mix MSK-A2 internal standard 

(Cambridge Isotope Laboratories, Massachusetts, USA). Subsequently, 50 µL of ultra-pure 

demineralized water was added and the samples were centrifuged. Thereafter, 10 µL of 

supernatant was added to 70 µL Borate reaction buffer (Waters, Saint-Quentin, France). In 

addition, 20 µL of AccQ-Tag derivatizing reagent solution (Waters, Saint-Quentin, France) 

was added and the mixture was subsequently heated to 55°C for 10 min. AA profiles in the 

derivative were determined by ultra-performance liquid chromatography mass 

spectrometry (UPLC-MS; ACQUITY UPLC H-Class with QDa; Waters, Saint-Quentin, France) 

as described previously (28). 

 

Dialysate amino acid analysis 

Spent dialysate samples were collected in sterile tubes, immediately frozen in liquid 

nitrogen, and stored in a freezer at -80°C until further analysis. These samples were 

concentrated through freeze-drying 25 mL of the sample and dissolving the dried product 

in 5.0 mL 0.1 M hydrogen chloride. After homogenization, the concentrated samples were 

processed in the same manner as plasma samples and AA profiles were determined through 

UPLC-MS. 

 

Statistical analysis 

All data are expressed as means±SDs unless indicated otherwise. A power calculation was 

performed with differences in incremental area under the curve (iAUC) of plasma AA 

concentrations as the primary outcome measure. A sample size of 10 participants, including 



Protein and exercise during hemodialysis 

67 

a 20% dropout rate, was calculated using a power of 80%, a significance level of 0.025 to 

compensate for the cross-over design with two interventions, and a difference in iAUCs of 

13% between treatments with a standard deviation of 11% based on a previous study from 

our lab [29]. Secondary outcome parameters include plasma and spent dialysate total 

amino acid (TAA), branched-chain amino acid (BCAA), non-essential amino acid (NEAA), and 

essential amino acid (EAA) concentrations, AA removal, correlations between AA 

concentrations in plasma and spent dialysate, habitual dietary energy and macronutrient 

intake, and habitual physical activity levels. After the randomization order of test beverages 

was shared with investigators, hemodialysis parameters and pre-hemodialysis weight were 

compared between interventions to identify possible confounders. Normal distribution of 

all parameters were verified by Shapiro-Wilk tests (P>0.05). No major violations for specific 

three-way repeated-measures ANOVA assumptions were observed and in case of non-

sphericity, the Greenhouse-Geisser correction was used. Potential differences in AA 

concentrations over time were assessed using three-way repeated-measures ANOVA with 

time, protein ingestion (yes/no) and exercise (yes/no) as within-subject factors. AA removal, 

the iAUC of plasma AA concentrations representing the t=0-240 min period, hemodialysis 

parameters, and pre-hemodialysis weight were analyzed by two-way repeated-measures 

ANOVA with protein ingestion (yes/no) and exercise (yes/no) as within subject variables. If 

a statistically significant interaction was found, two-way ANOVAs, and/or subsequent 

paired-samples t tests, were performed. In case of significant time effects, Bonferroni post-

hoc analyses were performed to locate the effects. Dietary energy and macronutrient intake 

and physical activity values on dialysis days and non-dialysis days were compared using 

paired-samples t tests. Correlations between AA concentrations in spent dialysate and the 

average of the two corresponding plasma samples (e.g. t= 30 and t= 60 min for spent 

dialysate collected between t=30 and 60 min) were assessed through determining Pearson’s 

correlation coefficients. Effect sizes were calculated for plasma and spent dialysate AA 

concentrations using partial eta squared (η2
p) for ANOVA comparisons. Statistical 

significance was set at P<0.05. All analyses were performed using SPSS statistics software 

(version 24.0; IBM Corp., Armonk, NY, USA).  
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Results 

 
Patients’ characteristics 

All ten included patients with ESRD completed four test days. Patients’ baseline 

characteristics are presented in Table 1. Six patients were anuric, one patient was oliguric, 

and three patients had a remaining diuresis over 400 mL/24 h. No differences were 

observed between PLA, PLA+EX, PRO, and PRO+EX interventions in ultrafiltration volume 

(1.24±1.01, 1.47±1.27, 1.23±1.08, and 1.41±1.24 L, respectively; P>0.05), dialysis adequacy 

(equilibrated Kt/V: 1.45±0.22, 1.53±0.22, 1.57±0.27, and 1.48±0.22, respectively; P>0.05), 

and pre-hemodialysis weight (71.9±14.3, 72.6±14.0, 72.2±13.9, and 71.9±14.1 kg, 

respectively; P>0.05). 

 

Table 1. Patients’ characteristics 

  Patients 

Age, y 65±16 

Sex, male/female 8/2 

Cause of end-stage renal disease 5 Glomerular 

 4 Vascular 

 1 Unknown 

Dialysis vintage, months  36±23 

Dialysis timing, morning/afternoon 5/5 

Height, m 1.72±0.13 

Weight, kg 71.0±13.6 

Body mass index, kg/m2 24.2±4.8 

Lean tissue index, kg/m2 13.3±2.5 

Fat tissue index, kg/m2 10.4±5.9 

Serum albumin, g/dL 3.4±0.3 

C-reactive protein, mg/L 7±6 

Continuous and categorical values are expressed as means±SDs and counts, respectively, n=10. 

 

  



Protein and exercise during hemodialysis 

69 

Habitual dietary intake and physical activity 

Two patients declined to fill out a food diary and two patients did not wear the SenseWear 

armband correctly. Reported habitual dietary energy and protein intakes averaged 25.9±6.0 

kcal/kg body weight/day and 1.0±0.3 g /kg body weight/day, respectively. No statistical 

differences were observed in habitual energy and macronutrient intake between non-

dialysis and dialysis days (Table 2). In contrast, activity-related energy expenditure was 

lower on dialysis days (7±9 kcal/kg body weight) when compared to non-dialysis days 

(12±13 kcal/kg body weight; P=0.04). However, the differences between physical activity 

duration and number of steps taken on non-dialysis and dialysis days were not statistically 

significant (Table 2). 

 

Table 2. Habitual food intake and physical activity on dialysis and non-dialysis days 

 Daily mean DD Non-DD P 

Habitual intake     

     Energy, kcal 1874±605 2074±812 1763±433 0.29 

     Energy, kcal/kg body weight 25.9±6.0 28.1±9.5 24.8±6.3 0.24 

     Carbohydrate, g 217±62 240±83 205±43 0.26 

     Carbohydrate, g/kg body weight 3.0±0.6 3.3±1.0 2.7±0.4 0.32 

     Protein, g 73±29 80±37 69±24 0.33 

     Protein, g/kg body weight 1.0±0.3 1.1±0.4 0.9±0.3 0.19 

     Fat, g 71±34 81±40 66±30 0.28 

     Fat, g/kg body weight 1.0±0.3 1.1±0.5 0.9±0.3 0.10 

Physical activity     

     Number of steps 4202±3943 3575±4739 4515±3535 0.29 

     Activity-related energy 

     expenditure, kcal/kg 10±12 7±9 12±13 0.04 

     Moderate-vigorous activity 

     duration, min 
145±162 102±127 166±174 0.12 

All values are expressed as means±SDs, n=8. Data of dialysis days and non-dialysis days were compared using 

paired-samples t tests. Daily mean values represent the average of dialysis and non-dialysis days, measured over 

a 6-day period. DD, dialysis day.  
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Plasma amino acid concentrations  

Pre-hemodialysis plasma TAA concentrations averaged 2.93±0.40 mmol/L, with no 

differences between interventions (Figure 2; P>0.05). A significant time × protein 

interaction was observed for plasma TAA concentrations throughout hemodialysis 

(P<0.001, η2
p=0.87). Separate analyses showed that following hemodialysis initiation, 

plasma TAA concentrations decreased substantially during the first 30 min (P<0.001, 

η2
p>0.79 for all interventions).  

 
Figure 2. Plasma (A) total, (B) branched-chain, (C) non-essential and (D) essential amino acid concentrations 

throughout hemodialysis at rest and following exercise with and without protein ingestion. The dotted lines 

represent the start and end of intradialytic exercise and the arrow represents the ingestion of the test beverage. 

Values are expressed as means±SDs, n=10 for all values. Data were analysed with a three-way repeated-measures 

ANOVA with time, protein ingestion (yes/no), and exercise (yes/no) as within subject variables and separate 

analysis were performed when a significant interaction was detected. Time × protein interaction P<0.05. *, Protein 

interventions significantly different from placebo interventions (protein effect P≤0.001); PLA, placebo; PLA+EX, 

placebo and exercise; PRO, protein; PRO+EX, protein and exercise. 

 

During PLA and PLA+EX interventions plasma TAA concentrations continued to decrease 

over time to 1.84±0.18 and 1.83±0.16 mmol/L at t=210 min, respectively (time effect 

P<0.001, η2
p=0.69). Plasma TAA concentrations increased following protein ingestion during 

PRO and PRO+EX interventions (time effect P<0.001, η2
p=0.80). Peak plasma TAA 

concentrations were observed 60 min after protein ingestion (t=120 min), with no 

differences between PRO and PRO+EX interventions (4.40±0.45 and 4.37±0.73 mmol/L, 

respectively; protein × exercise interaction P=0.34, η2
p=0.10). In line with these data, an 
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effect of protein ingestion (protein effect P<0.001, η2
p=0.98) but no effect of intradialytic 

exercise (exercise effect P=0.21, η2
p=0.16) was observed on the iAUC of plasma TAA 

concentrations during PLA, PLA+EX, PRO, and PRO+EX interventions (Figure 3; -227±54, -

208±68, 49±87, and 70±34 mmol/L/240 min, respectively). As shown in Figure 2, plasma 

BCAA, NEAA, and EAA concentrations throughout hemodialysis responded in the same 

manner as plasma TAA concentrations to protein ingestion and intradialytic exercise. 

 

 
Figure 3. Incremental area under the curve of plasma total amino acid concentrations throughout hemodialysis at 

rest and following exercise with and without protein ingestion. The incremental are under the curve was calculated 

over the 240-min hemodialysis period. Squares and circles represent individual data points and bars represent 

group means±SDs, n=10. Data were analysed with a two-way repeated-measures ANOVA with protein ingestion 

(yes/no) and exercise (yes/no) as within subject variables. *, Significantly different from placebo interventions 

(protein effect P<0.001). iAUC, incremental area under the curve; PLA, placebo; PLA+EX, placebo and exercise; 

PRO, protein; PRO+EX, protein and exercise.  
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Spent dialysate amino acid concentrations 

AA concentrations in the spent dialysate are presented in Figure 4. Spent dialysate AA 

concentrations correlated well with circulating plasma AA concentrations (Pearson’s r=0.91, 

P<0.001). A significant time × protein interaction was observed for spent dialysate TAA 

concentrations throughout hemodialysis (P<0.001, η2
p=0.89). Spent dialysate TAA 

concentrations decreased over time during PLA and PLA+EX interventions towards 

0.57±0.11 and 0.57±0.08 mmol/L during the last 30-min period of hemodialysis, respectively 

(P=0.005, η2
p=0.77). In contrast, spent dialysate TAA concentrations significantly increased 

following protein ingestion during PRO and PRO+EX interventions and remained elevated 

until the end of hemodialysis (time effect P<0.05, η2
p=0.87).  

 

 
Figure 4. Spent dialysate (A) total, (B) branched-chain, (C) non-essential and (D) essential amino acid 

concentrations throughout hemodialysis at rest and following exercise with and without protein ingestion. The 

dotted lines represent the start and end of intradialytic exercise and the arrow represents the ingestion of the test 

beverage. Values are expressed as means±SDs, n=10 for all values. Data were analysed with a three-way repeated-

measures ANOVA with time, protein ingestion (yes/no), and exercise (yes/no) as within subject variables and 

separate analysis were performed when a significant interaction was detected. Time × protein interaction P<0.05. 

$, Protein interventions significantly different from placebo interventions (protein effect P<0.05); *, Protein 

interventions significantly different from placebo interventions (protein effect P<0.001); PLA, placebo; PLA+EX, 

placebo and exercise; PRO, protein; PRO+EX, protein and exercise. 
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Protein ingestion significantly increased AA removal during PRO and PRO+EX when 

compared with PLA and PLA+EX interventions (Figure 5; 16.7±2.2 and 17.3±2.3 vs. 9.8±2.0 

and 10.2±1.6 g, respectively; protein effect P<0.001, η2
p=0.97). Intradialytic exercise did not 

modulate AA removal (exercise effect P=0.32, η2
p=0.11). Furthermore, spent dialysate 

BCAA, NEAA, and EAA concentrations showed similar perturbations throughout 

hemodialysis as spent dialysate TAA concentrations (Figure 4). 

 

 

Figure 5. Total amino acid removal throughout hemodialysis at rest and following exercise with and without 

protein ingestion. Squares and circles represent individual data points and bars represent group means±SDs, n=10. 

Data were analysed with a two-way repeated-measures ANOVA with protein ingestion (yes/no) and exercise 

(yes/no) as within subject variables. *, Significantly different from placebo interventions (protein effect P<0.001). 

PLA, placebo; PLA+EX, placebo and exercise; PRO, protein; PRO+EX, protein and exercise. 
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Discussion 

 
In this randomized controlled cross-over study, we observed that AAs are removed from 

the circulation during hemodialysis, thereby lowering plasma AA concentrations in patients 

with ESRD. Protein ingestion during hemodialysis compensated for AA removal and 

prevented a decline in plasma AA availability at rest and during recovery from intradialytic 

exercise. Exercise performed during hemodialysis did not modulate AA removal or plasma 

AA availability in patients with ESRD.  

Hemodialysis treatment is essential for patients with ESRD as it prevents accumulation of 

metabolic waste products up to lethal concentrations. However, hemodialysis also removes 

AAs from the circulation because they, just like metabolic waste products, diffuse through 

the dialysis membrane [9]. In the current study we observed a substantial decline in 

circulating plasma TAA concentrations from 2.93±0.40 to 2.16±0.26 mmol/L within 30 min 

following the initiation of hemodialysis (Figure 2). Such a decrease in plasma AA 

concentrations has been shown to stimulate proteolysis in peripheral tissues [10, 30-32]. 

Furthermore, by also measuring AA concentrations in the spent dialysate we were able to 

assess AA removal throughout the hemodialysis session, which ranged between 7 and 12 g 

during placebo interventions (Figure 5). This loss is representative of the amount of AAs 

being released in the circulation following ingestion of a normal meal providing 

approximately 20 g protein [15]. As a consequence, AA removal during hemodialysis has 

been proposed to represent a key factor responsible for the accelerated loss of muscle mass 

in patients with ESRD [6, 33, 34].  

We first assessed the impact of protein ingestion during hemodialysis as a means to 

compensate for AA removal and, as such, to support muscle maintenance. To overcome 

reduced protein digestion and absorption kinetics of patients on chronic hemodialysis 

treatment as well as increased AA removal following protein ingestion during hemodialysis 

[7, 15], we provided all patients with a bolus of 40 g protein. Ingestion of 40 g protein during 

hemodialysis elevated plasma AA concentrations (Figure 2). This stimulated AA removal, 

resulting in ∼8 g more AAs being removed from the circulation when compared to placebo 

ingestion. Despite the greater AA removal (Figure 5), plasma AA availability was strongly 

elevated following protein ingestion (Figure 3). Preventing a decline in plasma AA 

availability throughout hemodialysis has been reported to attenuate muscle proteolysis 

during and after hemodialysis [8, 11, 30]. We conclude that ingestion of 40 g protein is 

sufficient to compensate for intradialytic AA removal, prevent a decline in plasma AA 

concentrations, and increase plasma AA availability. Especially the latter may be of key 

importance to achieve a positive muscle net protein balance during hemodialysis. 

Another key strategy to support muscle maintenance in patients on chronic hemodialysis 

treatment is the implementation of physical activity or exercise interventions [35, 36]. 
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Previous work has shown various benefits of lifestyle intervention in patients with chronic 

kidney disease, including those undergoing hemodialysis [37, 38]. However, the 

effectiveness of these lifestyle intervention programs for patients on chronic hemodialysis 

treatment are typically compromised by low adherence and compliance [39]. Exercise 

intolerance, fatigue, and lack of exercise knowledge often prevent these patients from 

increasing their physical activity levels [21, 40]. Consequently, effective physical activity 

intervention programs need to be individualized and performed under strict supervision. 

Therefore, implementation of physical activity or exercise during hemodialysis has been 

proposed as a practical and efficient intervention strategy as it would be more time efficient 

for patients and relatively easy to supervise by (para)medical staff [41]. Benefits of 

structured intradialytic exercise performance entail improved aerobic capacity, physical 

function, health-related quality of life, and better clearance of metabolic waste products 

during hemodialysis [17, 19, 42, 43]. However, it has been suggested that intradialytic 

exercise without concurrent protein ingestion may actually exacerbate muscle catabolism 

[44], which could result in even greater AA removal. Therefore, in the present study we 

assessed the impact of intradialytic exercise on AA removal and plasma AA availability both 

in the presence and absence of protein ingestion. Here, we observed no differences in AA 

removal during a hemodialysis session with (10.2±1.6 g) or without (9.8±2.0 g) intradialytic 

exercise (Figure 5). Furthermore, we observed no differences in plasma AA availability due 

to intradialytic exercise (Figure 3). This implies that intradialytic exercise performed in a 

post-absorptive state does not necessarily impair the net protein balance during 

hemodialysis. However, the muscle net protein balance will not become positive when 

exercise is performed without concomitant protein ingestion [45].  

To facilitate the skeletal muscle adaptive response to exercise, ample availability of 

circulating AAs is required [46, 47]. Therefore, intradialytic exercise combined with protein 

ingestion to compensate for AA removal and increase plasma AA availability represents a 

preferred strategy. So far, there have not been any studies to assess the impact of 

intradialytic exercise and protein ingestion on AA removal and plasma AA availability. In line 

with our findings described above, we observed that ingestion of 40 g protein directly after 

intradialytic exercise increases plasma AA concentrations with levels remaining elevated 

until the end of the hemodialysis session (Figure 2). As a result, intradialytic exercise did not 

have any impact on plasma AA availability throughout the 4 h hemodialysis session (Figure 

3). Furthermore, intradialytic exercise did not significantly increase AA removal following 

protein ingestion (16.6±2.2 vs 17.3±2.3 g in PRO and PRO+EX, respectively; Figure 5). 

Therefore, protein ingestion increases plasma AA availability during hemodialysis, which 

may create a setting in which hemodialysis-initiated proteolysis is inhibited and muscle 

conditioning after exercise performance is supported.  

Combining protein ingestion and exercise during hemodialysis provides a practical 

interventional strategy that may help to preserve muscle mass and maintain functional 
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capacity in patients on chronic hemodialysis treatment. However, the design of the present 

study has some limitations. The included patients were volunteers, which may introduce 

some confounding as the less clinically compromised patients may be more likely to 

partake. Nonetheless, it is generally hypothesized that malnourished patients undergoing 

hemodialysis benefit to a greater extent from intradialytic protein supplementation with or 

without exercise compared to well-nourished patients [44, 48]. As we performed statistical 

analyses of multiple secondary outcomes in the present study, there is an increased risk of 

a type I error among the secondary outcome parameters. In addition, we assessed the 

impact of protein ingestion and exercise on plasma AA concentrations and AA removal 

during hemodialysis sessions, which may or may not necessarily translate to increases in 

muscle mass or improvements in physical function over a more prolonged treatment 

period.  

So far, long-term intervention studies investigating the effects of intradialytic oral 

nutritional supplementation with or without exercise training on muscle mass and function 

have reported equivocal results [24, 44, 49]. This may be largely due to exercise intolerance 

and the low adherence of these patients to lifestyle intervention [39, 40, 50]. Furthermore, 

the uremic and inflammatory milieu in these patients may compromise the capacity of 

skeletal muscle tissue to properly respond to protein ingestion and exercise training. For 

example, Jeong et al. reported no improvements in physical function or body composition 

following 12 months of intradialytic protein ingestion and exercise [44]. More work will be 

needed to establish the various exercise modalities and adjuvant nutritional support that 

will effectively support muscle mass maintenance in this heterogeneous population. 

In conclusion, protein ingestion during hemodialysis compensates for AA removal and 

increases plasma AA availability at rest and during recovery from intradialytic exercise. 

Intradialytic exercise should be combined with protein ingestion to compensate for AA 

removal during hemodialysis and, as such, allow a setting that may support muscle 

reconditioning in patients with ESRD. 
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Supplementary material 

 
Supplementary figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow chart. PLA, placebo; 

PLA+EX, placebo and exercise; PRO, protein; PRO+EX, protein and exercise. 
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Abstract 

 
Background 

Dietary protein and physical activity interventions are increasingly implemented during 

hemodialysis to support muscle maintenance in patients with end-stage renal disease. 

Though muscle maintenance is important, adequate removal of uremic toxins throughout 

hemodialysis is the primary concern for patients. It remains to be established whether 

intradialytic protein ingestion and/or exercise modulate uremic toxin removal during 

hemodialysis. 

 

Methods 

We recruited 10 patients with end-stage renal disease (age: 65±16 y, BMI: 24.2±4.8 kg/m2) 

on chronic hemodialysis treatment to participate in this randomized crossover trial. During 

hemodialysis, patients were assigned to ingest 40 g protein or a non-protein placebo both 

at rest (PRO and PLA, respectively) and following 30 min of exercise (PRO+EX and PLA+EX, 

respectively). Blood and spent dialysate samples were collected throughout hemodialysis 

to assess reduction ratios and removal of urea, creatinine, phosphate, cystatin C, and 

indoxyl sulfate. 

 

Results 

The reduction ratios of urea and indoxyl sulfate were higher during PLA (76±6 and 46±9%, 

respectively) and PLA+EX interventions (77±5 and 45±10%, respectively) when compared to 

PRO (72±4 and 40±8%, respectively) and PRO+EX interventions (73±4 and 43±7%, 

respectively; protein effect: P=0.001 and P=0.023, respectively; exercise effect: P=0.25 and 

P=0.52, respectively). Nonetheless, protein ingestion resulted in greater urea removal 

(P=0.046) during hemodialysis. Reduction ratios and removal of creatinine, phosphate, and 

cystatin C during hemodialysis did not differ following intradialytic protein ingestion or 

exercise (protein effect: P>0.05; exercise effect: P>0.05). Urea, creatinine, and phosphate 

removal were greater throughout the period with intradialytic exercise during PLA+EX and 

PRO+EX interventions when compared to the same period during PLA and PRO 

interventions (exercise effect: P=0.034, P=0.039, and P=0.022, respectively). 

 
Conclusion 

The removal of uremic toxins is not compromised by protein feeding and/or exercise 

implementation during hemodialysis in patients with end-stage renal disease.  
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Introduction 

 

Metabolic waste products are insufficiently removed from the circulation by the kidneys of 

patients with renal disease. Substances that accumulate in body fluids due to reduced 

glomerular filtration and negatively modulate biologic functions have been named uremic 

toxins [1]. In end-stage renal disease (ESRD), when the glomerular filtration rate is below 15 

mL/min/1.73m2, uremic toxins can accumulate up to detrimental concentrations [2,3]. This 

can be prevented through hemodialysis treatment, which partially replaces renal solute 

removal. During hemodialysis, circulating uremic toxins diffuse through a semipermeable 

membrane into the dialysate and, as such, are removed from the body [4]. Small uremic 

toxins, such as urea and creatinine, diffuse quickly through this membrane. In contrast, 

compartmentalized, larger, and protein-bound uremic toxins, such as phosphate, cystatin 

C, and indoxyl sulfate, respectively, are removed much less efficiently during hemodialysis 

[5-7].  

Though the removal of uremic toxins during hemodialysis is a life-saving treatment, low 

muscle mass and poor physical functioning are common among patients undergoing chronic 

hemodialysis treatment [8-10]. Protein-energy wasting, a syndrome characterized by the 

progressive loss of muscle and fat mass, is present in 28-54% of these [11,12]. This high 

prevalence can be attributed to sedentary behavior and uremic toxin accumulation 

between hemodialysis sessions as well as to the loss of nutrients, especially amino acids, 

during hemodialysis sessions [13,14]. As malnutrition is associated with worse clinical 

outcomes and a reduced quality of life in patients on chronic hemodialysis treatment 

[15,16], interventions that may attenuate or prevent muscle loss in this population have 

received much attention over the past few years. Increasing dietary protein consumption 

and stimulating physical activity in patients on chronic hemodialysis treatment are key 

anabolic interventions to preserve muscle mass [17]. Nowadays, these interventions are 

often implemented during hemodialysis sessions (intradialytic) to counteract the protein 

deficit and sedentary behavior in these patients [18,19]. 

However, it has been suggested that intradialytic dietary (protein) intake may interfere with 

the effective removal of uremic toxins, as smaller decreases of circulating urea 

concentrations during hemodialysis sessions have been reported with intradialytic food 

consumption [20-22]. Intradialytic protein ingestion may affect the reduction ratio of urea 

during hemodialysis through absorption/release of urea in splanchnic organs or through 

postprandial splanchnic blood pooling and/or reduced perfusion of peripheral tissues 

[23,24]. In contrast, intradialytic exercise increases perfusion of peripheral tissues and 

reduces splanchnic perfusion [25,26]. However, whether these physiological changes due 

to intradialytic protein ingestion and/or exercise modulate uremic toxin removal during 

hemodialysis remains to be determined.   
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Therefore, we recruited 10 patients with ESRD to participate in a cross-over study of four 

hemodialysis sessions during which these patients ingested a protein or a non-protein 

placebo beverage both at rest as well as following exercise. Throughout hemodialysis, we 

measured the concentrations of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate 

in blood and spent dialysate to provide a detailed insight into the impact of exercise and 

protein ingestion on uremic toxin removal.  
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Methods 

 
Study population 

A total of 10 patients with ESRD undergoing hemodialysis in the morning or afternoon 

through a well-functioning arteriovenous shunt for at least 3 months were recruited 

between March 2019 and August 2020 at the dialysis department of Maastricht University 

Medical Centre+, Maastricht, The Netherlands (See Supplemental Figure 1 for the 

Consolidated Standards of Reporting Trials (CONSORT) flow diagram). Patients with an 

active infection, cognitive disorder, intolerance to food ingestion during hemodialysis, 

missed hemodialysis session in the last month prior to the study period, or contraindication 

to intradialytic exercise were excluded. Patients were informed about the purpose of the 

study, experimental procedures, and possible risks prior to signing written informed 

consent. This study is part of a greater project investigating the impact of exercise and 

protein ingestion during hemodialysis, parts of which have already been published [27]. For 

this project, a sample size of 10 participants was calculated a priori based on differences in 

incremental area under the curve of plasma amino acid concentrations [27]. All available 

samples from these patients were used for the present study. Spent dialysate urea, 

creatinine, phosphate, and cystatin C concentrations could only be assessed in n = 9 due to 

an insufficient amount of spent dialysate available for analysis. The study was approved by 

the Medical Research Ethics Committee Academic Hospital Maastricht/Maastricht 

University (NL65880.068.18), conformed to standards for the use of human subjects in 

research as outlined in the latest version of the Helsinki Declaration of 1975, and was 

registered at the Netherlands Trial Register (NTR7152). 

 

Pre-testing 

At least one week before the first test day a pre-testing session was scheduled during 

routine hemodialysis to familiarize patients with intradialytic exercise. In addition, patient’s 

medical history, physical examinations, lab analysis results, and hemodialysis regimen were 

registered. A dialysis cycle ergometer (Thera Riser, Medica Medizintechnik GmbH, 

Hochdorf, Germany) was placed in front of the treatment chair and after a 5-min warm-up, 

the resistance level of the dialysis cycle ergometer was increased until patients reported a 

score between 12 – 15 on the Borg Ratings of Perceived Exertion (RPE) scale [28]. If patients 

reported a score <12 or >15 on the Borg RPE scale within this period, the resistance level 

was adjusted accordingly. When patients succeeded to perform 10 min of moderate-

intensity exercise the resistance level was noted and used for the exercise intervention.  
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Study design 

During four hemodialysis sessions, separated by at least one week, all patients were 

assigned to ingest a placebo or protein beverage both in a rested state (PLA and PRO, 

respectively) as well as following 30 min intradialytic exercise (PLA+EX and PRO+EX, 

respectively) in a randomized cross-over design. Patients were randomly assigned to an 

order of interventions using an online randomizer (http://www.randomizer.org) and the 

randomization order of test beverages was not shared with investigators or participants 

until all procedures and statistical analyses of the primary and secondary outcomes were 

complete. The independent researcher was responsible for the preparation of test 

beverages, which were labelled according to participant and test day number before 

handing them to an investigator. The protein beverage contained 40 g milk protein 

concentrate (Refit MPC 80, Friesland Campina, Amersfoort, The Netherlands) and two 

sweeteners (Natrena, Douwe Egberts, Amsterdam, The Netherlands) dissolved in 300 mL 

water. The placebo beverage consisted of only the two sweeteners dissolved in 300 mL 

water. The independent researcher shared the order of exercise performance during test 

days with the investigators after pre-testing was completed. Though patients were blinded 

to the order of exercise performance, it was not possible to conceal the intervention during 

test days due to the nature of the exercise intervention. Patients started the intradialytic 

exercise by performing a 5-min warming-up on the dialysis cycle ergometer, during which 

they were instructed not to surpass a score of 9 on the Borg RPE scale. Subsequently, the 

resistance level was increased to the previously determined value and patients continued 

cycling for 20 min. At the end of the intradialytic exercise, patients performed 3 min of 

cycling with a score between 9 – 12 and the last 2 min with a score below 9 on the Borg RPE 

scale as a cooling-down. Between the first and second test day, patients filled out a food 

diary for 6 days to assess habitual dietary intake. A licensed dietician carefully instructed 

patients on how to perform the 6-day food intake diary. All ingested foods and beverages 

were reported in household measurements or specified as portion sizes. 

 

Experimental protocol 

An overview of test days, which were scheduled during patients’ second or third weekly 

hemodialysis session, is provided in Figure 1. All patients refrained from any sort of 

strenuous physical activity 48 h prior to each test day. Patients who underwent 

hemodialysis in the morning fasted overnight. Those who underwent hemodialysis in the 

afternoon consumed the same standardized breakfast (~250 kcal, with carbohydrate, fat 

and protein providing 65, 23, and 12 En%, respectively) at least 3 h before initiation of their 

hemodialysis session. Thereafter, patients were instructed to remain fasted until the end of 

the experimental protocol, but were allowed to ingest water. After patients arrived at the 

dialysis department, their pre-hemodialysis weight was recorded and a Body Composition 

Monitor® (Fresenius Medical Care, Bad Homburg, Germany) was used to assess their body 

http://www.randomizer.org/
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composition, as described before [29]. Subsequently, the arteriovenous shunt was checked 

for recirculation and used to collect an arterial blood sample for uremic toxin analyses. After 

hemodialysis initiation (t=0 min), blood samples were collected from the arterial blood line 

with 30-min intervals (at t=30, 60, and 90 min) and spent dialysate was collected 

continuously in a container at a rate of 1.0 L/h using a reversed injection pump (Alaris GW, 

Rolle, Switzerland). Additional spent dialysate was collected throughout intradialytic 

exercise or the corresponding period (t=30 – 60 min) during non-exercise interventions to 

assess the effect of intradialytic exercise on uremic toxin removal. After collection, the spent 

dialysate was homogenized and thereafter sampled. During all interventions, patients 

ingested the test beverage 1 h after hemodialysis initiation (t=60 min) and remained in a 

rested state thereafter. Directly after hemodialysis (t= 240 min), a final blood sample was 

collected from the arterial side of the arteriovenous shunt. 

 

 
 

Figure 1. Schematic representation of study protocol. t=0 min represents the start of the hemodialysis session. 

During four hemodialysis sessions, patients ingested 40 g protein or a non-protein placebo both at rest and during 

recovery from intradialytic exercise in a randomized cross-over design. 
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Uremic toxins analysis 

Blood samples were collected in serum (t=0 and 240 min) and EDTA-containing (t=30, 60, 

and 90 min) tubes. Blood samples were centrifuged at 1000g for 15 min at 20°C or 10 min 

at 4°C to obtain serum or plasma, respectively. Aliquots of serum and plasma were frozen 

in liquid nitrogen and stored in a freezer at -80°C until further analysis. Spent dialysate 

samples were collected in sterile tubes, frozen in liquid nitrogen, and stored in a freezer at 

-80°C until further analysis. For determination of urea concentrations, urea was hydrolyzed 

to ammonium using urease. After adding 2-oxoglutarate, NADH, and glutamate 

dehydrogenase, urea concentrations were determined photometrically on a Cobas 8000® 

(Roche Diagnostics, Basel, Switzerland). Creatinine was enzymatically converted so that 

quinone imine chromogen was formed, which was measured on a Cobas 8000® (Roche 

Diagnostics, Basel, Switzerland) to determine creatinine concentrations. Phosphate 

concentrations were assessed through conversion of phosphate to an ammonium 

phosphomolybdate complex, which was measured photometrically on a Cobas 8000® 

(Roche Diagnostics, Basel, Switzerland). Cystatin C concentrations were determined via 

turbidimetry on a Cobas 8000® (Roche Diagnostics, Basel, Switzerland) after latex particles 

coated with anti-cystatin C antibodies were added to the samples. Indoxyl sulfate 

concentrations were determined by ultra-performance liquid chromatography mass 

spectrometry (UPLC-MS; ACQUITY UPLC H-Class with QDa; Waters, Saint-Quentin, France).  

 

Calculations 

Uremic toxin removal was calculated by multiplying their mean concentration (g per L) in 

the spent dialysate with spent dialysate and ultrafiltration volume (L). Reduction ratios of 

uremic toxins between two time points (i.e., RR0-240, RR30-60, and RR60-90) were calculated 

using the following equation: 

 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (%) = (1 −
𝑈𝑇𝐶𝑡2

𝑈𝑇𝐶𝑡1

 ) × 100 

 

In which UTCt2 is the concentration of circulating uremic toxins at the second timepoint (t2) 

and UTCt1 represents the concentration of circulating uremic toxins at the first timepoint 

(t1). Dialysis adequacy (single pool Kt/V) was calculated using the pre-hemodialysis 

circulating urea concentrations (Upre), post-hemodialysis circulating urea concentrations 

(Upost), hemodialysis duration (t), ultrafiltration volume (UF), and post-hemodialysis weight 

(W) using the following equation [30]: 

 

𝑆𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑜𝑙 𝐾𝑡/𝑉 = ln ( 
𝑈𝑝𝑜𝑠𝑡

𝑈𝑝𝑟𝑒

) − (0.008 × 𝑡) + (4 − 3.5 × 
𝑈𝑝𝑜𝑠𝑡

𝑈𝑝𝑟𝑒

)  ×  
𝑈𝐹

𝑊
 

 



Uremic toxins during hemodialysis 

91 

 

Statistical analysis 

All data are expressed as means±SDs unless indicated otherwise. The primary outcome of 

the present study was urea removal throughout a 4-h hemodialysis session. Secondary 

outcome parameters include the removal, circulating concentrations, and reduction ratios 

of creatinine, phosphate, cystatin C, and indoxyl sulfate. Normal distribution of all 

parameters were verified by Shapiro-Wilk tests. No major violations for repeated-measures 

ANOVA assumptions were observed and in case of non-sphericity, the Greenhouse-Geisser 

correction was applied. Potential differences in removal and reduction ratios of uremic 

toxins, hemodialysis parameters, and pre-hemodialysis weight were analyzed by two-way 

repeated-measures ANOVA with protein ingestion (yes/no) and exercise (yes/no) as within 

subject variables. Circulating uremic toxin concentrations throughout hemodialysis were 

assessed using three-way repeated measures ANOVA with protein ingestion (yes/no), 

exercise (yes/no), and time as within subject variables. If a statistically significant interaction 

was found, two-way ANOVAs, and/or paired-samples t tests, were performed. In case of 

significant time effects, Bonferroni post-hoc analyses were performed to locate the effects. 

Statistical significance was set at P<0.05. All analyses were performed using SPSS statistics 

software (version 24.0; IBM Corp., Armonk, NY, USA).  
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Results 

 
Patients’ characteristics 

Patients’ baseline characteristics are presented in Table 1. All included patients with ESRD 

completed four test days. No differences were observed between the test days with PLA, 

PLA+EX, PRO, and PRO+EX interventions in pre-hemodialysis weight (71.9±14.3, 72.6±14.0, 

72.2±13.9, and 71.9±14.1 kg, respectively; protein P=0.49; exercise P=0.51), urea 

distribution volume (34.7±4.6, 35.3±5.1, 35.7±4.8, and 35.2±5.0 L, respectively; protein 

P=0.16; exercise P=0.91), and ultrafiltration volume (1.24±1.01, 1.47±1.27, 1.23±1.08, and 

1.41±1.24 L, respectively; protein P=0.78; exercise P=0.26). Two patients declined to fill out 

the 6-day food intake diary. Reported habitual dietary energy and protein intakes of the 

other 8 patients averaged 25.9±6.0 kcal/kg body weight/day and 1.0±0.3 g protein /kg body 

weight/day, respectively. 

 

Table 1. Patients’ characteristics 

  Patients 

Age, y 65±16 

Sex, male/female 8/2 

Cause of end-stage renal disease  

       Glomerular 5 

       Vascular 4 

       Unknown 1 

Remaining diuresis  

       <100 mL/24 h 6 

       100 – 500 mL/24 h 1 

       500 – 2000 mL/24 h 3 

Dialysis vintage, months  36±23 

Dialysis timing, morning/afternoon 5/5 

Height, m 1.72±0.13 

Weight, kg 71.0±13.6 

BMI, kg/m2 24.2±4.8 

Serum albumin, g/dL 3.4±0.3 

C-reactive protein, mg/L 7±6 

Continuous and categorical values are expressed as means±SDs and counts, respectively, n=10. 
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Circulating uremic toxin concentrations 

As depicted in Figure 2, circulating urea, phosphate, cystatin C, and indoxyl sulfate 

concentrations decreased substantially throughout hemodialysis (time effect P<0.001 for 

all). Circulating uremic toxin concentrations declined between each timepoint (P<0.05 for 

all) except for circulating phosphate concentrations, which did not further decrease during 

the last 2.5 h of hemodialysis (t= 90 – 240 min; P=0.70). Protein ingestion resulted in higher 

circulating indoxyl sulfate concentrations throughout hemodialysis (protein effect P=0.024; 

exercise effect P=0.35). Circulating urea, phosphate, and cystatin C concentrations were not 

affected by protein ingestion or intradialytic exercise (protein effect P=0.35, P=0.59, and 

P=0.67, respectively; exercise effect P=0.46, P=0.66, and P=0.20, respectively). A significant 

time × exercise interaction (P=0.007) was observed for circulating creatinine concentrations 

throughout hemodialysis. Separate analyses showed that circulating creatinine 

concentrations decreased substantially during hemodialysis (time effect P<0.001) but were 

not influenced by intradialytic exercise (exercise effects P>0.05). 

 

Figure 2. Circulating urea (A), creatinine (B), phosphate (C), Cystatin C (D), and indoxyl sulfate (E) concentrations 

throughout hemodialysis at rest and following exercise with and without protein ingestion. Values are expressed 

as means±SEMs, n=10 for all values. The dotted lines represent the interventions during which the protein 

beverage was ingested, while the continuous lines represent the interventions during which the placebo was 

ingested. Data were analysed with a three-way repeated-measures ANOVA with time, protein ingestion (yes/no), 

and exercise (yes/no) as within subject variables and separate analysis were performed when a significant 

interaction was detected. A time × exercise interaction (P<0.05) was observed for circulating creatinine 

concentrations. Circulating indoxyl sulfate concentrations throughout protein interventions were significantly 

different from placebo interventions (protein effect P<0.05). PLA, placebo; PLA+EX, placebo and exercise; PRO, 

protein; PRO+EX, protein and exercise. 
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Uremic toxin reduction ratios  

Reduction ratios of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate throughout 

intradialytic exercise during PLA+EX and PRO+EX interventions or the corresponding 30-min 

period during PLA and PRO interventions (RR30-60), the 30-min period following ingestion of 

the test beverage (RR60-90), and the 4-h hemodialysis session are presented in Table 2. No 

protein × exercise interaction was observed (P>0.05 for all). Protein ingestion reduced the 

reduction ratios of urea and indoxyl sulfate over the entire hemodialysis session (protein 

effect P=0.001 and P=0.023, respectively). In addition, single pool Kt/V was higher during 

PLA and PLA+EX interventions when compared to PRO and PRO+EX interventions (1.64±0.22 

and 1.71±0.24 vs 1.48±0.20 and 1.49±0.17, respectively; protein effect P<0.001; exercise 

effect P=0.179). Following protein ingestion only the RR60-90 of indoxyl sulfate was reduced 

(protein effect P=0.029). However, the RR60-90 of urea following protein ingestion did not 

differ from placebo ingestion (protein effect P=0.14). Intradialytic exercise resulted in lower 

RR30-60 of urea, creatinine, and phosphate when compared to the non-exercise interventions 

(exercise effect P=0.046, P=0.033, and P=0.007, respectively). In contrast, intradialytic 

exercise resulted in a higher RR60-90 of phosphate (exercise effect P=0.010).  
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Table 2. Reduction ratios of uremic toxins throughout hemodialysis 

Uremic 
toxin 

 PLA PLA+EX PRO PRO+EX 
Protein 
effect 
P 

Exercise 
effect 
P 

Protein × 
exercise 
interaction 
P 

Urea 

RR30-60 (%)  17±3 16±3 18±2 16±2 0.458 0.046 0.673 

RR60-90 (%) 17±3 17±4 15±2 17±3 0.127 0.136 0.178 

RR0-240 (%) 76±6 77±5 72±4 73±4 0.001 0.254 0.226 

Creatinine 

RR30-60 (%) 16±3 15±3 16±2 14±2 0.914 0.033 0.185 

RR60-90 (%) 14±2 14±3 13±2 14±3 0.546 0.892 0.658 

RR0-240 (%) 67±6 68±4 68±4 68±4 0.270 0.671 0.348 

Phosphate 

RR30-60 (%) 18±5 12±6 17±5 10±8 0.203 0.007 0.483 

RR60-90 (%) 12±5 17±7 7±8 16±6 0.070 0.010 0.096 

RR0-240 (%) 53±11 54±10 53±11 52±12 0.535 1.000 0.300 

Cystatin C 

RR30-60 (%) 14±5 11±7 12±7 11±7 0.254 0.053 0.713 

RR60-90 (%) 8±7 10±5 8±5 9±5 0.754 0.392 0.587 

RR0-240 (%) 51±20 53±19 53±20 52±18 0.808 0.809 0.308 

Indoxyl 
sulfate 

RR30-60 (%) 8±8 6±9 8±4 7±6 0.796 0.485 0.846 

RR60-90 (%) 10±4 13±5 6±5 10±7 0.029 0.103 0.750 

RR0-240 (%) 46±9 45±10 40±8 43±7 0.023 0.521 0.314 

All values are expressed as means±SDs, n=10. Data were compared using two-way repeated-measures ANOVAs 
with protein ingestion (yes/no) and exercise (yes/no) as within subject variables. PLA, placebo; PLA+EX, placebo 
and exercise; PRO, protein; PRO+EX, protein and exercise; RR30-60, reduction ratio between 30 and 60 min after 
hemodialysis initiation (intradialytic exercise or non-exercise period); RR60-90, reduction ratio between 60 and 90 
min after hemodialysis initiation (directly after test beverage ingestion); RR0-240, reduction ratio over the 4-h 
hemodialysis session. 
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Uremic toxin reduction ratios  

Urea, creatinine, phosphate, cystatin C, and indoxyl sulfate removal throughout the 

hemodialysis sessions are shown in Figure 3. Urea removal was greater throughout PRO and 

PRO+EX interventions when compared to PLA and PLA+EX interventions (protein effect 

P=0.046; exercise effect P=0.337). Protein ingestion and intradialytic exercise did not affect 

the removal of creatinine, phosphate, cystatin C, and indoxyl sulfate over the 4-h 

hemodialysis sessions (protein effect P=0.62, P=1.00, P=0.36, and P=0.69, respectively; 

exercise effect P=0.25, P=0.22, P=0.16, and P=0.21, respectively). When comparing the 

intradialytic exercise period during PLA+EX and PRO+EX interventions to the same 30-min 

period during PLA and PRO interventions, greater amounts of urea (4.8±1.5 and 4.9±1.2 vs 

4.4±0.9 and 4.7±1.4 g, respectively; exercise effect P=0.034), creatinine (0.29±0.04 and 

0.28±0.04 vs 0.28±0.03 and 0.28±0.04 g; exercise effect P=0.039), and phosphate (0.40±0.16 

and 0.39±0.14 vs 0.33±0.10 and 0.37±14 g; exercise effect P=0.022) were removed during 

intradialytic exercise. 

 

Figure 3. Total urea (A), creatinine (B), phosphate (C), Cystatin C (D), and indoxyl sulfate (E) removal throughout 

hemodialysis at rest and following exercise with and without protein ingestion. Squares and circles represent 

individual data points and bars represent group means±SEMs, n=10 for indoxyl sulfate and n=9 for urea, creatinine, 

phosphate, and cystatin C removal. Data were analysed with a two-way repeated-measures ANOVA with protein 

ingestion (yes/no) and exercise (yes/no) as within subject variables. *, Significantly different from placebo 

interventions (protein effect P<0.05). PLA, placebo; PLA+EX, placebo and exercise; PRO, protein; PRO+EX, protein 

and exercise. 
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Discussion 

 
In this randomized controlled cross-over study, hemodialysis effectively removed small 

uremic toxins from the circulation during all interventions (Kt/V>1.2, creatinine reduction 

ratio>65%). We observed that intradialytic protein ingestion resulted in lower reduction 

ratios of urea and indoxyl sulfate throughout the entire hemodialysis session. However, 

protein ingestion also resulted in greater urea removal throughout hemodialysis. 

Furthermore, we showed that intradialytic exercise did not modulate uremic toxin removal 

during hemodialysis. 

Adequate removal of uremic toxins is the main purpose of hemodialysis treatment, as it is 

essential for patients with ESRD that circulating metabolic waste products do not reach 

harmful concentrations. In the present study, we measured circulating concentrations and 

removal of small, compartmentalized, and protein-bound uremic toxins throughout 

hemodialysis. When no interventions were applied (PLA sessions), reduction ratios of 

uremic toxins during hemodialysis varied between 45 and 75% (Table 2). Furthermore, 

single pool Kt/V during these sessions was 1.64±0.22, which indicates that hemodialysis 

treatment was delivered effectively according to KDOQI clinical practice guidelines [31]. 

Nonetheless, even when effective hemodialysis treatment is delivered, the level of physical 

functioning among patients with ESRD generally remains poor and limits patients’ quality of 

life [32]. To improve the low physical functioning of patients undergoing chronic 

hemodialysis treatment, anabolic stimuli (i.e., protein and exercise interventions) are 

increasingly implemented during hemodialysis [33-35]. However, studies investigating the 

effects of such interventions on the removal of uremic toxins during hemodialysis have 

reported equivocal results [21-23,36-38]. Therefore, we comprehensively assessed the 

impact of intradialytic exercise as well as protein ingestion on uremic toxin removal 

throughout hemodialysis.  

Protein ingestion can be implemented during hemodialysis to compensate for amino acid 

removal and, as such, to support muscle maintenance in patients with ESRD [27,34,39,40]. 

However, it has been suggested that postprandial splanchnic blood pooling following food 

consumption during hemodialysis interferes with dialysis adequacy [20]. Several studies 

have observed lower reduction ratios of circulating protein-derived uremic toxins and 

dialysis adequacy (as measured by Kt/V) when patients consumed food during hemodialysis 

[21-23]. Our findings support this suggestion, as the reduction ratios of urea and indoxyl 

sulfate were significantly lower when patients ingested protein compared to placebo 

ingestion (Table 2). Furthermore, in the current study intradialytic protein ingestion 

reduced single pool Kt/V by ∼10%. However, the reduction ratios of creatinine, phosphate, 

and cystatin C throughout hemodialysis were not affected by protein ingestion (Table 2). In 

addition, during the 30-min period following protein ingestion, the decline in circulating 
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urea concentrations was similar to the 30 min following placebo ingestion. Through 

quantification of uremic toxin removal in the spent dialysate, we observed that intradialytic 

protein ingestion actually resulted in an additional ∼2 g urea being removed during 

hemodialysis when compared to placebo ingestion (Figure 3). These findings suggests that 

the lower reduction ratio of urea throughout hemodialysis is not caused by hemodynamic 

changes, but can rather be attributed to a postprandial increase in urea production [41]. 

Similarly, protein ingestion is known to increase indoxyl sulfate production by colon 

microbes, which results in higher concentrations in the circulation [42]. Though intradialytic 

protein ingestion increased urea removal, it did not result in greater indoxyl sulfate removal 

throughout hemodialysis (Figure 3). This difference may be explained by the fact that >90% 

of circulating indoxyl sulfate is protein-bound and, as such, is not available for diffusion 

through the dialysis membrane [43]. Thus, intradialytic protein ingestion does not 

compromise uremic toxin removal during hemodialysis, but increases the postprandial 

production of protein-derived uremic toxins. 

In contrast to protein ingestion, intradialytic exercise has been suggested to improve uremic 

toxin removal throughout hemodialysis [44,45]. In the latest Clinical Practice Guidelines on 

Hemodialysis, the Renal Association recommends that patients on chronic hemodialysis 

treatment without contraindications should perform ≥30 min of intradialytic exercise during 

every hemodialysis session [46]. In the present study, 30 min of intradialytic cycling did not 

influence the reduction ratios (Table 2) or removal (Figure 3) of any uremic toxin during 

hemodialysis. This is in line with previous work from De Vos et al., who showed that 

intradialytic exercise did not change serum concentrations of small and protein-bound 

uremic toxins throughout hemodialysis [37]. Nevertheless, we found that urea, creatinine, 

and phosphate removal were greater during performance of intradialytic exercise when 

compared to the same 30-min period during the non-exercise interventions. Intradialytic 

cycling increases perfusion of muscle tissue in the legs, an area which would otherwise 

receive relatively little blood flow during hemodialysis [47,48]. Increased perfusion of leg 

muscles allows uremic toxins to diffuse from this compartment into the circulation more 

efficiently, which may increase uremic toxin removal during hemodialysis [44]. However, 

over the 4-h hemodialysis period intradialytic cycling did not significantly modulate uremic 

toxin removal. It remains to be established whether a longer period or higher intensity of 

cycling would be able to further increase uremic toxin removal throughout hemodialysis. 

The combination of protein ingestion and physical activity creates a synergistic benefit to 

preserve, or even increase, muscle mass and function and are, therefore, combined in 

lifestyle interventions [49-51]. Implementation of protein ingestion together with 

intradialytic exercise during hemodialysis provides a supervised and time-efficient 

interventional strategy that is instrumental to maintain muscle mass and functional capacity 

in patients on chronic hemodialysis treatment [17]. In addition to the separate 

interventions, the present study also shows that the combination of intradialytic protein 
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ingestion and cycling does not compromise uremic toxin removal during hemodialysis 

(Figure 3). Therefore, exercise combined with protein ingestion can be implemented during 

hemodialysis to support muscle mass and strength preservation without attenuating 

hemodialysis efficiency. 

The present study has several limitations. First, the sample size is relatively small with 

merely 10 patients included. However, to minimize variability and increase the power of our 

measures, we have employed a randomized cross-over study design and standardized food 

intake prior to the hemodialysis sessions. In accordance, we were able to show a difference 

in urea removal throughout hemodialysis between interventions. Second, we provided 

patients with 40 g of milk protein concentrate during hemodialysis. Though this allowed us 

to isolate the impact of protein ingestion on uremic toxin removal, patients generally ingest 

whole foods during hemodialysis. Ingestion of whole foods may influence uremic toxin 

removal differently than ingestion of a protein isolate or concentrate. Major strengths of 

the current study include the combination of both the placebo and protein beverage with 

as well as without intradialytic exercise. Furthermore, uremic toxin concentrations 

throughout hemodialysis were not only measured in blood, but also in spent dialysate to 

quantify uremic toxin removal. In conclusion, intradialytic protein ingestion lowers the 

reduction ratios of protein-derived uremic toxins, but increases urea removal throughout 

hemodialysis. Intradialytic exercise does not compromise uremic toxin removal throughout 

hemodialysis in patients with ESRD. 

 

Practical application  

In the present study, we show that intradialytic protein ingestion lowers the reduction ratios 

of protein-derived uremic toxins, but does not compromise uremic toxin removal during 

hemodialysis. In addition, the combination of intradialytic protein ingestion and exercise 

does not compromise the removal of uremic toxins during hemodialysis. Therefore, exercise 

combined with protein ingestion can be implemented during hemodialysis to support 

muscle mass and strength preservation without attenuating hemodialysis efficiency. 
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Supplementary material 
 

 

Supplementary figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow chart. PLA, placebo; 

PLA+EX, placebo and exercise; PRO, protein; PRO+EX, protein and exercise. 
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Abstract 

 
Background 

Hemodialysis removes amino acids from the circulation, thereby stimulating muscle 

proteolysis. Protein ingestion during hemodialysis can compensate for amino acid removal 

but may also increase uremic toxin production. Branched-chain ketoacid (BCKA) co-

ingestion may provide an additional anabolic stimulus without adding to uremic toxin 

accumulation. In the present study we assessed the impact of BCKA co-ingestion with 

protein on forearm amino acid balance and amino acid oxidation during hemodialysis. 

 

Methods 

Nine patients (age: 73±10 y) on chronic hemodialysis participated in this crossover trial. 

During two 4-h hemodialysis sessions, patients ingested 18 g protein with (PRO+BCKA) or 

without (PRO) 9 g BCKAs in a randomized order. Test beverages were labeled with L-[ring-
13C6]-phenylalanine and provided throughout the last 3 h of hemodialysis as 18 equal sips 

consumed with 10-min intervals. Arterial and venous plasma as well as breath samples were 

collected frequently throughout hemodialysis. 

 

Results 

Arterial plasma total amino acid (TAA) concentrations during PRO and PRO+BCKA 
treatments were significantly lower after 1 h of hemodialysis (2.6±0.3 and 2.6±0.3 mmol/L, 
respectively) when compared to pre-hemodialysis concentrations (4.2±1.0 and 4.0±0.5 
mmol/L, respectively; time effect: P<0.001). Arterial plasma TAA concentrations increased 
throughout test beverage ingestion (time effect: P=0.027) without differences between 
treatments (time × treatment: P=0.62). Forearm arteriovenous TAA balance during test 
beverage ingestion did not differ between timepoints (time effect: P=0.31) or treatments 
(time × treatment: P=0.34). Whole-body phenylalanine oxidation was 33±16% lower during 
PRO+BCKA when compared to PRO treatments (P<0.001). 
 
Conclusion 

BCKA co-ingestion with protein during hemodialysis does not improve forearm net protein 

balance but lowers amino acid oxidation.  
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Introduction 

 

Hemodialysis is a lifesaving treatment for patients with end-stage renal disease, as it 

removes uremic toxins and excess fluid from the body [1]. During hemodialysis, uremic 

toxins diffuse from the blood through a semipermeable membrane into dialysate fluid and, 

as such, are removed from the body. Patients on chronic hemodialysis therapy typically 

undergo two or three hemodialysis sessions per week to allow sufficient removal of uremic 

toxins and excess fluid [2]. 

Poor nutritional status is prevalent among patients undergoing chronic hemodialysis 

treatment [3, 4]. This is further aggravated by the observation that hemodialysis does not 

only removes uremic toxins, but also circulating amino acids (AAs) [5, 6]. We have recently 

shown that approximately 12 g AAs are removed from the circulation during a single 

hemodialysis treatment [7]. The subsequent decline in circulating AA concentrations 

stimulates muscle proteolysis during hemodialysis and likely for some period thereafter [7-

12]. The intermittent exposure to the catabolic properties of hemodialysis contributes to 

the etiology of low muscle mass and strength observed in patients undergoing chronic 

hemodialysis [13].  

Recently, we have shown that ingestion of 40 g protein during hemodialysis can compensate 

for AA removal and, as such, may improve net muscle protein balance during hemodialysis 

[14]. However, we also observed that intradialytic protein ingestion attenuated uremic 

toxin reductions during hemodialysis, likely because dietary protein contains nitrogen, 

which is known to stimulate production of several uremic toxins [15, 16]. Higher uremic 

toxin concentrations between hemodialysis sessions may further stimulate muscle 

proteolysis and, as such, offset the potential anabolic properties of protein ingestion during 

hemodialysis [17]. 

Co-ingestion of branched-chain amino acids (BCAAs), and leucine in particular, has been 

suggested as a strategy to further enhance the anabolic properties of dietary protein 

ingestion [18, 19]. The ketoanalogues of these BCAAs, the branched-chain ketoacids 

(BCKAs), do not contain nitrogen and are transaminated to their corresponding AA using an 

amino group (from urea) [20]. BCKA infusion has been reported to attenuate urea 

generation, which indicates an improved nitrogen balance due to lower AA oxidation [21]. 

In addition, we have shown that ingestion of BCKAs increases muscle protein synthesis rates 

in healthy volunteers [22]. We hypothesize that BCKA co-ingestion with dietary protein may 

represent an effective strategy to augment the anabolic potential of protein ingestion 

during hemodialysis without increasing nitrogen load. 
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In the present study, we assessed the impact of supplementing protein with and without 

BCKAs during hemodialysis. Test beverages were enriched with L-[ring-13C6]-phenylalanine 

and provided as frequent sips throughout hemodialysis to achieve a constant rate of tracer 

appearance in the circulation, which allowed us to compare AA oxidation rates between 

treatments by measuring 13CO2 appearance in the expired breath.  
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Methods 

 
Participants 

A total of 10 patients with end-stage renal disease undergoing hemodialysis through a well-

functioning arteriovenous shunt for at least 3 months were recruited between June 2021 

and December 2021 at the dialysis department of Maastricht University Medical Centre+, 

Maastricht, The Netherlands (See Supplementary Figure 1 for the Consolidated Standards 

of Reporting Trials (CONSORT) flow diagram). Patients with an active inflammatory disease, 

malignancy, cognitive disorder, intolerance to food ingestion during hemodialysis, 

uncontrolled hypertension, or a hospitalization/missed hemodialysis session in the last 

month prior to the study period were excluded. Patients were informed about the purpose 

of the study, experimental procedures, and possible risks prior to signing written informed 

consent. The study was approved by the Medical Research Ethics Committee Academic 

Hospital Maastricht/Maastricht University (NL76362.068.20), conformed to standards for 

the use of human subjects in research as outlined in the latest version of the Helsinki 

Declaration, and was registered prospectively at the Netherlands Trial Register (NTR9296). 

The study was independently monitored by the Clinical Trial Center Maastricht. 

 

Dietary intake and physical activity 

All patients refrained from any sort of strenuous physical activity 48 h prior to each test day. 

Patients who underwent hemodialysis in the morning arrived in an overnight fasted state. 

Those who underwent hemodialysis in the afternoon or evening consumed a standardized 

meal 3 h before initiation of their hemodialysis session (providing ~500 kcal, with 

carbohydrate, fat and protein providing ∼60, 30, and 10 En%, respectively) and were 

instructed to remain fasted thereafter until the start of the experimental protocol. During 

test days, patients were allowed to ingest water ad libitum. 

 

Study design 

During two hemodialysis sessions, separated by a wash-out period of at least one week, all 

patients were assigned in a randomized cross-over design to ingest a protein beverage with 

(PRO+BCKA) or without (PRO) 9 g BCKAs. The cross-over design was chosen to minimize 

variability of outcome parameters in this heterogeneous population. An overview of test 

days, which were scheduled during patients’ second or third weekly hemodialysis session, 

is provided in Figure 1. Patients were randomly assigned to an order of interventions by an 

independent researcher using an online randomizer (http://www.randomizer.org) and the 

randomization order of test beverages was not shared with investigators, study staff, or 

participants until all procedures and statistical analyses of the primary and secondary 

outcomes were complete. 



Chapter 6 

110 

 

 
Figure 1. t= -60 min represents the start and t= 180 min the end of the hemodialysis session. In a randomized cross-

over manner, patients were provided with 18 test beverage sips containing either 1 g protein (PRO) or 1 g protein 

with 0.5 branched-chain ketoacids (PRO+BCKA) per sip. 

 

Hemodialysis treatment 

Patients’ prescribed blood (350 – 400 mL/min) and dialysate flow rates (500 – 700 mL/min), 

dialysate composition, and dialysis membranes were not altered between test days. Desired 

ultrafiltration volume was determined by the treating nephrologist for each hemodialysis 

session. Patients were dialyzed through a well-functioning arteriovenous shunt in the arm 

using polysulfone (n=4; FX-800, Fresenius Medical Care, Bad Homburg, Germany), 

polynephron (n=2; Elisio 17H, Nipro Medical corporation, Osaka, Japan), and triacetate 

(n=3; SUREFLUX 19L, Nipro Medical Corporation, Osaka, Japan) membranes. 

 

Experimental protocol 

After patients arrived at the dialysis department, their weight was recorded and a Body 

Composition Monitor (BCM®, Fresenius Medical Care, Bad Homburg, Germany) was used to 

assess their body composition, as described previously [23]. A catheter was inserted into an 

antecubital vein of the non-shunted arm and the arteriovenous shunt was checked for 

recirculation. Prior to the start of hemodialysis (t= -60 min), a venous and arterial plasma 

sample were collected from the catheter and the shunt, respectively. Just before the first 

sip of the test beverage (t= 0 min), a venous plasma sample was collected using the catheter, 

an arterial plasma sample was collected from the arterial line, and a breath sample was 

collected in a 10 mL Exetainer tube (Labco Limited, Lampeter, UK) using an EasySampler® 

system (Quintron, Milwaukee, USA). Thereafter, sips of the test beverage were consumed 

with 10-min intervals (at t= 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 

160, and 170 min) to achieve a constant rate of tracer appearance in the circulation, which 
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allowed us to compare AA oxidation rates between treatments by measuring 13CO2 

appearance in the expired breath. In addition, arterial plasma and breath samples were 

collected with 30-min intervals (at t= 30, 60, 90, 120, 150, and 180 min), and venous plasma 

was sampled with 60-min intervals (at t= 60, 120, and 180 min). Spent dialysate was 

collected continuously throughout hemodialysis in a container at a rate of 1.0 L/h using a 

reversed injection pump (Alaris GW, Rolle, Switzerland). Every 2 h these containers were 

replaced (at t= 60 and 180 min) and a homogenized sample of the spent dialysate collected 

over each 2-h period was obtained. Following the experimental procedures, patients were 

offered a meal before leaving the dialysis department. 

 

Test beverages 

The independent researcher who randomized the order of test beverages was responsible 

for their preparation. The protein beverage contained 18.0 g milk protein concentrate (Refit 

TMP 90, Friesland Campina, Amersfoort, The Netherlands; containing 1.7 g leucine, 0.9 g 

isoleucine, and 1.2 g valine), 0.36 g L-[ring-13C6]-phenylalanine, and a non-aspartame 

containing sweetener (Natrena, Douwe Egberts, Amsterdam, The Netherlands) dissolved in 

270 mL water. During PRO+BCKA treatments, 9.0 g BCKAs (i.e. 4.5 g keto-leucine, 2.3 g keto-

isoleucine, and 2.3 g keto-valine) were added to the protein beverage. Subsequently, the 

test beverages were homogenized, weighted, and divided in 18 equal servings (with each 

serving containing 1/18 of total beverage weight), which were numbered according to 

participant and test day number before handing them to an investigator. 

 

Plasma and spent dialysate analysis 

Plasma samples were collected in ethylenediaminetetraacetic acid (EDTA)-containing tubes 

and centrifuged at 1000g at 4°C for 10 min to obtain plasma. Homogenized spent dialysate 

samples were collected in sterile tubes, immediately frozen in liquid nitrogen, and stored in 

a freezer at -80°C until further analysis. These samples were concentrated through freeze-

drying 25.0 mL of the sample and dissolving the dried product in 5.0 mL 0.1 M hydrogen 

chloride. AA and BCKA concentrations and enrichments in plasma and spent dialysate were 

determined by ultra-performance liquid chromatography mass spectrometry (ACQUITY 

UPLC H-Class with QDa; Waters, Saint-Quentin, France) as described previously [14, 24]. 

 

Breath analysis 

Breath CO2 samples were analyzed for 13C/12C ratio by continuous flow isotope ratio mass 

spectrometry (CF-IRMS; Finnigan, Bremen, Germany) using a GasBench II (Thermo 

Scientific, Waltham, USA). Standard regression curves were applied from a series of known 

standard enrichment values to assess the linearity of the mass spectrometer and to account 

for any isotope fraction that may have occurred during the analysis. 
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Calculations 

The net forearm protein balance was calculated by subtracting venous plasma AA 

concentrations from arterial plasma AA concentrations. AA removal during hemodialysis 

and reduction ratios of urea were calculated described before [16, 25]. The percentage of 

protein-derived/exogenous AAs within the total amount of removed AAs during the second 

half of hemodialysis (i.e. t= 60 – 180 min) was calculated using the following formula: 

 

𝐴𝐴𝑒𝑥(%) =  (
𝐸𝑑𝑖𝑎

𝐸𝑑𝑟𝑖𝑛𝑘

)  ∙  100 

 

In which AAex is the percentage of exogenous AAs, Edia is the L-[ring-13C6]-phenylalanine 

enrichment of the spent dialysate, and Edrink is the L-[ring-13C6]-phenylalanine enrichment of 

the test beverage, with the phenylalanine content of the milk protein concentrate corrected 

for its digestibility (95%) [26]. Breath isotopic enrichment was expressed as δ per mil 

difference between the 13C/12C ratio of the sample and an international standard (Vienna 

PDB) according to the following formula [27]: 

 

δ13C =  ((
 13C  12C⁄ sample

 13C  12C⁄ standard
) − 1)  ∙  103 

 

Phenylalanine oxidation (Pheox) throughout the tracer steady state period in µmol/h was 

estimated using a modification of the formula described by Bandyopadhyay et al. [28]: 

 

𝑃ℎ𝑒𝑜𝑥 =  
𝐸𝑏𝑟𝑒𝑎𝑡ℎ  ∙  𝑉𝐶𝑂2  ∙  44.6 ∙ 60

𝐸𝑝𝑙𝑎𝑠𝑚𝑎  ∙ 0.82 ∙  13𝐶𝑛

 

 

where Ebreath is the 13C enrichment in expired breath, VCO2 was the amount of carbon 

dioxide exhaled from the body in mL/min, which was assumed to be similar to the previously 

reported value during high-efficiency hemodialysis of 214 mL/min [29], Eplasma is plasma L-

[ring-13C6]-phenylalanine enrichment in MPE expressed as fraction and 13Cn is the number 

of labelled carbon atoms per phenylalanine molecule (i.e. 6).  
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Statistical analysis 

All data are expressed as means±SDs unless indicated otherwise. A power calculation was 

performed with forearm arteriovenous AA balance as the primary outcome measure. A 

required sample size of 10 participants including a 10% dropout rate was calculated using a 

power of 80%, a significance level of 0.05, and the difference and standard deviation in 

forearm AA balance following ingestion of one and two protein supplements during 

hemodialysis as reported by Sundell et al. [8]. After the randomization order of test 

beverages was shared with investigators, hemodialysis parameters and pre-hemodialysis 

weight and body composition were compared between treatments to identify possible 

confounders. Normal distribution of all parameters was verified by Shapiro-Wilk tests 

(P>0.05). No major violations for specific 2-factor repeated-measures ANOVA assumptions 

were observed and in case of non-sphericity, the Greenhouse-Geisser correction was used. 

Potential differences in forearm arteriovenous AA balance, plasma AA and BCKA 

concentrations, arterial plasma L-[ring-13C6]-phenylalanine enrichment, breath 13CO2, and 

plasma urea concentrations were assessed using 2-factor repeated-measures ANOVAs with 

time and BCKA ingestion (yes/no) as within-subject factors. If a statistically significant 

interaction was found, subsequent paired-samples t tests were performed. In case of 

significant time effects, Bonferroni post-hoc analyses were performed to locate the effects. 

Other outcome parameters were compared between treatments by paired-samples t tests. 

All analyses were performed using SPSS statistics software (version 27.0; IBM Corp., 

Armonk, NY, USA).  
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Results 

 
Patients’ characteristics 

Nine patients completed both test days (Table 1). One patient got nauseous during the 

second test day and was unable to complete the test. The period for which patients were 

undergoing chronic hemodialysis treatment prior to the first test day ranged from 3 – 89 

months. No differences were observed in pre-hemodialysis weight (80.5±10.9 and 

80.9±11.4 kg, P=0.09), lean tissue index (14.5±2.7 and 14.4±3.5 kg/m2, P=0.84), 

ultrafiltration volume (1.52±0.81 and 1.67±0.86 L, P=0.27), and hemodialysis adequacy 

(equilibrated Kt/V: 1.46±0.12 and 1.45±0.15, P=0.80) between the PRO and PRO+BCKA 

treatments, respectively. 

 

Table 1. Patients’ characteristics 

  Patients 

Age, y 73±10 

Sex, male/female 7/2 

Cause of end-stage renal disease 4 Glomerular 

 3 Malignancy 

 2 Vascular 

Dialysis vintage, months  27±26 

Dialysis timing, morning/afternoon/evening 4/3/2 

Height, m 1.73±0.06 

Weight, kg 79.4±11.3 

Body mass index, kg/m2 26.5±4.1 

Lean tissue index, kg/m2 14.0±2.9 

Fat tissue index, kg/m2 11.9±5.3 

Mean systolic blood pressure, mm Hg 136±27 

Mean diastolic blood pressure, mm Hg 61±17 

Serum albumin, g/dL 3.3±0.4 

C-reactive protein, mg/L 6±4 

Continuous and categorical values are expressed as mean±SD and counts, respectively, n=9. 

 

  



Ketoacid co-ingestion during hemodialysis 

115 

Arterial plasma amino acid concentrations 

Arterial plasma total amino acid (TAA) concentrations during PRO and PRO+BCKA 

treatments were significantly lower at t= 0 min (Figure 2A; 2.6±0.3 and 2.6±0.3 mmol/L, 

respectively) when compared to pre-hemodialysis concentrations (t= -60 min; 4.2±1.0 and 

4.0±0.5 mmol/L, respectively; time effect: P<0.001) with a similar decline in both sessions 

(time × treatment: P=0.37). Similarly, arterial plasma BCAA, essential amino acid (EAA) and 

non-essential amino acid (NEAA) concentrations declined during the first 60 min of 

hemodialysis (Figure 2; time effect: P<0.001 for all) with no differences between treatments 

(time × treatment: P=0.35, 0.21, and 0.37, respectively).  

Throughout test beverage ingestion, arterial plasma TAA, BCAA, and EAA concentrations 

increased over time (Figure 2A; time effect: P=0.027, <0.001, and <0.001, respectively) 

without differences between treatments (time × treatment: P=0.62, 0.53, and 0.71 

respectively). Arterial plasma NEAA concentrations during test beverage ingestion did not 

differ over time (time effect: P=0.10) or between treatments (time × treatment: P=0.52). 

Plasma concentration fold changes of individual AAs throughout hemodialysis per 

treatment are displayed as a heat map in Supplementary Figure 2. 

The iAUCs of arterial plasma TAA and NEAA concentrations were greater during PRO 

(2.06±1.02 and 1.38±0.84 mmol/3 h, respectively) when compared to PRO+BCKA 

treatments (1.23±0.71 and 0.51±0.56 mmol/3 h, respectively; P=0.041 and 0.020, 

respectively). The iAUCs of arterial plasma BCAA and EAA concentrations did not differ 

between PRO and PRO+BCKA treatments (P=0.25 and P=0.32, respectively). 

 

Plasma BCKA concentrations 

Pre-hemodialysis arterial plasma BCKA concentrations averaged 0.02±0.01 mmol/L, with no 

differences between treatments (P=0.14). Arterial plasma BCKA concentrations were higher 

during the PRO+BCKA when compared to the PRO treatment from t= 30 min until the end 

of the hemodialysis session (Figure 2B; time × treatment P< 0.001). In accordance, the iAUC 

of arterial plasma BCKA concentrations was significantly greater during PRO+BCKA 

(0.26±0.08 mmol/3 h) when compared to the PRO treatment (0.04±0.02 mmol/3 h; 

P<0.001). 
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Figure 2. Arterial plasma total amino acid (A), branched-chain ketoacid (B), phenylalanine (C), branched-chain (D), 

essential (E), and non-essential (F) amino acid concentrations throughout hemodialysis. Test beverages were 

ingested as sips consumed with 10-min intervals between t= 0 and 180 min. Values are expressed as means±SDs, 

n=9 for all values. Data were analyzed with a two-way repeated-measures ANOVA with time and treatment as 

within subject variables. *, PRO significantly different from PRO+BCKA treatment (P<0.05); #, t= 0 min 

concentrations significantly lower when compared to t= -60 min concentrations (P<0.001); $, concentrations 

significantly higher when compared to t= 0 min concentrations (P<0.05). PRO, protein; PRO+BCKA protein with 

branched-chain ketoacids. 
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Forearm arteriovenous amino acid BCKA balance 

During PRO and PRO+BCKA treatments, forearm arteriovenous TAA, BCAA, EAA, and NEAA 

balances were significantly lower at t= 0 min when compared to pre-hemodialysis (time 

effect: P=0.021, 0.032, 0.014, and 0.020, respectively), with no differences between 

treatments (time × treatment: P=0.97, 0.66, 0.37, and 0.95, respectively). Throughout test 

beverage ingestion, forearm arteriovenous TAA and NEAA balance did not differ between 

timepoints (Figure 3; time effect: P=0.31 and 0.59, respectively) or between treatments 

(time × treatment: P=0.34 and 0.28, respectively). Forearm arteriovenous BCAA and EAA 

balance improved significantly during test beverage ingestion (time effect: P=0.002 and 

<0.001, respectively) with no differences between treatments (time × treatment: P=0.62 

and 0.84, respectively). Forearm arteriovenous BCKA balance throughout test beverage 

ingestion was significantly higher during the PRO+BCKA when compared to the PRO 

treatment from t= 60 min until the end of the hemodialysis session (time × treatment: 

P<0.001). The plasma arterial/venous ratios of individual AAs throughout hemodialysis per 

treatment are displayed as a heat map in Supplementary Figure 3. 

No differences were observed in iAUCs of the forearm arteriovenous TAA, BCAA, EAA, and 

NEAA balance throughout the test beverage ingestion (P=0.92, 0.18, 0.77, and 0.75, 

respectively), while the iAUC of the forearm arteriovenous BCKA balance during this period 

was significantly greater during the PRO+BCKA (0.09±0.38 mmol/3 h) when compared to 

the PRO treatment (0.00±0.12 mmol/3 h; P<0.001).  
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Figure 3. Forearm arteriovenous total amino acid (A), branched-chain ketoacid (B), phenylalanine (C), branched-

chain (D), essential (E), and non-essential amino acid (F) balance throughout hemodialysis. Test beverages were 

ingested as sips consumed with10-min intervals between t= 0 and 180 min. Values are expressed as means±SDs, 

n=9 for all values. Data were analyzed with a two-way repeated-measures ANOVA with time and treatment as 

within subject variables. *, PRO significantly different from PRO+BCKA treatment (P<0.05); #, t= 0 min 

concentrations significantly lower when compared to t= -60 min concentrations (P<0.05); $, concentrations 

significantly higher when compared to t= 0 min concentrations (P<0.05). PRO, protein; PRO+BCKA protein with 

branched-chain ketoacids. 
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Stable isotope enrichments  

Arterial plasma L-[ring-13C6]-phenylalanine enrichments increased throughout the first 60 

min of test beverage ingestion (P≤0.001) after which they remained in a steady state 

between t= 60 – 180 min period with no differences between treatments (time × treatment: 

P=0.07; Figure 4). During the steady state period, arterial plasma L-[ring-13C6]-phenylalanine 

enrichments averaged 11.2±1.9 and 11.1±2.2 MPE during PRO and PRO+BCKA treatments, 

respectively. In accordance, average spent dialysate L-[ring-13C6]-phenylalanine 

enrichments throughout the t= 60 – 180 min period were not different during the PRO 

(8.1±1.5 MPE) when compared to the PRO+BCKA treatment (7.8±2.3 MPE; P=0.78).  

 

 
 

Figure 4. Arterial plasma L-[ring-13C6]-phenylalanine enrichments throughout test beverage ingestion protocol 

during hemodialysis. Values are expressed as means±SDs, n=9 for all values. Data were analyzed with a two-way 

repeated-measures ANOVA with time and treatment as within subject variables. MPE, mole % excess; PRO, 

protein; PRO+BCKA protein with branched-chain ketoacids. 
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Amino acid oxidation  

Breath δ13C enrichments following the start of test beverage ingestion are depicted in 

Figure 5 and showed significant time × treatment interaction (P<0.001). Breath δ13C 

increased between every timepoint (P<0.01 for all) except for the last 30-min interval 

(P=0.15). During PRO+BCKA treatments, breath δ13C enrichments were lower when 

compared to the PRO treatment from t= 60 min until the end of the hemodialysis session 

(P<0.01 for all). Furthermore, peak AA oxidation was significantly lower during PRO+BCKA 

(breath 13CO2 enrichment: 7.1±8.3 δ per mil vs VPBD) when compared to PRO treatments 

(breath 13CO2 enrichment: -1.4±6.5 δ per mil vs VPBD; P<0.001). Consequently, estimated 

phenylalanine oxidation rates were lower during PRO+BCKA (0.029±0.008 g/h) when 

compared to PRO treatments (0.041±0.007 g/h; P=0.001). 

 

 

Figure 5. Breath 13CO2 enrichments throughout test beverage ingestion during hemodialysis. Values are expressed 

as means±SDs, n=9 for all values. Data were analyzed with a two-way repeated-measures ANOVA with time and 

treatment as within subject variables. *, PRO significantly different from PRO+BCKA treatments (P<0.01). PRO, 

protein; PRO+BCKA protein with branched-chain ketoacids. 
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Amino acid and BCKA removal  

AA removal throughout the whole hemodialysis session (24.0±7.6 vs 22.8±9.3 g, 

respectively; P=0.62) and the second half of the hemodialysis session (i.e. t= 60 – 180 min; 

11.8±3.4 vs 11.2±4.5 g, respectively; P=0.55) did not differ between the PRO and PRO+BCKA 

treatment, respectively. Total AA removal of individual participants during the PRO and 

PRO+BCKA treatment are shown in Figure 6A. During the t= 60 – 180 min period during PRO 

and PRO+BCKA treatment, test beverage protein-derived AA removal averaged 3.3±1.2 and 

3.0±1.5 g (Figure 6B; P=0.46), respectively, while endogenous-derived AA removal was 

8.5±2.5 and 8.2±3.3 g (P=0.67), respectively.  

BCKA removal was greater during PRO+BCKA when compared with PRO treatment over the 

whole hemodialysis session (0.34±0.10 vs 0.10±0.02 g; P<0.001) and the second half of the 

hemodialysis session (i.e. t= 60 – 180 min; 0.23±0.07 vs 0.06±0.02 g; P<0.001).  

 

 
 

Figure 6. Amino acid removal (A) and the source of removed amino acids (B) during the second half of hemodialysis. 

Squares and circles represent individual data points and bars represent treatments as means+SDs, n=9. Data were 

analyzed between treatments with paired-samples t tests. PRO, protein; PRO+BCKA protein with branched-chain 

ketoacids. 
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Urea 

Arterial plasma urea concentrations declined significantly throughout the hemodialysis 

session (time effect: P<0.001) with no differences between treatments (time × treatment: 

P=0.51). In addition, no differences were observed in the reduction ratio of urea (76.8±4.1 

vs 77.3±3.9%; P=0.46) and urea removal (19.5±7.0 vs 18.8±6.5 g; P=0.33) throughout 

hemodialysis between the PRO and PRO+BCKA treatment, respectively.   
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Discussion 

 
In the present study, we observed that hemodialysis reduces circulating AA availability and 

lowers the forearm arteriovenous net protein balance. Subsequently, protein provided as 

frequent sips during hemodialysis increased circulating AA concentrations and improved 

the forearm arteriovenous essential AA balance. In addition, we assessed the impact of co-

ingesting BCKAs with protein during hemodialysis as a means to enhance the anabolic 

potential of dietary protein ingestion. Co-ingestion of BCKAs with protein had no impact on 

the forearm arteriovenous balance throughout hemodialysis, but significantly reduced AA 

oxidation rates when compared to the ingestion of protein. 

Hemodialysis has been developed to remove uremic toxins from the body of patients with 

end-stage renal disease, but also removes AAs [5, 7]. Throughout hemodialysis this 

substantially reduces plasma AA concentrations, which has been shown to stimulate muscle 

protein breakdown. [10, 30] In the present study, we observed that during the first hour of 

hemodialysis plasma TAA concentrations declined by as much as ∼35% (Figure 2), making 

the forearm arteriovenous AA balance become negative (Figure 3). Recently, we have 

shown that ingestion of 40 g protein during hemodialysis can compensate for the removal 

of AAs [14]. Here, we show that ingestion of 18 g protein increased plasma AA 

concentrations from 2.6±0.3 mmol/L at t= 0 min to 3.4±0.3 mmol/L at the end of 

hemodialysis session (Figure 2A). In addition, the average iAUC of forearm arteriovenous 

TAA balance was positive (0.58±0.67 mmol/L/3 h), which indicates no further deterioration 

but rather an improvement in the forearm net protein balance following intradialytic 

protein ingestion. These findings are in line with previous studies that reported beneficial 

effects of protein ingestion during hemodialysis on protein homeostasis [8, 9, 30, 31]. 

Therefore, protein ingestion during hemodialysis is advocated as a means to support muscle 

maintenance [32, 33]. However, protein intake also stimulates the production of protein-

derived uremic toxins such as urea and indoxyl sulfate [16].  

To enhance the beneficial impact of protein ingestion during hemodialysis without 

increasing total protein intake, we added BCKAs to the supplemented protein. BCKAs are 

the ketoanalogues of BCAAs and can be reversibly transaminated to their corresponding AA 

in skeletal muscle, liver, and kidney tissue [34-37]. BCKA ingestion has been shown to 

stimulate muscle protein synthesis rates in vivo and to suppress protein breakdown in vitro 

[22, 37]. In the present study, we assessed whether co-ingesting protein with BCKAs during 

hemodialysis could further augment the anabolic properties of dietary protein ingestion. 

Following the ingestion of the PRO+BCKA beverages, arterial plasma BCKA concentrations 

increased significantly more than following ingestion of the PRO beverages. Arterial plasma 

TAA, BCAA, and EAA concentrations increased following protein ingestion with no 

differences between PRO+BCKA and PRO treatments (Figure 2). In accordance, while the 
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forearm arteriovenous BCKA balance became significantly more positive during PRO+BCKA 

when compared to the PRO treatment, the improvements in forearm arteriovenous TAA, 

BCAA, and EAA balance did not differ between treatments (Figure 3). This implies that 

though BCKAs are effectively taken up by peripheral tissues, their co-ingestion with dietary 

protein does not further improve the forearm arteriovenous net protein balance.  

In the present study, we applied a frequent sip protocol with test beverages containing L-

[ring-13C6]-phenylalanine. Using this protocol, we were able to reach a tracer steady state 

throughout the t= 60 – 180 min period during both PRO and PRO+BCKA treatment (Figure 

4). This allowed us to compare AA oxidation rates between PRO and PRO+BCKA treatments 

by measuring 13CO2 enrichment from the oxidation of the ingested 13C6-phenylalanine in 

expired breath. Following test beverage ingestion, phenylalanine oxidation rates remained 

significantly lower during PRO+BCKA when compared to the PRO treatment (Figure 5). With 

the assumption that relative oxidation rates of other AAs are comparable to phenylalanine, 

we estimated that approximately 6.0 and 4.7 g AAs were oxidized throughout the 3 h period 

during which patients ingested PRO and PRO+BCKA beverages, respectively. Because the 

bicarbonate in dialysate fluid represents additional CO2 buffer capacity and 13CO2 

enrichment in expired breath was still increasing at t= 180 min, these values should be 

regarded as a minimal estimate of AA oxidation rates [29]. Nonetheless, even the observed 

effect of BCKA supplementation (i.e. 1.3 g reduction in total AA oxidation) may be clinically 

relevant over a longer period due to the high frequency of hemodialysis (generally 3 

sessions/week) and a possible sustained effect beyond the end of hemodialysis. However, 

whether intradialytic ketoacid supplementation has beneficial long-term effects on 

patients’ nutritional status remains to be determined.  

Throughout all hemodialysis sessions, we continuously collected spent dialysate to quantify 

AA removal. As shown in Figure 6A, AA removal over the whole hemodialysis session did 

not significantly differ between PRO and PRO+BCKA treatments. During the t= 60 – 180 min 

period, AA removal during both PRO and PRO+BCKA treatment did not differ and averaged 

11.8±3.4 and 11.2±4.5 g, respectively. This amount was similar to the total amount of 

protein provided during this period (12.0 g). Using the spent dialysate 13C6-phenylalanine 

enrichment throughout the t= 60 – 180 min period, we were able to calculate removal of 

dietary protein-derived AAs during the PRO (3.3±1.2 g; 28±5% of total AA removal) and 

PRO+BCKA (3.0±1.5 g; 27±8% of total AA removal) treatments. These percentages are in line 

with estimations from our previous study, in which ingestion of a single bolus containing 40 

g protein resulted in ∼8 g (∼25%) additional AA removal [14]. Interestingly, only 4±1% 

(0.23±0.08 g) of the BCKAs provided during the t= 60 – 180 min period were removed, 

suggesting that BCKAs are mostly retained in the body, oxidated, or transaminated into their 

corresponding AAs.  

BCKAs use an excess amino group (containing nitrogen) during transamination towards 

their corresponding AA and have been suggested to reduce urea production [20, 21, 37]. In 
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contrast, protein ingestion during hemodialysis results in greater urea accumulation [16]. In 

the present study, we observed no differences in urea reduction or urea removal during 

hemodialysis between PRO and PRO+BCKA treatments. However, throughout hemodialysis 

we did observe a substantial decline in AA oxidation, which has been linked to urea 

production [38]. Therefore, future studies should determine whether BCKA ingestion during 

hemodialysis can modulate urea accumulation during and after hemodialysis. 
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Supplementary material 

 

Supplementary figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow chart. PRO, protein; 

PRO+BCKA, protein with branched-chain ketoacids. 
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Supplemental figure 2. Heat map of plasma amino acid concentration fold changes from baseline throughout 

hemodialysis per treatment. t= -60 min represents the start (baseline) and t= 180 min the end of hemodialysis. 

BCAA, branched-chain amino acids; EAA, essential amino acids; NEAA, non-essential amino acids; TAA, total amino 

acids. 
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Supplemental figure 3. Heat map of plasma arterial/venous ratios throughout hemodialysis per treatment.  

t= -60 min represents the start (baseline) and t= 180 min the end of hemodialysis. BCAA, branched-chain amino 

acids; EAA, essential amino acids; NEAA, non-essential amino acids; TAA, total amino acids. 
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General discussion  

 
In this thesis, we have described several studies performed in patients with end-stage renal 

disease on chronic hemodialysis treatment. This population is characterized by an 

accelerated loss of skeletal muscle mass and strength, which generally results in poor 

physical functioning and high morbidity [1-4]. Nutritional and physical activity interventions 

that increase muscle mass and strength have the potential to increase the quality of life in 

patients on chronic hemodialysis treatment. In Chapter 2 – 6, we have evaluated the 

application of multiple nutritional and physical activity interventions during hemodialysis to 

support muscle maintenance. First, we observed that a substantial amount (~12 g) of amino 

acids is removed during a single hemodialysis session. Subsequently, we showed that 

ingestion of 40 g protein during hemodialysis (intradialytic) with and without prior exercise 

can compensate for amino acid removal, thereby elevating plasma amino acid 

concentrations throughout hemodialysis. In addition, we demonstrated that intradialytic 

protein ingestion and exercise do not compromise uremic toxin removal during 

hemodialysis, which disproves previous assumptions [5]. We also studied the impact of co-

ingesting branched-chain ketoacids as a strategy to further enhance the anabolic potential 

of intradialytic protein supplementation. Ketoacid co-ingestion lowered amino acid 

oxidation rates and may further support a more positive net protein balance throughout 

dialysis. Together, our results indicate that intradialytic protein ingestion combined with 

exercise should become standard clinical practice to support muscle maintenance for 

patients undergoing hemodialysis. However, long-term adherence and compliance of 

patients on chronic hemodialysis treatment to lifestyle interventions is often low due to the 

high disease burden and time restraints that these patients experience [6]. In addition, 

exercise intolerance limits the intensity that can be achieved during physical activity 

interventions to such a modest intensity, that beneficial effects of exercise may be limited 

[7]. In accordance, recent work suggests that nutritional and physical activity interventions 

may help to attenuate the loss of physical function, but that these interventions are not 

effective enough to increase muscle mass and strength in patients on chronic hemodialysis 

treatment [8, 9]. 
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A different strategy to effectively improve physical functioning of patients on chronic 

hemodialysis treatment would be to implement interventions prior to hemodialysis 

initiation. Low physical functioning and frailty are already common among patients with 

advanced chronic kidney disease (CKD) and are strongly correlated with higher morbidity 

and reduced quality of life [4, 10-13]. When compared to healthy adults, the loss of muscle 

mass and strength in patients with advanced CKD is accelerated (Figure 1) [14]. Patients 

with advanced CKD are often identified by a healthcare professional long before 

hemodialysis is required. In addition, they generally visit their healthcare provider regularly 

to monitor their disease progression [15]. These visits to healthcare professionals provide a 

great opportunity to implement lifestyle interventions to improve nutritional and physical 

activity status prior to the development of end-stage renal disease. Due to the lesser disease 

burden in patients who do not yet require dialysis treatment, lifestyle interventions 

implemented at this stage may be more effective and, as such, could improve physical 

functioning. In addition, such a pre-habilitation program could increase patients’ muscle 

mass and strength prior to the start of chronic hemodialysis treatment, helping them to 

remain physically active and (more) independent (Figure 1). 

 

 
Figure 1. Theoretical different effects of implementing a lifestyle intervention in patients with advanced CKD and 

patients undergoing hemodialysis on muscle strength and the consequences for functional status. 

 

Dietary protein consumption and physical activity are both essential to maintain or increase 

muscle mass and strength. Dietary protein provides amino acids, which can be used as 

precursors for de novo muscle protein synthesis [16]. Furthermore, protein derived amino 

acids, and leucine in particular, directly stimulate muscle protein synthesis through 

activation of translation initiation via the mammalian target of rapamycin complex 1 

(mTORC1) pathway [17, 18]. Physical activity and exercise improve skeletal muscle strength 
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and endurance. Dietary protein consumption of patients with CKD is often modest due to 

dietary restrictions as well as reduced appetite caused by systemic inflammation and the 

accumulation of metabolic waste products [19-21]. In addition, these patients generally 

have a sedentary lifestyle characterized by low physical activity levels and infrequent 

exercise participation [22]. In addition, the lack of ample protein ingestion and physical 

activity in patients with advanced CKD are important contributors to the accelerated loss of 

muscle mass and function observed within this population [19, 23]. Therefore, a great 

potential exists to improve the lifestyle of patients with advanced CKD through nutritional 

and physical activity interventions tailored to this population. 

Nutritional requirements and recommendations vary widely throughout the CKD trajectory. 

Dietary interventions are currently extensively implemented in clinical care for patients with 

advanced CKD [24]. However, nutritional prescriptions (i.e., low-protein and -salt diets) 

mainly aim to attenuate the progression of CKD, while maintenance of muscle mass and 

physical function are not of primary concern [24-26]. It has been suggested that a high-

protein diet induces renal hyperfiltration and increases the production and accumulation of 

uremic toxins in patients with advanced CKD [27, 28]. Current clinical practice guidelines 

therefore recommend patients with advanced CKD without diabetes to ingest 25 – 35 kcal 

and 0.55 – 0.60 g protein/kg body weight/day to reduce the risk of kidney failure and delay 

the requirement for dialysis treatment [29]. Hence, strategies that allow the limited amount 

of ingested protein to be optimally used for protein synthesis in skeletal muscles and reduce 

the breakdown of amino acids to uremic toxins are promising in this population. Such 

interventions could further delay the need for dialysis treatment while simultaneously 

supporting muscle maintenance in patients with advanced CKD. A more equal distribution 

of protein between breakfast, lunch, and dinner could allow ingested protein to be used 

more effectively. Protein distribution between meals is often skewed with the meals later 

in the day containing more protein [30, 31]. In healthy older adults, the amount of protein 

required to stimulate muscle protein synthesis rates (20 – 30 g) is generally not consumed 

during breakfast and lunch [30, 32, 33]. Furthermore, dinner generally contains a large 

amount of protein, which may stimulate protein derived amino acid oxidation and increase 

uremic toxin production [34, 35]. A more equal distribution of protein over all meals could 

result in a stimulation of muscle protein synthesis with every meal, while reducing amino 

acid oxidation throughout the day [36]. In addition, ingestion of higher quality proteins (i.e. 

protein with a high essential amino acid content) may be more effective to achieve a proper 

anabolic response when compared to the same amount of protein with a lower essential 

amino acid content [37]. Recently, Holwerda et al. have shown that 15 g protein can 

effectively stimulate (post-exercise) muscle protein synthesis rates in older adults when 1.5 

g leucine was co-ingested [38]. In support, several studies have reported that 

supplementing keto-analogues of essential amino acids can stimulate muscle protein 

synthesis rates and, as such, support muscle maintenance [39-42]. In contrast to dietary 
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protein, keto-analogues do not contain phosphate or nitrogen and can therefore induce an 

anabolic stimulus without increasing uremic toxin production in patients with advanced CKD 

[43]. Future studies that assess the muscle anabolic response following nutritional 

interventions in patients with advanced CKD should be conducted to determine which 

interventions could help to effectively support muscle maintenance. 

Physical activity is an essential stimulus for skeletal muscle maintenance in health and 

disease. When this stimulus is absent (i.e., during bedrest or limb immobilization) both post-

absorptive and post-prandial muscle protein synthesis rates are lowered, resulting in net 

muscle loss [44, 45]. Furthermore, low levels of physical activity (i.e. sedentary behavior), 

which are common among patients with advanced CKD, also results in a decline in muscle 

protein synthesis rate when compared to levels observed in people adopting a more 

healthy, active lifestyle [46, 47]. In contrast, it has been shown that a single exercise bout 

can stimulate skeletal muscle protein synthesis rates [48, 49]. Furthermore, exercise has 

been shown to improve the sensitivity of skeletal muscle to the anabolic properties of 

dietary protein for a period up to 24 h [50]. Abolishing the sedentary behavior often seen 

in patients with advanced CKD will likely result in substantial health benefits. A recent study 

by Sheshadri et al. showed that low-intensity exercise (i.e., walking) integrated in daily living 

routine can preserve muscle mass in patients with advanced CKD [51]. Though walking and 

endurance-type exercise have been shown to increase aerobic capacity in patients with CKD 

[52], progressive resistance-type exercise is considered to be a more potent exercise 

modality to increase muscle mass and strength [53]. In healthy adults, progressive 

resistance-type exercise training has been shown to effectively stimulate muscle protein 

accretion, muscle strength, and physical functioning [54]. In support, it has been shown that 

progressive resistance-type exercise training can increase muscle mass and physical 

functioning in patients with CKD [55-57]. However, whether the muscle protein synthetic 

response to resistance-type exercise training in patients with advanced CKD is similar when 

compared to adults without CKD remains to be determined. It has been suggested that low-

grade inflammation and metabolic acidosis, which are common among patients with 

advanced CKD, could influence muscle protein metabolism and compromise the skeletal 

muscle adaptive response to exercise training [58, 59]. Nevertheless, patients with CKD 

patients should be counseled and guided to incorporate more habitual physical activity and 

structured exercise training in their daily living routines due to the wide range of 

documented benefits. 

Structured and sustained physical activity interventions can be applied to alleviate anabolic 

resistance and, as such, will likely further complement and augment the anabolic effects of 

dietary protein consumption [60]. In addition, sufficient dietary protein ingestion is 

essential to allow muscle net protein accretion during exercise training [61]. In frail older 

adults with low dietary protein intake levels, exercise training only was able to increase 

muscle strength, but induced no increase in muscle mass unless it was combined with 
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protein supplementation [31]. To optimally increase muscle mass and strength, lifestyle 

interventions should include the synergistic effect of combined exercise training and dietary 

protein consumption. However, due to the restraint of providing excess protein to patients 

with advanced CKD, the impact of protein ingestion following exercise training has not yet 

been evaluated in this population. Nonetheless, ingesting a single dose of (high-quality) 

protein directly following exercise, when the muscle is more sensitive to the anabolic 

properties of dietary protein, may prove to be instrumental to further support muscle 

maintenance while adhering to recommended low daily protein intake levels. However, 

patient-tailored lifestyle interventions that include both exercise training and well-timed 

protein consumption are not yet developed for patients with advanced CKD. 

 

 
 

Figure 2. General overview of facilitators, barriers, and benefits of healthy lifestyle behavior in patients with 

chronic kidney disease. 

 

Physical activity and nutritional interventions in patients with advanced CKD have been 

shown to have benefits beyond increases in muscle mass and function (Figure 2). Higher 

levels of physical activity have been shown to be associated with a slower progression of 

CKD, reduced inflammation, increased health-related quality of life, and lower all-cause 

mortality rates [1, 55, 62-64]. In addition, dietary interventions may slow the progression of 

CKD, delay dialysis initiation, and increase health-related quality of life in patients with 

advanced CKD [41, 42, 65]. However, adherence and compliance to lifestyle interventions 

are generally problematic in patients with chronic diseases. It has been reported that 

patients with CKD experience the lack of support from healthcare providers and family, 

fatigue, and anxiety as important barriers to engage in exercise training (Figure 2) [66]. 
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Nonetheless, several well-designed exercise programs that incorporate training supervision 

by exercise professionals have successfully achieved high training adherence in patients 

with advanced CKD [67]. In addition, adherence to exercise training and dietary 

interventions in research settings among patients with advanced CKD is often high. This 

indicates that, at least for a motivated subgroup within this population, long-term lifestyle 

changes are feasible. Unfortunately, several barriers including funding and fragmentation 

of health care providers often prevent the effective implementation of lifestyle intervention 

programs into standard clinical care for patients with CKD [68]. As nephrologists and 

primary healthcare providers regularly, and over a longer period, guide patients throughout 

their CKD trajectory, it is important that they are involved in lifestyle intervention programs 

[15]. However, they often do not feel confident to provide advice regarding lifestyle 

interventions. This can, at least partially, be explained by the lack of a clear consensus on 

the proper implementation of lifestyle interventions in the advanced CKD population. 

Therefore, future endeavors should focus on the development of evidence-base lifestyle 

interventions and a clinical care network that allows a more effective translation and 

integration of lifestyle intervention programs in the clinical care for patients with advanced 

CKD. 
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Summary 
 

Maintenance of skeletal muscle mass and function over time is essential for physical 

function and to maintain quality of life. Low muscle mass and strength in older adults are 

associated with increased morbidity, higher mortality rates, and the development of chronic 

diseases. Among clinically compromised populations, such as patients on chronic 

hemodialysis treatment, loss of muscle mass and strength is generally accelerated and 

strategies to support muscle maintenance are therefore of vital importance. Though 

adequate dietary protein ingestion and ample physical activity are crucial to allow muscle 

maintenance, few lifestyle interventions are currently applied in clinical care to prevent or 

attenuate muscle wasting in patients on chronic hemodialysis treatment. 

In Chapter 2, we have performed a literature review in which we describe that patients on 

chronic hemodialysis treatment generally do not ingest the recommended amount of 

protein (1.0 – 1.2 g protein/kg body weight/day) and have a sedentary lifestyle. Therefore, 

we proposed that interventions aiming to preserve or even increase muscle mass in this 

population should incorporate nutritional support as well as strategies to increase physical 

activity levels. Furthermore, we suggested that the hemodialysis period represents a time-

efficient opportunity to implement nutritional and physical activity interventions in the 

lifestyle of these patients. During hemodialysis, metabolic waste products are removed 

from the body by diffusion through a semipermeable dialysis membrane. However, small 

nutrients, such as amino acids, are also able to diffuse through this membrane. In Chapter 

3, we quantified amino acid removal in patients ingesting their habitual diet throughout 

hemodialysis. Here, we showed that 8 – 15 g amino acids were removed during a single 

hemodialysis session. Furthermore, patients’ plasma amino acid concentrations declined 

significantly throughout hemodialysis, indicating that habitual dietary protein intake during 

hemodialysis (∼20 g) was not sufficient to compensate for amino acid removal. These 

findings emphasize the need for additional nutritional support during hemodialysis.  

In Chapter 4, we investigated the impact of intradialytic protein ingestion at rest and 

following exercise on amino acid removal and plasma amino acid availability throughout 

hemodialysis. Though intradialytic ingestion of 40 g protein resulted in additional amino 

acid removal when compared to placebo ingestion, it significantly increased circulating 

amino acid availability until the end of hemodialysis. In addition, we observed that 

intradialytic exercise, performed as 30 min moderate intensity cycling, did not influence 

amino acid removal or plasma amino acid availability throughout hemodialysis. Though it is 

important to know the anabolic potential of intradialytic protein ingestion and exercise, 

adequate removal of uremic toxins is the main goal of hemodialysis and should not be 

compromised by intradialytic interventions. Therefore, we assessed whether protein 

ingestion and exercise modulate uremic toxin removal during hemodialysis. In Chapter 5, 

we showed that intradialytic protein ingestion slightly reduced the reduction ratio of 
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protein-derived uremic toxins (i.e. urea and indoxyl sulfate), but also resulted in greater 

urea removal during hemodialysis. Furthermore, we showed that removal of small uremic 

toxins (i.e. urea, creatinine, and phosphate) was greater throughout intradialytic exercise 

performance. Yet, removal of these toxins over the whole hemodialysis session did not 

differ between exercise performance and sedentary hemodialysis sessions. Therefore, 

exercise and protein ingestion can be implemented during hemodialysis to support muscle 

mass and strength maintenance without attenuating hemodialysis efficiency.  

Apart from exercise, other strategies can be applied to enhance the anabolic properties of 

dietary protein. One of these strategies is the co-ingestion of branched-chain amino acids, 

and leucine in particular, with dietary protein. Recently, it has been shown that the 

ketoanalogues of branched-chain amino acids, branched-chain ketoacids (BCKAs), induce a 

muscle anabolic response. The application of BCKAs to support muscle maintenance in 

patients with kidney disease is promising, since BCKAs do not contain nitrogen or phosphate 

and, as such, do not result in the production of protein-derived uremic toxins. In Chapter 6, 

we used stable isotope methodology to assess whether the co-ingestion of BCKAs with 

protein during hemodialysis resulted in a greater anabolic response when compared to 

protein ingestion only. In this study, we extended on our previous findings by showing that 

protein ingestion improves the forearm arteriovenous net protein balance during 

hemodialysis. Though we did not observe a further improvement in the forearm 

arteriovenous net protein balance when compared to protein ingestion only, BCKA co-

ingestion substantially reduced amino acid oxidation rates. From these results it can be 

speculated that co-ingestion of BCKAs with protein during hemodialysis does not further 

improve the net protein balance of peripheral tissues but may improve the whole-body net 

protein balance by reducing amino acid oxidation.  

Patients on chronic hemodialysis treatment are generally in such a deconditioned state that 

appropriate exercise prescription is highly problematic. In Chapter 7, we discuss the 

implementation of exercise and nutritional interventions in patients with advanced chronic 

kidney disease prior to initiation of chronic hemodialysis treatment. Such pre-habilitation 

programs may improve physical functioning and nutritional status of patients starting 

hemodialysis, thereby supporting them to remain physically active and increasing their 

quality of life. In this chapter, we provide an overview of habitual dietary protein intake and 

physical activity levels of patients with advanced chronic kidney disease as well as 

nutritional and physical activity interventions to support muscle maintenance in this 

population. Future research in close collaboration with nephrologists, exercise 

professionals, and dietitians should be performed to establish evidence-based lifestyle 

interventions and improve the health, nutritional status, and quality of life of patients 

throughout all chronic kidney disease stages.
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Samenvatting 

 
Het behoud van spiermassa en spierkracht is belangrijk voor het in stand houden van fysiek 

functioneren en behoud van kwaliteit van leven. Lage spiermassa en verminderde 

spierkracht bij ouderen verhogen het risico op ziekenhuisopnames, verminderd fysiek 

functioneren en het ontwikkelen van chronische ziekten. Daarnaast verloopt het verlies van 

spiermassa en spierkracht vaak sneller bij patiënten met een chronische ziekte, zoals 

patiënten met nierfalen die hemodialyse ondergaan. Daarom zijn leefstijlinterventies met 

als doel spierbehoud essentieel in deze populaties. Echter, er worden nu weinig van zulke 

leefstijlinterventies geïmplementeerd in de zorg voor patiënten die langdurig hemodialyse 

ondergaan. 

In Hoofdstuk 2 hebben we een literatuurstudie uitgevoerd waarin we beschrijven dat 

patiënten die langdurig hemodialyse ondergaan meestal de aanbevolen hoeveelheid 

eiwitinname (1.0 – 1.2 g eiwit/kg lichaamsgewicht/dag) niet halen en een inactieve leefstijl 

hebben. Daarom suggereren wij dat interventies met als doel spierbehoud in deze populatie 

zowel een voedings- als een bewegings-component zouden moeten bevatten. Daarnaast 

zijn hemodialysebehandelingen een tijds-efficiënte periode waarbinnen interventies ter 

verbetering van de voedingstoestand en het fysiek functioneren geïmplementeerd kunnen 

worden. Tijdens hemodialyse worden uremische afvalstoffen verwijderd uit het lichaam 

met behulp van een dialysemembraan. Voedingsstoffen zoals aminozuren diffunderen 

echter ook door dit membraan heen. In Hoofdstuk 3 hebben we in patiënten met nierfalen 

de mate van verwijdering van aminozuren uit het bloed gemeten tijdens hemodialyse. In dit 

onderzoek hebben we aangetoond dat er maar liefst 8-15 g aminozuren worden verwijderd 

tijdens een enkele hemodialyse behandeling, hetgeen leidde tot een significante daling van 

de aminozuurconcentraties in het bloed. Deze resultaten benadrukken dat voedings-

interventies nodig zijn om aminozuurverlies tijdens hemodialyse te compenseren. 

In Hoofdstuk 4 hebben we het effect van eiwitinname in rust en na fysieke inspanning 

tijdens hemodialyse onderzocht. Hoewel intradialytische eiwitinname (eiwitinname tijdens 

hemodialyse) resulteerde in meer verwijdering van aminozuren, voorkwam het de daling 

van aminozuurconcentraties in het bloed gedurende de hemodialysebehandeling. 

Intradialytische fysieke inspanning had geen invloed op de verwijdering van aminozuren of 

de aminozuurconcentraties in het bloed tijdens hemodialyse. Ondanks dat intradialytische 

eiwitinname en fysieke inspanning een positief effect hebben op spierbehoud, is het 

verwijderen van uremische afvalstoffen de belangrijkste functie van hemodialyse. Deze 

functie mag dan ook niet gecompromitteerd worden door intradialytische interventies. 

Hierom hebben we de invloed van intradialytische eiwitinname en fysieke inspanning op de 

verwijdering van uremische afvalstoffen tijdens hemodialyse onderzocht. In Hoofstuk 5 

hebben we aangetoond dat door intradialytische eiwitinname de concentraties van 
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uremische afvalstoffen (zoals ureum) in het bloed iets minder dalen tijdens hemodialyse. 

We zagen echter ook dat intradialytische eiwitinname ervoor zorgt dat er meer ureum uit 

het lichaam verwijderd wordt tijdens hemodialyse. Dit suggereert dat de inname van eiwit 

de verwijdering van uremische afvalstoffen tijdens hemodialyse niet verminderd, maar wel 

de aanmaak van ureum in het lichaam stimuleert. Fysieke inspanning had geen invloed op 

de verwijdering van uremische afvalstoffen gedurende de hemodialysebehandeling. 

Zodoende concluderen we dat eiwitinname en fysieke inspanning tijdens hemodialyse kan 

bijdragen aan een beter behoud van spiermassa zonder daarbij de effectiviteit van de 

hemodialyse-behandeling te verminderen.  

Naast het combineren van eiwitinname met fysieke activiteit zijn er ook andere strategieën 

die het anabole effect van eiwitinname kunnen versterken. Het innemen van vertakte-keten 

aminozuren, vooral leucine, met eiwit kan de spiereiwit aanmaak versterken. Recentelijk is 

aangetoond dat inname van de ketoanalogen van vertakte-keten aminozuren, ook wel 

ketozuren genoemd, de spieraanmaak kan stimuleren. Gecombineerde inname van eiwit 

met ketozuren kan een veelbelovende strategie vormen voor spierbehoud bij patiënten met 

nierziekte aangezien ketozuren geen stikstof bevatten en hierdoor niet leiden tot de 

aanmaak van uremische afvalstoffen. In Hoofdstuk 6 hebben we middels het gebruik van 

stabiele isotopen onderzocht of de eiwitbalans van het lichaam positiever is tijdens het 

innemen van eiwit met ketozuren ten opzichte van het innemen van enkel eiwit. In lijn met 

onze eerdere resultaten zagen we dat eiwitinname de arterioveneuze eiwitbalans van de 

onderarm tijdens hemodialyse verbeterd. De inname van ketozuren met eiwit leidde niet 

tot een verdere verbetering van de arterioveneuze eiwitbalans van de onderarm. Wel zagen 

we dat inname van ketozuren de oxidatie van aminozuren verminderde. Op basis van deze 

resultaten speculeren we dat het innemen van ketozuren (met eiwit) tijdens hemodialyse 

de eiwitbalans kan verbeteren. 

Patiënten die chronisch hemodialyse ondergaan hebben over het algemeen zo’n slechte 

conditie en gezondheid dat het adequaat toepassen van leefstijlinterventies problematisch 

is. In Hoofdstuk 7 bespreken we de implementatie van voedings- en bewegingsinterventies 

bij patiënten met gevorderde nierziekte die nog niet middels hemodialyse behandeld 

hoeven te worden. Zulke (p)rehabilitatie interventies zijn van belang om de voedingsstatus 

en het fysiek functioneren van patiënten te verbeteren voordat ze beginnen met 

hemodialyse. Hierdoor zullen deze patiënten mogelijk meer fysiek actief blijven en hun 

kwaliteit van leven (grotendeels) behouden wanneer gestart wordt met hemodialyse. In dit 

hoofdstuk geven we een overzicht van de habituele eiwitinname en fysieke activiteit van 

patiënten met gevorderde nierziekte. Ook beschrijven we mogelijke voedings- en 

bewegingsinterventies met als doel het opbouwen van spiermassa en spierkracht voor deze 

populatie. Samenwerking tussen nefrologen, fysiotherapeuten en diëtisten is essentieel om 

praktische en effectieve leefstijlinterventies te ontwikkelen om de gezondheid, 

voedingsstatus en kwaliteit van leven te verbeteren bij patiënten met nierziekte. 
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Impact 
 
The goal of clinical research is to establish new facts, reach new conclusions, and improve 

the quality of clinical care for patients. In this paragraph, we will address how the work 

described in this thesis can improve clinical care for patients on chronic hemodialysis 

treatment. 

 

Results and relevance of this thesis  

Chronic kidney disease (CKD) is currently a public health problem with a global prevalence 

of 10% [1]. Yet, it is expected that its prevalence will further increase over the upcoming 

decades since risk factors for the development and progression of CKD, such as diabetes 

mellitus and hypertension, are becoming increasingly prevalent [1-3]. Consequently, the 

number of patients with the final stage of CKD, coined end-stage renal disease, who will 

require renal replacement therapy (dialysis) is also expected to increase. Hemodialysis is 

globally the most applied chronic renal replacement therapy when kidney transplantation 

is not (yet) possible. Over the past decades, the life expectancy of patients on hemodialysis 

and, as such, the period that they undergo this treatment, has increased substantially due 

to advances in hemodialysis techniques and management of comorbidities [4]. However, 

poor nutritional status has proven to be a persistent problem in patients on chronic 

hemodialysis treatment [5, 6]. A recent meta-analysis reported that protein-energy wasting 

(a state of malnutrition with insufficient dietary intake) is present in 28-54% of patients on 

dialysis treatment [7]. In addition, patients undergoing hemodialysis are generally frail 

and/or have severely reduced levels of physical functioning [8, 9]. Protein energy wasting, 

poor nutritional status, and frailty are closely associated with a reduced quality of life, 

increased morbidity, greater healthcare costs due to more hospitalizations, and higher 

mortality rates in patients on chronic hemodialysis treatment [10-13]. Therefore, it is 

essential to understand why poor nutritional status is so highly prevalent among this 

population and to develop effective interventions that can preserve muscle mass and 

function.  

In this thesis, we report that a substantial amount of amino acids is removed from the body 

during hemodialysis, which has been shown to stimulate skeletal muscle protein breakdown 

[14]. For healthcare professionals involved in the clinical care for patients with CKD, it is 

relevant to understand that hemodialysis is a catabolic procedure and that anabolic 

interventions to counterbalance its effects should be part of their treatment plan. 

Interventions during hemodialysis (intradialytic) are time-efficient for patients and easy to 

supervise for healthcare professionals as patients are already present in the healthcare 

center. We showed that ample protein ingestion during hemodialysis can compensate for 

the removal of amino acids from the circulation. Furthermore, we showed that exercise 

performed prior to protein ingestion does not further enhance amino acid removal. 
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Previously, it had been suggested that intradialytic protein ingestion could reduce uremic 

toxin removal due to splanchnic blood pooling during hemodialysis [15]. In this thesis, we 

quantified uremic toxin removal throughout hemodialysis with protein ingestion for the first 

time and showed that protein feeding with or without prior exercise during hemodialysis 

did not compromise uremic toxin removal and actually increased urea removal. Therefore, 

intradialytic exercise and protein ingestion can be implemented to support muscle 

maintenance in this vulnerable population without compromising uremic toxin removal 

during hemodialysis.   

Furthermore, we assessed the impact of co-ingestion of branched-chain ketoacids with 

protein during hemodialysis as a strategy to augment the anabolic properties of dietary 

protein without providing additional phosphate. Our results indicate that co-ingestion of 

ketoacids with protein during hemodialysis significantly reduces amino acid oxidation when 

compared to protein ingestion only, thereby likely improving the net protein balance. 

Therefore, adding ketoacids to protein supplementation during hemodialysis may represent 

an alternative strategy for additional protein ingestion to counteract the catabolic effects 

of hemodialysis.   

 

Stakeholders of this thesis  

This thesis contributes to the scientific field of clinical nutrition and nephrology, as it 

provides insight in the impact of nutritional and physical activity interventions during 

hemodialysis. Furthermore, the scientific community may benefit from research methods 

that we applied during hemodialysis for the first time, such as sip feeding of test beverages 

containing a stable isotope amino acid tracer and quantifying the removal of protein-

derived amino acids in the spent dialysate. This thesis will be of use for nephrologists and 

nurses working with kidney patients through providing a better understanding why patients 

on chronic hemodialysis treatment generally have poor nutritional status. In addition, it 

allows them to provide evidence-based recommendations (i.e. to supplement protein 

ingestion during hemodialysis and to stimulate physical activity) to patients. To implement 

nutritional and physical activity interventions in the clinical care for patients, involvement 

of dietitians and exercise professionals will be crucial. These healthcare professionals can 

also use the results of this thesis to provide evidence-based recommendations to patients 

on hemodialysis. Furthermore, the presented results are relevant to health care policy 

makers. Our work demonstrates the importance of patient-specific nutritional and physical 

activity interventions to support muscle maintenance patients with end-stage renal disease. 

In addition, such interventions to prevent frailty could reduce the high morbidity and 

hospitalization rates in this population and, as such, lower healthcare costs. At present, 

lifestyle interventions to support muscle maintenance are currently not incorporated in 

standard clinical guidelines for patients with CKD. For patients with end-stage renal disease, 

it is important to know and understand the side-effects of their hemodialysis treatment. 
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The results from this thesis provide them with tools to maintain, or even improve, their 

physical functioning and prevent frailty. It is important that patients are aware of the 

importance of proper dietary (protein) intake and sufficient physical activity to maintain 

their nutritional status, physical function, and general health. This will allow them to 

maintain functional independence and experience less adverse outcomes of their disease 

and its treatment and, as such, improve their quality of life.   

The results presented have been communicated towards stakeholders through various 

forums. The research work described in this thesis has been established through a 

continuous collaboration of biomedical researchers, nephrologists, dietitians, exercise 

professionals, and patients. Five chapters of this thesis are openly accessible as published 

articles in peer-reviewed scientific journals and this thesis will be distributed to interested 

shareholders. In addition, we have presented our findings at (inter)national scientific 

conferences, workshops for healthcare professionals, and patient meetings. To simplify the 

translation of our results to clinical practice, we collaborated with seven other hospitals and 

the Knowledge Centre for Sport & Physical Activity to create a fact sheet about 

implementing physical activity interventions for patients on hemodialysis. Parts of this 

thesis were also summarized in layman language and published in a journal for dialysis 

nurses and the magazine of the Maastricht Organization for Patients with Kidney Disease 

(NvM).  
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General impact and future goals  

Based on the results of the presented findings regarding protein ingestion during 

hemodialysis, the dialysis department of the Maastricht University Medical Center+ has 

changed their nutritional strategy as of February 2021 and now offers protein-rich foods to 

patients during hemodialysis. Furthermore, the findings regarding intradialytic physical 

activity were used to start a Dutch Kidney Foundation-funded project that resulted in the 

implementation of intradialytic cycling into routine care at the dialysis department of the 

Maastricht University Medical Center+. Thereafter, the Maastricht Organization for Patients 

with Kidney Disease (NvM) requested to expand this program to the dialysis department in 

Valkenburg. As a result, patients now have the opportunity to perform physical activity 

during their hemodialysis treatments.   

The chapters of this thesis provide proof-of-principle evidence regarding nutritional and 

physical activity interventions during hemodialysis to support muscle maintenance. 

However, future research to establish evidence-based lifestyle interventions for all CKD 

stages is still required. To optimize the anabolic potential of intradialytic protein ingestion, 

the impact of protein dose, timing, and type should be further assessed. In addition, long-

term effects of the nutritional and physical activity interventions described in this thesis 

remain to be evaluated. Lifestyle interventions to support muscle maintenance should 

preferably be already implemented prior to initiation of chronic hemodialysis treatment. In 

an earlier stage of CKD, it will be less complicated for patients to adopt lifestyle changes, 

which also may be more effective to increase muscle mass and function due to lower 

disease burden. Such a pre-habilitation strategy is not yet part of routine clinical care for 

patients with advanced CKD as evidence for its efficacy remains to be established. However, 

this population is underrepresented in product-development by companies and scientific 

research focusing on muscle maintenance, especially when compared to the work 

conducted in hemodialysis patients. Future studies should aim to provide insight in the 

etiology of accelerated muscle loss and the efficacy of lifestyle interventions to support 

muscle maintenance in patients at different stages of CKD. 
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Dankwoord 
 
Eind goed, al goed. Maar dit proefschrift had niet geschreven kunnen worden zonder de 
hulp van vele collega’s, vrienden, familieleden, proefpersonen en geliefden. In dit 
dankwoord wil ik mijn dank voor een aantal personen uitlichten. Daarnaast ben ik ook de 
onbenoemde namen ben ik meer dan dankbaar.   
 
Allereerst wil ik alle proefpersonen die mee hebben gedaan aan mijn onderzoeken hartelijk 
bedanken. Jullie hebben mij de mogelijkheid geboden om onderzoek te doen in levensfases 
waarin jullie het moeilijk hadden. Dank ook voor alle gastvrijheid, gezelligheid en jullie 
meeslepende doorzettingsvermogen en optimisme.   
 
Luc, toen ik voor het eerst jouw kantoor binnenliep had ik geen idee dat ik jaren later de 
deur nog niet zou dichttrekken. Jouw oprechte interesse, enthousiasme en liefde voor 
onderzoek heeft aanstekelijk gewerkt. Ondanks dat mijn promotie niet altijd even makkelijk 
verliep, heb je toch vertrouwen in mij gehouden en me altijd gesteund. Dankzij jou heb ik 
een promotie- en postdoc-traject kunnen opzetten die 100% van mij zijn. Dankjewel 
daarvoor. 
 
Jeroen, ik was voor jou geen doorsnee promovendus aangezien je mijn begeleiding moest 
delen met Luc. Wat ik erg heb gewaardeerd is dat ik altijd bij je kon binnenlopen, je altijd 
tijd voor me maakte voor wat dan ook en jouw klinische kijk op het project.   
 
Frank, voor jou geen woorden maar daden. Je was altijd bereid om mee te denken en mee 
te helpen waar nodig. Ondanks dat je zelf door een hele moeilijke periode bent gegaan 
tijdens mijn promotietraject, ben je er toch altijd voor me geweest.  
 
I would also like to thank the members of the assessment committee, Ellen Blaak, Yves 
Boirie, Fred Hartgens, Marc Hemmelder, and Annemie Schols. After reading much of your 
work and listening to many of your presentations on the big stages, I’m honored that you 
were willing to assess my thesis.  
 
Joey, Ik heb het *** toch maar mooi geflikt. Van jou heb ik zowel geleerd om zeer secuur te 
werken in het lab (dank voor je geduld met deze geneeskundestudent die nog nooit een 
pipet had vastgehouden) als ook om praktisch onderzoek uit te voeren rondom de reguliere 
zorg. Ook heb ik veel opgestoken van onze niet-werk gerelateerde gesprekken met kop 
koffie of glas bier, je oprechtheid, en natuurlijk ook je heerlijke scheldpartijen als het even 
niet zo liep zoals gewenst.  
 
Milan, dankjewel dat je altijd klaar stond om te helpen bij mijn onderzoeken als ik een paar 
handen tekort kwam. Het is mooi om te zien hoeveel passie jij voor jouw onderzoek hebt, 
dat straalt af op iedereen in ons kantoor. Ook alle avondjes kapsalon of iets minders 
culinairs (als we met de meiden aten) hebben mij mooie momenten opgeleverd afgelopen 
jaar. 
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Ook zonder mijn andere kantoorgenootjes had mijn boekje niet zijn huidige vorm gekregen. 
Dion, het is mooi om te zien hoe je je in twee jaar hebt opgewerkt van een nog wat timide 
student tot iemand waarvan ik weet dat alle stappen van onze projecten in goede handen 
zijn. Zonder jouw werk afgelopen jaar had ik nooit de tijd gevonden om dit boekje af te 
schrijven en/of de projecten zo ver te krijgen als ze nu zijn. Ale, you have been a great 
colleague and friend. During the winter, you always make me laugh at least once a day with 
your layers of clothes. I also enjoyed our talk over some (good) coffee and your party-
energy. 
 
Michelle - Weijzen, die andere moet nog even wachten – jouw aanstekelijke vrolijkheid en 
behulpzaamheid hebben het laatste stukje van mijn promotietraject een stuk leuker 
gemaakt. Samen in (ongeveer) hetzelfde schuitje zitten schept in ons geval zeker een band. 
Ook mooi om te zien hoe je na jouw promotie hindernissen overwint en nu een hele mooie 
positie hebt verdiend!  
 
Anouk, zonder jou waren de studies op de dialyse-afdeling nooit zo goed gelopen zoals ze 
zijn gegaan. Ik bewonder hoe je omgaat met patiënten en je niet aflatende vrolijkheid. En 
als er eens iets minder ging, dan zette jij jouw sterke (judo)schouders eronder en was het 
zo opgelost! Thijs en Piet, jullie hebben mij ook veel geholpen met het oplossen van alle 
(technische) problemen tijdens de studies: van de CE-certificatie van de dialysefiets tot de 
accu’s van infuuspompen uit de steentijd. Toch bijzonder dat er met al die tegenvallers geen 
enkel probleem was dat jullie niet op konden lossen.  
 
Lieve dames van het secretariaat, lieve Cleo, Claudia, Desiree en Rachelle, dank voor alles 
wat jullie voor mij hebben geregeld. Maar nog meer herinner ik me alle gesprekken op het 
secretariaat over koetjes en kalfjes, wat er speelde op de afdeling en jullie interesse in mij. 
Het is fijn dat jullie deur altijd open staat.  
 
Janneau, je hebt ontiegelijk veel samples voor mij geanalyseerd met de UPLC en was 
onmisbaar voor de mooie resultaten in dit proefschrift. Antoine, bedankt voor het inzetten 
van je geluk op onmogelijke tijden bij onmogelijke aders. Joan, dankjewel voor al het 
meedenken in het lab als ik weer iets nieuws wilde uitproberen. Joy en Annemie, al leverde 
ik mijn studies steeds in allerlei verschillende batches in, bedankt voor jullie geduld en vlotte 
analyses.  
 
Steven en Jeffrey, dankjewel voor het analyseren van mijn samples bij het CDL en realiseren 
van en geloven in mijn extra metingen. Het was fijn samenwerken en we hebben er heel 
wat moois uit gehaald!  
 
Al mijn andere collega’s, bedankt voor alle mooie congressen, afdelingsuitjes, borrels, en 
het vormen van een hecht team als onderzoeksgroep. Wesley, dankjewel voor je hulp bij 
mijn studies en je gezelligheid/geblaat zonder pauze om loze momenten te vullen. Philippe, 
dankjewel voor het organiseren van o.a. de M3-ritten en dat je altijd klaarstaat om te helpen 
zelfs al heb je het eigenlijk zelf al te druk. Jorn, toch mooi dat ik jou het klinisch onderzoek 
in heb gekregen met je eerste dag op de dialyse-afdeling. Dankjewel voor je grappen en 
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sfeermaken. Cas, work hard, play hard, dankjewel voor al je vrolijkheid en de mooie trip 
naar Krakow. Andy, thanks for teaching me how to work with deuterated water and for your 
catchy bursts of laughter. Glenn, dankjewel voor alle gezelligheid, vooral de avond na het 
kerstdiner in de Twee Heeren en de dagen met Juweeltje. Thorben, thanks for stretching 
the boundaries of my biopsy limits. Heather, it was nice to welcome you in the Netherlands, 
thanks for all your enthusiastic stories on biking, running, and science. Lisanne, dankjewel 
voor het delen van je ervaringen van en met klinisch onderzoek (scheelde mij zeker een paar 
valkuilen). Tof om te zien dat je nu de stappen maakt die je graag wilde maken. Lisa, 
dankjewel voor het overnemen van (bijna) alle biopten en de feestavondjes. Kenneth, 
dankjewel voor je praatjes en interesse. Ook jij mag trots op jezelf zijn. Tim en Lex, bedankt 
dat jullie deuren (tegenwoordig deur) altijd open stonden voor mijn ‘korte’ vragen. Milou, 
Jean, Maarten, Luuk, Imre en Stefan, bedankt voor alle gezelligheid en adviezen in het begin 
van mijn promotietraject. Julia, dankjewel voor het verlichten van mijn taak als biopteur en 
de mooie avonden, onder andere in Wenen.  
 
Ook wil ik alle nefrologen, met name Elife, Elisabeth en Bianca, bedanken voor hun hulp 
met het rekruteren en screenen van proefpersonen. Mijn dank gaat ook uit naar alle 
verpleegkundigen van de dialyseafdeling, onder andere naar Jaap en Patricia, voor hun hulp. 
Ik heb veel extra van jullie gevraagd en toch stonden jullie altijd klaar om te helpen. De 
dialysegroepen zijn in goede handen bij jullie. Anke, bedankt voor de inhoudelijke 
gesprekken over voeding bij dialysepatiënten.   
 
Naast collega’s hebben mijn vrienden mijn promotietraject ook een stuk leuker gemaakt. 
Aike, je hebt me veel rust gebracht afgelopen jaren met onze avondjes voetbal kijken, 
middagen fietsen, ochtenden koffie drinken en zondagen tennissen. Alleen het bijhouden 
van alle vrouwen leverde soms wel wat stress op. Feit is dat ik altijd met je kan relaxen, 
lachen en ook serieus kan praten. Respect voor dat je je steeds weer terug knokt na al je 
fysieke tegenslagen.   
 
Ook met andere leden van mijn tennisteam, Menno en Roma, heb ik veel mooie 
herinneringen van de afgelopen jaren. Competitiewedstrijden in verre oorden, toernooien 
tot Groningen en wedstrijden verliezen tegen jochies van elf. Maar de beste herinneringen 
zijn wel de verhalen op zondagmiddagen en -avonden met Witte Trappist op tafel. En 
invaller Joep, verstrooide promovendus, het was mooi mijn struggles tijdens de promotie 
te vergelijken met de jouwe.   
 
Dames van mijn oude Stennis bestuur, Sadaf, Nadine, Laura, Esmee, bedankt voor het 
blijven organiseren van activiteiten die ons samenbrengen. Van de diners en weekendjes 
met de andere Oude Hanen, Emiel, Heleen, Jurjen, Phillip en Sven heb ik nog vele mooie 
herinneringen (aan Chocoprins). Ik kijk ook uit naar het moois wat de babyboom gaat 
brengen.  
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Rik, 4 jaar lang in mijn studententijd stond mijn bed nog geen meter van die van jou af met 
een dun muurtje ertussen. Ik denk nog steeds met veel nostalgie terug aan die mooie tijd. 
Maar het is nog mooier om gezien te hebben dat ‘papa Rik’ nu echt vader is geworden, wat 
al heel vroeg terug te zien was in je autokeuze. Ik vind het fantastisch dat de omslag van dit 
boekje door zo’n goede vriend is gemaakt. Linda, dankjewel voor je interesse, dat je lekker 
zegt wat je denkt en dat ik Rik met nog wat extra werk op mocht zadelen met de twee 
kleintjes thuis. Ook andere (half)huisgenoten van de SS188, Terry, Ruth, Steven, Coen, 
Marjolein en Carline hebben veel voor me betekend.  
 
Tom, ik vind het mooi dat we elkaar zoveel jaren na ons eindexamen nog spreken en dat 
het dan altijd meteen weer zo vertrouwd als vroeger voelt. Emma, Daan en de andere 
wajo’s, ik geniet van elke keer als wij elkaar weer zien, op 5 mei of op andere data.  
 
Mam en pap, jullie verdienen een bijzonder woord van dank. Meer dan 30 jaar lang hebben 
jullie mij onvoorwaardelijk lief gehad, gesteund en het beste uit mij naar boven gehaald. Ik 
ben daar erg bevoorrecht mee, al leek het daar misschien niet op toen ik per se zo ver 
mogelijk weg wilde gaan studeren (Groningen en toen toch Maastricht). Dit boekje is af 
doordat jullie mij hebben gestimuleerd te doen wat ik leuk vind en mij de vrijheid hebben 
gegeven om mij te ontwikkelen.  
 
Sara, ik ben blij met mijn kleine zusje. Al was ik vroeger niet altijd de voorbeeldige grote 
broer en hadden we daardoor soms ruzie, ik ben gelukkig met de band die we nu hebben. 
Het is mooi om te zien hoe jij afgelopen jaren langzaam volwassen aan het worden bent en 
dat je Daniël hebt gevonden. Daniël, ik vond het leuk en leerzaam afgelopen jaren het 
onderzoeks- lief en leed te delen met een promovendus op het technische gebied.   
 
Joyce en John, ik vind het erg fijn dat ik jullie bij Michelle heb gekregen. Ik geniet van de 
avondjes Bunde met altijd lekker eten en gezelligheid. Ik waardeer ook dat jullie kritisch met 
mij en Michelle meedenken, ons stimuleren om het beste uit situaties te halen en ook de 
serieuze gesprekken aangaan. En dan allemaal naast jullie eigen bedrijven en de zorg voor 
Bomma, heel knap! 
 
Michelle, vanaf dag één heb jij mij geholpen met mijn promotietraject. Je hebt me gesteund 
als het moeizaam ging en hebt samen met mij de successen gevierd als het beter ging. En 
er is niemand waarmee ik dit liever had willen doen. Ik vind het knap hoe jij jouw 
promotietraject combineert met de opleiding tot huisarts. Ik ben zielsgelukkig dat ik met 
jou goed kan praten over wat er echt in me omgaat en dat we kunnen reflecteren op keuzes 
die we maken binnen onze promotie (een ander advies geven is toch net wat makkelijker 
dan het zelf doen). Van onze reizen naar Canada en Nieuw-Zeeland heb ik enorm genoten, 
maar eigenlijk is elke dag met jou genieten. Ik hou van jou tot aan de sterren en terug.
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amino acid oxidation during hemodialysis’.  
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