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Abstract
Over the past several decades, increasingly sophisticated models of the heart have provided important insights into cardiac
physiology and are increasingly used to predict the impact of diseases and therapies on the heart. In an era of personalized
medicine, many envision patient-specific computational models as a powerful tool for personalizing therapy. Yet the complexity
of current models poses important challenges, including identifying model parameters and completing calculations quickly
enough for routine clinical use.We propose that early clinical successes are likely to arise from an alternative approach: relatively
simple, fast, phenomenologic models with a small number of parameters that can be easily (and automatically) customized. We
discuss examples of simple yet foundational models that have already made a tremendous impact on clinical education and
practice, and make the case that reducing rather than increasing model complexity may be the key to realizing the promise of
patient-specific modeling for clinical applications.
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Introduction

A computational model is a concise, quantitative summary of
how we think a system works and/or how we expect it to
behave. Mechanistic models seek to represent the actual bio-
logic and physical mechanisms that drive that system, while
phenomenologic models seek to represent or predict its overall
behavior without necessarily capturing the underlying mecha-
nisms. Over the past several decades, mechanistic models of the
heart have taught us much about how the cardiac action poten-
tial propagates, how the anatomic arrangement of themyofibers
gives rise to ejection and torsion, and many other features of
heart function. As their explanatory power has grown, these
models have been increasingly used to predict the impact of
diseases and therapies on the heart. Now, as we enter an era of

personalized medicine, many envision patient-specific compu-
tational models as a powerful tool for personalizing therapy [1].

Yet the complexity of current state-of-the-art models poses
an important challenge when contemplating their widespread
clinical application. These models have naturally accumulated
layers of detail and complexity as more data have become avail-
able, computing power has increased, and researchers have con-
tinued to innovate—which usually involves adding features
rather than subtracting them. One challenge to applying these
complexmodels in the clinic is that many of them require hours,
days, or even weeks to run on sophisticated computing clusters.
Although computing power does continue to increase, we con-
tend that successful, widespread application of patient-specific
models will require dramatically shorter run-times on the order
of a typical clinic visit; otherwise, there will be no way to keep
up with the constant flow of patients through a typical hospital
or medical practice. Furthermore, model complexity poses fun-
damental challenges beyond the issue of computing time.
Complex models contain a large number of parameters that
must be fitted or customized to represent the features of a par-
ticular patient, while the requisite diagnostic data are scarce and
relatively expensive to obtain. There are somemodel features—
such as three-dimensional heart geometry—that can clearly be
customized using routinely available methods, but this will in-
cur substantial costs and likely require dedicated technicians or
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clinical engineers. The article by Trusty et al. in this issue [2]
provides an excellent accounting of the workflow and personnel
effort required for clinical application of a contemporary
patient-specific vascular model, something we would welcome
in every patient-specific modeling paper. And there are other
model features—such as the stress–strain behavior of the myo-
cardium—that cannot be directly measured, but instead must be
identified through parameter fitting approaches that become less
reliable as the number of parameters increases.

Here, we propose that while the evolution of mechanistic
models described above has provided important insight into
how the heart works and responds to diseases and therapies,
early successes in applying patient-specific heart models in
the clinic are likely to arise from a very different approach:
relatively simple, fast, phenomenologic models with a small
number of parameters that can be easily (and automatically)
customized. Such approaches are likely to rely on decades-old
models such as the Windkessel model of the arterial circula-
tion or the time-varying elastance model of myocardial con-
traction. Here, we provide a few examples of simple yet foun-
dational models that have already made a tremendous impact
on clinical education and practice. Then, we discuss how these
and other simple models could enable patient-specific model-
ing moving forward. In particular, we propose that reducing
rather than increasing model complexity may be the key to
realizing the promise of patient-specific modeling for clinical
applications.

Success Stories

The Windkessel

Around 1900, pioneering physiologist Otto Frank formalized
and popularized the conceptual model that still underlies our
understanding of arterial physiology today: the compliance of
the large arteries buffers the pulses of flow emerging from the
left ventricle during systole, while small arteries and arterioles
determine the net resistance to flow through the arterial tree [3,
4]. A family of quantitative models that represent this idea
using capacitors, resistors, and other basic circuit elements
became known as Windkessel models, after the German word
for a reservoir used to smooth pulsatile flow in early fire en-
gines [5]. As detailed in an excellent review by Westerhof
et al., these Windkessel models have had an enormous impact
on our understanding of cardiovascular physiology, on medi-
cal and physiology education, and on clinical practice [5].

One key impact of Windkessel models was the realization
that both compliance of the large arteries and resistance of the
small arteries influence ventricular–vascular coupling and
clinically measured arterial blood pressures. For example,
even without a quantitative model it was easy to envision that
impaired vasodilation in resistance vessels could produce

hypertension by increasing the amount of pressure the heart
must generate to push flow through the arterial network. But
Windkessel models suggested that vascular stiffening due to
aging or diabetes would also increase pulse pressure (the dif-
ference between systolic and diastolic arterial pressure), which
is now recognized as an independent risk factor for cardiovas-
cular disease [6, 7]. The ability of Windkessel models to pre-
dict the quantitative, dynamic relationships between cardiac
output and arterial pressure in real time enabled new diagnos-
tic tools. For example, as reviewed by Truijen et al., fitting a
Windkessel model to a measured arterial pressure wave-
form—which can be measured noninvasively using commer-
cially available monitors—allows continuous measurement of
cardiac output [8]. This technology has been applied clinically
to a wide range of problems, from monitoring fluid status
during surgery to diagnosing syncope [8].

Another advantage of Windkessel models is that they pro-
vide a simple way to simulate the properties of the arterial
system when studying cardiac physiology. An isolated heart
connected to a single outflow tube follows a completely
unphysiologic pressure–volume path, while adding a simple
compliance chamber produces reasonably physiologic pres-
sure–volume loops, facilitating experimental studies of ven-
tricular mechanics and energetics under controlled conditions.
Similarly, the compartmental models described belowmust be
connected to at least a minimal two-element Windkessel mod-
el (a capacitor and resistor in parallel) to generate realistic
pressure–volume behavior. The fact that Windkessel models
provide such an economical representation of fundamental
arterial properties has motivated their use to represent outflow
boundary conditions across a wide range of models, including
state-of-the art, anatomically and geometrically detailed finite-
element models of the heart [9] and complex computational
fluid dynamics models of the aorta [10] and coronary arteries
[11]. In fact, this approach is so pervasive that both Chiastra
et al. [12] and van Bakel et al. [13] reference the use of
Windkessel models to specify outflow boundary conditions
in their articles in this issue.

Time-Varying Elastance

Model Overview

Otto Frank was also an early pioneer in analyzing pressure–
volume relationships in the heart [3, 4]. Plotting the internal
pressure of the left ventricle (LV) against its volume produces
a loop with many interesting properties; Kiichi Sagawa and
his colleagues at Johns Hopkins University popularized pres-
sure–volume analysis in the 1970s and 1980s and developed
an extremely influential yet simple model of LV pump func-
tion called the time-varying elastance model [14, 15]. The
basis for their model was the experimental observation that
when they connected LV pressure–volume points collected at
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the same relative times during multiple contractions over a
range of loading conditions, those points fell on straight lines
whose slope gradually increased, peaked at the end of ejec-
tion, and then decreased again (Fig. 1).

Mathematically, the time-varying elastance model is em-
bodied in a single equation: P(t) = E(t) * [V(t) − V0].
Conceptually, this equation describes a gradual transition of
the LV from a relaxed state during diastole to a maximally
contracted state at end-systole, followed by a gradual relaxa-
tion. The time-varying elastance model is phenomenologic,
relying on the experimentally measured function E(t).
Nevertheless, it has proven remarkably influential and versa-
tile because that function turned out to be stable over a wide
range of loading conditions. Thus, this model not only allows
accurate prediction of the time course of LV pressure genera-
tion given known volumes (or vice versa), it can also be
coupled to models of the circulatory system to understand
ventricular–vascular coupling and to predict dynamic re-
sponses to drugs or hemodynamic interventions in just a few
seconds.

While E(t) is remarkably independent of preload and
afterload, it changes whenever the intrinsic properties of the
myocardium or the LV geometry change. In some ways, this
feature has also proven useful; for example, Emax—the peak
value of E(t)—provides a useful index of contractility that
varies with administration of drugs that alter force of contrac-
tion in individual myocytes. However, care must be taken to
limit predictions using a given E(t) curve to settings where that
function remains appropriate.

Model Impact

Suga and Sagawa’s pressure–volume framework for analyz-
ing cardiac function is now pervasive in medical education,
included in most physiology and heart disease textbooks.
Time-varying elastance and in particular the end-systolic

pressure–volume relationship (ESPVR) thus provide a con-
ceptual model for physicians throughout the world as they
evaluate patients and weigh treatment options. With the ad-
vent of methods for measuring pressure–volume loops in pa-
tients [16, 17], direct measurement of the ESPVR has also
proved useful for guiding clinical decisions. For example,
Kass and Maughan showed that measuring the ESPVR in
the cardiac catheterization laboratory helped them predict the
response of individual patients with dilated cardiomyopathy to
vasodilator therapy [18]. Ehsani et al. used systolic pressure–
volume ratios to show that exercise training could improve LV
performance in patients with clinically significant coronary
artery disease [19].

Time-varying elastance and the ESPVR also proved useful
in better understanding the factors that determine heart perfor-
mance in patients with various forms of heart disease. For
example, Kass et al. confirmed that LV hypertrophy increases
Emax, highlighting the importance of considering chamber ge-
ometry when assessing LV function in the setting of hypertro-
phy or remodeling [17]. A decade later, Kass et al. used shifts
in the ESPVR to examine the effect of different pacing strat-
egies in patients with dilated cardiomyopathy and a widened
QRS on intrinsic LV contractile function [20], contributing to
the development of effective cardiac resynchronization thera-
py (CRT) strategies. Metrics of ventricular–vascular coupling
related to the time-varying elastance model also have prog-
nostic value in some settings: Obokata et al. recently reported
that the ratio Ea/Ees had incremental prognostic value over
ejection fraction or other echo measures for adverse outcomes
in dialysis patients [21].

Perhaps most relevant to this review, simple computational
models that employ the time-varying elastance model to rep-
resent LVand/or RV contraction and a combination of resistors
and capacitors to represent the circulatory system (see
Section 2.1 above) have proven remarkably powerful in under-
standing complex aspects of heart function and ventricular–
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Fig. 1 Illustration of the concept of time-varying elastance, generated
using a compartmental model of the canine left ventricle coupled to a
circuit model of the circulation. Varying simulated arterial resistance
generates a series of pressure–volume loops for the left ventricle with
different peak pressures and stroke volumes (left panel, black/gray lines).

Connecting pressure–volume points acquired at the same times across
these loops produces a family of lines with a variable slope (left panel,
dotted red). The slope of these lines E(t) increases, peaks at end systole,
and then decreases again (right panel)
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vascular coupling and even in prospectively predicting the ef-
fects of novel interventions. For example, Santamore and
Burkhoff [22] showed that pressure generation by the left ven-
tricle substantially enhances contractility (Emax) of the right
ventricle, a finding that has influenced therapies ranging from
cardiac resynchronization therapy (CRT) to left ventricular as-
sist devices (LVADs). Dickstein et al. predicted as early as
1997 [23, 24] that the Batista operation would produce limited
improvement in patients with idiopathic heart failure because
gains in systolic function would be offset by losses in diastolic
function, a prediction that proved prescient [25, 26].

As will be discussed in more detail below, the fact that
these simple models of the ventricles coupled to a circulation
can run in real time on any modern desktop or laptop comput-
er represents an important advantage for some applications.
Such models have already been used extensively as simulators
for medical education [27–30]. Real-time simulation poten-
tially allows clinicians to screen therapeutic options and ob-
serve responses immediately, rather than waiting days or
weeks for a simulation result. Furthermore, as the modeling
community moves toward simulating long-term responses
such as LV growth and remodeling over months and years,
only very fast models will be able to make predictions quickly
enough for clinical decision support.

Compartmental Models of Ischemia: As Simple
as Possible, But Not Simpler

Model Overview

As discussed above, the slope of the end-systolic pressure–
volume relationship (ESPVR) has proven to be a useful index
of ventricular contractility. Thus, one might expect that acute
myocardial infarction should reduce the slope of this relation-
ship (Emax or EES). Yet Sunagawa et al. showed experimental-
ly that myocardial infarction had little effect on EES, instead
shifting the intercept (V0) of the ESPVR in proportion to the
size of the infarct [31]. Even more remarkably, they were able
to replicate this behavior using an extremely simple model
that represented the left ventricle using two compartments: a
normally contracting compartment described by the time-
varying elastance model, and a passive ischemic compartment
where pressure and volume were related according to the end-
diastolic pressure–volume relationship (EDPVR) at all times.

This model is a wonderful example of the adage that a
model should be as simple as possible, but not simpler.
Ignoring the complex biology that underlies myocardial ische-
mia and the complex three-dimensional mechanics of regional
ischemia, Sunagawa’s simple model nevertheless accurately
predicts measured pressure–volume behavior over a wide
range of loading conditions and infarct sizes. However, this
accuracy depends entirely on one improvement over the orig-
inal time-varying elastance model. While time-varying

elastance represents pressure–volume behavior using a series
of straight lines, Sunagawa’s compartmental model of ische-
mia recognizes the nonlinearity of the EDPVR, using an ex-
ponential function rather than a straight line to represent the
passive compartment. As shown in Fig. 2, this one change is
the difference between matching the experimental data beau-
tifully or making fundamentally flawed predictions.

Model Impact

Sunagawa’s work and other conceptually similar compartmen-
tal models have had an important impact on our understanding
of the clinical physiology of myocardial infarction and potential
therapies. Bogen et al. used a slightly more complex model that
exhibited similar pressure–volume behavior to explore the ef-
fect on pump function of gradual stiffening of the infarct due to
replacement of necrotic myocardium by collagenous scar [32].
Bogen’s model produced a fundamental insight about the im-
pact of infarct stiffness on LV function that has been repeatedly
confirmed by more sophisticated computational models and
experiments: stiffening the infarct improves systolic function
by limiting bulging of the infarct, but impairs diastolic function
by restricting filling, producing no overall improvement in
pump function. This prediction has received renewed attention
in recent years as researchers have sought to design synthetic or
bioengineered patches, injectable biomaterials, and other inter-
ventions that can improve post-infarction function [33, 34].

As another example, Burkhoff and Tyberg challenged the
conventional wisdom that reduced LV systolic performance is
sufficient to trigger elevated pulmonary pressures and pulmo-
nary edema seen clinically in acute heart failure following
myocardial infarction [35]. Using a compartmental model of
the ventricles connected to a circuit model of the circulation,
they showed that ventricular dysfunction alone causes little
change in pulmonary pressures. In fact, of the several hemo-
dynamic compensatory mechanisms that can be triggered by
baroreceptor-mediated activation of the sympathetic nervous
system, only venoconstriction increased simulated pulmonary
pressures to levels associated clinically with pulmonary ede-
ma. This model prediction has gained new importance with
the recent advent of continuous hemodynamic monitoring in
heart failure patients, which suggests that sympathetic control
of venous reservoir volume can trigger decompensations
resulting in heart failure [36].

One-Fiber Model

Model Overview

One important drawback of compartmental models is that they
do not explicitly represent force–length and force–velocity be-
havior of the myocytes or myofibers, a feature that can be
important when modeling drugs or mutations in sarcomeric
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proteins that affect myofilament mechanics. The most common
approach to integrating fiber-level behavior to predict overall
heart function and mechanics is to employ finite-element (FE)
models that incorporate the 3D geometry and fiber structure of
the heart. As noted above, for patient-specific applications, it is
certainly possible to obtain, segment, and employ patient-
specific geometries from MRI or another clinical imaging mo-
dality. However, patient-specific measurement of myofiber
anatomy remains more difficult, and multiple simulations sug-
gest that many predictions of FE models are particularly sensi-
tive to even small errors or uncertainty in fiber orientation. For
example, Pluijmert et al. recently investigated the sensitivity of
cardiac function to geometry and myofiber orientation in a
biventricular (BiV) FEmodel and found that an average change
in myofiber orientation of just 8° produced nearly 20% in-
creases in predicted regional myofiber work and global pump
work [37]. In a finite-element model of diastolic mechanics of
the rat ventricle, Holmes showed that a 10° shift of the
transmural fiber distribution resulted in a 15-fold change in
the ratio of material parameters in the fiber and cross-fiber
directions required to fit experimental data from rats [38].

The one-fiber model proposed by Arts et al. provides an
interesting alternative approach for integrating fiber-level me-
chanics to predict global ventricular behavior [39]. Building
on prior studies showing that measured fiber strains and cal-
culated fiber stresses are nearly constant across the wall of a
normal left ventricle, Arts assumed homogeneity of fiber
stress and strain and derived simple analytic formulas to relate
these quantities to LV pressure and volume, using the physical
principle of conservation of energy.

Model Impact

Clinical applications of the one-fiber model include studies on
ventriculo-vascular interactions in middle-aged adults without

cardiovascular disease [40] and patients with hypertension
[41], and ventriculo-valvular interactions in patients with se-
vere mitral regurgitation undergoing mitral repair [42].
Although originally developed to relate myofiber mechanics
and global pump function under the assumption of regional
homogeneity of stress and strain, the one-fiber principle was
recently used by Walmsley et al. to model regional heteroge-
neity of myofiber mechanics in asynchronously activated
hearts [43]. Simulated LV strain patterns showed good quan-
titative and qualitative agreement with regional strain data
measured in paced dog hearts, and the model also predicted
observed pacing-induced heterogeneity of regional myofiber
work. Integrated in the closed-loop CircAdapt model of the
heart and circulation, this model allows real-time simulation
of cardiovascular tissue mechanics and hemodynamics (www.
circadapt.org). Recently, it was used to devise a novel
diagnostic index, called the systolic stretch index, which
enables noninvasive quantification of the combined electro-
mechanical substrate responsive to cardiac resynchronization
therapy (CRT). In a clinical study, this index proved to be
predictive of clinical outcome after CRT in a cohort of 191
CRT candidates, even in patients with an uncertain indication
for CRT using the conventional ECG criteria [44]. In another
study, Mast et al. used the CircAdapt model to characterize the
pathophysiological substrates underlying regional right ven-
tricular deformation abnormalities in subjects carrying a des-
mosomal mutation associated with arrhythmogenic right ven-
tricular cardiomyopathy (ARVC) [45]. This study led to the
clinically relevant insight that half of the subclinical ARVC
mutation carriers exhibit mechanical abnormalities related to
subtricuspid contractile dysfunction before development of
detectable electrical abnormalities, challenging the conven-
tional staging criteria for this disease [46]. In the light of the
growing need for validated and time-efficient cardiac model-
ing approaches for patient-specific simulation in a clinical
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setting, variants of the one-fiber model may prove to be a
particularly useful middle ground between compartmental
and finite-element models.

Opportunities to Make a Clinical Impact

Phenomenologic Growth Models

Most published computational models of therapeutic in-
terventions seek to determine the acute effects of a pro-
posed treatment. These studies ask important and poten-
tially valuable questions such as how injecting polymers
into a myocardial infarct [47], placing a pacemaker lead in
a particular location [48, 49], or performing radiofrequen-
cy ablation to treat atrial fibrillation [50] will alter cardiac
function. Yet in most cases, the clinician cares most about
something these models cannot predict: what will happen
in the months or years following the treatment? Will heart
failure progress or regress? Will the arrhythmia recur?
Thus, one of the most exciting frontiers in cardiovascular
biomechanics is the development of models that predict
growth and remodeling of the heart and blood vessels.
Such models offer the tantalizing possibility of making
long-term predictions that can guide therapy in individual
patients.

Some of the most successful models of cardiac growth
are phenomenologic rather than mechanistic [51–54]. As
one example, a simple set of equations developed by
Kerckhoffs et al. [54] correctly predicted patterns of growth
observed during experimentally induced aortic stenosis
[54], mitral regurgitation [54], and dyssynchrony [55].
These phenomenologic growth equations typically allow
rapid calculation of the current predicted rate of growth
from current stresses or strains, but when implemented in
complex FE models the need to simulate weeks or months
of growth with step sizes of hours or days multiplies the
computational demands many fold: Kerckhoffs’ original
simulations of aortic stenosis and mitral regurgitation re-
quired roughly 3 weeks on a computing cluster to simulate
1 month of left ventricular remodeling [54].

We consider this an excellent potential application for
the simpler LV and circulatory models discussed above.
Combining phenomenologic growth equations with com-
partmental or single-fiber models of LV mechanics might
offer the ability to predict long-term responses fast enough
to inform clinical decisions for individual patients. In this
issue, Witzenburg et al. take exactly this approach,
connecting a compartmental model of the ventricles and
circulation to a variant of the Kerckhoffs growth equations
to simulate months of remodeling in just a few minutes on a
standard desktop [56].

Customizing Models Using Adaptation Rules
and Atlases

In general, a patient-specific heart model is intended to repre-
sent the most likely status of a patient’s heart and its interac-
tion with the surrounding large vessels. In a conventional clin-
ical setting, the quantitative information that is available for
model parameter estimation is often scarce. Therefore, decid-
ing how many adjustable model parameters to employ re-
quires seeking a workable compromise wherein the complex-
ity (number of parameters) is large enough to describe the
(patho)physiological problem of interest and small enough
to easily and reliably parameterize using the available clinical
information. The models discussed above are exemplary for
the fact that much efficiency can be gained by application of
physical, physiologic, and pathophysiologic principles using a
relatively small number of degrees of freedom (i.e., unknown
model parameters).

Currently, there is a tendency in patient-specific model-
ing to envision the acquisition of ever more information by
addition of emerging technologies—such as diffusion ten-
sor imaging for identifying myofiber directions—to con-
ventional clinical evaluations. Nevertheless, for reasons of
both cost efficiency and minimizing impact on the patient,
it is important to employ scans and other measurement tech-
niques for obtaining patient-specific data with utmost effi-
ciency. One potentially powerful alternative is to use vali-
dated atlas-based or rule-based approaches to estimate fea-
tures such as myofiber orientations rather than measuring
them directly. As reviewed by Gilbert et al. in this issue
[57], atlas-based approaches project the geometry of an
individual heart onto a database reflecting the variability
in shape, size, and other features across a population of
previously imaged hearts. If fiber anatomy is closely corre-
lated with heart geometry, then the projection of an individ-
ual geometry onto a database can also provide a good esti-
mate of that heart’s fiber anatomy [58]. Elsewhere in this
issue, Lee et al. discuss the use of rule-based methods for
determining fiber anatomy in simulations of cardiac
resynchronization therapy [59].

Another powerful but underused way of reducing input
parameter uncertainty is to model the process of structural
adaptation that produced the current fiber orientation or
other feature of interest. For example, Arts et al. proposed
a set of fiber adaptation rules that automatically produced
realistic transmural myofiber distributions in a computa-
tional model, even when the initial fiber geometry was
unphysiologic [60]. Models incorporating these rules were
able to match the altered fiber structure and mechanics of
situs inversus totalis hearts [61], and have been used to
estimate the effect of geometric changes on fiber anatomy
[37]. Similarly, the CircAdapt framework [62] and models
of blood pressure control [63] have been used to estimate
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the evolution of loading conditions on the ventricle during
hemodynamic overload. When integrated in patient-
specific modeling schemes, such models can provide re-
peatable and consistent estimates of parameters for which
patient measurements are unavailable or too costly to ac-
quire, by applying a small number of underlying homeo-
static rules and principles.

But Surely There Must Be Limits?

We have focused here on the successes of simple models
and tried to identify some areas where their application
might advance the practical application of patient-specific
modeling. Yet every model has limitations, and when de-
veloping and testing models for clinical applications, it will
be essential to clearly identify in what settings each model
is known (and not known) to be valid. In particular, while
phenomenologic models are often fast, they are usually
based on measured relationships that only hold under cer-
tain conditions. Some of these have mentioned in passing
above. For example, the classic three-element Windkessel
model offers a linear description of arterial input imped-
ance, while the arterial wall tissue is known to have non-
linear stress–strain behavior. As a result, the Windkessel
parameter values (i.e., wave impedance, compliance, and
peripheral resistance) have to be re-estimated after each
change of hemodynamic load to the modeled system.
This can be seen as an important drawback in the light of
patient-specific modeling of therapy effects. As another
example, the time-varying elastance model holds over a
wide range of hemodynamic conditions (preload and
afterload), but whenever intrinsic contractility or geometry
change, the E(t) function must be revised accordingly.
Similarly, Sunagawa’s compartmental model of ischemia
only works when the nonlinear properties of ischemic
myocardium are correctly represented, and these properties
need to be adjusted if the model is applied to patients with
chronic infarcts. The one-fiber model was originally devel-
oped assuming that fiber stress and strain are homoge-
neous; even if this is true in the normal heart, it might
not hold in settings like dyssynchrony or during transient
growth responses following a hemodynamic perturbation.
Ultimately, patient-specific models must be employed as
carefully as any other diagnostic tool or medical treat-
ment—they must be specifically validated for their predic-
tive power in well-defined trials and applied only in the
specific settings in which they were validated.
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