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Chapter 1

The role of medical imaging in cancer patients 
Cancer is one of the leading causes of mortality worldwide (1). Cancer can take many 
forms and invade any organ, making this disease highly diverse, requiring multiple 
diagnostic tools and treatment strategies. For almost 200 years clinicians have worked 
with medical imaging to diagnose and treat patients with cancers. First with 
histopathology, applying cell theory introduced in 1838 (2), which consists of 
monitoring changes in cell architecture using chemically stained biopsies (for example 
by using Haematoxylin & Eosin (H&E)). In the 1970s, other medical imaging modalities 
started to be implemented and are still used today for the anatomical (e.g. computer 
tomography (CT) and magnetic resonance imaging (MRI)), metabolic (e.g. positron 
emission tomography (PET)), and analytical (e.g. mass spectrometry imaging (MSI)) 
evaluation of cancer. Imaging facilitates understanding of the disease at different levels 
and monitoring disease progression, which help establishing the most efficient treatment 
strategy for patients. Thanks to this multitude of available medical imaging modalities 
and their diverse properties, monitoring cancer patients can be performed at every 
stage of patient treatment, despite the dynamic and complex nature of this disease (3).  

Diagnosis and staging 
To diagnose cancer at an early stage, screening programs have been implemented to test 
symptom-free populations at high risk for a particular cancer: Currently, in the western 
world, there are screening programs for early detection of cancer in different organs such 
as breast, cervix, and bowel (4) which utilise various imaging modalities. Digital 
mammography is used to detect suspicious lesions in the breast and is sometimes 
accompanied with other imaging modalities if appropriate (5). The examination for 
cervical cancer includes digital colposcopy after a positive cytology test (6). 

If there is suspicion of cancer either through screening programs or due to the 
presentation of symptoms, a number of tests might be performed such as physical 
examination of the patient and examination of fluid or tissue samples in a pathology 
laboratory. Imaging using CT, PET-CT, MRI, PET-MRI, ultrasound and/or X-ray might be 
necessary to locate the primary tumour and stage the disease including assessment of 
metastatic spread (7) (8). 

Disease staging takes into consideration different information such as the size and 
location of the primary tumour, the number of lymph nodes potentially invaded by 
tumour in the immediate surroundings of the primary tumour and presence and 
localisation of distant metastases. The main classification system used to describe the 
disease stage in cancer patients is referred to as TNM: extent of primary tumour (T), 
presence or absence of regional lymph node metastasis (N) and presence or absence 
of distant metastasis (M). Disease staging includes the analysis of medical images and 
is used to decide the most appropriate treatment option for the patient (9).  



AAccttiivvee  ssuurrvveeiillllaannccee,,  ttrreeaattmmeenntt  ppllaannnniinngg,,  aanndd  ddiisseeaassee  pprrooggrreessssiioonn  
mmoonniittoorriinngg  
Active surveillance might be an option for patients with certain cancer types which are not 
progressing or progressing only slowly such as some types of prostate cancer (10). Active 
surveillance for prostate cancer usually includes some form of medical imaging as well as a 
digital rectal exam at regular intervals and taking of a biopsy if appropriate (11).  
Monitoring disease progression in patients undergoing treatment is performed by imaging 
at regular intervals using MRI, CT, ultrasound or other imaging modalities depending on the 
location and type of cancer. 

If the treatment plan includes radiotherapy, pre-treatment three dimensional dose 
calculation within the mapped out radiation field is performed on a planning CT. The dose 
delivery is calculated with advanced  simulations to most efficiently deliver the necessary 
treatment dose to the tumour avoiding irradiating too much of the healthy tissue 
surrounding the tumour, especially protecting organs at risk such as the heart if for example 
the patient receives radiation for a mass located in the left breast (12).  

FFoollllooww--uupp  
Follow-up after initial treatment can be performed through medical imaging depending on 
the cancer type to identify recurrent disease at an early stage, usually combined with 
laboratory tests and symptoms surveillance.  

Figure 1: Steps of the cancer patient pathway – in grey non-imaging modalities, light blue 
dashed boxes are not systematically part of the treatment. 

All of the above mentioned imaging modalities are in theory suitable for analysis by means 
of artificial intelligence (AI) in order to support the different tasks which need to be routinely 
performed by the specialist in charge of the image analysis. AI tools have the potential to 
go a step further, improving prognosis prediction and supporting the selection of the 
optimal treatment based on the analysis of medical images. In the context of this work, AI 
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refers to extracting complex statistical correlations from large amounts of data and is 
synonymous with machine learning. As such, AI is a quantitative approach aiming to remove 
subjectivity, which contrasts with the mostly qualitative approach of the clinicians. Thus, 
assessment of images with AI will remain consistent over time and has the potential to 
reduce inter- and intra-variabilities of the expert observers. Another advantage of using AI 
could be speed of assessment allowing clinicians to make decisions faster, helping to 
prioritize individual patient’s care.  
 

AAII  aassssiissttaannccee  iinn  tthhee  cclliinniiccaall  sseettttiinngg  
AI can be defined broadly as a system which learns from past data to automatically make 
predictions and decisions based on new, real world data. The use of AI was made possible 
in recent years thanks to advances made in computer science. This includes access to large 
amounts of data for model training, improvements in processor performance and the 
development of new AI model architectures. AI has already had a large impact in a variety 
of fields, from social media to cyber security, automatically performing tasks  which 
otherwise are labour-intensive tasks requiring human input (13). Specifically in the field of 
medical imaging, AI has been utilized for the creation of clinical decision support systems 
(CDSS), aiming to support clinicians in making diagnoses or treatment choices for their 
patients. 
 

MMaacchhiinnee  lleeaarrnniinngg  aanndd  ddeeeepp  lleeaarrnniinngg  ssoolluuttiioonnss  aallrreeaaddyy  iimmpplleemmeenntteedd  iinn  
tthhee  cclliinniiccaall  rroouuttiinnee  
Some CDSS are already used in clinical routine and show potential to help clinicians at every 
step of the cancer patient pathway (see Figure 1). The field of computer aided detection 
(CADe) and diagnosis (CADx) systems emerged in the 1980’s and took shape in 1998 with 
the approval of the first commercially used CAD by the US Food and Drug Administration 
(FDA), which was used to assist radiologists in the detection of breast cancer on 
mammograms (14). The resolution and availability of digital medical images improved over 
time and so did the software to assist clinicians. CDSS include a variety of tools which 
received CE mark and/or FDA approval: The FDA reported 343 devices using AI in medical 
imaging with FDA approval as of September 2021 (15) and the website 
www.aiforradiology.com (visited August 2022) contained the description of 202 CE-marked 
AI-based products used for medical imaging (16) mainly assisting clinicians with automatic 
measurements/segmentations (33%), detections (27%) or being used for diagnosis 
predictions (22%) (17).  
 
Only seven software packages using machine learning specifically for histopathological 
image analysis are referenced in the FDA report (15), although computational pathology 
research exists since the 1960s (18). Compared to radiologists, the tasks of pathologists 
differ: radiologists mostly have to detect a lesion, give a preliminary assessment of what 
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was found, whereas pathologists have to provide a definitive diagnosis, which will directly 
impact on clinical decision, which possibly makes FDA or CE approval more difficult to obtain 
for dedicated software. Furthermore, histopathology data is more complex, at higher 
definition than radiology images but suffer from the same pitfalls: shortage of high quality 
data, lack of good quality annotations, high disease heterogeneity, etc. 
 

RRaaddiioommiiccss  mmooddeellss  ffoorr  cclliinniiccaall  iimmaaggee  aannaallyyssiiss    
Radiomics models can be categorised into two types: (1) machine learning models based on 
features crafted by an expert (i.e. predefined mathematical formulas) and (2) deep learning 
models where the model learns, or crafts, a set of features on its own.  
 
Handcrafted radiomics features are a set of quantitative features extracted from a region 
of interest (usually a suspicious mass within a radiology image: CT, MRI, X-ray, ultrasound…) 
which are used as input for a machine learning (ML) model to predict a particular outcome 
(19). Those quantitative features aim to optimally characterise the lesion of interest and can 
be classified into different categories such as texture, intensity, and shape features. These 
features can be used to train a ML model to classify masses (benign versus malignant), grade 
suspicious lesions, or predict survival. A handcrafted radiomics-based signature or 
biomarker can be found after model training and externally validated on a new dataset.   
 
Although handcrafted radiomics studies have the potential to extract relevant information 
from medical images, robust features are difficult to obtain due to the variability of 
segmentations, differences in image acquisition and quality (20). Moreover, the lack of 
external validation of the identified signature remains a major challenge in the field. Only 
41% of handcrafted radiomics studies published in 2018 included results from external 
validation dataset (21).  
 
Similarly to handcrafted radiomics, other quantitative imaging biomarkers are investigated 
in the medical research setting by mining datasets such as proteomics (proteins), dosiomics 
(radiation therapy dose distributions), histomics (histopathology) which differ by their 
dataset type. For histopathology images, the predictive value of different histomic features 
can be tested such as texture-features, pattern, and histogram features (22). Combining 
features extracted from different types of data sets can potentially improve predictions of 
ML models, an hypothesis which was tested in a multimodal data integration study 
exploring risk stratification for ovarian cancer patients (23). 
 
Deep learning (DL) is a relatively new machine learning approach, which is increasingly used 
in the medical imaging field in recent years with numbers of publications rising from 384 in 
2015 to 14,669 in 2021 according to the data retrieved from PubMed, searching “deep 
learning” (24).  Compared to handcrafted feature based analysis, DL models can learn the 
most efficient set of features automatically from the images in the training dataset (i.e. 
without handpicking the relevant features). To do so, multiple convolutions are applied to 
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the images which are then reduced to a set of features used to predict a certain outcome. 
The models learn a set of weights for the different layers of the model by backpropagation, 
a method which compares the predicted outcomes with the ground truth and makes 
changes to the network weights in order to minimise the difference. In medical imaging 
analysis, DL has been used to predict different outcomes: the model can be trained to detect 
a suspicious lesion, segment it, and label it. It can also be trained to predict the grade of a 
tumour, treatment, or prognosis. 
 

MMaacchhiinnee  lleeaarrnniinngg  cchhaalllleennggeess  ffoorr  pprreeddiiccttiioonnss  uussiinngg  mmeeddiiccaall  iimmaaggiinngg  ddaattaa  
Handcrafted feature-based ML models and DL models face the same challenges when 
trained on medical images, one of which is heterogeneity of the medical datasets. This is 
very different to the data used to train non-medical deep learning models such as COCO or 
ImageNet (25) (26), which are regular photographs, less complex to analyse and more 
widely available. The heterogeneity of the medical imaging data can be partially explained 
by preferred acquisition and reconstruction settings chosen by individual clinicians and 
healthcare centres, making images look different. Other factors can also occurs such as 
differences in spatial resolution of the images according to the hardware used, different 
reconstruction parameters used by different vendors, etc. All those differences make the 
use of DL in different fields of image analysis such as classification or segmentation more 
challenging than tasks on regular images (27). Moreover, dataset shifts also depends on the 
origin of the data: the characteristics of a disease in a medical image from one part of the 
world might look different in another part of the world due to genetic and environmental 
factors, making it difficult to obtain a model usable for any vendor and patient cohort. 
 
To increase reproducibility of the results obtained with radiomics features, the Image 
Biomarker Standardization Initiative (IBSI) (28) initiated standardization of radiomics 
features, consisting in identification of radiomics features which were stable when 
extracted with different tools. Robust pre-processing methods can also help homogenising 
the datasets. Some initiatives to standardize pre-processing in an attempt to make results 
better reproducible have been described by (29) and (30).  
 
For histopathology datasets, homogenisation of the data is also necessary. Because the 
staining protocols used for the tissue samples can differ and the scanner can be different, 
the colour of the tissue samples originating from different sites but also from the same site 
can appear very different. Moreover, due to the high resolution of histopathology data, fully 
annotating those tissue samples is very time consuming. Therefore, high resolution datasets 
require a well defined analysis strategy and a lot of computational power to adopt a ML or 
DL solution (31).  
 
Another challenge for the medical imaging analysis field is the shortage of publicly 
accessible sufficiently large datasets (at least hundreds of samples) and/or well annotated 
datasets to train ML models in order to achieve a good performance. This lack of data is 
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particularly significant for studies which therefore cannot externally validate their models. 
Lack of external validation makes it difficult for the potential user to understand whether 
the developed models are sufficiently robust and independent of the training and testing 
datasets (32). Although large quantities of medical imaging are gathered every day in every 
hospitals, certain diseases or subtypes of diseases are very rare leading to hugely 
imbalanced datasets which is challenging to overcome.  
 

TTyyppeess  ooff  iimmaaggeess  aannaallyysseedd  iinn  tthhiiss  tthheessiiss  
 

MMaassss  ssppeeccttrroommeettrryy  iimmaaggiinngg  ((MMSSII))  wwiitthh  mmaattrriixx--aassssiisstteedd  llaasseerr  
ddeessoorrppttiioonn//iioonniizzaattiioonn  ((MMAALLDDII))  
Mass spectrometry imaging is an imaging technique which measure per raster of a few 
micrometres the mass-to-charge ratio of ions within a sample. To analyse the composition 
of a tissue section, a mass spectrometer ionizes molecules of the sample and collects the 
mass spectrum for each location. As the spatial information is also saved, it is possible to 
analyse the distribution of the mass-to-charge (m/z) values of a tissue per location (33). The 
m/z values can then be processed and analysed with specific software usually supplied by 
the vendor of the instrument, superimposed onto a consecutive tissue section stained with 
H&E, fluorescence markers, etc. and digitalized to complete the study if necessary. MSI is 
used in cancer research to discover biomarkers to improve tumour classification and 
potentially identify new treatment options (34). 
 

HHaaeemmaattooxxyylliinn  aanndd  eeoossiinn  ((HH&&EE))  ssttaaiinneedd  ddiiggiittiisseedd  ttiissssuuee  sseeccttiioonnss  
H&E are two dyes used in histology to allow visualisation of cellular structures in a tissue 
sample: haematoxylin is used to stain the cell nuclei in blue/dark blue, while eosin stains in 
pink/red the rest of the tissue (cytoplasm, connective tissue, and matrices) (35). The results 
of the staining can be observed through a microscope or digitally after scanning of the slides 
with the stained tissue section. This staining method is the routine staining for all tissue 
samples in histopathology laboratories worldwide including biopsies suspicious to contain 
cancer or resection specimens after the cancer was surgically removed.  
 

MMaaggnneettiicc  rreessoonnaannccee  iimmaaggiinngg  ((MMRRII))    
MR imaging is a medical imaging technique which probes the atomic and molecular 
structure of tissues by aligning then disturbing the spin of protons and measuring the radio-
frequencies resulting from realignment in a magnetic field generated by the scanner, 
converting them into an image of the body part under scrutiny. This non-invasive imaging 
technique is used to preferably analyse soft tissue but has also been used in cancer 
detection and staging (36).  
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CCoonnttrraasstt  eennhhaanncceedd  mmaammmmooggrraapphhyy  ((CCEEMM))  
CEM is a medical imaging technique which is performed after intravenous injection of an 
iodinated contrast agent. Image acquisition is made at two time points and two energies, 
leading to one scan called low-energy image, similar to a conventional mammogram, and 
one high-energy image which is more sensitive to the contrast agent. These two images are 
combined to form an image where the contrast enhancement becomes visible (37). This 
image modality has a better specificity for classifying lesions than a regular mammogram, 
which means that with CEM, less patients would be recalled for an additional examination  
if they have a benign lesion (38). This technique is mainly used during recall of patients who 
underwent breast screening with regular mammography and had a possible malignant 
lesion detected or the exam was inconclusive.   

HHyyppootthheessiiss::  mmooddeell  pprreeddiiccttiioonnss  ccaann  bbee  iimmpprroovveedd  
ccoommbbiinniinngg  hhaannddccrraafftteedd  ffeeaattuurreess  ffrroomm  vvaarriioouuss  ssoouurrcceess  aanndd  
ddeeeepp  lleeaarrnniinngg  
DL can be used for detecting and segmenting images, whereas handcrafted features were 
not designed to do this as they are computed on a predefined region of interest. However, 
a handcrafted feature-based model needs less data to train, can more easily be 
implemented for regression tasks (for example to predict best treatment or survival), and 
although radiomics feature can be abstract, feature importance is easy to retrieve and helps 
interpreting the findings. DL can learn optimal feature representation from a dataset 
without a priori knowledge but lacks explainability and interpretability making it sometimes 
impossible to understand false negative or false positive results. Moreover, DL outperforms 
handcrafted feature-based ML only on very large datasets (as a rule of thumb, more than 
one thousand samples) (39). 
 
In comparison, handcrafted features extracted from a region of interest are predetermined 
from a list of features. This list might not be comprehensive, resulting in a final model which 
might not necessarily be trained on the most relevant features which could be extracted 
from the images. However, the results are easier to explain once a set of features are pre-
selected before training a model. Whilst this method needs less input data for a 
classification task, it nevertheless requires delineations of the dataset by experts, a time 
and resource-consuming task. 
 
Based on the above mentioned information, we formulated the following hypothesis for 
this thesis: Feature-based ML models and DL models capture information from medical 
imaging datasets which is complementary and their combined use can result in more 
accurate classification predictions.  

14

Chapter 1



SSccooppee  aanndd  ttaabbllee  ooff  ccoonntteennttss  

Figure 2: Roadmap of this thesis. 
 
We divided this thesis in two parts. 
 
Part 1: Comparing and combining deep learning and feature-based machine learning 
 
Feature-based ML and DL might learn complementary classifiers, thus, combining the 
results obtained from those models could potentially lead to a more accurate and robust 
overall model. 
 
In Chapter 2, we reviewed the literature on the current use of ML with handcrafted 
radiomics and DL for medical image analysis. This review also explored the challenges faced 
by using ML for medical imaging analyses, including issues with reproducibility of models 
and lack of explainability, and suggests a potential framework to overcome those issues.  
 
The study presented in Chapter 3 focussed on datasets from patients with Barrett’s 
oesophagus. This disease is a known precursor of oesophageal cancer and is characterized 
by a change in the composition of the lining epithelium where squamous epithelial cells are 
replaced by intestinal-type columnar cells. Progression of Barrett’s oesophagus towards 
high grade dysplasia and cancer is not yet predictable based on histology alone (40). Our 
work explored the prediction capacity of two set of data using ML: mass spectrometry 
imaging (MSI) and images of Haematoxylin and Eosin (H&E)-stained tissue sections to first 
grade dysplasia in Barrett’s oesophagus and then predict disease progression for patients 
with low grade dysplasia. In this study, MSI and H&E-stained images were acquired in 
parallel and co-registered to allow comparison.  
 
Our study presented in Chapter 4 was performed using ML with handcrafted radiomics and 
DL on pre- stereotactic radiotherapy brain MRIs of patients with brain metastases. Our goal 
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was to test the prediction power of radiomics, patient characteristics, and deep learning 
first individually and then in combination for predicting adverse radiation effect risk. 
Different pre-processing methods were first tested independently for the radiomics and 
deep learning predictions and the pre-processing methods giving best results on the test 
dataset were kept.  
 
Part 2: Using feature-based models to augment deep learning predictions 
 
Another use for feature-based models is to possibly improve and explain predictions 
computed with deep learning models: 
 
In Chapter 5, we explored the potential added value of using a feature-based machine 
learning model based on the predictions of a regular deep learning model which was trained 
to find and segment lymph nodes (LNs) within histopathology images of oesophageal cancer 
resections. We wanted to see whether the DL model performance would improve when 
adding a feature-based machine learning model. Thus, to recognize whether LNs are 
present in the image, we gave a prediction score per potential LN. We also studied whether 
the score could be used as an uncertainty measurement. Our model was tested on an 
external validation dataset to test whether the results were reproducible. 
 
In Chapter 6, we tested the combination of radiomics-based models and deep learning 
models to automatically classify suspicious lesion within contrast enhanced mammography 
images. Our goal was to first train a deep learning model which would identify, delineate 
and classify suspicious lesions automatically. We then added a radiomics-based model 
based on the ground truth contours classifying the lesions (benign versus malignant) and 
compared and combined the prediction results with the predictions of the deep learning 
model. Finally, we trained a new radiomics-based model on the contours automatically 
generated by the deep learning model, classifying the findings as malignant or other (benign 
and false positive).  
 
In Chapter 7, we discuss our findings and the future prospects of medical imaging analysis. 
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AAbbssttrraacctt  
The advancement of artificial intelligence concurrent with the development of medical 
imaging techniques provided a unique opportunity to turn medical imaging from mostly 
qualitative, to further quantitative and mineable data that can be explored for the 
development of clinical decision support systems (cDSS). Radiomics, a method for the high 
throughput extraction of handcrafted features from medical images, and deep learning the 
data driven modeling techniques based on the principles of simplified brain neuron 
interactions, are the most researched quantitative imaging techniques. Many studies 
reported on the potential of such techniques in the context of cDSS. Such techniques could 
be highly appealing due to the reuse of existing data, automation of clinical workflows, 
minimal invasiveness, three-dimensional volumetric characterization, and the promise of 
high accuracy and reproducibility of results and cost-effectiveness. Nevertheless, there are 
several challenges that quantitative imaging techniques face, and need to be addressed 
before the translation to clinical use. These challenges include, but are not limited to, the 
explainability of the models, the reproducibility of the quantitative imaging features, and 
their sensitivity to variations in image acquisition and reconstruction parameters. In this 
narrative review, we report on the status of quantitative medical image analysis using 
radiomics and deep learning, the challenges the field is facing, propose a framework for 
robust radiomics analysis, and discuss future prospects.
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11..  IInnttrroodduuccttiioonn  
Advances in artificial intelligence applications, combined with those in medical imaging, 
have led to the gradual conversion of digital medical images into high-dimensional data 
appropriate for data mining and data science techniques (1). Meanwhile, computing power 
and quantitative image analysis (QIA) techniques have made enormous progress, and the 
application of quantitative imaging techniques on medical imaging gained exponential 
momentum (2). Currently, radiomics and deep learning are the most researched techniques 
on medical imaging. 
Broadly, radiomics refers to the use of computational or statistical approaches to extract 
large numbers of quantitative features from a number of medical imaging modalities, such 
as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission 
tomography (PET), to develop predictive models ultimately aiming to enable personalized 
clinical management (3–5). Radiomics features are quantitative descriptions of the 
intensity, shape, volume, and texture of the region of interest (ROI), with the recent addition 
of more abstract features such as radial gradient and radial deviation (6). Radiomics features 
are broadly divided into histogram-based and texture features. Different statistical methods 
are used to calculate the radiomics features. The methods include first-order statistics, 
which depends on the values of single voxels (histogram-based features for e.g. maximum 
and minimum intensity); second-order statistics, which depends on the relation between 
two voxels (for e.g. grey-level co-occurrence matrix (GLCM) features), and higher-order 
statistics (relations among three or more voxels, for e.g. neighborhood grey-tone difference 
matrices (NGTDM) features) (7,8). The main hypothesis behind radiomics analysis is that 
radiomics features decode or correlate with the molecular characteristics, phenotype, and 
genotype of the region of interest (ROI) under study. This information can be used in 
combination with other patient information to improve patient management. Moreover, as 
the tumours are of heterogeneous nature (9,10), clinical approaches, such as tissue 
biopsies, might fail to characterize the entirety of the tumour (11). In contrast, Radiomics 
takes the whole tumour region (or even the surrounding or healthy tissue) into account, 
which enables a better characterization (3). Furthermore, frequent clinical imaging can 
transform radiomics into a non-invasive, easily repeatable, and cost-effective longitudinal 
approach for cDSS (12). 
Deep learning (DL) is a field of data driven modelling techniques that utilizes the principles 
of simplified neuron interactions (13). Using artificial neurons started to draw attention 
decades ago (14), but it only became a major research focus recently (15–17). The artificial 
neuron model is used as a foundation unit to create complex chains of interactions – DL 
layers. These layers are used to generate even more complex structures DL architectures 
(see Figure 1). The neural network (NN) training procedure is typically a cost-function 
minimization process. The cost function measures the error of predictions based on the 
ground truth labels (18). Due to the high complexity of the network architectures, 
computational limitations are reached when trying to solve the optimization task 
analytically. Henceforth, iterative algorithms are used to overcome this issue. Commonly, 
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these algorithms are variations of the gradient descent (GD). GD iteratively moves in the 
direction of steepest descent of the cost function, in order to find a local minimum. During 
the model training process, every image from the training dataset contributes to the cost 
minimization process. Thereby, a DL network learns how to solve a problem directly from 
existing data, and apply it to data it has never seen. These complex models contain the 
parameters (weights) for millions of neurons, which can be trained for the recognition of 
problem-related patterns in the data being analyzed. DL has been shown to be efficient in 
other fields, such as face recognition (19) and autonomous cars (20). 
Since the introduction of the field, many studies have reported on the potential of such 
techniques for predicting patient outcomes (5,21,22). The successful translation of QIA 
techniques into cDSS will have a significant impact on the clinical workflow and current 
patient management protocols. Clinicians will be able to non-invasively obtain a more 
detailed and accurate tumour characterization, in a shorter amount of time. Patients will 
have to go through less invasive procedures, while having treatment optimized based on 
their individual characteristics. Furthermore, patient-specific informed decisions can be 
made with more confidence. However, QIA is still developing in the field of medical imaging 
and several challenges, including the stability and reproducibility of imaging biomarkers, as 
well as the interpretability of the developed algorithms, need to be addressed before QIA 
can be translated to clinical applications. 
In this narrative review, we focus on the current status of the potential of radiomics and 
deep learning to be incorporated in clinical decision support systems (cDSS), their 
challenges, as well as future prospects for these methods. We further propose a workflow 
to guide robust radiomics analysis. 

22..  QQuuaannttiittaattiivvee  iimmaaggee  aannaallyyssiiss  ffoorr  pprreecciissiioonn  mmeeddiicciinnee  
The need for personalizing the management of patients has been widely reported (23,24). 
QIA represents a suitable candidate to be incorporated into the body of personalized 
medicine due to the non-invasive three-dimensional characterization of the ROIs, the 
availability of vast amounts of medical images, the longitudinal capabilities, and the cost-
effectiveness of the method. 
The currently implemented imaging biomarker development workflow is generalizable 
across different imaging modalities. The workflow can be described as consecutive steps 
divided into the main categories of data collection, image segmentation, features 
extraction, development of the signature, and evaluation of the performance (Figure 2), 
with the segmentation step being optional in the case of deep learning. The workflow has 
been previously extensively described (22,25). 
Many studies have investigated and reported on the added clinical value of radiomics 
features for predicting various clinical outcomes, such as overall survival, tumour histology, 
response to therapy, and genetic profiling, among other endpoints. Furthermore, these 
studies were performed on various imaging modalities, including CT, MR, and PET. 
While the handcrafted radiomics pipeline necessitates the use of machine learning or 
statistical algorithms after feature extraction for modeling, DL techniques perform feature 
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extraction and modelling internally without the need for further user interaction. DL has its 
own advantages and drawbacks compared to traditional radiomics. One of the key benefits 
of using DL is avoiding the contouring problem, the bottleneck of a traditional radiomics 
pipeline. However, due to the complexity of DL models, it is easier to overfit the model to 
the training data. As a result, a larger data set is needed for DL compared to handcrafted 
radiomics. Furthermore, DL is considered a ‘black box’, i.e the models and features 
generated are not (or barely) interpretable. This is currently one of the major challenges of 
the application of artificial intelligence (AI) in medical image analysis. Efforts are being made 
towards providing explainable AI algorithms, by investigating the correlation of the chosen 
features with biologic or semantic characteristics. Such correlations would provide an 
understanding about how the algorithm makes the decision, and ease its incorporation into 
cDSS. 
QIA techniques have a great potential for involvement in developing classification, 
prognostic and predictive clinical tools. In comparison, classification tasks (for e.g classifying 
tissue histology) seem to yield a better performance than predictive tasks (for e.g survival 
prediction). This is in part due to the unaccounted for variables when trying to predict future 
events. In 2.1 and 2.2, we report on some examples that highlighted the potential of 
radiomics and deep learning to predict various clinical endpoints, acknowledged or 
addressed the challenges of QIA techniques used, and/or applied the techniques on a 
relatively large sample size compared to other studies addressing the same clinical 
endpoint. 
  
 

  
Figure 1. Graphical depiction of DL architectures. * FCN: fully connected network. 
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Figure 2. Development of imaging biomarkers using quantitative image analysis. * 
Segmentation is not a necessity in the automated radiomics pipeline. 
 

22..11..  HHaannddccrraafftteedd  rraaddiioommiiccss  
OOvveerraallll  ssuurrvviivvaall  
Wang et al. (26) investigated the potential of radiomics signatures to predict overall survival 
in patients with locally advanced rectal cancer. The authors tried to address the current 
clinical need for a risk stratification tool for such patients to safely forgo surgical resection, 
due to the high comorbidities associated. The study included 411 treatment planning CT-
scans of patients treated with neoadjuvant chemotherapy followed by surgery. The authors 
developed a radiomics signature that could stratify patients into low- and high-risk survival 
groups. The radiomics features included in the signature were found to be independent of 
the clinical features. Adding radiomics features to the clinical model resulted in an 
improvement of the predictive power (c- index) of the clinical only model from 0.67 (0.62–
0.73) to 0.73 (0.66–0.80) (26). The authors used two investigations to ensure the selection 
of stable radiomics features, namely test–retest and contour- recontour robustness 
analysis. The results signifies the added value of properly using radiomics analysis on CT 
scans in improving patients’ risk stratification. Yet, the authors did not externally validate 
their signature, casting doubt on the generalizability of their signature. It is expected to be 
of value in cases where the scanning parameters are identical to those used in the study. 
Another study by Bae et al. (27) investigated the potential of MR- based radiomics to 
improve the survival prediction of patients diagnosed with glioblastoma multiforme. The 
study is an effort to address the unmet clinical need for assessing the survival of the target 
group following therapy. The authors extracted radiomics features from 217 
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multiparametric MR scans of patients with glioblastoma. The authors identified 18 
radiomics features to build a radiomic signature, and reported that the addition of radiomics 
features to clinical and genetic profiles of the patients significantly improves the 
stratification of patients (27). The authors in this study applied a unique approach for the 
analysis by simultaneously analyzing radiomics features extracted from different co-
registered MR sequences. The identified features were independent of the clinical and 
genetic factors, and the improvement in the survival prediction following their addition, 
supports the hypothesis of radiomics. Pitfalls in the study include the lack of assessment of 
radiomic feature stability before modeling, and as often seen in these studies, a lack of an 
external validation of the signature. However, their results support the hypothesis that 
radiomics are of great use when applied on scans acquired using identical settings. 
Oikonomou et al. (28) reported on the potential of PET/CT-based radiomics to improve the 
survival stratification of patients with lung cancer treated with stereotactic body 
radiotherapy. The aim was to identify radiomics features that can improve the 
prognostication of patients following treatment. The authors extracted radiomics features 
from 150 PET/CT scans, and built radiomics signatures using 10 radiomics features. The 
authors reported that the radiomics signature was the sole predictor in the case of overall 
survival, and provided complementary information for the prediction of regional control 
(28). The uniqueness in this study is the joint use of radiomics features extracted from the 
CT-component and PET-component of the PET/CT scans. The authors show how other 
currently used clinical parameters fail to predict overall survival, while only radiomics could. 
While the study highlights the potential of radiomics to improve risk stratification, no 
external validation of the signature was performed. 
 

PPrrooggrreessssiioonn  ffrreeee  ssuurrvviivvaall  
Kirienko et al. (29) investigated the role of PET/CT-based radiomics to predict disease free 
survival in patients with non-small cell lung cancer undergoing surgery. The authors 
extracted radiomics features from PET, CT, and combined PET/CT images. The authors 
developed Cox regression models using only CT, only PET, and combined PET/CT radiomics 
features. They reported that the radiomic signatures they developed improve the current 
clinical stratification of the targeted patients (29). The authors in this study investigated the 
reproducibility of radiomics features across the different imaging parameters in their 
dataset. This ensured selecting the comparable features before proceeding with signature 
building. The authors also provide evidence of the added value of combining radiomics 
features extracted from different imaging modalities. Furthermore, the ability to predict 
disease free survival from the time of diagnosis -which radiomics offer improves physicians 
and patients decision making. However, the authors in this study did also not perform an 
external validation of their signature. Further validation of the signature can prompt a 
prospective validation trial, before incorporation into cDSS. 
Another study by Kickingereder et al. (30) investigated the role of MR-based radiomics in 
predicting survival in patients with glioblastoma multiforme. The authors extracted 
radiomics features from 119 MR scans, and developed a radiomic signature using 11 
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features. The developed signature performed significantly better than the radiologic and 
clinical risk models, and its addition to those resulted in an overall improvement of 
progression-free survival stratification (30). The finding that the radiomics signature 
performed better than the clinical and radiologic models supports the findings reported by 
Bae at al. (27), and adds more evidence that radiomics features decode complementary 
biologic information. However, the study did not address the issues of the reproducibility 
and generalizability sufficiently, leaving a room for improving the performance of radiomics. 
 

TTuummoouurr  hhiissttoollooggyy  
Wu et al. (31) explored the role of radiomics in differentiating between the histologic 
subtypes of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma. The 
study was an effort to address the clinical need for less invasive and easily repeatable 
methods to determine tumour histology. The authors extracted radiomics features from 
350 CT scans of NSCLC patients for whom the tumour histology has been determined from 
surgical specimens. The developed signature included 5 radiomics features, and they 
reported an area under the receiver characteristics curve (AUC) of 0.72 (31). This study 
reflected on the potential of non-invasive radiomic signatures to differentiate between 
adenocarcinoma and squamous cell carcinoma. They also investigated different machine 
learning methodologies for building the radiomics signature. While this study generates 
evidence for the potential of radiomics, the performance of the developed signature is 
significantly lower than the current gold standard -tissue biopsy. However, there is a great 
room for improving the development and performance of the signature. The authors did 
not address the acknowledged challenges in radiomics, nor did they validate their signature 
on an external dataset. Preselection of reproducible features, external and prospective 
validation of the signature are necessary steps in the development of radiomics biomarkers. 
In another study, Wu et al. (32) investigated the added value of MR- based radiomics 
features for the prediction of hepatocellular carcinoma (HCC) grade. The authors extracted 
radiomics features from 170 MRI scans of HCC patients, whose tumour grade was identified 
through pathological samples. The radiomics-only signature (AUC of 0.74) outperformed 
the clinical model (AUC of 0.60), and the combination of both significantly improved the 
prediction (AUC of 0.80) (32). The authors in this study also combined radiomics features 
extracted from two different MR sequences and analyzed them simultaneously. The 
significant improvement of the predictions following the combination of clinical and 
radiomics features supports the independence of radiomics features from other clinical 
information. However, external validation of the developed signature is still a necessity 
before confidently performing prospective validation. 
Valleries et al. (33) explored the potential of the combination of FDG-PET- and MR- based 
radiomics features to classify lung nodules. The authors extracted radiomics features from 
51 PET and MR scans of histologically confirmed lung lesions in patients with soft-tissue 
sarcoma. The authors achieved a sensitivity of 0.96 and specificity of 0.93 in diagnosing 
metastatic nodules using a model with combined radiomics features from both PET and MR 
modalities. The authors used a novel interesting approach by simultaneously analyzing the 
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features extracted from FDG-PET and MR scans, and were the first to show the potential of 
this method. The performance of the developed signature makes it a suitable alternative 
for patients for whom tissue biopsy is contraindicated. Its possible translation to cDSS might 
significantly improve patient outcomes, as treatment is based on the histologic diagnosis. 
Yet, further external and prospective validation of the signature is needed. 

  
RReessppoonnssee  ttoo  tthheerraappyy  
Trebeschi et al. (34) explored the role of radiomics in predicting response to anti-PD1 
immunotherapy in patients diagnosed with advanced melanoma and NSCLC patients. 
Immunotherapy has shown promising results. Yet, there is still a need for a tool to 
determine which patients will benefit from receiving anti-PD-1 antibodies. The authors 
extracted radiomics features from 1055 ROIs segmented on 203 CT scans. The authors 
developed a radiomic signature that could predict the response to therapy with an AUC of 
0.76; showing the potential of radiomics to predict response to therapy in such patients 
(34). Interestingly, the authors found correlations between the radiomic biomarker and the 
genes associated with cell cycle progression and mitosis. Radiomics can become a tool for 
assisting decision making in immunotherapy, a great unmet clinical need. The study 
however did not externally validate the signature, and did not sufficiently address the issues 
of feature stability and reproducibility. Therefore, the application of the developed 
signature is also limited to the patients who are scanned with the same scanning 
parameters as used in the training. 
In a study by Horvat et al. (35), the authors investigated the role of radiomics in assessing 
complete clinical response (cCR) after neoadjuvant chemoradiotherapy (CRT) in patients 
with locally advanced rectal cancer. The guidelines of treating these patients include 
surgery, but evidence showed recently that a select group of patients can be safely treated 
with only CRT. The authors extracted radiomics features from 114 MR scans, and developed 
a radiomics signature with a sensitivity of 1.00, and a specificity of 0.91, which 
outperformed qualitative assessment of the response performed by two radiologists. The 
current clinical standard evaluation of cCR includes digital rectal examination and 
endoscopy, with an accuracy ranging between 0.71 and 0.88 (35). The developed radiomic 
signature showed the highest accuracy among the available compared-with tools. 
Nonetheless, several steps to improve the methodology and performance of the radiomics 
signature could be made. The sound cCR evaluation following RCT can improve the patient 
management by eliminating surgical risks, time and money. 
 

22..22..  DDeeeepp  lleeaarrnniinngg  
The application of deep learning on medical imaging could potentially fulfil more 
complicated tasks than handcrafted radiomics, especially when large amounts of data are 
available. Furthermore, as definition of the ROIs is not a necessity in the automated deep 
learning workflows, the algorithm will learn patterns from the whole image and possibly 
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make connections with the habitat of the ROIs. The applications of neural networks on 
medical imaging are also not limited to classification and prediction of clinical end points, 
but can extend to include other tasks, such as the detection and segmentation of 
abnormalities or target volumes, which have been investigated for decades (36). Especially 
the detection and segmentation of lesions can be easily incorporated into the radiomics 
workflow, further automating the process. In the following paragraphs, we give examples 
of different applications of DL on medical imaging to perform various tasks on datasets 
acquired with one of the three main medical images modalities: CT, MRI, and PET. 
 

AAuuttoommaattiicc  sseeggmmeennttaattiioonn  ooff  ttaarrggeett  ssttrruuccttuurreess  
Jiang et al. (37) tried to develop a DL model that is able to accurately perform volumetric 
lung tumour segmentation on CT images. The authors used two versions of multiple 
resolution residual network models for the delineation of the ROIs. The authors used 377 
tumours from the open source dataset available on The Cancer Imaging Archive (TCIA) 
(https://www.cancerimagingarchive.net) to train the model, and two independent datasets 
of 304 and 529 lung tumours to validate it. The dice similarity coefficient (DSC), which 
measures the spatial overlap of the segmentations, was computed to evaluate the 
performance of the model. The DSCs of the model on the two validation datasets were 0.75 
and 0.68, respectively. The authors reported that there was no significant difference 
between the DL-generated mask and experts’ segmentations (37). The new approach for 
segmenting medical images used in this study shows to be superior to the traditional use of 
UNet. The approach generalizes well on external data and overcomes the multiple sizes 
problem. The major pitfalls is that the authors did not use the 3D geometry of the CTs to 
compute the results, which would probably increase the performance significantly. The 
translation of such a tool to clinical practice will significantly reduce the time spent by the 
clinicians to plan the treatment, or evaluate the response to therapy. Moreover, from a 
research perspective, it can significantly reduce the time needed for radiomics research, 
and it will address the issue of inter-observer sensitivity of radiomics features. 
In the study by Yi et al. (38), the authors developed a DL model for the segmentation of 
brain tumours based on 274 brain MRIs extracted from the Brain Tumour Image 
Segmentation Benchmark (BRATS) dataset (39). Segmentation of brain Glioblastoma on MRI 
is a time-exhaustive process, and an automated, accurate and reproducible tool for this 
purpose is considered a clinical need. The model was trained using four different MRIs 
sequences. The particularity of their convolutional neural network (CNN) model is a fixed 
difference of Gaussian filters as a first convolution layer, as it was proven to be the most 
efficient for 3D segmentation. The DSC for the model was 0.89 on the BRATS dataset when 
compared to ground truth segmentations (38). This article shows the superiority of 3D CNN 
compared to 2D CNN. The algorithm generated segmentations with a volumetric overlap of 
0.89 with the experts’ segmentations, which shows the potential of these tools for clinical 
use. However, the lack of external validation in the study limits the applicability of the 
algorithm to scanning parameters in the training set. The clinical practice can benefit from 
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such tools, as it significantly reduces the time the clinicians spend, and can provide more 
accurate evaluation of tumour response than the current clinical routine. 
Chen et al. (40) explored the possibility of developing a DL model that is able to detect and 
segment cervical tumours on PET imaging. The authors proposed prior information 
constraint CNN (PIC-CNN), which integrates a CNN with prior information of cervical 
tumour. The authors reported a DSC of 0.84, which was superior to the other methods tin 
the comparison, including transfer learning based on fully convolutional neural networks 
(FCN) (DSC of 0.77), automatic thresholding (DSC of 0.59), and region growing method (DSC 
of 0.52) (40). The study highlights the potential of deep learning to perform well-defined 
and robust segmentations on PET imaging. The novelty of the approach is the use of prior 
information as input of the model, with delineation of the bladder. This extra information 
seems to give the traditional model an advantage compared to models that solely segment 
the tumours. However, the results were not validated on an external dataset. The 
application of the developed algorithm -after validating it would decrease the need for 
tissue biopsy, as well as the time spent on segmenting the tumours manually or semi-
automatically. 
 

OOnnccoollooggiicc  ccllaassssiiffiiccaattiioonn  ttaasskkss  
Ardila et al. (41) tried to predict the risk of lung cancer using screening low-dose CTs. The 
algorithm is trained on screening low-dose CT scans of patients who were known to be at 
risk. The authors trained their DL model on approximately 7000 scans, and validated its 
performance on 1139 cases. The authors reported that the model achieved the “state-of-
the-art” performance (AUC of 0.944). Furthermore, the model outperformed all the 
radiologists (n = 6) who were asked to give predictions. The model resulted in a significant 
reduction in the false positive (11%), and false negative rates (5%) (41). While the current 
low-dose CT screening protocol has substantially improved in terms of consistency, it still 
faces major limitations represented in the inter-observer variability and incomplete 
characterization of image findings. The authors in (41) developed an algorithm that 
achieved significantly better performance than the current protocol, highlighting the 
potential of DL algorithms to revolutionize the field of lung cancer screening. Other 
advantages of the algorithm are that it eliminates the current clinical practice limitations. 
Ismael et al. (42) investigated the ability of DL algorithms to classify different brain tumours. 
The algorithm predicts if the lesion is either a meningioma, glioma, or pituitary tumour. The 
authors developed the algorithm on 3064 T1 MRI images from 233 cancer patients. As input 
to the algorithm, the 2D images were considered independent from each other, and were 
split into 80% training and 20% testing, with strictly different patient data. The classifier 
used is ResNet50, a classic deep learning network, and the resultant balanced accuracy was 
0.99 on a slice level and 0.97 at a patient level. This study shows that deep learning can very 
accurately classify brain tumours based solely on MRI data. However, the data to be used 
should be acquired using the same scanning parameters, as no external validation was 
performed in this study. There is a great clinical significance from the development of such 
a cDSS, as it eliminates the need for risky brain biopsies, while maintaining high accuracy. 

35

Radiomics for precision medicine

Ch
ap

te
r 2



In another study by Sibille et al. (43), the authors used the combination of CT, fluorine 18-
fluorodeoxyglucose PET, atlas and PET maximum intensity projection (MIP) imaging to 
classify lung nodules. The study included a set of 629 patients who were diagnosed with 
either lung cancer or lymphoma. The authors developed models using each of imaging 
modalities separately, as well as in combination. The recommended algorithm achieved an 
AUC of 0.98 when both CT and PET were combined (43). This study shows that the 
combination of CT and PET can achieve an outstanding performance in terms of predictions. 
The current clinical practice requires the clinician to review and classify all of the increased-
uptake foci in a PET/CT scan. The algorithm could help the clinicians to quickly read those 
images, after highlighting the suspicious areas and their most likely classification using DL. 
 

NNoonn--oonnccoollooggiicc  ccllaassssiiffiiccaattiioonn  ttaasskkss  
Walsh et al. (44) explored the potential of DL to classify fibrotic lung diseases using high 
resolution CT scans. The current clinical guidelines for classifying fibrotic lung diseases are 
based on high resolution scans, and diagnoses are made based on the semantic features 
identified by the radiologists. While these guidelines are the current gold-standard, it 
suffers greatly from inter-observer variability. The authors tried to address this unmet 
clinical need using DL approaches. The authors trained their DL model on 929 CT scans, and 
tested it on 139 scans. The authors reported a performance with human-level accuracy 
(0.76) (44). Of interest, the algorithm developed had a better agreement with expert 
radiologists than among them. The ease of application of such methods in clinical settings 
could benefit clinical practice, especially in centers where such clinical expertise is scarce. 
In the study by Ding et al. (45), the authors tried to develop a DL model that is able to 
diagnose Alzheimer’s disease (AD), using 18F-FDG PET scans of the brain. The current clinical 
guidelines to diagnose AD necessitate the interpretation of scans by an expert, and there is 
no definitive biomarker. To investigate the potential of DL, the authors collected two 
datasets: one used for training and testing the model (n = 2109 scans), which was split into 
90% training and 10% testing; and an independent dataset (n = 40) for the validation of the 
model. The authors reported an AUC of 0.98, sensitivity of 1.00 and specificity of 0.82, using 
scans acquired 75.8 months on average before establishing the diagnosis. The model further 
outperformed the readers’ performance (sensitivity of 0.57 and specificity of 0.91) (45). The 
significance in this study lies within the novelty of developing a biomarker for AD that is 
currently an unmet clinical need. In addition to the significantly better performance 
compared to human experts, the model can predict that the patient has AD in progression 
significantly earlier (~6 years). Such an application will revolutionize the clinical 
management of AD. However, prospective validation of this signature is needed before its 
translation to clinical practice. 
Oh et al. (46) applied a DL based approach in order to classify the neuroimaging data related 
to AD. Authors used 694 MRI scans (T1- weighted MP-RAGE sequence) for solving several 
binary classification problems: AD vs. normal control (NC), progressive mild cognitive 
impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI vs. 
sMCI. The authors utilized convolutional autoencoder- based unsupervised learning 
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algorithms in order to classify the AD vs. NC. Following that, the authors applied a 
supervised transfer learning approach to classify the pMCI vs. sMCI. The developed 
algorithms achieved accuracies of 0.87, 0.77, 0.63, and 0.73 for the AD, pMCI, sMCI and 
pMCI vs. sMCI classifications, respectively. In comparison to Ding et al. (45), the authors in 
this study used different DL approaches, and less numbers of patients were available for 
training and testing the algorithm. Furthermore, the difference in the imaging modality 
analysed in each study could justify the variation in performance, as AD begins with 
functional impairment rather than structural changes. Although the model developed by oh 
et al. (46) was outperformed by human experts, the authors demonstrated the possibility 
of end-to-end DL algorithms, which could be translated to clinical use after further 
optimization and prospective validation. 
 

RReessppoonnssee  ttoo  tthheerraappyy  
Lou et al. (47) reported on the potential of DL models to predict response to radiotherapy 
in patients with lung cancer (primary or metastatic) using CT scans. Currently, all patients 
are treated similarly, while personalizing radiotherapy remains a desired, but unmet clinical 
need. The authors in this study collected a total of 849 scans for training the DL algorithm, 
and 95 scans to validate it. The authors developed a deep learning model (deep profiler) 
that computes and includes radiomics features in the deep-profiling process. A model 
combining the deep profiler and clinical variables is then used to calculate a risk score that 
is used to predict the response to treatment. The algorithm classifies patients into high and 
low risk groups, with a high performance (c-index of 0.72), which is significantly better 
compared to the results obtained with solely handcrafted radiomic models (c-index 
between 0.65 and 0.68) (47). The algorithm developed in this study opens new potentials 
for individualizing radiotherapy based on patients' sensitivity. Thereby, avoiding over- or 
under-treatment, and the side-effects of unnecessary treatment. Nevertheless, proper 
prospective validation of the developed algorithm remains a necessity. 
Ypsilantis et al. (48) used convolutional neural networks to develop a model that is capable 
of predicting response to neo-adjuvant chemotherapy (NAC) in patients with esophageal 
cancer using PET scans. NAC is considered a standard of care in some cancers. While NAC 
has favourable outcomes in patients who respond, patients who do not end up with worse 
outcomes. To investigate the potential of QIA techniques, the authors collected 107 PET 
scans of patients diagnosed with esophageal cancer, treated with NAC, and followed-up to 
determine response. The authors compared the performance of handcrafted radiomics 
with deep learning approaches. The authors reported that the developed deep learning 
algorithm outperformed the handcrafted radiomics model, and achieved a sensitivity of 
0.81 and specificity of 0.82 (48). The algorithm developed in this study highlights the 
potential of using DL to predict patients’ response to therapy at baseline, which is 
considered a substantial clinical added value. 
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33..  CChhaalllleennggeess  aanndd  ffuuttuurree  ddiirreeccttiioonnss  
Biomarkers are defined as “objective indications of medical state observed from outside the 
patient – which can be measured accurately and reproducibly” (49). The core of choosing a 
biomarker is the ability to measure it objectively. The reproducibility of imaging quantitative 
features across different imaging parameters is currently the steepest hurdle in QIA. As 
more research is being performed, other challenges, such as the sensitivity of QIA features 
to variations in the segmentation of the ROIs; and the lack of feature reproducibility across 
different implementations of radiomics toolboxes, are becoming increasingly clear. 
 

33..11..  TThhee  ssttaabbiilliittyy  aanndd  rreepprroodduucciibbiilliittyy  ooff  qquuaannttiittaattiivvee  ffeeaattuurreess  
Since the first landmark study in radiomics by Aerts et al. (50), the sensitivity of radiomics 
features to repeated acquisitions has been acknowledged. The authors performed a test-
retest stability investigation and used 100 out of 440 calculated radiomics features based 
on the stability rank of the features. The authors also acknowledged the sensitivity of 
features to differences in segmentations, and performed a primary feature selection based 
on the features’ robustness with regards to differences in both test-retest and 
segmentations. More recently, several studies reported on the sensitivity of radiomics 
features to temporal changes in test-retest studies across different modalities, including CT, 
MRI, and PET. 
 

AAnnaattoommiiccaall  iimmaaggiinngg  
Anatomical imaging (CT and MRI) is used to explore the underlying anatomical structures. 
CT imaging is standardized using the hounsfield units (HU) (51). On the other hand, MR 
imaging has no such standardized intensity measurements (52). Even though CT imaging 
uses standardized measurements, CT-based radiomics are not necessarily reproducible. 
Several studies reported that a significant number of CT- based radiomics features are not 
reproducible in test-retest settings, where the scans are acquired using the same scanning 
parameters (53–55). Other studies that investigated the reproducibility of CT-based 
radiomics features across different imaging acquisition and reconstruction parameters 
reported that the majority of radiomics features are significantly affected by such 
differences (53,56,57). Unreproducible radiomics features should be removed before 
starting the modeling of radiomics signatures. Therefore, it is always necessary to perform 
preselection of stable radiomics features based on the data under study, before starting the 
modeling. 
MR-based radiomics is even more complex and challenging to standardize compared to CT 
based radiomics, as more factors -in addition to lack of standardized intensity 
measurements affect MR imaging (58). Some studies reported on the stability of various 
MR-based features. Fiset et al. (59) investigated the reproducibility of T2- weighted MRI of 
cervical cancer in three different settings: (i) test–retest; (ii) diagnostic MRI versus 
simulation MRI; (iii) interobserver variability. The authors reported that 22.6%, 6.2% and 
74.4% of 1761 extracted radiomics features were reproducible across test-retest, diagnostic 
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versus simulation MRI, and different observers, respectively. Semi-parametric maps derived 
from specialized MRI sequences suffer less from the lack of stability: Peerlings et al. (60) 
reported on the stability of radiomics features extracted from apparent diffusion coefficient 
(ADC) map in test-retest and across different cancer types, centers, and vendors. The 
authors reported that out of 1322 extracted radiomics features, 122 features were stable 
across all cancers, centers, and vendors. 
On top of these challenges, using contrast agents for imaging adds another level of 
complexity to the reproducibility of features, due to the differences in the cardiac function 
of patients being scanned. Changes in cardiac function can affect the time the distribution 
of the contrast in the body takes (61). Another factor in contrast-enhanced images is the 
difference in time between the injection of the contrast and scan acquisition, which might 
be slightly different across centers and protocols. 
 

FFuunnccttiioonnaall  iimmaaggiinngg  
Functional imaging is used to assess the metabolic activity of a region of interest, and 
includes the injection of radiopharmaceuticals. Some standardized measurements in PET 
are already being extracted and used in clinical practice, such as the standardized uptake 
value (SUV), and the metabolically active tumour volume (MTV) (7). 
The challenges of radiomics for functional imaging are similar to the challenges of contrast-
enhanced anatomical imaging radiomics, where the variability in the injected 
radiopharmaceutical activity, the time between injection and image acquisition, and 
acquisition time per bed position have profound implications on the reproducibility of 
radiomics features (62). In addition, functional imaging lacks anatomical specificity and 
suffers from low resolution, which could be addressed by the use of hybrid imaging (22). 
Tixier et al. (63) investigated the reproducibility of SUV measurements, intensity histogram 
features, intensity-size zone features, and co-occurrence matrices features. The authors 
acquired two 18F-FDG PET scans of 16 patients, with a 4-days’ time interval. In contrast to 
further studies, the authors reported that these features were insensitive to the 
discretization range. Hatt et al. (64) investigated the robustness of PET based heterogeneity 
textural features with respect to the delineation of functional volumes and partial volume 
effects correction. The authors reported that these features were significantly affected by 
the differences in the delineation. The authors further reported that local features, e.g 
entropy and heterogeneity, were more robust when compared to regional features, e.g 
intensity variability and size-zone variability. Leijenaar et al. (65) investigated the role of 
SUV discretization on radiomics features. The authors used two different methods for SUV 
discretization, and reported that differences in SUV discretization significantly affect the 
reproducibility of 18F-FDG PET based radiomics features. The authors recommended the 
standardization of methodology for radiomics analysis. Altazi et al. (66) investigated the 
reproducibility of PET based radiomics features in cervical cancer patients. The authors 
investigated the reproducibility in three different scenarios: (i) manual versus computer‐
aided segmentations, (ii) gray‐level discretization, and (iii) reconstruction algorithms. The 
authors extracted 79 PET radiomics features, and reported that the percentage of stable 
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features in the three scenarios were 13%, 5%, and 1% respectively. Shiri et al. (67) explored 
the effects of different reconstruction on 18F-FDG PET radiomics. The authors studied the 
effects of several factors including number of sub- iterations, number of subsets, full width 
at half maximum (FWHM) of Gaussian filter, and scan time per bed position and matrix size. 
The authors reported that 47% of the features were found to be robust, and these include 
shape, 44% of the intensity based features, and 41% of the texture based features. 
However, with changes in matrix size, the authors reported that only 6% of the features 
were robust. 
The discrepancies in the reported percentages of stable/reproducible features across the 
reported studies are most likely linked to the variations between the datasets used in each 
of the studies in the scanners, and scans acquisition and reconstruction parameters 
combinations. However, these discrepancies are expected because of the different 
complexity of radiomics features, as well as the interaction between the different scanning 
parameters. All of the above mentioned studies reported that a variable percentage of 
radiomics features are affected, which highlights the necessity of performing feature 
stability/ reproducibility studies based on the data under analysis before performing 
radiomics analysis. 
 

33..22..  SSeennssiittiivviittyy  ooff  qquuaannttiittaattiivvee  iimmaaggiinngg  ffeeaattuurreess  ttoo  vvaarriiaattiioonnss  iinn  tthhee  
sseeggmmeennttaattiioonn  ooff  tthhee  RROOIIss  
In QIA, the medical images are converted to numerical arrays before feature calculation. 
Consequently, it is intuitive that differences in segmentations affect the quantitative 
imaging feature values variably, depending on the feature definition. Many studies have 
identified lists of radiomics features that are robust to variability in segmentations 
(50,68,69). Furthermore, with the inclusion of deep learning methods in image analysis, 
efforts are being made to develop reliable and reproducible automatic segmentations of 
various regions of interest as described in 3.2.1. Deep learning suffers less in this aspect, as 
the provision of ROIs is not obligatory. 
 

33..33..  TThhee  ddiiffffeerreenntt  iimmpplleemmeennttaattiioonnss  ooff  rraaddiioommiiccss  ffeeaattuurree  eexxttrraaccttiioonn  
ttoooollbbooxxeess  
It is common knowledge in the radiomics community that different radiomics toolboxes use 
different pre-processing techniques and/or feature definitions, which lead(s) to variations 
in estimation of radiomics feature values when different software solutions are used. To 
address this issue, the radiomics community started an initiative – Imaging Biomarkers 
Standardization Initiative (IBSI) – that aims at standardizing radiomics feature extraction 
using different toolboxes (70). To date, the IBSI standardized the extraction of 169 radiomics 
features (71). Limiting the radiomics analysis to the IBSI standardized features can facilitate 
radiomics features interchangeability across platforms. 
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33..44..  FFuuttuurree  ddiirreeccttiioonnss  
To address the issue of radiomics features reproducibility, some harmonization methods 
have been investigated in the literature. Of the trending methods is Combine Batches 
(ComBat). ComBat is a statistical method that was developed to remove the batch effects 
in microarray expressions (72). While several studies have reported on the application of 
ComBat harmonization in radiomics analysis as a means to remove batch effects (73,74), its 
direct application on radiomics data is not in concordance with the mathematical definition 
of ComBat (72), or with the hypothesis that radiomics correlate with biology. This is because 
ComBat assumes that the differences between batches are attributed to two groups of 
factors, the first group refers to the biological covariates, which radiomics features are 
investigated for correlations with. Moreover, adding biologic covariates for ComBat in the 
training of radiomics signatures will hinder its prospective use, because it will be the 
outcome the radiomic signature tries to predict. The second group refers to the “non-
biologic” factors, such as image acquisition and reconstruction parameters. ComBat was 
defined to handle one batch effect at a time. In contrast to gene expression arrays for which 
ComBat was designed, radiomics features have different complexity levels, which are 
expected to be non-uniformly affected by the variations in imaging parameters. In addition, 
the differences in image acquisition and reconstruction settings in a given retrospective 
imaging dataset are usually in more than one imaging parameter. The proper use of ComBat 
would require the assessment of the reproducibility of radiomics features after applying 
ComBat on representative objects with no biologic variations, such as phantoms. Then, 
radiomics features extracted from patients’ scans acquired with the same imaging 
parameters can be transformed based on the location/scale parameters estimated by the 
application of ComBat on the phantom data. We here propose a framework for performing 
robust radiomics analysis (Figure 3). Nonetheless, a radiomics-specific harmonization 
method is still needed to eliminate the need for phantom studies, as the performance of 
ComBat is expected to be dependent on the variations in scanning parameters in the data. 
The workflow consists of consecutive steps, and can be used to preselect reproducible and 
harmonizable radiomics features. The first step in the workflow is the collection of 
retrospective patient imaging data to be analyzed. In the second step, scan acquisition and 
reconstruction parameters must be extracted from the collected patient data. The next step 
includes scanning a phantom with the parameters extracted from the patient imaging data. 
This allows the assessment of the reproducibility of radiomics features across the different 
scan acquisition and reconstruction parameters, and the selection of those features for 
performing robust radiomics analysis. 
Based on our review of existing literature and our own experience, in order to use ComBat 
in the context of radiomics analysis (steps 5–7), two extra steps are needed. After selecting 
the features that are insensitive to the variations in the scanning parameters extracted from 
the patient data, features that are reproducible in test-retest in each of the combinations 
of those scanning parameters must be identified. ComBat is then applied on the features 
that are reproducible in test- retest but not across different scanning parameters. The 
concordance of radiomics features is assessed following the application of ComBat. The 
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location/scale shift parameters estimated by performing ComBat on the phantom data are 
then applied to the radiomics features extracted from patient data to harmonize them. The 
combination of the identified stable and harmonizable features can be further used to build 
the radiomics signature. 

 
Figure 3. Proposed workflow for robust radiomics analysis. 
 
The challenges discussed above raise questions about the future applications of radiomics, 
and the development of radiomic signatures as clinical biomarkers. To begin with, how to 
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approach the concept of external validation in radiomics studies. Do radiomic signatures 
need to be externally validated as is the case with other biomarkers, given all the challenges 
of reproducibility across different imaging settings? Or would the observatory prospective 
validation of a given signature in a specific image setting suffice? Does the development of 
radiomic signatures need to be specific for a scanner model and imaging settings? The 
ultimate solution will be the development of specific quantitative imaging parameters, as 
there is currently a clinical direction to personalize imaging settings per patient, which will 
have its toll on radiomics analysis. The direct application of radiomics analysis on data 
acquired heterogeneously could lead to spurious results, and inability of translating the 
results in a meaningful manner. 

44..  CCoonncclluussiioonn  
Quantitative imaging techniques (radiomics and deep learning) present a perfect candidate 
for personalizing patients’ management. Applying these techniques in a sound manner can 
provide highly accurate and reproducible tools that minimize costs and time loss. However, 
to incorporate QIA in cDSS, the quantitative features should fulfil the definition of a 
biomarker, namely the stability and reproducibility. The future of quantitative image 
analysis in general lies within harmonizing the imaging protocols across centers and 
scanners, or within the development of a unique global protocol for quantitative analysis 
scans. Hence, the development of radiomics-specific tools to harmonize medical images and 
facilitate meaningful quantitative image analysis of the currently available retrospective 
data remains a necessity. Our proposed framework is expected to improve the robustness 
of radiomics analysis. Nevertheless, the benefits of the proper application and translation 
of QIA on medical imaging are undoubted. QIA techniques will be a valuable asset for both: 
the clinicians and patients. QIA can become an efficient means for aiding clinicians in risk 
stratification, early diagnosis, and improved management of patients. 
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AAbbssttrraacctt  
Background: Barrett’s esophagus (BE) is a precursor lesion of esophageal adenocarcinoma 
and may progress from non-dysplastic through low-grade dysplasia (LGD) to high-grade 
dysplasia (HGD) and cancer. Grading BE is of crucial prognostic value and is currently based 
on the subjective evaluation of biopsies. This study aims to investigate the potential of 
machine learning (ML) using spatially resolved molecular data from mass spectrometry 
imaging (MSI) and histological data from microscopic hematoxylin and eosin (H&E)-stained 
imaging for computer-aided diagnosis and prognosis of BE. 
Methods: Biopsies from 57 patients were considered, divided into non-dysplastic (n = 15), 
LGD non-progressive (n = 14), LGD progressive (n = 14), and HGD (n = 14). MSI experiments 
were conducted at 50 × 50 μm spatial resolution per pixel corresponding to a tile size of 
96x96 pixels in the co-registered H&E images, making a total of 144,823 tiles for the whole 
dataset. 
Results: ML models were trained to distinguish epithelial tissue from stroma with area-
under-the-curve (AUC) values of 0.89 (MSI) and 0.95 (H&E)) and dysplastic grade (AUC of 
0.97 (MSI) and 0.85 (H&E)) on a tile level, and low-grade progressors from non-progressors 
on a patient level (accuracies of 0.72 (MSI) and 0.48 (H&E)).  
Conclusions: In summary, while the H&E-based classifier was best at distinguishing tissue 
types, the MSI-based model was more accurate at distinguishing dysplastic grades and 
patients at progression risk, which demonstrates the complementarity of both approaches. 
Data are available via ProteomeXchange with identifier PXD028949. 
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11..  IInnttrroodduuccttiioonn  
Esophageal adenocarcinoma (EAC) remains one of the deadliest cancers with a 5-year 
survival rate of less than 20% (1) and Barrett’s esophagus (BE) is the only known precursor 
lesion. BE is a condition of the distal esophagus where the stratified squamous epithelium 
is replaced by columnar epithelium with goblet cells due to gastroesophageal reflux disease 
(2). BE may progress from non-dysplastic metaplasia (NDBE) through low-grade dysplasia 
(LGD), to high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). A 
histopathology diagnosis of LGD is an important independent risk factor to develop EAC (3). 
This diagnosis however is hampered by inter- and intra-observer  variability  and  
international  guidelines  therefore mandate a second opinion. The individual rate of 
progression from BE patients with LGD to HGD/EAC is difficult to evaluate on hematoxylin 
and eosin (H&E) slides using light microscopy and ranges between 0.6 and 13.4% per patient 
per year (4). Due to the lack of reliable indicators of progression, current clinical treatment 
guidelines for LGD patients are not well defined and range from immediate local treatments 
to further endoscopic surveillance (5). Currently no objective biomarkers exist to identify 
BE patients with LGD that quickly progress to HGD and EAC from LGD lesions that remain 
stable for years. 
Computer-aided diagnostics of histological images and new molecular imaging modalities 
are therefore needed to assist the pathologist in grading BE lesions and give a reliable 
prediction of the disease progression. 
For the molecular analysis of histological tissue section, mass spectrometry imaging (MSI) 
is a young technique in expansion. MSI enables the acquisition of spatially resolved 
molecular profiles from tissue sections without any labelling. MSI has demonstrated during 
the past decade to be a powerful tool to extract clinically relevant information beyond 
histology from the molecular setup of different cancer types (6). In the context of EAC, the 
group of Walch and coworkers has already used MSI to find several proteins to be indicative 
of poor survival, metastasis, and chemosensitivity (7). 
MSI and histology can be used in combination and we hypothesize that the 
complementarity of both can potentially reinforce the accurate grading of BE and prognosis. 
From a technical point of view, both imaging modalities (optical microscopy and MSI) 
provide copious amounts of data: histological images are usually high resolution whereas 
MSI data is high-dimensional in its feature space, making them both suited for machine 
learning (ML) approaches (8). 
Our general objective is to investigate ML solutions applied to MSI and H&E data and 
analyse its ability to discriminate epithelial from stromal tissue and to classify BE samples 
according to the grade of dysplasia. We propose here a workflow based on ML, which can 
classify the tissue between epithelial tissue and stroma and display where the classifier 
identifies dysplastic areas of interest in the epithelial region. This way the experts can focus 
on the specific region of the H&E stained slides. This would provide a cheap and fast 
auxiliary observation and would help the experts to give a faster and more accurate 
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diagnosis. The second aim of the study is to use ML solutions to distinguish LGD-lesions at 
risk to progress from those that display stable disease. 

  22..  MMeetthhooddss  
22..11..  PPaattiieenntt  mmaatteerriiaall  
Formalin-fixed paraffin-embedded (FFPE) esophagus tissue biopsies were retrieved from 
the archives of the Department of Pathology of the Amsterdam UMC, location 
Meibergdreef. A total of 57 biopsy samples from 57 patients were collected and covered 
the complete spectrum of BE, ranging from NDBE (n = 15) to LGD (n = 28) and HGD (n = 14). 
Based on the patients’ follow-up LGD samples were sub-classified into LGD non-progressors 
(n = 14, no progression to HGD or EAC within a period of two years) and LGD progressors (n 
= 14, developed HGD or EAC within 2 years). All samples were anonymized for further use 
and did not require approval from the relevant Institutional Ethics Committee under 
applicable local regulatory law (‘Code of conduct’, FEDERA). 
 

22..22..  MMaassss  ssppeeccttrroommeettrryy  iimmaaggiinngg  eexxppeerriimmeennttss  
For this unique dataset, FFPE oesophagus tissue samples were cut at 5 μm thickness and 
randomly distributed on a total of 19 indium tin oxide- coated conductive glass slides (Delta 
Technologies). For MSI peptide measurements, samples were prepared as previously 
described by Vos et al. in (9). Briefly, samples were deparaffinised with xylene, exposed to 
antigen-retrieval and on-tissue tryptic digested using the Antigen Retriever 2100 (Aptum 
Biologics, UK) and a SunCollect pneumatic sprayer (SunChrom GmbH, Germany), 
respectively. After a 17h long incubation, alpha-cyano-4-hydroxycinnamic acid was applied 
using the same SunCollect sprayer. Before MSI, optical images of the glass slides were taken 
with a high-quality film scanner (Nikon LS-5000) with a true optical resolution of 4000 dpi 
(i.e. one pixel is 6.35 μm) in order to define the measurement region. This image therefore 
acts as anchor image and is later also used to co-register high-resolution H&E images to the 
MSI data. MSI experiments were performed at 50 μm lateral pixel size (40 40 μm laser beam 
scan range) on a rapifleX MALDI-ToF mass spectrometer (Bruker Daltonics) in reflectron and 
positive-ion mode within an m/z range of 800–3000. The instrument was calibrated 
beforehand using Red Phosphorus. Line scan sequence was non-random (i.e. spectra are 
acquired sequentially from upper left to lower right). Random walk within one pixel was 
deactivated and 700 spectra were averaged per pixel with a MALDI laser repetition rate of 
10 kHz. All individual spectra underwent on-the-fly smoothing (Savitzky-Golay 5%) and 
baseline subtraction (TopHat). Digitization rate was 1.25 GS/s resulting in 55,000 data points 
per spectrum (i.e. per MSI pixel), which was reduced to 80% of its original size in FlexImaging 
(Bruker Daltonics). MSI datasets contained on average 4500 MSI pixels (min 1370; max 
11,647) and were exported separately as imzML files from FlexImaging. 
 

56

Chapter 3



22..33..  HHaaeemmaattooxxyylliinn  aanndd  eeoossiinn  ssttaaiinniinngg  
The same tissue sections analysed by MSI were concurrently stained with H&E to minimize 
possible staining differences. For this, the matrix was first washed-off from the slides using 
70% ethanol for 2–3 min, followed by a 3 min wash with Milli Q water. Slides were stained 
with haematoxylin (3 min), washed for 3 min with tap water to remove excess 
haematoxylin, then stained with eosin (30 s), washed again with tap water for 3 min to 
remove excess eosin, followed by a 1 min ethanol wash and a 30 s xylene wash before 
attaching coverslips to the slides using Entellan as a mounting medium. The stained slides 
were scanned with a digital slide scanner at 20x magnification (Mirax Desk, Carl Zeiss 
MicroImaging, Göttingen, Germany). Tissue scans were exported using Pannoramic Viewer 
(3DHistech, Hungary) in JPG file format (at 90% quality compression and at original 
resolution), resulting in pixel sizes of 0.52x0.52 μm2. The images were superposed to the 
MALDI-MSI data in FlexImaging using a 3-control-point co-registration of previously applied 
fiducial markers. Stained tissue sections were annotated by an expert pathologist according 
to the tissue type (epithelial/stroma) and BE grade. In order to evaluate the co-registration 
quality, all datasets were individually inspected visually. In all cases, the eye-estimated 
average error (<10 μm) was significantly smaller than the laser spot size (50 μm) 
(Supplementary Figure 1). An example of the aligned information comprising histological 
images, MSI, and annotations is shown in Figure 1. 
 
Table 1: Number of tiles distributed over the different grades and tissue types Abbreviations 
used: NDBE, non-dysplastic Barrett Esophagus; LGD, low-grade dysplasia; HGD: high-grade 
dysplasia. 

 
 

22..44..  MMSSII  ddaattaa  pprree--pprroocceessssiinngg  
A recalibration was performed in Flex Analysis v3.4 using the lock masses m/z 842.510 and 
1045.564 with a peak assignment tolerance of 500 ppm and m/z 1303.615, 1508.750, 
1833.954, 1835.957, 2104.190, 2105.190, 2106.190 with a tolerance of 250 ppm. All 
recalibrated MSI data, coregistered H&E images, and annotations were imported to SCiLS 
Lab (Bruker Daltonik) where each spectrum was normalized to its total- ion-count (TIC). 
From SCiLS Lab, the overall spectra from on- and off- tissue regions were exported to mMass 
(http://www.mmass.org/) for peak picking using the following parameters: (1) Baseline 
correction precision = 40; (2) Peak-picking: S/N 5.0; Picking height = 90; (3) Deisotoping: 
maximum charge = 1, isotope mass tolerance m/z = 0.15, isotope intensity tolerance = 70%, 

57

Machine learning for grading esophageal dysplasia with MSI and H&E

Ch
ap

te
r 3



isotope mass shift = 0.0. The picking lists from on- and off-tissue were subsequently 
compared with a tolerance of 0.2 Da and common peaks were removed from the on-tissue 
peak list after visual inspection and confirmation (Supplementary Table 1). 
This final peak list (Supplementary Table 2) was then imported, together with the imzML 
files and the histological images of every patient, into Python 3.7. All of these data are 
available via ProteomeXchange (https://www.ebi.ac.uk/pride/) using the identifier 
PXD028949. In Python, the mass spectrometry pixels were normalized to their total-ion- 
count before extracting the maximum intensity for every peak in its 0.5 m/z interval across 
all MSI spectra. 
 
Table 2: Tile-based classifier performance for predicting tissue type and grade on the test 
sets. Abbreviations used: H&E, hematoxylin and eosin-stained tissue scans; MSI, mass 
spectrometry imaging. 
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22..55..  MMSSII  aanndd  hhiissttoollooggyy  ddaattaa  eexxttrraaccttiioonn  
Data extraction was performed using Python 3.7 with ImzMLParser and OpenCV libraries. 
Affine geometric transformations were performed in order to spatially link MSI and H&E 
based on the co-registrations previously done in FlexImaging, which were accessible via the 
respective .mis XML files. These files also contained the annotations as sets of polygonal 
coordinates (Supplementary Figure 2). For each of the MSI pixels (see Figure 1 c), the 
corresponding histological patch was extracted with a size of 96x96 pixels (see Figure 1 a). 
Henceforth, the word “tile” will be used to describe both the MSI pixel and the matching 
histological patch. The histology tiles were labelled according to the annotation of the 
centre pixel. 

 
Figure 1. Illustration of the multimodal imaging data used in this study. Three increasing 
magnification levels (left to right) of the three spatially co-registered layers of information 
and their size-matched representation on a tile level are shown in one of the Barrett’s 
esophagus tissue biopsies: (a) The H&E- stained microscopic image (b) the manual 
pathological annotations made by an expert pathologist on the same H&E image in this case 
indicating the glandular areas (grey colour) and (c) the MSI data, here represented by the 
visualization of a particular mass channel (m/z 957.5) which co-localizes with the glandular 
areas shown in (b). Abbreviations used: H&E, hematoxylin and eosin-stained tissue scans; 
MSI, mass spectrometry imaging; TIC, total-ion- count. 
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22..66..  MMaacchhiinnee  lleeaarrnniinngg  mmooddeellss  
For each modality (MSI and H&E), three tile-based ML classifiers were trained: the first 
classified the tiles between epithelial tissue and stroma (tissue type prediction), the second 
predicted the dysplastic grade of a tile, and the third the progression of dysplasia on a 
patient level. The data was randomly split into training, validation, and test datasets in a 
ratio of 0.70/0.15/0.15, respectively. For the patient-level classifiers, we performed a leave-
one-patient-out cross validation (LOPOCV) by excluding the data of one patient from the 
training/validation sets and splitting the training dataset and validation dataset in a ratio of 
0.90/0.10 and repeat the process for all the patients. The model was computed using 
Pytorch 1.2.0 on Python 3.7, on a GPU-clusters of 10 GPUs (NVIDIA GeForce RTX 2080 Ti). 
The implementation of the machine learning models can be found at: 
https://github.com/precision-medicine-um/ML-and-MS-in-esophageal-cancer.git. 
 

22..77..  TTiissssuuee  ttyyppee  pprreeddiiccttiioonn  
The signals of each MS-tile were rescaled by multiplying all values by a factor 105 for a 
better compliance in the software. Then, the features were mapped with a Gaussian 
distribution per patient with Box-Cox transformation in order to obtain a similar range of 
signal intensities in all datasets and to remove possible patient/acquisition biases. After pre-
processing, the parameters of three models were optimized on the training dataset with 
three independent grid searches: The impurity measure, the number of estimators, and the 
maximum depth for random forest (RF), the weight decay, the batch size, the hidden layer 
sizes, the maximum iteration, and the optimizer for multi-layer perceptron (MLP), and the 
learning rate, the number of estimators, the maximum depth, the minimum child weight, 
and subsample for XGBoost. The rest of the parameters were the default parameters from 
the python library scikit- learn 0.24.2. The three models were then merged with an 
ensemble modelling method, a voting classifier, which used argmax function to obtain a 
final probability class prediction. The pipeline can be found as flowchart in Supplementary 
Figure 3. 
As the H&E and MSI datasets were co-registered, we could use the equivalent split of H&E 
data to form the training dataset and validation dataset and all the tiles were resized to 
224x224 pixels to match the required input size of the DL model. A data augmentation step 
using the library albumentations within Python was applied to the training dataset where 
transformations were applied on the images with a probability of 0.5 for each 
augmentation: rotation by 90◦, transposition, flipping around the horizontal/vertical or both 
axes, random intensity filtering, and random affine transformations. All the tiles were 
normalized on the three channels individually (red, green, and blue). We used a 
Convolutional Block Attention Module (CBAM) (10) with Resnet50 as the backbone (11) as 
proposed by the work of Tomita et al. (12) with minor modifications. The CBAM was added 
between two convolutional blocks, aggregating max pooling and average pooling into a 
channel attention module and a spatial attention module to focus on representation. The 
parameters chosen were binary cross-entropy and Adam optimizer with a learning rate of 
4x10—4. The model was trained on 

60

Chapter 3



batches of 600 tiles. The training stopped once the loss on the validation dataset stopped 
decreasing after one epoch. Then, the model was evaluated on the test dataset using test 
time augmentation. Ten different augmentation functions were used on the test dataset, 
such as a 90◦ rotation, transposition, horizontal and vertical flip. The model gave a 
probability per class for each transformation following which the tissue type predictions 
were averaged, and the class predicted with the highest probability was chosen. The 
workflows for the MSI and H&E data are presented in Figure 2. 
 

22..88..  GGrraaddee  ooff  ddyyssppllaassiiaa  pprreeddiiccttiioonn  
The workflow for grade prediction on a tile-level follows the same workflow as described 
for tissue type prediction (see in Figure 2) for MSI and H&E with the difference that the 
analysis focuses only on tiles from the epithelial regions since BE grading is based on 
morphological changes in the epithelial structures (13). As the dataset was highly 
unbalanced, undersampling was performed in the proportion of the high-grade tiles (lowest 
number of tiles), choosing randomly the tiles among the 3 classes to not overfit during the 
training phase. 
 

22..99..  MMuullttii--mmooddaall  ccllaassssiiffiieerr  
For the two different tasks, the same approach was pursued to establish a multi-modal 
classifier: we extracted the last layer of features from the trained DL model (2048 features) 
and combined them to the mass spectrometry features. Then we used grid-search in 
combination with a MLP to obtain an optimized classifier. 
 

 
Figure 2. Workflow for the prediction of tissue type (using all tiles) and grading (using tiles 
belonging to epithelial tissue only) on a tile-level using the MSI data (top row) and H&E data 
(bottom row). Abbreviations used: CBAM, Convolutional Block Attention Module; H&E, 
hematoxylin and eosin-stained tissue scans; MSI, mass spectrometry imaging. 
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Figure 3. Workflow for the prediction of low-grade dysplasia progression on a patient-level 
which is used for both the MSI as well as the H&E data. Abbreviations used: MSI, mass 
spectrometry imaging; H&E, hematoxylin and eosin-stained tissue scans. 
 
 

22..1100..  IIddeennttiiffyy  llooww  ggrraaddee  ddyyssppllaassiiaa  pprrooggrreessssiioonn  
To predict the progression of BE dysplasia, only the tiles belonging to epithelial tissue from 
25 patients annotated with LGD regions were considered. We used a LOPOCV where, at 
each iteration, a new model was trained on 90% of the remaining data. We used 10% for 
the validation dataset to make sure that the classifiers didn’t overfit on the training dataset. 
The signals of each tile in the MSI dataset were mapped with a Gaussian distribution per 
patient with the Box-Cox method and all the m/z features were used. The classifier used 
was the same MLP classifier with the same hyperparameters computed during the training 
of grade classification. 
To build a classifier using the H&E data, a CBAM architecture was used with ResNet50 as 
the backbone, trained on 2 epochs, re-trained, and validated using LOPOCV as described 
above. The workflow is presented in Figure 3. In both MSI and H&E, a patient was classified 
as progressive or stable according to the majority vote of the predicted tiles. 
 

22..1111..  EEvvaalluuaattiioonn  ooff  tthhee  ggeenneerraatteedd  mmooddeellss  
We reported the confusion matrices, the precision, the recall, the f1- score, and the number 
of samples per category for both validation and test datasets as calculated with the libraries 
sklearn and matplotlib within Python 3.7. For the classification of the tiles, the receiving 
operating characteristic (ROC) and the area under the ROC curves (AUC) were calculated. 
The confidence intervals of the AUC at 95% were computed with the DeLong algorithm, 
using the pROC library in R 3.6.3. The significance of every feature was calculated with the 
feature_importances function of sklearn based on the mean Gini decrease. The dice 
coefficient per tile was calculated for the test dataset to evaluate the grading performance: 
when the grade was correctly predicted, the dice was calculated with the delineations made 
by the pathologist and the full shape of the tile. In any other case, the dice coefficient was 
considered zero. 
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33..  RReessuullttss  
Processing of the MSI data led to the detection of 321 on-tissue peptide signals, which were 
all used for training the models. Matching the MSI pixel size of 50 50 μm to the tile size in 
the histological images (96x96 pixels) made up a total of 144,823 tiles for the whole dataset. 
Table 1 inventories all the extracted tiles from all the images with the corresponding 
annotated tissue type and grade. 
The epithelial tissue and stroma tiles dataset were equally balanced. However, the grades 
were highly unbalanced with the NDBE at 73%, LGD class 16%, and HGD class 11% of the 
epithelial dataset. These results were expected since NDBE and stroma classes can be found 
in all the samples, but dysplastic regions can only be found in specific areas. 
 

33..11..  TTiissssuuee  ttyyppee  ccllaassssiiffiiccaattiioonn  
The first task of our study was to use all 144,823 annotated pixels and classify the tiles as 
either epithelial or stroma regions. 
For this, three models were trained on the MSI dataset and optimized with a grid search: 
the best parameters for MLP were a weight decay of 10—5, with a batch size of 32, hidden 
layer sizes of (20, 10), maximum iteration of 1100, using Adam as optimizer. The best 
parameters for RF were the entropy as criterion with a maximum depth of 16, number of 
estimators at 200. For XGBoost we found that a learning rate of 0.1, number of estimators 
at 140, maximum depth of 9, a minimum child weight of 1 with a subsample at 0.8 worked 
best. Then the results were combined using a voting classifier with argmax function. This 
model gave an AUC of 0.89 (95% confidence interval (CI): 0.89–0.90) on the test dataset. 
The list of features importance computed on random forest, xgboost and their average is 
provided in supplementary material (Supplementary Table 3). The model using H&E data as 
an input was trained for 2 epochs. The model achieved an AUC of 0.95 (95% CI: 0.94–0.95) 
on the test dataset. 
The performances of both models were assessed with normalized confusion matrices on 
both validation (Supplementary Figure 4) and test dataset (see Figure 4 a), and with the 
display of ROC curves (both Supplementary Figure 5). The classification reports (Table 2) 
show the balance of precision and recall in both models. 
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Figure 4. Normalized confusion matrices of the test datasets for a prediction of the tissue 
type (a) and grade (b) using the mass spectrometry imaging (MSI) data (left) and the H&E 
data (right). Abbreviations used: MSI, mass spectrometry imaging; H&E, hematoxylin and 
eosin-stained tissue scans. 
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Figure 5. Example of tile-based classification of the grade of a BE tissue: (a) ground truth 
label per tile of the full slide, (b) H&E of the full slide, and (c) prediction of tile labels on the 
full slide based on the classification made with MSI data Magnifications are shown in the 
lower row. Abbreviations used: H&E, hematoxylin and eosin-stained tissue scans; MSI, mass 
spectrometry imaging. 
 

33..22..  TTiillee--bbaasseedd  ddyyssppllaassttiicc  ggrraaddee  pprreeddiiccttiioonn  
The second aim consisted in determining the grade of the tiles belonging to the epithelial 
regions (n=16,920). Also, here 321 MSI features were used to train the model for grade 
prediction. The optimal weight decay was 10—6 with a batch size of 32, hidden layer sizes 
of (20,20), a maximum iteration of 1100, and Adam as optimizer for the MLP model. The 
best parameters found for RF were entropy as criterion, a maximum depth of 16, number 
of estimators at 200 and for XGBoost we found that a learning rate at 0.1, a number of 
estimators at 140, a maximum depth at 9, a minimum child weight at 5, and using a 
subsample at 0.8 worked best. The results were combined using a voting classifier with 
argmax function. 
The model performance as per micro-average AUC was 0.97 (95% CI: 0.96–0.97) on the test 
dataset. The comparison of performance on both the test and validation datasets allows us 
to observe that the model does not overfit. Because the test dataset was unbalanced but 
the training dataset was balanced, we can observe that the f1-scores are not consistent, 
achieving a worse performance on the low-grade tiles and the high- grade tiles (Table 2). 
The ROC curves of the micro-average and the macro-average ROC curves were also 
computed to give a better understanding of the overall prediction performance 
(Supplementary Figure 6). The list of features importance computed on random forest, 
xgboost and their average is provided in Supplementary Table 3. 
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For the H&E-based classifier, the weights from the 17th epoch gave the best average 
accuracy on the validation dataset and were selected to evaluate the model. The micro-
average AUC was 0.85 (95% CI: 0.85–0.86) on the test dataset. The results are visualized by 
confusion matrices of both the test (Figure 4 b) and validation dataset (Supplementary 
Figure 4b). The ROC curves of the different grade predictions are provided in Supplementary 
Figure 6. The average dice coefficients calculated on the test dataset are given in 
Supplementary Table 4. An example of a tile-wise full slide prediction for a patient 
diagnosed with LGD using the H&E classifier is given in Figure 5. 
 

33..33..  MMuullttii--mmooddaall  pprreeddiiccttiioonn  
We trained an MLP model by combining the features extracted from the DL model trained 
to distinguish the epithelial tissue from stroma with the MSI features. The model was 
trained with an L2-regularization coefficient of 0.1, a batch size of 32, hidden layer sizes of 
(10,10), a maximum of 1100 iterations and Adam as optimizer. Using this configuration, we 
obtained an AUC of 0.95 (95% CI: 0.95–0.95) on the test dataset. We repeated the same 
logic for the grade prediction and we obtained an optimal MLP with the following 
parameters: The optimal weight decay was 10—6, with a batch size of 64, hidden layer sizes 
of (10, 10), maximum 1100 iterations, and Adam optimizer. The micro-average gave an AUC 
of 0.96 (95% CI: 0.96–0.96) on the test dataset. The corresponding confusion matrices are 
provided in Supplementary Figure 7. 
 

33..44..  PPrreeddiiccttiioonn  ooff  ddiisseeaassee  pprrooggrreessssiioonn  
Finally, models were trained for both modalities with the aim of forecasting the progression 
of low-grade dysplasia to a higher grade. The predictions of the models were thereby 
assumed to make statements on progression on a patient-level. The accuracies of the MSI-
model and H&E-model were 0.72 (95% CI: 0.54–0.90) and 0.48 (95% CI:0.28–0.68), 
respectively (Supplementary Figure 8). 

44..  DDiissccuussssiioonn  
As a use-case, we chose the task of classifying the grade of dysplasia in BE and identify LGD 
lesions at high risk of progression. While deep learning has recently been used to detect 
neoplasia in BE using endoscopy (14), the application to histopathology is novel and ML-
based classification of dysplasia grade or risk of progression has not been done with the 
combination of the two modalities as far as we know. When automatically classifying the 
tissue into epithelial and stromal structures, we could observe that the results are 
comparable between the validation (Supplementary Table 5) and the test datasets (Table 
2), indicating that the model was not overfitting the validation dataset very strongly for both 
models. Analysing the precision and recall scores, we observe similar results, which indicate 
well-balanced models. The model based on H&E data (AUC: 0.95 (95% CI: 0.94–0.95)) 
obtained a better performance at classifying epithelial tissue versus stroma than the model 
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based on MSI data (AUC: 0.89 (CI: 0.89–0.90)). Given the clear visual differences between 
these tissue types, the superior performance of the H&E data is not surprising. 
When predicting the grade of the dysplasia on a pixel-level, we observed similar prediction 
scores between the validation and the test datasets. The different grading implementation 
exhibited similar predictions with the model based on MSI features but the model based on 
H&E images obtained poor results for the classification of high-grade tiles. This allowed us 
to conclude that the models did not overfit on the validation dataset and the model based 
on MSI did not over-predict one class rather than another, but the model based on the H&E 
images did over-predict low grade tiles. With the classification reports (Supplementary 
Table 5) we observed that the precision/recall was unbalanced on the validation dataset 
and on the test dataset (Table 2). This was caused by unbalanced data. In contrast with the 
previous task, we found that the model based on MSI data (AUC: 0.97 (CI: 0.96–0.97)) 
outperformed the model based on H&E data (AUC: 0.85 (CI: 0.85–0.86)). Moreover, the 
average dice coefficients obtained on the grades (Supplementary Table 4) were lower but 
close to the true positive values obtained on the test dataset; thus confirming the capability 
of our model to reliably identify dysplastic regions. Indications for the potential of MSI data 
in similar scenarios can be found in previous MSI literature, where Elsner et al. (7) were able 
to distinguish metaplasia from carcinoma with an accuracy of 91% using a pattern of 31 
proteins, albeit on a sample-level. 
The use of multi-modal classifiers didn’t improve the results obtained by using the 
modalities separately. H&E is better than MSI to distinguish the tissue type and MSI is better 
at predicting the grade of the tiles. 
Despite endoscopic surveillance of patients with non-dysplastic BE or BE with low-grade 
dysplasia, up to 25% of EACs and HGDs are diagnosed within one year after last screening 
(15). Our study shows the potential of MSI coupled to DL to identify patients that are higher 
at risk to progress to HGD with 72% accuracy. The performance of the model using MSI was 
similar to other studies such as the study of Kate and co-workers who used clinical features 
in combination with p53 immunohistochemistry and histology criteria to obtain an AUC of 
0.77 (16). Our method was independent of clinical features and still obtained similar results. 
Our classifier could be therefore a useful addition to the existing surveillance strategies. 
At the moment, the size of the cohort (57 in total) limits any strong clinical conclusions. A 
larger external validation sample dataset is therefore required to evaluate and confirm the 
predictions made by both approaches. In such a follow-up study, the predictive values of 
already known biomarkers in BE or EAC could be evaluated and compared to the MSI/H&E 
based approach. As mentioned, p53 is a biomarker for progression observed in 75% of the 
patients with multifocal aggregates of positive cells (13). Another indicator for progression 
could be alpha-methyl-CoA racemase, an enzyme with high specificity and low sensitivity 
for the progression of indefinite for dysplasia towards dysplasia (17). 
When comparing the classificatory power of H&E and MSI, an 
explanation of the improved classification capability of the model based on MSI data might 
be the fact that the dataset was annotated based on the H&E staining making it compile 
information from both approaches. Furthermore, the H&E dataset was not exploited to its 
full potential. We restricted the optimal parameter space of the H&E classification models 
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by fixing the size of the patches (96x96 pixels) to the size of the MSI pixel (50 μm lateral 
pixel size), although similar tile sizes are being used in this field at 20x magnification (18). In 
this context, it would be interesting to use multiple magnification levels for the classification 
of the data as done by Han et al. (19). In contrast, we believe that using histomics to extract 
features at a cellular level combined with a ML model which classifies tissues instead of DL 
would help the pathologists to understand better what characteristics of the H&E are 
important for the classification (20). 
Nevertheless, this study reveals the strength of each modality and their complementarity 
to address diagnostic and prognostic challenges in pathology using advanced ML. In our 
study, H&E provided higher accuracies for diagnostic purposes where the information is 
visually located in the histological phenotype. MSI, conversely, seems better suited for 
purposes where clinically relevant molecular alterations are present but still not 
morphologically visible at the microscopic level (21). One can, therefore, envision a cascade-
like application of the presented ML classifiers, where the optimum data and model are 
used for different tasks. In our example, the sequence would start with the H&E-based 
classifier for the detection of epithelial tissue regions. The MSI-based grade classifier would 
be applied to determine the grade of these epithelial structures, followed by the second 
MSI-based classifiers to predict if a patient’s lesion is at risk of progressing. 
In summary, the intention of our work was to investigate the complementarity and 
suitability of histological and molecular images using ML approaches for different clinical 
tasks in BE (tissue annotation, pathological grading, and patient prognosis). We have found 
that MSI can add valuable prognostic information beyond the histological level, whereas 
histology remains strong at the tissue annotation level. Based on these results we conclude 
that both, histological imaging and MSI, can complement each other for different clinical 
questions, which could ultimately help pathologists in diagnosing BE patient biopsies. 
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SSuupppplleemmeennttaarryy  FFiigguurreess  
 

 
Supplementary Figure 1: three randomly selected samples at different zoom-in levels for a 
visual evaluation of the accuracy and for comparison the size of the MSI pixels in the last 
column. 

Supplementary Figure 2: example of superposition of the mass spectrometry data with the 
H&E data and annotation masks using affine geometric transformations for image 
coregistration. Abbreviations used: H&E, hematoxylin and eosin stained tissue scans; MSI, 
mass spectrometry imaging 
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Supplementary Figure 3: Machine learning diagram for tissue type classification based on 
mass spectrometry features.  
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Supplementary Figure 4: Normalized confusion matrices of the validation sets for: a- 
prediction of the tissue type using the mass spectrometry imaging (MSI) data (left) and the 
H&E data (right); b- prediction of the grade using the MSI dataset balanced (left) and H&E 
dataset balanced (right). Abbreviations used: H&E, hematoxylin and eosin stained tissue 
scans; MSI, mass spectrometry imaging. 
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Supplementary Figure 5: ROCs curves for tissue type predictions: test and validation 
datasets predictions based on the MSI data (on the left); test and validation datasets 
predictions based on the H&E data (on the right) 
 
 

 
Supplementary Figure 6: ROCs curves on the test sets for grading predictions: based on the 
MSI data (on the left); based on the H&E data (on the right) 
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Supplementary Figure 7: Results obtained with the combined features: a- Results for the 
classification between stroma and epithelial tissue. On the left, normalized confusion matrix 
obtained on the test dataset, on the right the comparison between the ROC curves based 
on the validation and the test dataset; b- Results for the prediction of the grade. On the left, 
normalized confusion matrix obtained on the test dataset, on the right the comparison 
between the ROC curves 
 

 
Supplementary Figure 8: Confusion matrix for the prediction of progression in LGD patients 
based on: a- the MSI data; b- the H&E data. Abbreviations used: H&E, hematoxylin and 
eosin-stained tissue scans; LG, low grade; MSI, mass spectrometry imaging 
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SSuupppplleemmeennttaarryy  TTaabblleess  
 
Supplementary Table 1: Common peaks between on- and off-tissue regions 
 

Tissue [m/z] Control [m/z] Tentative identity 

825,11 825,1 CHCA matrix cluster 
842,52 842,51 Trypsin autolysis product (VATVSLPR) + H 
845,11 845,09 CHCA matrix cluster 
861,08 861,07 CHCA matrix cluster 
864,51 864,49 

Trypsin autolysis product (VATVSLPR) + Na 
870,49 870,51 
880,46 880,47 

Trypsin autolysis product (VATVSLPR) + K 
1011,54 1011,65 
1045,58 1045,56 

Trypsin autolysis product (LSSPATLNSR) + H 
1049,54 1049,57 
1067,56 1067,54 

Trypsin autolysis product (LSSPATLNSR) + Na 
2713,61 2713,48 
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Supplementary Table 2: MSI Peak list 
Tissue m/z 

800,42
-

862,46 

866,47
2-

921,50 

922,50
-

965,53 

966,54-
1012,5

1 

1014,54
-

1088,55 

1090,56
-

1155,58 

1158,58
3-

1337,70 

1339,68
2-

1867,93 

1869,92
3-

2982,91 
800,42 866,47 922,50 966,54 1014,54 1090,56 1158,58 1339,68 1869,92 
801,43 867,46 923,49 967,54 1015,54 1092,55 1160,57 1340,65 2084,03 
805,42 868,46 924,45 969,51 1018,50 1093,59 1171,59 1342,67 2104,16 
806,42 871,48 926,49 971,57 1020,51 1094,60 1173,56 1347,64 2115,21 
807,41 872,45 927,50 972,53 1021,53 1095,59 1176,58 1356,66 2126,17 
808,44 874,44 928,48 974,51 1022,53 1098,57 1177,59 1359,69 2137,19 
809,43 876,45 929,52 975,51 1024,52 1099,56 1184,57 1364,66 2159,20 
810,44 878,48 930,48 976,48 1027,57 1101,56 1196,61 1366,66 2181,19 
814,46 879,48 931,49 977,51 1028,60 1105,58 1198,72 1381,70 2208,13 
815,44 882,48 933,47 978,52 1030,54 1107,58 1214,62 1459,72 2216,16 
816,45 883,48 934,48 979,55 1032,56 1109,57 1217,63 1465,71 2219,11 
817,42 884,47 936,50 980,55 1034,53 1110,56 1220,70 1481,72 2303,23 
819,43 886,46 937,51 981,53 1035,54 1111,60 1229,58 1487,71 2305,25 
822,44 888,46 938,49 982,51 1036,55 1113,59 1234,68 1508,73 2318,23 
823,45 889,47 939,49 983,52 1039,55 1115,58 1235,64 1510,74 2321,25 
825,41 890,45 940,51 984,51 1040,53 1116,58 1237,63 1530,73 2338,23 
828,44 892,47 942,50 985,57 1042,55 1117,57 1239,62 1542,78 2461,34 
829,43 894,47 943,54 986,55 1044,54 1119,58 1242,69 1546,80 2568,49 
830,45 896,42 944,55 987,53 1048,53 1120,57 1249,67 1552,73 2690,59 
831,45 898,50 945,53 988,53 1050,57 1125,59 1251,60 1562,81 2695,61 
834,44 900,51 947,49 990,50 1052,54 1126,59 1257,63 1564,80 2705,59 
836,45 901,51 948,49 993,56 1054,56 1127,57 1267,68 1568,79 2727,61 
837,45 902,48 949,49 994,51 1059,56 1129,59 1269,69 1580,79 2750,66 
839,40 903,48 950,48 995,51 1062,55 1131,57 1271,67 1584,81 2958,98 
840,44 904,48 952,49 996,52 1065,55 1133,59 1275,64 1585,80 2982,91 
844,49 905,47 953,50 997,52 1066,53 1135,59 1279,62 1607,80  

845,45 906,46 954,48 998,50 1069,58 1136,59 1280,62 1612,82  

846,45 908,46 955,51 999,53 1070,57 1137,58 1289,67 1629,79  

850,46 909,47 956,51 1000,5
2 1072,57 1138,57 1297,63 1653,81  

851,45 911,48 957,57 1001,5
3 1074,55 1139,56 1302,65 1655,82  

852,44 912,45 958,57 1002,5
0 1076,58 1141,58 1303,63 1677,82  
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854,45 914,48 960,50 1004,5
1 1077,57 1143,58 1307,62 1706,82  

856,47 915,49 961,49 1006,5
1 1079,56 1147,59 1319,65 1751,86  

857,47 917,47 962,50 1007,5
5 1080,55 1149,56 1320,68 1833,95  

858,45 918,47 963,50 1009,5
4 1081,57 1151,57 1324,64 1850,92  

859,45 920,49 964,50 1010,5
4 1087,57 1154,58 1325,65 1855,94  

862,46 921,50 965,53 1012,5
1 1088,55 1155,58 1337,70 1867,93  

 
 
Supplementary Table 3: Features importance of random forest, xgboost and the average 
score based on MSI data for tissue type classification and grading. 
 
available in addendum 
 
Supplementary Table 4: Average dice coefficients per tile computed on the test dataset 
 

grades MSI H&E 
non-dysplasia 0,8 0,66 

low grade 0,87 0,73 
high grade 0,94 0,45 

Overall average 0,82 0,65 
 
 
Supplementary Table 5: Tile-based classifier performance for predicting tissue type and 
grade on the validation sets. Abbreviations used: H&E, hematoxylin and eosin stained tissue 
scans; MSI, mass spectrometry imaging 
 

Prediction 
of ... 

Data 
type labels precision recall f1-

score 

support 
(number of 

tiles) 

tissue type 

MSI 
data 

Epithelial tissue 0,76 0,82 0,79 11053 
stroma 0,8 0,74 0,76 10671 

H&E 
data 

Epithelial tissue 0,92 0,9 0,91 11053 
stroma 0,9 0,92 0,91 10671 

grade MSI 
data 

non dysplastic 
Barrett's 

Esophagus 
0,97 0,84 0,9 7978 
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low grade 
dysplasia 0,67 0,9 0,77 1744 

high grade 
dysplasia 0,68 0,98 0,8 1124 

H&E 
data 

non dysplastic 
Barrett's 

Esophagus 
0,92 0,7 0,8 7978 

low grade 
dysplasia 0,37 0,75 0,49 1744 

high grade 
dysplasia 0,43 0,48 0,45 1124 
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AAbbssttrraacctt  
Introduction: There is a cumulative risk of 20–40% of developing brain metastases (BM) in 
solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of 
radiation to a volume and is often used for BM treatment. However, SRT can cause adverse 
radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible 
damage to the brain. It is therefore of clinical interest to identify patients at a high risk of 
developing ARE. We hypothesized that models trained with radiomics features, deep 
learning (DL) features, and patient characteristics or their combination can predict ARE risk 
in patients with BM before SRT. 
Methods: Gadolinium-enhanced T1-weighted MRIs and characteristics from patients 
treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a 
validation cohort (N = 237) from a separate institute. From each lesion in the training set, 
radiomics features were extracted and used to train an extreme gradient boosting 
(XGBoost) model. A DL model was trained on the same cohort to make a separate prediction 
and to extract the last layer of features. Different models using XGBoost were built using 
only radiomics features, DL features, and patient characteristics or a combination of them. 
Evaluation was performed using the area under the curve (AUC) of the receiver operating 
characteristic curve on the external dataset. Predictions for individual lesions and per 
patient developing ARE were investigated. 
Results: The best-performing XGBoost model on a lesion level was trained on a combination 
of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a 
combination of radiomics features, DL features, and patient characteristics obtained the 
best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 
and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient. 
Conclusion: Machine learning models built on radiomics features and DL features extracted 
from BM combined with patient characteristics show potential to predict ARE at the patient 
and lesion levels. These models could be used in clinical decision making, informing patients 
on their risk of ARE and allowing physicians to opt for different therapies. 
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11..  IInnttrroodduuccttiioonn  
Brain metastases (BM) are the most common intracranial malignancies, accounting for 
more than 50% of all brain tumours and occurring in 10 to over 40% of patients with solid 
malignancies (1–3). BM occur most often in patients with lung cancer, breast cancer, and 
melanoma, which have a cumulative risk ranging from 20 to 40% of developing BM (4–7). 
BM can be treated locally by surgery or radiotherapy or with systemic anticancer therapy. 
Treatment depends on several factors, such as patient performance status, number and 
volume of metastases, presence of extracranial metastases, symptoms, and presumed 
efficacy of available systemic therapy [“Systemic therapy for brain metastases”, (8, 9). The 
radiotherapy of BM can be either stereotactic radiotherapy (SRT) or whole brain 
radiotherapy (WBRT), with SRT being the guideline-recommended treatment for a limited 
number of BM. As WBRT is associated with neurocognitive deterioration, SRT is increasingly 
used in multiple BM as well (10–12). SRT is delivered either in a single fraction, with 
stereotactic radiosurgery (SRS), or as fractionated stereotactic radiotherapy (FSRT) and 
results in a high dose within the target volume with a steep dose gradient to the surrounding 
healthy tissue (13). 
Even though most of the healthy brain is spared from high doses of radiation, a major 
shortcoming of SRT is a chance of high toxicity in the immediate surrounding tissues, which 
may lead to adverse radiation effects (ARE) such as radiation necrosis (RN), subacute 
edema, structural changes in the white matter, and vascular lesions (14). ARE are a relatively 
late reaction to irradiation of healthy tissues where either reversible or irreversible injury 
has occurred (15). The risk of ARE after SRT and SRS is found to be similar and ranges from 
5 to 10% at patient level (16–19) or approximately 3% at lesion level (15). Known predictors 
of ARE are tumour volume, isodose volume, and previous SRT to the same lesion (15). ARE 
of the tumour area and tumour progression (TP) as two different post-therapeutic events 
require different treatment strategies: while steroids are often indicated for the initial 
treatment of ARE, true progression or relapse requires repeated radiotherapy, surgery, or 
effective intracranial systemic therapy for tumour control. Being able to differentiate 
between ARE and TP is therefore of utmost clinical interest. 
Unfortunately, the (neurological) symptoms of ARE and TP are usually indistinguishable. 
Furthermore, the appearances of ARE and TP are very difficult to discern through qualitative 
radiological imaging, requiring multiple successive magnetic resonance images (MRI), 
specialized MRI sequences such as perfusion-weighted or MR spectroscopy, and trained 
experts to evaluate the findings (19, 20). The clinical workflow is time- and labor-intensive, 
and while it is unfeasible to perform for every lesion, a definitive confirmation of the 
presence of ARE requires tissue acquisition (19). 
SRT requires routine pretreatment MRI for accurate target volume delineation. This imaging 
provides a source of non-invasively acquired information about BM and brain phenotypes 
that could be investigated for their potential to determine before treatment which patient 
has a high risk of developing ARE. The early identification of these patients is an unmet 
clinical need which may help in clinical decision making by informing the patients of the risk 
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of ARE, the early risk stratification of patients that may develop ARE, and the consideration 
of ARE risk mitigating strategies such as deferring radiotherapy for central nervous system-
penetrant systemic therapy. 
Advanced quantitative medical image analysis methods such as radiomics and deep learning 
(DL) extract large amounts of imaging features and associate these with biological and/or 
clinical outcomes using machine learning (ML) techniques (21–26). Thus, radiological 
images from routine imaging procedures could potentially be used to non-invasively 
quantify the lesion phenotype, providing clinically necessary information for patient 
management decisions. Several studies have indicated that MRI radiomics analysis is able 
to differentiate BM from glioblastoma (27, 28) to predict local recurrence (29, 30), to predict 
the origin of metastases (31, 32), and to predict overall survival (33, 34). DL has also shown 
potential in predicting treatment response on brain MRI (35). Moreover, DL and radiomics 
can have a complementary value, potentially establishing a more robust classifier (36). 
We hypothesize that models trained with radiomics features, DL features, and patient 
characteristics or a combination thereof can predict the occurrence of ARE in patients with 
BM, both lesion specific and patient specific. 

22..  MMaatteerriiaallss  aanndd  mmeetthhooddss  
22..11..  PPaattiieenntt  CChhaarraacctteerriissttiiccss  
All data from patients with BM treated with SRT between 1997 and 2017 for which imaging, 
outcome data, and patient data were available were collected retrospectively from the 
University of California—San Francisco (UCSF) medical center’s picture archiving and 
communication system. Available imaging data, outcome data, and patient data of all 
patients with BM treated with SRS/SRT between 2014 and 2019 at the University Hospital 
Zürich (USZ) were collected retrospectively. The data included clinical and biological 
information for both the patient and the lesion. The eligibility criteria included radical 
treatment for metastatic brain cancer using Gamma Knife SRS for the UCSF patients and 
SRS/FSRT for the USZ patients. The inclusion of patients was regardless of the number of 
BM, but pathohistological or imaging-based confirmation of ARE during the follow-up was 
required in addition to pathohistological confirmation of the primary tumour. For the USZ 
cohort, in case of imaging-based suspicion of RN, positron emission tomography imaging 
was additionally used to exclude TP. The effort obtained ethical approval for observational 
research using anonymized linked care data for supporting medical purposes that are in the 
interests of individuals and the wider public. UCSF Institutional Review Board (https://irb. 
ucsf.edu) and Cantonal Ethics Committee Zurich approval with waiver of informed consent 
was obtained. 
The UCSF dataset was divided randomly into sub-cohorts for training (70%) and testing 
(30%) while maintaining the ratios of events to non-events equal in both groups. The USZ 
dataset was used as an independent external validation dataset, i.e., it was entirely unseen 
by the models during the training and testing phases. The binary outcome used in training 
and validation was ARE per lesion, defined as either pathologically or imaging-based 
confirmation of RN occurring at any time after treatment. For both the USCF and USZ 
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patients, ARE was confirmed by histopathology when treated with open surgery. In all other 
cases, ARE was confirmed either at routine re-staging 3 months after radiotherapy for 
asymptomatic patients or at the onset of new symptoms. When patients presented new 
symptoms, imaging was performed usually after awaiting the effects of cortisone 
administration. As the time of BM formation is unknown, the outcome was not defined as 
right-censored. As every lesion is able to independently develop ARE after treatment, every 
lesion was considered to be an independent sample. The probability of ARE occurring for 
any lesion within a patient as an outcome was also investigated, whereby each patient was 
treated as an independent sample instead. 
 

22..22..  MMRR  AAccqquuiissiittiioonn  PPaarraammeetteerrss  aanndd  LLeessiioonn  SSeeggmmeennttaattiioonn  
All images were axial gadolinium-enhanced T1-weighted MRI acquired prior to the 
treatment of BM. All included lesions were three-dimensionally delineated for curative 
Gamma Knife SRS treatment purposes for the UCSF cohort and for curative SRS/ FSRT 
purposes for the USZ cohort according to local protocols by an experienced radiation 
oncologist. Figure 1 shows two T1-weighted gadolinium-enhanced MRI with lesions 
delineated for SRT purposes. 
To perform segmentations of the brain and the ventricles on the entire dataset, an atlas-
based segmentation strategy was chosen. To create the atlas in the MIM software package 
(MIM v. 6.9.4, MIM Software Inc., Cleveland, OH, USA), 50 randomly chosen MRI were 
manually segmented by an expert radiologist. 
 

22..33..  PPrree--PPrroocceessssiinngg  ooff  BBrraaiinn  MMRRII  DDaattaa  
Bias-field correction was performed in the MIM software package using the N4 algorithm, 
which required brain segmentations (37). A bias field is a low-frequency signal distributed 
over an MR image, which is caused by inhomogeneities in the magnetic field of the MRI 
scanner. This causes shifts of intensity value ranges across the image (38). The ventricle 
mask was subtracted from the brain mask to obtain a white- and gray-matter segmentation. 
This segmentation was used to determine and correct the bias field present in the image 
using the N4 algorithm (37) using the MIM software package. 
Following the bias correction, all remaining pre-processing, feature extraction, model 
training, and evaluation were performed in Python (version 3.7). The different Python 
packages used during this study can be found in Supplementary Table S1. Pre-processing of 
MRI is essential for ML purposes, for reducing scanner dependence, and for ensuring 
reproducibility (39–41). As there is, to date, no consensus regarding the best way to pre-
process MRI for our purposes, three different pre-processing workflows were applied and 
compared: “minimalist”, standardization, and “harmonization”. The descriptions of these 
pre-processing workflows can be found in the Supplementary Materials (Section 1 and in 
Figure 2). 
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PPrree--pprroocceessssiinngg  ffoorr  rraaddiioommiiccss  aanndd  ffeeaattuurree  eexxttrraaccttiioonn  
Feature extraction was performed according to the Image Biomarker Standardization 
Initiative (IBSI) guidelines (42–44) on the three different sets of processed MRI scans using 
the BM segmentations. All images were resampled to uniform 1 × 1 × 1- mm3 voxels using 
the “sitkBSpline” interpolator to correct for differences in pixel size and slice spacing. The 
choice for voxel dimensions was made based on majority ruling, as it was found that most 
patients had a pixel spacing of ~1 mm. To achieve isotropic voxels, the choice for resampling 
in the z-direction was also chosen as 1 mm. Pixel intensity values were resampled to a fixed 
number of 64 bins, as the number of gray levels was found to affect the interchangeability 
of MRI radiomics features, and a fixed bin number of 64 has been found recommended in 
previous studies (42–44). 
A total of 106 IBSI features were extracted from each segmentation. The features were 
extracted from the BM segmentations of the pre-processed images and can be divided into 
first-order intensity, histogram statistics, shape, and texture features. A full list and a 
description of the features can be found in the PyRadiomics documentation ([Radiomics 
features— PyRadiomics Documentation, (45)], and a description of the feature groups can 
be found in the Supplementary Materials (Section 2). 

 
Figure 1: T1-weighted gadolinium-enhanced MRIs of the brain. Delineated in red (A) is a 
lesion that developed adverse radiation effects after stereotactic radiotherapy and (B) a 
lesion that did not develop adverse radiation effects after stereotactic radiotherapy. 
 

PPrree--pprroocceessssiinngg  ffoorr  ddeeeepp  lleeaarrnniinngg  
To inform the DL model on the location and extension of the lesions, lesion masks were 
used to highlight the ROI. A Gaussian smoothing filter was applied to the image, gradually 
decreasing the intensity values around the lesion from a factor of 1.0 to 0.2 to still include 
information of the voxels immediately around the lesion masks. 
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Otsu thresholding was performed to create a mask containing the brain and the skull. This 
mask was used to determine the largest three-dimensional bounding box containing the 
brain and the skull to crop the images. Anything outside this mask was defined as the image 
background, for which all pixel values were set at 0. For the “minimalist” and the 
“standardization” datasets, the intensities were resampled in a range between 0 and 255. 
Finally, the scans were rescaled at 256 × 256 × 64 with spline interpolation order 3. As an 
example, the steps of the pre- processing workflow for the “minimalist” normalization are 
illustrated in Figure 3. 
 
 
 
 

 
Figure 2: Pre-processing strategies for the “minimalist”, “standardization”, and 
“harmonization” approaches. 
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Figure 3: Example of pre-processing strategy: deep learning on the “minimalist” approach. 
The different steps of preprocessing were (A) z-score normalization, (B) shift to positive 
values only, (C) pixel attenuations with Gaussian smoothing filtering, (D) cropping around 
the largest bounding box and background set to 0, (E) resizing at 256 × 256, and (F) rescaling 
the pixel value range to 0–255. 
 

22..44..  MMaacchhiinnee  LLeeaarrnniinngg  MMooddeellss  
The mean and SD of each feature over the entire training population were determined. 
These values were used to apply z-score normalization to the features of the training, 
testing, and external validation datasets (46). Next, features with low variance (<0.01) were 
determined and excluded from the dataset. Lastly, the correlation between features was 
determined using absolute pairwise Spearman rank correlation. As highly correlated 
features (>0.85) were assumed to contain overlapping information about the outcome, the 
feature with the highest mean absolute correlation with the rest of the features was 
excluded. Lastly, supervised feature selection was performed through recursive feature 
elimination (RFE). RFE uses a ML algorithm to build a multivariate model and determine 
predictive performance using the currently selected features. It recursively drops and adds 
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features, determining the optimal number of features and the selection of most predictive 
features. 
An extreme gradient boosting (XGBoost) model was used for RFE and ARE prediction. A 
description of the XGBoost architecture and the methodology to determine the optimal 
hyperparameters for the trained models can be found in the supplementary materials 
(Section 3). 
 

22..55..  DDeeeepp  LLeeaarrnniinngg  MMooddeell  
An Xception three-dimensional model was trained and tested on the same datasets as the 
handcrafted radiomics-based model. Xception is the extreme version of an Inception model 
(47), which uses depth-wise separable convolutions. The architecture can be found in 
Supplementary Figure S1. Adam optimization was used (48) with an initial learning rate of 
10-5, which updated the learning rate during training, and used for loss function binary 
cross-entropy. This model produced a score ranging from 0 to 1, indicating the estimated 
probability that a lesion develops ARE. The area under the curve (AUC) of the receiver 
operating characteristic (ROC) was monitored on the test dataset. The ROC displays the 
discriminative performance of a model expressed through the sensitivity and specificity as 
the threshold for binary classification is shifted. The AUC of the ROC is a metric from 0 to 1, 
where 1 means that the model has perfect predictive performance and 0.5 is equivalent to 
guessing. To limit the imbalance of the outcomes to affect the model training, the model 
was only trained on lesions for those patients who had at least a single ARE and tested on 
the scans of the patients who had ARE in the test dataset. To combine DL and radiomics, 
the last fully connected layer consisting of 256 features obtained after training the model 
was extracted. These features were then used to train a ML model similarly to using 
radiomics features and used in models combining radiomics features and patient 
characteristics. 
 

22..66..  CClliinniiccaall  aanndd  TTrreeaattmmeenntt--RReellaatteedd  FFeeaattuurree  MMooddeell  
As the training and testing datasets contained patient characteristics not available in the 
external validation dataset, any feature not overlapping between these datasets was 
dropped. The list of the remaining features was as follows: primary tumour location, 
primary tumour histology, primary tumour controlled, extra-cranial metastases presence, 
patient age, patient sex, SRS to the same location, prior external beam radiotherapy (EBRT), 
prior radiosurgery (RS), neurological symptoms, headaches, seizures, hypertension, 
diabetes, connective tissue disorder, Karnofsky performance score (KPS) status, 
prescription dose, and isodose lines. For XGBoost to be able to handle categorical variables, 
one-hot encoding was performed on two categorical clinical features (primary tumour 
location and primary tumour histology). 
Missing values were imputed using MissForest. MissForest is an imputation algorithm that 
uses RandomForest to train a model on the non-missing data for each feature with missing 
values to predict the missing values. In the first iteration, all values are set to the mean value 
present for each variable (i.e., each column). Then, over multiple iterations, each data 
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column with missing values will be predicted using all the data except for the rows 
containing the missing values in question. This process is repeated over several iterations. 
 

22..77..  MMeettrriiccss  UUsseedd  ffoorr  DDaattaa  AAnnaallyyssiiss  
The patient and tumour characteristics in the UCSF and USZ cohorts were assessed through 
a two-proportion z-test to test for significant differences in categorical variables between 
the cohorts or the unpaired two-sample t-test to test for significant differences in numerical 
variables. For the latter, the assumptions of the data having a normal distribution and 
possessing the same variance in both cohorts were tested through Shapiro–Wilk’s test and 
f-test, respectively. The significance level was set at 5%. 
To determine which method ensured best performance for the radiomics-based and DL 
models, models were trained on the three different pre-processed datasets, and the best 
AUC of the ROC on the testing set was used to determine the best pre- processing methods 
for ML and DL separately. The 95% confidence intervals (CI) displayed on the ROC curves 
were obtained using bootstrapping (n = 2,000). For the radiomics- based model, the results 
were reported on the full train dataset and the entire test dataset. For the DL model, the 
results were reported on the balanced train dataset (which served to train the different DL 
models) and the full test dataset. 
Once the best models were selected, the models were validated on the external dataset. 
The predictive performance of each model was expressed through the ROC curve and its 
AUC on the training, testing, and external data. By determining an optimal threshold value 
using Youden’s J statistic (49) based on the training dataset, a binary classification was 
performed on the external dataset. From this binary classification, the balanced accuracy, 
precision, recall, and F1-score were determined. The confusion matrices were also derived 
from the binary classification. To determine model performance and to compare between 
models, the recall was investigated specifically, which is the proportion of true positives of 
the total number of true cases. As the number of events was relatively low and not missing 
any patients at risk of ARE is crucial, a high recall of the models was desirable. The CI 
obtained for all metrics were obtained using bootstrapping, resampling the results 2,000 
times. Moreover, an analysis of the agreement prediction between the DL model and the 
radiomics-based model was performed. To give a prediction per patient, the maximum 
prediction of ARE among the different lesion predictions of the patient was selected. The 
ground truth to which the prediction was compared with was the ARE status of the patient, 
meaning that the patient had at least one ARE lesion. An overview of the models tested can 
be found in Figure 4. 
We evaluated on the external dataset for which cases the DL model and the best radiomics 
classifier obtained the same predictions and reported the number of cases for which those 
models agreed on the label. The metrics based on the data for which the models agreed 
was also reported. 
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33..  RReessuullttss  
33..11  PPaattiieenntt  CChhaarraacctteerriissttiiccss  
A total of 1,404 patients with 7,974 lesions from UCSF and 237 patients with 646 lesions 
from USZ were included. Table 1 shows an overview of the patient characteristics of the 
UCSF and USZ data. Significant differences between the proportion of male and female 
patients between the datasets (P < 0.01), median age (P = 0.03), KPS status (P < 0.01), and 
the number of lesions per patient at treatment (P < 0.01) were found. Furthermore, the 
proportions of primary tumour (lung, melanoma, and breast) were different between the 
datasets, and the data from USZ did not have kidney, GI, sarcoma, or other types of primary 
locations that were present in the UCSF dataset. For the histology of the primary tumour, 
only the melanoma histology subtype was found to be present in a significantly different 
proportion. 
 

33..22..  RRaaddiioommiiccss--BBaasseedd  MMooddeell  aanndd  DDLL  MMooddeell  RReessuullttss  BBaasseedd  oonn  tthhee  
TThhrreeee  DDiiffffeerreenntt  PPrreepprroocceessssiinngg  MMeetthhooddss  ooff  tthhee  DDaattaasseett  
The best AUC on the test dataset for the radiomics-based models was found using the 
“harmonization” normalization, with an AUC of 0.76 (CI of 0.70–0.81), compared with 0.75 
(CI of 0.70– 0.80) and 0.73 (CI of 0.67–0.79) for the “minimalist” and “standardization” 
methods, respectively. 
The best AUC on the test dataset for the DL models was found using the “standardization” 
normalization, with an AUC of 0.72 (CI of 0.66–0.78), compared with 0.63 (CI of 0.57–0.70) 
and 0.65 (CI of 0.58–0.71) for the “minimalist” and “harmonization” methods, respectively. 
Figure 5 shows the ROC curves of the training and testing datasets for the three different 
pre-processing methods for radiomics-based ML and for DL. 
 

 
Figure 4: General workflow of the model training process: first, the MRI data was pre-
processed using 3 pre-processing methods, the most suitable pre- processed set of images 
was selected according to the radiomics-based model or the DL model performance on the 
internal test dataset, then the models were ensembled or trained separately, and finally the 
performance of each model was computed on the external dataset. 
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Table 1: Patient characteristics of University of California—San Francisco (UCSF) and 
University Hospital Zurich (USZ) datasets. 

Patient/Tumour Characteristic Total UCSF data USZ data P N = 1404 N = 237 

Sex (%) Male 571 (41) 128 (54) <0.01 
Female 833 (59) 109 (46)  

Median Age ± SD 59 (13) 62 (12) 0.03 

KPS (%) 
80-100 1053 (75) 198 (83) <0.01 
40-80 351 (25) 37 (16) <0.01 
10-40 0 (0) 2 (1) - 

Primary tumour location (%) 

Lung 530 (38) 136 (58) <0.01 
Breast 357 (25) 27 (11) <0.01 

Melanoma 272 (19) 74 (31) <0.01 
Kidney 91 (7) 0 (0) - 

Gastrointestinal 57 (4) 0 (0) - 
Gynecologic 27 (2) 0 (0) - 

Sarcoma 20 (1) 0 (0) - 
Other 50 (4) 0 (0) - 

Histology primary tumour (%) 

Adenocarcinoma 802 (57) 124 (52) 0.17 
Melanoma 272 (19) 74 (31) <0.01 

Renal cell carcinoma 88 (6) 0 (0) - 
Small cell carcinoma 44 (3) 0 (0) - 

Squamous cell carcinoma 40 (3) 10 (4) 0.26 
Sarcoma 18 (1) 0 (0) - 

Large cell carcinoma 9 (0.6) 2 (1) 0.72 
Bone carcinoma 8 (0.6) 0 (0) - 

Adeno squamous 
carcinoma 6 (0.4) 0 (0) - 

Broncho alveolar cell 
carcinoma 5 (0.4) 0 (0) - 

Germ cell carcinoma 2 (0.1) 0 (0) - 
Lymphoma 1 (0.1) 0 (0) - 
Other/NOS 109 (8) 27 (11) 0.06 

Primary controlled 974 (70) 149 (63) 0.05 
ECM present 1097 (78) 190 (80) 0.48 

#Lesions per patient at 
treatment Median ± SD 3 (7) 2 (3) <0.01 

Symptoms 

Headaches 437 (31) 31 (13) <0.01 
Hypertension 407 (29) 0 (0) < 0.01 

Seizures 134 (10) 16 (7) 0.17 
Diabetes 98 (7) 13 (6) 0.4 

CTD 21 (2) 2 (1) 0.43 
#Lesions in total 7974 646 - 

#ARE cases (% of total lesions) 217 (2.7) 20 (3.1) 0.61 
#Patients with ARE (% of total patients) 155 (11) 19 (8) 0.16 

Prescription dose ± SD (Gy) 18.5 (1.5) 20 (5.0) - 

Footnote: P value of two-proportion z-test or unpaired two-sample t-test for significant 
differences between datasets was reported for each characteristic if applicable. SD = 
standard deviation; KPS = Karnofsky performance score: 80-100 good performance, 50-70 
medium performance, 10-40 bad performance; ECM = extracranial metastasis; BM = brain 
metastasis; CTD = connective tissue disorder; ARE = adverse radiation effect; Gy = gray. 
 

33..33..  RReessuullttss  ooff  tthhee  CCoommbbiinneedd  BBeesstt--  PPeerrffoorrmmiinngg  MMooddeellss  
We calculated the AUC and CI for each model combination on the external validation 
dataset. The DL model, built on images pre-processed with the “standardization” method, 
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achieved an AUC of 0.64 (CI of 0.50–0.76). The model built on radiomics features, extracted 
from the images pre-processed with the “harmonization” method, achieved an AUC of 0.73 
(CI of 0.63–0.83). The model was built on 20 features selected through RFE. Supplementary 
Figure S2A provides an overview of the selected features and the corresponding importance 
in the XGBoost model. Supplementary Table S2 provides an overview of the 
hyperparameters determined through grid search cross-validation. The model based on the 
combination of the DL features extracted from the last layer and radiomics features 
achieved an AUC of 0.71 (CI of 0.60–0.82). The model was built on 10 features selected 
through RFE. Supplementary Figure S2B provides an overview of the selected features and 
the corresponding importance in the XGBoost model. The model built on radiomics 
features, extracted from images pre-processed with the “harmonization” method, 
combined with patient characteristic features achieved an AUC of 0.70 (CI of 0.57–0.80). 
The model was built on 19 features selected through RFE. Supplementary Figure S2C 
provides an overview of the selected features and the corresponding importance in the 
XGBoost model. Finally, the model built on radiomics features, extracted from images pre- 
processed with the “harmonization” method, combined with DL features, extracted from 
images pre-processed with the “standardization” method, and patient characteristics 
achieved an AUC of 0.69 (CI of 0.56–0.81). The model was built on 20 features selected 
through RFE. Supplementary Figure S2D provides an overview of the selected features and 
the corresponding importance in the XGBoost model. Figure 6 shows the ROC curves with 
CI of the training datasets, testing datasets, and validation datasets for these models. 
The combination of radiomics and DL features achieved the highest combination of 
balanced accuracy and recall of 0.67 (CI of 0.56–0.76) and 0.80 (CI of 0.62–0.96), 
respectively, of the externally validated models for predictions per lesion. For a patient-
level prediction, the DL model achieved an AUC of 0.70 (CI of 0.56–0.80) and that of the 
radiomics model an AUC of 0.72 (CI of 0.60–0.83). A combination of radiomics and DL 
achieved an AUC 0.71 (CI of 0.57–0.83), that of a combination of radiomics and patient 
characteristics an AUC of 0.71 (CI of 0.59–0.81), and that of a combination of radiomics 
features, DL features, and patient characteristics an AUC of 0.72 (CI of 0.58– 0.84). The 
model combining radiomics features, DL features, and patient characteristics achieved the 
highest combination of balanced accuracy and recall of 0.65 (CI of 0.55–0.74) and 0.84 (CI 
of 0.65–1.00), respectively, of the externally validated models for predictions per patient. 
The DL model predictions and the radiomics-based model predictions per lesion agreed for 
32% of the external dataset. For the per-patient classification, the DL model predictions and 
the radiomics combined with clinical feature-based model predictions agreed for 19% of 
the external dataset. Because the number of patients for which the models agreed was low 
(47 patients, 6 with ARE), no CI could be derived. Table 2 provides an overview of the AUC, 
balanced accuracy, precision, recall, and F1 score metrics for all DL and ML models on both 
lesion and patient levels and for the agreed labels on the external validation. The 
corresponding confusion matrices are in Supplementary Figures S3, S4, respectively. 
Supplementary Tables S3, S4 contain the same metrics as that in Table 2 for the training and 
testing datasets, respectively. 
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Figure 5: Comparison of predictive performance through receiver operating characteristic 
curves for (A) radiomics-based machine learning and (B) deep learning models using three 
different pre-processed image datasets. The shaded areas represent the 95% confidence 
intervals of the corresponding receiver operating characteristic curves. 
 

 
Figure 6: Receiver operating characteristic curves of the training, testing, and external 
validation datasets for the different model combinations. The shaded areas represent the 
95% confidence intervals of the corresponding receiver operating characteristic curves. 
 

44..  DDiissccuussssiioonn  
Patients with BM treated with SRT are at risk of developing ARE, such as RN. Early 
identification of these patients can help in clinical decision making. The MRIs required for 
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SRT planning provide an opportunity to identify these patients through quantitative imaging 
methods. In this large-scale study, ML models that can successfully predict ARE were trained 
on T1- weighted MR imaging features from secondary brain tumours treated with SRT. As 
no consensus to harmonize MR images within and between centers exists, multiple 
methods were tested for the DL and ML pipeline, resulting in two optimal pre- processing 
methods (“harmonization” for the ML pipeline and “standardization” for the DL pipeline). A 
ML model trained with radiomics features combined with DL features yielded the highest 
predictive performance, with a combination of ROC AUC, balanced accuracy, and recall of 
0.71, 0.67, and 0.80, respectively. At the patient level, the best-performing ML model was 
clearly a combination of radiomics, clinical (age at treatment, prior RS, and sex), and DL 
features achieving the highest predictive performance (AUC of 0.72), a balanced accuracy 
of 0.65, and recall of 0.84. 
Performing an aggregate prediction (i.e., using only those predictions that agreed on the 
outcome) did not improve predictive performance for the lesion-level prediction (AUC of 
0.67) nor the binary prediction (balanced accuracy of 0.65). However, using this method, 
the highest recall of 0.90 was achieved, making this method very robust in detecting true 
positives. The models pave the way for clinical decision making of patients at risk of ARE 
before treatment. The information on the risk of an individual patient may be used by 
clinicians to inform patients of the risk of ARE when SRT is used as treatment. Furthermore, 
this information may be used to perform an early stratification of those patients at high risk 
or may allow the patient and clinician to pursue alternative therapy, such as systemic 
therapy or alternate radiotherapy approaches (e.g., dose de-intensified SRT or WBRT), if the 
risk of ARE outweighs the possible benefits of SRT (50). 
To our knowledge, this is the first study that performs a pre- treatment prediction of ARE 
using quantitative image analysis. Several studies have investigated the possibility of 
differentiating between tumour recurrence and RN after treatment, which is nominally 
similar in purpose to identify those patients who may have ARE. Zhang et al. (51) used 
radiomics features extracted from four different MR sequences [T1, T1 post-contrast, T2, 
and fluid-attenuated inversion recovery (FLAIR)] at two different time-points during follow-
up to differentiate RN from TP as confirmed pathologically. A model was built on a dataset 
of 87 patients with 97 lesions using 5 delta-radiomics features from T1 and T2 sequences. 
The AUC and binary prediction accuracy of the model were both 0.73. However, this result 
was obtained using leave-one-out cross-validation, as no external validation was used. 
Similarly, Peng et al. created a model on radiomics features extracted from T1 and T2 FLAIR 
on 66 patients with 77 lesions in total (52). The model was compared with a 
neuroradiologist’s performance. No external validation was used, and instead a leave- one-
out cross-validation was performed, which gave an AUC of 0.81. The sensitivity and 
specificity of the neuroradiologist were 0.97 and 0.17, compared with 0.65 and 0.87 for the 
radiomics- based model. In Park etal. (53), the study compared the results obtained after 
training radiomics-based models using different MRI sequences [T1, T2, and apparent 
diffusion coefficient (ADC)]. The models were trained using the data from 86 patients and 
tested on an external dataset of 41 patients. The best AUC was found on the ADC-based 
data with 0.80, while the other sequences had AUCs of around 0.65. These results are 
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similar or higher than the results obtained with our model, though within the range of the 
confidence intervals for the model based on radiomics and DL, and the lack of an external 
dataset on two of the studies makes the validity of these models difficult to determine (52). 
Most other studies have a similar lack of external validation and total number of included 
patients, further making the results difficult to compare with the present study (54). These 
results show that the model presented in this study is able to perform similarly to or even 
outperform models that perform classification (post-treatment) instead of prediction (pre-
treatment) of ARE. 
 
Table 2: Area under the curve (AUC), balanced accuracy, precision, recall, and F1 metrics 
with CI on the external validation on patient and lesion levels. 

Per-lesion classification Per-patient classification 

Approac
hes AUC 

Balan
ced 

accur
acy 

Precis
ion Recall F1 

score 
Approac

hes AUC 

Balan
ced 

accur
acy 

Precis
ion Recall F1 

score 

Best 
deep 

learning 
model 

0.64 
CI 

[0.50,
0.76] 

0.57 
CI 

[0.48,
0.64] 

0.04 
CI 

[0.02,
0.05] 

0.85 
CI 

[0.67,
1.00] 

0.07 
CI 

[0.04,
0.10] 

Best 
deep 

learning 
model 

0.70 
CI 

[0.56,
0.83] 

0.63 
CI 

[0.52,
0.73] 

0.17 
CI 

[0.09,
0.25] 

0.60 
CI 

[0.39,
0.78] 

0.26 
CI 

[0.16,
0.37] 

Best 
radiomic
s model 

0.73 
CI 

[0.63,
0.83] 

0.62 
CI 

[0.51,
0.74] 

0.07 
CI 

[0.03,
0.11] 

0.45 
CI 

[0.23,
0.67] 

0.12 
CI 

[0.05,
0.19] 

Best 
radiomic
s model 

0.72 
CI 

[0.60,
0.83] 

0.59 
CI 

[0.51,
0.69] 

0.40 
CI 

[0.09,
0.75] 

0.21 
CI 

[0.05,
0.43] 

0.28 
CI 

[0.07,
0.48] 

Radiomi
cs and 

DL 

0.71 
CI 

[0.60,
0.82] 

0.67 
CI 

[0.56,
0.76] 

0.05 
CI 

[0.03,
0.08] 

0.80 
CI 

[0.62,
0.96] 

0.10 
CI 

[0.06,
0.14] 

Radiomi
cs and 

DL 

0.71 
CI 

[0.57,
0.83] 

0.66 
CI 

[0.54,
0.77] 

0.14 
CI 

[0.07,
0.22] 

0.63 
CI 

[0.40,
0.84] 

0.23 
CI 

[0.13,
0.34] 

Radiomi
cs and 
patient 

characte
ristics 

0.70 
CI 

[0.57,
0.80] 

0.62 
CI 

[0.51,
0.74] 

0.06 
CI 

[0.03,
0.10] 

0.50 
CI 

[0.28,
0.73] 

0.11 
CI 

[0.05,
0.17] 

Radiomi
cs and 
patient 

characte
ristics 

0.71 
CI 

[0.59,
0.81] 

0.57 
CI 

[0.48,
0.68] 

0.16 
CI 

[0.04,
0.30] 

0.26 
CI 

[0.08,
0.47] 

0.20 
CI 

[0.05,
0.35] 

Radiomi
cs, DL, 

and 
patient 

characte
ristics 

0.69 
CI 

[0.56,
0.81] 

0.64 
CI 

[0.53,
0.74] 

0.05 
CI 

[0.03,
0.08] 

0.70 
CI 

[0.48,
0.89] 

0.09 
CI 

[0.05,
0.14] 

Radiomi
cs, DL, 

and 
patient 

characte
ristics 

0.72 
CI 

[0.58,
0.84] 

0.65 
CI 

[0.55,
0.74] 

0.12 
CI 

[0.07,
0.17] 

0.84 
CI 

[0.65,
1.00] 

0.21 
CI 

[0.13,
0.29] 

Agreed 
labels 

0.67 
CI 

[0.53,
0.81] 

0.65 
CI 

[0.53,
0.73] 

0.07 
CI 

[0.03,
0.12] 

0.90 
CI 

[0.67,
1.00] 

0.13 
CI 

[0.06,
0.21] 

Agreed 
labels NA NA NA NA NA 

 
One of the strengths of the present study is the large number of included patients and 
subsequent lesions, with 7,974 lesions (2.7% ARE) of 1,404 patients in training and testing 
and 646 lesions (3.1% ARE) of 237 patients in the external validation. This provides a large 
volume of data for our models to train on, ensuring that it covers the wide variability found 
between patients. In addition, the inclusion of an external validation is another strength, 
especially seeing the general lack of one in most other studies investigating ARE. This 
ensures that the reported result is not too optimistic and shows that our model can be 
generalizable to populations from a different hospital in a different country and even with 
different treatments from the training and testing sets. While the difference in treatment 
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between the training (exclusively SRS) and external validation (a mix of SRS and FSRT) may 
induce variability due to small differences in treatment planning for these methods, 
literature has shown that these methods carry the same risk of ARE and were therefore 
considered interchangeable (16, 17, 19). 
The large confidence interval on the external validation is partially due to the low number 
of positive findings in this dataset (n = 20). This is because of the large imbalance in 
outcomes for both ARE and tumour failure. One of the major problems that may arise from 
this imbalance is a skewed view of predictive performance. However, this was addressed in 
the present study through multiple measures. The DL model was trained on a balanced 
subset of the data that only included patients that suffered at least 1 ARE. For ML, the 
XGBoost model was trained while scaling the weights of positive and negative classes and 
the respective proportion of the labels. Finally, through analysis of the confusion matrix, 
precision recall curves, and recall metric, we ensured that the performance of the model 
was not entirely driven by labeling the data as the majority class. 
While the models have been successfully validated on a dataset from an external center, 
further validation on multiple centers is required to ensure that the models are 
generalizable. Future research could therefore focus on validating the present model on 
other datasets, potentially with recalibration of the model. At a later stage, a clinical trial to 
test the efficacy of the model is needed to be able to incorporate the model in a clinical 
setting. A model combining radiomics features, DL features, and patient characteristics with 
a high accuracy could help choose other treatment options such as surgery only, systemic 
therapy, or palliative care (55) if the predicted risk of developing ARE is high. The model 
could also predict if the patient would be at a low risk of developing ARE, in which case SRT 
could be preferred over other treatment options. 
In the present study, only one sequence of the MRI scan was used. Previous studies showed 
that a combination of radiomics computed on T1 and T2 sequences performs best to 
differentiate ARE and TP (51, 52), and ADC sequence seems to also show a higher 
performance (53). Investigating more sequences in a future study may therefore improve 
the performance of the imaging-based models. 
Lastly, for ARE (and, to a lesser degree, TP), treatment is one of the primary factors. In this 
study, multiple-dose-treatment- related variables have been included, such as prior 
treatments to the same patients as well as dose variables and the volumes encompassing 
certain dose levels. However, a more thorough “dosiomics” analysis would probably 
improve the prediction of ARE. Liang et al. (56) described a method to extract the spatial 
and texture radiomics features from dose maps (56). They found several radiomics features 
which have a significant predictive value of radiation pneumonitis. Using a similar method 
for ARE in BM may result in improved prediction results. Our predictions could also be 
combined with models automatically classifying tumours and RN on brain MRI, such as in 
Zhang et al. (51), potentially strengthening the results of those studies. 
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55..  CCoonncclluussiioonn  
Radiomics is able to predict lesions at a high risk of ARE, especially when combined with DL 
features. When predicting ARE on a patient level, the highest performance was found using 
a combination of radiomics, DL, clinical, and treatment-related features. These models 
could potentially be used to aid clinical decision making for patients with BM treated with 
either gamma knife or EBRT. 
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SSuupppplleemmeennttaarryy  FFiigguurreess  

 
Supplementary Figure 1: architecture of Xception 3D 
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Supplementary Figure 2: Feature importance lists of the ML models, respectively: (A) 
radiomics, (B) radiomics and deep learning, (C) radiomics and patient characteristics, and 
(D) radiomics, patient characteristics, deep learning 
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Supplementary Figure 3: Normalized confusion matrices on the external validation dataset 
per target for the following approaches: (A) deep learning, (B) radiomics, (C) radiomics and 
deep learning, (D) patient characteristics and radiomics, (E) radiomics, deep learning and 
patient characteristics features, (F) agreed labels. 
 

 
Supplementary Figure 4: Normalized confusion matrices on the external validation dataset 
per patient for the following approaches: (A) DL, (B) radiomics, (C) radiomics and DL, (D) 
patient characteristics and radiomics, (E) radiomics, DL and patient characteristics features. 
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SSuupppplleemmeennttaarryy  TTaabblleess  
Supplementary Table 1. Python packages used and their versions. 

purpose packages versions 

pre-processing 

imutils 0.5.4 
intensity-normalization 2.0.2 

numpy 1.19.2 
opencv 4.1.0.25 

os n/a 
pandas 0.25.0 

pydicom 2.2.2 
scikit-image 0.17.2 
scikit-learn 0.24.2 

scipy 1.5.2 
simpleITK 2.1.1 

deep learning 
keras 2.3.1 

tensorflow-gpu 2.1.0 

feature processing and calculation 
precision-medicine-toolbox 0.0.0 

missingpy 0.2.0 
pyradiomics 3.0.1 

machine learning xgboost 1.5.1 
statistics statsmodels 0.13.0 

visualisation matplotlib 3.3.4 
 
Supplementary Table 2. Overview of hyperparameters optimized through gridsearch cross-
validation. 

parameters/data radiomics 
only 

radiomics + 
patient 

characteristics 

radiomics + 
deep 

learning 

radiomics + patient 
characteristics + 

deep learning 
gamma 0,3 0,3 0,3 0,3 

learning rate 0,01 0,1 0,01 0,1 
max depth 3 3 4 1 

min child weight 1 1 1 5 
n estimators 173 10 173 227 
number of 

features selected 20 10 20 20 
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Supplementary Table 3. AUC, balanced accuracy, precision, recall, and F1 metrics with CI on 
the training on patient and lesion levels. 

 
 
 
 

Per-lesion classification Per-patient classification 

Appro
aches AUC 

Balan
ced 

accur
acy 

Preci
sion 

Recal
l 

F1 
score 

Appro
aches AUC 

Balan
ced 

accur
acy 

Preci
sion 

Recal
l 

F1 
score 

DL 
0.70 

[0.66,
0.75] 

0.67 
[0.63,
0.71] 

0.06 
[0.05,
0.08] 

0.0.5
6 

[0.48,
0.64] 

0.11 
[0.09,
0.14] 

DL 
0.58 

[0.53,
0.64] 

0.58 
[0.54,
0.62] 

0.11 
[0.09,
0.13] 

0.73 
[0.65,
0.81] 

0.19 
[0.16,
0.23] 

Rad 
0.89 

[0.87,
0.91] 

0.81 
[0.78,
0.84] 

0.09 
[0.08,
0.11] 

0.86 
[0.80,
0.01] 

0.17 
[0.14,
0.19] 

Rad 
0.76 

[0.72,
0.80] 

0.71 
[0.67,
0.76] 

0.22 
[0.18,
0.26] 

0.65 
[0.55,
0.74] 

0.33 
[0.27,
0.38] 

Rad + 
DL 

0.92 
[0.91,
0.93] 

0.85 
[0.83,
0.87] 

0.10 
[0.09,
0.12] 

0.0.9
3 

[0.88,
0.96] 

0.18 
[0.16,
0.21] 

Rad + 
DL 

0.81 
[0.78,
0.84] 

0.75 
[0.71,
0.78] 

0.19 
[0.15,
0.22] 

0.84 
[0.77,
0.91] 

0.31 
[0.26,
0.35] 

Rad + 
Clin 

0.88 
[0.86,
0.90] 

0.81 
[0.78,
0.84] 

0.09 
[0.08,
0.10] 

0.86 
[0.80,
0.91] 

0.16 
[0.14,
0.19] 

Rad + 
Clin 

0.78 
[0.73,
0.82] 

0.70 
[0.66,
0.74] 

0.18 
[0.14,
0.21] 

0.73 
[0.64,
0.81] 

0.0.2
9 

[0.24,
0.33] 

Rad + 
DL + 
Clin 

0.88 
[0.86,
0.90] 

0.82 
[0.79,
0.85] 

0.10 
[0.08,
0.11] 

0.85 
[0.79,
0.90] 

0.17 
[0.15,
0.20] 

Rad + 
DL + 
Clin 

0.77 
[0.73,
0.81] 

0.70 
[0.66,
0.73] 

0.15 
[0.12,
0.18] 

0.88 
[0.82,
0.94] 

0.25 
[0.21,
0.29] 

Agree
d 

labels 

0.88 
[0.85,
0.90] 

0.82 
[0.77,
0.85] 

0.09 
[0.07,
0.11] 

0.81 
[0.73,
0.88] 

0.16 
[0.13,
0.19] 

Agree
d 

labels 

0.74 
[0.69,
0.78] 

0.60 
[0.58,
0.62] 

0.13 
[0.11,
0.16] 

0.97 
[0.93,
1.00] 

0.23 
[0.19,
0.27] 
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Supplementary Table 4. AUC, balanced accuracy, precision, recall, and F1 metrics with CI on 
the internal validation on patient and lesion levels. 
 

SSuupppplleemmeennttaarryy  MMaatteerriiaall::  MMaatteerriiaallss  aanndd  mmeetthhooddss  
11..  PPrree--pprroocceessssiinngg  wwoorrkkffllooww  
Conversion of the data from DICOM to NRRD was done using the “precision-medicine-
toolbox” (1) to extract the three-dimensional images. For the first workflow, termed 
“minimalist”, z-score normalization was applied per scan on the white matter only using the 
“intensity_normalization” package in python 3.7 (2). Z-score normalization refers to the 
process of normalizing an image by subtracting the mean intensity value from each pixel, 
and dividing each pixel by the standard deviation (SD) of the intensity histogram. The second 
pre-processing workflow, termed “standardization”, had two steps: z-score normalization 
as described previously and three-dimensional contrast limited adaptive histogram 
equalization (CLAHE) applied on the brain using the python package 
“intensity_normalization”, after having rescaled the image intensities to 256 bins. CLAHE 
applies histogram equalization in small patches of the images to increase image contrast, 
after which through bilinear interpolation any artificial borders between images are 
removed (3). The third approach, termed “harmonization”, was designed to make the 
intensities comparable across scans for similar regions of the brain. For this the white stripe 

Per-lesion classification Per-patient classification 

Appro
aches AUC 

Balan
ced 

accur
acy 

Preci
sion 

Recal
l 

F1 
score 

Appro
aches AUC 

Balan
ced 

accur
acy 

Preci
sion 

Recal
l 

F1 
score 

DL 
0.72 

[0.66,
0.78] 

0.61 
[0.55,
0.67] 

0.07 
[0.04,
0.09] 

0.37 
[0.26,
0.49] 

0.11 
[0.07,
0.16] 

DL 
0.63 

[0.55,
0.71] 

0.59 
[0.52,
0.66] 

0.12 
[0.09,
0.17] 

0.63 
[0.50,
0.77] 

0.21 
[0.15,
0.27] 

Rad 
0.76 

[0.69,
0.81] 

0.70 
[0.64,
0.76] 

0.07 
[0.05,
0.09] 

0.67 
[0.55,
0.78] 

0.13 
[0.10,
0.16] 

Rad 
0.76 

[0,70,
0.81] 

0.70 
[0.65,
0.76] 

0.07 
[0.05,
0.09] 

0.67 
[0.56,
0.78] 

0.13 
[0.10,
0.16] 

Rad + 
DL 

0.71 
[0.66,
0.76] 

0.64 
[0.58,
0.70] 

0.0.0
6 

[0.04,
0.08] 

0.0.5
3 

[0.41,
0.64] 

0.0.1
1 

[0.08,
0.14] 

Rad + 
DL 

0.55 
[0.47,
0.63] 

0.51 
[0.44,
0.58] 

0.10 
[0.06,
0.14] 

0.84 
[0.77,
0.91] 

0.31 
[0.26,
0.35] 

Rad + 
Clin 

0.77 
[0.71,
0.82] 

0.71 
[0.65,
0.76] 

0.07 
[0.05,
0.09] 

0.69 
[0.58,
0.79] 

0.13 
[0.10,
0.16] 

Rad + 
Clin 

0.64 
[0.55,
0.72] 

0.60 
[0.52,
0.67] 

0.13 
[0.09,
0.18] 

0.55 
[0.41,
0.69] 

022. 
[0.14,
0.28] 

Rad + 
DL + 
Clin 

0.71 
[0.65,
0.76] 

0.63 
[0.57,
0.69] 

0.06 
[0.04,
0.08] 

0.53 
[0.41,
0.64] 

0.10 
[0.07,
0.13] 

Rad + 
DL + 
Clin 

0.59 
[0.51,
0.67] 

0.65 
[0.49,
0.63] 

0.11 
[0.07,
0.15] 

0.65 
[0.51,
0.78] 

0.19 
[0.13,
0.25] 

Agree
d 

labels 

0.81 
[0.73,
0.89] 

0.73 
[0.64,
0.81] 

0.10 
[0.06,
0.15] 

0.55 
[0.38,
0.71] 

0.17 
[0.11,
0.24] 

Agree
d 

labels 

0.71 
[0.62,
0.79] 

0.61 
[0.59,
0.63] 

0.11 
[0.08,
0.15] 

1.00 
[1.00,
1.00] 

0.20 
[0.14,
0.26] 
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normalization which is described in (4), was applied using the python package 
“intensity_normalization”. It has the advantage of harmonizing the images based solely on 
data contained within the MRI, compared to piecewise linear histogram matching, which 
requires additional information about the dataset (5). An overview of the applied pre-
processing methods can be seen in figure 2. 
 

22..  DDeessccrriippttiioonn  ooff  tthhee  rraaddiioommiiccss  ffeeaattuurreess  
First order and histogram statistics describe the total distribution of voxel intensities over 
the MR image. Shape and size features describe the three-dimensional spatial dimensions 
of the tumor. Texture features describe the relative spatial distribution of intensity values 
within the tumor derived from 6 different matrices that are defined over the region of 
interest (ROI): gray-level co-occurrence matrix (GLCM) (6), gray-level run length matrix 
(GLRLM) (7), gray-level size-zone matrix (GLSZM) (8), gray-level distance-zone matrix 
(GLDZM) (9), neighborhood gray-level dependence matrix (NGLDM) (10), and neighborhood 
gray-tone difference matrix (NGTDM) (11). 
 

33..  SSppeecciiffiiccaattiioonnss  ooff  tthhee  XXGGBBoooosstt  mmooddeell  ccllaassssiiffyyiinngg  AARREE  vveerrssuuss  nnoo  
AARREE  
Gradient boosting creates a classification model built on ensemble decision trees. These 
decision trees make simple, weak predictions on an outcome. The XGBoost model sums up 
all the individual decision tree predictions to make a final overall prediction which is a 
measure ranging from 0 to 1 indicating the estimated probability that a lesion develops ARE. 
By additively adding new trees, and calculating what the gain of an added tree is by 
calculating a loss function of the overall model performance, trees are either selected or 
pruned. 
The XGBoost model contains a number of hyperparameters that regulate training. To 
prevent the imbalance in outcome from affecting model training, the ratio of true events to 
controls was used as the weights for positive and negative classes of the model. For feature 
selection, the following default hyperparameter values were used to define an initial list of 
predictive features: the maximum depth of a single decision tree (6), the minimum sum of 
instance weight a node in a decision tree needs to be added (1), the number of decision 
trees to build the final model (100), the gamma or the minimum loss reduction needed to 
add a tree (0), and lastly the learning rate (0.3). To find the optimal values for feature 
selection a grid search with cross-validation (k=10) was performed using these initial 
features. Grid search is a tuning technique which trains different models, based on all the 
possible combinations of hyperparameters to test, to determine an optimal set of 
parameters. It finds this best estimator based on the combination of parameters that 
produces the highest score, optimizing the area under the precision recall-curve (AUCPR). 
A 10-fold cross validation grid search was performed for the following XGBoost parameters 
with corresponding value ranges: the maximum depth of a single decision tree (1-5), the 
minimum sum of instance weight a node in a decision tree needs to be added (1-6), the 
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number of decision trees to build the final model (10-500 in steps of 10), the gamma or the 
minimum loss reduction needed to add a tree (0.3-0.5), and lastly the learning rate (10-1, 
10-2, and 10-3). Default parameters of the XGBoost model further included the learning 
task (logistic regression), the weights of positive and negative classes (set to proportion of 
ARE to non ARE = 0.03), the subsample ratio of columns when constructing each tree (0.7), 
and the evaluation metric (area under the PR curve). A total of 4800 (10 folds for 480 
candidates) folds were fitted for each feature set. The optimized hyperparameters were 
then used to perform feature selection again, resulting in the optimized list of selected 
features. These features were subsequently used to perform another grid search with cross-
validation, resulting in a final optimal XGBoost model. 
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AAbbssttrraacctt  
Treatment of patients with oesophageal and gastric cancer (OeGC) is guided by disease 
stage, patient performance status and preferences. Lymph node (LN) status is one of the 
strongest prognostic factors for OeGC patients. However, survival varies between patients 
with the same disease stage and LN status. We recently showed that LN size from patients 
with OeGC might also have prognostic value, thus making delineations of LNs essential for 
size estimation and the extraction of other imaging biomarkers. 
We hypothesized that a machine learning workflow is able to: (1) find digital H&E stained 
slides containing LNs, (2) create a scoring system providing degrees of certainty for the 
results, and (3) delineate LNs in those images. To train and validate the pipeline, we used 
1695 H&E slides from the OE02 trial. The dataset was divided into training (80%) and 
validation (20%). The model was tested on an external dataset of 826 H&E slides from the 
OE05 trial. U-Net architecture was used to generate prediction maps from which predefined 
features were extracted. These features were subsequently used to train an XGBoost model 
to determine if a region truly contained a LN. With our innovative method, the balanced 
accuracies of the LN detection were 0.93 on the validation dataset (0.83 on the test dataset) 
compared to 0.81 (0.81) on the vali- dation (test) datasets when using the standard method 
of thresholding U-Net predictions to arrive at a binary mask. Our method allowed for the 
creation of an “uncertain” category, and partly limited false-positive predictions on the 
external dataset. The mean Dice score was 0.73 (0.60) per-image and 0.66 (0.48) per-LN for 
the validation (test) datasets. Our pipeline detects images with LNs more accurately than 
conventional methods, and high-throughput delineation of LNs can facilitate future LN 
content analyses of large datasets.
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11..  IInnttrroodduuccttiioonn  
Oeosphageal and gastric cancers (OeGC) were diagnosed more than 1.5 million times 
worldwide in 2020 and represented 13.2% of all cancer deaths (1). The treatment of OeGC 
patients depends on the disease stage, and patient performance status and preferences (2). 
For Western patients diagnosed with locally advanced resectable disease, the standard of 
care is neoadjuvant chemo(radio)therapy followed by surgery for oesophageal cancer and 
perioperative chemotherapy for gastric cancer according to the ESMO guideline (3). 
The overall survival of Western OeGC patients is poor with a 3 year survival rate between 
22.3% and 33.8% for gastric cancer and between 19.2% and 27.0% for oesophageal cancer 
(4). 
Lymph node (LN) status (presence or absence of metastasis in regional LNs) is currently the 
strongest prognostic factors for OeGC patients irrespective of treatment modality, grade of 
primary tumour regression, or regression in LN (5,6). Our recent pilot study of digital 
haematoxylin and eosin (H&E) stained slides containing resection specimens from patients 
with oesophageal cancer from the OE02 trial (7) suggested that not only LN status but also 
the size of LNs might have prognostic value (8). Validation of these pilot study findings is 
needed in at least 1 independent large study assessing thousands of LNs before pathological 
LN size can be considered as a useful biomarker for routine use in OeGC patient 
management. This and possibly other imaging biomarkers could be useful to identify 
patients who will benefit most from (potentially) toxic adjuvant treatment. 
However, manual review of digital H&E-stained slides to identify and delineate all LNs as 
previously performed in the pilot study is not feasible within a reasonable time frame in 
large datasets. Recent phase III trials in OeGC patients typically amount to 20 000 slides and 
10 000 LNs per trial, as on average 30 slides are made per resection specimen and more 
than 15 LNs per patient are obtained. Thus, a toolbox for the automatic identification of 
image files containing LNs and their automatic delineation would be very desirable for a 
large-scale validation of our LN size findings and as a prerequisite for further 
characterisation of the LN architecture by quantitative image analysis. To the best of our 
knowledge, there are currently no fully automated solutions available for such a task. 
We hypothesized that a computational pipeline using a deep learning (DL) model combined 
with imaging features extracted from the generated prediction map can: (1) identify which 
H&E-stained digitised slides from oesophagogastric cancer resection specimens contain LNs 
and (2) automatically delineate the LNs with higher accuracy than current stand-alone DL 
solutions. 
The aim of the study was to develop, validate, and externally test a DL-based workflow to 
enable large-scale high throughput studies in digital H&E-stained LN tissue sections from 
resection specimens of oesophagogastric cancer patients. 
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22..  MMaatteerriiaallss  aanndd  mmeetthhooddss  
22..11..  HHeemmaattooxxyylliinn  &&  EEoossiinn--ssttaaiinneedd  ddiiggiittiisseedd  ttiissssuuee  sseeccttiioonn  ccoolllleeccttiioonn  
H&E-stained slides were collected retrospectively from resection specimens from OeGC 
patients recruited into the phase III randomised con- trolled trial, UK MRC OE02 (7). Those 
samples were collected from 42 European centres. Whole slides were scanned using an 
Aperio XT Scanner. A total of 1695 scanned H&E slides from 493 resection specimens (on 
average 3,4 images per specimen) were manually reviewed and classified as containing one 
or more LNs (N=756 images) or no LN (N=939). All LNs were manually delineated by an 
expert pathologist using the Aperio ImageScope software (ground-truth delineations) and 
delineations were saved in an Aperio ImageScope XML annotation file format. 
The image dataset was randomly split per patient, with 394 patients (∼80%) in the training 
dataset and 99 (∼20%) patients in the validation dataset. For the external dataset, 826 H&E 
slides were extracted from 33 resected specimens (on average 25 images per specimen) 
from the UK MRC OE05 trial (9). The OE05 dataset had 348 images with delineated LNs and 
478 images identified without LNs. The study was approved by the South East Research 
Ethics Committee, London, UK, REC reference: 07/H1102/111. 
 

22..22..  PPrree--pprroocceessssiinngg  ooff  ddiiggiittaall  iimmaaggeess  ffoorr  ddeeeepp  lleeaarrnniinngg  
Common pre-processing strategies for H&E-stained images as described by Li et al (10) were 
applied to the original images in our database to harmonise the dataset and remove noise: 
Python 3.7 was used and all packages/libraries used in this study are listed in supplementary 
material Table 1. As the resolution of slides scanned at 40× magnification can be up to 200 
000×200 000 pixels, scanned images were extracted from the Aperio ScanScope files at a 
maximum size of 2048×2048 pixels, preserving the aspect ratio of the original image. To 
extract the image at a maximum resolution of 2048×2048 pixels, different downsample 
levels were tested until reaching the maximum resolution, at which point the downsampled 
image was extracted. Finally, the extracted images were converted into jpeg image file 
format to facilitate the use of standard python packages for pre-processing. One scanned 
image from the dataset was randomly selected to be the reference image for Macenko’s 
colour normalisation strategy, which consists of colour deconvolution later matched to the 
colour characteristics extracted from the reference image (11). As the DL model required 
square images as input, scanned images with rectangular shapes (i.e., length > than 1.5 
times the width) were split into 2 squares to avoid overstretching or compressing of the 
image. We also applied the Otsu thresholding method (12), a histogram-based filter able to 
generate a binary mask that separates the foreground (tissue) from the background (empty 
space) setting the background values to 255 to maintain a white background. 
Subsequently, the scanned and cropped images were resized to 512x512 pixels by 
downsampling with bicubic interpolation (see Figure 1) to be suitable as input for U-Net. 
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Figure 1: Pre-processing workflow: colour normalisation, resizing, splitting, and removal of 
background. (A) Digitised glass slide with 2 lymph nodes; bottom: randomly chosen 
reference image. (B) Image after colour normalisation per pixel and downsizing to 
2048×2048. (C) Image split into 2 sub-images in cases where the original image was 
rectangular. (D) Removal of background and resizing to 512×512 pixels. 
 
We named “pre-processed images” the resulting images. We also derived binary masks 
from the coordinates of the delineations saved in XML files indicating the pixels belonging 
to LN tissue. The number of samples used during the study before and after pre-
processing can be seen in Table 1. 
 
Table 1: Description of the 3 different datasets: number of patients with scanned H&E slides, 
number of scanned H&E slides, and number of images after pre-processing of the scanned 
H&E slide. 
 

Data type/subset Training dataset 
from OE02 

Validation dataset 
from OE02 

Test dataset 
from OE05 

Number of patients 394 99 33 
Number of images 1 340 355 826 

Number of images after pre-
processing 1 516 481 1 251 

 
 

22..33..  DDeeeepp  lleeaarrnniinngg  mmooddeell  ffoorr  aauuttoommaattiicc  ddeetteeccttiioonn  aanndd  ddeelliinneeaattiioonn  ooff  
llyymmpphh  nnooddeess  
The DL model chosen to detect and delineate LNs was a U-Net (13) using ResNet-50 as 
backbone due to its proven good performance for histopathology whole slide image 
delineation (14). The loss function used was a combination of Dice loss weighted at 0.3 and 
binary cross entropy loss weighted at 0.7, which empirically gave the best Dice score on the 
validation dataset. We used Adam (adaptive moment estimation), an algorithm which 
optimises the model with a learning rate of 10–4 (15). The model was trained using 4 GPUs 
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(NVIDIA GeForce RTX 2080Ti) until overfitting was observed based on the surveillance of 
the mean Dice coefficient in the training and validation datasets calculated after each 
epoch, i.e., when the epoch just before the mean Dice continued increasing for the training 
dataset but stagnated or reduced for the validation dataset. 
 

22..44..  IIddeennttiiffiiccaattiioonn  ooff  tthhee  iimmaaggeess  ccoonnttaaiinniinngg  llyymmpphh  nnooddeess  
The output of the DL model per pre-processed image was a probability map showing the 
predicted likelihood of a particular pixel being part of a LN. In order to convert the per-pixel 
prediction value into a binary classifier for the scanned image, we compared the results of 
2 methods based on the probability maps. The first method was the current standard 
method which uses a simple threshold of the prediction map to obtain a binary mask as 
described by Ronneberger et al. (13), termed “conventional method” in this article. The per-
pixel predictions were threshold at 0.5 probability, where every prediction higher than 0.5 
was considered part of a LN, creating a binary mask. To remove potential artefacts, small 
areas (minimum area set at 5% of the smallest LN area found in the training set) were 
considered as potential outliers and excluded from further analyses. Any scanned image 
containing a region of interest greater than that size was labelled as potentially containing 
LN. 
The second method used a priori knowledge of the LN shape (usually similar to a kidney 
bean) to analyse the predicted LN delineation and select the most likely correctly 
segmented ones. This selection allowed us to obtain a prediction score not just per pixel but 
per LN and quantify the results of our DL model. The following features were extracted from 
the prediction map of each candidate LN: descriptive statistics (geometric and harmonic 
means, standard deviation of prediction values, entropy, skewness, and kurtosis), and shape 
features (pixel count, number of delineations predicted, roundness, roundness 
disproportion, area, perimeter, centroid, orientation, major axis length, minor axis length, 
diameter, extent, solidity, eccentricity, elongation, perimeter/surface ratio). The features 
were normalised using z- score normalisation based on the mean and standard deviation 
derived from the training dataset and the correlation between features were tested using 
the Spearman rank correlation coefficient (16) on the training dataset. To remove 
redundant information, if a correlation coefficient was above 0.85 between 2 features, the 
feature with the highest correlation coefficient across the correlation table was deselected 
from the remaining feature set. The normalisation and the feature selection based on the 
training dataset was later applied to the validation and test datasets. Finally, recursive 
feature elimination with 10 cross-validation (RFECV) using default parameters was 
performed on the features extracted from the training set, optimising the area under the 
curve (AUC) of the receiver operating characteristic (ROC) score for an extreme gradient 
boosting (XGBoost) classifier.  At every iteration of the RFECV model, the least predictive 
feature was removed from the dataset until only 1 remained. We visualised the RFECV curve 
(corresponding to the AUC against the number of features) and selected the number of 
features corresponding to the turning point of the curve, i.e., when no further increase in 
the AUC score was observed.  
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The selected features were used as input for an XGBoost classifier which was trained to give 
a prediction score between 1 and 0 whether a candidate delineation contained a LN or not. 
To fine-tune the parameters of this classifier, a grid-search with 10-fold cross-validation was 
performed on the training dataset. The parameters tested were maximum depth, minimum 
child weight, number of estimators, gamma, and the learning rate. The set parameters were 
the scoring system using the ROC AUC, the objective being binary logistic, and column 
sample by tree at 0.8. To determine whether a particular pre-processed image contained a 
LN or not, each potential LN within the pre-processed image was attributed a prediction 
score and the highest score was chosen to classify the pre-processed image. The workflow 
of both automatic classification strategies per pre-processed image (with LNs/without LNs) 
is shown Figure 2. 

 
Figure 2: The 2 strategies for predicting whether an image contains a lymph node. (A) 
“conventional” method, (B) our prediction score method. 
 
Reusing our prediction score computed per predicted delineations and in an attempt to 
make the model more robust, we empirically created a third “uncertain” category based on 
statistics from the validation dataset, for which the model could not predict with a high 
enough confidence whether the pre-processed image contained a LN or not. To define this 
new category, the lower bound corresponding to the lowest 5% of prediction scores in the 
distribution of pre-processed images with LNs and the upper bound corresponding to the 
highest 5% of scores in the distribution of pre-processed images without LNs in the 
validation dataset were extracted from the distribution of the confidence scores. 
 

22..55..  AAnnaallyyssiiss  ooff  tthhee  mmooddeell’’ss  llyymmpphh  nnooddee  ddeetteeccttiioonn  ppeerrffoorrmmaannccee  
We compared the performance of the 2 methods used for classification of pre-processed 
images on the validation, and external test datasets by comparing the normalised confusion 
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matrices (i.e., the rows are divided by the sum of the rows which then add up to 1). 
Performance metrics calculated on the validation and external datasets were balanced 
accuracy, sensitivity, specificity, and F1-score. 
We reported the feature importance via the Gini index of the trained XGBoost model (17), 
the ROC curves of the candidate delineation classification prediction on the training, 
validation, and external test datasets with their confidence intervals at 95% calculated with 
2000 bootstrapping of the results and the AUCs, along with the calibration curve based on 
the predictions obtained on the validation dataset. We also reported the results using the 
confusion matrices including the uncertain category on the validation and the external test 
datasets composed of the pre-processed images. To evaluate the added value of the 
uncertain category, we compared the false-negative and false-positive results on the 
external dataset with and without the uncertain category using 2 proportion z-test at a 
significance level of 0.05. 
We used the maximum prediction score of a candidate delineation to establish the 
performance of the XGBoost model on the scanned images. 
The scanned image predictions were used to calculate sensitivity and balanced accuracy per 
patient in the validation and external test datasets. We reported the mean sensitivity and 
the mean balanced accuracy per patient together with the violin plots of those metrics with 
a 2-sided Mann-Whitney-Wilcoxon test with Bonferroni correction to assess whether 
distributions of balanced accuracies and specificities were different between the validation 
and external test datasets. 
Analysis of the false-negative results were performed by an expert pathologist. 
Observations were reported on the scanned images of the external test dataset containing 
LNs which remained undetected by the model to identify potential underlying causes or 
trends. The scanned images were considered false negatives when none of the pre-
processed images belonging to those scanned images were falling in the category 
“uncertain” or “contain LN”. 
 

22..66..  AAuuttoo--ddeelliinneeaattiioonn  ooff  tthhee  llyymmpphh  nnooddeess  
PPoosstt--pprroocceessssiinngg  ffoorr  aauuttoo--ddeelliinneeaattiioonn  eexxttrraaccttiioonn  
If the pre-processed images had to be split in 2 during the pre-processing step, the 
delineations were performed on both pre-processed images and on a central image 
corresponding to both halves of the pre-processed images. Pixels with 2 probabilities were 
averaged. Finally, to evaluate the delineation results, we resized the pre-processed images 
to the original scanned image aspect ratio. Once the prediction was obtained from the 
scanned image, the delineations were automatically found as described in Suzuki and Be 
(18). Areas with LN candidates were removed if the area was smaller than the minimum 
area computed previously. Next, the delineations were made convex to roughly resemble 
the natural shape of LNs (19). From the scanned images, we filtered out the background to 
only delineate the tissue and increase the accuracy of the delineation, taking into 
consideration that potential concavity might not have been dealt with when making the 
delineations convex. 
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AAnnaallyyssiiss  ooff  llyymmpphh  nnooddee  ddeelliinneeaattiioonn  ppeerrffoorrmmaannccee    
The performance of the delineation model was reported using the average Dice coefficient 
(20) calculated from the original image, along with the average Dice per LNs from the 
validation and test dataset. Violin plots of the Dice coefficient per size category were 
reported. We calculated 4 size categories based on the distribution of areas of the ground-
truth delineations in the original images in the training dataset, given in μm2: (1) from the 
minimum area to the first quartile (Q1), (2) from Q1 to the median (M), (3) from M to the 
third quartile (Q3), and (4) from Q3 to the largest area. The distribution of the values within 
the violin plots were compared between the size categories using a 2-sided Mann-Whitney-
Wilcoxon test with Bonferroni correction. 

33..  RReessuullttss  
After pre-processing of the datasets, the training dataset contained 1516 pre-processed 
images, the validation dataset 481, and the test dataset 1251 (see Table 1). Our U-Net 
model was trained for 28 epochs until the model began to overfit on the training dataset. 
 

33..11..  EEvvaalluuaattiioonn  ooff  tthhee  llyymmpphh  nnooddee  ddeetteeccttiioonn  ppeerrffoorrmmaannccee    
CCoommppaarriissoonn  bbeettwweeeenn  ccoonnvveennttiioonnaall  tthhrreesshhoolldd  mmeetthhoodd  aanndd  nneewwllyy  ddeevveellooppeedd  
pprreeddiiccttiioonn  ssccoorree  mmeetthhoodd  
Among the pre-processed images of the training dataset, 5% of the smallest LN area was 
equivalent to 167 pixels. The confusion matrices illustrating these results can be found in 
Figure 3 panels A and B. The detection performance was reported Table 2. 
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Figure 3: Comparison of the results obtained on the original images to detect LNs in the 
validation and external test dataset between the “conventional” method and our prediction 
score method. (A) Confusion matrix “conventional” method for the validation dataset, (B) 
confusion matrix “conventional” method for the external test dataset, (C) confusion matrix 
using the prediction score method on the validation dataset, (D) confusion matrix using the 
prediction score method on the external test dataset. 
 
Table 2: Balanced accuracy, specificity, sensitivity and F1-score calculated on the validation 
and external test datasets for comparing the 2 classification methods. Bold indicates best 
performance on the external test dataset 

method dataset balanced 
accuracy specificity sensitivity F1-score 

our method 
validation 0.93 CI 

[0.90,0.95] 
0.90 CI 

[0.87,0.94] 
0.95 CI 

[0.92,0.98] 
0.92 CI 

[0.89,0.94] 

test 0.83 CI 
[0.81,0.86] 

0.89 CI 
[0.86,0.91] 

0.78 CI 
[0.74,0.82] 

0.77 CI 
[0.74,0.81] 

conventional 
method 

validation 0.81 CI 
[0.79,0.84] 

0.63 CI 
[0.57,0.68] 

1.00 CI 
[1.00,1.00] 

0.81 CI 
[0.76,0.84] 

test 0.81 CI 
[0.78,0.83] 

0.70 CI 
[0.67,0.73] 

0.91 CI 
[0.88,0.94] 

0.72 CI 
[0.69,0.75] 

 
The optimal number of features calculated for our newly developed prediction score system 
was 6, namely perimeter surface ratio, standard devi- ation, roundness, harmonic mean, 
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number of contours, and centroid. The accuracy vs number of features curve calculated 
during the recursive feature elimination supporting the choice of number of features can 
be found in supplementary material Figure 1 A. The optimum hyperparameters for XGBoost 
were found to be gamma = 0.8, learning rate = 0.01, maximum depth = 3, number of 
estimators was 1000, and minimum child weight = 5. Feature importance can be found in 
supplementary material Figure 1B. The detection accuracies on the scanned images were 
0.92 on the validation dataset and 0.85 on the test dataset. The confusion matrices 
illustrating these results can be found in Figure 3C and D. 
The AUCs of the training, validation, and test datasets were 0.98, 0.94, and 0.90, 
respectively. The ROC curves obtained on the training, validation, and test datasets are 
illustrated in supplementary material Figure 2 and the calibration curve calculated on the 
validation dataset can be found in supplementary material Figure 3. 
For the interval of uncertainty we found the following values on the validation dataset: The 
lower boundary of the distribution scores for the pre-processed images which contained 
LNs at a 5% cut-off was found to be 0.48; the upper boundary at 95% obtained on the score 
of the pre-processed images which didn’t contain LNs had a prediction score of 0.72. Table 
3 displays the results found on the validation and external test datasets, respectively. 
 
Table 3: Predictions on the validation and external test datasets split into three categories 
according to the level of certainty. The ground truth (image with or without LN) was 
obtained from manual review by a pathologist. 
 

 

Pre-processed 
images predicted 
to contain one or 

more LN n (%) 

Uncertain category 
n (%) 

Pre-processed 
images predicted 

to  contain no LN n 
(%) 

Total 

Dataset Validation dataset 
Images with LN 181 (0.87) 17 (0.08) 11 (0.05) 209 (1) 

Images without LN 14 (0.05) 11 (0.04) 247 (0.90) 272 (1) 
Total 258 (0.53) 28 (0.06) 195 (0.41) 481 (1) 

Dataset External test dataset 
Images with LN 280 (0.69) 32 (0.08) 92 (0.23) 404 (1) 

Images without LN 61 (0.07) 33 (0.04) 753 (0.89) 847 (1) 
Total 341 (0.38) 65 (0.06) 845 (0.56) 1 251 (1) 

 
The uncertain category, i.e., a category which would require manual rechecking of the 
original image by a pathologist, comprised 6% of the validation dataset. The same 
proportion was obtained on the external test dataset using the lower and upper bounds 
calculated on the validation dataset. Comparing the results obtained in the uncertain table 
score to the confusion matrix in Figure 3D, the false-negative rate was similar: 23 % in our 
uncertain table versus 22% in the confusion matrix (P = .73). However, we observed a 
significant decrease in false-positive findings: 7% in our uncertain table versus 11% in the 
confusion matrix (P < .05). 
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AAccccuurraaccyy  aanndd  sseennssiittiivviittyy  ddiissttrriibbuuttiioonnss  
The balanced accuracy and sensitivity distribution for the detection of LN per scanned image 
reported per patient in the validation and external test datasets is illustrated in 
supplementary material Figure 4. The mean sensitivities of the LN detection were 1 and 0.72 
for the validation and test dataset, respectively. The mean balanced-accuracies for the LN 
detection were 0.58 for both the validation and test datasets. 
 

FFaallssee  nneeggaattiivvee  aannaallyyssiiss  oonn  tthhee  tteesstt  ddaattaasseett  
30 (9%) scans out of 348 were classified as “not containing LNs” although they contained a 
LN. Figure 4 summarizes the description of those images. 

 
Figure 4: Analysis of the LNs architecture in the scanned images belonging to the external 
test dataset wrongly categorized without LNs 
 
We observed that some of the LNs ‘undetected’ by the algorithm were (a) very small 
collections of lymphocytes which did not have a capsule  or (b) did not display the usual LN 
microarchitecture with loss of lymphocytes and  massive increase of macrophages 
occupying large part of the node, while others appeared ‘empty’, i.e. devoid of immune 
cells.  
 

33..22..  EEvvaalluuaattiioonn  ooff  tthhee  mmooddeell’’ss  llyymmpphh  nnooddeess  ddeelliinneeaattiioonn  ppeerrffoorrmmaannccee    
The delineation performance was computed on the validation and external test datasets, 
comparing the ground truth delineated by a pathologist with the fully automatic delineation 
in original images containing LNs. The mean Dice score per original image was 0.73 and the 
mean Dice score per LNs was 0.66 for the validation dataset and 0.60 per original image and 
0.48 per LNs for the external test dataset. The parameters used to create different intervals 
computed on the distribution of delineation areas in the train dataset were: Q1= 278 061.5, 
M= 737 090.6, and Q3= 1 707 021.1 (areas in μm2). The violin plots of the Dice scores per 
interval for the validation and external test datasets are displayed in Figure 5. Examples of 
different quality of auto-delineations are displayed in supplementary material Figure 5. 
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Accurate delineation of small LNs (<Q1) seem to be significantly lower than the detection 
of the LNs at another size range, for both the validation and test datasets. However, the 
results are significantly different for the first and last categories (Figure 5). 

 
Figure 5: Violin plot of the dice score per LNs split into 4 intervals defined based on the 
quartiles found on the ground-truth delineations distribution of the training dataset in μm2 
(A) on the validation dataset and (B) the external test dataset. Legend of the annotations 
(P-values): ns = non-significant i.e. 5×10–2 < P-value <= 1; ****= P-value<= 10–4 

44..  DDiissccuussssiioonn  
In the current study, we developed a novel machine learning based pipeline to: (1) find and 
(2) delineate LNs in large collections of digitised H&E-stained slides from 
oesophagogastrectomy specimens and tested the performance on 1 independent dataset, 
while attempting to increase the explainability of the models. For finding the digital images 
containing LNs, we compared the performance of a conventional U-Net with thresholding 
method with our newly developed prediction score approach and observed a lower number 
of false-positives in both the validation and test datasets using our method. Furthermore, 
our approach had a higher accuracy in predicting whether a pre-processed image contains 
LN or not in the external test dataset (0.77 conventional method vs 0.81 our approach). 
Another study to delineate LNs in H&E-stained images for gastric cancer patients using a U-
Net architecture and thresholding reports a Dice score of 0.986 on the validation dataset 
(21). The main difference to our study is that the training dataset of the U-Net model 
consisted exclusively of H&E- stained images containing LNs in every slide, meaning that the 
network would only have to exclude the background and small artefacts to allow LN 
delineation. Moreover, metrics per LN such as sensitivity or Dice score were not reported, 
leading to the performance of this model on small LNs to remain unknown. 
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When inspecting the feature importance within the XGBoost model ranked by the Gini 
coefficient, we observe that roundness and perimeter-to-surface ratio where among the 3 
most important features. This correlates well with semantic knowledge that LNs often have 
an oval shape (19), leading to irregular shapes being filtered out by our model. The 
delineation results obtained on the test dataset were adequate (mean Dice of 0.60 per 
original image, 0.48 for per LNs). When looking at the results divided by LN size in Figure 5, 
the Dice scores for smaller LNs were significantly lower than for larger LNs. This is partially 
due to the penalisation of small structures by the Dice score, but might also be partially due 
to mislabelled data, where artefacts were wrongly attributed a label during pre-processing. 
Further analysis of the small LNs is being conducted. Although we attempted to limit the 
change of appearance of our data by splitting our images in 2 when the length/height 
difference was greater than 1.5, resizing the images into square images compresses the data 
and possibly negatively impacted our feature extractions and thus our results. Another pre-
processing method such as tiling the extracted images instead of resizing them could alter 
the effect of the resizing. 
Individual LNs can vary substantially in their microarchitecture (22) which can impact on the 
successful training of a DL model to identify LNs (23). Delineations of the lymph nodes could 
be impacted by tumour invasion, as this could change their structure and appearance. A 
follow-up study could evaluate the results on the positive and negative lymph nodes and 
show if a significant difference exists between the results in the 2 categories. Furthermore, 
H&E-stained tissue sections can vary in colour even if they originate from the same 
laboratory. Our analysis pipeline therefore included normalisation of the data, making the 
datasets less dependent from differences in staining. It is also possible that our 
normalisation method was not sufficient to prevent a domain shift in the external test 
dataset. Other method such as Fourier-based data augmentation as described in Wang et 
al. (24) could be adopted in a follow-up study to overcome this issue. We have chosen to 
train a U-Net model as this has been shown to be one of the most often-used models for 
automatic delineation in histopathology (14). Further, our attempt to make the results of a 
U-Net model trained on histopathology data more explainable (certainty score, uncertain 
class creation, and most important features extracted from the prediction map) could solve 
2 major roadblocks to clinical implementation: DL models lack explainability (the “black-box 
problem”) and are incapable of assessing whether a new dataset is useable or should be 
rechecked by a pathologist (the “generalisability problem”). Our “uncertain” class could 
help solve this issue although our current results don’t generalise well on the external 
dataset, with almost a quarter of pre-processed images being classified as not containing 
LNs while containing LNs (23%). 
The different results observed between the validation and test datasets could be due to the 
fact that the validation dataset is from the same source as the training dataset while the 
test dataset is from another cohort. 
Looking towards clinical application, our model for the detection and delineation of LNs 
could be integrated into software used for reviewing H&E-stained slides in the diagnostic 
setting and tested prospectively on H&E data from UGI patients. To obtain better 
delineations and detection results, we suggest implementing a continual learning process 
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which would retrain the model with corrected delineations and detections predictions on 
the new dataset such as in Perkonigg et al. (25). A follow-up project will introduce analysis 
of handcrafted features extracted from the H&E-stained images (histomics analysis) to 
complete the work performed here and predict tumour infiltration within LNs. 
In conclusion, we created a pipeline using deep learning for initial detection and 
handcrafted features to reinforce the predictions of a semantic delineation model which 
outperformed the conventional approach. Thanks to our scoring model, we could create an 
uncertain category for which the model is not confident to classify the image into with or 
without LNs that pathologists would have to review. Although good performance was 
obtained on the validation dataset, medium performance was obtained on the test dataset 
for both the classification and delineation tasks, which might be due to high heterogeneity 
in the external test dataset which might not have been there in the training dataset. The 
first part of our workflow could be used in a routine diagnostic setting for H&E-stained 
images of esophageal tissue after further prospective validation, and the second part could 
be useful for further work on measuring LN areas and characterising the structure of LNs, 
potentially useful for personal treatment planning for patients with UGI cancer. 
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SSuupppplleemmeennttaarryy  IInnffoorrmmaattiioonn  
 
Table S1: python packages and their versions  
 

purpose packages versions 

pre-processing 

histomicsTK 1.1.1 
os n/a 

numpy 1.19.2 
pandas 0.24.2 
pillow 8.2.0 
py-wsi 2.1 
opencv 4.1.0 

scikit-image 0.18.1 
scipy 1.5.2 

simpleITK 1.2.0 

deep learning 
keras 2.2.4 

tensorflow-gpu 1.13.1 
feature processing and calculation pyradiomics 3.0.1 

machine learning xgboost 1.4.2 
visualisation matplotlib 3.0.3 

results analysis 
scikit-learn 0.20.3 
statannot 0.2.2 

 

 
 
Figure S1: (A) feature selection with RFECV and (B) feature importance 
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Figure S2: ROC curves of the train, test and external pre-processed datasets for the 
classification of LN candidates with our newly developed prediction score method. The DL 
model overfits slightly on the training dataset when looking at the ROC curves (figure 4) but 
still obtained good classification performance per candidate LNs on the external test dataset 
(AUC=0.90).  

 

Figure S3: calibration curve on the validation dataset 
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Figure S4: Report of the performance of the model to detect LNs with (A) violin plot of the 
sensitivity per patient on the validation dataset and on the external test dataset (B) violin 
plot of the balanced accuracy per patient on the validation dataset and on the external test 
dataset 
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Figure S5: examples of autodelineations separated in three categories: (A) perfect 
delineations (B) delineations requiring small adjustments (C) unacceptable delineations  
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AAbbssttrraacctt  
Background: Handcrafted radiomics (HR) and deep-learning (DL) models individually 
achieve good classification performance (benign/malignant) on contrast-enhanced 
mammography (CEM).  
Purpose: We hypothesize that combining both allows for automated identification, 
delineation, and improved classification of lesions. Such system could potentially aid 
clinicians in their workflow and decision-making by highlighting lesions and making 
diagnostic suggestions.  
Materials and Methods: Imaging and clinical data were retrospectively collected for 1,062 
recall patients who underwent CEM acquired at the Maastricht University Medical Centre+, 
including diagnosis and breast cancer subtype, and 279 cases were acquired at Institute 
Gustave Roussy for external validation. Lesions with a known status (malignant/benign) 
were delineated by an expert radiologist. Pre-processed low-energy and recombined 
images were used to train a DL-model for automatic lesion identification, contouring, and 
classification. HR models were trained to classify lesions identified and contoured both by 
the radiologist and by the DL-model. Identification sensitivity and the area under the curve 
(AUC) for classification were compared between the different approaches at image and 
patient-level and both classification models were combined by averaging the predictions. 
Results: On the external dataset, identification sensitivity of the lesions was 90% (99%) and 
mean Dice was 0.71 (0.80) on the image (patient) level. Using manual contours, the 
combined classification model achieved the highest sensitivity of 83% (95% confidence 
interval (CI) [79,87]%) on the image level, as well as the highest AUC of 0.88 (CI [0.86,0.91]). 
Using DL-generated contours, DL achieved the highest sensitivity of 90% (CI [87,93]%) while 
the highest AUC was reached with the combination model (0.95 (CI [0.94,0.96])).  The two 
classification models agreed on 84% of the DL-generated contours and obtained an AUC of 
0.96 (CI [0.95,0.97]) on this subset. 
Conclusion: DL was able to accurately identify and delineate suspicious lesions and the 
combination and agreement of DL and HR achieved good diagnostic performance on CEM.
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11.. IInnttrroodduuccttiioonn
Full-field digital mammography (FFDM) continues to be the primary breast imaging tool for 
the detection of breast cancer. However, diagnostic accuracy of FFDM is decreased in 
breasts with dense fibroglandular tissue (1), and FFDM specificity to detect cancer is 
moderate (2). Hence, there remains a clinical need to increase FFDM’s diagnostic accuracy, 
either by using supplemental imaging modalities, such as ultrasound or breast MRI, or 
technically advanced mammography such as digital breast tomosynthesis or contrast-
enhanced mammography (CEM).  
CEM has a better diagnostic performance compared to FFDM, both in terms of sensitivity 
and specificity. Although CEM has a high sensitivity to identify breast cancer, specificity 
remains moderate (3). In addition, the currently described diagnostic performance of CEM 
is based on studies using visual assessment of the images by radiologists without aid of 
computerized techniques. 
Studies suggest that diagnostic accuracy of FFDM might be improved with the help of 
machine learning (ML) based image analysis. McKinney et al. (4) showed that in some FFDM 
the expert radiologists were unable to provide a correct diagnosis, whereas the ML model 
did. However, the ML model would sometimes be unable to recognize “obvious” cases, i.e., 
those easily detected by expert radiologists. Many studies are already available using ML on 
FFDM, for example using  handcrafted radiomics (HR) models (5, 6) to classify breast lesions 
(7) and deep learning (DL) to identify and segment lesions (8, 9), but their combination
remains rarely reported. As an example, in computed tomography of the lung the
combination of HR and DL was reported to show improved results for the diagnosis of
idiopathic pulmonary fibrosis (10).
We hypothesized that the combination of HR and DL can match radiologists’ performance
in both identification and classification of suspicious breast lesions. For this purpose, we
aimed to develop a comprehensive ML tool able to fully automatically identify, contour, and
classify breast lesions based on CEM images of recall patients. In our approach, a DL-model
was first trained to identify and segment suspicious lesions within CEM images, and to
classify them into benign or malignant. Furthermore, HR classification models based both
on manually and automatically delineated regions of interest and clinical parameters were
trained, evaluated, and combined with the DL predictions.

22.. MMeetthhooddss
22..11..  PPaattiieenntt  ppooppuullaattiioonn  
In this retrospective study a consecutive series of 1,601 patients who underwent CEM 
mostly for the assessment of breast lesions recalled from screening was assembled at the 
Maastricht University Medical Centre+, and their images and clinical data were collected. 
Other indications could be inconclusive findings on FFDM and/or ultrasound, suspicious 
(palpable) findings during physical examination, and as an alternative to breast MRI in cases 
where patients were unable to undergo MRI. Requirement for informed consent was 
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waived by the institutional review board (METC 2019-0995). Data were collected using the 
Picture Archiving and Communication System (PACS), and anonymized. 539 patients were 
excluded as they were deemed negative by an expert radiologist (i.e., no suspicious lesion 
was found) (Figure 1). 
 
 

 
Figure 1: Flowcharts describing patient inclusion (A) used for training and testing (B) used 
for external validation of the machine learning models 
 
279 patients with both images and clinical data were collected as an external validation 
dataset from Institute Gustave Roussy, for which the institutional review board waived 
informed consent (2022-140). The data from both institutes were never reported in a prior 
publication. 
 

22..22..  IImmaaggiinngg  
The acquisition protocol of CEM was as described before (11, 12). In short, an iodinated 
contrast agent was intravenously administered two minutes before the acquisition of dual-
energy mammography images of both breasts in the standard mediolateral-oblique (MLO) 
and craniocaudal (CC) views as minimum. A typical CEM acquisition results in a low-energy 
(LE) equivalent to FFDM (11) and a recombined image in which areas of contrast 
accumulation can be assessed (12). For analyses, we used LE and recombined images. All 
images included in the study were delineated by a research assistant Y.W. supervised by a 
certified breast radiologist M.L. with 13 years experience in CEM using MIM software v4.1. 
The delineations were made based on the information retrieved from the patient records 
and radiology reports. The final ground truth (diagnosis) of each delineation was assigned 
based on results obtained after reviewing of the pathology reports and/or two years follow-
up. In our study, the term breast lesion is defined as architectural distortions, asymmetries, 
masses, and clusters of suspicious calcifications. 
We reported patients’ characteristics per dataset and their differences: For the numerical 
variables, we used Mann-Whitney U-test for two independent samples. For categorical 

146

Chapter 6



variables, if every category had more than ten samples we used chi-squared test, else we 
used a two proportions z-test. We considered the null hypothesis rejected if the p-values 
were smaller than 0.05. 
 

22..33..  AAuuttoommaattiicc  ddeetteeccttiioonn  aanndd  ddeelliinneeaattiioonn  ooff  ssuussppiicciioouuss  lleessiioonnss  uussiinngg  
MMaasskk  RR--CCNNNN  
Images were first preprocessed to filter out noise or irrelevant details reducing the size of 
the images, and to limit the computational cost (11). Since the pre-processing of CEM 
images for DL is not standardized, we suggested a series of pre-processing steps including 
histogram and intensity normalizations and combination of LE and recombined images into 
one image. We implemented a per-image normalization pipeline, starting by removing 
unwanted information from the image (supplemental Figure 1 A), such as background pixels 
and possible external objects present on the scan, following the recommendations of Perez-
Garcia et al. (13). We applied Otsu’s thresholding on the recombined image to find the 
region of interest of the breast and potential foreign objects (e.g. surgical clips, markers, 
etc.) within the image. We kept the mask of the largest continuous contour found on the 
threshold image, considering it to be the breast, removing possible external objects. The 
recombined and LE images were then cropped to keep only the largest object (i.e. the 
breast) and all background pixels were replaced with a pixel value of zero (supplemental 
Figure 1 B). The region of interest of the suspicious lesion was cropped using similar 
transformations. To obtain a smaller pixel range and avoid information loss during 
rebinning, instead of clipping at a set range of values such as in (12), we used the statistics 
of the pixel distribution in the image. We clipped the values higher than 99th percentile of 
the pixel values within the breast and the values lower than the 1st percentile of the pixel 
values within the breast for both LE and recombined images (supplemental Figure 1 C). We 
then normalized the images with minimum/maximum normalization and resampled the 
images to convert the pixels into 8-bit unsigned integers (supplemental Figure 1 D). The 
images were pre-processed to create 3 versions of the image to be combined into one 
image: We applied Contrast Limited Adaptive Histogram Equalization (CLAHE), a common 
filtering technique for pre-processing medical images (13) on the pre-processed LE and 
recombined images with a clip limit at 2.5, which redistributed the pixels in excess above 
the clip limit to limit the contrast in the image and a tile grid size of 16x16 pixels2 
(supplemental Figure 1 E). We also applied CLAHE with a lower clip limit of 1 to the 
recombined images and a tile grid size of 16x16 pixels2. The three pre-processed images 
were merged to form a three-channel RGB image, using the LE in the red channel, 
recombined images in the green channel, and the second pre-processed recombined 
images in the blue channel.  
The DL-model chosen to identify (i.e. generate a bounding-box around the lesion of 
interest), delineate, and classify lesions as either benign or malignant was Mask R-CNN with 
a resnet101-FPN backbone (14). This model has the advantage to preserve the scale ratio 
of the image and to be independent from the actual size of the lesions as predictions are 
made at different size resolution of the images. The weights pre-trained on the COCO 
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dataset (15) were used for transfer learning. Random transformation of the dataset was 
applied during training, setting minimum shearing at -0.1, maximum shearing at 0.1, 
minimum scaling at 0.9, maximum scaling at 1.1 and a 0.5 chance to flip the image along 
the y axis. The minimum size of the image was set to 533 pixels (minimum width of training 
dataset) and stay within memory constraints, the maximum size was set at 2561 pixels, the 
median value of the height distribution. The batch size was 1. The total loss was composed 
of three losses for the three different tasks: the regression loss for the bounding-boxes 
prediction was smooth L1 with sigma set at 3, classification loss was focal cross-entropy and 
the mask loss was based on binary cross-entropy. The optimizer chosen to train the DL 
model was Adam (16) with a learning rate starting at 10-5. The learning rate was decreased 
with a factor 0.5 if the total loss didn’t decrease for 2 epochs with a minimum learning rate 
at 10-7. The optimal weights were chosen based on the best mean average precision results 
obtained on the test dataset.  
Each suspicious lesion candidate outputted by the DL-model consisted into three 
predictions: a bounding-box containing a segmentation, a predicted label benign/malignant 
and an associated confidence score ranging from 0 to 1. The images were considered 
independent during training (CC and MLO views are both used as independent samples). 
We limited the output of the model to a maximum of five bounding-boxes per image as 
agreed with our expert radiologist, only highlighting potential lesions of interest. The 
bounding-boxes predictions were kept if their confidence score was higher than 0.1. 
The results were reported on the test and external datasets for comparison. The lesion 
which had the highest confidence score in an image was considered the best candidate 
selected by the DL-model and was used to calculate the accuracy of the identification. The 
sensitivity was calculated based on all the bounding-boxes predicted per image or per 
patient. To calculate the sensitivity and accuracy of the identification, if the predicted 
bounding-box had an intersection over union (IoU) with the ground-truth bounding-box of 
more than 0.1, it was considered identified. To calculate the accuracy identification per 
patient, we used the maximum IoUs found across images from the same patient and 
evaluated if it was higher than 0.1, in which case the lesion was considered identified. 
Proportion z-tests (alpha=0.05) were calculated on the accuracies and the sensitivities to 
test for significant differences between the results from the test and external datasets. To 
obtain the performance of the segmentation task, if the manually delineated lesion was 
correctly identified, we reported the Dice coefficient of this lesion, if it was not identified, 
the score reported was 0. To give a performance on a patient-level, we used the highest 
Dice score available across the images corresponding to this patient. Significant differences 
between the Dice distributions were tested using Mann-Whitney U tests. 
Identification sensitivity, accuracy, and mean Dice of the segmentations were reported per 
image and per patient on the test and external datasets. The Dice coefficient was computed 
per contour and reported in a violin plot. 
In a retrospective sub-analysis of the cases where the presence of a lesion was not identified 
by the DL-model (i.e., ‘false-negatives’), we calculated proportion z-tests (alpha=0.05) on 
the false-negative results and reviewed the images with our certified breast radiologist to 
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establish potential causes for these false-negative findings. The python packages used in 
our study are listed in supplemental Table 1. 
 

22..44..  CCllaassssiiffiiccaattiioonn  ooff  lleessiioonnss  
HR features were computed on the manual contours and on the contours generated by our 
DL-model. We extracted these features from the recombined and LE images and combined 
them in the same table. In order to increase HR feature homogeneity and robustness, and 
to decrease sources of noise, grey-levels were discretized into a fixed width of 3 grey-levels. 
660 HR features were extracted from the regions of interest using the package pyRadiomics 
(17) on the recombined images and 660 HR features on the LE images, giving a total of 1320 
features extracted from the CEM images. Features describing first order statistics, 2D shape 
features, and texture were calculated for the unfiltered image and after applying 4 Laplacian 
of Gaussian filters with a kernel width of 0.1, 0.4, 0.7 and 1.0 mm. Feature selection and 
model building was performed on the training set and the final model was validated on the 
testing and external validation datasets. Given the large number of features extracted from 
each image and the relatively small size of the patient cohort, feature selection becomes a 
key step in the HR process. The first step was to apply z-score normalization on all features. 
Next, features were examined for pairwise feature correlations using Spearman’s 
correlation coefficient r. Feature pairs with r ≥ 0.85 were considered highly correlated and 
the feature with the highest average correlation to the remaining features was removed. 
After feature selection, we used recursive feature elimination with stratified 10-fold cross-
validation to select the optimal number of features to use in our model, using an XGBoost 
classifier. To prevent the model to overfit due to imbalance, a higher weight was given to 
the minority class by using the XGBoost parameter scale_pos_weight, which was set to the 
ratio of the majority class over the minority class.  
To train and evaluate the performance of the XGBoost model, the same split in training and 
testing used in the DL-model were used. We also compared the performance of the model 
with and without CF added to the HR based model. For the ground truth contours, the 
classifiers predicted benign versus malignant lesions. For the auto-predicted contours 
generated by our DL-model, the classifiers predicted cancerous lesion versus others (benign 
and false positive). For both datasets, we used grid search with stratified 10-fold cross-
validation, optimizing XGBoost classifiers. The parameters tested were the maximum depth, 
gamma, the number of estimators, and the minimum of samples leaf to optimize the AUC 
score.  
To test if the CF had an adding predictive value, we reused the pipeline described previously 
using this time radiomics and CF for feature selection. The CF included were pregnancies, 
number of children, family history, personal history, age, menopause status, medication, 
and cup size. To deal with missing CF, we used the missForest algorithm (18), an imputation 
method which can handle continuous and categorical data.  
To understand the importance given to the features selected by the different models, 
SHapley Additive exPlanations (SHAP) values were calculated on the training dataset. Those 
values indicates how a certain feature influence the model to predict a positive or a negative 
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outcome: when a SHAP value is negative, the weight is toward a negative prediction. If a 
SHAP value is positive, the weight is toward a positive prediction. A higher absolute value 
of the SHAP values indicates a larger influence on the final prediction. 
To combine the DL and HR models we averaged their classification probabilities to arrive at 
a single classification prediction.  We repeated this process for the DL-model and the model 
based on HR and clinical-features (CF), and reported the results of these four models (two 
“ensembled” models just describes applied on two types of contour, manual and 
automatically generated) on the two available datasets via the receiver operating 
characteristic (ROC) curves. The calibrations curves obtained with the DL and HR methods 
on the test dataset were also joined. The area under the ROC curve (AUC), accuracy, 
sensitivity, specificity, and F1-score were computed on the external dataset at both the 
contour and the patient level. To obtain the results at patient-level, we averaged the 
probability scores given per contour for this patient when we computed the predictions on 
the ground truth contour. On the predicted contour, we reported the performance of the 
model per patient only when the bounding-box with the highest score corresponded to the 
ground truth contour and we attributed the maximum score found across the images to the 
patient to evaluate the classification prediction. 
The thresholds used to obtain binary predictions were selected based on the statistics 
obtained on the training dataset with the Youden index (19). We listed the results obtained 
when the binary predictions of the best performing two models were in agreement and 
reported the percentage of cases for which the models agreed.  The 95% confidence 
intervals (CIs) were computed for all the metrics using bootstrapping, resampling the 
datasets 2000 times and Tukey’s tests were performed between the different metrics to 
assess significant differences for alpha=0.05. The complete workflow is presented Figure 2. 

 
Figure 2: workflow of the detection, delineation, and classification predictions using 
handcrafted radiomics models and deep learning. Abbreviation: IoU = intersection over 
union 

150

Chapter 6



33..  RReessuullttss    
33..11..  PPaattiieenntt  cchhaarraacctteerriissttiiccss  
The 1,062 patients were split randomly into a training dataset and a test dataset with a ratio 
80/20. This split resulted in 850 patients for the training dataset and 212 patients for the 
test dataset. For the external validation, the data of 279 patients were used. The clinical 
characteristics of those patients are described in Table 1. 
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Table 1: Patient characteristics  
Clinical characteristics Training dataset Test dataset External dataset 

number of patients (number of 
lesions) 

850 (850) 212 (212) 279 (319) 

mean age (±SD) 60.3 ±8.2*** 60.2 ±8.1*** 54.7 ±12.2*,** 
Menopause     

pre 96 (0.11) 18 (0.08) 93 (0.33) 
peri 65 (0.08) 14 (0.07) 25 (0.09) 
post 504 (0.59) 136 (0.64) 156 (0.56) 

Not reported 185 (0.21) 44 (0.21) 5 (0.02) 
mean pregnancies 1.9 ±1.3*** 2.0 ±1.2*** 2.2 ±1.7*,** 

mean children (± SD) 1.7 ±1.0*** 1.8 ±1.1*** 1.9 ±1.5 *,** 
Medication     

None 426 (0.50) 93 (0.44) 215 (0.77) 
OCP 226 (0.27) 70 (0.33) 37 (0.13) 
HRT 17 (0.02) 5 (0.02) 17 (0.06) 

Not reported 181 (0.21) 44 (0.21) 10 (0.03) 
Family history positive for breast 

cancer (±SD) 
18 ±39 %*** 18 ±39 %*** 43 ±59 %*,** 

Personal history positive for 
breast cancer (±SD) 

>2% ±14 %*** >1 ±8 %*** 3.5 ±18 %*,** 

Cup size     
A-C 418 (0.49) 104 (0.49) 164 (0.59) 
D-F 241 (0.28) 62 (0.29) 72 (0.26) 
>F 10 (0.01) 3 (0.01) 3 (0.01) 

Not reported 181 (0.21) 43 (0.20) 40 (0.14) 
Disease characteristics per lesion     

NST 227 (0.27) *** 58 (0.27) *** 163 (0.51) *,** 
DCIS  63 (0.07) *** 19 (0.09) *** 9 (0.03) *,** 

Other carcinoma 69 (0.08) *** 10 (0.05) *** 23 (0.07) 
Cyst 310 (0.36) *** 80 (0.38) *** 75 (0.23) *,** 

Fibroadenoma 68 (0.08)  17 (0.08) 29 (0.09) 
Negative 6 (0.01) 1 (>0.01) *** 8 (0.03) ** 

Not reported 107 (0.13) *** 27 (0.13) *** 12 (0.04) *,** 
 
Footnote: proportions are reported in parentheses; SD = standard deviation, OCP=oral 
contraceptive pill, HRT=hormone replacement therapy, NST=no special type, DCIS= ductal 
carcinoma in situ, *= null hypothesis rejected with training dataset (p-value<0.05), **= null 
hypothesis rejected with the test dataset (p-value<0.05), *** = null hypothesis rejected with 
the external dataset (p-value<0.05). 
 
 
 

152

Chapter 6



33..22..  IIddeennttiiffiiccaattiioonn  aanndd  ddeelliinneeaattiioonn  ooff  tthhee  lleessiioonnss  
After pre-processing of the image data, the mask R-CNN model was trained on 1,810 images 
from 850 patients in the training dataset, tested on 454 images from 212 patients, and 
validated on 590 images from 279 patients in the external dataset. 
The DL-model was trained for 30 epochs and the best weights were obtained for epoch 13, 
at which point the model had the lowest total loss on the test dataset. The accuracy, 
sensitivity, and mean Dice are reported in Table 2 for the test and external datasets per 
contour and per patient. 
The distribution of the Dice scores can be seen in supplemental Figure 2. 
 
Table 2: detection and segmentation results of the deep learning model  

datasets 

accuracy 
delineatio

ns per 
contour 

sensitivity 
delineatio

ns per 
contour 

mean dice 
per 

contour 

accuracy 
delineatio

ns per 
patient 

sensitivity 
delineatio

ns per 
patient 

mean dice 
per patient 

test 0.64 
(279/436) 

0.85 
(371/436) 0.65 0.80 

(170/212) 
0.94 

(200/212) 0.75 

external 0.73 
(431/590) 

0.90 
(532/590) 0.71 0.88 

(245/279) 
0.99 

(275/279) 0.80 

p-values < 0.01 (z-
test) 

0.01 (z-
test) 

< 0.01 
(Mann-

Whitney) 

0.02 (z-
test) 

< 0.01 (z-
test) 

< 0.01 
(Mann-

Whitney) 
 
 

33..33..  AAnnaallyyssiiss  ooff  ffaallssee  nneeggaattiivvee    
4/279 lesions were not identified by the DL-based model in the external validation, 12/212 
in the test dataset and 43/850 in the training dataset. The proportion of false-negatives was 
significantly different (p<0.05) in the external dataset compared to the training and test 
datasets. We did not analyze the external validation cases, as privacy legislation did not 
permit us to retrospectively assess in-depth the data of these patients. The results of the 
analysis performed by our expert radiologist M.L. for the training and testing datasets based 
on the radiologist reports are displayed Figure 3.  
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Figure 3: Analysis of the different type of lesions not detected by the DL model made by an 
expert radiologist. Abbreviations: CC: cranio-caudal, CEM: contrast-enhanced 
mammography, MLO: mediolateral oblique 
 
The majority (7/12 in the test dataset, 28/43 in the train dataset) of false negatives were 
calcifications.  Examples of unidentified and identified calcifications using the DL-model are 
displayed Figure 4. 
 

 
Figure 4: Example of a false negative finding (1) and a correct finding (2) by the deep learning 
model of suspicious calcifications. (1) On the low-energy images of the left breast (A, only 
mediolateral oblique view is shown) a cluster of fine linear and branching calcifications were 
observed (see outtake in C). On the recombined images (B), no enhancement was observed. 
The model did not provide any prompts. However, stereotactic vacuum-assisted core 
needle biopsy showed ductal carcinoma in situ.  (2) Example of correctly detected 
calcification cluster. 
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33..44..  CCllaassssiiffiiccaattiioonn  ooff  tthhee  lleessiioonnss  
The optimal parameters found with grid-search for the HR models are available in 
supplemental Table 2 and the feature importance is available in supplemental Figure 3 with 
the summary plot of the SHapley Additive exPlanations values. The ROC curves are available 
in supplemental Figure 4 for the manual contours, and in supplemental Figure 5 for the 
automatic contours. For the predicted classification obtained on the manual contours, we 
observed based on the intersections of the CIs that the models seemed to overfit on the 
training datasets. However, the CIs of the ROC curves obtained with the predictions on the 
test dataset always overlapped with the CIs based on the predictions obtained on the 
training dataset. For the automatically generated contour, a similar phenomenon was 
observed: the DL-model did not overfit on the training dataset, but the HR model did.  
The classification results on the external dataset obtained with the multiple approaches are 
provided in Table 3 (AUC, specificity, and sensitivity) and supplemental Table 3 (accuracy 
and F1-score). In the following text we report only on the best performing models for per-
image and per-patient results for manual and automatically generated contours. For a 
classification per-image for the manual contours, a combination of HR and DL classification 
models yielded the highest AUC (0.88) and sensitivity (83%) and HR the highest specificity 
(80%). For a classification per patient based on the manual contours, the highest AUC (0.88) 
and sensitivity (89%) were found with DL and the highest specificity (83%) was found using 
HR. For the automatically generated contours, HR and DL obtained the highest AUC (0.95) 
and specificity (85%), while DL yielded the highest sensitivity (90%). For the classification 
per patient based on the automatically generated contours, HR yielded the highest 
specificity (74%) while the highest sensitivity was obtained with DL alone (100%), and the 
combination of DL and HR achieved the highest AUC (0.91). The calibration curves are 
shown in supplemental Figure 6.  
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Table 3: AUCs, specificities, and sensitivities on the external dataset with confidence 
intervals for the different model combinations on the manual contours and the 
automatically generated contours.  

On the manual contours 
Per contour Per patient 

approaches AUC specificity sensitivity approaches AUC specificity sensitivity 

radiomics 
0.84 CI 

[0.81,0.88] 
* 

182/227 (80 
%)  CI 

[75,85] * 

242/363 (66 
%)  CI 

[62,71] 
radiomics 

0.83 CI 
[0.77,0.88] 

* 

83/100 (83 
%)  CI 

[75,90] 

113/179 (63 
%)  CI 

[56,70] 

deep 
learning 

0.86 CI 
[0.83,0.89] 

170/227 (74 
%)  CI 

[69,81] 

302/363 (83 
%)  CI 

[79,87] * 

deep 
learning 

0.88 CI 
[0.84,0.93] 

73/100 (73 
%)  CI 

[64,81] 

160/179 (89 
%)  CI 

[85,93] 

radiomics + 
CF 

0.84 CI 
[0.81,0.88] 

* 

173/227 (76 
%)  CI 

[71,82] 

269/363 (74 
%)  CI 

[69,79] 

radiomics + 
CF 

0.83 CI 
[0.77,0.88] 

* 

79/100 (79 
%)  CI 

[71,86] 

119/179 (66 
%)  CI 

[60,73] 
deep 

learning + 
radiomics 

0.88 CI 
[0.86,0.91] 

** 

177/227 (77 
%)  CI 

[72,84] 

302/363 (83 
%)  CI 

[79,87] * 

deep 
learning + 
radiomics 

0.88 CI 
[0.83,0.92] 

** 

77/100 (77 
%)  CI 

[69,85] * 

144/179 (80 
%)  CI 

[74,86] 
deep 

learning + 
radiomics + 

CF 

0.88 CI 
[0.86,0.91] 

** 

179/227 (78 
%)  CI 

[73,84] 

289/363 (79 
%)  CI 

[76,84] 

deep 
learning + 

radiomics + 
CF 

0.88 CI 
[0.83,0.92] 

** 

78/100 (78 
%)  CI 

[70,86] * 

140/179 (78 
%)  CI 

[72,84] 

agreed 
labels 

0.95 CI 
[0.92,0.97] 

128/160 (80 
%)  CI 

[74,86] * 

279/288 (96 
%)  CI 

[95,99] 

agreed 
labels 

0.93 CI 
[0.89,0.96] 

71/91 (78 
%)  CI 

[69,86] 

161/167 (96 
%)  CI 

[93,99] 
On the predicted contours 

Per contour Per patient 
approaches AUC specificity sensitivity approaches AUC specificity sensitivity 

radiomics 0.93 CI 
[0.92,0.94] 

2027/ 2463 
( 82 % )  CI 

[81,84] 

315/353 ( 
89 % )  CI 
[86,92] 

radiomics 0.89 CI 
[0.85,0.94] 

55/74 (74 % 
)  CI [64,84] 

150/  171 ( 
87 % )  CI 
[83,92] 

deep 
learning 

0.93 CI 
[0.92,0.95] 

2043/ 2463 
( 82 % )  CI 

[81,84] 

319/353 ( 
90 % )  CI 
[87,93] 

deep 
learning 

0.87 CI 
[0.82,0.92] 

33/74 (44 % 
)  CI [34,57] 

171/171 
(100 % )  CI 
[100,100] 

deep 
learning + 
radiomics 

0.95 CI 
[0.94,0.96] 

2106/ 2463 
( 85 % )  CI 

[84,87] 

317/353 ( 
89 % )  CI 
[87,93] 

deep 
learning + 
radiomics 

0.91 CI 
[0.86,0.95] 

* 

44/74 (59 % 
)  CI [48,70] 

* 

168/171 (98 
% )  CI 

[96,100] * 

agreed 
labels 

0.96 CI 
[0.95,0.97] 

1828/ 2049 
( 89 % )  CI 

[88,91] 

297/313 ( 
94 % )  CI 
[92,97] 

agreed 
labels 

0.91 CI 
[0.86,0.95] 

* 

44/74 (59 % 
)  CI [48,70] 

* 

168/ 171 ( 
98 % )  CI 
[96,100] * 

 
Footnote: 95% CIs were reported within brackets; AUC = Area under the receiver operating 
characteristics curve; CF: clinical features; CI: confidence interval; * = not significantly 
different 
 
The HR and DL-model predictions based on manual contours agreed for 76% of the lesions 
and AUC, specificity, and sensitivity within that subset were 0.95, 80%, and 94% 
respectively. For the per-patient predictions, the HR and DL-models agreed 92% of the time 
and the AUC, specificity, and sensitivity were 0.93, 78%, and 96% respectively on that 
subset. For the automated contours, the models agreed on 84% of the lesions and for all of 
the patients. The AUC, specificity, and sensitivity were 0.96, 89%, and 94% (0.91, 59%, 98%) 
per lesion (per patient), respectively.  For results achieved through other combinations we 
refer to Table 3. 
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44..  DDiissccuussssiioonn    
In this study, we aimed to build and validate a workflow which would find suspicious lesions 
within CEM images and give a classification score using HR and DL-models.  Additionally, we 
assessed the added value of CF and HR to classify the manual delineation and the auto-
delineations. Our model found 90% of the lesions on the external validation dataset while 
correctly identifying 99% of patients with lesions. For the classification of lesions, and for 
most performance evaluation measures, the combination of HR and DL provided the best 
results on the manual delineations (AUC of 0.88), as well as on the DL-generated contours 
(AUC of 0.95). Hence, we concluded that our identification and classification model 
performed at the level to make it potentially generalizable.  
This is to our knowledge the first study to provide a full workflow for identification, 
segmentation, and classification of suspicious lesions in CEM, and to compare the results 
between HR and DL-models. A similar study was done on FFDM using DL only, reporting a 
sensitivity of 90% and a false positive rate of 30% for identification of malignant lesions (20) 
which is similar to our study. It is important to note that imaging modalities (CEM and FFDM) 
are not directly comparable, and that our model also provided automatically generated 
delineations of the lesions. 
Perek et al. proposed multi-model classification methods that combined a neural classifier 
with the Breast Imaging-Reporting And Data System classification on CEM, reaching a 
specificity of 66% for a sensitivity set at 100% (12). In the study by Wang et al. (21) the 
authors showed that a HR model extracted from the high-energy contrast image or the 
combinations of all CEM images obtained the highest performance with an AUC of 0.89 on 
the testing dataset, significantly better than using the LE contrast (which is generally 
accepted to be roughly equivalent to FFDM (22)) which achieved an AUC of 0.87. Although 
these studies showed promising results for automatically classifying benign and malignant 
lesions on CEM using ML approaches, they suffered from relatively small datasets and 
lacked external validation, which doesn’t allow the reader to conclude that their model 
would obtain a similar performance on a dataset acquired externally. Our study is notable 
for its large training dataset, the validation of the model on an external dataset, and the 
combination of HR and DL. 
Regarding the classification performance obtained by our best-performing model on 
manual contours, the AUC value is comparable to those obtained by radiologists across 
multiple studies. In the meta-analysis by Suter et al. (23), the (pooled) AUC for suspicious 
findings was 0.89 similar to the result obtained by our model based on the combination of 
DL and HR (AUC 0.88). In fact, for the cases in which our models are most certain, i.e. for 
which the DL and HR models agree, we can report an AUC of 0.95 (0.93) per-lesion (per 
patient) for the manual contours and 0.96 (0.91) per-contour (per patient) for the 
automated contours.  
One notable limitation of this study was that the models were not optimized to identify 
calcifications, which do not always enhance on CEM. Most false negatives were a result of 
this limitation. In literature, contradictory results regarding the benefit of CEM compared 
to FFDM for the classification of calcifications by radiologists have been reported. It is also 
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possible that the resolution of the images is too low for our model to identify certain 
calcifications. A solution to this problem could be to combine the model for the 
identification and classification of lesion on CEM with a different model which would 
specifically target calcifications using FFDM (or the LE images) only. Moreover we only 
evaluated the delineations of lesions for which we have either a biopsy or prolonged follow-
up, but it is theoretically possible that other benign lesions of no clinical importance were 
present on the image, potentially making false-positive identifications actually true-
positives. The identification algorithm was not tested on images which didn’t contain 
lesions, as the CEM scans were acquired to identify suspicious lesions already spotted 
during screening. A follow-up study in which FFDM is replaced by CEM might be interesting 
to conduct in order to compare the performance of those systems and to test our 
algorithm's capacity to detect lesions.  Another limitation is that the contours and the 
evaluation of the models were made by a single certified radiologist with thirteen years of 
reviewing CEM experience. A consensus between breast radiologists would be preferable 
to limit bias.  
As a future perspective, it could be interesting to test whether the performance of our 
model would vary in different breast density categories, as increased breast density is linked 
to poorer sensitivity within mammography (3). However, the systems used in this study are 
not yet equipped with automated breast density measurement software, nor are other 
available tools validated for use in CEM. Hence, we were not able to present our results per 
breast density category. To confirm our findings and support the utility of our model, a 
clinical trial should be established to evaluate results in daily clinical routine, such as 
described in (4) or in silico trial such as in (24). Data of every patient who underwent CEM 
could be collected and our model should serve as second reader, identifying potential 
lesions and giving a classification per-contour followed by a confidence score. The added 
value of the model could then be evaluated in different configuration: for triage, were the 
cases labeled as malignant with a low confidence score would be reavaluated first by 
radiologists; or as second reader were a first reader would evaluate the image and only if 
the model would disagree with the first reader, the case would be send to a second reader. 
Our current results need to be interpreted with study limitations mentioned above in mind. 
In conclusion, our automated identification and delineation tool was able to identify the 
vast majority of suspicious lesions seen on CEM, thus obtaining good performance for 
finding malignant lesions.
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SSuupppplleemmeennttaall  MMaatteerriiaallss  
SSuupppplleemmeennttaall  ffiigguurreess  

 
Figure 1: pre-processing steps illustrated with the example of a recombined scan left 
craniocaudal view from a standard CEM acquisition. The higher row displays the images 
after the pre-processing stepped indicated in the text below every images and the lower 
row represent the histograms of the pixel distribution: the y-axis is the pixel counts and the 
x-axis the pixel values (A) represent the information of the recombined image before pre-
processing; the pixel value range is high, between 0 and 3000 (B) the image was cropped 
around the breast and the background pixels were set at 0 (C) the extreme pixel values 
within the breast tissue were removed: the values below the 1st percentile of the pixel 
distribution were set at the 1st percentile; the values above the 99th percentile of the pixel 
distribution were set at the 99th percentile, reducing the pixel value range drastically from 
1800 to 2100 (D) the pixels were resampled to values ranging from 0 to 255 to convert the 
image to uint8 (E) a CLAHE filter was applied to the image. 
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Figure 2: violin plots of the dice coefficients on the external and test datasets per image and 
per patient; y-axis displays the dice coefficient between 0 and 1 and x-axis represents the 
dataset type (external or test dataset) 
 

 
Figure 3: summary plot of the SHAP values calculated on the training dataset (A) for the 
classification benign versus malignant on the manual delineations with radiomics, (B) for 
the classification benign versus malignant on the manual delineations with radiomics and 
clinical features (C) for the classification malignant versus benign and false positive on the 
automatic delineations with radiomics 
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Figure 4: ROC curves for the predictions on the train/test/external datasets for prediction 
benign/malignant per image based on the ground truth with the five classifiers; 
abbreviations: AUC= area under the ROC curve, CF = clinical features, CI= confidence 
interval, DL=deep learning, ROC = receiver operating characteristic 
 

 
Figure 5: ROC curves for the predictions on the train/test/external datasets for prediction 
other/malignant per image based on the automatic contours with the two classifiers (A) 
radiomics based model, (B) deep learning. Abbreviations: AUC= area under the ROC curve, 
CI= confidence interval, DL=deep learning, ROC = receiver operating characteristic 
  

161

From identification to classification of lesions in CEM combining DL and radiomics

Ch
ap

te
r 6



 
Figure 6: calibration curves performed on the test dataset for (A) the manual contours and 
(B) the automatically generated contours, drawn for 10 bins. We observe that the 
handcrafted radiomics (orange curve) predictions and the deep learning (green curve) 
predictions have similar calibration curves thus can be averaged to form a new ensemble 
model (red curves). The models based on the manual contours in (A) are well calibrated but 
we observe that the models based on the automatically generated contours in (B) are 
uncalibrated with over-confident calibration curves. This is due to the large imbalance in 
the datasets. 
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SSuupppplleemmeennttaall  ttaabblleess    
 
Table 1: python packages used and their versions 

purpose package version 

Pre-processing 

os - 
numpy 1.19.2 
pandas 0.24.2 
opencv 4.1.0.25 

scikit-image 0.18.1 
scipy 1.5.2 

simpleITK 1.2.0 

Deep learning 

keras 2.2.4 
keras-maskrcnn 0.2.2 
keras-retinanet 0.5.1 
tensorflow-gpu 1.13.1 

Feature processing and calculation 

pyradiomics 3.0.1 
missingpy 0.2.0 
scikit-learn 0.20.3 

statsmodels 0.9.0 
shap 0.39.0 

Machine learning xgboost 1.4.2 

Visualisation 
matplotlib 3.0.3 

seaborn 0.11.1 
 
 
 
Table 2: XGBoost characteristics per dataset type 

parameters/data radiomics on manual 
delineation 

radiomics and clinical features on 
manual delineations 

radiomics on 
automated contours 

gamma 0,5 0,5 0,6 
learning rate 0,01 0,01 0,01 

maximum depth 3 3 3 
minimum child 

weight 1 5 1 

number of 
estimators 340 890 1000 

number of 
features selected 10 11 15 

Table 3: accuracies and F1-scores on the external dataset with confidence intervals for the 
different model combinations on the manual contours and the automatically generated 
contours 
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on the manual contours 

per contour per patient 

approaches accuracy F1-score approaches accuracy F1-score 

radiomics   424/590 ( 71 
% )  CI [68,75] 

74 %  CI 
[71,78] 

radiomics   196/279 ( 70 
% )  CI [65,76] 

73 %  CI 
[67,79] 

deep learning   472/590 ( 80 
% )  CI [77,83] 

83 %  CI 
[81,86] 

deep learning   233/279 ( 83 
% )  CI [79,87] 

87 %  CI 
[83,91] 

radiomics + CF   442/590 ( 74 
% )  CI [72,78] 

78 %  CI 
[75,82] 

radiomics + CF   198/279 ( 70 
% )  CI [66,76] 

74 %  CI 
[69,80] 

radiomics + 
deep learning 

  479/590 ( 81 
% )  CI [78,84] 

84 %  CI 
[81,87] 

radiomics + 
deep learning 

  221/279 ( 79 
% )  CI [75,84] 

83 %  CI 
[79,87] 

deep learning + 
radiomics + CF 

  468/590 ( 79 
% )  CI [76,83] 

82 %  CI 
[79,86] 

deep learning + 
radiomics + CF 

  218/279 ( 78 
% )  CI [73,83] 

82 %  CI 
[78,86] 

agreed labels   407/448 ( 90 
% )  CI [88,94] 

93 %  CI 
[91,95] 

agreed labels   232/258 ( 89 
% )  CI [86,93] 

92 %  CI 
[89,95] 

on the predicted contours 

per contour per patient 

approaches accuracy F1-score approaches accuracy F1-score 
radiomics  2342/ 2816 ( 

83 % )  CI 
[82,85] 

57 %  CI 
[53,61] 

radiomics   204/245 ( 83 
% )  CI [78,88] 

    88 %  CI 
[84,91] 

deep learning  2362/ 2816 ( 
83 % )  CI 
[83,85] 

58 %  CI 
[55,62] 

deep learning   205/245 ( 83 
% )  CI [79,88] 

    89 %  CI 
[86,92] 

deep learning + 
radiomics 

 2423/ 2816 ( 
86 % )  CI 
[85,87] 

61 % CI 
[58,65] 

deep learning + 
radiomics 

  212/245 ( 86 
% )  CI [82,91] 

* 

    91 %  CI 
[88,94] * 

agreed labels  2125/ 2362 ( 
89 % )  CI 
[89,91] 

71 %  CI 
[68,75] 

agreed labels   212/245 ( 86 
% )  CI [82,91] 

* 

    91 %  CI 
[88,94] * 

 
Footnote: 95% CIs were reported within brackets; CF: clinical features; CI: confidence 
interval; * = not significantly different 
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Handcrafted feature-based machine learning (ML) models and deep learning (DL) models 
that automatically classify medical imaging datasets are increasingly published in the 
literature in recent years. Few studies have been conducted to compare and/or combine 
these methods, both of which have different strengths and weaknesses. The over-arching 
goal of the research presented in this thesis was to assess whether the combined use of 
handcrafted feature-based ML and DL classification models results in better performance 
compared to the use of each method alone.  In this thesis, we hypothesised that feature-
based ML models and DL models capture information from medical imaging datasets 
which is complementary and that their combined use results in more accurate 
classification predictions. In this Chapter, the individual studies presented in this thesis are 
summarized and discussed. First, we discuss the comparison and combination of deep 
learning and feature-based models. Second, we discuss the evaluation of feature-based 
models used to augment deep learning predictions. Third, we highlight the necessary steps 
to introduce ML studies into clinical workflows comparing our results to the current state 
of the art. Finally, we discuss future prospects suggesting what progress still needs to 
happen in the field of precision medicine to have a complete, sustainable, and generalizable 
workflow.  
 
In Chapter 2, we analysed the use of feature-based ML models (also referred to as radiomics 
in our context) as well as DL methods for quantitative image analyses, highlighting their 
strengths and weaknesses. We hypothesised that DL has the potential to complement a 
radiomic workflow by detecting and segmenting region of interests (ROIs) within medical 
images and that both, radiomics and DL, could be used individually or in combination to 
classify these ROIs. However, we observed that the analysis with both techniques was 
suffering from a lack of stability and reproducibility, which could be solved through image 
homogenization of the datasets, removing differences due to different acquisition 
parameters and vendors/scanners for radiology images (1) and for histopathology data (2). 
Such harmonization should ultimately lead to more robust and generalizable models. 
Furthermore, for radiomics in particular, we realised that a robust feature selection 
method, standardization and harmonization of the features (as suggested by the image 
biomarker standardisation initiative (IBSI) (3) and ComBat (4)) are important areas for 
further studies to improve the stability and reproducibility of those features. 
 

CCoommppaarriinngg  aanndd  ccoommbbiinniinngg  ddeeeepp  lleeaarrnniinngg  aanndd  ffeeaattuurree--bbaasseedd  mmooddeellss  
In Chapter 3, we analysed the capability of mass spectrometry imaging (MSI) data and data 
obtained from haematoxylin & eosin (H&E) stained histological slides to automatically 
identify patients with Barrett’s oesophagus and to predict disease progression in patients 
with low grade dysplasia. The datasets were co-registered and the H&E data corresponding 
to the resolution of the MSI acquisition was extracted at a resolution of 96x96 pixels, 
resulting in a new dataset consisting of 144 823 tiles containing H&E data and MSI data. To 
our knowledge, this is the first study that compared the predictive value of H&E and MSI in 
parallel. This study showed that the model based on H&E data was better at differentiating 
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epithelial tissue from stroma than MSI data, whereas MSI data was more suitable for 
predicting the grade of dysplasia per tile and predicting disease progression for patients 
with low grade dysplasia in Barrett's oesophagus. Combining the predictions of the models 
based on the two datasets and obtained for the same tasks didn’t improve the results per 
task. Thus, the two datasets might contain complementary information which would be 
better suitable for different but complementary tasks.  
Stroma and epithelial tissue have very different histological appearances and are relatively 
easy to distinguish for a trained non-expert (e.g. non-pathologist) and therefore, probably 
also relatively easy to be learned by a DL model from H&E. However, grading dysplasia on 
H&E stained tissue sections can be very difficult for a pathologist looking at the whole slide 
and is even more difficult if only a small fraction of the images (H&E tile) is available for 
review due to the lack of surrounding context which pathologists regularly use to make a 
decision. On the other hand, the MSI data might contain molecular information specific to 
the respective dysplasia grade. A limitation of this study was that in order to superimpose 
and compare the predictions of the two datasets, the size of the H&E images had to be 
adapted to match the raster size of the MSI acquisitions. There is literature which shows 
that model prediction performance may depend greatly on the zoom level of the H&E 
images and the spatial resolution used (5). Thus, we could potentially have obtained better 
results by implementing a different pre-processing strategy which would have allowed us 
to use H&E images at different spatial resolution. To do this we could have, for example, 
averaged neighbouring MSI tiles and try to train models on larger H&E images. However, 
this would have been beyond the aim of the current study which was a proof of concept 
study to demonstrate that these two very different datasets can be analysed jointly using 
ML and DL methodology. In a recent study, Faghani et al. were able to predict the grade of 
dysplasia on H&E with high performance choosing a larger tile size in a dataset from 542 
patients with Barrett’s oesophagus (6). The relatively small number of patients was another 
limitation of our study. Although we had more than 100,000 tiles available for training and 
testing, this data originated from a total of 57 patients only, which limited our conclusions 
for disease prediction at patient level to “potentially predictive” or “random predictions”. 
Furthermore, data from an independent study cohort to validate the results was not 
available to us. Identification of the actual peptide/protein from the mass-to-charge ratio 
values of the MSI analysis was not performed in the current study, but would be of clinical 
interest. Such identification may allow for a more specific and precise test to be developed 
to replace MS acquisition which is costly and time consuming.  
 
In Chapter 4, we compared and combined a radiomics based model and a DL model for 
predicting adverse radiation effects (ARE) using a pre-treatment brain magnetic resonance 
imaging (MRI) dataset from patients with brain metastasis who underwent radiotherapy. 
Different image pre-processing techniques were studied to improve model performance. 
For this, we tested white-stripe, z-score and CLAHE normalizations, inspired by the 
guidelines provided in (1). Our results showed that the predictions obtained with a 
combined radiomics based and DL based model had a better performance than predictions 
based on each model alone. To the best of our knowledge, this was the first study using pre-
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treatment brain MRI images to predict the risk of ARE suggesting that the use of radiomics 
together with DL predictions may provide better and more stable results. Interestingly, the 
performance obtained in this study in pre-treatment MRI images was similar to that 
obtained from classifying ARE versus tumour in MRI images after stereotactic radiotherapy: 
in our study we obtained an AUC of 0.71 CI [0.60,0.82] compared to AUC of 0.73 obtained 
by Zhang et al. using delta radiomics on T1 and T2 MRIs after stereotactic radiotherapy (7). 
However, the prediction score reached in our study is still too low to be used confidently 
for treatment planning and requires further study with a dataset containing more positive 
examples as one of the limitation of our study was that the dataset was highly imbalanced 
(about 10% of the scans were from patients with ARE).  
 
 

EEvvaalluuaattiioonn  ooff  ffeeaattuurree--bbaasseedd  mmooddeellss  ttoo  aauuggmmeenntt  ddeeeepp  lleeaarrnniinngg  
pprreeddiiccttiioonnss  
In Chapter 5, we evaluated whether the use of a ML based model built on the predictions 
of a DL model can improve performance when trying to identify digital H&E stained slides 
that contain lymph nodes (LN) and subsequently segment them within a large H&E dataset 
from resection specimens from patients with oesophageal cancer. We compared our results 
to the conventional U-Net model approach and found that the accuracy of our model was 
better than that using conventional U-net model approaches. Moreover, our method 
allowed us to obtain a probability score per potential LN found, allowing the creation of an 
“uncertain” class for predicted contours, where the model cannot give a prediction whether 
the candidate contour is a LN or not. This addition of an “uncertain” class allowed us to 
reduce the false positive findings, only 6% of the dataset would be classified as “uncertain” 
requiring checking by the pathologist. Our results suggest that there is utility in combining 
a ML model with a DL model (a) to increase model performance and (b) to enable the 
addition of an uncertainty score, allowing the pathologist to decide which contours to 
review as part of the quality control measures based on a pre-defined range of certainty 
values.  
Although we applied extensive pre-processing to the H&E data to reduce or eliminate the 
inherent variability of the H&E staining, our results indicate that further data homogenizing 
is necessary to obtain more consistent results between datasets originating from different 
centres. In our case, the differences in prediction accuracy might also be related to the fact 
that patients from our external dataset received different treatment (some received pre-
operative chemotherapy whereas others did not), or to the imbalance between the number 
of images containing LNs and the number of images not containing LNs being different in 
the two datasets. Thus, more training data from other centres might improve the detection 
and segmentation performance of our model for future use and to validate the findings 
presented in the study of Kloft et al., which suggested that LN size correlates with prognosis 
(8).  
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In Chapter 6, we implemented a DL model which takes as input pre-processed contrast 
enhanced mammograms (CEM) containing a suspicious mass, returning as output 
predictions on lesion location, lesion contour and a label differentiating between “benign” 
and “malignant”.  In parallel, we implemented a radiomics-based model using the contours 
made by a radiologist to predict malignancy of the lesions, comparing and combining the 
predictions obtained from different models. We also implemented a radiomics-based 
model based on the predicted contours obtained by the DL model and compared and 
combined the scores obtained. This is to our knowledge the first study to provide such 
workflow for CEM. We observed that for classifications made on the ground truth contours 
from the radiologist or on the predicted contours, a combination of radiomics and DL results 
obtained the best performance. Our results confirm those from a previous study, where the 
combination of radiomics and DL increased the performance of a classifier in full-field digital 
mammography (FFDM) images (9). However, the previous study used a different approach 
extracting DL features from one of the fully connected layer and combining it later with 
clinical and radiomics features to train a ML model which classified malignant and benign 
regions. Compared to our study, the previous study did not implement a model to detect 
and segment the lesions within the images, leaving this part of the work to radiologists. In 
our study, we also identified the location of the suspicious lesion in the CEM scan. Our 
approach of identifying the suspicious lesion within the image, segmenting it and classifying 
it into benign/malignant could be transferred to any medical imaging data.  
To better interpret the results of the model, we would propose a follow-up study in which 
we would create an uncertain class such as introduced in Chapter 5 and thus limit the 
number of (presumed) false positive findings while maximising the identification of 
malignant lesions. Interestingly, we noticed that our model had problems with detecting 
calcifications in particular, most likely due to their size and difference in shape compared to 
other lesions. Thus, it could be clinically helpful to train a specific model to recognize 
calcifications which could later be combined with our model.  
 

SStteeppss  nneecceessssaarryy  ttoo  ttrraannssllaattee  rreesseeaarrcchh  iinnttoo  pprraaccttiiccee  
RReemmoovviinngg  hheetteerrooggeenneeiittyy  ooff  tthhee  ddaattaasseettss  
Pre-processing of the images appears sometimes insufficient to harmonize datasets and to 
obtain the same performance on an external validation dataset than on the dataset used to 
train a model. We only partially worked on this issue due to time constraint as such a study 
would have required the setting up of a multi-centre study, data collection after acquisition 
of the same image modality used to train a model, and re-evaluation of the model on all the 
collected datasets to assess whether the harmonization method was generalizable. This 
topic was explored in depth by Castro et al. (10), highlighting why models trained on certain 
dataset might have disappointing performance on a new dataset. One of the proposed 
reasons was ‘dataset shift’ (e.g. changes in data distribution) which might explain why the 
model we developed in Chapter 5 underperformed on the external dataset. To overcome 
this potential issue, one solution could be to remove the scanner or acquisition information 
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from the dataset by training a model to unlearn confounding parameters as described in 
(11). In this article, the authors used brain MRI data and implemented a method to make 
feature space invariant on three different tasks: regression, classification, and 
segmentation. They trained their models to remove scanner bias and found that unlearning 
those confounders lead to better results. Whilst we considered utilizing the scan 
information to standardize directly MRI scans in Chapter 4 with Piecewise Linear Histogram 
Matching or Nyul normalization (12), unfortunately, the values of the scanner parameters 
were not available to us. Unlearning confounders with a DL model has similar limitations: it 
also requires scanner information which is not always available in the datasets and the 
larger the datasets, the higher the chance that there will be missing values. Moreover, this 
approach might also lead to cancelling biological information which might have a predictive 
value for the model. Thus, further work on data collection from multiple centres is necessary 
to analyse and remove confounders in medical imaging datasets to avoid overfitting of ML 
models and allow reproducibility of the results on data from different origins.  

 

IInnccrreeaassiinngg  iinntteerrpprreettaabbiilliittyy  ttoowwaarrddss  ttrruussttwwoorrtthhyy  AAII  ttoo  ffaacciilliittaattee  cclliinniiccaall  
aaddooppttiioonn    
It can be difficult to understand why a machine-learning model made a particular decision 
on certain input data, specifically to understand when the model makes false predictions or 
classifications. To facilitate the adoption of ML models in clinical practice, there is a need to 
explain how the model works to allow verification that a decision was taken based on logical 
parameters, as we discussed in Chapter 2. In this context, Salahuddin et al. (13) distinguishes 
between global and local interpretability methods to potentially help clinicians understand 
and accept the output of a ML model. In this thesis, we tried to provide global 
interpretability information for all our studies. To this effect, we provided feature 
importances when training a ML model, to help the reader understand which features were 
most relevant for the task in Chapter 3, 4 and 5. In Chapter 6, we implemented summary 
plots of the SHapley Additive exPlanation (SHAP) values to increase understanding on how 
the different values affect the decision taken by the algorithm. We didn’t present 
interpretability methods on individual outcome in this thesis, it would be another research 
topic for clinical implementation, but ideally, local interpretability should be implemented 
for all classification predictions, to explain the output of a model to a clinician, such as 
presented in the work of Barnett et al. (14).  
 

UUnncceerrttaaiinnttyy  pprreeddiiccttiioonnss  aanndd  oouuttlliieerr  ddeetteeccttiioonn  
We believe that uncertainty predictions are necessary to interpret ML model results, as 
described by Kompa et al. (15). The authors strongly encourage researchers to always 
include uncertainty predictions when realizing a new AI model based on medical imaging. 
This would make the model more trustworthy and help spot dataset shifts. Moreover, 
uncertainty prediction could be used for triage, as the clinicians could focus on the patient 
data with strong positive certainty, to rapidly make a decision while patient predictions with 
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uncertain label would need to be further evaluated, potentially initiating further tests to 
establish a diagnosis/prognosis. Chapter 5 demonstrates a possible approach to uncertainty 
prediction, using handcrafted features on U-Net output to establish a confidence score and 
determining whether the predicted contours were correct. The score allowed us to create 
an uncertain category needed to be reviewed by pathologists, which would reduce the 
amount of false positive detections. Another possible approach would have been to train a 
model to output uncertainty predictions in parallel with classification/detection predictions 
such as presented in (16).  
 

CClliinniiccaall  ttrriiaall  aanndd  rreeaall  wwoorrlldd  iimmpplleemmeennttaattiioonn  
As discussed in this thesis, generalizability of ML models is an issue faced by many studies. 
Performance during training might outperform clinicians or achieve similar results but often 
the results are worse when used in a clinical setting. In this thesis, we tested the 
performance of our models in an unbiased fashion using leave-one-out cross validation (see 
Chapter 2) or validating the model on retrospectively collected data from external centres 
(see Chapters 3, 4, 5 and 6). This still may not be sufficient to predict results in a prospective 
setting where data can be more heterogeneous, substantially more imbalanced and where 
unknown implementation challenges might arise. Thus implementation of a clinical trial 
before integration of the models in the clinic is recommended. Guidelines have been 
established for clinical trials specifically for AI applications such as SPIRIT-AI (for writing 
clinical trial protocols) (17) and CONSORT-AI (for randomized controlled trials) (18). 
Moreover, software/models are considered medical devices and therefore require CE-
marking and FDA or EMA approval, sometime classified as high risk (MDR class III) (19). 
Sometimes, research seems to focus on the technical challenge of a problem and fails to 
report on clinical usefulness. For example, reporting results per patient and not per data 
point or misusing Dice metrics by reporting the overall result per image while the image 
contained multiple objects which needed to be segmented. The Metrics Reloaded Delphi 
Consortium introduced a framework to help researchers defining the problem they want to 
address, called “problem fingerprint” (20). After defining the problem and its scope, the 
correct corresponding metric and its application can be chosen from their metric proposal 
based on how the performance of those models should be reported.  
We decided to follow this framework in this thesis and aimed to not only report the results 
per sample, but more generally report usable outcome variables. For example, in Chapter 3 
we reported the grade of dysplasia prediction on a tile level, we showed the classification 
predictions on a full H&E image and we predicted progression of low grade dysplasia at 
patient level. In Chapter 4, we used the maximum risk predicted of developing ARE within 
the patient scan to determine the risk per patient to enable patient treatment decisions. In 
Chapter 5, we reported the Dice coefficient not only per image but also per single contour 
found within the H&E image, making the results more transparents, and also per patient 
because we needed to know if at least one image with LNs was correctly found per patient 
to make it clinically useful. In Chapter 6, we reported the results per region per image and 
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per patient which is the more relevant as a mass might not be found on one of the image 
from one patient, but might be found in another image of the same patient.  
Not only the problem-statement and metrics need to be correctly defined, but the solution 
needs to be usable in a research setting and/or in the clinic. To respond to this challenge, 
(21) and (22) strongly recommend to involve the potential users (i.e. the clinicians) in all 
phases of the development of the model, making the AI applications user-centred. This is 
why in all of our studies we involved clinicians and made sure that our studies answered 
unmet clinical needs. This means to first ask the clinicians what they need, then constantly 
reassess usefulness of the model developed during the development phase, and ask how 
the clinicians would like to interact with the application to implement it efficiently. Later on, 
clear documentation needs to be available at all times for the clinicians to understand how 
and for what purpose the model can and cannot be used. 
 

 
Figure 1: lessons learned from our studies - workflow to bring a ML model to the clinic 

FFuuttuurree  pprroossppeeccttss::  iimmpprroovviinngg  tthhee  pprreeddiiccttiioonnss,,  rreeppllaacciinngg  
tthhee  eemmppiirriicc  ttoooollss  aanndd  pprreeddiiccttiinngg  tthhee  ffuuttuurree    
PPeerrssoonnaalliizzeedd  mmeeddiicciinnee  bbaasseedd  oonn  mmuullttii--mmooddaall  ddaattaasseettss  
The aim of personalized medicine is to provide the optimal treatment for the individual 
patient based on all available data. Lot of models were proposed in the literature to stratify 
risk, predict survival or predict treatment response based on feature-based models or DL 
models. Due to insufficient performance or lack of validation, only few of those models were 
implemented in the clinic (23). Models developed on multimodal datasets might be a 
solution to increase translation into the clinic. Data collected per patient may not be limited 
to one modality as we saw in Chapter 1 and this collection of data per patient should be 
considered as a whole for ML studies, although currently those datasets are most often 
used independently in unimodal studies (24). We were able to integrate patient 
characteristics in our models in Chapters 4 and 6 and saw that the performance of the model 
improved when using this data for patient classification in Chapter 4, although it didn’t help 
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our model in Chapter 6, probably because the patient characteristics available in our study 
were not relevant for the question e.g. to predict benign or malignant status of a suspicious 
lesion. Moreover, we saw in Chapter 3 that multimodal datasets could be useful for 
different prediction tasks into one workflow but it is also possible that the combination of 
predictions for one task obtained on multimodal datasets would withhold better, more 
robust predictive power. Indeed in the work of (25), the authors found that merging 
histopathology, radiology and clinicogenomic models in one model was better in stratifying 
risk in high-grade serous ovarian cancer patients than each model by itself. We know that 
for CEM, a prior FFDM was acquired. Although FFDM data was not collected in our study, a 
follow-up work could include it and have a model similar to the one developed Chapter 6 
applied to the FFDM and which could be combined with the results obtained on both FFDM 
and CEM data. 
 

TTrraaiinniinngg  uuppddaattee  ssttrraatteeggiieess  
We noticed in Chapter 5 that changes in data distribution can be an issue for keeping the 
model at a constantly good performance. As mentioned in Chapter 5, strategies need to be 
implemented to retrain the models and keep them up to date, without compromising 
patients’ privacy rights. One way to achieve this would be to use federated learning, which 
would allow the models to be retrained without a company/researcher having access to the 
data directly e.g. the patient data never leave the hospital environment (26). Distributed 
learning is also a possible option and differ from federated learning by the fact that only 
one model is trained rather than assembling multiple models trained for each different 
location. Once the models would be validated and implemented in the clinic, they would 
still need to be updated to preserve performance when there is a change of acquisition 
parameters for the imaging data. In the article of Perkonigg et al. (27), the authors suggests 
to adopt a continual learning approach with dynamic memory to preserve the performance 
of the model trained on previous dataset while adapting to new dataset which might be 
acquired with different acquisition parameter or are coming from new scanners.  
 

UUnniivveerrssaall  mmooddeellss    
Ideally, ML models need to be trained on a large database (as a rule of thumb, more than 
hundred samples) composed of data from multiple centre worldwide. To improve the 
results obtained in Chapter 6, we could imagine implementing a workflow such as in  (28), 
where the authors pre-trained classifiers on ImageNet (29) or JFT-300M (30), and then 
retrained those models on a large chest radiographs database formed of 5 datasets with a 
total of 821 544 chest radiographs using supervised contrastive learning. Then the authors 
reused the models to perform different classification tasks, freezing the models and training 
only the last layers. The authors obtained good classification results using small dataset and 
when using large dataset the models outperformed state of the art.  Instead of chest X-rays, 
we could pre-train a model with large FFDM dataset such as the one described in (31) where 
the authors collected 1 001 093 images. For histopathology, the Bigpicture project 
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(https://bigpicture.eu) aims to collect large amount of data to develop AI tools, which could 
be used similarly to improve the performance of our models in Chapter 3 and 5.  

CCoonncclluussiioonn  
In the studies presented in this thesis, we implemented different workflows using different 
imaging modalities, clinical questions, and different combination of ML and DL models. 
Those studies aimed to be reproducible by establishing a common pre-processing strategy 
and to be validated either using cross-validation or an external validation dataset provided 
by another institute. We demonstrated that using feature based models in combination 
with DL models can make stronger predictions, with different but complementary 
information being extracted with two methods and combining the information of both 
models to yield the best results. Challenges still remain before sustainable implementation 
in the clinic: homogenisation of datasets from different source needs to be improved and 
the limits of the models’ applications requires to be well defined and explained. Moreover, 
we should keep the clinical application of those models in sight and evaluate their impact 
once implemented in the clinic, adapting and updating them according to the needs of the 
clinicians. 
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In 2024 the estimation of patients with cancer reaches 28 million people, an increase of 
almost 50% compared to the figures from 2020 (GLOBACAN 2020). This will make cancer 
even more of a burden for society and for healthcare. Moreover, lack of clinicians is already 
a worldwide issue, making the demand for tools to reduce their workload very high; hence 
the need to keep improving and developing clinical decision support systems, which is the 
focus of this thesis. 
 
This thesis consists of two parts, both aiming to explore the combine value of feature-based 
models and deep learning models for medical image analysis in cancer. The first part 
investigated the combination of the predictions obtained with feature-based and deep 
learning models, potentially leading to more accurate and robust frameworks. The second 
part of this thesis explored the use of feature-based models to augment the predictions of 
deep-learning models.  

PPaarrtt  11::  CCoommppaarriinngg  aanndd  ccoommbbiinniinngg  ddeeeepp  lleeaarrnniinngg  aanndd  
ffeeaattuurree--bbaasseedd  mmaacchhiinnee  lleeaarrnniinngg  
Radiomics and deep learning are two machine-learning methods which can be used to 
classify medical images and promising results using these methods have been reported in 
the literature. In Chapter 2 we explored the pros and cons of those two methods: compared 
to deep learning, radiomics can perform better on small datasets (which is usually the case 
when analyzing medical imaging datasets), but cannot be used to segment data. 
Furthermore, radiomics requires input from clinicians/experts who need to identify and 
delineate the data/region of interest by hand and from data scientists who select features 
based on a preset list. We hypothesized in this thesis that both methods yield 
complementary information and using them in combination improves the results. 
 
In Chapter 3, we analyzed the capability of mass spectrometry imaging (MSI) data and data 
from haematoxylin & eosin (H&E) stained tissue sections for automatic identification of 
patients with Barrett’s oesophagus and prediction of progression in patients with low grade 
dysplasia. Due to the differences in the acquisition method of these two datasets, the 
datasets needed to be homogenized.  This study showed that the model based on H&E data 
alone was better at identifying tissue type and the models based on MSI data alone were 
more suitable for predicting dysplasia grade for all patients and disease progression in 
patients with low grade dysplasia.  
 
In Chapter 4, we compared and combined a radiomics-based model and a deep learning 
based model aiming to predict adverse radiation effects (ARE) in a dataset of pre-treatment 
brain MRI images containing metastasis. In this case, the most efficient pre-processing 
method was selected independently for the two different models. We observed that the 
best results on the external dataset were obtained when combining the predictions of the 
radiomics-based model and the deep learning model. This study suggests that the 
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predictions of the two models could be used in combination and improve the classification 
of ARE/none-ARE lesions within brain-MRI compared to using those models independently.  
 

PPaarrtt  22::  UUssiinngg  ffeeaattuurree--bbaasseedd  mmooddeellss  ttoo  aauuggmmeenntt  ddeeeepp  
lleeaarrnniinngg  pprreeddiiccttiioonnss  
In Chapter 5, we evaluated wether the use of a machine-learning model based on 
handcrafted-features in addition to a conventional U-Net model can improve performance 
when trying to find digital H&E stained slides containing lymph node (LN) and subsequently 
segment them using a large H&E dataset from patients with oesophageal cancer. We 
compared our results to the conventional U-Net model approach and found that the 
accuracy of our model was better than conventional U-net model approaches. Moreover, 
our method allowed us to obtain a likelihood score per potential LN found, allowing the 
creation of an “uncertain” class, for which the model cannot provide a prediction whether 
the candidate contour is a LN or not. The addition of an “uncertain” class allowed us to 
identify slides, which (for sure) require manual quality control more specifically instead of 
quality controlling of a random set of few slides. Six percent of the images from the external 
dataset were classified in the uncertain category and thus would need to be quality checked 
by a pathologist/expert.  
 
Finally, in Chapter 6, we implemented a deep learning model which uses pre-processed data 
of contrast enhanced mammograms containing a suspicious mass, returning predictions on 
mass location, contour and a label differentiating between “benign” and “malignant”.  In 
parallel, we implemented a radiomics-based model on the contours made by the radiologist 
to predict the malignancy of the masses, comparing and combining the predictions obtained 
with the different models. We also implemented a radiomics model based on the predicted 
contours obtained after prediction by the deep learning model and compared and 
combined the score obtained there. We observed that for both scenarios (ground truth 
contours and predicted contours), the combination of radiomics and deep learning results 
obtained the best performance. 
 
In every study presented in this thesis, we implemented a reproducible workflow by 
establishing a common pre-processing strategy and validating the models either with cross-
validation or with  external validation datasets provided by another institute. We conclude 
from the studies presented in this thesis that using feature-based models (e.g. radiomics) 
in combination with deep learning models leads to stronger predictions as different but 
complementary information is extracted and processed by the two methods. Future studies 
are needed whether decision support models can be further improved by also including 
patient characteristics as a non-image based dataset in the final model. 
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This thesis investigated the individual and combined use of deep learning and handcrafted 
radiomics to improve the machine learning model predictions on different types of imaging 
data. Our first study was a systematic review about the strengths and weaknesses of 
handcrafted radiomics and deep learning methodologies, which informed the work 
conducted in this thesis. We were able to draw a number of important conclusions from 
this review:  
(1) Researchers seems to either use handcrafted radiomics or deep learning based models, 
we were unable to identify a study which used these methods in combination.  
(2) Having homogeneous datasets, which are independent from the machine they were 
acquired on, is very important for reproducibility and successful validation of the results.  
(3) In order to increase usuability of our models, assessing performance on at least one 
external validation dataset and using cross-validation on a test dataset are key to success.  

SScciieennttiiffiicc  iimmppaaccttss  
In the first part of this thesis, we compared and combined deep learning and feature-based 
machine learning. From our study, we concluded that the use of two different datasets, one 
containing histological information and the other one containing molecular information, 
might have complementary value for the prediction of dysplasia grades in Barrett’s 
oesophagus. The analysis of the images with the molecular information was better in 
predicting dysplasia grade per image and progression of dysplasia to cancer whereas the 
images with the histological information were best to classify tissue type. This discovery 
might help clinicians to improve prediction of progression of dysplasia and hence could 
improve management of patients with Barrett’s oesophagus. In another study on brain MRI, 
we discovered that combining the predictions of adverse radiation effect obtained with 
handcrafted features machine learning and deep learning method lead to better predictions 
than using one model alone. This important information might influence how MRI images 
are analysed in the future when trying to predict adverse effects of radiation therapy in 
patients with brain metastases.  
 
In the second part of this thesis, we used feature-based models to augment deep learning 
predictions. We created a novel workflow based on histology images of lymph nodes and 
other tissues in order to detect and segment lymph nodes. We used first a deep learning 
model to segment the lymph nodes and then created a machine-learning model which takes 
those predicted segmentations as input and outputs a score from 0 to 1 quantifying the 
likelihood that the segmentation is indeed a lymph node which has been correctly 
segmented. Adding this step to a regular deep learning approach reduced the false positive 
results significantly as part of the false positive findings were reclassified in the uncertain 
category. This work could be used to detect and segment lymph nodes on histology images 
in a research setting as a prerequisite of performing detailed AI based analyses of the lymph 
node architecture (data of this study was used to successfully obtain funding for further 
investigations in lymph nodes). Our last study was performed on contrast enhanced 
mammography images. We trained a model to detect, segment and classify suspicious 
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lesions. Interestingly, also in this study, the best results were obtained using a combination 
of deep learning and handcrafted radiomics features.  
 
We have shown in this thesis for the first time the potential of utilizing the strengths of 
handcrafted features based models in combination with the strengths of deep learning 
models for multiple medical imaging datasets and diverse tasks. Although our results are 
promising and offer insights into new avenues of research, validation of our findings in 
independent series is required. 

SSoocciiaall  iimmppaaccttss  aanndd  kknnoowwlleeddggee  ttrraannssffeerr  
According to the GLOBACAN 2020, it is expected that 28 million people will be diagnosed 
with cancer in 2040, which represents an increase of almost 50% compared to the figures 
from 2020. Cancer is already a leading cause of death in 2022 and will become even more 
of a burden on society.  
 
Although lot of published studies are presenting tissue-based biomarkers based on medical 
imaging data, none was introduced into the routine practice. Clinical decisions are still based 
on a clinician assessing medical images (CT, MRI, X-rays, H&E stained tissue, etc.). This 
approach is subjective as it depends on the experience of the observer and experts are not 
always available to review those images. Thus, there is a need for accurate and fast tools to 
assist and support decisions of the clinicians objectively. We contributed to advance the 
field of personalized medicine by showing that using handcrafted features in combination 
with deep learning helps improve predictions eventually for detections, delineation and 
diagnosis tasks, making another step towards clinical implementation. 
 
We communicated all the results of our research: all our studies are either published or 
submitted to peer-reviewed journals and made open access. The work presented in this 
thesis has been presented and discussed at multiple national and international conferences 
to disseminate our findings with medical imaging experts: Presentations were given at the 
GROW science day of Maastricht University (2019, 2020), the European Congress on Digital 
Pathology (2020, 2021), the European Congress of Radiology (2020, 2022) and the 
conference of the Pathological Society of Great Britain and Ireland (Manchester Pathology) 
(2021). Moreover, our work presented Chapter 5 is planned to be implemented by our 
department first for research purpose and if the results show to be consistent, then it will 
be implemented in the clinic. The model presented Chapter 6 will be made available for use 
by a company in the next years and could have a positive impact on the clinical workflow. 
Research is currently being done to improve the detection and diagnosis of micro-
calcifications within the breast on contrast-enhanced mammography.  
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SSuupppplleemmeennttaarryy  TTaabbllee  ffoorr  CChhaapptteerr  33  
 
Supplementary Table 3. Features importance of random forest, xgboost and the average 
score based on MSI data for tissue type classification and grading. 

Tissue Type Classification    Grade Classification   
          

m/z importa
nces_rf 

importances
_xgboost 

importanc
es_mean 

  m/z importa
nces_rf 

importances
_xgboost 

importanc
es_mean 

1139.56100
00000001 

0,00901
8 0,028368 0,018693   862.459 0,02395

9 0,033814 0,028886 

1155.58100
00000001 

0,01138
6 0,023511 0,017448   948.493999

9999999 
0,01125

1 0,026825 0,019038 

814.458000
0000001 

0,01714
2 0,017239 0,017191   1034.528 0,00870

7 0,023367 0,016037 

1077.565 0,00515
7 0,010287 0,007722   1303.629 0,00514

7 0,019402 0,012274 

840.443 0,00631
7 0,008599 0,007458   947.491000

0000001 
0,00955

9 0,014432 0,011995 

958.57 0,00706
7 0,008424 0,007745   912.447 0,00923

5 0,012216 0,010726 

924.451 0,01044 0,007488 0,008964   1359.68799
99999999 

0,00748
9 0,011516 0,009502 

1052.538 0,01135
7 0,007139 0,009248   2982.907 0,00570

9 0,011671 0,00869 

1099.557 0,00822
9 0,006933 0,007581   964.497 0,00634

8 0,008988 0,007668 

1115.58199
99999999 

0,00992
7 0,006846 0,008386   926.486000

0000001 
0,00544

6 0,009671 0,007558 

1093.585 0,00554
7 0,006673 0,00611   1229.58 0,00744

7 0,007667 0,007557 

1080.548 0,00752
6 0,006512 0,007019   874.438 0,00772

9 0,006638 0,007184 

1342.66700
00000001 

0,00639
9 0,006494 0,006446   825.411000

0000001 
0,00871

9 0,005373 0,007046 

1048.53 0,00403
8 0,006417 0,005227   1099.557 0,00563

6 0,008079 0,006858 

858.448 0,00464
3 0,00637 0,005507   950.483999

9999999 0,00433 0,009293 0,006812 

1111.603 0,00863
3 0,006368 0,0075   1607.80100

00000002 
0,00266

3 0,010934 0,006798 

990.496000
0000001 0,00281 0,005801 0,004306   1119.58199

99999999 
0,00712

9 0,00614 0,006635 

917.471 0,00437
9 0,0058 0,00509   955.513999

9999999 
0,00767

6 0,005399 0,006538 

1113.594 0,00372
6 0,005628 0,004677   988.528 0,00726

9 0,005414 0,006341 

1133.59199
99999999 

0,00946
8 0,005208 0,007338   1564.8 0,00389

4 0,008411 0,006152 

969.51 0,00642
4 0,00512 0,005772   979.554 0,00655

6 0,005002 0,005779 

1039.546 0,00618
8 0,005041 0,005615   924.451 0,00669

7 0,004764 0,00573 

1021.528 0,00393
7 0,004945 0,004441   1249.66899

99999999 
0,00684

1 0,004184 0,005513 
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1002.5 0,00451
4 0,004756 0,004635   828.437 0,00377 0,00708 0,005425 

947.491000
0000001 0,00382 0,004737 0,004278   1279.62 0,00399

2 0,006834 0,005413 

868.463000
0000001 

0,00334
9 0,004722 0,004036   906.461 0,00621

8 0,004608 0,005413 

936.503 0,00353
5 0,004711 0,004123   801.433 0,00685

3 0,003961 0,005407 

2181.185 0,00641
5 0,004651 0,005533   868.463000

0000001 
0,00550

2 0,005069 0,005285 

809.429 0,00297
1 0,004649 0,00381   1141.58100

00000001 
0,00546

2 0,004957 0,005209 

964.497 0,00332 0,00461 0,003965   809.429 0,00723
8 0,003123 0,00518 

1066.53300
00000001 

0,00586
5 0,004565 0,005215   1184.572 0,00486

1 0,005317 0,005089 

1184.572 0,00247
5 0,004439 0,003457   981.525 0,00361

8 0,006495 0,005057 

971.573 0,00442
1 0,004435 0,004428   1022.53 0,00506 0,004871 0,004966 

1027.565 0,00326
2 0,004346 0,003804   834.443 0,00677

2 0,002832 0,004802 

890.453 0,00367
8 0,004296 0,003987   2750.663 0,00422

7 0,005361 0,004794 

988.528 0,00300
7 0,00428 0,003644   856.473000

0000001 
0,00526

9 0,004265 0,004767 

2690.586 0,00398
7 0,004243 0,004115   1066.53300

00000001 
0,00541

6 0,00395 0,004683 

994.513999
9999999 

0,00405
6 0,00419 0,004123   1196.607 0,00427

5 0,005051 0,004663 

1149.559 0,00450
7 0,004046 0,004276   1127.572 0,00508

5 0,004212 0,004649 

957.574 0,00474
2 0,003988 0,004365   815.442 0,00576

8 0,003494 0,004631 

1018.50100
00000001 

0,00270
1 0,003977 0,003339   1080.548 0,00510

6 0,004027 0,004566 

1364.65899
99999999 0,00493 0,003948 0,004439   867.463999

9999999 
0,00596

4 0,003124 0,004544 

882.477 0,00352
3 0,003921 0,003722   1115.58199

99999999 
0,00481

2 0,004182 0,004497 

918.465 0,00250
6 0,003866 0,003186   866.472 0,00619

9 0,002718 0,004459 

1035.535 0,00383
5 0,003849 0,003842   911.476000

0000001 
0,00418

4 0,004655 0,00442 

1074.55 0,00562 0,003839 0,004729   983.516999
9999999 

0,00381
8 0,004924 0,004371 

856.473000
0000001 

0,00331
8 0,003734 0,003526   1116.576 0,00494

3 0,003752 0,004348 

950.483999
9999999 

0,00474
3 0,003713 0,004228   1320.67600

00000002 
0,00259

5 0,00602 0,004307 

829.429 0,00283
9 0,003709 0,003274   1117.57 0,00334

6 0,005157 0,004252 

1117.57 0,00490
1 0,003708 0,004304   814.458000

0000001 
0,00384

9 0,004617 0,004233 

912.447 0,00336
6 0,003695 0,00353   994.513999

9999999 
0,00351

1 0,004753 0,004132 

942.496000
0000001 0,00318 0,003684 0,003432   1012.51399

99999999 0,00309 0,005148 0,004119 
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1127.572 0,00251 0,00367 0,00309   879.483000
0000001 

0,00494
1 0,003276 0,004108 

859.447 0,00276
5 0,003615 0,00319   2115.21100

00000002 
0,00415

3 0,00401 0,004082 

837.448 0,00324
4 0,003582 0,003413   995.512 0,00408

7 0,004035 0,004061 

931.486000
0000001 

0,00269
1 0,003574 0,003132   1120.57 0,00287

2 0,00513 0,004001 

1564.8 0,00286
7 0,003565 0,003216   980.549 0,00473

1 0,003235 0,003983 

817.416 0,00372
7 0,003542 0,003634   1131.566 0,00557

8 0,002346 0,003962 

878.476000
0000001 

0,00361
6 0,003531 0,003573   949.488999

9999999 
0,00292

5 0,004951 0,003938 

944.551 0,00323
1 0,0035 0,003365   823.449 0,00377

6 0,004073 0,003924 

874.438 0,00289
2 0,003497 0,003195   840.443 0,00538

1 0,002455 0,003918 

1116.576 0,00511
1 0,003445 0,004278   1024.517 0,00490

1 0,002904 0,003902 

1059.562 0,00337
3 0,003416 0,003395   934.475 0,00504

7 0,002644 0,003845 

1044.537 0,00351
8 0,003413 0,003465   908.463000

0000001 
0,00359

8 0,004037 0,003817 

1012.51399
99999999 

0,00288
9 0,003345 0,003117   1079.557 0,00314

3 0,004454 0,003798 

1094.598 0,00399
6 0,003338 0,003667   859.447 0,00393

7 0,003641 0,003789 

972.534 0,00295
5 0,003335 0,003145   1267.681 0,00414

2 0,003316 0,003729 

884.467 0,00274 0,003335 0,003037   886.463999
9999999 

0,00535
5 0,002071 0,003713 

981.525 0,00613
3 0,003329 0,004731   936.503 0,00286

4 0,004388 0,003626 

1007.551 0,00315
7 0,003288 0,003222   1044.537 0,00443

8 0,002772 0,003605 

1251.598 0,00415
9 0,003284 0,003721   822.444 0,00389

1 0,003294 0,003593 

1297.634 0,00295
4 0,00324 0,003097   1093.585 0,00446

6 0,002711 0,003589 

1081.565 0,00395 0,003226 0,003588   1077.565 0,00351
4 0,003655 0,003585 

1062.552 0,00219
3 0,003209 0,002701   839.4 0,00427

8 0,002814 0,003546 

1269.687 0,00383
8 0,003207 0,003523   836.449 0,00328

3 0,003775 0,003529 

1173.563 0,00281
6 0,003203 0,00301   817.416 0,00301

6 0,004031 0,003523 

904.478999
9999999 

0,00246
5 0,003199 0,002832   1095.59199

99999999 
0,00280

2 0,004222 0,003512 

1024.517 0,00307
8 0,003166 0,003122   966.538 0,00412

7 0,00284 0,003484 

1562.81399
99999999 

0,00246
7 0,003165 0,002816   990.496000

0000001 
0,00402

4 0,002906 0,003465 

1022.53 0,00437
6 0,003162 0,003769   1302.64800

00000001 0,00296 0,003947 0,003454 

1546.79799
99999998 

0,00202
1 0,003162 0,002591   878.476000

0000001 
0,00457

7 0,002202 0,00339 
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898.496000
0000001 

0,00288
5 0,003161 0,003023   1584.805 0,00190

9 0,004869 0,003389 

923.488999
9999999 

0,00452
9 0,003156 0,003842   927.498999

9999999 
0,00316

8 0,003538 0,003353 

1542.783 0,00438
5 0,003155 0,00377   1173.563 0,00192

3 0,004705 0,003314 

1280.624 0,00246 0,003126 0,002793   1087.57399
99999998 

0,00351
9 0,003105 0,003312 

815.442 0,00226
9 0,003123 0,002696   1366.66299

99999998 
0,00457

7 0,001959 0,003268 

1137.575 0,00321
5 0,003116 0,003165   1098.57100

00000001 
0,00296

4 0,003543 0,003253 

1004.51 0,00287
6 0,003112 0,002994   1107.575 0,00237

9 0,00412 0,00325 

1136.589 0,00231
1 0,003097 0,002704   967.536999

9999999 
0,00338

5 0,003108 0,003246 

2695.60599
99999998 

0,00278
4 0,003095 0,002939   914.481000

0000001 
0,00279

9 0,003656 0,003228 

800.422 0,00344
8 0,003078 0,003263   965.531000

0000001 
0,00440

9 0,00204 0,003225 

862.459 0,00303
7 0,003058 0,003048   852.443 0,00318

7 0,003243 0,003215 

879.483000
0000001 

0,00292
1 0,003057 0,002989   845.447 0,00374

2 0,002646 0,003194 

2159.197 0,00533
4 0,003046 0,00419   909.472 0,0023 0,004033 0,003166 

965.531000
0000001 

0,00213
8 0,003045 0,002592   963.503999

9999999 
0,00336

6 0,002948 0,003157 

1138.573 0,00533
7 0,003039 0,004188   872.45 0,00302

1 0,003265 0,003143 

1069.575 0,00240
2 0,003028 0,002715   1004.51 0,00333

9 0,002881 0,00311 

839.4 0,00385
8 0,003027 0,003443   1006.507 0,00284

6 0,003327 0,003087 

1160.569 0,00307
7 0,003003 0,00304   1337.69799

99999999 0,00257 0,003598 0,003084 

986.545 0,00269
8 0,002992 0,002845   954.483000

0000001 
0,00309

2 0,003026 0,003059 

1095.59199
99999999 

0,00376
3 0,002988 0,003376   1007.551 0,00223

8 0,00387 0,003054 

983.516999
9999999 0,00333 0,002987 0,003158   969.51 0,00393

5 0,002165 0,00305 

836.449 0,00317
6 0,002965 0,00307   957.574 0,00334

8 0,002732 0,00304 

953.501000
0000001 

0,00287
8 0,002947 0,002913   982.511000

0000001 
0,00338

1 0,002673 0,003027 

1366.66299
99999998 

0,00263
6 0,002941 0,002789   961.491000

0000001 
0,00332

6 0,00271 0,003018 

987.526999
9999999 0,00263 0,002939 0,002784   1339.682 0,00275

6 0,003253 0,003005 

852.443 0,00322
4 0,002937 0,00308   889.465 0,00293

1 0,003071 0,003001 

933.472 0,00242 0,002931 0,002676   806.42 0,00341
4 0,002554 0,002984 

823.449 0,00231
1 0,00293 0,00262   896.422 0,00306

5 0,002898 0,002982 

982.511000
0000001 

0,00287
2 0,002927 0,0029   1000.52199

99999999 
0,00340

9 0,002553 0,002981 
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985.572 0,00406
9 0,002924 0,003497   1052.538 0,00343

5 0,002518 0,002976 

2084.03 0,00255
7 0,002915 0,002736   976.482 0,00401

1 0,001885 0,002948 

1076.577 0,00254
2 0,002909 0,002725   1542.783 0,00332

7 0,002555 0,002941 

963.503999
9999999 

0,00278
9 0,002875 0,002832   917.471 0,00325

1 0,002628 0,00294 

830.45 0,00198
5 0,002875 0,00243   1110.556 0,00331

5 0,002556 0,002936 

1119.58199
99999999 

0,00246
8 0,002873 0,002671   1198.71600

00000001 
0,00322

2 0,002615 0,002919 

993.564 0,00296
7 0,00287 0,002919   987.526999

9999999 
0,00214

1 0,003677 0,002909 

1090.562 0,00274
1 0,00287 0,002805   999.528 0,00231

4 0,003494 0,002904 

948.493999
9999999 

0,00282
8 0,002866 0,002847   929.521999

9999999 
0,00321

3 0,002582 0,002897 

2208.131 0,00280
7 0,002852 0,002829   2208.131 0,00160

2 0,004191 0,002897 

1850.92 0,00233
7 0,002848 0,002592   1076.577 0,00317

7 0,002611 0,002894 

1833.94700
00000001 

0,00293
6 0,002818 0,002877   933.472 0,00352

9 0,00223 0,00288 

1105.579 0,00232
4 0,002808 0,002566   1020.513 0,00310

9 0,002632 0,002871 

1040.525 0,00247
6 0,002795 0,002635   846.447 0,00370

8 0,001999 0,002854 

1126.586 0,00210
2 0,002791 0,002447   898.496000

0000001 
0,00367

4 0,002029 0,002852 

911.476000
0000001 

0,00307
5 0,002764 0,00292   1655.82399

99999998 
0,00347

7 0,00221 0,002844 

1530.73200
00000002 

0,00278
3 0,002754 0,002769   819.427 0,00277

9 0,002902 0,002841 

1303.629 0,00253
9 0,002753 0,002646   1111.603 0,00186

3 0,003777 0,00282 

900.505 0,00277
1 0,00275 0,00276   922.5 0,00261

7 0,003002 0,00281 

819.427 0,00230
4 0,002744 0,002524   1138.573 0,00368

2 0,001926 0,002804 

914.481000
0000001 

0,00220
8 0,00274 0,002474   1136.589 0,00252

3 0,003057 0,00279 

1242.692 0,00297
7 0,002737 0,002857   993.564 0,00302

6 0,002552 0,002789 

834.443 0,00247
8 0,00273 0,002604   918.465 0,00284

2 0,002706 0,002774 

1237.627 0,00221
6 0,002717 0,002467   1143.577 0,00243 0,0031 0,002765 

872.45 0,00328 0,002712 0,002996   876.454 0,00351
6 0,002014 0,002765 

1000.52199
99999999 0,00236 0,002705 0,002532   942.496000

0000001 0,00291 0,002527 0,002718 

807.413 0,00277
1 0,002702 0,002737   1126.586 0,00349

7 0,001928 0,002712 

1584.805 0,00235
6 0,002702 0,002529   971.573 0,0025 0,002924 0,002712 

845.447 0,00217
8 0,002701 0,00244   1088.55399

99999999 
0,00294

9 0,002437 0,002693 
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876.454 0,00233
9 0,002688 0,002514   851.453 0,00261

7 0,002765 0,002691 

1302.64800
00000001 

0,00243
7 0,002662 0,002549   1214.623 0,00249

1 0,002868 0,002679 

1129.586 0,00225
2 0,00266 0,002456   892.468000

0000001 
0,00219

5 0,003144 0,00267 

883.475 0,00219
8 0,002659 0,002428   915.492 0,00288

7 0,002421 0,002654 

902.482 0,00266
7 0,002656 0,002662   882.477 0,00350

9 0,001791 0,00265 

1196.607 0,00231
3 0,002653 0,002483   923.488999

9999999 
0,00260

9 0,002676 0,002643 

831.446 0,00222
7 0,002648 0,002437   1239.618 0,00264

4 0,002622 0,002633 

976.482 0,00298
6 0,002647 0,002816   998.503 0,00299

7 0,002262 0,002629 

1198.71600
00000001 

0,00297
2 0,002647 0,002809   1147.59100

00000001 
0,00331

6 0,001937 0,002626 

1107.575 0,00230
3 0,002638 0,002471   938.488999

9999999 
0,00374

5 0,001503 0,002624 

1289.671 0,00229
6 0,002632 0,002464   890.453 0,00281

4 0,002401 0,002607 

1028.599 0,00261
2 0,002631 0,002621   810.436 0,00212 0,003085 0,002602 

1131.566 0,00376
9 0,002625 0,003197   952.488999

9999999 
0,00307

5 0,002071 0,002573 

934.475 0,00269
7 0,002619 0,002658   1065.553 0,00236

8 0,002764 0,002566 

980.549 0,00415
9 0,002616 0,003387   1094.598 0,00287

7 0,002252 0,002565 

979.554 0,00402
3 0,002603 0,003313   857.473999

9999999 
0,00267

7 0,002416 0,002547 

920.491000
0000001 

0,00241
8 0,002578 0,002498   1487.711 0,00289

2 0,002199 0,002546 

984.508 0,00234
7 0,002577 0,002462   1010.53699

99999999 
0,00330

9 0,001777 0,002543 

1176.58199
99999999 

0,00264
4 0,002572 0,002608   1381.70200

00000002 
0,00288

8 0,002198 0,002543 

962.496000
0000001 

0,00218
3 0,002568 0,002375   807.413 0,00256

5 0,002514 0,00254 

955.513999
9999999 

0,00245
1 0,002565 0,002508   2084.03 0,00324

7 0,001828 0,002538 

1054.56399
99999999 

0,00351
1 0,002559 0,003035   984.508 0,00219

3 0,002824 0,002508 

997.523 0,00235
3 0,002559 0,002456   962.496000

0000001 
0,00282

5 0,002177 0,002501 

825.411000
0000001 

0,00361
2 0,002559 0,003085   883.475 0,00238

8 0,002606 0,002497 

851.453 0,00207
4 0,002551 0,002313   1220.702 0,00295

2 0,002015 0,002484 

943.54 0,00236 0,002548 0,002454   920.491000
0000001 

0,00271
5 0,002237 0,002476 

1154.58100
00000001 

0,00219
8 0,002535 0,002366   858.448 0,00257

8 0,002372 0,002475 

1267.681 0,00229
8 0,002533 0,002415   1072.566 0,00310

9 0,001825 0,002467 

857.473999
9999999 

0,00247
1 0,002518 0,002495   1032.56 0,00217

1 0,002737 0,002454 

199

Addendum



 

996.516000
0000001 

0,00265
9 0,002514 0,002586   1074.55 0,00264

4 0,002251 0,002448 

892.468000
0000001 

0,00262
7 0,002512 0,002569   1297.634 0,00273

4 0,002155 0,002445 

1092.553 0,00260
7 0,002512 0,00256   1090.562 0,00229

2 0,002593 0,002443 

974.506000
0000001 

0,00237
8 0,002511 0,002444   900.505 0,0028 0,002081 0,00244 

886.463999
9999999 

0,00239
4 0,002507 0,002451   939.49 0,00255

4 0,002322 0,002438 

1706.817 0,00263
8 0,002501 0,00257   1325.651 0,00207

9 0,002762 0,002421 

915.492 0,00246
2 0,0025 0,002481   1158.583 0,00232

2 0,002513 0,002417 

828.437 0,00234
3 0,002499 0,002421   2705.591 0,00176

9 0,003058 0,002413 

1006.507 0,00267
7 0,00249 0,002584   1289.671 0,00186

9 0,00295 0,00241 

956.513999
9999999 

0,00248
4 0,00248 0,002482   837.448 0,00280

3 0,002012 0,002408 

1381.70200
00000002 

0,00252
7 0,002477 0,002502   1510.736 0,00215

7 0,002648 0,002403 

1010.53699
99999999 

0,00210
9 0,00247 0,00229   978.518 0,0023 0,002484 0,002392 

1220.702 0,00260
1 0,002466 0,002533   1149.559 0,00181

5 0,002957 0,002386 

1036.55 0,00318
9 0,00245 0,002819   1105.579 0,00303

6 0,00173 0,002383 

850.461 0,00215
1 0,002444 0,002298   1018.50100

00000001 
0,00210
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