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CLINICAL AND POPULATION SCIENCES

Prediction of Stroke Infarct Growth Rates by 
Baseline Perfusion Imaging
Anke Wouters , MD, PhD*; David Robben, PhD*; Soren Christensen, PhD; Henk A. Marquering, PhD;  
Yvo B.W.E.M. Roos, MD, PhD; Robert J. van Oostenbrugge, MD, PhD; Wim H. van Zwam, MD, PhD;  
Diederik W.J. Dippel, MD, PhD; Charles B.L.M. Majoie, MD, PhD; Wouter J. Schonewille, MD; Aad van der Lugt, MD, PhD;  
Maarten Lansberg, MD, PhD; Gregory W. Albers, MD; Paul Suetens , PhD; Robin Lemmens, MD, PhD

BACKGROUND AND PURPOSE: Computed tomography perfusion imaging allows estimation of tissue status in patients with 
acute ischemic stroke. We aimed to improve prediction of the final infarct and individual infarct growth rates using a deep 
learning approach.

METHODS: We trained a deep neural network to predict the final infarct volume in patients with acute stroke presenting with large 
vessel occlusions based on the native computed tomography perfusion images, time to reperfusion and reperfusion status 
in a derivation cohort (MR CLEAN trial [Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic 
Stroke in the Netherlands]). The model was internally validated in a 5-fold cross-validation and externally in an independent 
dataset (CRISP study [CT Perfusion to Predict Response to Recanalization in Ischemic Stroke Project]). We calculated the 
mean absolute difference between the predictions of the deep learning model and the final infarct volume versus the mean 
absolute difference between computed tomography perfusion imaging processing by RAPID software (iSchemaView, Menlo 
Park, CA) and the final infarct volume. Next, we determined infarct growth rates for every patient.

RESULTS: We included 127 patients from the MR CLEAN (derivation) and 101 patients of the CRISP study (validation). The 
deep learning model improved final infarct volume prediction compared with the RAPID software in both the derivation, mean 
absolute difference 34.5 versus 52.4 mL, and validation cohort, 41.2 versus 52.4 mL (P<0.01). We obtained individual infarct 
growth rates enabling the estimation of final infarct volume based on time and grade of reperfusion.

CONCLUSIONS: We validated a deep learning-based method which improved final infarct volume estimations compared with 
classic computed tomography perfusion imaging processing. In addition, the deep learning model predicted individual infarct 
growth rates which could enable the introduction of tissue clocks during the management of acute stroke.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: deep learning ◼ infarction ◼ ischemic stroke ◼ perfusion imaging ◼ reperfusion

Acute ischemic stroke treatment aims at salvaging the 
hypoperfused tissue by recanalizing the occluded 
artery by intravenous thrombolysis or endovascular 

treatment (EVT). For years, expected time of symptom 
onset to treatment determined eligibility for these thera-
peutic regimens.1–3 Recent trials have provided evidence 
for efficacy of EVT after imaging-based selection in 

patients presenting outside of the conventional time win-
dows of stroke onset.4,5

Perfusion imaging, most commonly computed tomog-
raphy perfusion (CTP), can aid in identifying the poten-
tially salvageable tissue (ie, penumbra) calculated by 
subtracting the irreversibly damaged ischemic core from 
the hypoperfused lesion volume.6–8 The currently clinically 
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available software programs calculate different perfusion 
parameters by using a deconvolution technique.9,10 In 
the clinical trials DEFUSE 3 (Endovascular Therapy Fol-
lowing Imaging Evaluation for Ischemic Stroke), SWIFT-
PRIME (Solitaire With the Intention for Thrombectomy 
as Primary Endovascular Treatment), DAWN (Diffusion 
Weighted Imaging or Computerized Tomography Perfu-
sion Assessment With Clinical Mismatch in the Triage 
of Wake Up and Late Presenting Strokes Undergoing 
Neurointervention) and EXTEND (Extending the Time 
for Thrombolysis in Emergency Neurological Deficits), a 
relative cerebral blood flow (rCBF) <30% determined 
the ischemic core volume and a delay to the maximum 
of the residue function (Tmax) exceeding 6s identified 
the critically hypoperfused tissue.4,5,11,12 Patients were 
selected for inclusion in these trials based on a pre-
defined mismatch pattern of core and perfusion lesion 
estimates.13,14 However, the calculated maps depend on 
the software program used and can still require human 
input to distinguish artifacts from real perfusion deficits.10 
In addition, this deconvolution technique is inherently 
sensitive to noise and, therefore, improving the current 
perfusion algorithms or even use deconvolution-free 
summary parameters is the aim of current research.15–17 
Machine learning is an alternative to estimate tissue fate 
in patients with ischemic stroke.18–20 The current clas-
sification of tissue into penumbra and core relate to the 
moment of scanning and does not project the rate of 
infarct evolution which can be useful in transfer settings. 
The rate of infarct growth varies greatly between patients 
and is among other things dependent on the collateral 
circulation.21,22 The hypoperfusion intensity ratio (HIR), 
which ranges between 0 and 1, obtained at baseline with 
perfusion imaging correlated with actual infarct growth 
rates and a HIR value <0.5 suggested infarct growth 
rates below 5 mL/h.23 A better insight in the individual 
growth prediction could influence logistics regarding 
both transfer of patients as well as time metrics in com-
prehensive stroke centers.

We previously developed a deconvolution free algorithm 
based on deep learning (DL) to predict tissue status directly 
from CTP source images.24 The aim of this study was to 
compare final infarct volume estimation accuracy between 

a deep neural network and a classic deconvolution/thresh-
olding analysis. Additionally, we aimed to provide individual 
lesion growth rates in patients with a large vessel occlusion 
and correlate these estimations to the HIR.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

The local institutional review boards from all participating 
institutions approved the original studies.

DL Model
We trained a deep neural network to predict final infarct size 
in patients with acute ischemic stroke with large vessel occlu-
sions in the anterior circulation.2 We refer to the original paper 
for the full technical details of the DL model.24 To summarize, 
the network was trained based on the CTP source images 
from patients included in the MR CLEAN trial (Multicenter 
Randomized Clinical Trial of Endovascular Treatment for Acute 
Ischemic Stroke in the Netherlands; the derivation cohort) in a 
voxelwise classification approach. Four clinical parameters were 
added to the DL model: time of symptom onset to imaging, time 
to recanalization, modified Thrombolysis in Cerebral Infarction 
(mTICI) scores at the end of the procedure and the persistence 
of the arterial occlusion on CT angiography at 24 hours. The 
output of the DL model provides the probabilities of infarction 
per voxel. The predicted final infarct volumes are calculated 
by taking the sum of all probabilities and multiply this result 
with the volume per voxel (Figure 1). Upon request, we added 
the MI-CLAIM (Minimum Information About Clinical Artificial 
Intelligence Modeling) checklist to the Data Supplement as a 
quality check.25

Validation of the Final Infarct Volume Prediction
We compared the performance of the DL model in predicting 
the final infarct volume in 2 cohorts of patients to a clinically 
validated CT perfusion software package (ie, RAPID; iSche-
maView, Menlo Park, CA) which uses a deconvolution/thresh-
olding approach.9 The DL model was internally validated in a 

Nonstandard Abbreviations and Acronyms

CTP computed tomography perfusion imaging
DL deep learning
EVT endovascular treatment
HIR hypoperfusion intensity ratio
MAD mean absolute volumetric differences
mTICI  modified Thrombolysis in Cerebral 

Infarction
rCBF relative cerebral blood flow

Figure 1. Example of the probabilistic prediction made by the 
deep learning model using the native perfusion images and 
clinical parameters.
The red (online) voxels represent the probabilistic prediction of the final 
infarct by the deep learning model and the blue (online) line depicts 
the actual final infarct. CTP indicates computed tomography perfusion.
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5-fold cross-validation in the derivation cohort (MR CLEAN).2 
The cohort was randomly split in 5 subcohorts, and the model 
was trained 5× on the subjects of 4 subcohorts and evaluated 
based on the predictions for the subjects in the other subco-
hort.24 As a result, we obtained predictions for each subject 
by a model that was not trained on that subject. Here, the 
DL model was validated externally in an independent dataset 
from the CRISP study (Computed Tomographic Perfusion to 
Predict Response to Recanalization in Ischemic Stroke).26

We used the manually delineated lesions (from the original 
study) at follow-up CT scan on day 5 (or when not available 
at 24 hours) in the MR CLEAN study to define the gold stan-
dard for the final infarct volumes. For the CRISP study, these 
final volumes had been determined by the core lab based on 
the fluid attenuated inversion recovery images of day 5.27,28 The 
same slice coverage as for the initial CTP scan was considered 
for the calculation of the final infarct volume.

The DL model can predict the final infarct volume for any 
hypothetical level of achieved reperfusion. Inherently, the decon-
volution/thresholding approach can predict the final infarct only 
in the absence of reperfusion (baseline hypoperfused lesion 
volumes serves as a proxy for the final infarct volume) or if 
complete reperfusion is achieved (where the baseline infarct 
core will equal the final infarct volume). Poor and intermediate 
reperfusion status will result in an infarct volume which can-
not be estimated by the deconvolution/thresholding approach. 
To address this issue, we excluded patients with intermediate 
reperfusion when comparing baseline predictions versus actual 
final infarct volumes for both models. Successful reperfusion 
was defined as a mTICI scale 2b or 3 in patients who under-
went EVT; poor (mTICI, 1) or intermediate reperfusion (mTICI, 
2a); and no reperfusion in patients with a final mTICI of 0 and 
in addition patients without EVT in whom CT angiography at 24 
hours showed a persistent large vessel occlusion. In patients 
with successful reperfusion, the core volume at baseline, 
defined as the area with a reduction of the rCBF below 30%, 
served as the prediction of the final infarct volume. In patients 
without reperfusion, the hypoperfused lesion volume, delin-
eated by Tmax maps with a delay of >6s, was regarded as the 
predicted final infarct volume.5,7,29 These thresholds have been 
used in many clinical trials for patient selection for reperfusion 
therapy and are implemented by RAPID software as the default 
output maps.5,11 We visually inspected all the perfusion maps 
and manually corrected the arterial input function when auto-
matic selection failed.

Evaluating the ischemic core with CTP remains challenging 
and although the threshold of a rCBF <30% is clinically rel-
evant and validated, the mean absolute volumetric differences 
(MAD) between the CTP versus acute diffusion weighted 
imaging core volume is the smallest when using a threshold of 
38%.7 Therefore, in an exploratory analysis, we calculated final 
infarct volumes in patients with reperfusion based on the rCBF 
threshold of 38%.

Growth Prediction and Association With 
Collateral Grades in CRISP
We computed infarct volumes as predicted by the DL model at 
different time points after imaging and with various grades of 
reperfusion in the validation sample of the CRISP study. Based 
on these data, we calculated the mean lesion growth rates per 60 

minutes for patients in a time window between imaging and reper-
fusion of 30 to 180 minutes with simulated mTICI scores. We only 
show results for clinically relevant mTICI scores of 2a, 2b, or 3.

We obtained the HIR as a marker of collateral status, which 
is defined as the proportion of Tmax >6s volume with Tmax 
>10s.30 HIR correlates well with the quality of collateral circula-
tion determined by angiography.30 We investigated the associa-
tion between the HIR and predicted lesion growth in patients 
with a target mismatch profile similar as has been reported 
for actual growth in patients during transfer to a comprehen-
sive stroke center.23 This target mismatch profile was defined 
according to DEFUSE 3 criteria as a core volume below 70 
mL, an absolute difference in Tmax >6s minus core volume of 
at least 15 mL and a ratio of the Tmax >6s lesion over the core 
volume of 1.8 or higher.5

Statistical Analysis
Characteristics of the 2 study populations were compared with 
a χ2 test for categorical variables and with the Mann-Whitney U 
test for continuous variables.

We calculated MAD between the predicted and the gold 
standard final infarct volumes. These volume errors were com-
pared between the DL model versus RAPID software by the 
Wilcoxon signed-rank test.

Receiver operating characteristic curves are depicted for 
HIR values to discriminate between slow and fast predicted 
rates of lesion growth with optimal sensitivity and specificity. 
Following the definitions of a previous publication, the cut off 
for slow versus fast infarct growth was set to 5 mL/h.23 The 
optimal HIR threshold to separate slow and fast lesion growth 
was calculated by the Youden index. In addition, we compared 
the difference in median lesion growth between patients with 
good and poor collateral circulation with the Mann-Whitney U 
test.

R software was used for statistical analysis.31 P values 
below 0.05 were considered significant.

RESULTS
Demographics
We included 127 of the 500 patients randomized in the 
MR CLEAN trial. Reasons for exclusion were: absence of 
baseline CTP (231), insufficient quality of baseline CTP 
(42), incomplete information on reperfusion status (59), 
and lack of follow-up noncontrast CT (41). For the exter-
nal validation, we could analyze 104 of the 190 patients 
enrolled in CRISP. Most patients (84) were excluded 
since follow-up fluid attenuated inversion recovery at day 
5 was unavailable, and in 2 patients the CTP data was of 
insufficient quality (Figure I in the Data Supplement). We 
manually selected the arterial input function in 4 patients. 
Clinical and imaging characteristics of the included 
patients are listed in the Table. Patients from the CRISP 
dataset were older, had smaller baseline core volumes, 
presented later after symptom onset for CTP imaging, 
had shorter imaging to reperfusion time windows, and 
higher reperfusion rates. CRISP was a cohort study of 
patients undergoing EVT and the MR CLEAN trial was a 
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randomized controlled trial in which half of the patients 
did not receive EVT. This at least partially explains the 
lower rates of successful reperfusion in patients included 
from the MR CLEAN trial.

Validation of Final Infarct Volume Prediction
For the internal validation of the MR CLEAN study, we 
could include 48 patients (36%) with successful and 60 
patients (44%) without reperfusion to assess the baseline 
prediction of the final infarct size in comparison to RAPID 
software. When comparing the final infarct estimation in 
these 108 patients based on the RAPID analysis of the 
baseline CTP versus the actual infarct volume the MAD 
was 52.4 mL (SD, 49.8). The DL model provided a better 

estimate of the final infarct with a MAD of 34.5 mL (SD, 
29.4; P<0.01; Figure 2A, Table I in the Data Supplement).

In 19 patients with intermediate reperfusion from the 
MR CLEAN study, the MAD for the DL model versus the 
actual final infarct volume was 36.7 mL (SD, 38.3). This 
result did not differ from the group with complete or no 
reperfusion (P=0.64).

In the external validation of the CRISP study, we docu-
mented successful reperfusion in 87 patients (84%) and 
no reperfusion in 5 (5%). In this independent cohort of 
92 patients, the MAD between baseline and actual final 
infarct volume was also smaller (41.2 mL [SD, 55.4]) 
for the DL model compared with the prediction by the 
RAPID software (52.4 mL [SD, 58.3]; P<0.01; Figure 2B, 
Table I in the Data Supplement). Bland-Altman plots for 

Table. Demographic Data

 MR CLEAN (n=127) CRISP (n=104) P value

Age 63 (52–73) 68 (57–76) 0.01

Gender, female 63 (50%) 52 (50%) 1

NIHSS D0 17 (14–21) 18 (12–21) 0.36

Time of symptom onset to CTP, min 171 (110–233) 273 (154–406) <0.01

Time of CTP to recanalization, min 163 (136–217) 142 (106–174) <0.01

Core volume RAPID, mL 14.1 (0–39.9) 7.6 (0–20.3) 0.01

mTICI score 2b–3* 48 (38%) 87 (84%) <0.01

Final infarct volume, mL 51.0 (21.3–112.5) 52.0 (25.7–109.0) 0.80

Data are median (IQR) or n (%). CTP indicates computed tomography perfusion; IQR, interquartile range; MR CLEAN, Mul-
ticenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; mTICI, modified 
Thrombolysis in Cerebral Infarction; and NIHSS, National Institutes of Health Stroke Scale.

*For MR CLEAN in 48 of 75 patients (64%) randomized to the interventional arm the mTICI score was 2b–3.
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Figure 2. Overiew of the predicted 
final infarct volumes.
A, Internal validation: Scatterplots for 
predicted volumes (mL) for the MR 
CLEAN (Multicenter Randomized Clinical 
Trial of Endovascular Treatment for Acute 
Ischemic Stroke in the Netherlands) 
population (n=108). B, External validation: 
Scatterplots for predicted volumes (mL) for 
the CRISP population (n=92). Black line 
depicts the identity line.
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the internal and external validation sets are depicted in 
Figure II in the Data Supplement.

In an exploratory analysis of the CRISP dataset, we 
applied a different rCBF threshold of 38% to calculate 
the core volume (ie, the predicted final infarct volume 
in reperfused patients) with the RAPID software. This 
resulted in a lower MAD (42.2 mL [SD, 54.5]) for the 
calculations by the automated RAPID software. At this 
threshold, both the DL model and RAPID software per-
formed similarly in predicting the final infarct volume (P 
value for difference in MAD, 0.3).

In the CRISP dataset, 12 patients presented with 
intermediate reperfusion and the MAD for the DL model 
versus the final infarct volume was 58.5 mL (SD, 63.5). 
This difference was comparable to the group with com-
plete or no reperfusion (P=0.46).

Individual Growth Modelling
Based on the information of the baseline CTP, the DL 
model can provide infarct growth rates in individual 
patients. With the input of a particular reperfusion sta-
tus (mTICI 2a, 2b, or 3) at a chosen time point after 
imaging, the model is able to estimate the correspond-
ing final infarct volume. The evolution of infarct growth 
can be presented in a graph and transformed in a movie 
to provide clinicians with an interactive visualization. In 
Figures 3 and 4, we show examples of such growth 
predictions for different patients (Movies I and II in the 
Data Supplement).

We calculated the HIR and projected mean lesion 
growth rates per hour for patients who presented with 
a target mismatch profile (n=98, 94%). Figure 5A 
depicts the receiver operating characteristic curve of 

the HIR as a predictor of patients with fast (>5 mL/h) 
versus slow infarct growth rates (≤5 mL/h). The 
Youden index revealed an optimal threshold of 0.36 
to discriminate between these 2 growth patterns. In 
patients with a HIR <0.36, the median lesion growth 
rate was lower (2.7 mL/h) compared with patients 
with a HIR ≥0.36, in whom the median growth rate 
was 8.5 mL/h (P<0.01; Figure 5B). In Figure III in the 
Data Supplement, the scatterplot between HIR and 
predicted infarct growth rate is depicted.

DISCUSSION
We present a DL model to predict final infarct volumes at 
baseline based on CTP images and reperfusion status in 
patients with an acute ischemic stroke caused by a large 
vessel occlusion. The model improved estimations of final 
infarct volumes in 2 independent cohorts compared with 
a clinically validated automated software. This DL model 
provided infarct growth rates for individual patients, and 
we replicated a correlation between the HIR and these 
growth rates.

The randomized clinical trials of EVT in the extended 
time window included patients in whom tissue status was 
known based on CTP or MR imaging, underscoring the 
importance of more advance neuro-imaging compared 
with only noncontrast CT and CT angiography.4,5 Although 
software packages to identify core and penumbra are 
clinically validated, limitations of the classic deconvolu-
tion technique are well described in the literature and 
current research focuses on more advanced learning 
approaches. Previously published DL models made use 
of the different perfusion parameters obtained by decon-
volution as input parameters or the output derived from 

Figure 3. Examples of infarct growth 
prediction curves.
A, Patient with a mean infarct growth of 
18.3 mL/h. The final infarct volume was 
104 mL. Recanalization was performed 
131 min after computed tomography 
perfusion (CTP) with a modified 
Thrombolysis in Cerebral Infarction 
(mTICI)=2b. B, Patient with a mean infarct 
growth of 2.3 mL/h. The final infarct 
volume was 10.8 mL. Recanalization was 
performed 101 min after CTP with a 
mTICI=3.
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deconvolution as ground truth.18,32–35 Our model is com-
pletely free of deconvolution by using the source per-
fusion images as input and the final infarct as ground 
truth, which is a great advantage. In previous research, 
we showed that source perfusion scans as input param-
eters outperformed perfusion parameters derived from 
deconvolution in predicting final infarct volume.24

CTP imaging reveals infarcted and hypoperfused 
brain tissue based on hemodynamic changes resulting 

from the occlusion of an artery. A decrease in the CBF 
has been validated as the most accurate prediction of 
the ischemic core with a threshold of a rCBF <38%. Cal-
culations of core volumes based on this threshold will 
occasionally overestimate the infarcted tissue, poten-
tially resulting in the exclusion of candidates for EVT. In 
clinical practice, preventing overcalling of the infarcted 
tissue is favored over accuracy and, therefore, the more 
strict threshold of a rCBF <30% was introduced in the 

Figure 4. Final infarct volumes for complete reperfusion as predicted by the deep learning model.
The predicted final infarct volumes are illustrated in red (online) at different time points. Patient A had a mean infarct growth of 9.6 mL/h and 
patient B of 12.8 mL/h. Corresponding movies can be found in Movies in the Data Supplement.
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Figure 5. Association between the 
hypoperfusion intensity ratio (HIR) 
and predicted infarct growth.
A, Receiver operating characteristics curve 
for HIR to predict lesion growth of 5 mL/h 
in patients with the target mismatch profile 
in CRISP (n=98). Youden index=0.36. B, 
Boxplots for the predicted infarct growth 
(mL/h) depending on a HIR <0.36 (n=36) 
vs ≥0.36 (n=62; P <0.01). AUC indicates 
area under the curve.
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RAPID software to determine core.7 The perfusion lesion 
volume (ie, the area in the brain which is critically hypo-
perfused) is derived from the Tmax parameter revealing 
delays above 6s.36 In patients with successful reperfu-
sion, the ischemic core obtained at baseline frequently 
equals the final infarct volume and in patients without 
reperfusion the estimated perfusion lesion volume acts 
as a prediction for the final infarct size.12 Any intermedi-
ate reperfusion status will result in stroke sizes between 
the baseline core and perfusion lesion volumes, but 
accurate prediction is unobtainable from conventional 
CTP analyses. Therefore, the comparison of the MAD 
between volumes acquired by conventional CTP-based 
automated software versus the actual final infarct could 
only be determined in the group of patients with and 
without reperfusion (ie, not in patients with intermediate 
reperfusion).

The DL model produced lower MADs in both the MR 
CLEAN and CRISP study compared with the RAPID 
software, one of the most commonly used perfusion 
software programs that is based on a classic deconvolu-
tion/thresholding technique. One of the advantages of 
the DL model might be the integration of the timing of 
the imaging related to the onset of symptoms and to the 
timing of recanalization. However, we do admit that the 
mean absolute differences remain quite large which is a 
known challenge in estimating infarct volumes at base-
line, likely due to the inherent limitation of the current 
perfusion imaging.17

We performed an exploratory analysis comparing the 
DL to the RAPID analysis with the rCBF <38% thresh-
old. This analysis underscored the previous findings of 
a more accurate prediction with this threshold since the 
MAD was no longer different between the 2 methods.

In the group with intermediate reperfusion, we could 
only investigate the performance of the DL model which 
revealed similar volumetrical differences to the group 
with complete or no reperfusion.

An important advantage of the DL approach is the pos-
sibility to predict the final infarct volume in different sce-
narios for both time to recanalization and mTICI scores. 
In addition, we created individual growth rates which can 
be visualized in graphs and movies displaying the evolu-
tion of the infarct. This tissue clock can guide physicians 
in several decisions like the indication to repeat neuro-
imaging in transfer patients and may encourage teams 
in comprehensive stroke centers during EVT procedures 
to improve time metrics. Models predicting infarct growth 
rates can also be of importance in future trials with neu-
roprotective agents. The most optimal patients will be 
those with substantial infarct growth in the therapeutic 
time window between imaging and reperfusion. Patients 
with slow infarct growth rates are not likely good candi-
dates for these neuroprotective treatments since consid-
erable infarct growth between imaging and reperfusion 
is not expected.37,38 In a previous study, collateral status, 

as assessed by the HIR at baseline, correlated with 
actual infarct growth rates calculated based on 2 neuro-
imaging studies before and after transfer of patients to 
a comprehensive stroke center.23 With our model, we 
identified a similar association between the HIR and the 
predicted lesion growth rate, which may represent an 
indirect confirmation of the growth prediction model. The 
suggested threshold of 0.36 closely approximates the 
threshold of 0.4 as predictor of collateral status defined 
on digital subtraction angiography and infarct growth in 
the original article that introduced the HIR.30 This analy-
sis was limited to patients with a target mismatch profile, 
which might have led to an exclusion of the fast growers. 
Therefore, validation in a cohort of consecutive stroke 
patients with large vessel occlusions would be of interest 
to increase the heterogeneity in perfusion profiles.

A general limitation of a DL model is the difficult inter-
pretation of the origin of the individual results. One can 
only interpret the probabilities of the final infarct predic-
tion, but not how they are exactly calculated by the DL 
model. Furthermore, our results are only applicable to 
patients with similar characteristics as in the described 
study population. Further research is warranted in other 
cohorts as for instance in patients with posterior stroke.

Another limitation of our study is the lack of a uni-
form method to quantify the final infarct volume. In 
the derivation cohort, we determined the final infarct 
on noncontrast CT imaging 5 days after stroke onset 
and if unavailable we used the 24-hour noncontrast 
CT. The latter may be suboptimal since in a substudy 
of MR CLEAN some infarct growth occurred after 
24 hours.27 Therefore, previously we evaluated the 2 
methods as measurement of the final infarct volumes 
and found no difference in performance of the DL 
model.24 In the validation cohort, we delineated final 
infarct volumes on the day 5 fluid attenuated inver-
sion recovery to enable a more accurate volumetric 
approach, since early MRI can result in underestima-
tion especially in patients who do not reperfuse.28,39 
Another limitation is the lack of a gold standard to vali-
date the calculated lesion growth rates. In MR CLEAN 
and CRISP, patients did not undergo 2 neuro-imaging 
studies before reperfusion therapy hampering mea-
surements of actual growth rates. Furthermore, hem-
orrhagic transformation may also contribute to infarct 
growth. The similar association with the HIR and our 
predicted infarct growth rates compared with the 
actual infarct growth found in a smaller study could 
serve as an indirect validation of our model.23

Conclusions
We validated an innovative DL approach to predict final 
infarct volumes directly from the CT source perfusion 
images in a large independent dataset of patients with 
acute large vessel ischemic strokes. The model can 
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derive individual infarct growth rates which could become 
part of clinical routine in both primary and comprehen-
sive stroke centers.
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