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Chapter 1: Introduction and Outline of Thesis
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Rationale
Artificial Intelligence (AI) is being used in oncology to analyze and compare
huge amounts of routinely collected data to find patterns and correlations with
an outcome of interest (e.g., survival, treatment response). AI can potentially
help clinicians to diagnose, treat, and track the progress of disease of cancer
patients more quickly and accurately.

Definitions
AI is a new technological science that investigates and develops theoretical
methods, technologies, and application systems for simulating, extending, and
expanding human intelligence. The relationship between machine learning
(ML), deep learning (DL), and AI is shown in Figure 1.1.

Figure 1.1 The relationship between machine learning (ML), deep learning (DL), and Artificial

intelligence.

Machine Learning
Machine Learning (ML) is the most important branch of AI. It spans several
disciplines including computer science, engineering, and statistics. ML can
excavate large amounts of high dimensional historical data and use them for
prediction or classification. More specifically, ML attempts to build a function
between the input (data) and the output (outcome) [1]. ML can be divided into
supervised and unsupervised learning

Supervised learning includes classification and regression models. The
classification model and regression model can predict specific labels (discrete
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value) and values within a certain range (continuous value) from input
features[2]. It is widespread in ranking, recommendation systems, recognition
tasks, etc.

Unsupervised learning does not require one to have “labels” in the dataset. It
applies statistical methods to find common features within the dataset. The
core applications of unsupervised learning are density estimation and cluster
analysis[3]. In the medical field, especially in clinical research, manually
labeling retrospective cohorts of patients requires massive human and
material resources, which usually makes it impossible to obtain large-scale real
data. Unsupervised learning algorithms can be used to automatically label data
by performing clustering, which can be helpful in cases where labeled data is
not available. Additionally, unsupervised learning algorithms can be used to
identify and group similar types of data, making it easier to identify patterns or
outliers.
Because there is no need of labelled data, unsupervised learning algorithms can
learn from larger scale data, making it easier for the algorithm to process and
better understand the task for more accurate performance. By combining
unsupervised learning with supervised learning methods, machine learning
models that make more accurate predictions and better decisions can be
created.

Deep Learning
Deep learning (DL), a branch of ML, refers to algorithms that simulate human
neurons by building large neural networks, also known as deep neural networks,
that are trained using computers with high-performance computing and vast
amounts of data[4].
DL has achieved impressive results in the analysis of medical images, beyond
visual inspection, as demonstrated in 2012 by Krizhevsky, who presented a deep
convolutional neural network called AlexNet, which won the first place in a
classification task containing 1.2 million high-resolution images in 1,000
categories, It demonstrated the ability of deep learning to automatically process
and classify images[5].
As more and more algorithms were proposed, it was found that deep learning
for medical image analysis achieved remarkable results in tasks such as organ
segmentation[6], disease diagnosis[7], tumor detection[8], etc. DL is trained so
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that the convolutional layers automatically extract the features needed for the
task from the image and make predictions.

Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs), a subset of DL based on game theory,
became popular in the medical imaging domain, mainly for synthetic data
generation[9]. Briefly, GANs consist of two competing actors: a generator and a
discriminator. They are used to generate synthetic images/samples and “judge”
the quality of the generated images, respectively. The equilibrium is reached
when the synthetic (i.e., “fake”) samples cannot be distinguished from the real
distribution [10].
Since GANs were proposed in 2014 by Ian Goodfellow[11], it has been widely
used by an increasing number of applications in the standard of care medical
imaging. For example, GAN models can be used to simulate certain patient
conditions to better evaluate different treatment options. In addition, GAN
models can optimize Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI) scan data to obtain a clearer 3D view that can be used to
pinpoint treatment targets and precisely place treatment sources. Thus, in the
medical field, the application of GAN can improve image analysis, accelerate
diagnostic results, and can improve treatment simulation and target
localization.

AI applications on decisions

Traditional computer vision involves defining handcrafted features that are
extracted from medical imaging data, for example, to predict prognosis or
segment tumors. This technology is particularly advantageous in oncology
because it can automatically analyze a large amount of data. In recent years, the
Convolutional Neural Network (CNN) was widely used as an advanced medical
image feature extraction method to find the best features automatically.

AI can improve the accuracy and efficiency of diagnosis by providing
preliminary diagnosis information and highlighting important features in the
diagnosis process. AI, with its ability to summarize and analyze large amounts
of data to solve multifaceted problems, has become an important tool for
clinicians to identify similarities between heterogeneous cohorts of patients.
Furthermore, with the training of large amount of data, AI shows strong
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generalizability and precision, leading to the belief that it can be utilized to aid
physicians in making data-driven clinical decisions. Additionally, this
technology can offer a disease probability predicted by AI as supplemental
information to assist physicians in making the correct diagnoses[12].

AI applications on data augmentation

Oncology data is one of the most important resources for AI research in the
medical field[13]. Oncology data consist of a large amount of information, from
patient records to medical imaging and genomic and biological markers, which
can utilize AI to identify meaningful connections between features and specific
diseases and outcomes. In this way, oncology data is a critical resource for the
further development of AI in healthcare.

Artificial intelligence can automatically or semi-automatically segment tumor
regions of interest (ROI) from medical images such as CT and MRI [14]. This
can improve efficiency, accuracy, reproducibility, and consistency, and is more
attractive and has clinical potential than the current. fully manual method. For
solid tumors with clear boundaries, the results of semi-automatic and
automatic delineation are very similar to those of manual delineations [15].

The generation of radiotherapy plans requires the search for optimal treatment
parameters, such as the number of beams, clinical constraints, etc. Although
several traditional automated or semi-automated planning methods have been
proposed, they are time-consuming and highly dependent on the experience
and expertise of the radiation oncology staff [16]. Automated planning methods
based on deep learning have the potential to significantly reduce the care
professionals’ work time, increase efficiency, and reduce inter-observer
variability.

Medical data generation is a method of data simulation using AI technologies
such as neural networks, machine learning, and deep learning to generate high-
quality and precise virtual data which can provide virtual and simulated data
for medical research to address the current shortage of experimental data.
Medical data generation technology can improve the efficiency of medical
laboratories and save time and cost.
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It enables researchers to quickly obtain large-scale realistic samples in a shorter
time. Such samples can help researchers to train AI and junior clinicians. AI-
generated samples can simulate realistic images containing lesions to help
researchers explore lesion structure and function so that junior clinicians and
researchers can better understand and more accurately identify lesions.
In addition, this technology is also helpful to improve the safety and accuracy
of clinical trials. Using AI to simulate clinical data, simplifies the complex
experimental process and helps to achieve higher levels of performance in
terms of security and reliability by predict the progression of disease, take
preventive measures in advance, and decide whether intervention is needed.

Objectives
This thesis proposes two hypotheses: first, an artificial intelligence (AI) model
can generate high-quality synthetic medical data from multiple sources,
thereby improving the performance of classification models when combined
with real data. Second, AI models can attain high accuracy in diagnosing
patients from multiple types of medical data, and they can significantly
enhance the efficacy of clinicians during the diagnostic process. To reach the
above objectives, this thesis has first focused on analyzing the limitations of the
state-of-the art solutions

Limitations
The main reason why it is difficult to obtain high-quality curated large datasets
may be due to the following reasons. First, the hardware for collection and
storage requires dedicated costs, which not all hospitals and research facilities
can afford. Secondly, labeling and cleaning routinely acquired unstructured big
data requires working time from medical professionals. Finally, the
confidentiality of medical data is also a very important responsibility [17]
because of the following reasons. Firstly, medical data involves confidential
information such as patients’ medical records, examination results, test results
and other treatments, and if this information is compromised, it could cause
serious damage to patients’ privacy. At the same time, a breach of medical data
has the potential to trigger legal disputes.
The difficulty of obtaining quality data will have a negative impact on the
progress of AI and medical technology. First, a low quality of data may reduce
the accuracy of data analysis, which may mislead AI decision-making; Second,
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insufficient data may cause the model to overfit, which results in the model not
being able to generalize to real-world applications. Finally, the lack of accurate
data will limit AI's development in the medical field.
Data imbalance refers to the unequal number of instances of different
categories, such as in a binary classification problem, when there is many
positive samples compared to the negative class. This is a common problem in
ML, which affects the results of AI applications [18]. This will bring issues
during model training. First, overfitting: a large difference in the number of
samples from different categories in the dataset prevents the model from being
adequately trained, which leads to over-fitting the training data of the most
frequent class with best performances, while reducing them significantly on the
other categories[19]. Second, the generalization ability is weakened. Due to the
large deviation of the training set, when the model is applied to external data,
the performance of the model may decline significantly. Third, accuracy
distortion: Data imbalance will reduce the classification accuracy of the model
because the model will tend to predict the categories with more samples, which
may lead to misclassification.
The impact of data imbalance on AI is significant, which affects not only the
results of AI but also their clinical value. Therefore, effective measures must be
taken to overcome this problem.
Because DL requires a large amount of data for training, it often needs to be
centralized and unified for training: a concept known as centralized learning.
However, this method will consume a lot of hardware storage and transmission
time. Moreover, especially for medical data,
legal and privacy issues are also important obstacles to centralized learning [20].
To solve the problems of data island (interpretation) and privacy protection, in
2016, H. Brendan McMahan [21] proposed a federated learning algorithm and
achieved comparable results to the centralized approach. Differently from
centralized methods, federated learning does not move data, but trains the
model by moving the model to all the data centers (‘nodes’). That is, instead of
transmitting data to the central server, the method of transmitting the model
realizes that the data is available and invisible to the server, to achieve the
effect of privacy protection.
AI models rely heavily on data to create algorithms that can help machines
learn how to recognize patterns in data. However, there are still some defects in
medical data. First, as privacy protection is a consequence of national
regulations, it may be difficult to collect complete human medical data,
especially genetic data. Second, the human body is an integrated system and
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the data from the single modality used, such as CT or a specific disease
biomarker, can be incomplete information, which can lead to errors in the
analysis of the patient. In this way, when the data is incomplete, the AI model
may not be able to accurately identify the pattern or establish a biased model,
resulting in unreliable results [22].
Robustness refers to the ability of a system or program to maintain accurate
predictions in data that has not been seen before. Due to the lack of reliability
and the complexity of medical data, AI is prone to unexpected results when
dealing with rare diseases [23]. Therefore, robustness is needed for AI models in
healthcare to operate accurately and reliably when faced with different data
sets, including rare diseases or unusual cases. It is generally achieved by
building models that can deal with both data that has been seen and data that
has not been seen before. This is achieved through developing models that can
generalize better and generalization techniques such as regularization, cross-
validation, and data augmentation. It is also important to keep track of data
drift and use transfer learning to ensure the right set of weights and
architectures to maintain an acceptable level of accuracy over time.
In the process of clinical diagnosis in the real world, clinicians need strong
evidence to support the clinical recommendations and explain them in the
consultation with the patient. Even though AI can approach or even exceed the
accuracy of clinicians in some medical imaging tasks such as the detection of
pulmonary nodules[26], tumor segmentation[27], etc, the AI prediction process
is a "black box" for people because the decision-making principle underlying AI
algorithms is often unclear. The AI diagnosis results given in this way are not
necessarily convincing for clinicians. Therefore, it is still unclear whether AI
can help clinicians in diagnosis and treatment, and further experiments are
needed to prove it.
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The contribution of the thesis related to solving the above

issues
The outline of thesis chapters displayed in Figure 1.2

Figure 1.2 the outline of the thesis chapters.



11

For data augmentation
AI can generate synthetic data by simulating the real-world data distribution. It
can help alleviate data privacy problems, fill the gaps in traditional data sets,
test AI systems, and make AI more accessible. However, it has been difficult to
verify whether the generated data is true enough by appropriate methods.
In Chapter 3, I designed an experiment to compare the gap between the
generated data and the real sample through the Turing test and numerical
methods and proved that the generated data is very close to the real data and
difficult to distinguish.

Data generated by AI can help solve the problem of uneven data distribution.
One of the biggest problems AI faces is insufficient data or unbalanced data,
which will cause AI to tend to multi-category, ignore a few category samples,
and significantly reduce the accuracy and availability of the model when
making decisions.
In Chapter 4, I designed an AI algorithm for data generation and demonstrated
that synthetic data can overcome the shortcomings of data imbalance and can
thus improve the accuracy of classification models.

For decisions

Designing an AI-based predictive system for medical diagnosis is a complex
process, as it typically requires gathering different types of data to face different
diseases. However, AI has enough potential to extract the necessary
information from a variety of highly disparate data sources to perform a specific
task, whether macroscopic medical images or microscopic biological markers.
In Chapters 5 and 6, I proved that despite different types of data from
macroscopic to microscopic , AI still can predict specific disease properties.
AI can be used to automate certain diagnostic tasks and to help clinicians make
more informed decisions. For example, AI can be used to identify patterns in
data, such as imaging data or omics data, to make predictions about the
diagnosis, disease progression, and therapeutic potential of certain diseases.
In Chapter 7, I compared the clinician’s performance such as efficiency and
accuracy and discovered that the clinicians with AI support have a significant
improvement in diagnosis accuracy, which means AI can support for diagnosis.
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Chapter 2: Applications of generative
adversarial networks (GANs) in radiotherapy:
narrative review
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Dekker ,Alberto Traverso *Applications of generative adversarial networks (GANs)
in radiotherapy: narrative review. 2022. Precision Cancer Medicine.
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Abstract

Objective: This review aims to provide an up-to-date snapshot of Generative
Adversarial Network (GAN) applications in radiotherapy.
Background: Radiation Therapy (RT) is the dominant method for clinical
cancer treatment, which aims to ensure that Planning Target Volume (PTV)
receives a sufficient dose while Organs-At-Risk (OARs) are exposed to little or
no radiation. However, obtaining a clinically acceptable radiotherapy plan often
requires a long time, tedious work, and a high level of physician experience.
The general steps to perform RT include planning (CT/MRI/PET) image
acquisition, contouring the treatment area (Gross Tumor Volume, OARs, etc.),
and developing a treatment plan and treatment implementation. But there are
still some challenges that need to be overcome. Fortunately, with the
development of the computer science, Generative Adversarial Network (GAN)
which is composed of a Generator and Discriminator with opposing optimized
goals has been widely used by an increasing number of applications in various
fields, especially in CT, MRI, and other images and plays a great role in RT.
Methods:We searched for studies published from January 2018 to March 2022,
with English language restrictions on PubMed and IEEE Xplore databases.
Conclusion: GAN model has already been widely used in RT. Thanks to their
ability to automatically learn the anatomical features from different modalities
images, improve quality images, generate synthetic images and make less time
consumption automatic dose and plan calculation. Even though the GAN
model cannot replace the radiotherapy doctors’ work, it still has great potential
to enhance the radiologists' workflow. There are lots of opportunities to
improve the diagnostic ability and decrease potential risks during radiotherapy
and time cost for plan calculation.
Keywords: Generative Adversarial Network, radiotherapy, applications
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Introduction

Radiation Therapy (RT) is the most used method for cancer treatment, which
aims to deliver the prescribed dose to the Planning Target Volumes (PTVs),
while simultaneously reducing at minimum the dose to Organs-At-Risk (OARs)
(1). Obtaining a clinically acceptable RT treatment plan often requires a long
time, tedious work, and a high level of physician/technician experience(2).
The general steps to perform RT planning include (CT/MRI/PET) image
acquisition, contouring of treatment area (Gross Tumor Volume, OARs, etc.),
treatment plan optimization, and treatment delivery.
However, there are still some challenges: first, sometimes a diagnosis is
performed on MR scans because of better soft-tissue contrast, but a CT is
always required to make a plan. Second, contouring and treatment planning is
time-consuming and dependent on expertise which is prone to inter-observer
variability.. Finally, in-room imaging is of a lower quality than diagnostic
computed tomography (CT).
In the last 10 years, the RT research community has focused on optimizing and
automizing the above-presented steps by using Artificial Intelligence (AI). With
the development of computer science, deep learning (DL) algorithms, a branch
of AI, are widely applied by researchers to solve the above-mentioned issues.
Generative Adversarial Networks (GANs), a subset of DL, became popular in
the medical imaging domain, mainly for synthetic data generation(2). Since
GAN was proposed in 2014 by Ian Goodfellow (3), it has been widely used by an
increasing number of applications in standard of care medical imaging,
especially in CT, MRI, and plays a great role in RT (4). A deep understanding of
GANs requires specific knowledge of computer science, often not available at
RT clinics.
Therefore, in this review, we will introduce the development of the GAN
models, their structures, their improvements, and their applications in RT
which can help the researchers have a preliminary knowledge about these deep
learning models.
For readers interested in a specific application of GANs, we have grouped the
GAN applications into three clusters: CT translation and synthesis (see later
GANs for synthetic imaging), dose and plan calculation (see later GANs for
dose and plan calculation), and image quality improvement(see later GANs for
quality improvement). Finally, we have discussed the limitations and future
directions to give some hints for the following researchers who want to develop
GAN applications in RT.
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We present the following article using a Narrative Review reporting checklist
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Methods

The search was performed from PubMed and IEEE Xplore datasets according to
multiple keyword combinations and the related MESH terms including:
“Radiotherapy”, “generative adversarial network(GAN)”, and “application”.
January 1, 2018, was set as the cut-off date because we only considered the
research within 5 years. The inclusion criteria were: original research articles
(proceedings included), English language, and the development of a GAN
model using a RT dataset. 100 publications were extracted according to the
search string above. Two researchers with expertise in deep learning, quickly
scanned the abstracts to exclude irrelevant articles. Subsequently, we scanned
the reference list from the selected articles to include the related ones which
were not found by the initial search. Finally, 23 articles refer to the applications
of GANs in radiotherapy, most of which were appropriately referenced in this
review (Table 1).
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Table 1 The search strategy summary
Items Specification

Date of Search (specified to

date, month and year)

2022-04-14

Databases and other

sources searched

PubMed & IEEE Xplore

Search terms used

(including MeSH and free

text search terms and

filters)

“Radiotherapy”, “generative adversarial network(GAN)”, and “application”

Timeframe January 1, 2018

Inclusion and exclusion

criteria (study type,

language restrictions etc.)

original research articles (proceedings included), English language, and the

development of a GAN model using a RT dataset.

Selection process (who

conducted the selection,

whether it was conducted

independently, how

consensus was obtained,

etc.)

Two researchers with expertise in deep learning, quickly scanned the

abstracts to exclude irrelevant articles.

Any additional

considerations, if

applicable

the reference list from the selected articles to include the related ones which

were not found by the initial search.
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DEVELOPMENT OF GENERATIVE ADVERSARIAL MODELS

Generative Adversarial Networks (GAN) are inspired by game theory. The basic
structure of the GANs model is shown in Figure 1(a). It is composed of a
Generator G and Discriminator D and it aims to optimize these components
alternately according to the Minimax game logic until they can't beat each
other (Nash equilibrium).

Figure 1.The structure of GANs model. (a) Generative Adversarial Network (GAN), (b)
Conditional GAN (CGAN) ,(c)Cycle GAN. G and D are respectively the generator and
discriminator. x and y present the real data come from different dataset. z present
random noise. G and F are the Generator. D , Dx, and Dy are discriminators. c is the
class information of x.

The generator G takes as input a vector z obeying the standard normal
distribution N(0,1) and creates the target data distribution G(z). The goal of
generator G is to synthesize new data in such a way that the discriminator D
cannot distinguish it from a real one. The discriminator D can be seen as a
classification network that distinguishes whether this new input data is real or
not.

The Nash equilibrium is reached when the generator G synthesizes data G(z)
hard to distinguish from the real ones and the discriminator D can classify real
and fake data with high precision.

In the process of training, indeed, the update of the generator G tries to make
the synthetic data classified as the real ones, so that the synthetic data is closer
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to the decision boundary and the real image. While, the discriminator D plays
the role of a binary classifier, and each update of the discriminator enhances its
ability to distinguish between real data and synthetic data, which means
dividing the correct decision boundary between the two kinds of data. With the
continuous training of alternate iterations, the synthetic data will close to the
real image, which will eventually make them indistinguishable to the
discriminator D, so that the generator G can fit the real data with a high degree
of realism.

However, the basic GAN generates data from noise so there are still some
shortcomings: first, the class of the generated data cannot be controlled and,
secondly, the transferring between two different clinical imaging modalities
cannot be done by a basic GAN. To overcome these problems, some
improvements to GAN based model were made.

CGAN (Conditional GAN)

In the training processing of GAN, the random noise Z is used as a priori
information in the comparison training process, which greatly improves the
calculation efficiency when the amount of data is too large. However, too much
random noise will lead to the uncontrollability of the training process and
experimental results, which greatly reduces the accuracy of the network. To
solve this problem, supervised learning or semi-supervised learning is added
based on GAN to effectively restrict the generation process and increase the
stability of the network during training. Conditional GAN is such an improved
model (1). The CGAN structure shown in Figure 1(b)

Cycle GAN

In the real world, it is difficult to obtain a large amount of paired image data
that arises from the same individual at different modalities or machines.
Therefore, Zhu et al proposed the Cycle-consistent Generative Adversarial
Networks (Cycle GAN) in 2017 to solve the problem of converting the images
between different modalities with unpaired data (2).

The Cycle GAN consists of two identical GAN models with a generator and
discriminator respectively. The generator is trained for getting a mapping
between data source distribution x and y.

The discriminators are the same as the traditional GAN model to determine
whether the data is real or synthetic.The structure of the Cycle GAN structure
is shown in Figure 1(c).
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x, z, and G(z) represent respectively the real data, the input data, and the
synthetic data generated by generator G.

For (c), F and G present two generators that generate fake data from y and x.
The Dx and Dy present the discriminators for distinguishing between real and
fake data created by the generators.

Evaluation metrics

The evaluation metrics needed to evaluate the quality of the synthetic data in
GAN-based radiotherapy applications are divided into three different groups:
image similarity, dose performance, and plan evaluation (shown in Table 1).
They can be selected according to the specific RT tasks.
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Table 2 Evaluation metrics for GAN applications.

Category Metric
s

Full Name Definition Function

Image
ME Mean error The average difference between the

estimated values and the actual value. ME =
1
n
i=1

n

fi − yi�

Image

MSE Mean
square error

The average squared difference between

the estimated values and the actual value. MSE =
1
n
i=1

n

(fi − yi)2�

Image

MAE Mean
absolute
error

The average absolute difference between

the estimated values and the actual value. MAE =
1
n
i=1

n

|fi − yi|�

Image

MRE mean
relative
error

The ratio of the mean absolute error to the

mean value of the quantity being

measured.

MRE =
1
n
i=1

n
|fi − yi|

yi
�
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Image

SNU Spatial
Nonunifor
mity

The maximum and minimum percentage

differences from the mean irradiance.
SNU =

HUmax� ������ − HUmin� �����
1000

× 100%

Image

PSNR Peak signal
to noise
ratio

The ratio between the maximum value of

an image and the value of corrupting noise

affects the fidelity of its quality.

PSNR = 10 log10 (
MAXi
MSE

)

Image

SSIM Structural
similarity
metric

The method to evaluate the quality of

images.
SSIM =

(2μxμy + c1)(2σxy + c2)
(μx2 + μy2 + c1)(σx2 + σy2 + c2)

Image

NCC normalized
cross

correlation

The normalized inverse Fourier transform

of the convolution of the Fourier transform

of two images.

NCC =
cov(I0, I)
σI0σI
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Image

LPIPS Learned
Perceptual
Image
Patch

Similarity

The method to measure the perceptual

difference between two images d(x, x0) =
l

1
HlWl h,w

||wl ⊙ (yhwl − y0hwl )||22��

Dose

DVH

differen

ce

Dose-
volume
histogram
difference

Difference between the dose-volume

histogram (DVH) is a histogram relating

radiation dose to tissue volume in radiation

therapy planning.

DVH difference =
i=1

n

DVHxi − DVHyi�

Dose

Hausdo

rff

distanc

e

Hausdorff

distance

The method measure the distance between

two point sets.

H(A, B) = max(h(A, B), h(B, A))

h(A, B) = max
a∈A

{min
b∈B

a − b }

h(B, A) = max
b∈B

{min
a∈A

b − a }
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Plan

CI Conformity
index

The method to quantitatively assess the

quality of radiotherapy treatment plans,

and represents the relationship between

isodose distributions and target volume.

CI =
VRI
TV

Plan

HI Homogenei
ty Index

The method to calculate the uniformity of

dose distribution in the target volume.

HI = D2% − D98%

Plan

APE Averaged
Prediction
Error

The average of the actual and the

estimated doses difference
APE =

1
� �=1

�
|������ ����ℎ� − �����������|�

Abbreviations:n: the amount of the pixel in the images. is the pixel value of the synthetic image. is the pixel value of the target
image. is the maximum possible pixel value of the image. x is the target images, y is the synthetic images. are the mean value of x and
y. is the variance of x. is the variance of y. is the covariance of x and y. c1 and c2 are two variables to stabilize the division with
weak denominator c1=(k1L)2,c2=(k2L)2,L is the dynamic range of the pixel-values, k1 =0.01 and k2=0.03 by default. presents covariance,
and are the standard deviation of target and generated images, respectively. h(A,B) and h(B,A) calculate the maximum distance
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between point groups. is the reference dose volume, and TV is the target volume. and are the percentage dose to 2% and 98%
target volume. and present the Dose-volume histogram difference distribution of two sets. and are the averaged maximum and
the minimum intensity of region of interests (ROIs) of patients’ data.
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Evaluation metrics for calculation similarity between synthetic data and target

Normally, it is difficult for human eyes to evaluate the similarity between
synthetic images and the target ones. These metrics can quantify the similarity
between them are shown in Table 2 image-related metrics.

The Mean Squared Error (MSE) and Mean Average Error (MAE) are the metrics
that refer to the expected value of the difference between the synthetic and
target data. The higher score means the bigger difference between them. The
Peak Signal to Noise Ratio (PSNR) represents the ratio of the energy of the peak
signal to the average energy of the noise. The higher the score, the smaller the
distinction between target and synthetic data.

The above metrics only calculate the gap between one-to-one correspondence
pixels without considering the other positions. This treats the image as isolated
pixels, while ignoring visual features, especially the local structural information.
The structural information has great influence on the subjective evaluation of
medical images.

Conversely, to address above shortage, the Structural Similarity Index Measure
(SSIM) consider a region of pixels when calculating the difference between two
images. When the two images are identical, the value of SSIM is equal to 1.

To align more the quantitiave evaluation of image similarity to the visual
inspection, the Learned Perceptual Image Patch Similarity (LPIPS) (5) was
proposed also known as Perceptual Loss. It is used to measure the difference
between two images in subject feeling contains rich image information such as
texture color and texture primitives.The lower the value of LPIPS, the more
similar the two images are.

Evaluation metrics for synthetic Dose performance

This type of evaluation is different from the evaluation method which compares
the similarity between the real target and the synthetic data. The similarity
metrics are not the best method considering the evaluation method between
synthetic and target doses. Based on the aforementioned motivation, to
evaluate the performance of the synthetic dose, the commonly used methods
are shown in Table 2 dose-related metrics.
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Dose-Volume Histogram (DVH) difference compares the difference of the
dose-volume histogram in RT planning between the generated and the real one.
The lower the score, the more realistic the generated doses are. Moreover, the
Hausdorff distance also can be used to calculate the difference between the
synthetic DVH and the real one.

Evaluation metrics for plan evaluation

For evaluation of the feasibility of the generated plan, a comparison between
the real and generated plan is required (shown in Table 2 plan-related metrics.).
Furthermore, the conformity index (CI) and Homogeneity Index (HI) scores
that can evaluate the conformity and uniformity of dose distribution also
should be considered. Averaged Prediction Error (APE) calculates the averaged
ratio of the prescription dose and the difference between the ground truth and
the prediction(4).

GENERATIVE ADVERSARIAL MODELS FOR CT TRANSLATION AND
SYNTHESIS

Different modalities of medical images can provide multimodal information,
that can be used for a better diagnosis and RT planning.

However, in a realistic situation, limitations due to unnecessary costs and
radiation protection of the patient, make it hard to collect all the desired
imaging modalities from a single patient. Fortunately, while there is a different
focus and range distribution between modalities, there is still some hidden
information in one type of image that may prevent the need to take another
one. This is why the cross-mode image synthesis method is feasible(6).

For treatment planning, CT is always required, while delineations are often
performed on MR, for example for pelvic or head and neck tumors. However,
the transformation from MR to CT will lead to an undesirable 2-5 mm
systematic error(7).

To address the systematic error, MR-only treatment planning was proposed, in
which only MRI is required as the sole input modality. It can protect the patient
from CT radiation doses and benefit a pediatric patient who has less dose
upper(8).
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The GAN-based method has the feasibility of mapping the information and
generating the image from different modalities. GAN can generate synthetic CT
(sCT) from MRI, thanks to allow performing the calculation of the dose
accuracy with a single MRI-only workflow.

For synthetic CT methods, Yingzi Liu et al. (2019) tried to integrate dense block
into 3D Cycle GAN to effectively generate the CT from T2-weighted MRI. Dense
block connects all blocks that make up the model directly into each other,
leading to each block gets additional inputs from all previous blocks and passes
on its own output to all subsequent blocks. This ensures the maximum
transmission of information between blocks in the model(see in Figure
2(a)).The proposed method achieved (51.32 16.91HU and less than 1% DVH
difference compare to the one generated by real CT. This demonstrates the
feasibility of GAN-based applications for the development of the MRI-only
workflow for prostate proton radiotherapy(9).

Figure 2. The structure of blocks. (a) dense block, (b) Atrous Spatial Pyramid Pooling
(ASPP) block. Conv presents the convolutional layer.

To evaluate whether the sCT is accurate enough for MRI-only treatment
planning, Samaneh Kazemifar et al. (2020) used Mutual Information (MI)
which is used to evaluate non-linear relations between two variables as the loss
function in GAN to overcome the misalignment between two modalities in
training model processing. In fact, one of the largest issues when translating
MR to CT is that the two images belong to different spaces: the frequency one
and the tissue density respectively. The above methods achieve a mean
absolute difference below 0.5%(0.3Gy) for the prescription dose for CTV and
below 2%(1.2Gy) for OARs. The excellent result illustrates that GAN is a
potentially promising method to generate sCT for MRI-only treatment planning
of patients with brain tumors in intensity-modulated proton therapy(10, 11).
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Zizhao Zhang et al. (2018) proposed a Cycle- and Shape-Consistency GAN to
synthetic realistic looking 3D images using unpaired data and improve the
volume segmentation by generated data. With the extensive experiment on a
4496 CT and MRI dataset, it proves that both tasks are beneficial to each other,
and coupling them has better performance than exclusively(12).

In another study, Sven Olberg et al. (2019) designed an Atrous Spatial Pyramid
Pooling (ASPP) structure in GAN model. ASPP is a structure that captures
objects and image features on multiple scales, thanks to the introduction of
multiple filters that have complementary effective fields of view (as shown in
Figure 2(b)).

The proposed method achieved a RMSE(17.7±4.3), a SSIM(0.9995±0.0003), a
PSNR (71.7±2.3), and great dose performance based on sCT with more than 98%
passing rates in the 1042 images test set. The excellent result illustrates the
designed structures can improve the performance of traditional GAN(13).

Meanwhile, different from traditional sCT which is generated from a single MR
sequence, Yuhei Koike et al. (2019) tried to generate and assess the feasibility of
sCT from multi-sequence MRI using GAN for brain radiotherapy treatment
planning. With the small, clinically negligible difference (less than 0.1% DVH
difference and 0.6 1.9 mm overall equivalent path length difference), CGAN is
feasible to generate sCT from multi-sequence include T1-weighted,T2-weighted
and fluid-attenuated inversion recovery (Flare) MRI(1).

Vincent Bourbonne et al. (2021) was the first study which demonstrate the
GAN-generated CT from diagnostic brain MRIs have comparable performance
to initial CT for the planning of brain stereotactic RT. In their study , the 2D-
UNet was selected as the backbone of generator. Through experiments on a
dataset of 184 patients, there were no significant statistical differences
regarding ICRU 91s endpoints, which means the synthetic CT and initial CT has
high similarity for both the organs at risk and the target volumes(14).

On the other hand, the time cost is also worth considering the feature of
radiotherapy applications.

Matteo Maspero et al. et al. (2018) tried to assess whether the GAN method can
rapidly generate sCT to be used for accurate MR-based dose calculations in the
entire pelvis. As the result, the CGAN required 5.6s and 21s for a single patient
on GPU and CPU, respectively. It achieves less than 2.5% calculated DVH
differences on sCT and CT. Results suggest that the sCT generation was



35

sufficiently fast and accurate to be integrated into an MR-guided radiotherapy
workflow(15).

The 8 key publications focusing on GAN application for CT translation and
synthesis are presented in Table 3.

Table 3 Key publications focusing on GAN application for CT translation and
synthesis
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Authors Year country
dimens

ion

model

informati

on

target Region patient
Evaluation

method
conclusion

Yingzi Liu 2019 USA 3D cycleGAN

T2-

weighted

MRI to CT

pelvic 17
MAE, DVH

difference

We applied a novel learning-based

approach to integrating dense-block into

cycleGAN to synthesize pelvic sCT

images from routine MR images (Lei et al

2019) for potential MRI-only prostate

proton therapy. The proposed method

demonstrated a comparable level of

precision in reliably generating sCT images

for dose calculation, which supports

further development of MRI-only

treatment planning. Unlike photon

therapy, the accuracy of proton dose

calculation is highly dependent on

stopping power rather than HU values.

Therefore, the future directions of MRI-

only proton treatment planning include

prediction of the stopping power map

based on the MR images and generating
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elemental concentration maps that can be

used for Monte Carlo simulations.

Samaneh

Kazemifar
2019 USA 2D GAN MRI to CT Brain 77 MAE

In conclusion, MRI-only treatment

planning will reduce radia tion dose,

patient time, and imaging costs associated

with CT imag ing, streamlining clinical

efficiency and allowing high-precision

radiation treatment planning. Despite

these advantages, several challenges

prevent clinical implementation of MRI-

only radiation therapy. Through the

method we have proposed here, synthetic

CT images can be generated from only one

pulse sequence of MRI images of a range of

brain tumors. This method is a step toward

using artificial intelligence to establish

MRI-only radiation therapy in the clinic.

Samaneh

Kazemifar
2020 USA 2D

GAN with

Mutual

Informati

on (MI) as

the loss

function

MRI to CT Brain 77
DVH

difference

This work explanted the feasibility of using

sCT images generated with a deep learning

method based on generative adversarial

networks (GANs) for intensity-modulated

proton therapy. We tested the method in

brain tumors—some of them located close
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to complex bone, air, and soft-tissue

interfaces—and obtained excellent

dosimetric accuracy even in those

challenging cases. The proposed method

can generate sCT images in around 1\,s

without any manual pre- or

post-processing operations. This opens the

door for online MRIguided adaptation

strategies for IMPT, which would eliminate

the dose burden issue of current adaptive

CT-based workflows, while providing the

superior soft-tissue contrast characteristic

of MRI images.

Zizhao

Zhang
2018 USA 3D

Cycle-

and

Shape-

Consisten

cy GAN

MRI to CT

and

Segmentati

on task

heart
4496

images

segmentati

on score

we present a method that can simultane

ously learn to translate and segment

medical 3D images, which are two

significant tasks in medical imaging. Train

ing generators for cross-domain volume-to-

volume transla tion is more difficult than

that on 2D images. We address three key

problems that are important in

synthesizing realis tic 3D medical images:

1) learn from unpaired data, 2) keep
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anatomy (i.e. shape) consistency, and 3)

use synthetic data to improve volume

segmentation effectively. We demon strate

that our unified method that couples the

two tasks is more effective than solving

them exclusively. Extensive ex periments

on a 3D cardiovascular dataset validate the

effec tiveness and superiority of our

method.

Sven

Olberg
2019 USA 2D

atrous

spatial

pyramid

pooling

(ASPP)GA

N

MRI to CT breast 2400

RMSE,

SSIM,

PSNR

In this study, we have evaluated the

robustness of the con ventional pix2pix

GAN framework that is ubiquitous in the

image-to-image translation task as well as

the novel deep spa tial pyramid framework

we propose here. The proposed framework

demonstrates improved performance in

metrics of training time and image quality,

even in cases when training data are

limited. The success of the framework in

sCT genera tion is a promising step toward

an MR-only RT workflow that eliminates

the need for CT simulation and setup scans

while enabling online adaptive therapy
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applications that are becom ing ever more

prevalent in MR-IGRT.

Yuhei

Koike
2019 Japan 3D CGAN

multi-

sequence

MRI to CT

Brain 580

DVH

difference

，clinically

negligible

difference

images from multi-sequence brain MR

images using an adversarial network. The

performance of the model was evaluated by

comparing the image quality and the

treatment planning with those of the

original CT images. The use of multiple MR

sequences for sCT generation using cGAN

provided better image quality and dose

distribution results compared with those

from only a single T1w sequence. The CT

number of the generated sCT images

showed good agreement with the original

images, but not in the bone regions.

Impacts on the dose calculations were

within 1%. These findings demonstrate the

feasibility and utility of sCT-based treat

ment planning and support the use of deep

learning for MR-only radiotherapy

Matteo

Maspero
2018

the

Netherl

ands

2D cGAN MRI to CT

abdomi

nal,

pelvic

91

DVH,mean

Dice

similarity

To conclude, this study shows, for the first

time, that sCT images generated with a

deep learning approach employing a cGAN
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coefficient and multi-contrast MR images acquired

with a single acquisition facilitated

accurate dose calculations in prostate

cancer patients. It was further shown that

without retraining the network, the cGAN

could generate sCT images in the pelvic

region for accurate dose calculations for

rectal and cervical cancer patients. A

particularly attractive feature of our

method is its speed as it allows sCT

generation within 6 seconds on a GPU and

within 21 seconds on a CPU. This could be

of particular benefit for MRgRT

applications.

Yingzi Liu 2019 USA 3D
cycle

GAN
MRI to CT

abdomi

nal
21

MAE,DVH

difference

We applied a novel learning-based

approach to integrate dense-block into

cycle GAN to synthesize abdominal sCT

images from routine MR images for

potential MRI-only liver proton therapy.

The proposed method demonstrated a

comparable level of precision in reliably

generating sCT images for dose calculation,

which supports further development of
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MRI-only treatment planning. Unlike

photon therapy, the accuracy of proton

dose calculation is highly dependent on

stopping power rather than HU values.

Therefore, the future directions of MR-

only proton treatment planning include

prediction of the stopping power map

based on the MR images or generating

elemental concentration maps that can be

used for Monte Carlo simulations.
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GENERATIVE ADVERSARIAL MODELS FOR DOSE AND PLAN
CALCULATION

The RT planning is highly dependent on the clinical experience and skills of the
radiotherapy physicist or dosimetrist, as well as their knowledge of
radiotherapy physics and understanding of the Treatment Planning System
(TPS). With advances in DL, especially GANs, automatically generating 3D RT
dose distributions from medical images like CTs and MRIs became possible. In
the past few years, several methods can generate dose distribution or Intensity-
Modulated Radiation Therapy (IMRT) plans from different kinds of inputs.

To overcome an limited dataset situation for a deep learning task, Wentao Liao
et al. (2021) proposed an Auxiliary Classifier GAN (ACGAN) to synthesize dose
distribution according to tumor types and beam types. The proposed with
excellent PSNR (75.6032) and MS-SSIM (0.95120) results, that demonstrate the
synthetic dose distribution is close to the real one which can be used for
increasing the training set for dose prediction tasks(16).

In order to different organs to jointly constrain the dose distribution of each
organ in model training to achieve better PTV dose coverage and OARs sparing.
Chongyang Caoet al. (2021) designed an Adaptive Multi-organ Loss (AML) -
based Generative Adversarial Network (AML-GAN). The AML loss can measure
the gap between synthetic dose and real one on whole dose , OAR and PTV
distribution. The experiment demonstrates the proposed method achieves
state-of-art APE (0.021±0.014) in terms of OARs and PTV(16).

Dose calculation is a time-consuming task, which sharply decreases the RT
workflow efficiency. Therefore, some GAN-based dose simulation methods to
decrease the time cost and generate accurate dose distribution were proposed.

In another work, Xinyi Li et al. (2021) designed a CGAN-based model which can
real-time generate fluence map from CT. This model containing a novel
PyraNet that implements 28 classic ResNet blocks in pyramid-line
concatenations as the generator. The proposed method was evaluated on 15
plans, the AI model only cost 3 s to predict a fluence map without statistical
significance from the real one. This approach holds great potential for clinical
applications in real-time planning(17).

While Xiaoke Zhang et al. (2021) proposed a discovery cross-domain GAN
(DiscoGAN) to generate comparable accuracy to Monte Carlo simulation
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without much time cost. The proposed method was evaluated on abdominal
cases, thoracic cases, and head cases by MRE and achieved no systematic
deviation. It demonstrates the proposed method has great potential for
accurate dose calculation compared to the Monte Carlo simulation method(18).

For RSP prediction application, Joseph Harms et al. (2020) used a Cycle GAN,
relying on a compound loss function designed for structural and contrast
preservation, to predict relative stopping power (RSP) maps from CBCT. With
the result of a MAE (0.06±0.01) and a ME (0.01±0.01) between RSP generation
from CT and CBCT, this method provides sufficiently accurate prediction which
makes CBCT-guided adaptive treatment planning for IMPT become feasible(19).

The 5 key publications focusing on GAN application for dose and plan
calculation and synthesis are presented in Table 4.

Table 4 Key publications focusing on GAN application for dose and plan
calculation and synthesis
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Author

s
Year country

dimen

sion

model

informatio

n

target Region patient
Evaluation

method
conclusion

Wenta

o Liao
2021 China 2D

Auxiliary

Classifier

GAN(ACG

AN)

Synthes

is of

Radiot

herapy

dose

head

and

neck

110
MS-SSIM and

PSNR,

We proposed the Dose-ACGAN for Data

Enhancement Work of Radiotherapy Deep

Learning. The dose distribu tion of

specified tumor category or beam number

category can be customized successfully,

and the desired dose dis tribution map can

be customized by controlling two vari ables

together. One purpose of Dose-ACGAN is

to generate multi-classification dose

distribution enhancement data, train and

generate dose distribution data of specified

tumor type or beam number type. Used for

training dose data required by radiotherapy

plan using AI model. The next step in

future work is to introduce CT data,

contour information and beam angle

information to customize the dose

distribution corre sponding to the
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predicted CT contour. Provide other better

ideas for automatic planning, By using the

dose distribution data of normal and

effective radiotherapy plans, a large num

ber of high-quality tagged data can be

generated, such as tumor types, beam

types, etc. The reliability and accuracy of

automatic dose prediction model for

radiotherapy will be improved effectively. A

further plan is to enhance the data in this

paper for a comparative study of different

AI of predicting dose tasks.

Xinyi

Li
2021 USA 4D

CGAN

contains a

novel

PyraNet

that

implements

28 classic

ResNet

blocks in

pyramid-

line

CT to

IMRT

plannin

g

orophar

yngeal
231 CI,HI

In this work, an AI agent was successfully

developed as a DL approach for

oropharyngeal IMRT planning. Without

time-consuming inverse planning, this AI

agent could automatically generate an

oropharyngeal IMRT plan for the primary

target with acceptable plan quality. With

its high implementation efficiency, the

developed AI agent holds great potentials

for clinical application after future

development validation studies.
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concatenati

ons as

generator

Chong

yang

Cao

2021 China 3D

an

Adaptive

Multi-

organ Loss

(AML)

based GAN

(AML-

GAN)

automa

tic dose

predicti

on of

cervical

cancer,

cervical

cancer
75 CI，OAR,APE

we propose an Adaptive Multi-organ Loss

based Generative Adversarial Network,

namely AML-GAN, to predict the dose

distribution map from CT images

automatically. Innovatively, besides the

global dose prediction loss, we have also

considered the dose prediction losses of

PTV and individual OAR separately,

making sure that the predicted dose

distributions of local areas are as accurate

as possible. Extensive experiments

demonstrate that our proposed AML-

GAN outperforms all state-of-the-art

approaches.

Xiaoke

Zhang
2021 China 3D

A discovery

cross-

domain

GAN

(DiscoGAN

)

Synthes

is of

Radiot

herapy

dose

head,ab

domen,t

horax

36 MRE,MAE

We developed a novel machine learning

model based on

DiscoGAN for dose calculation in proton

therapy, which offers comparable accuracy

(below 5%) to MC simulation but of

reduced computational workload. The
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relationship between MRE and other

factors such as dose, beam energy and

location within the beam cross-section was

examined. The proposed DiscoGAN has

proven effective in identifying the

relationship among dose, SP and HU in

three dimensions. If successful, our

approach is expected to find its potential

use in more advanced applications such as

inverse planning and adaptive proton

therapy.

Joseph

Harms
2020 Atlanta 2D cycle GAN

RSP

predicti

on

head-

and-

neck

23
MAE,ME,PSNR,S

SIM

This work presents the use of a deep-

learning algorithm for generation of RSP

maps directly from cone-beam CTs. The

proposed method closely matches the

quantitative values of the planning CT and

the geometric qualities of the daily CBCT.

When used for dose calculation, the

method shows strong agreement to a DIR

based method that is in clinical use for dose

evaluation while patients are under

treatment. The proposed method was

validated on head-and-neck patient CT
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images, a particularly difficult image set to

work with due to the presence of several

soft tissue structures, changing body

shapes, and the frequent presence of metal

artifacts. However, the proposed method

still produced and median MAE of around

0.06 when compared to the planning CT

and a median structural similarity of 0.88.

Gamma analysis between the proposed

method and the DPCT method using 3%

dose difference and 3 mm distance-to-

agreement had an average passing rate

around 96% showing that the method can

be used for dose evaluation.
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GENERATIVE ADVERSARIAL MODELS FOR QUALITY IMPROVEMENT

Traditional medical image enhancement methods are mainly used to improve
medical images with low contrast, narrow dynamic range, uneven intensity
distribution, and blurred edges. This is given by studying effective image
enhancement algorithms to improve the image quality of existing medical
images, improve their resolution or emphasize the important texture
information and suppress noise. After those passages, the images become more
standard and suited for computer-aided diagnosis (CAD) systems.

Medical images can be acquired with different methods according to the need
that doctors have to treat a particular case. Moreover, medical image data is
much more complicated than natural image data, and it is difficult to get
detailed information directly on the original data. These characteristics mean
that medical images have a relatively greater demand for image enhancement
algorithms that are beyond the capabilities of traditional algorithms.

In these cases, the GAN-based models can improve the quality of medical
images (e.g., denoising).

Several GAN-based methods are trained using paired data. Serdar Charyyev et
al. (2022) designed a residual attention GAN to synthetic dual-energy CT
(DECT) from single energy(SECT). The MAE, PSNR, and NCC were applied to
evaluate the performance of the synthetic high and low energy CT was 36.9 HU,
29.3 dB, 0.96 and 35.8 HU, 29.2 dB, and 0.96, respectively. The proposed
method has potential feasibility for proton radiotherapy by generating DECT
from SECT (20).

In another study, Kui Zhao et al. (2020) designed a supervised GAN with the
Cycle-consistency loss, Wasserstein distance loss, and an additional supervised
learning loss, named S-Cycle GAN, to synthetize full-dose PET (FDPET) from
low-dose PET(LDPET). The model was evaluated in 10 testing datasets and 45
simulated datasets by NRMSE, SSIM, PSNR, LPIPS, SUVmaxand SUVmean, and
the results show this method achieves accurate, efficient, and robust
performance(21).

A study by Dongyeon Lee et al. (2021) used Cycle GAN to synthetic kilovoltage
CT (kVCT) from Megavoltage CT (MVCT). With the excellent average MAE,
RMSE, PSNR, and SSIM values were 18.91 HU, 69.35 HU, 32.73 dB, and 95.48,
respectively. This Cycle GAN can improve the MVCT to KVCT while
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maintaining the anatomical structure in radiation therapy treatment
planning(22).

For CBCT improvement, some methods can synthesize target images from
unpaired data.

Jinsoo Uh et al. (2021) applied Cycle GAN to correct abdominal and pelvic
CBCT between children and young adults in the presence of diverse patient
sizes, anatomic extent, and scan parameters. The performance of the model has
significantly outperformed performance in the 14 patients’ test set (47 ± 7 HU
versus 51 ± 8 HU; paired Wilcoxon signed-rank test, P < 0.01). This proposed
method can decrease the impact of anatomic variations in CBCT images for
proton dose calculation(23).

Sangjoon Park et al. (2021) designed a spectral blending technique to combine
trained sagittal and coronal directions Cycle GAN to synthetic CT from CBCT.
The proposed method achieves better performance than the existing Cycle
GAN on PSNR (30.6027 versus 29.4991), NMSE (1.3442 versus 1.5874), and SSIM
(0.8977 versus 0.8674)(24).

Yingzi Liuet al. (2020) designed a self-attention Cycle GAN to synthetic CT
from CBCT. There is no significant different performance between the CT-
based contours and treatment plans from sCT on MAE and DVH differences.
The result indicates that the sCT from CBCT can be used for accurate dose
calculation(25).

Except self-attention, Liugang Gao et al. (2021) proposed an attention-guided
Cycle-GAN which contains two equipped with attention module generators to
generate attention mask. It can make generator pays attention to the important
part of images to eliminate numerous artifacts. By training and testing on a
dataset of 170 patients, the proposed method has similar quality with real CT in
MAE (43.5 ± 6.69), SSIM(93.7 ± 3.88), PSNR(29.5 ± 2.36), mean and standard
deviation (SD) HU values (P < 0.05). Besides that, sCT provided the highest
gamma passing rates (91.4 ± 3.26) in dose calculation compared with GAN
methods. These demonstrate that the proposed method can trained by
unpaired data to generate high-quality CT from CBCT(26).

The 6 key publications focusing on GAN application for quality improvement
are presented in Table 5.
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Table 5 key publications focusing on GAN application for quality improvement.

Authors Year country
dimensio

n

model

informati

on

target Region patient
Evaluation

method
conclusion

Serdar

Charyye

v

2022 USA

a residual

attention

GAN

single

energy

CT

(SECT)

to

synthetic

Dual

energy

CT

(DECT)

head-and-

neck
70 PSNR,NCC,ME

We applied a novel deep

learning- based approach,

namely residual attention GAN,

to synthesize sLECT and

sHECT images from SECT

images for potential

applications in the clinic where

a DECT scanner is not

available. The proposed

method demonstrated a

comparable level of precision in

reliably generating synthetic

images when compared to

ground truth, and noise

robustness in derived SPR

maps.

Kui 2020 China 3D a LDPET(l brain 109 NRMSE， In conclusion, we have
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Zhao supervise

d

cycleGA

N

ow-dose

PET) to

FDPET(f

ull-dose

PET)

SSIM, PSNR,

LPIPS,

SUVmax and

SUVmean

introduced a novel deep

learning based generative

adversarial model with the

cycle consistent to estimate the

high-quality image from the

LDPET image. The proposed S-

CycleGAN approach has

produced comparable image

quality as corresponding

FDPET images by suppressing

image noise and preserving

structure details in a supervised

learning fashion. Systemic

evaluations further confirm

that the S-CycleGAN approach

can better preserve mean and

maximum SUV values than

other two deep learning

methods, and suggests the

amount ofdose reduction

should be carefully decided

according to the acquisition

protocols and clinical usages.
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Dongye

on Lee
2021 Korea 2D

CycleGA

N

MVCT to

KVCT
prostate 11

Hausdorff

distances，

DVH

difference，

OAR

In this study, we developed a

synthetic approach based on

cycleGAN to produce skVCT

images from MVCT images for

applying MVCT to adaptive

helical tomotherapy treatment.

The proposed method

generates clear CT images by

including the anatomical

features of MVCT images

through a deep learning

algorithm without an

additional calibration process.

The cycleGAN employed in this

study was optimized using

augmented training data

derived from a small number of

CT images. The proposed

method successfully enhanced

the quality of the MVCT

images, preserving the

anatomical structures of MVCT

and restoring the HU to values
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similar to those of kVCT, along

with providing reduced noise

and improved contrast. The

MVCT can be better utilized for

aligning both the patient setup

for daily treatment and the

dose re-calculations for the

ART process by considering the

distributions of the HU values

of skVCT images approach and

those of the planning kVCT

images.

Jinsoo

Uh
2021 USA 2D

cycle

GAN

correct

CBCT

between

children

and

young

adults

abdominal,

pelvic
64 MAE and ME

Using both abdominal and

pelvic images for training a

single deep learning model and

normalizing age-dependent

body sizes helped mitigate the

impact of anatomic variations

in CBCT images. Delivered

proton dose can be accurately

estimated from the corrected

CBCT for children and young

adults with abdominal or pelvic



56

tumors.

Sangjoo

n Park
2020 Korea 2D

CycleGA

N

CBCT to

CT
Lung 10

PSNR,

NMSE,SSIM

In this paper, we proposed a

novel unsupervised synthetic

approach based on CycleGAN

to produce CT images from

CBCT images, which requires

only unpaired CBCT and CT

images for training. The

proposed method properly

combined CycleGAN and

spectral blending technique,

generating CT images by

CycleGAN and further reducing

the artifacts from missing

frequency problem by spectral

blending. Our method

outperforms the existing

CylceGAN-based method both

qual itatively and

quantitatively.

Yingzi

Liu
2020 USA 3D

CycleGA

N

CBCT to

CT
pancreas 30

MAE，DVH，

SNU,NCC

The image similarity and

dosimetric agreement between

the CT and sCT-based plans
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validated the dose calculation

accuracy carried by sCT. The

CBCT-based sCT approach can

poten tially increase treatment

precision and thus minimize

gastrointestinal toxicity
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Discussion

This review clusters the recent GANs application in RT articles into three
groups: CT translation and synthesis, dose and plan calculation, and image
quality improvement.

Among the included studies, in terms of treatment sites, the majority focused
on the head and neck (10/23). This was followed by the abdomen (8/23) and the
thorax (5/23).

In RT applications, compared with the traditional handcraft method, GAN
brings a potential significant improvement. The GAN model was trained to
attain target high-level information distribution rather than simple geometrical
and texture deformations. That makes GAN capable of establishing a nonlinear
mapping between two different modalities for image translation tasks such as
MR and CT or CBCT and CT.

Besides the accuracy prediction, the GAN model has less time consumption
compared with traditional methods such as Monte Carlo simulation. The GAN
applications can only cost a few seconds per patient which is an unimaginable
performance using traditional methods. This will enormously increase the
efficiency of RT.

All the publications mentioned in this review prove that GAN applications have
great performance in modality translation, dose calculation, and image quality
improvement tasks by maintaining anatomical and functional information,
which has great benefits in RT workflow.

However, the training of GAN models is a challenging task, as it contains two
models (generator and discriminator) with their own opposite targets. It differs
from traditional DL model which contain a clear target, such as classification
model that can stop training when it can achieve high accuracy in validation
sets.

Therefore, in order to train the model, the discriminator should train first to
make it has a preliminary classification ability to recognize real data from just
noise images. Thanks to this preliminary training it is then possible to train the
generator and so the whole GAN model. Then, the final training (adding
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generator) can stop when the accuracy of discriminator retains 0.5 or the loss
function of discriminator is unable to continue descent, that means the
discriminator can no longer distinguish between real and synthetic data given
by generator.

The setting of hyper parameters also significantly affects whether the model
can be successfully trained. Important hyper parameters to take in
consideration are batch size (BS), learning rate (LR), epochs and optimizer.

Batch size means the number of data feed to the model in per step of training,
which should be the first determined hyper parameter. Too small and too large
BS could cause problems of too long training time or difficult convergence of
the model, respectively. Though the ratio of image size and GPU’s memory will
significantly limit the large of BS, the number around 10 is recommended as BS
initial setting(27).

The epochs represent the number of times that model is trained on the whole
data set. The larger epochs, the more time consumption is required for training.
Therefore, 100 epochs were recommended to make the model get sufficient
training without too much time consumption.

The optimizer is the algorithm that modifies the weights of the DL model
during the trainingphase and the LR determines how much every iteration
influences the weights of the model..

For the optimizer and LR, the Adaptive Moment estimation (Adam) optimizer
and learning rate at 1e-4 are recommend and widely used as initial settings.

And, It is worth noting that, addition to the hyper parameters of the GANs
model, the physical difference (contrasts, scanners, and patients etc.) which
often not included during training also have a significant impact on the
performance of the generated images. Especially for MR images, image contrast,
or absolute image pixel values highly rely on scanning parameters and scanners,
which makes the algorithm more difficult to train, less robustness , harder to
migrate the model to data generated by other scanners, making it difficult to be
widely used. Fortunately, there are many traditional and deep learning based
image harmonization methods (adjusting the distribution of images from
different sources so that they are close to each other) can overcome the above
problem(28-30).

In order to develop and train a GAN model, there are many open-source deep
learning framework can be selected such as Pytorch, Keras, Tensorflow and
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Caffe. Among them, Pytorch developed by Facebook is the most widely
recommended framework by DL researchers.

Thank to convolutional neural networks (CNN), the GAN model can learn the
specific tissue and organ textures from the training sets such as brain, breast,
and pelvic which is impossible in the traditional handcraft method. It makes
GAN automatic maintain useful anatomical and functional details to achieve
excellent performance.

But there still some potential risks for GAN applications in medical imaging
tasks. Synthetic CT still remain some dimly visible artifacts in top and bottom
areas in some applications(24). And GAN’s tasks are highly dependent on data
quality and quantity which make them have difficulty with nonstandard patient
anatomies(7).

Although many studies (9, 13, 15, 25, 31-33) have conducted distribution
comparison between synthetic and real one or validated their models in
simulated clinical settings and have shown great potential to apply it in the real
world. It still needs more evidence to apply it in the clinic, such as conducting
clinical trials or embedding it into treatment planning systems to validate its
application in daily clinical practice. Setting these exciting results aside, there
are still some technical barriers that need to be overcome. For example, for
MRI-based generation of synthetic CT, organ effects such as organ motion (13,
33) and organs containing cavities (15) will have an impact on the accuracy of
the results or require manual intervention (11, 13), which needs to be supported
by more relevant studies, such as advances in deformable alignment techniques.
Therefore, we consider that the application of GANs techniques requires a
series of synergistic developments from a technical point of view to be
accomplished.

Another important consideration is the choice of the GAN model, that is
influenced by the typology of task it has to face.As the most common selected
model (shown in Figure 3), the Cycle GAN has great advantages over the other
two GAN models for unpaired data sets. It is composed of two independent
GANs which makes obtaining two different modalities of information
distribution become feasible without requiring a one-to-one correspondence.
This will significantly decrease the difficulty for the researchers to build a large
enough dataset for training. The basic GAN instead, is the second most selected
model. It has the simplest structure which makes it the researchers easier to
build their own model to address specific tasks. Finally, the CGAN with
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additional information as input can be used in the multi-class transformation
tasks.

Figure 3. The distribution of the GAN applications in Radiation Therapy
(RT).

As mentioned above, when the researchers have paired data but do not require
to generate the specific image according to the input class, the basic GAN was
recommended as the start. Otherwise, the CGAN is your recommended
selection. Finally, when only unpaired data, the Cycle GAN is the only choice
for this task(27).

Limitations and Future work

Though the GAN application has a strong power over image generation. There
are still some limitations that need to be discussed. First, 3D GANs have a
higher requirement in hardware which makes their deployment difficult in
most hospitals, so, model compression or small models need to be considered
in the future model design and deployment. Second, for plan and dose
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calculation, GAN-based applications have less time consumption compared
with the traditional methods. However, most of the methods still cannot
achieve real-time performance. So, the acceleration methods for GANs are still
worth studying. Third, the GAN-based application has not been applied in the
real-world clinical trial, which means it is still unclear how much the GAN can
help radiotherapy doctors. In this way, the GAN deployment in the real world
needs to be done in future works.

Conclusions

In conclusion, the GAN model has already been widely used in RT. Thanks to
their ability to automatically learn the anatomical features from different
modalities images, improve quality images, generate synthetic images and
make less time consumption automatic dose and plan calculation. Even though
the GAN model still cannot replace the radiotherapy doctors’ work, it still has
great potential to enhance the radiologists' workflow. There are lots of
opportunities to improve the diagnostic ability and decrease potential risks
during radiotherapy and time cost for plan calculation.
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Chapter 3: Generation of synthetic ground glass
nodules using generative adversarial networks
(GANs)

Adapted from Zhixiang Wang, Zhen Zhang, Ying Feng, Lizza E. L. Hendriks,
Razvan L. Miclea, Hester Gietema, Janna Schoenmaekers, Andre Dekker, Leonard
Wee and Alberto Traverso. Generation of Synthetic Ground Glass Nodules Using
Generative Adversarial Networks (GANs). Eur Radiol Exp 2022, 6
(1),59.https://doi.org/10.1186/s41747-022-00311-y.
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Abstract
Background: Data shortage is a common challenge in developing computer-
aided diagnosis systems. We developed a generative adversarial network (GAN)
model to generate synthetic lung lesions mimicking ground glass nodules
(GGNs).
Methods:We used 216 computed tomography images with 340 GGNs from the
Lung Image Database Consortium and Image Database Resource Initiative
database. A GAN model retrieving information from the whole image and the
GGN region was built. The generated samples were evaluated with visual
Turing test performed by four experienced radiologists or pulmonologists.
Radiomic features were compared between real and synthetic nodules.
Performances were evaluated by area under the curve (AUC) at receiver
operating characteristic analysis. In addition, we trained a classification model
(ResNet) to investigate whether the synthetic GGNs can improve the
performances algorithm and how performances changed as a function of
labelled data used in training.
Results: Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians. Of
93 radiomic features, 58 (62.4%) showed no significant difference between
synthetic and real GGNs (p ≥ 0.052). The discrimination performances of
physicians (AUC 0.68) and radiomics (AUC 0.66) were similar, with no-
significantly different (p =0.23), but clinicians achieved a better accuracy (AUC
0.74) than radiomics (AUC 0.62) (p < 0.001). The classification model trained on
datasets with synthetic data performed better than models without the
addition of synthetic data.
Conclusions: GAN has promising potential for generating GGNs. Though
similar AUC, clinicians achieved better ability to diagnosis whether the data is
synthetic than radiomics.
Keywords (MESH terms): Deep learning, Computed tomography, Lung, Neural
networks (computer), Solitary pulmonary nodule, generative adversarial
network

Key points
 We propose a technique that can generate synthetic ground glass
opacities.
 Some of the generated images were assessed as real by physicians
and imaging quantitative method (radiomics).
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 The synthetic data can improve the performance of deep learning
classification models.

Abbreviations
3D: Three-dimensional; AUC: area under the curve; CAD: Computer-aided
diagnosis; CT: Computed tomography; D L: Deep learning; GGO: Ground glass
opacity; GGN: Ground glass nodule; LIDC-IDRI: Lung Image Database
Consortium and Image Database Resource Initiative; ROI: Region of interest;
SRGAN: Super-resolution generative adversarial network; VTT: Visual Turing
test.
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Background
Artificial intelligence is a rapidly developing field including many applications
in computer vision, such as deep learning (D L) and machine learning methods
for the segmentation [1] and the classification [2] of anatomical structures and
abnormalities in standard of care diagnostic imaging. A strong effort is
dedicated to the implementation of these methods as computer-aided
diagnosis (CAD) tools to reduce the time burden of clinical tasks and improve
radiologists’ detection accuracy. For lung cancer screening, the number of CAD
systems to automatically identify the presence of pulmonary nodules has
exponentially increased in the last 10 years. D L methods have shown an
increased detection accuracy for all the types of pulmonary nodules (solid, part
solid, ground glass opacities) compared to traditional machine learning
methods in low-dose screening computed tomography (CT) scans [3,4].
The success of developing robust and widely applicable deep learning-based
CAD systems relies on the availability of a large amount of curated and
annotated data. However, annotating data consistently has a cost and is
dependent on radiologists’ time and availability. Even when large amount of
data is collected for training D L networks, the problem of class imbalance may
exist. The class imbalance problem refers to some labels (classes) being more
frequent than others. Due to this unbalance, the D L network will learn better
how to classify the more frequent samples, with degraded performances for the
minority class(es)[5]. In the specific case of pulmonary nodule detection,
ground glass nodules (GGN), although account for only 2.7% to 4.4% of all
nodules, are malignant in 63% of the cases [6].
Next to classical statistical methods such as SMOTE (synthetic minority
oversampling technique), researchers have investigated more advanced
methods for generating synthetic samples of original data, to increase and
balance the original sample size of the training dataset. Recently, generative
adversarial networks (GANs) have been proposed as a method to generate
synthetic images to improve the existing oversampling techniques [7]. GANs,
which are DL algorithms based on game theory, have been applied to several
computer vision tasks such as image denoising, reconstruction and as
mentioned, synthetic data generation [8,9]. Briefly, GANs consists of two
competing actors: a generator and a discriminator. They are used to generate
synthetic images/samples and “judge” the quality of the generated images,
respectively. The equilibrium is reached when the synthetic (i.e., fake) samples
cannot be distinguished from the real distribution [10].
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While many studies demonstrated the potential of GANs to generate synthetic
images, the generated images/samples have not been evaluated by radiologists,
and this limits the acceptance and use of GANs in a clinical setting. In fact,
generated images/samples should be representative of the “real” population.
However, by only focusing on evaluating at the “human-level” the
appropriateness of synthetic samples, it is not possible to draw any conclusion
whether the introduction of synthetic samples in the training samples will
improve the detection performances of CAD systems. In principle, it is expected
that adding as many synthetic samples as possible to the original data will lead
to a CAD system with better detection performances. It is important to notice
that generating synthetic samples via GAN is in itself a learning procedure,
where the original data is used to train the networks to generate the synthetic
samples. The ratio between original data available and the quality of generated
samples is not clear yet.
In this study, we investigated the following research questions:

i. Is it possible to use a GAN model to generate synthetic GGNs on
low-dose screening CT scans that are undisguisable by clinicians from
the real samples?

ii. How much labelled data is needed to generate synthetic GGNs of
sufficient quality to train a CAD for pulmonary nodule detection
achieving the same level of performance of a large amount of labelled
data?

To answer these questions, we developed an optimised GAN model with dual
discriminators to generate GGNs.
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Methods

Study population
A total of 216 subjects were selected from The Lung Image Database
Consortium and Image Database Resource Initiative ( LIDC-IDRI) database for
this study [11]. In this database, the nodules were classified into five grades by
four radiologists: 1 = ground glass opacity (GGO1); 2 = intermediate between 2
and 3; 3 = part solid; 4 = intermediate between 4 and 5; 5 = solid. We chose 340
GGN nodules of grades 1 or 2 that were annotated by at least two radiologists
for our study. To ensure data quality, further confirmation was performed by a
radiologist (author Z. Z), with five years of experience in lung CT, to verify that
all the nodules were GGNs.

Image preprocessing
In the preprocessing methods, first, the two-dimensional slices with annotation
as GGN from the CT volume were extracted. Second, in order to avoid
interference from external tissues of the lung, we first cropped the lungs from
the tissue and background with a seed-filling algorithm, which starts from an
inner point of the polygon area and draws points with the given grey level from
inside to outside until the boundary is found. Third, the cropped images were
padded by 0 in the background to keep every image having the same sizes (512
 512) in the dataset. Fourth, we normalised the data to the range 0-1, as is the
standard practice in computer vision. Fifth, we erased the nodules from the
original position and saved them as region of interest (ROI) for the training set.
In general, each training batch contained two images: the original image as the
target image, which serves as the ground truth for the generator (as shown in
Figs. 1 and 2), and another image is the input image, in which stripped the
nodule area, i.e., the ROI region was processed as blank for the input image. As
shown in Fig. 1, the network generates the nodule from the input image. In
addition, after generation, there are two discriminators (whole image
discriminator and ROI discriminator) to evaluate the quality of the whole
image and the ROI where the nodule is.

1 GGO is defined as a type of GGNs showing a misty increase in lung attenuation without obstructing the

underlying vascular markings; GGOs can also be called as “pure GGNs”, i.e. GGNs showing solely a GGO

component.
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Fig. 1. The pipeline for training the model. First. the generator synthetizes ground glass
nodules from the background according to the input image. Second. the region of interest
(ROI) discriminator (red line) and the whole image discriminator (blue line) extract
features from the ROI and whole image to classify the synthetic image and the target
whether the synthetic image is real.

Construction of the DL model
The super-resolution generative adversarial network (SRGAN) was used as the
backbone of the generator [12]. SRGAN compares the features difference in the
model between a pair of data and train the discriminators to improve the
realism of the recovered images. Both the whole image discriminator and ROI
discriminator are based on a ResNet [13] which is a widely used classical
classification networks combined by residual blocks with different input sizes
and depths of the network. The structure of the network is shown in Fig. 2.

Fig. 2. The structure of the network. The generator creates the synthetic ground glass
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nodule at the position where the mask in the input. The generator is composed of
convolutional layers with a kernel size of 3 × 3, the batch normalisation and the “parametric
rectified linear unit” (PReLU) activation function. The discriminator was composed of
convolutional layers with a kernel size of 3 × 3, the batch normalisation, and the leaky
PReLU activation function.

For training the network, the loss function was as follows:

��2����� = (����� + ������������)�ℎ��� �����

+ (����� + ������������)��� �����

(1)

������������ =
�=1

�

−����(�(�))�
(2)

�����(�, �) = 1 −
(2���� + �1) + (��� + �2)
(��2��2 + �1)(��2��2 + �2)

(3)

The ����� can be used to compare the similarity between two images. In this
loss function, the whole image is separated into two parts to calculate the loss
function respective. G and D represent the generator and discriminator, x is the

input of the generator. �� and �� represent the average of input x,y

respectively. �� and �� represent the standard deviation of input x,y

respectively. ��� is the covariance of x and y. C1 and C2 are constants to avoid

system errors caused by the denominator being zero.
All images were loaded with an unchanged original size of 512  512. The input
size of the discriminator for the whole image and the ROI image were 512  512
and 32  32, respectively. An Adam optimizer was used to train both the
generator and the discriminator with a learning rate of 0.0001. This model was
trained using an NVIDIA Tesla V100 SXM2 32 GB graphics processing unit.

Evaluation of model performance
We evaluated the model performance using both subjective (visual Turing test,
VTT) and objective (radiomics) approaches. VTT is an assessment method that
evaluation the ability of a human or doctors to identify attributes and
relationships from images [14]. Subjective evaluations were performed by two
radiologists (authors R.M. and H.G.) and two pulmonologists (authors L.H. and



76

J.S.),, who all had more than five years of experience in lung CT imaging and on
a daily basis evaluate chest CT scans. One hundred images (50 real and 50
synthetic GGNs) were divided into four batches and converted to a DICOM
(Digital Imaging and COmmunications in Medicine) file with 25 slices of
images, and each physician was randomly assigned to one of these batches. The
physicians categorised the real and synthetic GGNs into four classes based on
this categorical scale: confidently fake; leaning fake; leaning real; and
confidently real.
To perform an objective evaluation, radiomic features were calculated from the
original and generated data. Radiomics refers to the extraction of quantitative
information from medical images by computing the statistical, morphological
and texture features. The following feature categories were extracted using the
open source Pyradiomics package (version 3.0.1) with default values: first order
statistics (n = 18); grey level cooccurence matrix (n = 24); grey level dependence
matrix (n = 14); grey level run length matrix (n = 16), grey level size zone matrix
(n = 16); and neighbouring grey tone difference matrix (n = 5) [15-17].
The Kolmogorov-Smirnov test was used for the analysis of whether the
distribution of radiomics features were similar between the real and synthetic
GGNs. We considered significant p values lower than 0.05.
The results of the subjective and objective evaluations were analysed using the
area under the curve (AUC) at receiver operating characteristic analysis. For the
subjective evaluation, we took into consideration the VTT results. For the
objective evaluation, to compare the classification ability of radiomics and
radiologist, a logistic regression model was build based on radiomic features to
classify both real and synthetic GGNs. The same dataset was used for the
physician evaluations and the radiomics logistic regression model, with a 4-fold
cross-validation.
In addition, we also investigated whether the synthetic GGNs can improve the
performance of a CAD algorithm trained for recognizing GGNs from all types of
nodules in the LIDC-IDRI dataset and how the performance changed as a
function of labelled data used in the training.
As a CAD, we used a basic ResNet as the D L classification network with a
cross-entropy loss function. First, we separated the dataset into 10 training
subsets and an independent test set. We trained the classification network on
portions of the original data ranging from 10% to 100% of the real data and we
separately inferred on the test set. Then, we trained the classification network
on the original data added systematic data generated by the GAN network
trained in 10% to 100% of real data.
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Results
Examples of synthetic GGNs generated in different parts of the lungs with
different surrounding tissues are shown in Fig. 3. Nodules classified as fake (Fig.
3b) show more unnatural characteristics in terms of intensity and morphology
than nodules classified as “real” (Fig. 3a), specifically, "fake nodules" have very
high fixed gray values and regular shapes such as rectangles.

Fig. 3. Examples of synthetic ground glass nodules (GGNs), the GGNs were categorized by
physicians to four categories: confidently fake; leaning fake; leaning real; and confidently
real. a Synthetic GGNs classified as “real” by clinicians. b Synthetic GGNs with less
convincing generated lesions (classified as “leaning fake”). c A real GGNs in the original
LIDC-IDRI dataset.

VTT results
Fig. 4 presents the combination of the classification results for the four
clinicians. : Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians;
8/51 (16%) were classified as confidently real and 11/51 (22%) were classified as
leaning real.
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Fig. 4. Visual Turing test results. a, b Prediction distribution in synthetic and real ground
glass nodules. c Confusion matrix for the prediction.

Radiomics
Of a total of 93 features, 58 (62.4%) showed no significant difference (p ≥ 0.052)
between synthetic and real GGNs, and the detailed results are provided in Table
1. Fig. 5a shows the comparison of the distribution of radiomic features between
real and synthetic GGNs, the histogram shows the counts of specific feature
values, and the differences (p-values) in the extracted radiomic features
between real and synthetic GGNs were calculated. The receiver operating
characteristic curves constructed based on the results of VVT by clinicians and
logistic regression model developed by radiomics features are shown in Fig. 5b.
We observed a similar classification performance of clinicians (0.68) and
radiomics (0.66), with no-significantly different (p=0.23). However, the
clinicians achieve significant great performance accuracy around 0.74, better
than the 0.62 radiomics accuracy (p < 0.001). The clinicians achieves better
ability to diagnosis whether the data is synthetic than radiomics.
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Table 1. Comparison between real and deep learning-generated radiomic
features (p-values according to the Kolmogorov-Smirnov test)

Class Feature name p-value
Grey level co-occurrence matrix
(GLCM)

Inverse difference moment 0.984025

Grey level size zone matrix (GLSZM) zone percentage 0.934856
Grey level dependence matrix (GLDM) Small dependence emphasis 0.932657
Grey level co-occurrence matrix
(GLCM)

Inverse difference 0.926064

First order Robust mean absolute deviation 0.903346

GLSZM
Small area low grey level
emphasis

0.860311

Grey level run length matrix (GLRLM) Run percentage 0.827381
GLRLM high grey level run emphasis 0.729491

GLSZM
Grey level non-uniformity
normalised

0.696774

GLRLM Long run emphasis 0.676057
GLCM Sum entropy 0.658063

GLRLM
Long run high grey level
emphasis

0.652292

GLRLM Run entropy 0.652292
First order Entropy 0.643479
GLCM Inverse variance 0.616719

GLRLM
Short run high grey level
emphasis

0.582172

GLDM high grey level emphasis 0.574195
GLCM Joint energy 0.570327
GLCM Joint entropy 0.570327

GLRLM
Run length non-uniformity
normalised

0.570327

GLRLM Short run emphasis 0.570327
First order 90 percentile 0.541180

GLDM
Small dependence low grey level
emphasis

0.512551

First order Interquartile range 0.498064
GLCM Inverse difference normalised 0.456086
GLDM Large dependence emphasis 0.450880
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GLDM dependence variance 0.445137
GLSZM Low grey level zone emphasis 0.445137
First order Mean absolute deviation 0.414534
GLCM Autocorrelation 0.407415

GLDM
Dependence non-uniformity
normalised

0.403944

First order Mean 0.389392
GLRLM Run variance 0.375333

GLRLM
Grey level non-uniformity
normalised

0.324190

GLCM Maximum probability 0.307686
Neighbouring grey tone difference
matrix (NGTDM)

Strength 0.272504

GLCM Cluster tendency 0.267111

GLCM
Inverse difference moment
normalised

0.264157

GLDM dependence entropy 0.261878
GLRLM Short run low grey level emphasis 0.227646
First order Minimum 0.212067

GLSZM
Large area high grey level
emphasis

0.202291

First order Root mean squared 0.186989
GLSZM Large area emphasis 0.178996
GLDM Grey level variance 0.170028
GLCM Joint average 0,160908
GLCM Sum average 0,160908
First order uniformity 0,133892

GLDM
Small dependence high grey level
emphasis

0,124894

GLSZM Zone variance 0,119210
First order Variance 0,108119
GLCM Sum squares 0,108119
GLSZM High grey level zone emphasis 0,105973

GLDM
Large dependence low grey level
emphasis

0.082337

GLSZM
Size zone non-uniformity
normalised

0.074667

GLSZM Small area emphasis 0.073186
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GLSZM
Large area low grey level
emphasis

0.069577

GLRLM Grey level variance 0.066007

GLCM
Informational measure of
correlation 2

0.052283

GLRLM Low grey level run emphasis 0.045409

GLSZM
Small area high grey level
emphasis

0.044462

GLCM Cluster prominence 0.022046
GLSZM Grey level variance 0.021275
NGTDM Contrast 0.020502
First order 10th percentile 0.015568
GLDM Low grey level emphasis 0.014150
GLCM Difference entropy 0.011605
GLSZM Zone entropy 0.010051
GLRLM Long run low grey level emphasis 0.008825

GLCM
Informational measure of
correlation 1

0.006491

GLCM Difference average 0.005938
GLCM Maximal correlation coefficient 0.005586

GLDM
Large dependence high grey level
emphasis

0.003520

First order Maximum 0.002755
GLCM Cluster shade 0.002638
First order Range 0.001136
First order Median 0.000355
GLCM Contrast 0.000251
GLDM Dependence non-uniformity 0.000230
GLSZM Size zone non-uniformity 7.60E-05
NGTDM Busyness 6.60E-05
GLCM Correlation 2.40E-05
GLSZM Grey level non-uniformity 1.40E-05
NGTDM Complexity 1.40E-05
GLCM Difference variance 5.00E-06
NGTDM Coarseness 0.000000
First order Skewness 0.000000
First order Energy 0.000000
First order Total energy 0.000000
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First order Kurtosis 0.000000
GLRLM Run length non-uniformity 0.000000
GLDM Grey level non-uniformity 0.000000
GLRLM Grey level non-uniformity 0.000000

Fig. 5. a Examples for the comparison of radiomics features distribution between real and
fake ground glass nodules (GGNs). The comparison of radiomics features distribution
extracted from synthetic and real images with minimum three p values shows in the upper
row. The comparison of radiomics features distribution extracted from synthetic and real
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images with maximum three P values shows in the lower row
b. c. Receiver operating characteristic curve of the prediction of distinguishing real and fake
GGNs. by radiologists (a) and by the logistic regression model (b).

DL classification network
The results of the D L classification network trained using decreasing portions
of the dataset are shown in Fig. 6. When the dataset is 90%, the precision (i.e.,
positive predictive value) was similar between the two groups. However, when
the dataset decreased to 50%, the performance of the real data only group
significantly decreased. On the other hand, synthetic GGNs can increase
precision in training the DL network. When the sample decreased to 10%, the
real data has better performance than by adding synthetic data. From Fig. 6b,
the recall (i.e., sensitivity) of GGN was decreasing when decreasing the dataset
both in real data only and real data with GAN groups. However, in most cases,
models trained on datasets with synthetic data performed better than models
without the addition of synthetic data..

Fig. 6. Comparison precision (i.e.. positive predictive value) and recall (i.e.. sensitivity)
between real and added synthetic dataset in different percentages of the training set. The
blue and the red lines present the performance of the deep learning classification model
trained by real data and the real data plus synthetic data, respectively. The horizontal axis
label is the percentage of training data in the dataset. The vertical axis label is the score of
precision and the recall with the range from 0 to 1.
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Discussion
In the present study, we applied a GAN-based model with double
discriminators to generate GGN in low-dose CT scans. We benchmarked the
performance of the model using a qualitative (VTT with clinicians) and a
quantitative approach (radiomics).
To our knowledge, only one previous study proposed the use of GANs to
generate lung lesions and performed a VTT [18], which showed that 67% and
100% of the fake nodules were marked as real by two radiologists, respectively.
Differences exist between this study and our study: in the VVT of the cited
study [16], the radiologists reviewed the generated lesions, but the surrounding
tissues or the entire lungs were not included in the field of view. Moreover, the
surrounding tissues and the lung background that has relationship with
nodules were not considered when training and generating the nodules.
Conversely, we generated GGNs from the whole lung to use the anatomical
dependence with the background tissue [19]. However, the relatively small size
of our study compared to the previous research [18] probably influenced the
results of the visual Turing test.
Based on our VTT evaluation, we have shown that GAN-generated lung lesions
have the potential to be very consistent with real lesions. This gives us the
opportunity to use GAN-generated data to solve real-world problems, such as
using the generated data to train and test junior doctors, especially for hospitals
that do not have large cohort datasets, long-time established picture archiving
and communication systems, as privacy-preserving synthetic open datasets for
research purposes.
More than half of the radiomic features were not statistically different between
D L-generated and real nodules, proving that the generated GGNs are acquiring
or learning detailed features from the real sample. Furthermore, these
consistent radiomic features cover all classes, which could support the
conclusion that the proposed approach mimics different aspects of real nodules.
Conversely, one-third of the features in this study showed significant
differences in the distribution between the generated and real GGNs. Based on
the radiomics results and the clinicians’ opinion, we think that the low
complexity of the generated GGNs is the main reason for the discrepancy
between the generated and real GGNs. For example, the p-value of the radiomic
features coarseness (which can measure the spatial change rate) and complexity
(which can measure the non-uniformity of local grey levels) between real and
synthetic GGNs, are close to 0, supporting our hypothesis. We hypothesize the
following explanations: i) the data source is derived from public databases that
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have low resolution and lots of noise; ii) we did not optimise the training
process by specifically including radiomics features in the loss function.
Based on the radiomics results, we built a “radiomics physician” to discriminate
between real and generated GGNs, which interestingly is generally consistent
with the discriminatory ability of real physicians. It is worth noting that the
“radiomics physician” model was trained based on a sample of 100 cases, and
the physicians have more than five years of experience. Overall, it is a
challenging task to discriminate between real and generated GGNs for
“radiomics physicians” and real physicians.
Finally, we wanted to test how data augmentation with GAN will affect the
detection accuracy of a CAD system. Fig. 6 shows that adding synthetic GGNs
to the original dataset improves the performance of our D L CAD system.
However, there was no significant contribution when the size of the training
dataset is under 10% and over 70% of the original sample size. We hypothesise
that when the training data is under 10%, there is an insufficient number of
samples to train the GAN. A GAN trained on only a few samples cannot
synthesise the rich diversity and complexity of real GGNs. Based on the results
(Fig. 6), we conclude that the performance of the D L model increases with the
sample size in certain ranges of real data samples. However, as shown in Fig. 6,
the performance of the D L model cannot be improved after a threshold value
larger than the sample size, which is the plateau of the model. Specifically, for
effective dataset size to train a GAN, around 50% of training data which include
around 100 samples of GGN has the biggest increase in accuracy of the
classification model when synthetic GGN are added. Overall, from our
experiment, we found that:

i. synthetic data has the ability to increase the performance of a DL
model unless only a few training samples can be used;

ii. from the perspective of cost and effectiveness, around 100
samples are sufficient to develop a GAN model that can generate
realistic GGNs to significant improve the performance of the detection
GGN model.

This study has some limitations. First, we used a public dataset for training the
model, but we want to extend the work to other datasets. In future studies, we
will add high-resolution data from our centre for model enhancement. Second,
we only focused on GGNs, because of their lower incidence compared to other
types of nodules. However, the dimension and density variation of the included
GGNs is limited, which has the potential risk of obtaining optimistic radiomic
assessment results. We will perform transfer learning to generate lung nodules
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and tumours in the future based on the model in this study. Furthermore, the
diagnosis of malignant GGN is a challenging task for clinical practice. However,
in this study, we did not generate benign or malignant GGN. To address this
issue, we are collecting data from the real world with follow-up endpoints and
trying to generate qualitative GGN, especially malignant GGN.
Third, we generated only two-dimensional samples, However, generating three-
dimensional (3D) images is costly for model training, first, because 3D GANs
have a larger number of parameters which need more training data and also
have a significantly higher requirement in hardware when the input data has
large scale such as CT images. In the future work we will consider the model
compression to decrease the requirement of hardware and the size of dataset
for training the 3D GAN. We tried to perform our visual Turing tests by getting
closer as much as possible to a real clinical scenario. Nevertheless, it was out of
the scope of this study to integrate our D L models within the clinical
workstations available to our radiologists. As proof-of-concept, we proposed to
our radiologists the generated and real pulmonary nodules as two-dimensional
axial CT images in the standard lung window. Future work will include the
production of the generated nodules in standard DICOM formats in all the 3D
projections. We are also investigating the possibility to invest in the
development of a cloud-based platform to homogenise visual Turing tests for
similar experiments. In addition, we did not evaluate the morphological
features between the generated and real GGNs.
Fourth, we have not discussed the trend of data requirement for different task,
such as what happens when the quality of data is decreased, how many data
points need to be added when the target size us increased and whether
different sources such as CT and magnetic resonance imaging influence the
dataset requirements. In the future work, we will design experiments to figure
out the connection between the data requirement and different tasks.
Fifth, according to the results of the radiomics part, there are still considerable
differences between the real and generated GGO, and more than one-third of
the radiomic feature values were different, which may be a reflection that the
GAN method proposed in this study is not optimal. Based on this result, there
is still much potential for improvement of our algorithm, with a particular
focus on improving the level of complexity of the textures.
Sixth, we did not conduct interobserver and intraobserver testing and the
degree of disagreement between different readers was not assessed. On the
other hand, in our experience, the differences between the readers (physicians)
included in this study were limited to the same broad category, i.e., real or fake.
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For example, nodules labelled as “confidently real” by one physician have the
possibility of being labelled as “leaning real” instead of “confidently/leaning
fake” by other physicians.
Finally, despite the GANs are an elegant data generation mechanism gaining
more and more popularity in the medical field, most of them still present a
high level of complexity compared for example to traditional D L algorithms
such as convolutional neural networks. For example, there is no consensus on
the most appropriate metric to be used to stop the training at the best point
(global minimum of the loss function). This will sometimes lead to a not
satisfactory quality of the generated data. Especially when dealing with medical
images, the risk of introducing novel, undesired artifacts and blurry the images
is not negligible.
In conclusion, in this study, we used GANs to generate GGN and validated
these by four physicians and radiomics approaches, showing that GAN methods
have great potential for augmentation of the original dataset.
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Chapter 4: CycleGAN Clinical Image
Augmentation Based on Mask Self-attention
Mechanism

Adapted from Junzhuo Liu*, Zhixiang Wang*, Ye Zhang, Alberto Traverso, Andre
Dekker, Zhen Zhang and Qiaosong Chen. CycleGAN Clinical Image
Augmentation Based on Mask Self-Attention Mechanism. IEEE Access 2022, 10,
105942–105953. https://doi.org/10.1109/ACCESS.2022.3211670.
* indicates equal contributions
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Abstract

With the development of society and the advancement of science and
technology, artificial intelligence has also emerged as the times require. In
computer vision, deep learning based on convolutional neural networks(CNN)
achieves state-of-the-art performance. However, the massive data requirements
of deep learning have long been a pain point in the field, especially in the
medical field, where it is often difficult (and sometimes impossible) to obtain
enough training data for some specific tasks. To overcome insufficient and
unbalanced data, in this paper, we focus on the generation and balance of data
on radiation- induced pneumonia, an extremely rare disease with a low
incidence. As a result, datasets on this disease are extremely sparse and
unevenly distributed. To address the above problems, the predecessors’ method
is often to use generative models to generate data as a complement of the fewer
samples to achieve a balanced distribution of data samples. Among various
generative models, CycleGAN is widely used in medical image generation due
to its cycle consistency to achieve style migration without changing the basic
content. However, the original CycleGAN method has many shortcomings,
especially in Few-shot and the data unevenly distributed, its performance will
be greatly reduced. To make the generated data samples retain the original
structure and have finer and clearer details, this paper proposes a mask-based
self-attention CycleGAN data augmentation method. A self-attention branch is
added to the generator and two different loss functions named Self-Attention
Loss and Mask Loss are designed. To stabilize the training process, spectral
normalization is introduced to improve the discriminator and MS-SSIM and L1
joint loss are used to improve the original identity loss. The ResNet18 is used to
complete classification experiments on the radiation-induced pneumonia
dataset and the COVID-19 dataset respectively. Four classification performance
indicators: the area under the ROC curve (AUC), Accuracy (ACC), Sensitivity
(SEN), and Specificity (SPE) are calculated to verify the effectiveness and
generalization of our method. Compared with the original CycleGAN and
traditional data augmentation, the classifier trained by data augmentation
using our method has outstanding performance in multiple classification
indicators and has better classification performance. Experimental results show
that our method solves the problem of insufficient samples and data imbalance
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in the pneumonia dataset by generating high-quality pneumonia images. Code
is available at https://github.com/ngfufdrdh/CycleGAN-lung.

INDEX TERMS cycle generative adversarial networks, medical data
augmentation, deep learning
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Introduction

IIn the process of modern medical diagnosis, medical experts often use medical
images to assist diagnosis, such as CT, MRI, etc. Medical images are used to
reflect the internal structure of the patient’s body, assist doctors to determine
the possible lesions of the patient, and greatly improve the efficiency, accuracy,
and reliability of clinical diagnosis. At the same time, medical images
comprehensively display the subtle structure of the human body, which helps
to assist doctors in detecting early lesions. Deep learning can promote the
development of medical image-assisted diagnosis[1, 2]. However, there are still
multiple challenges in applying deep learning to medical image-assisted
diagnosis. One of the biggest challenges is the collection of medical data. In
supervised learning, the training of deep learning models requires a large
number of data samples, such as the CheX- pert dataset[3] contains 224,316
chest radiographs, and the fastMRI dataset[4] consists of 167,375 slices.
However, the probability of side effects for most treatments is relatively low.
For example, radiation pneumonitis (RP) is common radiotherapy toxicity,
which accounts for only 8-25% of pa- tients receiving radiotherapy[5]. The
limited positive sample size (patients suffering from RP) is an obstacle for deep
learn- ing methods. In previous studies on predicting RP, sample sizes ranged
from 100 to 400, with positive samples ranging from 20 to 150[5]. This reveals a
paradoxical point that currently exists across disciplines, where there is a strong
need for deep learning in the medical field and great difficulty in collecting data
available for model building, especially for low-incidence samples.

Using traditional data augmentation methods, such as translation, rotation,
cropping, denoising (or adding noise), color change, etc., can alleviate this
problem, and to some extent, it can also increase the generalization ability of
deep learning models. [6] proposes a cervical cancer prediction model (CCPM),
which innovatively combines the outlier detection methods density-based
spatial clustering of ap- plications with noise(DBSCAN) and iForest. For the
data imbalance problem, the data oversampling methods SMOTE and
SMOTETomek balanced data are used. Moreover, the classifier uses random
forest for predicting cervical cancer based on risk factors to improve the
prediction performance. There is also research about traditional methods in [7,
8]. However, the shortcomings of traditional data augmentation are also
obvious in some fields. The changes to the original data samples are not always
effective. Sometimes it will bring side effects, that is, it will interfere with the
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normal training process, and in most cases, the performance improvement of
the model is limited. This is a common issue in medical image processing.

To overcome this challenge, in recent years, GANs[9] have been widely used in
the augmentation of medical image data[10–12], by generating medical images
through random noise to increase data samples. Medical images generated by
GANs can be used as a complement to the original data to improve the
performance of deep learning models. The

function of G is to receive random noise z and generate data samples like real
data samples. The D has access to the real and synthetic data instances and
tries to tell the difference be- tween them. In this way, a dynamic game process
is achieved. However, for medical image augmentation of rare diseases, due to
the scarcity of training data, GANs have shortcomings such as non-convergence,
gradient disappearance, training crash, instability, and Uncontrollability[13].
CycleGAN[14] is often used to solve this problem. CycleGAN is composed of
two generators and discriminators. Based on ensuring the consistency of
structure and content, it realizes the mutual conversion between the two image
domains instead of gener- ating them from noise. Since the generated images
are trans- formed from other images, images generated by CycleGAN tend to
have better quality and detail in the case of few-shot, which is significant for
medical clinical diagnosis. However, in some cases, CycleGAN has difficulty in
distinguishing the region of interest from the background of images, often
caus- ing unnecessary over-transfer to the background, and there is still
instability during the training process[15]. This may corrupt previous images
and reverse the effects in subsequent downstream tasks. At worst, it will
mislead model training with disastrous consequences.

To overcome the shortcomings of CycleGAN while retaining its advantages, in
this paper, a mask-based self-attention CycleGAN data augmentation method is
proposed. Compare with the original CycleGAN, a mask self-attention module
is designed to make the model notice potential lesions image regions faster and
quickly distinguish other regions. Two dif- ferent loss functions named
Attention Loss and Mask Loss, based on the masked self-attention module, are
designed to guide the generation of images. At the same time, MS-SSIM and L1
joint loss is utilized to improve CycleGAN Identity Loss and introduce Spectral
Normalization to the discriminator to stabilize its training process.

Our contributions can be summarized as follows:



97

1.Unlike the simple fusion of the self-attentive mechanism in the CycleGAN
backbone network adopted in a large number of previous research, our work
takes into full consideration the medical facts and the shortcomings of the
original CycleGAN. We creatively design an attention branching module and
two loss functions for CycleGAN using the lung image Mask and the self-
attention mechanism. Our method is more applicable to the generation of
pneumonia images in few-shot scenarios.

2.Radiation-induced pneumonia, a rare disease, has been associated with few
studies. Sample sparsity and category imbalance are prevalent in studies about
the prediction of radiation pneumonia. Our method is utilized to convert from
negative pneumonia lung slices to realistic positive pneumonia lung slices,
which is positive for solving the above problems and applying artificial
intelligence to a wide range of studies on radiation-induced pneumonia.

3.Our method is quantitatively compared with traditional data augmentation
and the original CycleGAN method on the RP dataset and the COVID-19
dataset. Experimental results show that our method outperforms both.

The structure of this paper is shown as follows:

The second section introduces the existing work related to this paper and its
shortcomings while pointing out the purpose of our method. Section III
presents the details of the proposed method, including the network model
architecture design, the loss function, the evaluation methods for the
effectiveness of the method, and the training details. Section IV presents the
dataset. Section V presents our experimental results. Section VI presents the
discussion and limitations of our method. The last part is the conclusion.
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Methods

RELATED WORK

A. CYCLEGAN IN MEDICAL IMAGE DATA AUGMENTATION

GANs are the most widely used image generation model, composed of a
generator and a discriminator. The generator learns the characteristics of the
image and tries to fit the noise distribution to the real data distribution. The
discriminator distinguishes whether the input data is real or fake data generated
by the generator. As the two networks are trained alternately, the generated data
of the generator will gradually approach the real data and the discriminator will
reach a balance with the generator. However, GAN suffers from pattern collapse
during training and often generates poor quality images, especially in the case of
complex images. These problems are related to random noise as model input.
CycleGAN, following the idea of GAN, solves the above problems by taking the
image from another domain instead of random noise as input. It consists of two
generators and two discriminators, to realize interconversion between two image
domains. CycleGAN employs cyclic consistency to ensure that the basic
structure of the input image can be preserved when transforming image
domains into one another, thereby avoiding excessive changes. CycleGAN has
shown superiority in a variety of computer vision applications, including image
denoising[16, 17], image defogging[18–21], and super-resolution[22–24]. In
addition, CycleGAN is widely used in the field of medical image data
augmentation due to its unique model structure and excellent image generation.
Daniel[25]et al. used several CycleGAN networks to generate virus samples from
x-ray image samples that do not contain COVID-19, improving the classification
performance. In a similar vein, Tatiana[26] et al. Xu[27] et al. proposed a semi-
supervised attention-guided CycleGAN to generate realistic tumor MRI images
by adding tumor lesions from the original normal images, which improved the
performance of the ResNet18 based MRI image classification model. Thomas[28]
et al. used CycleGAN to eliminate staining variants from histopathological
images, which improved the segmentation performance and robustness of the
tissue segmentation algorithm compared to the traditional staining transform.
Tmenova[29] et al. considered both the complex physiology of arteries and the
vascular texture and used CycleGAN in the generation of vascular maps as a
means of data augmentation in learning tasks.
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B. ATTENTION

The attention mechanism was first used in natural language processing,
achieving superior in machine translation tasks. A slew of recent studies had
attempted to integrate CycleGAN with attentional mechanisms for image-to-
image transformation. The goal of these studies is to improve the model’s
performance by capturing the important regions and features in the image using
attention’s perceptual role. Mejjati[15] et al. used an unsupervised attention
mechanism to solve the problem of difficulty in focusing attention on individual
objects without altering the background in image transformation, resulting in
more realistic images than other methods. Liu[30] et al. introduced multi-scale
spatial atten- tion and channel attention to improve CycleGAN in spatial and
channel dimensions for synthesizing high-quality remote sensing images, which
improved the performance of aircraft detection models in remote sensing
images. [31] proposed Augmented CycleGAN network, which achieves
transferring the makeup style between two low-resolution images by identifying
salient pixel regions on low-resolution images in multiple scales, and using
channel attention to determine the most effective attention map.
Numerous studies have demonstrated that attentional mechanisms have an
excellent ability to capture critical information. Therefore, the attention
mechanism is used in this paper for enabling the model to capture critical
characteristics of medical images more quickly and guiding the generation of
more detailed images.

PROPOSED METHOD

A. MASK AND SELF-ATTENTION

The original image binary mask and self-attention mechanism are used to
construct the CycleGAN branch module. Its function is to make the model pay
attention to the key image areas, distinguish other areas quickly, and reduce
the interference of the background area to the model in the early stage of
training. The mask is made by generating a binary map of the subject region
from the input image, where the lung slice part takes a value of 1, and the rest
of the position is set to 0. The attention mechanism adopts a normalization-
based attention module, the Normalization-based Attention Module
(NAM)[32], which is different from other attention mechanisms because it does
not require additional calculations and parameters in convolution and full
connection. It applies a weight sparsity penalty to attention modules, making
them more computationally efficient while retaining similar performance,
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· ·

thereby suppressing less salient features. It adopts a scaling factor from batch
normalization (BN) as shown in equation (1). The scaling factor measures the
variance of channels and indicates their importance.

���� = �� ��� = �
��� − �ℬ

�ℬ2 + �
+ �

(1)

Loss = ∑(�,�)  �(�(�,�), �) + �∑�(�) +

�∑�(�)
(2)

In equation (1), µB and σB are the mean and standard deviation of the mini
batch, respectively; γ and β are trainable affine transformation parameters
(scale and shift)[33]. To suppress the less salient weights, it adds a
regularization term into the loss function, as shown in equation (2)[34], where
x denotes the input; y is the output; w represents network weights; l (.) is the
loss function; g (.) is the l1 norm penalty function; p is the penalty that balances
g (γ) and g (λ). The NAM attention mechanism was added into the middle part
of the entire attention module. We performed simple feature extraction on the
mask part first, then passed the feature map to the NAM module, and
upsampled it back to the original input image size again. Using NAM can
significantly improve the image conversion efficiency and stabilize the training
process.

B. SPECTRAL NORMALIZATION

Mode collapse and training instability are common problems in the training
process of GANs. WGAN[13] uses weight clipping to make the discriminator
satisfy the Lipschitz constraint, and proposes Wasserstein loss instead of
KullbackLeibler divergence and Jensen-Shannon divergence to measure the
distance between distributions. However, there are still problems in the way of
weight clipping in WGAN. Therefore, WGAN-GP[35] proposes the gradient
penalty to satisfy the Lipschitz constraint, solves the problem of gradient
explosion or disappearance caused by weight clipping in WGAN, and improves
the feature expression ability of the model, but the training process is still
unstable. SNGAN[36] proposes Spectral Normalization to normalize the
discriminator parameters, which improves the training stability of the
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discriminator. In this study, Spectral Normalization is also used to improve the
original CycleGAN discriminator to stabilize the training process.

C. NETWORK ARCHITECTURE

Figure 1 shows the main pipeline of our method, which builds on the original
CyeleGAN. It has been improved to be more suitable for our task. Specifically,
the attention branch is added to CycleGAN. The input of the attention branch
is the binary mask image of the input image. The output attention feature map
is respectively combined with the output image of the generator and input
image to perform dot product operation. Attention Loss can be obtained by
subtracting the results of the two different dot product results. The Mask Loss
is obtained by the ratio of the output feature map of the attention module to
the binary mask map. The generator and discriminator adopt the structure
suggested by the original CycleGAN.

FIGURE 1: In the network pipeline, G is used to convert pneumonia negative
images to positive, and F is used to convert pneumonia positive to negative.
The input to the generator branch is the pneumonia negative image x, and the
input to the self-attention branch is the binary mask of image x.
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FIGURE 2: Architectures of network used in the proposed method. (a)
Architecture of generator. (b) Architecture of discriminator. (c) The specific
architecture of the self-attention branch. It consists of a downsampling module,
a residual module, a NAM attention mechanism module, and an upsampling
module.

The residual blocks in the generator are reduced to 3 on the radiation
pneumonitis dataset. On the COVID-19 radiography dataset, the generator
maintains the full structure with 6 residual blocks due to the more complex
images. In the discriminator, spectral normalization is applied to improve the
original convolution. The architectures of the generator and discriminator are
shown in Figure 2 (a) and Figure 2 (b).
Figure 2 (c) shows the specific architecture of the attention branch. The
attention branch consists of a downsampling module and an upsampling
module. The binary mask image is input to the attention branch, and the
number of channels is expanded by the convolution, which is to make full use
of the channel attention in the attention mechanism. To prevent the gradient
from vanishing, a residual structure is added before the attention module. The
feature map by the NAM attention mechanism is passed through the
upsampling module and the number of channels is gradually compressed to
obtain the output. Figure 3 shows the results of the mask through the self-
attentive branch. The effective pixel points of Attention(Mask) are mainly
distributed at the edges of the lung slices. To make the results clearer, a
threshold cutoff is applied to Attention(Mask). The cutoff value is set to 0.5.
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FIGURE 3: Self-Attention Results

D. LOSS FUNCTION

CycleGAN follows the design idea of GANs, and Adversarial Loss is one of the
main goals of optimization. Its function is to gradually optimize the generator
and discriminator in the iterative learning process to achieve dynamic balance
so that the generator can generate as realistic as pictures of the target domain.
Its loss function is expressed as follows in equation (3):

LossGAN = LGAN (G, DY , X, Y ) + LGAN (F, DX, X, Y )

= Ey∼pdata (y) [log DY (y)] + Ex∼pdata (x) [log (1

− DY (G(x))] + Ex∼pdata (x) [log DX (x)]

+ Ey∼pdata (y) [log (1 − DX (F (y))]

(3)

However, just optimizing the Adversarial Loss often leads to mode collapse in
the training process, because the input and output of the generator differ
greatly in structure and content. Therefore, CycleGAN proposes two new loss
functions, Cycle Consistency Loss and Identity Mapping Loss. Cycle
Consistency Loss ensures that the output image of the generator is different in
style from the input image, but the content is the same. Identity Mapping Loss,
which is implemented using the mean absolute error (L1 loss), can assist the
generator to convert more accurately, and ensure that the color tone of the
generated image remains unchanged. Their loss function equation is as follows:

��������� = ��~�����(�)[||�(�(�)) − �||1]

+ ��~�����(�)[||�(�(�)) − �||1]
(4)



104

������������ = ��~�����(�)[||�(�)) − �||1]

+ ��~�����(�)[||�(�) − �||1]
(5)

To avoid excessive transfer on the input and output hierarchy and make the
generated images more realistic, multi- level structure similarity(MS-SSIM)[37]
is introduced in the identity mapping loss. So the new identity mapping loss is
realized by L1 and MS-SSIM joint loss. MS-SSIM and L1 joint loss measures the
difference between the generated images and the original images more
effectively so that the model has a better conversion performance. Not only
that, the generated images not only keep the content consistent with the
original images but also have better quality and details. The implementation of
MS-SSIM and L1 joint loss is referenced to[38].

In this study, two new loss functions, Self-Attention Loss and Mask Loss are
proposed. The main function of Self- Attention Loss is to help the model to
distinguish the image edge position information faster through the mask sub-
attention module and locate the inner area of the mask. The specific calculation
method is as follows: the input image and the output image of the generator are
respectively dotted with the output feature map of the mask attention module,
and then the result after the dot product is subtracted to obtain the loss value.
In the process of model optimization, its loss value should be as low as possible.
Its specific equation is as follows:

������������� = ��~�����(�)[||�(�((�)).����
∗ − �.����∗||1]

− ��~�����(�)[||�(�((�)).����
∗ − �.����∗||1]

(6)

The calculation method of Mask Loss is the ratio of the output feature map of
the self-attention module to the original mask. Since the effect of the mask
module is inversely proportional to the length of the training time, its value will
gradually decrease during the training process. Its specific equation is as
follows:

Lossmask = ��∼�data (�)
�

����∗

+ ��∼�data (�)
�

����∗
(7)
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Therefore, throughout the training process, our overall optimization target is as
follows:

Loss = LossGAN + Losscycle + Lossidentity

+ Lossattention + Lossmask
(8)

E. TRAINING PROCESS

On the RP dataset, to make the conversion ability of the model better, all the
data was used to train the CycleGAN model, including its independent test set.
To demonstrate the robustness and generalization of the method proposed
in this study, experiments were conducted on the COVID- 19 dataset. 100
positive data samples and 300 negative data samples were sampled for model
training, and other data were used as experimental test sets. During the
training process, since we improved the generator structure, added a new mask
part as input, and introduced a new loss function as an evaluation indicator for
auxiliary model training, our training process is quite different from the
original Cycle- GAN. The biggest difference is in the convergence speed of the
model. Our method converges faster and the conversion ability of the model is
better. The model is trained on a single GPU GTX 3080ti. The specific values of
the main hyperparameters are: Epochs=100, Lr=0.00015, lambda_GAN=1.0,
lambda_cyc=10.0, lambda_id=5.0, lambda_attention=1, lambda_Iou=1. Among
them, lambda_GAN is the weight parameter of the adversarial loss, lambda_cyc
is the weight parameter of the cycle consistency loss, and lambda_id is the
weight parameter of the Identity Loss. It is worth noting that lambda_attention
and lambda_Iou are the weight parameters of our newly added loss function,
respectively. At the same time, Adam optimizer with 0.5 and 0.999 is used to
train our CycleGAN.

EVALUATE METHOD

A. CONTRAST CHART

For radiographic pneumonia images, lesioned lung sections contain subtle
characteristics that are difficult to detect intuitively compared to healthy lung
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sections. Comparison charts are used to quantitatively demonstrate the
differences between the pneumonia images generated by our method and the
original images. The contrast chart is made by subtracting the generated image
from the original image, and a specified threshold is set to emphasize the
contrast difference more, same with the COVID-19 dataset.

B. CLASSIFICATION MODEL BASED ON RESNET18

ResNet18[39] is used as a classification model to evaluate the quality of the
generated images. The modified CycleGAN generates pneumonia-positive
images from negative images to complement the original data. ResNet18 is
trained with a balanced data sample class and tested for its classification ability.
ResNet18 is trained using data generated by our method with the original
CycleGAN, conventional data augmentation (random horizontal flip, random
rotation, and random scaling), and data without any processing to show the
superiority of our suggested model. To evaluate the classification ability of
ResNet18, the area under the ROC curve (AUC), accuracy (ACC), sensitivity
(SEN), and specificity (SPE) are compared.

Acc =
TP + TN

TP + FN + TN + FP
(9)

Sen =
TP

TP + FN
(10)

Spe =
TN

TN + FP
(11)

Where TP is the number of correctly classified positive cases, FN is the number
of incorrectly classified positive cases, TN is the number of correctly classified
negative cases, and FP is the number of incorrectly classified negative cases.

C. ABLATION EXPERIMENT

An ablation experiment investigates the performance of the method by
removing certain components to understand the contribution of the
component to the overall method. To further show the effectiveness of the
approach and to specif- ically evaluate the impact of our improvements on the
base CycleGAN, an ablation experiment was completed on the RP dataset and
COVID-19 radiography dataset respectively.
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DATASET

Experiments on private and public datasets were done to show the robustness
of our method.

A. RADIATION PNEUMONITIS DATASET

This is a real-world dataset containing 300 patients, of which 66 patients had
RP (22%). In this dataset, the patient lung slices are stored as 3-dimensional
image data. Considering the problem of computational memory consumption,
the original 3D lung slice data was sliced into many images, and then the
longitudinal center slice images are taken as the representative data sample of
the patient. These images were normalized before being fed into the neural
network.

B. COVID-19 RADIOGRAPHY DATASET

COVID-19 Radiography Dataset[40–42] is made by a team of researchers from
Qatar University, Doha, Qatar, and the University of Dhaka, Bangladesh along
with their collaborators from Pakistan and Malaysia in collaboration with
medical doctors, which includes 3616 COVID-19 positive cases along with 10,192
Normal lung X-ray images and corresponding lung masks. In this study, 100
COVID-19 positive cases and 300 Normal lung X-ray images are used.
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Results

A. CONTRAST CHART
The samples generated by our method are compared with the original samples
and their comparison graphs are shown to demonstrate the effectiveness of our
method. Figure 4 and Figure 5 show some representative examples generated
by our method on the RP dataset and the COVID-19 radiography dataset
respectively.

FIGURE 4: Results on radiation-induced pneumonia generation. The difference
and heatmap between Original and Generated images are shown in the figure.
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FIGURE 5: Results on COVID-19 generation. The difference and heatmap
between Original and Generated images are shown in the figure. Compared to
normal lung images, the generated images of COVID-19 are more fibrotic
overall and more blurred in the lungs.

B. CLASSIFICATION EXPERIMENTS
The ResNet18 is used to train and calculate the AUC, ACC, SEN, and SPE on the
RP dataset and the COVID-19 radiography dataset respectively, to verify the
method’s effectiveness. The result of the RP dataset is shown in Table 1. The
values of SEN are low, 0.27 and 0.18 respectively when ResNet18 is trained and
tested directly using raw data and traditional data augmentation. CycleGAN
can significantly improve the model’s classification ability, resulting in an
improvement in SEN to 0.55 and a considerable improvement in AUC. Our
method shows desirable improvements in AUC, ACC and SEN compared to
CycleGAN. Our method has lower SPE values since the model is more likely to
predict the test sample as negative when the positive sample is not
representative. This phenomenon is evident when original data and traditional
data augmentations are used.

TABLE 1: AUC, ACC, SEN, SPE on radiation pneumonitis dataset
methods AUC ACC SEN SPE
w/o DA 0.55(0.52-

0.57)
0.63(0.60-
0.65)

0.27(0.26-
0.29)

0.79(0.77-
0.81)

w/Traditional 0.57(0.56-
0.59)

0.66(0.64-
0.69)

0.18(0.17-0.19) 0.87(0.85-
0.89)

w/CycleGAN 0.64(0.61-
0.66)

0.63(0.60-
0.64)

0.55(0.49-
0.56)

0.67(0.65-
0.68)

w/Ours 0.67(0.66-
0.70)

0.66(0.64-
0.67)

0.73(0.71-
0.77)

0.63(0.60-
0.64)

The result of the COVID-19 radiography dataset is shown in Table 2. There is no
significant improvement in AUC when using the original data, traditional data
augmentation, and original CycleGAN data augmentation. The AUC, ACC, and
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SEN are improved when our method is used for data augmentation. It is worth
noting that the SEN is the most significant improvement.

TABLE 2: AUC, ACC, SEN, SPE on COVID-19 radiography dataset
methods AUC ACC SEN SPE
w/o DA 0.88(0.88-

0.88)
0.85(0.85-
0.85)

0.52(0.52-
0.52)

0.97(0.96-
0.97)

w/Traditional 0.89(0.88-
0.89)

0.87(0.87-
0.87)

0.60(0.59-
0.60)

0.96(0.96-
0.96)

w/CycleGAN 0.89(0.89-
0.89)

0.88(0.88-
0.88)

0.63(0.63-
0.63)

0.97(0.97-
0.97)

w/Ours 0.92(0.92-
0.92)

0.89(0.89-
0.89)

0.68(0.67-
0.68)

0.97(0.97-
0.97)

Table 3 shows the comparison of our method with CovidGAN[43]. According to
our survey, CovidGAN is the most relevant work to our study and one of the
most state-of- the-art works. However, there are some differences between our
work and CovidGAN, specifically in the number of data samples and the sample
imbalance. The total number of samples in our training set is 400 while the
number of training samples in CovidGAN is 932. The fewer training sets make it
difficult to fit the model to the distribution of the data. Our training set
contains 100 COVID-19 positive samples and 300 normal samples. The training
set of CovidGAN contains 331 COVID-19 positive samples and 601 normal
samples. Compared with CovidGAN, we use far fewer positive samples than
negative samples, which can create difficulties for feature extraction of the
model. CovidGAN achieves 0.95 Accuracy while our method is 0.89. Although
our results are slightly lower than those of CovidGAN, with a much smaller
amount of data and severe class imbalance, this result which benefits from the
adopted CycleGAN generation paradigm and attention branching is not only
acceptable but also surprising.
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TABLE 3: Comparison with CovidGAN
Methods COVID-19 Normal Ratio Accuracy
CovidGAN 331 601 1: 1.815 0.95
Ours 100 300 1: 3 0.89

COVID-19: The number of COVID-19 samples Normal: The number of normal samples
Ratio: COVID-19/ Normal

C. ABLATION EXPERIMENT
The ablation experiments are completed on the two datasets separately to specifically evaluate the improvement of the model by the
two added loss functions. The results are shown in Table 4 and Table 5. The results using spectral normalization and MS-SSIM and L1
joint loss are shown in the first row. The results with the addition of Attention Loss are shown in the second row. The results of the
complete model are shown in the last row.

TABLE 3: Ablation Experiment on radiation pneumonitis dataset
Loss AUC ACC SEN SPE

���� + ������ + ���������
0.64(0.63-
0.66)

0.62(0.61-
0.64)

0.57(0.55-
0.58)

0.68(0.66-
0.69)

���� + ������ + ��������� + ����������
0.65(0.64- 0.64(0.63- 0.69(0.69- 0.65(0.64-
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0.67) 0.65) 0.72) 0.66)

���� + ������ + ��������� + ����������

+ �����

0.67(0.66-
0.70)

0.66(0.64-
0.67)

0.73(0.71-
0.77)

0.63(0.60-
0.64)

TABLE 4: Ablation Experiment on COVID-19 radiography dataset
Loss AUC ACC SEN SPE

���� + ������ + ���������
0.91(0.91-0.91) 0.88(0.88-0.88) 0.60(0.60-

0.60)
0.97(0.97-
0.97)

���� + ������ + ���������

+ ����������

0.91(0.91-0.91) 0.88(0.88-0.89) 0.66(0.66-
0.66)

0.97(0.97-
0.97)

���� + ������ + ���������

+ ����������
+ �����

0.92(0.92-0.92) 0.89(0.89-0.89) 0.68(0.67-0.68) 0.97(0.97-
0.97)
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D. COMPUTATIONAL COMPLEXITY

Table 6 shows the number of parameters about the important structure of our
model. On the radiation pneumonitis dataset, a single generator contains 3
residual blocks. Our improved generator parameters are 4.99 M, which is
higher than the original CycleGAN generator of 0.71 M. On the Covid-19
radiography dataset, due to more complex images, the generator contains 6
residual blocks and the number of params is 8.53 M. The number of params of
the generator we used is 2.76 M.

Models Params
Original CycleGAN Generator(3

residuals blocks)
4.28M

Our Generator(3 residuals blocks) 4.99M
Original CycleGAN Generator(6

residuals blocks)
7.83M

Our Generator(6 residuals blocks) 8.53M
Discriminators 2.76M
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Discussion

In this paper, a mask-based self-attention CycleGAN data augmentation
method is proposed. According to the char- acteristics of our task, two different
loss functions named Attention Loss and Mask Loss are designed. Spectral Nor-
malization is introduced to improve the discriminator and the original Identity
Mapping Loss function is replaced by MS- SSIM and L1 joint loss to replace.
Although we did a technical study, it still has important clinical utility. In
previous studies, researchers used Gaussian Mixed Model or traditional
augmentation methods to augment the data set. This is a simple and effective
way to expand the training set. However, some augmentation methods are not
suitable and reasonable based on clinical perspectives in real-world application
settings. For example, elastic twist affects the anatomical structure of clinical
images and adding Gaussian noise impacts texture features. These are
important empirical reference features for the diagnosis of physicians,
especially radiologists. The method in this study avoids these shortcomings and
is more suitable for real-world studies.
In Section 6.1, the positive image data transformed from the negative data is
shown. The images generated by the model have better quality and clarity
while maintaining the same structure and content as the original images. From
the comparison of the original images and the generated images, it can be
concluded that the position changed by the model is mainly concentrated in
the inner part of the lung slice, which is consistent with the medical facts, and
shows that our model can accurately realize the transformation of the image
domain.
Section 6.2 shows the results of the classification experiments. Considering that
large and deep classification models have a greater risk of overfitting on few-
shot, ResNet18 is used to complete the classification experiments. From the
changes of SEN on the radiation pneumonitis data, it can be seen that the
ResNet18 model trained by only using the original data and traditional data
augmentation has a poor classification ability, and the entire data samples are
often regarded as negative samples. This is why the SEN value is low and the
SPE value is high. After using CycleGAN and our method for data augmentation,
the SEN value has been significantly improved. Although its SPE value will
decrease, the improvement of the AUC value indicates that the classifier has
better classification ability. Regarding the change of SEN value on the COVID-
19 radiography dataset, it can be noticed that the use of different data
augmentation methods to expand the positive sample data set can increase the
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SEN value to varying degrees. However, our method not only significantly
outperforms other methods in the performance of SEN value but also has a
small improvement in AUC, which indicates that the classifier trained by our
method has better classification ability. In other words, the sample distribution
of the data generated by our method is closer to the sample distribution of the
original data, whether on the RP dataset or the COVID-19 radiography dataset.
The comparison of our method with CovidGAN demonstrates the dramatic
impact of the sample size and whether the categories are balanced in the
experiment. It is obvious that our dataset is more challenging. Our dataset
contains only 100 COVID-19 samples, so 200 COVID-19 samples have to be
generated as added data to train the classification network. This means that the
quality of the generated samples determines the final classification results.
Therefore, although our accuracy is slightly lower than CovidGAN, this result is
meaningful.
The experimental result in Section 6.3 shows that only using Spectral
Normalization and MS_SSIM and L1 joint Loss function for data sample
expansion can improve the classifier performance in a small range compared to
the original CycleGAN data augmentation method. After adding Self-Attention
Loss on its basis, it is obvious that SEN is worth improving, which means that
the classifier has better classification ability for positive samples, indicating that
our method is effective in data augmentation for positive samples. Ablation
experiments on the COVID-19 dataset further verify the effectiveness of our
proposed method.
Section 6.4 shows the computational complexity of the model. Two points are
of interest. First, the generator containing self-attentive branches only increases
the number of parameters by 0.71M compared to the original CycleGAN. In fact,
successive stacks of residual blocks contribute most of the complexity of the
generator. Second, although we did not optimize the number of parameters of
the model more in this research, our model still has low complexity.

FIGURE 6: Results on radiation-induced pneumonia generation with WGAN-
GP.

Figure 6 shows the results of radiation-induced pneumonia image generation
using WGAN-GP. Even after training, the generated images still largely follow
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the initial random distribution. This is due to the difficulty of providing
sufficient information for network optimization with sparse training data.
CycleGAN, which uses style migration, has a large amount of target distribution
and structural information in its input. Therefore, it is difficult to generate
medical images from noise on Few-shot compared to CycleGAN.

Limitations and future work

In this paper, a mask-based self-attention CycleGAN data augmentation
method is proposed. Our method has a better performance on both the RP
dataset and the COVID-19 radiography dataset. However, during our
experiments, we found that there are still many problems that need to be
solved. The first is the instability of training CycleGAN on few-shot, which is
difficult to avoid during GANs training, although the stability has been
substantially improved compared to the original CycleGAN. Second, the
CycleGAN has limitations, particularly in its generative capability. Cycle- GAN
can capture the main features of the image style and transform the original
input image to another style, while it is difficult to generate minute details that
the original input image itself does not have. The use of Mask and the new loss
function allows the model to accurately capture features at the marginal
locations of the lungs that are more likely to distinguish between negative and
positive pneumonia. However, such processing makes it difficult to focus on
the interior of the lung, producing more improvements in the generation of
internal images. Therefore, the generation of internal lung details relies more
on the original loss function of CycleGAN. Finally, our model is not optimized
for complexity or the number of parameters. Although a certain model
complexity is positive for the generation of high- quality images, a lower
complexity is essential for the practical application of the method. In the future,
we will continue to investigate CycleGAN-based medical data augmentation
methods to propose effective solutions to the above problems.

Conclusions
This paper proposes a mask-based self-attentive CycleGAN data augmentation
method for overcoming the problem of medical image sample imbalance. We
use Spectral Normalization for the discriminator, introduce MS-SSIM and L1
joint loss to stabilize the training process, and design two loss functions named
Self-Attention Loss and Mask Loss to guide training. Experiments on the RP
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dataset and COVID- 19 radiography dataset and excellent performance on
several classification metrics have demonstrated that our method can generate
delicate images that better match the target domain than traditional data
augmentation and original CycleGAN data augmentation methods. Therefore,
our method can be utilized as a general data augmentation method to assist in
overcoming the sample imbalance problem in medical image datasets.
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Abstract

Purpose Radiation pneumonitis (RP) is one of the common side effects of
radiotherapy in the thoracic region. Radiomics and dosiomics quantifies
information implicit within medical images and radiotherapy dose distributions.
In this study we demonstrated the prognostic potential of radiomics, dosiomics,
and clinical features for RP prediction.

Materials and methods Radiomics, dosiomics, dose-volume histogram (DVH)
metrics, and clinical parameters were obtained on 314 retrospectively-collected
and 35 prospectively-enrolled patients diagnosed with lung cancer between
2013 to 2019. A radiomics risk score (R-score) and dosiomics risk score (D-score)
and DVH-score were calculated based on logistic regression after feature
selection. Six models were built using different combinations of R-score, D-
score, DVH-score, and clinical parameters to evaluate their added prognostic
power. Over-optimism was evaluated by bootstrap resampling from the
training set, and the prospectively-collected cohort was used as the external
test set. Model calibration and decision-curve characteristics of the best-
performing models were evaluated. For ease of further evaluation, nomograms
were constructed for selected models.

Results A model built by integrating all of R-score, D-score, and clinical
parameters had the best discriminative ability with area under the curves
(AUCs) of 0.793 (95%CI 0.735-0.851), 0.774 (95%CI 0.762-0.786), and 0.855
(95%CI 0.719-0.990) in the training set, bootstrapping set, and external test set,
respectively. The calibration curve image showed good agreement between the
predicted and actual values with a slope of 1.21 and an intercept of - 0.04. The
decision curve image showed positive net benefit for the final model based on
the nomogram.

Conclusion Radiomics and dosiomics features have potential to assist with the
prediction of RP, and the combination of radiomics, dosiomics, and clinical
parameters led to the best prognostic model in the present study.

Keywords: Radiomics; Dosiomics; Lung cancer; Radiation Pneumonitis
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Introduction

Radiotherapy (RT) plays a crucial role in the management of lung cancer (LC)
[1], especially for locally advanced and unresectable cases [2, 3]. Advances in
thoracic RT have led to steadily improving prognosis for LC patients, but RT-
related side effects remain a treatment-limiting concern [4-6]. Radiation
pneumonitis (RP) is a common adverse effect that degrades patients’ quality of
life and can be fatal in severe cases. To date, there is no highly effective cure for
RP [7], thus prevention of RP remains one of the top clinical priorities during
RT dose planning [8, 9]. Robust and reproducible predictive models that could
estimate the risk of developing RP after lung RT would be of immense clinical
value. Such estimates could be incorporated into treatment planning and
informed shared decision-making consultations (such as a choice between
starting prophylactic medication or active vigilance).

Studies to date suggest a number of clinical factors, such as smoking status,
pre-existing lung disease [10], pre-existing cardiac disease [11], and
chemotherapy [12], may affect an individual’s pre-disposition to develop RP.
Although these parameters may indicate towards susceptibility, RP remains a
disease exhibiting strong inter-person variability [13]; this heterogeneity does
not appear to be sufficiently well represented in conventional clinical factors.
Single-nucleotide polymorphism (SNPs) [14] and plasma cytokines [15, 16] can
also be indicative of heterogeneity, and several studies have revealed significant
associations between SNPs and the occurrence of RP [17], which suggests the
feasibility of genetic and molecular biomarkers. However, some biomarkers
may be subject to vagaries of limited spatial sampling and are only available
through invasive means.

Radiomics is the high-throughput extraction of quantitative handcrafted
features from medical images. Image-based radiomics has the potential to
characterize heterogeneity within the entire pre-RT lung parenchyma and, in
the case where suitable repeated imaging could be available, to be able to
quantify parenchymal changes during a course of RT in a non-invasive manner.
It has been demonstrated that radiomics features are associated with genetic
heterogeneity (radiogenomics) [18]. There have been several studies that
demonstrate the potential of radiomics to predict RP [19-21], but building
predictive models only from an image perspective may not be sufficient.
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Physicians routinely modify treatment strategies based on the patient's
condition. For example, some patients with pre-existing lung disease diagnosed
by imaging may be prescribed a relatively low dose thereby reducing the chance
of developing RP and weakening the predictive power of radiomics. Therefore,
there is a need to incorporate prescription dose information into predictive
model.

In a different context, the occurrence of RP is strongly related to RT dose, and
therefore a number of studies have used dose-volume histogram (DVH) metrics,
such as mean lung dose (MLD) [22] and volume of the lung receiving 20 Gy
(V20) [23], to predict RP. DVH parameters are not able to fully describe the
immense spatial heterogeneity of dose distribution, which may be realized
through intensity modulated radiation delivery (i.e., IMRT and/or VMAT) [23,
24]. Dosiomics, conceived as using radiomics tools to characterize spatial
heterogeneity of RT dose (as opposed to image voxel intensities) provides a
greater depth of information in contrast to traditional DVH measures [25, 26].

Previous works [19-21, 25, 26] attempt to predict RP solely on the basis of
medical (tomographic) imaging alone, or on the basis of dose information, and
those results show that it is highly unlikely to be clinically sufficient by relying
exclusively on either the imaging features (radiomics) or the dose-volume
parameters. There is a lack of studies combining radiomics and dosiomics to
predict RP in lung cancer, furthermore, studies using rigorous and rational
steps of selecting handcrafted features are needed. A large sample-based,
prospective study is also required to assess the objective predictive power of the
models.

In this study, we extracted radiomics features in RT planning CT and dosiomics
features in 3D dose grids from the RT treatment planning system (TPS) and
performed objective and rigorous feature selection. We evaluated the
performance of clinical parameters, radiomics features, dosiomics features, and
DVH metrics, singly as well as in combination, to predict RP after RT to the
chest area. We evaluated the prediction models in terms of discriminative
performance and model calibration using a prospectively collected dataset.
Moreover, decision-curve analysis was used to investigate the potential clinical
relevance of such models if implemented in routine practice. A nomogram was
provided to facilitate future independent validation of our work in other
clinical settings.



128

Methods

1. Study design
This study was designed as a Transparent Reporting of a multivariate prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) type 3 study comprising
model development and independent validation [27]. This study was registered
on artificial intelligence in biomedical research platform (AIMe, ID: mn9jLf)
[28]. The overarching study flow is illustrated in Figure 1.

Figure 1. Analysis flowchart. Step 1, The radiomics and dosiomics features of
the lung tissue region were extracted. Step 2, 1000 unique bootstrap samples
were taken from all samples, features were selected by correlation, least
absolute shrinkage (LASSO) embedded with logistic regression (LR) and Akaike
information criterion (AIC) for modeling. Step 3, The model performance was
evaluated using discrimination and calibration. Step 4, Clinical applications
were evaluated using nomogram and decision curves.

2. Patients
A single-institutional model development cohort of 314 subjects was
retrospectively extracted from institutional records after ethics board approval
(IRB/bc2021135), comprising patients diagnosed with LC and treated with
radical (chemo)-RT, with either IMRT or VMAT techniques, at Anonymized for
Review Hospital between January 2013 and December 2018. For model
validation, an additional 35 patients with the same criteria were prospectively
enrolled with informed consent and same ethics approval (IRB/bc2021135), who
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were treated between October 2018 and March 2019 in the same institution.
Detailed inclusion and exclusion criteria have been specified in the
Supplementary Materials A.

3. Image acquisition and treatment planning
Intravenous contrast-enhanced planning CT scans were acquired on a single
Brilliant (Philips Medical Systems; Best, The Netherlands) multislice scanner
with a standardized protocol: 120 kVp, 100 mAs, 3 mm slice thickness, 512 x 512
image matrix, 50 cm fields of view, 0.977 mm pixel spacing and vendor’s default
convolution kernel. Experienced radiation oncologists delineated the LC gross
tumor volume (GTV) and malignant lymph nodes in the Pinnacle TPS (Philips
Radiation Oncology Systems; Fitchburg, Wisconsin, United States), with image
fusion against complementary imaging studies whenever available (such as
positron emission tomography).

The GTV was isotropically expanded by 5 mm, as well as subclinical
microscopic malignant lesions to derive the clinical target volume (CTV). The
planning target volume (PTV) was an additional 5 mm isotropic expansion
around the CTV. Dosimetrist were instructed to cover at least 95% of the PTV
with the prescribed RT dose. Delineations conformed to the guidelines set by
the Radiotherapy and Oncology Group (RTOG). The relevant dose constraints
were as follows: MLD < 20 Gy, V20 < 30%, and volume of the lung receiving 5
Gy (V5) < 60%. All patients were nominally prescribed 2 Gy per fraction once
daily. Radiation oncologists determined the total prescribed dose based on each
patient's overall physical condition and best achievable normal tissue
constraints. The actual total RT dose delivered ranged between 50 to 70 Gy. The
dose grid resolution is 4 mm, and the dose calculation algorithm is Collapsed
Cone Convolution [29, 30]. The planning CT series with associated RT structure
delineations and RT planned radiotherapy 3D dose grids were exported from
Pinnacle in the standard DICOM format.

4. Lung segmentation and RP grading
We extracted radiomics features and dosiomics features from the region
corresponding to total (left plus right) lung. To ensure consistency of lung
segmentation, we quality assured the lung delineations for each subject using a
deep-learning automatic lung contouring tool based on retraining of the
published model. The original and automatically generated lung outlines were
inspected and then manually edited by a single experienced radiation
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oncologist (author MY). Two other radiation oncologists (author JQY and ZZ)
subsequently independently reviewed the lung organ segmentation, and any
disputes were resolved by direct consultation among all three authors.

The primary outcome RP was defined, in accordance with the Common
Terminology Criteria for Adverse Events (CTCAE) v5.0, as symptomatic
radiation pneumonitis of CTCAE grade 2 or higher within 6 months after the
end of RT [12, 16]. Monitoring of RP was based on the combination of clinical
examination, reported symptoms, outpatient medical records, laboratory tests,
chest X-ray, and visual inspection of follow-up CTs, which were all performed
at intervals of 1, 3, and 6 months after completion of RT, and then every 6
months thereafter.

5. Radiomics and dosiomics features extraction
A total of 103 handcrafted radiomics features were extracted from DICOM CT
and RT Structures using the “O-RAW” package [31] (based on Pyradiomics v3.7
[32]). These features comprised 17 intensity histogram features, 13
morphological (shape) features, and 73 textural features. No digital image filters
were applied during pre-processing. Most of the hand-crafted features
conformed to the Image Biomarker Standardization Initiative (IBSI) [33];
specific divergences from the IBSI at the time of writing have been reported
according to the PyRadiomics documentation. Radiomics extraction settings
are the same as for a previous publication [31], and our PyRadiomics parameters
setting file has been provided in the Supplementary Materials B. For dosiomics
features, DICOM RT Dose files were first converted as NRRD images using 3D
Slicer [34], and then the same feature extraction procedure in PyRadiomics was
applied for the total lung region. Additionally, voxel-wise values in the “dose
images” were scaled to represent the absolute physical dose in units of Gray
(Gy). Isotropic spatial resampling (1 mm) was applied on the CT images and
dose images prior to feature extraction as recommended by previous studies
[35].

6. Feature selection
An overview of multi-step feature selection and model construction is given in
Figure 1. The clinical parameters for modeling were evaluated by using
univariate and multivariate analyses for twelve clinical parameters with
predictive potential. Feature selection for the radiomics model and the
dosiomics model were performed separately, and has been adapted from the
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feature pooling and signature pooling method used by Compter et al. [36]. In
brief, the selection process was as follows:

(i) A thousand unique bootstrap samples (with replacement) were drawn from
the whole training cohort. Within each bootstrap sample, we first minimized
the number of strong pairwise normalized (Z-score, (original value-mean
value)/standard deviation) feature correlations greater than 0.90 or less than -
0.90. A least absolute shrinkage (LASSO) loop with 20-times repeated 5-fold
cross-validation embedded with a logistic regression (LR) supervised classifier
was used to select features. From each of the 1000 bootstraps, we ranked each
individual feature according to how frequently it was retained by the LASSO-LR.

(ii) We arbitrarily selected some of the top most frequently-appearing
individual features from the above table. From this small subset of selected
features, we built a multivariable LR model on each of the same
aforementioned bootstraps samples with stepwise backwards elimination using
the Akaike information criterion (AIC) as metric. From each of these 1000
bootstraps, we tabulated how many times each combination of one or more
features (i.e., potential signatures) was retained by the stepwise LR.

(iii) We arbitrarily selected the top most frequently-appearing signature
arbitrarily selected to build the final multivariable LR model. The coefficients of
the final model were fitted using the original non-bootstrapped development
cohort.

7. Model construction
The clinical model was presented as a multivariable LR model. To this, we
added an aggregated Radiomics Risk Score (R-score) and an aggregated
Dosiomics Risk Score (D-score), separately. The R-score was defined as the
linear predictor (LP) of the multivariable LR radiomics model, and likewise the
D-score was defined as the LP of the multivariable dosiomics model. For
combined models, we assessed the combinations of the clinical factors together
with either, or both, of the R-score and D-score.

V20 and mean lung dose (MLD) were used to build DVH model, and details of
feature selection and model construction are provided in the Supplementary
Materials C. To address the issue of imbalanced data, we performed the
Synthetic Minority Oversampling Technique (SMOTE) approach in the training
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set. We also examined the Pearson correlation between the R-score and clinical
parameters, and between the D-score and dose-volume histogram metrics
(dosimetrics).

8. Model validation – internal and external
We estimated the over-optimism in model development using the method
recommended in the TRIPOD guidelines; for each of the 1000 abovementioned
pre-defined bootstraps, we fitted the LR model coefficients on each bootstrap,
and then computed its Area under the curve (AUC) of receiver operating
characteristic curve (ROC) using the original non-bootstrapped development
cohort. From these 1000 bootstraps, we computed the average AUC and its 95%
confidence interval.

As external validation, we evaluated the aforementioned models using the
prospectively-registered cohort of 35 subjects. Processing of these 35 subjects
followed exactly the same procedure as for the model development cohort, and
none of these subjects were used in any way during model construction.

The well-established calibration curve technique was used to assess model
goodness of fit (i.e., the extent of concordance between the predicted and
observed values) again using a bootstrap of 1000 repetitions. To facilitate
clinical use and support fully independent validation of our model, a simple
nomogram was generated for the R-score, D-score, and the selected clinical
parameters. Lastly, we tried to discuss the potential clinical utility of our model
using decision curve analysis (DCA) [37].

9. Statistical analyses
Baseline patient characteristics for continuous variables are presented as mean
± standard deviation. For univariate ranking of clinical predictors, Pearson X2
tests and exact Fisher tests were used for categorical variables and logistic
regression for continuous variables. For significance of clinical factors, a two-
sided hypothesis test at the  = 0.05 confidence level was assumed. Significant
characteristics were subsequently combined in multivariable logistic regression.

All data had been collated and standardized using the Statistical Package for
Social Science program (SPSS for Windows, version 27.0; SPSS Inc, Chicago, IL).
Feature selection, model construction, model performance assessment and
decision-curve analysis were all performed in R software (version 4.0.5).
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Results

1. Patient characteristics and incidence of RP
The case mix of patients and treatments studied in this model are reported in
Table 1. Univariate analysis showed statistically significant differences in
interstitial lung disease (ILD), concurrent chemoradiotherapy (CCRT), and age
between patients with and without RP. The overall incidence of CTCAE grade 2
or higher for RP was 21.5% (75 of 349), 21% (66 of 314) in the retrospective data
set, and 25.7% (9 of 35) in the prospective validation set. Multivariable analysis
indicated that ILD (OR 2.471; 95%CI 1.037-5.888, p = 0.041) and age (OR 1.051;
95%CI 1.012-1.085, p =0.008) were independent factors associated with RP. A
forest plot for the coefficients in the multivariable LR model is shown in Figure
2.

Table 1 Patient Characteristics

Characteristics All retro pts
n (%)

Without RP2
Mean ± SD

With RP2
Mean ± SD

P* Pros pts
n (%)

Age median 61 (30-85) 61 (30-85) 63 (44-79) 0.005 62 (34-75)
Gender 0.523
Male 238 (75.8%) 186 (78.2%) 52 (21.8%) 23 (65.7%)
Female 76 (24.2%) 62 (81.6%) 14 (18.4%) 12 (34.3%)

Smoking 0.569
Yes 244 (77.7%) 191 (78.3%) 53 (21.7%) 26 (74.3%)
No 70 (22.3%) 57 (81.4%) 13 (18.6%) 9 (25.7%)

KPS 0.725
≤80 132 (42.0%) 103 (78.0%) 29 (22.0%) 13 (37.1%)
>80 182 (58.0%) 145 (79.7%) 37l (20.3%) 22 (62.9%)

Diabetes 0.609
Yes 34 (10.8%) 28 (82.4%) 6 (17.6%) 2 (5.7%)
No 280 (89.2%) 220 (78.6%) 60 (21.4%) 33 (94.3%)

ILD 0.015
Yes 25 (8.0%) 15 (60.0%) 10 (40.0%) 9 (25.7%)
No 289 (92.0%) 233 (80.6%) 56 (19.4%) 26 (74.3%)

Pathology 0.656
LUSC 86 (27.4%) 65 (75.6%) 21 (24.4%) 8 (22.9%)
LUAD 73 (23.2%) 59 (80.8%) 14 (19.2%) 10 (28.6%)
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SCLC 155 (49.4%) 124 (80.0%) 31 (20.0%) 17 (48.5%)
Induc chemo 0.739
Yes 287 (91.4%) 226 (78.7%) 61 (21.3%) 31 (88.6%)
No 27 (8.6%) 22 (81.5%) 5 (18.5%) 4 (11.4%)

CCRT 0.047
Yes 93 (29.6%) 168 (76.0%) 53 (24.0%) 8 (22.9%)
No 221 (70.4%) 80 (86.0%) 13 (14.0%) 27 (77.1%)

Conso chemo 0.116
Yes 179 (57.0%) 147 (82.1%) 32 (17.9%) 19 (54.3%)
No 135 (43.0%) 101 (74.8%) 34 (25.2%) 16 (45.7%)

PGTV(Gy) 59.274±2.977 59.204±3.063 59.539±2.634 0.415 60.200±2.870
Smoking
index

661.540±571.430 641.840±550.543 735.600±643.084 0.237 668.600±550.412

Abbreviations: Retro = retrospective; Pts = patients; Pros = prospective; LUSC =
lung squamous cell carcinoma; LUAD = lung adenocarcinoma; SCLC = small
cell lung cancer; IMRT = intensity-modulated radiotherapy; VMAT =
volumetric modulated arc therapy; chemo = chemotherapy; KPS = Karnofsky
performance score; Induc chemo = induction chemotherapy; CCRT =
concurrent chemoradiotherapy; Conso chemo = consolidation chemotherapy;
PGTV = planning gross tumor volume.
*The differences in characteristics were evaluated by logistic regression for
continuous variables or Pearson X2 test and exact Fisher test for categorical
variables

Figure 2. Multivariate analysis forest plot by logistic regression. Characteristics
with statistically significant univariate analysis were subjected to multivariate
analysis, with ILD and age as independent predictors of RP. Abbreviations: OR
= Odds ratio; ILD = Interstitial lung disease; CCRT = Concurrent
chemoradiotherapy.

2. Feature selection and risk scores
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By inspecting the frequency ranking of individual features, we noted that a
threshold frequency of around 600 yielded us 11 radiomics features and 12
dosiomics features. Subsequently, we derived a final radiomics signature
comprising of 7 features for the R-score, and a final dosiomics model of 6
features for the R-score. Detailed tables and graphs from the feature selection
process, along with the names and definitions of the selected features, are
provided in the Supplementary Materials D.

The R-score and the D-score were calculated based on the coefficients weighted
by LR. The formula of R-score and D-score are provided in the Supplementary
Materials D. For ease of computing the R-score and D-score, a simple calculator
has been provided and can be found here: only for Windows or MacOS
operating systems, (https:// https://github.com/Radiologyzz/Calculator.git).
Instructions for using the calculator are given in the Supplementary Materials E.

Examples of low and high R-score and D-score are given in Figure 3. In this
example, ILD was evident in the patient with high R-score. The lung tissue of
the patient with high D-score received higher dose of radiation than the patient
with low D-score (the same prescription dose for both patients). The results
showed no significant correlation (>0.8) by Spearman’s analysis between R-
score and clinical parameters, D-score and dosimetrics, respectively
(Supplementary material F Figure 3). However, there were slight differences in
the distribution of R-score for the population with and without ILD, and more
noticeable differences in the distribution of D-score for the population with
different MLD (Supplementary material F Figure 4).
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Figure 3. (a) The left image is the planning CT image of a patient with a low
Radiomics risk score (R-score). The right image is the radiomics feature
(original_ngtdm_Complexity) map of CT image at roughly the same level as
shown on the left. Feature values are indicated from dark to light.
(b) The left image is the planning CT image of a patient with a high R-score.
The right image is the radiomics feature (original_ngtdm_Complexity) map of
CT image at roughly the same level as shown on the left.
(c) The left image is the radiation dose (RD) image of a patient with a low
Dosiomics risk score (D-score). The right image is the dosiomics feature
(original_ngtdm_Strength) map of RD image at roughly the same level as
shown on the left. Feature values are represented by rainbow color bar, i.e.,
from blue to red. The irradiation dose is indicated from dark to light.
(d) The left image is the radiation dose (RD) image of a patient with a high D-
score. The right image is the dosiomics feature (original_ngtdm_Strength) map
of RD image at roughly the same level as shown on the left.

3. Comparison of discrimination performance of different models
Prediction performance was quantified as AUC for six models and is
summarized in Table 2. Other possible combinations of models are provided in
the Supplementary material G. The model that yielded the highest AUC was the
combination of R-score, D-score, and clinical parameters. The discrimination
performances were 0.793 (95%CI 0.735-0.851) and 0.855 (95%CI 0.719-0.99), in
the training and prospective validation sets, respectively. As the estimate of the
degree of over-optimism (i.e., over-fitting) during model construction, our
bootstrap-based validation yielded an AUC of 0.774 (95%CI 0.762-0.786).

Table 2 Discrimination ability of different models according to area under the
curve (AUC) with 95%CI provided between parentheses.

Model
Train
(95%CI)

Validation by
bootstrapping
(95%CI)

Testing
(95%CI)

R-score
0.676
(0.606-
0.745)

0.619
(0.592-0.646)

0.671
(0.558-0.899)

D-score
0.728
(0.665-
0.790)

0.687
(0.667-0.706)

0.684
(0.573-0.883)

DVH-score 0.637 0.628 0.661
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(0.570-
0.705)

(0.613-0.642) (0.551-0.856)

Clinical parameters
0.664
(0.594-
0.735)

0.654
(0.628-0.680)

0.709
(0.509-0.91)

R-score + DVH-score
+ C

0.728
(0.674-
0.803)

0.719
(0.703-0.736)

0.782
(0.686-0.832)

R-score + D-score +
C

0.793
(0.735-0.851)

0.774
(0.762-0.786)

0.855
(0.719-0.990)

Abbreviations: R = radiomics risk score; D = dosiomics risk score; DVH = dose-
volume histogram; C = clinical parameters.

4. Model calibration and decision curve analysis
A nomogram based on clinical parameters, R-score, and D-score was
constructed and is shown in Figure 4a. The calibration curve of nomogram
validated by bootstrap resampling is displayed in Figure 4b, which illustrates
good agreement between the predicted probabilities of RP versus the actual
observed probabilities. The calibration curve of prospective validation set is
provided in the Supplementary Material H with a slope of 1.21 and an intercept
of - 0.04. DCA (Figure 4c) showed that the prediction model with the
combination of R-score, D-score and clinical parameters has the best positive
net benefits at threshold probabilities, implying that a proportion of patients
could benefit from using the model to assist in clinical decision making.
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Figure 4. (a) Nomogram predicting the occurrence of symptom RP.
Abbreviations: ILD: Interstitial lung disease; R-score = Radiomics risk score; D-
score = Dosiomics risk score. (b) Calibration curve with a bootstrap resampling
validation of prediction model combining radiomics risk score, dosiomics risk
score, and clinical parameters. Dashed line indicated the ideal model in which
predicted and actual probabilities were perfectly identical; Red line indicated
actual performance with apparent accuracy; Green line indicated bootstrap
corrected estimate of the calibration curve. (c) Decision curve analysis of
prediction models. The color lines represent the DCA of different prediction
models, the horizontal black line represents the hypothesis that no patients
receive interventions, the oblique gray line represents the hypothesis that all
patients receive the interventions. Abbreviations: R-score = Radiomics risk
score; D-score = Dosiomics risk score; DVH-score = dose-volume histogram
score; C. = clinical parameters.
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Discussion

Identifying patients at higher risk of developing RP following thoracic
irradiation remains an important and topical clinical question, as this adverse
event directly affects patient prognosis and reduces quality of life. Patients with
RP are a highly heterogeneous group, hence this study evaluated non-invasive
methods (radiomics and dosiomics) using only pre-treatment information to
characterize individual differences. In this study, the dosiomics features were
shown to have stronger predictive power than the conventional DVH
parameters, and the combination of a radiomics signature, a dosiomics
signature, and two clinical factors were found to be predictive of RP. The
results demonstrated that all three types of data appear to carry
complementary information relevant to the risk of developing RP. To facilitate
further clinical evaluation, we provided a nomogram and discuss the potential
clinical benefits of applying the RP predictive model.

Several studies to date have been conducted to predict RP by extracting
handcrafted radiomics features from CT. Cunliffe et al. [38] explored the
correlation between radiomics and RP and found that 12 radiomics features
extracted from CT images of patients with esophageal cancer changed over
time in association with the development of RP (AUC=0.78), however, this
study focuses on measurement and assessment rather than prediction. Krafft et
al. [21] performed an in-depth study for lung cancer and concluded that the
best predictive power (AUC=0.68) was achieved when combining radiomics,
clinical and dosimetric parameters to build the model. Similar findings were
obtained in a study of esophageal cancer by Du et al [20]. They developed a
model combining radiomics, clinical and dosimetric parameters by studying 96
patients with esophageal cancer (AUC=0.91). Although these studies included
small sample sizes, they inspired us that the combination of handcrafted
radiomics features and dosimetric parameters can improve the predictive
power of the model. For dosiomics, several studies have demonstrated its
potential to predict radiotherapy-related endpoints, including prognosis [39-41]
and treatment efficacy [42, 43], but there are very few studies using handcrafted
dosiomics to predict side effects. A recent study published by Takanori et al. [25]
used a combination of dosiomics and dose-volume indices to predict the
occurrence of RP and concluded that dosiomics has the ability to predict RP.
Liang et al. [26] conducted a study on dosiomics prediction of RP and
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confirmed that dosiomics predictive ability was superior to both dosimetric and
NTCP predictors (AUC of 0.78 compared to 0.68 and 0.74), which gives us an
idea that dosiomics relative to dosimetrics perhaps possessing more
dimensional information.

Based on the results of this study (Table 2) we conclude that the predictive
power and stability (with narrower 95%CI) of the model based on dosiomics
features is stronger than the model based on dosimetrics. The correlation
analysis between dosimetric and D-score showed that they are correlated,
where D-score correlates with V30, V25, and V20 between 0.7 and 0.8
(Supplementary material F Figure 3b). Although both dosiomics and dosimetric
are quantitative values obtained by calculating from 3D dose distributions,
dosiomics obtains more detailed information from texture analysis of the dose
distribution, while dosimetric obtains information based on dose-volume
histograms. The shape features, which measure the dose delivery from another
perspective, may also give a stronger predictive power to the dosiomics.
Combining the results of this study and the published dosiomics studies to date,
we suggest that neither can replace the other. Inspired by radiomics studies, we
resampled the RD images to 1 mm. Different dose grids affect dosiomics feature
values [29], however, the utility of resampling RD images, more specifically,
whether resampling improves the reproducibility and stability of dosiomics
features, requires more research. Placidi et al. conducted a multi-institutional
basic study on dosiomics features, which concluded that dosiomics is a tool
with predictive potential suitable for multi-institutional studies by analyzing
the reproducibility, stability, and sensitivity of dosiomics features [29]. Our
results also demonstrate that dosiomics have predictive potential and therefore
it is worthwhile to investigate dosiomics more extensively and deeply.

To the best of our knowledge, no previous published studies have combined
handcrafted radiomics, dosiomics, and clinical parameters of lung cancer in
various ways and compared their ability to predict RP. In this work, we have
compared models with radiomics alone, and with 3D spatial dose quantitative
features (dosiomics) and we then go beyond current knowledge by proposing a
combined model which shows that radiomics and dosiomics are
complementary thus leading to improved model performance. We
implemented a careful and objective feature selection approach, with
robustness as the selection principle for each step of feature selection rather
than best predictive ability, which to some extent avoids the occurrence of
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chance events. After this, the robust model validation approach was conducted
and validated using bootstrap datasets and a prospective dataset, respectively,
with over-optimism correction in both ways. Meanwhile, the number of
variables in the model was controlled to avoid overfitting. The objective
potential of radiomics/dosiomics for predicting RP was explored according to
such a process.

We evaluated the performance of the model in three aspects, discrimination
ability, calibration, and clinical application potential [44-46]. First, the
differences between the training set, bootstrapping set, and test set are
satisfactory in the results of discriminative validation, and the fluctuation range
of 1000 repetitions is small. Based on this result, we think the model has stable
prediction ability and low risk of overfitting. Second, the goodness of fit is
another evaluation criterion for the prediction model. The final comprehensive
model has excellent calibration, with no significant over- or under-estimation
for different risk intervals. Third, a nomogram was built to assist clinical
practice, and an offline calculator was provided to facilitate the calculation of
R/D-score. The potential of the predictive model for clinical application was
also evaluated using DCA. In Figure 4c, it can be seen that the nomogram-
based prediction model has positive net benefits. In more detail, the net benefit
of the prediction model is greater than the hypothesis that all patients receive
RP prophylaxis or pro-active countermeasures (e.g., taking drugs to prevent RP
or reducing the dose of radiotherapy) and that all patients do not receive such
measures indiscriminately. It is worth noting that the net benefit of the D-
score-based model is higher than that of the DVH-score-based model, implying
that the model with the D-score has more potential clinical benefit. In
summary, the model we developed has potential clinical utility.

In univariate analysis of clinical parameters, whether receiving CCRT had an
effect on the occurrence of RP, and the incidence of RP was lower in patients
who received CCRT, which is not consistent with clinical experience and with
findings in most studies [12, 13, 47]. This might be a bias due to subjective
clinical decision making by physicians. Patients included in our study were
evaluated by physicians for risk prior to receiving CCRT, and patients with poor
health status and high incidence of radiation therapy side effects in the opinion
of physicians would not be given CCRT. Some patients will receive potentially
lower prescription doses in the radical dose range with stricter dose constraints
of the lung to ensure they can complete a full cycle of radiotherapy without
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serious radiation therapy side effects. Similar views have been proposed by
other researchers [8]. A negative correlation between age and CCRT can be
seen in Supplementary material F Figure 3, which also illustrates the
subjectivity in the setting of the CCRT protocol. Our findings suggest that ILD
is a risk factor for the development of RP. Clinically, RT may lead to
exacerbation of ILD and thus interfere with the diagnosis of RP [48].
Accordingly, in this study, the diagnosis of RP in patients with ILD was
determined by collaboration with radiologists. And it should be noted that
strictly to define, the ILD mentioned in this study is subclinical ILD, according
to previous studies. [49, 50]. To investigate the effect of ILD on the model, we
excluded patients with ILD in all datasets and performed the same independent
validation methods as described previously. Based on the results
(Supplementary Material G), we propose our hypothesis: 1. The radiomics
model focuses not only on lung texture but also includes other information, as
there is no significant difference between the model including or excluding
patients with ILD. 2. The discrimination performance of the model built by
dosiomics or DVH metrics is improved by excluding patients with ILD, as dose-
based models are difficult to predict RP in patients with ILD. 3. ILD is a critical
clinical predictor. In previous reports, patients with ILD have high risk of RP,
and ILD has been considered a high risk factor for fatal RP [51, 52]. A number of
studies have been conducted to analyze the relationship between age and RP [8,
53]. Several studies [54-56] and a meta-analysis [57] have shown that older
patients have a higher risk of developing RP. However, some studies did not
find an association between age and the risk of RP [58, 59]. In summary,
patients who are elderly or/and have ILD should be given more attention and a
more comprehensive risk assessment before receiving radiotherapy.

A current challenge in radiomics/dosiomics studies is interpretability, and we
attempted to analyze the omics results from a clinical perspective. The analysis
revealed no strong correlation between clinical parameters and the R-score
(Supplementary material F Figure 3a). However, imaging radiomics contains a
large amount of quantitative information and it may not be possible to
interpret the full meaning of what it represents using a few clinical parameters.
The feature maps of radiomics and dosiomics can provide the direct
visualization of voxel-based feature values. As shown in Figure 3 (a) and (b), the
radiomic feature "original_ngtdm_Complexity" can reflect the texture
characteristics, and for ILD patients, higher voxel-based feature values were
obtained compared to patients without pre-existing lung disease. The dosomic
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feature "original_ngtdm_Strength" (Figure 3(c) and (d)) shows a pattern of
variation from high to low dose, which is some reflection of the radiotherapy
planning pattern. Feature maps of other features are provided in the
Supplementary material F Figure 5. We compared the feature maps with the
follow-up diagnostic CTs and found that the radiomics signature map did not
match the areas of symptomatic RP. In contrast, there is a significant overlap
between some dosiomics feature maps and the symptomatic RP regions
(Supplementary Material F Figure 6). This is consistent with the clinical
understanding that the regional localization of symptomatic RP is more closely
related to the physical radiation dose distribution.

The Rad/Dosiomics features selected in this study include shape features,
which give us a suggestion that the contouring of the lung tissue is important.
Currently, manual segmentation is still the "gold standard", but it is time
consuming. Therefore, we performed manual check to ensure the accuracy and
quality of the automatic segmentation, following processing by the automatic
segmentation software. We think this approach is suitable for future multi-
institutional studies to assure accuracy while reducing physician workload.
Since dosiomics is still relatively little studied, there are no standardized
parameter settings yet. Although it has common points with imaging radiomics,
some of the parameter settings are different and have a great impact on the
results, so we provide the setting files in Supplementary material B, which also
provides a reference for future investigators.

This present study has several limitations. First, although the sample size
included in our study is relatively large for radiomics/dosiomics RP prediction
study, the prospective validation sample size is too small. Our institution's
prospective study is still ongoing and continues to expand the sample size. For
the scope of this work, we did not yet optimize the plan based on the results of
the omics model. We acknowledge that the prospective data set used in this
study was derived from an observational prospective study and no
interventions were implemented in those patients based on our
abovementioned predictive models. By prospective inclusion, we were strictly
only able to standardize the follow-up strategy, specifically, patients received
regular follow-up examinations and RP grade was jointly diagnosed by the
study investigators, which ensured the highest achievable accuracy and
consistency of the endpoints, while giving more attention towards patients with
likelihood of developing RP. At the present time, it is not yet clear which aspect
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of the treatment plan to change in order to intervene correctly in the planning
dosimetry process, so this requires further work. A prospectively-enrolled
clinical study would be important in the clinical implementation process, this is
planned for future work, but is not the principal purpose of this paper. Second,
the current gold standard for predictive model validation is still multi-
institutional real-world external validation. Third, we built a binary prediction
model because the sample size is limited and as the dataset expands, models
that can predict different grades are needed. Fourth, pneumonitis associated
with immune checkpoint inhibitor (ICI) therapy is an important adverse event.
However, the relationship between ICI and RP or the relationship between ICI-
associated pneumonitis and radiotherapy-associated pneumonitis remains
unclear. Therefore, we excluded patients treated with ICI. Fifth, most current
studies comparing machine learning and deep learning conclude that deep
learning has stronger predictive power. This study is a pilot study. Therefore,
deep learning which is currently a "black box" is not applied, and machine
learning with observable processing is chosen. Finally, individualized treatment
should incorporate more multidimensional omics information, including
genomics and imaging multimodality data. To address several issues above, our
institution is conducting a multi-institutional study.

Conclusions

This study was a TRIPOD type 3 prediction model development study,
validated using bootstrap samples and a prospective validation set. The
radiomics, dosiomics signature, and clinical parameters associated with RP
were selected. By comparing the performance of the models built by combining
different types of parameters, the best prediction model was found with the
best performance of the three types of parameters combined. Furthermore, a
comprehensive nomogram was built to assist in clinical decision making and
individualized treatment. In the future, a multi-institutional study is needed.
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Supplementary Materials

Supplementary material A

Inclusion and exclusion criteria for retrospective and prospective data
The first dataset was collected retrospectively as a training set and validation
set. A total of 314 patients treated between January 2013 and December 2018
with definitive RT at Anonymized for Review hospital were considered for the
retrospective dataset. The inclusion criteria were as follows: (1) Patients
identified with histologically confirmed NSCLC or SCLC. (2) Diagnosed with
Stage I-III NSCLC and limited-stage SCLC (American Joint Committee on
Cancer, 8th edition, 2017) before RT, and patients underwent radical RT. (3) No
thoracic RT or thoracic surgery prior to RT. (4) CT examinations were
performed at 1, 3, and 6 months (± 15 days) after treatment at Anonymized for
Review Hospital. Patients were excluded, if treatment break of more than 5
days during RT, if patients received surgical treatment within 6 months after
radiotherapy, if patients received adjuvant/concurrent immunotherapy, if there
was also a second primary tumor, and if the patients had a lung infection
within 6 months after radiotherapy, so it was difficult to identify whether it was
RP.

The second dataset was collected prospectively at the same institution as a test
set. A total of 56 patients were enrolled in the study from October 2018 to
March 2019. Finally, 35 patients were included in the analysis. 21 patients were
excluded because did not meet the eligible criteria, fourteen of which did not
follow up CT as planned, six of which did not complete radiotherapy, and one
patient died two months after radiation therapy. The inclusion and exclusion
criteria were the same as the retrospective dataset and these patients were
followed-up every month after had received radiotherapy. The follow-up items
included blood routine examination, C-reactive protein, tumor markers
associated with lung cancer, chest X-rays, and patients received CT
examination at 1, 3, and 6 months (± 7 days) after radiotherapy.

Patient Characteristics for prospective data
Supplementary Table 1. Patient Characteristics for prospective data
Characteristics Pros pts Without RP2 With RP2 P*
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n (%) Mean ± SD Mean ± SD
Age median 62 (34-75) 61.5 (34-75) 62 (59-68) 0.363
Gender 1.000
Male 23 (65.7%) 17 (73.9%) 6 (26.1%)
Female 12 (34.3%) 9 (75.0%) 3 (25.0%)

Smoking 1.000
Yes 26 (74.3%) 19 (73.1%) 7 (26.9%)
No 9 (25.7%) 7 (77.8%) 2 (22.2%)

KPS 1.000
≤80 13 (37.1%) 10 (76.9%) 3 (23.1%)
>80 22 (62.9%) 16 (72.7%) 6 (27.3%)

Diabetes 1.000
Yes 2 (5.7%) 2 (100.0%) 0 (0%)
No 33 (94.3%) 24 (72.7%) 9 (27.3%)

ILD 0.192
Yes 9 (25.7%) 5 (55.6%) 4 (44.4%)
No 26 (74.3%) 21 (80.8%) 5 (19.2%)

Pathology 0.776
LUSC 8 (22.9%) 5 (62.5%) 3 (37.5%)
LUAD 10 (28.6%) 8 (80.0%) 2 (20.0%)
SCLC 17 (48.5%) 13 (76.5%) 4 (23.5%)

Induc chemo 0.553
Yes 31 (88.6%) 22 (71.0%) 9 (29.0%)
No 4 (11.4%) 4 (100.0%) 0 (0%)

CCRT 0.081
Yes 8 (22.9%) 8 (100.0%) 0 (0%)
No 27 (77.1%) 18 (66.7%) 9 (33.3%)

Conso chemo 0.245
Yes 19 (54.3%) 16 (84.2%) 3 (15.8%)
No 16 (45.7%) 10 (62.5%) 6 (37.5%)

PGTV (Gy) 60.200±2.870 60.423±2.862 59.556±2.963 0.436
Smoking
index

668.600±550.412 646.154±566.555 733.333±527.376 0.679

Abbreviations: Retro = retrospective; Pts = patients; Pros = prospective; LUSC =
lung squamous cell carcinoma; LUAD = lung adenocarcinoma; SCLC = small
cell lung cancer; IMRT = intensity-modulated radiotherapy; VMAT =
volumetric modulated arc therapy; chemo = chemotherapy; KPS = Karnofsky
performance score; Induc chemo = induction chemotherapy; CCRT =
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concurrent chemoradiotherapy; Conso chemo = consolidation chemotherapy;
PGTV = planning gross tumor volume.
*The differences in characteristics were evaluated by logistic regression for
continuous variables or Pearson X2 test and exact Fisher test for categorical
variables

Supplementary material B

Radiomics and dosiomics features extraction parameter settings file
Radiomics
imageType:
Original:
binWidth: 25

featureClass:

shape: # Remove VoxelVolume, correlated to Volume
- Elongation
- Flatness
- LeastAxisLength
- MajorAxisLength
- Maximum2DDiameterColumn
- Maximum2DDiameterRow
- Maximum2DDiameterSlice
- Maximum3DDiameter
- MeshVolume
- MinorAxisLength
- Sphericity
- SurfaceArea
- SurfaceVolumeRatio

firstorder: # Remove Total Energy, correlated to Energy (due to resampling
enabled)

- 10Percentile
- 90Percentile
- Energy
- Entropy
- InterquartileRange
- Kurtosis
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- Maximum
- Mean
- MeanAbsoluteDeviation
- Median
- Minimum
- Range
- RobustMeanAbsoluteDeviation
- RootMeanSquared
- Skewness
- Uniformity
- Variance

glcm: # Disable SumAverage by specifying all other GLCM features
available

- 'Autocorrelation'
- 'JointAverage'
- 'ClusterProminence'
- 'ClusterShade'
- 'ClusterTendency'
- 'Contrast'
- 'Correlation'
- 'DifferenceAverage'
- 'DifferenceEntropy'
- 'DifferenceVariance'
- 'JointEnergy'
- 'JointEntropy'
- 'Imc1'
- 'Imc2'
- 'Idm'
- 'Idmn'
- 'Id'
- 'Idn'
- 'InverseVariance'
- 'MaximumProbability'
- 'SumEntropy'
- 'SumSquares'

glrlm:
glszm:
gldm:
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ngtdm:

setting:
interpolator: 'sitkBSpline'
resampledPixelSpacing: [2, 2, 2]
padDistance: 10 # Extra padding for large sigma valued LoG filtered images

resegmentRange: [-3, 3]
resegmentMode: sigma

voxelArrayShift: 1000 # Minimum value in HU is -1000, shift +1000 to
prevent negative values from being squared.

Dosiomics
imageType:
Original:
binWidth: 0.5

featureClass:

shape: # Remove VoxelVolume, correlated to Volume
- Elongation
- Flatness
- LeastAxisLength
- MajorAxisLength
- Maximum2DDiameterColumn
- Maximum2DDiameterRow
- Maximum2DDiameterSlice
- Maximum3DDiameter
- MeshVolume
- MinorAxisLength
- Sphericity
- SurfaceArea
- SurfaceVolumeRatio

firstorder: # Remove Total Energy, correlated to Energy (due to resampling
enabled)

- 10Percentile
- 90Percentile
- Energy
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- Entropy
- InterquartileRange
- Kurtosis
- Maximum
- Mean
- MeanAbsoluteDeviation
- Median
- Minimum
- Range
- RobustMeanAbsoluteDeviation
- RootMeanSquared
- Skewness
- Uniformity
- Variance

glcm: # Disable SumAverage by specifying all other GLCM features
available

- 'Autocorrelation'
- 'JointAverage'
- 'ClusterProminence'
- 'ClusterShade'
- 'ClusterTendency'
- 'Contrast'
- 'Correlation'
- 'DifferenceAverage'
- 'DifferenceEntropy'
- 'DifferenceVariance'
- 'JointEnergy'
- 'JointEntropy'
- 'Imc1'
- 'Imc2'
- 'Idm'
- 'Idmn'
- 'Id'
- 'Idn'
- 'InverseVariance'
- 'MaximumProbability'
- 'SumEntropy'
- 'SumSquares'
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glrlm:
glszm:
gldm:
ngtdm:

setting:
interpolator: 'sitkBSpline'
resampledPixelSpacing: [2, 2, 2]
padDistance: 10 # Extra padding for large sigma valued LoG filtered images

voxelArrayShift: 0 # Minimum value in HU is -1000, shift +1000 to prevent
negative values from being squared.

Supplementary material C

Dose-volume histogram (DVH) metrics selection and model construction
Due to the colinearity of DVH metrics, it does is not suitable to perform the
same feature selection approaches as radiomics/dosiomics. Instead, the
predictive model is built using the already acknowledged metrics V20 and MLD.
The DVH-score was defined as the linear predictor of the multivariable LR
radiomics model.

The validation method was performed in exactly the same way as for the
radiomics/dosiomics model: (1) For each of the 1000 bootstraps, we fitted the
logistic regression model coefficients on each bootstrap, and then computed its
Area under the curve (AUC) of receiver operating characteristic curve (ROC)
using the original non-bootstrapped development cohort. From these 1000
bootstraps, we computed the average AUC and its 95% confidence interval. (2)
As external validation, we evaluated the DVH model using the prospectively-
registered cohort of 35 subjects. Processing of these 35 subjects followed exactly
the same procedure as for the model development cohort, and none of these
subjects were used in any way during model construction.

Since V5 is an important predictor in the IMRT/VMAT era, we also built
another DVH model by combining V5 and MLD. However, based on this
dataset, the predictive power of the "V5+MLD" model is worse than that of the
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"V20+MLD" model, so we used the DVH model of V20 and MLD as the
comparative model in this study.

Supplementary material D

Feature selection results and graphs
The top twenty features that were screened are displayed in Supplementary
Table 1. The features are sorted according to the number of frequencies
selected and shown in the Supplementary Figure 1. The cut-off points were
decided based on the frequency breakpoints shown in the graphs. The cut-off
points for both radiomics and dosiomics features are around 600.

The three most frequently selected signatures are shown in Supplementary
Table 2, with the highest selected frequencies of 45 and 105 for the radiomics
and dosiomics signatures, respectively.

Definitions of the selected features are provided in Supplementary Table 3.

Supplementary Table 1a. The top twenty radiomics features that were
selected
No. Radiomics features Frequency
1. original_shape_Elongation 1000
2. original_shape_Flatness 922
3. original_shape_MinorAxisLength 871
4. original_shape_MeshVolume 746
5. original_firstorder_90Percentile 700
6. original_glcm_JointEntropy 696
7. original_ngtdm_Complexity 694
8. original_firstorder_Median 684
9. original_shape_Maximum2DDiameterSlice 677
10. original_glszm_LargeAreaEmphasis 670
11. original_shape_Maximum2DDiameterRow 663
12. original_gldm_DependenceNonUniformityNormalized 603
13. original_gldm_DependenceEntropy 587
14. original_glcm_DifferenceEntropy 563
15. original_ngtdm_Contrast 562
16. original_glszm_SmallAreaLowGrayLevelEmphasis 542
17. original_gldm_SmallDependenceLowGrayLevelEmphasis 537
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18. original_shape_LeastAxisLength 525
19. original_shape_SurfaceVolumeRatio 525
20. original_ngtdm_Strength 521

Supplementary Table 1b. The top twenty dosiomics features that were
selected
No. dosiomics features Frequency
1. original_shape_Elongation 1000
2. original_glszm_LargeAreaEmphasis 864
3. original_shape_Flatness 736
4. original_ngtdm_Strength 715
5. original_shape_SurfaceArea 704
6. original_shape_MeshVolume 693
7. original_shape_Maximum2DDiameterRow 643
8. original_glszm_GrayLevelVariance 642
9. original_shape_MinorAxisLength 641
10. original_ngtdm_Coarseness 622
11. original_ngtdm_Contrast 605
12. original_glszm_SmallAreaLowGrayLevelEmphasis 594
13. original_gldm_LargeDependenceEmphasis 555
14. original_shape_LeastAxisLength 554
15. original_glcm_DifferenceEntropy 545
16. original_glrlm_ShortRunLowGrayLevelEmphasis 544
17. original_glszm_ZoneEntropy 544
18. original_glrlm_RunLengthNonUniformity 537
19. original_glszm_SmallAreaHighGrayLevelEmphasis 526
20. original_gldm_DependenceEntropy 523

Supplementary Table 2a. The top three frequently selected radiomics
signatures
No Signature Freq
1. original_glcm_JointEntropy + original_ngtdm_Complexity +

original_shape_Elongation + original_shape_Flatness +
original_shape_Maximum2DDiameterSlice +
original_shape_MeshVolume + original_shape_MinorAxisLength

45

2. original_firstorder_90Percentile + original_firstorder_Median +
original_glcm_JointEntropy + original_ngtdm_Complexity +

40
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original_shape_Elongation + original_shape_Flatness +
original_shape_MeshVolume + original_shape_MinorAxisLength

3. original_firstorder_90Percentile + original_firstorder_Median +
original_glszm_LargeAreaEmphasis + original_ngtdm_Complexity +
original_shape_Elongation + original_shape_Flatness +
original_shape_Maximum2DDiameterRow +
original_shape_MeshVolume + original_shape_MinorAxisLength

36

Supplementary Table 2b. The top three frequently selected dosiomics
signatures
No Signature Freq
1. original_glszm_GrayLevelVariance + original_glszm_LargeAreaEmphasis

+ original_ngtdm_Contrast + original_ngtdm_Strength +
original_shape_MeshVolume + original_shape_SurfaceArea

105

2. original_glszm_GrayLevelVariance + original_glszm_LargeAreaEmphasis
+ original_ngtdm_Contrast + original_ngtdm_Strength +
original_shape_MeshVolume

70

3. original_glszm_GrayLevelVariance + original_glszm_LargeAreaEmphasis
+ original_ngtdm_Contrast + original_ngtdm_Strength +
original_shape_MeshVolume + original_shape_MinorAxisLength +
original_shape_SurfaceArea

43
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(a)

(b)
Supplementary Figure 1. (a) The radiomics features are sorted according to
the number of frequencies selected. (b) The dosiomics features are sorted
according to the number of frequencies selected.

Supplementary Table 3. Definitions of the selected features.

Feature Definition

original_glcm_JointEntropy Joint entropy is a measure of the
randomness/variability in
neighborhood intensity values.

original_ngtdm_Complexity An image is considered complex
when there are many primitive
components in the image, i.e. the
image is non-uniform and there
are many rapid changes in gray
level intensity.

original_shape_Elongation Elongation shows the relationship
between the two largest principal
components in the ROI shape. For
computational reasons, this
feature is defined as the inverse of
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true elongation.

original_shape_Flatness Flatness shows the relationship
between the largest and smallest
principal components in the ROI
shape. For computational reasons,
this feature is defined as the
inverse of true flatness.

original_shape_Maximum2DDiameterSlice Maximum 2D diameter (Slice) is
defined as the largest pairwise
Euclidean distance between tumor
surface mesh vertices in the row-
column (generally the axial) plane.

original_shape_MeshVolume The volume of the ROI V is
calculated from the triangle mesh
of the ROI.

original_shape_MinorAxisLength This feature yield the second-
largest axis length of the ROI-
enclosing ellipsoid and is
calculated using the largest
principal component λminor.

original_glszm_GrayLevelVariance GLV measures the variance in gray
level intensities for the zones.

original_glszm_LargeAreaEmphasis LAE is a measure of the
distribution of large area size
zones, with a greater value
indicative of more larger size
zones and more coarse textures.

original_ngtdm_Contrast Contrast is a measure of the
spatial intensity change, but is
also dependent on the overall gray
level dynamic range. Contrast is
high when both the dynamic
range and the spatial change rate
are high, i.e. an image with a large
range of gray levels, with large
changes between voxels and their
neighbourhood.
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original_ngtdm_Strength Strength is a measure of the
primitives in an image. Its value is
high when the primitives are
easily defined and visible, i.e. an
image with slow change in
intensity but more large coarse
differences in gray level
intensities.

original_shape_SurfaceArea To calculate the surface area, first
the surface area of each triangle in
the mesh is calculated (1). The
total surface area is then obtained
by taking the sum of all calculated
sub-areas (2).

Radiomics (R)-score and Dosiomics (D)-score
We added a constant offset in order to return strictly positive scores.
The R-score was calculated as follows: -1.383 +
1.067*original_glcm_JointEntropy - 0.370*original_ngtdm_Complexity +
1.605*original_shape_Elongation - 0.635*original_shape_Flatness +
0.398*original_shape_Maximum2DDiameterSlice + 1.557*
original_shape_MeshVolume - 2.148*original_shape_MinorAxisLength + 4.
The D-score: -1.522 - 0.616*original_glszm_GrayLevelVariance -
0.868*original_glszm_LargeAreaEmphasis + 0.878*original_ngtdm_Contrast +
0.922*original_ngtdm_Strength + 1.457*original_shape_MeshVolume -
0.625*original_shape_SurfaceArea + 9.

Supplementary material E

Instructions for R-score and D-score calculator
Selecting either Radiomics risk score (R-score) or Dosiomics risk score (D-
score), then enter the feature values into the corresponding input boxes and
click the “Calculate” button to get the scores.

*This calculator can only be used for research purposes, not for commercial use.
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Supplementary Figure 2. The operator interface of the calculator.

Supplementary material F

Correlations between different parameters
The correlation between the different parameters was calculated (Spearman
correlation, R version 4.0.5). The results showed no significant correlation (>0.8)
between radiomics risk score (R-score) and clinical parameters, dosiomics risk
score (D-score) and dosimetrics.
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(a)
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(b)
Supplementary Figure 3. (a) Correlations between R-score and clinical
parameters. (b) Correlation between D-score and dosimetrics. Abbreviations:
CCRT = concurrent chemoradiotherapy; Conso chemo = consolidation
chemotherapy; R-score = radiomics risk score; D-score = dosiomics risk score;
MLD = mean lung dose; MHD = mean heart dose.

Distribution of R-score and D-score
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(a)
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(b)
Supplementary Figure 4. (a) Distribution of radiomics risk score (R-score) in
patients with and without interstitial lung disease (ILD). (b) Distribution of
dosiomics risk score (D-score) among patients with mean lung dose (MLD)
greater than 10Gy and less than or equal to 10Gy.

Feature maps
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(a)

(b)
Supplementary Figure 5. (a) Radiomics feature map of feature
“original_glcm_JointEntropy” for patient with low radiomics risk score (R-score)
and patient with high R-score. (b) Dosiomics feature map of feature
“original_glszm_GrayLevelVariance”, “original_glszm_LargeAreaEmphasis” and
“original_ngtdm_Contrast” for patient with low dosiomics risk score (D-score)
and patient with high D-score.
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Supplementary material G

Discrimination ability of different combination of Radiomics score, Dosiomics
score and clinical parameters

Model
Train

(95%CI)

Validation by
bootstrapping
(95%CI)

Testing
(95%CI)

R-score + D-score
0.735

(0.673-0.796)
0.729

(0.720-0.736)
0.739

(0.553-0.926)

R-score + C
0.717

(0.652-0.782)
0.701

(0.683-0.719)
0.771

(0.585-0.962)

D-score + C
0.770

(0.710-0.830)
0.755

(0.744-0.765)
0.756

(0.559-0.954)
Abbreviations: R = radiomics risk score; D = dosiomics risk score; C = clinical
parameters.

Discrimination ability of different models without patients with interstitial lung
disease (ILD)

Model
Testing
(95%CI)

Testing
without

patient with
ILD

(95%CI)

R-score
0.671

(0.558-0.899)
0.714

(0.348-1.000)

D-score
0.684

(0.573-0.883)
0.800

(0.613-0.987)

DVH-score
0.661

(0.551-0.856)
0.752

(0.505-1.000)

Clinical parameters
0.709

(0.509-0.91)
0.629

(0.392-0.865)
R-score + D-score +

C
0.855

(0.719-0.990)
0.914

(0.785-1.000)
Abbreviations: ILD = interstitial lung disease.
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Precision Recall (RP) curve of the model combing R-score, D-score and Clinical
parameters on the test set

Supplementary Figure 6. Precision Recall (RP)-curve
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Supplementary material H

Calibration curve of prospective validation set with a bootstrap resampling

method

Supplementary Figure 7. Calibration curve of prospective validation set with a
bootstrap resampling method. Dashed line indicated the ideal model in which
predicted and actual probabilities were perfectly identical; Red line indicated
actual performance with apparent accuracy; Green line indicated bootstrap
corrected estimate of the calibration curve.
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Chapter 6: Clinical analysis and Artificial
Intelligence Survival Prediction of Serous
Ovarian Cancer Based on Preoperative
Circulating Leukocytes

Adapted from Ying Feng*, Zhixiang Wang*, Ran Cui, Meizhu Xiao, Huiqiao Gao,
Huimin Bai, Bert Delvoux, Zhen Zhang, Andre Dekker, Andrea Romano, Shuzhen
Wang, Alberto Traverso, Chongdong Liu and Zhenyu Zhang. Clinical analysis
and artificial intelligence survival prediction of serous ovarian cancer based on
preoperative circulating leukocytes. J Ovarian Res 15, 64 (2022).
https://doi.org/10.1186/s13048-022-00994-2
* indicates equal contributions
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Abstract
Circulating leukocytes are an important part of the immune system. The aim of
this work is to explore the role of preoperative circulating leukocytes in serous
ovarian carcinoma and investigate whether they can be used to predict survival
prognosis. Routine blood test results and clinical information of patients with
serous ovarian carcinoma were retrospectively collected. And to predict
survival according to the blood routine test result the decision tree method was
applied to build a machine learning model.
The results showed that the number of preoperative white blood cells (p
=0.022), monocytes (p <0.001), lymphocytes (p <0.001), neutrophils (p <0.001),
and eosinophils (p <0.001) and the monocyte to lymphocyte (MO/LY) ratio in
the serous ovarian cancer group were significantly different from those in the
control group. These factors also showed a correlation with other
clinicopathological characteristics. The MO/LY was the root node of the
decision tree, and the predictive AUC for survival was 0.69. The features
involved in the decision tree were the MO/LY, differentiation status, CA125
level, neutrophils (NE,) ascites cytology, LY% and age.
In conclusion, the number and percentage of preoperative leukocytes in
patients with ovarian cancer is changed significantly compared to those in the
normal control group, as well as the MO/LY. A decision tree was built to
predict the survival of patients with serous ovarian cancer based on the CA125
level, white blood cell (WBC) count, presence of lymph node metastasis (LNM),
MO count, the MO/LY ratio, differentiation status, stage, LY%, ascites cytology,
and age.
Keywords
Machine learning, leukocytes, serous ovarian cancer, recurrence, survival, and
prediction.
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1. Background
Ovarian carcinoma is the 5th leading cause of cancer-related deaths among
women and the deadliest disease among gynecological malignancies[1,2].
Statistics from the United States show that the number of new cases of ovarian
carcinoma in 2021 will be 22,530, and the number of deaths per year is
estimated at approximately 13,770[1]. Ovarian cancer usually has a poor
prognosis because many patients already present with advanced metastatic
stages before diagnosis[3,2]. The 1-year survival rate is approximately 72%, the
5-year survival rate is 48%, and the 10-year survival rate is approximately
35%[4,5,2]. Serous carcinoma accounts for 75% of all ovarian cancers and is the
most common pathological type [3,6]. Therefore, it is worthwhile to
preoperatively predict the survival of serous ovarian carcinoma using
clinicopathological features to guide decisions regarding surgery and
postsurgical care.
Some reports have indicated that the interaction between ovarian cancer and
the immune system may affect tumor growth and progression[7,8]. There is
also some evidence that the inflammatory process caused by pelvic
inflammatory disease may be associated with ovarian cancer[9]. Regarding the
tumor evasion mechanism, tumor cells modulate the immune response for
their benefit; tumor cells secrete specific cytokines that recruit and stimulate
the production of myeloid-derived suppressor cells (MDSCs). They also
produce TGF-β and IL-10 and inhibit T lymphocytes, macrophages and
dendritic cells to create an immunosuppressive tumor microenvironment[10-12].
Due to the prominent role of the immune system in ovarian cancer,
preoperative immune and inflammatory features may be suitable prognostic
biomarkers. One promising characteristic is the leukocyte count.
Leukocytes, also called white blood cells (WBCs), are immune cells involved in
protecting the body from disease and pathogens[13-15]. WBCs are distributed
throughout the body, including the blood system and lymphatic system. WBCs
account for approximately 1% of the total blood volume of healthy adults. There
are five main subtypes of leukocytes: lymphocytes, monocytes, neutrophils,
eosinophils, and basophils. They have a great impact on health because human
immunity is based on the presence of and balance among these cell types.
When an immune response occurs, as in the case of cancer, the number of
WBCs will change accordingly[16,17,7,18].
Higher monocyte counts were reported to be associated with a poor prognosis
in patients with endometrial cancer[19]. The lymphocyte-to-monocyte ratio
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(LMR) in patients with epithelial ovarian cancer (EOC) and those with benign
ovarian masses is significantly different[16]. The lymphocyte-to-monocyte
ratio (LMR) has been significantly associated with the stage of EOC [20] and
can provide prognostic information [21]. The monocyte-to-lymphocyte ratio has
also been shown to predict shorter overall survival (OS) and progression-free
survival (PFS) in EOC patients[22]. Therefore, we also paid attention to the
monocyte-to-lymphocyte ratio in patients with serous ovarian cancer.
In this study, we aimed to explore the potential role of WBCs as prognostic
biomarkers. Our primary objective is to investigate whether the number and
proportion of circulating leukocytes in patients with serous ovarian carcinoma
are different from those in normal controls (uterine prolapse patients). We also
aimed to determine their association with clinicopathological characteristics,
survival, and prognosis. As a secondary objective, we explored whether the test
of preoperative circulating leukocytes can be used to predict the survival of
ovarian serous carcinoma. To this end, machine learning in artificial
intelligence (AI) [23], which is widely used in various medical fields, such as
anatomy and brain-machine interfaces [24], is used to develop algorithms to
predict the survival of patients with serous ovarian cancer.
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2. Methods
2.1. Study subject
This study retrospectively analyzed patients with ovarian serous carcinoma who
were initially treated at the Department of Obstetrics and Gynecology at
Beijing Chaoyang Hospital, Capital Medical University, from July 2009 to
December 2018. The case inclusion criteria were as follows: (1) surgical
treatment performed at Beijing Chaoyang Hospital, (2) confirmation of ovarian
serous carcinoma (serous cystadenocarcinoma or high-grade serous
cystadenocarcinoma) by postoperative pathology, (3) standard platinum-based
chemotherapy after the first tumor reduction surgery, and (4) complete
preoperative routine blood and clinical data. The exclusion criteria were as
follows: (1) presence of other types of benign and/or malignant ovarian tumors,
(2) presence of primary malignant tumors of other organs, (3) no standardized
chemotherapy after the first tumor reduction operation, and (4) incomplete
routine blood and clinical data. The obtained data included age, BMI,
childbirth history, menopause, neoadjuvant chemotherapy, surgical satisfaction,
differentiation, stage based on the 2014 International Federation of Gynecology
and Obstetrics (FIGO) staging system[25], ascites cytology, lymph node
metastasis (LNM), recurrence, which is defined as the time from the first
cytoreductive surgery to the time of ovarian cancer recurrence, death of disease
(DOD) that is defined as the date from the first cytoreductive surgery to the
date of the patient's death due to ovarian cancer, preoperative leukocyte
count and proportion (within 90 days before the operation).
Recurrence was defined as the time from the first cytoreductive surgery to the
time of ovarian cancer recurrence; death was defined as the date from the first
cytoreductive surgery to the date of the patient's death due to ovarian cancer.
The “normal”/control group selected and consisted of patients of a similar age
who were diagnosed with uterine prolapse. The results of preoperative routine
blood tests for these patients were also collected.
Ethics approval for this research was provided by the Beijing Chaoyang
Hospital, Capital Medical University (approval number 2021-ke-205, study
number 2012DRF30490).

2.2. Statistical analysis
Statistical analysis of the clinical data was performed with SPSS (version 23.0,
IBM). Continuous data are expressed as the median and compared using the
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Mann–Whitney U test. Total/differential leukocytes were divided into two
groups according to the median value. Kaplan–Meier survival curves were then
performed to compare overall survival (OS), which is defined as the time from
the date of surgery to death (due to serous ovarian cancer), and progression-
free survival (PFS), which is defined as the time from the date of surgery to
recurrence, between the two groups. Significance was tested using the log-rank
test, where these patients (5 patients) who had different first chemotherapy
regimen were excluded. The three-dimensional (3D) histograms with three
variables were constructed with Python 3.8. The significance was set at a two-
sided p value < 0.05.

2.3. Machine learning
For survival prediction, we choose the machine learning-based decision tree
algorithm. We divided the method into several steps, as shown in the flowchart
(Figure 1).

Figure 1. Flowchart for decision tree prediction. To build a machine learning
model, frst, data pre-processing is required. Second, select best parameters and
build the model. Third, evaluation and compare the model performance.
We implemented the algorithm in Python 3.8 and the scikit-learn 0.24 package.
In the preprocessing part, we first removed the patients’ identifying
information. Second, we analyzed the distribution and removed the
independent discrete points that were out of the value range of 5-95%. Third,
we selected the features , such as stage, grade of differentiation and LNM,
according to the National Comprehensive Cancer Network (NCCN)
guideline[26]. Then, using 10-fold cross-validation, we separated the data into
two parts: 90% of the data was used for training and 10% of the data was used
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for testing. Imbalanced datasets are often handled well by decision tree
classifiers[27], so we built a decision tree model and trained the model. Finally,
to ensure the stability of the model, we used 10-fold cross-validation to train
and test the model. To reduce the influence of imbalanced data, we used the
synthetic minority oversampling technique (SMOTE) method to oversample
the training set, which is an improved scheme based on a random oversampling
algorithm[28]. To prove the role of circulating leukocytes in survival
prediction, we performed comparisons with the same model trained by the
features without circulating leukocytes.

For the decision tree learning process, these patients (93 patients) who had
same first chemotherapy regimen were included. The optimal feature was
selected recursively, and the training data were segmented according to the
feature so that each subdataset had the best classification process. This process
corresponded to the division of the feature space and the construction of the
decision tree. First, the root node was constructed, and all training data were
placed in the root node. An optimal feature was chosen, and the training
dataset was divided into subsets according to this feature so that each subset
had the best classification under the current conditions. If these subsets could
be relatively correctly classified, then the leaf nodes were constructed, and
these subsets were divided into the corresponding leaf nodes; if there were still
subsets that could not be relatively correctly classified, then these subsets
selected the new optimal feature, continued to divide it, and constructed the
corresponding node. This process proceeded recursively until all the training
data subsets were basically correctly classified or there were no suitable
features. Finally, each subset was assigned to the leaf nodes.
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3. Results
3.1. Patient clinicopathological characteristics and preoperative circulating

leukocytes
A total of 98 patients with ovarian serous carcinoma who were initially treated
at the Department of Obstetrics and Gynecology at Beijing Chaoyang Hospital,
Capital Medical University, from July 2009 to December 2018 were included in
the analysis according to the inclusion and exclusion criteria. The first
chemotherapy regimen after the first surgery for all selected patients was
platinum-based treatment (93 patients received 6-8 cycles of paclitaxel and
cisplatin (PT), 3 patients received 8 cycles of cisplatin + adriamycin +
cyclophosphamide (PAC), 1 patient received 8 cycles of paclitaxel and
carboplatin, and 1 patient received 4 cycles of PT and 2 cycles of cisplatin +
etoposide + ifosfamide (PEI)). The average age was 57 years old, and the mean
BMI was 24.3. The pathological results revealed that 88.60% of the patients had
poorly differentiated tumors (G3), 79.60% had stage III disease, 66.3% had
positive ascites cytology, and 43.2% had LNM. The recurrence and mortality
rates were 55.3% and 29.7%, respectively, at the time of follow-up (28 July 2019).
The preoperative monocyte count and proportion in the serous ovarian cancer
group (98 patients) were significantly higher than those in the control group
(75 patients, p <0.001 and p <0.001, respectively, Table 1 and Figure 2).
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Figure 2. Boxplot distribution diagram of white blood cells. The mean±SEM of
preoperative white blood cells were compared between control and serous
ovarian cancer samples using a boxplot. Preoperative WBC, NE, NE%,MO,
MO% and MO/LY in ovarian serous carcinoma patients (n=98) were
significantly higher than those in control group (n=75), while LY, LY%, EO and
EO% were significantly lower than those in control group. BA and BA% showed
no difference between the two groups.

Table 1. The comparison of preoperative blood counts between serous ovarian
cancer group and control normal group

Blood routine
Median

P-Value
Serous ovarian cancer (N=98) Control (N=75)

WBC 106/L 7000 6420 0.022
NE 106/L 4710 3880 ＜0.001
LY 106/L 1510 1870 ＜0.001
MO 106/L 390 330 ＜0.001
EO 106/L 70 90 ＜0.001
BA 106/L 20 20 0.324
NE% 68.9 62.8 ＜0.001
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LY% 23.2 29.8 ＜0.001
MO% 6.1 5 ＜0.001
EO% 1 1.5 ＜0.001
BA% 0.3 0.4 0.071
MO/LY 0.2592 0.1746 ＜0.001
Notes: WBC, white blood cells; NE, neutrophils; LY, lymphocytes; MO, monocytes;
EO, eosinophil; BA, basophils; MO/LY, the ratio of monocytes to lymphocytes.

The monocyte-to-lymphocyte (MO/LY) ratio in the serous ovarian cancer
group was also significantly higher than that in the normal control group (p
<0.001). The number of white blood cells (WBCs, p =0.022), lymphocytes (LYs,
p <0.001), neutrophils (NEs, p <0.001), and eosinophils (EOs, p <0.001) were
also significantly different between the serous ovarian cancer group and the
normal control group.
As shown in Table 2, the percentage of monocytes showed significant
differences across the different disease stages (p=0.046); the more advanced the
stage was, the higher the average percentage. The monocyte counts also
showed similar results, with patients with LNM having more monocytes
(p=0.05). The MO/LY ratio showed significant differences according to
differentiation status (p=0.029), stage (p=0.007), LNM (p=0.025), and
recurrence (p=0.036), with a higher ratio indicating a worse result, similar to
the results for CA125. In addition, the number of NE (p =0.049) and BA (p =0.011)
and the percentage of LY (LY%, p =0.036) affected LNM. LY% (p =0.048 and p
=0.015, respectively) and NE% (p =0.027 and p =0.028, respectively) were
significantly correlated with positive ascites cytology and recurrence.
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Table 2. The relationship between preoperative blood counts and clinicopathological features in patients with serous ovarian cancer.
Characteristic
s (n=98)

WBC
106/L

NE
106/L

LY
106/L

MO
106/L

EO
106/L

BA
106/L

NE % LY % MO % EO % BA % MO/L
Y

CA125
U/ml

Stage p =
0.554

p =
0.260

p =
0.239

p =
0.050

p =
0.196

p =
0.053

p =
0.152

p =
0.054

p =
0.338

p =
0.347

p =
0.169

p =
0.026

p =
0.002

I + II 6430.0
0

4380.0
0

2040.0
0

350.00 70.00 20.00 66.30 27.80 5.50 1.00 0.20 0.19 52.60

III +IV 7000.0
0

4770.0
0

1505.00 430.00 75.00 20.00 69.25 22.70 6.10 1.05 0.30 0.27 847.40

Differentiatio
n

p =
0.844

p =
0.742

p =
0.242

p =
0.134

p =
0.175

p =
0.844

p =
0.494

p =
0.261

p =
0.061

p =
0.123

p =
0.904

p =
0.028

p =
0.679

Low (G1) 6880.0
0

4700.0
0

1490.0
0

420.00 70.00 20.00 69.05 23.00 6.15 0.90 0.30 0.27 710.60

High (G2+G3) 7030.0
0

5540.0
0

1790.00 340.00 80.00 20.00 68.40 23.90 5.10 1.40 0.30 0.20 457.80

Ascites p =
0.469

p = 1.00 p =
0.046

p =
0.077

p =
0.135

p =
0.852

p =
0.076

p =
0.111

p =
0.118

p =
0.232

p =
0.752

p =
0.697

p ＜

0.001
- 7540.0

0
5050.0
0

2080.0
0

520.00 100.00 20.00 65.40 26.30 6.30 1.40 0.30 0.25 71.74

+ 6850.0
0

4680.0
0

1480.0
0

390.00 70.00 20.00 69.40 22.90 6.10 0.90 0.30 0.26 1118.50

Ascites
cytology

p =
0.272

p =
0.076

p =
0.166

p =
0.585

p =
0.475

p =
0.813

p =
0.027

p =
0.048

p =
0.724

p =
0.373

p =
0.727

p =
0.201

p =
0.005
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- 6465.0
0

4435.0
0

1530.00 385.00 85.00 20.00 66.20 26.65 5.70 1.25 0.30 0.23 320.10

+ 7000.0
0

4880 1550.00 430.00 70.00 20.00 70.45 23.00 5.95 1.00 0.30 0.26 1216.59

LNM p =
0.111

p =
0.049

p =
0.250

p =
0.050

p =
0.286

p =
0.011

p =
0.09

p =
0.036

p =
0.439

p =
0.547

p =
0.083

p =
0.025

p =
0.027

- 6470.0
0

4450.0
0

1730.00 380.00 70.00 20.00 67.80 25.70 5.80 1.00 0.30 0.24 417.80

+ 7330.00 5210.00 1550.00 440.00 80.00 30.00 70.60 20.60 6.10 1.10 0.40 0.30 1094.0
0

Recurrence p =
0.380

p =
0.152

p =
0.100

p =
0.371

p =
0.846

p =
0.390

p =
0.028

p =
0.015

p =
0.988

p =
0.540

p =
0.301

p =
0.036

p =
0.001

- 6775.0
0

4465.0
0

1640.0
0

390.00 80.00 20.00 65.50 26.50 5.65 1.15 0.30 0.22 272.35

+ 7210.00 5050.0
0

1450.00 430.00 70.00 20.00 70.60 22.00 6.10 1.00 0.30 0.27 1218.00

Dead of
disease

p =
0.958

p =
0.838

p
=0.239

p =
0.791

p =
0.446

p =
0.536

p =
0.330

p =
0.239

p =
0.728

p =
0.408

p =
0.452

p =
0.152

p =
0.056

- 6955.0
0

4685.0
0

1560.00 390.00 80.00 20.00 68.50 23.85 5.70 1.10 0.30 0.25 552.55

+ 7000.0
0

4990.0
0

1465.00 435.00 60.00 20.00 69.05 22.10 6.25 0.90 0.30 0.29 1216.59

Notes: WBC, white blood cells; NE, neutrophils; LY, lymphocytes; MO, monocytes; EO, eosinophil; BA, basophils; MO/LY, ratio of
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monocytes to lymphocytes.; LNM, Lymph node metastasis.
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3.2. Survival analysis based on preoperative circulating leukocytes
After dividing serous ovarian carcinoma patients into two groups based on the median
value, OS and PFS decreased slightly faster in the group with a higher monocyte count
(Kaplan–Meier analysis, Figure 3). A higher MO/LY ratio was significantly correlated
with shorter PFS (p=0.001) and OS (p=0.048), which was similar to the results for
CA125 (p=0.020 and <0.001, respectively).

Figure 3. The prognostic value of preoperative blood counts in serous ovarian
cancer. The Kaplan–Meier survival curves with the log-rank test were
performed and compared between control and serous ovarian cancer samples.
A comparison of OS between ovarian cancer and controls; B comparison of PFS
between ovarian cancer and controls.

In addition, a higher NE (p=0.029 and 0.014, respectively) and NE% (p=0.011 and 0.004,
respectively) significantly predicted shorter OS and PFS times. In contrast, the lower
the LY% was (p=0.021 and <0.001, respectively), the worse the prognosis.
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When assessing death and recurrence according to the tertiles of the MO/LY ratio
cross-classified by the tertiles of the CA125 level, both the death rate and recurrence
rate increased across the increasing tertiles of the MO/LY ratio for the first and second
tertiles of the CA125 level (Figure 4). All patients within the third tertile of the CA125
level belonged to the first tertile of the MO/LY ratio. Therefore, no cases showed a
high MO/LY ratio and high CA125 level at the same time.

Figure 4. The three-dimensional distribution of CA125, MO/LY and events
(death or recurrence). Percentage of patients suffering death (A) or recurrence
(B) across tertiles of MO/LY ratio (MO/LY 1–3 = first to third tertiles) and CA125
(CA125 1–3 = first to third tertiles). Graded increases in the risk of death or
recurrence are found across increasing tertiles of MO/LY ratio for the first and
second tertile of CA125 levels.
Notes: All patients within the third tertile of CA125 level belonged to the first
tertile of MO/LY ratio. Therefore, no cases showed a high MO/LY ratio and
high CA125 level at the same time.

3.3. Decision tree to predict survival
For the decision tree, CA125 was found to be the root node with the largest
information gain by using the built-in method of sklearn (Figure 5). The Gini
coefficient reflects the measure of data uncertainty. The smaller the Gini value is, the
higher the purity of the potential classes. In each node, the sample number shows the
number of samples before being divided, and the value means the number belongs to
each class. For example, in the root node, the total number of samples is 42, so the
samples are 42. According to whether the CA125 attribute was less than or equal to
3726.05, the samples were split into two groups that contained 35 and 7 samples,
respectively.
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Figure 5. The decision tree visualization for predicting the survival of serous
ovarian cancer.
Notes: In the prediction processing, at the root node, the sample is divided into
two groups which have the MO/LY value less or equal to 0.315, or not. Then, the
divided samples need to be judged by the second layer leaf node. In the second
layer leaf nodes, the value CA125 or differentiation are the standards of
classification. After that, it will go through into the third layer of leaf nodes
until there is no leaf node left. Finally, when the decision reaches the last leaf
node, the survival probability is the number of class samples divide total
samples in the node. For example, at the leftmost leaf node, the probability of
survival is 5/6 and the probability of death is 1/6.

For prediction processing, at the root node, the sample was divided into two groups
based on a CA125 value less than or equal to 3726.05. Then, the divided samples were
judged by the second layer leaf node. In the second layer leaf nodes, the value WBC or
LNM are the standards of classification. After that, the samples will go through into
the third layer of leaf nodes until there is no leaf node left. Finally, when the decision
reaches the last leaf node, the survival probability is the number of class samples
divided by the total samples in the node. For example, at the leftmost leaf node, the
probability of survival is 5/6, and the probability of death is 1/6.
The features involved in the decision tree were the MO/LY, differentiation status,
CA125 level, NE, ascites cytology, LY% and age. The survival prediction AUC of the
decision tree was 0.69 (95% CI: 0.67-0.70).Meanwhile, the survival prediction AUC of
the logsitic regression (LR) was 0.55(95% CI: 0.53-0.57), which means that the
performance of decision tree is much bether.The performance cooperation between
the model trained by the features with (blue line) and without the routine blood test
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(RT) (red line) results is shown in Figure 6. From Figure 6, it is obvious that the model
trained with RT has better performance than that without RT. The feature importance
in the decision tree is shown in Figure 7. The MO/LY, differentiation, CA125, NE,
ascites cytology, LY% and age had a high impact, and WBC, MO and LNM had a low
impact on the model.

Figure 6. The performance cooperation in ROC curve. The model trained by the
features with (blue line) and without blood routine test (RT) (red line)

Figure 7. The features importance was shown with the rate of weight
distribution of the decision tree.
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4. Discussion
Ovarian carcinoma is the deadliest gynecological carcinoma, and epithelial ovarian
cancers are the most common type of ovarian carcinoma. Two-thirds of epithelial
ovarian cancers are serous carcinoma[3,6]. There are some signs that the inflammation
caused by pelvic inflammatory disease may be associated with ovarian cancer[9].
Inflammation, cancer immunity and the immune microenvironment often involve
various leukocytes[10-12]. In this study, we explored the role of preoperative
circulating leukocytes in serous ovarian carcinoma and investigated their value in
predicting survival prognosis. We found that most preoperative subtypes of WBCs,
including monocytes, neutrophils, lymphocytes, and eosinophils, were significantly
different between the serous ovarian carcinoma group and the control group, both in
terms of the count and the percentage. These parameters have also been associated
with the clinicopathological features of ovarian serous carcinoma.
Monocytes are the largest leukocytes and account for 2-10% of all leukocytes. These
cells can migrate from the blood to tissues and then differentiate into macrophages.
Monocytes and macrophages perform 3 major roles in the immune system, namely,
phagocytosis, antigen presentation and cytokine production[29,30]. Most
macrophages at disease sites are produced via the differentiation of circulating
monocytes[31]. Lymphocytes account for 18% to 42% of all circulating leukocytes.
Lymphocytes, such as T cells, B cells and natural killer cells, participate in many
aspects of the immune response, including cancer immunity[10-12]. Therefore, we
also calculated the monocyte-to-lymphocyte (MO/LY) ratio. The results revealed that
the preoperative MO/LY was significantly increased in the blood of patients with
serous ovarian cancer, similar to the results for monocytes. The higher the ratio is, the
worse the prognosis. The possible underlying mechanism may be that monocytes
enter the tumor microenvironment and then differentiate into tumor-associated
macrophages and promote tumor development[32-34]. Lymphocytes are an important
part of the immune response, so when the MO/LY ratio is out of balance, it indicates a
poor survival prognosis. It is worth mentioning that the MO/LY seems to show
important clinical value, similar to CA125, based on either its predictive value or the
results of cross-variable 3D histograms and survival analysis.
In 2012, Vinod Khosla, co-founder of Sun Microsystems, predicted that 80% of clinical
work will be replaced by automated machine learning medical diagnostic software in
the next 20 years. As an example, in 2020, machine learning technology was used to
help diagnose and treat COVID-19[35]. In this study, we applied a machine learning
algorithm to predict the survival outcomes of patients with serous ovarian carcinoma
and found that the MO/LY, differentiation status, CA125 level, NE, ascites cytology,
LY% and age can be analyzed for survival prediction. This is consistent with the results
showing that the MO/LY, CA125 level, NE and LY% are significantly associated with
OS and with the NCCN guidelines, which indicate that differentiation, ascites cytology
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and age are risk factors. In addition, the comparison between the model trained by the
features with and without RT shows that the RT has an impact on prediction results.
However, when a patient undergoes surgery and/or chemotherapy, the proportion and
composition of WBCs in the blood changes significantly, so further research is needed
to explore the postoperative situation.

The limitation of this article is mainly the small sample size. In the 3D histogram,
there is a lack of data for the MO/LY and CA125, which are both very high. The
separate analyses for high-grade and low-grade serous cancers are unable to be
performed because of the limitation of the sample size. Therefore, studies on a larger
sample size of patients as well as prospective studies are needed. In addition,
leukocytes in the blood change according to the state of the body, so the role of
postoperative circulating leukocytes still requires much research. Furthermore, the
mechanism of action of leukocytes after reaching the tumor tissue site remains
unclear.

5. Conclusions
The number and percentage of preoperative leukocytes change significantly in
patients with ovarian cancer, as well as the MO/LY, and these changes can be
correlated with other clinicopathological characteristics, including survival and
recurrence. The clinical value of the MO/LY was similar to that of CA125. In addition,
the decision trees generated with machine learning can predict the survival of patients
with serous ovarian cancer based on the MO/LY, differentiation status, CA125 level,
NE, ascites cytology, LY% and age. However, additional research is still warranted.

Abbreviations
MDSC: myeloid-derived suppressor cells;WBCs: white blood cells;LMR: lymphocyte-
to-monocyte ratio;EOC: epithelial ovarian cancer;OS: overall survival;PFS:
progression-free survival;AI: artificial intelligence;LNM: lymph node metastasis;DOD:
recurrence; death of disease;FIGO: Federation of Gynecology and Obstetrics;3D: three-
dimensional;PT: paclitaxel and cisplatin;PAC: cisplatin + adriamycin +
cyclophosphamide;PEI: cisplatin + etoposide + ifosfamide;MO/LY: monocytes to
lymphocytes;NE: neutrophils;LY: lymphocytes;EO: eosinophils; RT, blood routine test.
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Chapter 7: An applicable machine learning model
based on preoperative examinations predicts
histology, stage and grade for endometrial cancer

Adapted from Ying Feng*, Zhixiang Wang*, Meizhu Xiao, Jinfeng Li, Yuan Su, Bert
Delvoux, Zhen Zhang, Andre Dekker, Sofia Xanthoulea, Zhiqiang Zhang, Alberto
Traverso, Andrea Romano, Zhenyu Zhang, Chongdong Liu, Huiqiao Gao, Shuzhen Wang
and Linxue Qian. An Applicable Machine Learning Model Based on Preoperative
Examinations Predicts Histology, Stage, and Grade for Endometrial Cancer. Front Oncol
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Abstract
Purpose
To build a machine learning model to predict histology (type I and type II), stage, and
grade preoperatively for endometrial carcinoma to quickly give a diagnosis and assist
in improving the accuracy of the diagnosis, which can help patients receive timely,
appropriate and effective treatment.
Materials and methods
This study used a retrospective database of preoperative examinations (tumor markers,
imaging, diagnostic curettage etc.) in patients with endometrial carcinoma. Three
algorithms (Random Forest, Logistic Regression, and Deep neural network) were used
to build models. The AUC and accuracy were calculated. Furthermore, the
performance of machine learning models, doctors’ prediction, and doctors with the
assistance of models were compared.
Results
A total of 329 patients were included in this study with 16 features (age, BMI, stage,
grade, histology etc.). A Random Forest algorithm had the highest AUC and Accuracy.
For histology prediction, AUC and Accuracy was 0.69 (95% CI=0.67-0.70) and 0.81
(95%CI=0.79-0.82). For stage they were 0.66 (95% CI=0.64-0.69) and 0.63 (95%
CI=0.61-0.65) and for differentiation grade 0.64 (95% CI=0.63-0.65) and 0.43 (95%
CI=0.41-0.44). The average accuracy of doctors for histology, stage and grade was 0.86
(with AI) and 0.79 (without AI), 0.64 and 0.53, 0.5 and 0.45, respectively. The accuracy
of doctors’ prediction with AI was higher than that of Random Forest alone and
doctors’ prediction without AI.
Conclusion
A random forest model can predict histology, stage, and grade of endometrial cancer
preoperatively and can help doctors in obtaining a better diagnosis and predictive
results.

Keywords: Machine learning, endometrial carcinoma, diagnosis, prediction, random
forest, preoperatively
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Introduction
Endometrial carcinoma (EC) represents the 6th most common malignant tumor
worldwide. [1] In the past 2020, the number of new cases of endometrial cancer was
417,367, and the number of new deaths was 97,370. [1] This may be due to increased
obesity, aging, and physical inactivity. [2, 3] Endometrial carcinoma occurs most
commonly in postmenopausal women. [4] The first symptom is often abnormal
vaginal bleeding. Transvaginal ultrasound is an effective examination to evaluate the
presence of endometrial carcinoma, besides pelvic and physical examination. [2, 5] A
histopathology diagnosis is commonly assessed by dilation and curettage (D&C) or
endometrial biopsy before surgery. However, the preoperative endometrial biopsy and
final diagnosis are not completely consistent with only a moderate agreement rate on
grade, especially for grade 2 tumors. [2] In addition, other serological and imaging
tests are routine tests for the diagnosis of endometrial carcinoma. [2, 3].
With the development of computer science, clinical decision support systems (CDSSs)
are being developed. A CDSS is defined as a system that enhances clinical information
and medical knowledge to help doctors and nurses with clinical decisions for better
health care[6]. CDSS is a major subject of medical artificial intelligence (AI). CDSS can
be used pre-diagnosis (prepare diagnoses), during diagnosis (review and filter
diagnoses), and post-diagnosis (predict future events).
However, there are no studies that use an AI model to predict histology, stage, and
grade for endometrial carcinoma based on the preoperative examinations. Such an AI
model can be a part of an endometrial cancer CDSS to improve the efficiency of
doctors, reduce the rate of misdiagnosis, and improve the quality of health care.
Machine learning (ML), a type of AI [7], is widely used in medical fields, such as
anatomy, medical diagnoses, and brain-machine interfaces [8]. In 2022 Otani et al
proposed a ML based classifier to predict the EC risk from the multiparametric
magnetic resonance images (MRI)[9]. And, in 2021, Nakajo et al proved that a 18F-FDG
PET-based radiomic analysis using a machine learning approach may be useful for
predicting tumor progression and prognosis in patients with endometrial cancers[10].
In this study, we used ML to build three models to predict histology (type I and type
II), stage, and grade for endometrial carcinoma to quickly give a diagnosis and assist in
improving the accuracy of the diagnosis, which can help patients receive timely,
appropriate and effective treatment.
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Methods
Study subject
This study used a retrospective database of preoperative examinations in patients with
endometrial carcinoma who were first treated in the Department of Obstetrics and
Gynecology at Beijing Chaoyang Hospital, Capital Medical University, from January
2000 to April 2014. Inclusion criteria were as follows: (1) undergoing surgical treatment
at Beijing Chaoyang Hospital, (2) confirmation of endometrial carcinoma by
postoperative pathology, (3) without neoadjuvant chemotherapy and hormone
therapy, (4) all treatments have been completed, (5) complete clinical-pathological
data. The case exclusion criteria were: (1) presence of primary malignant tumors of
other organs, (2) metastatic cancer caused by malignant tumors of other organs, (3)
not the first-time surgical treatment at Beijing Chaoyang Hospital, (4) with
neoadjuvant chemotherapy and hormone therapy, (5) incomplete clinical-pathological
data. The obtained data included age, BMI, childbirth history, preoperative serum
tumor markers, imaging results, histopathology diagnosis after D&C, hypertension,
diabetes, menopause, symptoms, postoperative histology, stage based on the 2014
International Federation of Gynecology and Obstetrics (FIGO) staging system[11], and
grade. Ethics approval for this research was given by the Beijing Chaoyang Hospital,
Capital Medical University.

Data and Machine Learning Algorithms
A total of 16 features mentioned above were used for the development of the
classification models.
For data preprocessing, first, we transformed semi-structured and unstructured
features such as preoperative serum tumor markers, imaging results into structured
features. Then, we normalized the continuous variables such as age and BMI into 0 to
1.
In this study, we trained and compared 3 classifiers, including logic regression(LR)[12],
random forest (RF)[13], and a deep neural network(DNN)[14]. The DNN is based on
the extension of the perceptron: a neural network with many hidden layers. Random
forest is an ensemble algorithm (Ensemble Learning), which belongs to the Bagging
algorithms. By combining multiple weak classifiers, the final result is voted or
averaged, so that the result of the overall model has higher accuracy and
generalization performance.
The DNN model was composed of 2 fully connection layers which have a Rectified
Linear Unit (ReLU) activation function to increase the nonlinearity of the neural
network model and dropout layers with the rate of 0.5 to avoid over-fitting and 1 fully
connection layer without activation function. The cross-entropy loss was used to guide
the training process by using a stochastic gradient descent (SGD) optimizer with a
0.0002 learning rate. The random forest included one hundred decision trees.
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The classification models were trained and tested with the selected features to predict
the histology, stage and grade of endometrial cancer. For model training, we trained
and validated the model 100 times (RF, LR) and 10 times (DNN) repeating random
sampling verification. We split the dataset into training and testing datasets with a
ratio of 7:3 in each validation. Then we used the Synthetic Minority Oversampling
Technique (SMOTE) method in the training set for over-sampling, which adds
artificially simulated new samples to the data set to decrease the influence of
imbalanced data.

To evaluate the preformace of the classification models, we calculated the Area Under
the Curve(AUC) and the accuracy.
In addition, we also investigated whether the AI algorithms can play a role in the
diagnosis accuracy and speed of the doctor's diagnosis. We generated 4 test sets for
doctors with 40 patients, half of the patients with an AI prediction class and its
possibility, and the other half of the patients without any assistance. Then we sent the
test sets to obstetric oncologists to measure the AUC, accuracy, and the time
consumption for the predicting the disease category with and without AI assistance.
The function of accuracy shown below.

FNFPTNTP
TNTPaccuracy






TP: True Positive , TN: True Negative, FP:False Positive, FN: False Negative
Data pre-processing and machine learning models were implemented within Python
3.8, and scikit-learn 0.24 and PyTorch 1.10 packages.
Comparison of Different Models
The comparison of accuracy between models was performed by using the two-way
ANOVA test in GraphPad Prism.
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Results
Clinical information of cases
A total of 344 endometrium cancer cases were reviewed and collected. Of these, 14
cases were excluded because of 70% or more of missing clinical data. As there was only
one undifferentiated case, this category could not be tested because the test sample
would be 0. Therefore, 329 cases were enrolled into the train and test\. The mean age
was 56 (range 28-83) years old (Table 1). The mean BMI was 26.87±4.43. Among these
cases, 86.3% of the patients were type I EC. Most (75.7%) of the cases were FIGO stage
I and 31 cases were grade (G) 1, 114 cases were G2, 38 cases were G3, and 17 cases were
unknown.

Table 1. Clinicopathological data of patients with endometrial
cancer

Features
Frequency (%)

N=329
Age, mean
(range)

56 (28-83)

BMI, mean±SD 26.87±4.43
Hypertension

+ 144 (43.8)
- 184 (55.9)

Unknown 1 (0.3)
Diabetes

+ 71 (21.6)
- 256 (77.8)

Unknown 2 (0.6)
Gestation

+ 312 (94.8)
- 17 (5.2)

Parturition
+ 301 (91.8)
- 28 (8.5)

Menopause
+ 192 (58.3)
- 13 (4.0)

Unknown 124 (37.7)
Histology

type I 284 (86.3)
type II 45 (13.7)

FIGO Stage
(2009)
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I 249 (75.7)
II 28 (8.5)
III 42 (12.8)
IV 10 (3.0)

Differentiation
G1 31 (37.7)
G2 114 (45.6)
G3 38 (11.6)

Unknown 17 (5.2)
Notes: G, grade; SD, standard deviation; FIGO, the
international federation of obstetrics and gynecology.

Comparison of the Models for the Prediction
Histology

The AUC and the Accuracy score of the LR were 0.69 (95% CI=0.67-0.70) and 0.74
(95%CI=0.72-0.75). The AUC and the Accuracy score of RF were 0.69 (95%
CI=0.67,0.70) and 0.81 (95%CI=0.79-0.82). And the AUC and the Accuracy score of
DNN were 0.60 (95% CI=0.54-0.65) and 0.83 (95% CI=0.75-0.90). The LR and RF
algorithms have a similar score which was significantly better (p<0.05) than DNN.

Stage

The AUC and the Accuracy score of the logistic regression were 0.56 (95% CI=0.54-
0.59) and 0.42 (95% CI=0.41-0.44). The AUC and the Accuracy score of the random
forest were 0.66 (95% CI=0.64-0.69) and 0.63 (95% CI=0.61-0.65). And the AUC and
the Accuracy score of DNN was 0.48 (95% CI=0.46-0.51) and 0.78 (95% CI=0.71,0.84).
The RF was significantly better than LR and DNN.

Grade

The AUC and the Accuracy score of the LR were 0.61 (95% CI=0.60-0.62) and 0.36
(95% CI=0.35-0.38). The AUC and the Accuracy score of RF was 0.64 (95% CI=0.63-
0.65) and 0.43 (95% CI=0.41-0.44). And the AUC and the Accuracy score of DNN were
0.47 (95% CI=0.45-0.50) and 0.43 (95% CI=0.40-0.45). The LR and RF algorithms have
a similar score significantly better than DNN.

Performance comparison between ML model, doctors’ prediction and doctors with the
assistance of AI
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The result of the doctor’s prediction is shown in Table 3. The average accuracy for
histology was 86% (with AI) and 79% (without AI), respectively. The average accuracy
for the stage was 64% and 53%, respectively. The average accuracy for differentiation
was 50% and 45%, respectively. The time consumption for each patient to make a
decision was 29.25 s (with AI) and 28.75 s (without AI), respectively. For type and stage
diagnosis, the AI model can improve 6% and 10% of a doctor’s accuracy. But the
accuracy decreases 7% for the differentiation diagnosis. The average time
consumption with AI was 10 seconds longer than that without AI, though the AI
model only cost 3 ms to predict one patient..

Table 3. Comparison of the doctors’ prediction with and without AI assistance

Project Without AI (accuracy %) With AI (accuracy %)

Histology 79 86

Stage 53 64

Differentiation 45 50

Notes: AI, artificial intelligence.

Figure 2. the accuracy comparison between whether doctors with and without AI assistance
and AI in predict stage, and grade.A,,B,C shows the different AI assistance model.

The comparison of a doctors’ prediction with and without AI assistance is shown in
Fig.2. Compared to LR (Fig.2A), the accuracy of doctors’ prediction with AI is higher
than that of LR and doctors’ prediction without AI among histology, stage, and grade.
The comparison with RF (Fig.2B) also showed similar results. However, the accuracy
of the DNN's prediction of the stage was significantly higher than that of doctors’
prediction with and without AI assist (Fig.2C). But the accuracy of the combination of
doctor and AI was relatively better as a whole.
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Discussion
Endometrial cancer is a relatively common gynecological tumor. The development and
application of AI in the medical field has gradually generated significance and value.
This study built AI models to predict histology, stage, and grade of EC. Besides the
prediction of AI models, we also compared the AI models, doctors’ predictions, and
doctors’ predictions assisted by the AI model.
From the point of AUC alone, LR and RF models perform better in the prediction of
histology and grade. RF is better in the prediction of the stage (Figure 1). If only
accuracy is considered, DNN and RF models work well in the prediction of histology
and grade (Table 2). In the real world, not every patients can complete all
examinations. In this way, the patients with missing values were also included in the
dataset. However, compared with RF and DNN, the LR is sensitive to missing values,
which means the missing values will significantly influence the performance of LR[15].
On the other hand, though DNN with hidden layers has more capability to learn from
nonlinear and complex relationships. But tt has higher requirements for the sample
size of training data than LR and RF[16].

Figure 1. The ROC curve of the histology stage and grade between different models. (a,b,c)
shows the ROC curve and AUC score of three different models for histology, stage and grade
prediction, respectively

Model Histology Stage Grade

AUC Accuracy AUC Accuracy AUC Accuracy

LR 0.69(0.6
7-0.70)

0.74(0.72
-0.75)

0.56(0.54
-0.59)

0.42(0.41-
0.44)

0.61(0.60-
0.62)

0.36(0.35-
0.38)

RF 0.69(0.6
7-0.70)

0.81(0.79-
0.82)

0.66(0.64
-0.69)

0.63(0.61-
0.65)

0.64(0.64-
0.65)

0.43(0.41-
0.44)

DNN 0.60(0.5
4-0.65)

0.83(0.75
-0.90)

0.48(0.46
-0.51)

0.78(0.71-
0.84)

0.47(0.45-
0.50)

0.43(0.40-
0.45)

Notes: LR,Logic Regression; RF,Random Forest ;DNN, Deep Neural Network ;
AUC, Area Under the Curve ;
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Taking into account of above reasons, the RF model was relatively better than other
models, so RF was used to assist doctors.
The doctor’s clinical experience combined with the assistance of AI increases the
accuracy of histology, stage, and grade (Table 3). The main reason is that doctors
analyze the highly relevant features of the disease (such as BMI, D&C, imaging, etc.)
based on their clinical experience and draw conclusions, while the algorithm learns
the influence weights of different features according to the distribution of training
data, and more accurate judgments can be obtained for some patients who are not
obvious in the preoperative features. And overall, the accuracy of doctors with AI
assistance is relatively the best choice among the histology, stage, and grade whether
compared to AI alone or doctor alone (Figure 2). Therefore, the judgment of the
doctor with the RF assistance is the best choice.
The accuracy of grade and stage is not that high, and the AUC is also relatively low.
The reasons can be: 1. The pathological results of preoperative curettage are not
completely accurate, and there are false negatives [3]; 2. The staging of endometrial
cancer is the clinicopathological stage, the determination of staging requires a
combination of preoperative conditions, staged surgery and postoperative pathology,
as well as grade, but the aim of this study is the preoperative diagnosis, so only
preoperative features are given to AI models and doctors, and the intraoperative and
postoperative characteristics were not included. Despite this, the AUC of RF is greater
than 0.6 among histology, stage, and grade, so it has predictive value, especially given
that it is only based on preoperative features.
Furthermore, in the past years, there is general agreement that AI may assist
physicians to make better clinical decisions. This technology can provide additional
information to help doctors make proper diagnoses.[17] In the classification of grade,
the outcome of AI alone and doctor alone is not very good, but doctors’ prediction
including the AI results improved the accuracy. In the classification of histology, both
doctors and AI had high accuracy, but the accuracy of doctors combined with AI was
improved. The same is true for staging. The accuracy of staging is not high, but
doctors combined with AI improved the accuracy. Compared with without AI assist ,
the time consumption for doctors with AI assist is only 10 seconds longer, only 0.5
second per patient 1.7% longer than before, which can be seen as almost no additional
time cost. The extension of time consumption is not because of the speed predicted by
AI, but because doctors need to analyze the information from AI.
Therefore, the AI model we built can effectively assist doctors in preoperative
diagnosis and prediction of histology, stage, and grade.
There are several limitations to this study. Some multi-category classifications, such as
staging and differentiation have small sample sizes, resulting in poor overall
performance. This was a single-center (country) study and an independent validation
set from another country can make the results more convincing. Prospective, multi-
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center, large sample size research will help improve the performance of this AI model.
In addition, the features of the database are mainly derived from text information, and
the dimension of information should be improved. In the future, more dimensional
information can be directly extracted from the images and examinations, so that
intuitive information can be extracted.

Conclusions
This study demonstrated that a random forest model can predict histology, stage, and
grade of endometrial cancer preoperatively and help doctors in obtaining a better
diagnosis and predictive results with minimal additional time, which can help patients
receive timely, appropriate and effective treatment.
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In this thesis, I investigated two applications of artificial intelligence in oncology. First,
Artificial intelligence (AI) applications for data augmentation (Chapters 2,3,4). Second,
applications of AI algorithms in clinical decision-making (Chapter 5,6,7).

Although AI plays a significant role as a powerful tool in the medical field, the
requirement for data quantity and quality is one of the biggest challenges for clinical
AI applications. State-of-art data augmentation methods, such as generative
adversarial network (GAN) represent a potential solution to the above-mentioned
problems.

However, the variety of formats and contents of medical data is so heterogeneous that
using a single unified approach to generating diverse types of data is not an optimal
solution. Identifying and selecting the appropriate data augmentation method remains
challenging and lacks consensus among the computer science community.

Therefore, in Chapter 2 I reviewed the applications of GANs in radiotherapy proposed
in the last five years and categorize them according to the ultimate task (such as
generation of synthetic CT and RT-derived data). GAN models can automatically learn
the anatomical features from different modalities of images to generate synthetic
images. However, due to its design, a GAN still has several drawbacks. First, it is prone
to pattern collapse during the training process, resulting in a lack of diversity of
generated samples. Second, it is difficult to control the details due to the large size of
the generated image.

Consequently, in order to address these issues, I designed a dual-discriminator GAN
model to generate synthetic ground glass nodules (GGN) in Chapter 3. This structure
increases the model complexity and sample space by utilizing a dual discriminator,
thus reducing the occurrence of pattern collapse in the training process. Moreover, it
enables the model to generate data while retaining local details and global images at
the same time. It is worth mentioning that in the method of evaluating the quality of
generated images, I designed a Visual Turing Test (VTT) method to evaluate the
quality of generated images. This method invited radiologists to participate in the
evaluation of image quality and measure the authenticity of generated images.
Nonetheless, the proposed method depends on hand-picking specific areas of interest
(ROI), and therefore, it can only be employed when annotated data is accessible.

This defects inspired the research in Chapter 4, where I designed a self-attention GAN.
The experimental results illustrated that the self-attention mechanism can
automatically select the ROI, so that the generated data samples retain the original
structure of organs and create clearer details. Finally, I evaluated the accuracy gain of
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the synthetic data on the AI classification model, demonstrating that it can address
the shortage of insufficient data for AI and improve the diagnosis accuracy of a
classification model.

The above research in Chapters 2,3,4 proves the possibility of AI as the data
augmentation method to expand datasets.

At the same time, I realized that a reliable and robust AI model is not only necessary
to obtain sufficient image data, but also to make efficient and accurate use of image
information. To this end, I utilized the method of radiomics in Chapter 5 to convert
the images into imaging features and set up a logical regression classification model,
which proved that the quantified image can be used for effective prognosis prediction
of Radiation Pneumonitis (RP), providing a theoretical basis for further research.
Clinically speaking, the prediction model can accurately predict the RP risk for
patients, which is useful for tailoring treatments and improving prognosis.

Nevertheless, imaging examinations are not applicable for all diseases. Thus, it is also
important to use microscopic biomarkers, for example acquired from blood, prognosis
and prediction. Hence, I attempted to use machine learning to automatically analyze
biomarkers (e.g., preoperative circulating leukocytes) to predict the prognosis of
ovarian cancer in Chapter 6. The experimental results demonstrated that the use of
biomarkers can accurately predict the prognosis of cancer, which offers a way to avoid
excessive imaging examination and treatment.

Ultimately, the purpose of an AI is to assist clinicians in the diagnosis and prediction
of prognosis in the real world. So, I designed an experiment in Chapter 7 to explore the
added value of using AI as a clinical decision support system. The experimental results
showed that the AI diagnostic model can improve the accuracy of a clinician diagnosis
as an assistant, which provides theoretical feasibility for the application of AI in the
clinical field.

Overall, in Chapters 5,6,7, I explore the role of AI in clinical decision-making, showing
that it can combine different types of data to assist physicians in clinical decision-
making, while also reducing potential risks and helping patients receive timely,
appropriate, and effective treatment.

Challenges

The quality of generated data
Even though GANs are gaining more and more popularity in the medical field, most of
the models still present a high level of complexity compared to traditional DL



219

algorithms such as convolutional neural networks, which will bring more instability
when generating data. This will significantly affect the quality of the generated image.

For example, there is no consensus on the most appropriate metric to be used to stop
the training at the optimal point (global minimum of the loss function). It is
susceptible to various artifacts and noises, resulting in a poor image quality. Especially
when processing medical images, the risks of introducing novel, undesired artifacts
and blurred images are not negligible. Preprocessing of input images and the
postprocessing of generated images to decrease the artifacts and noises are worth
exploring.

A low-quality image can also lead to credibility issues. The credibility of synthetic
images generated by GANs has an important influence on their clinical application.
Sorin V et.al (1) mentioned that the synthetic image generated by GANs can easily
deceive radiologists, and determining real or fake images is a challenging task. And a
deep learning model trained with a large amount of wrong synthetic data may lead to
completely wrong results.

Moreover, high-quality data generation requires a large amount of dataset, which is a
huge barrier for GANs applications(2).

The high requirement for hardware
Due to the GAN architecture being composed of two DL models, it has a dual
hardware requirement during the training process. Especially in the task of 3D medical
image generation, medical images such as CT and MRI always occupy a large memory,
which sharply slows down the calculation speed, resulting in several weeks of training.
This is unacceptable for most researchers. On the other hand, the higher requirement
on hardware, makes deploying GAN models difficult in most hospitals. Model
compression needs to be considered in future model design and deployment.

Evaluation metrics for synthetic data
GANs can learn and imitate the distribution of real data for image generation. As an
unsupervised task, the generation task has no clear evaluation metrics such as
accuracy, the Area Under the Curve (AUC), and mean Mean Squared Error (MSE),
which play a huge role in guiding model training and evaluation. Usually, researchers
evaluate the generated image quality according to the pixel distribution such as SSIM,
PSNR, MSE et.al. The content information of the image is not available by the above
metrics, which is particularly important for medical images. So, the Turing test by
experts is always required for clinical image generation evaluation tasks to distinguish
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whether the synthetic image is clinically meaningful or not. But the time required for
experts to manually revise the data is the largest obstacle to performing Turing tests.
Though in Chapters 3 and 4, I tried to summarize image evaluation metrics, the image
content evaluation method (for example whether the tumor shape is reasonable)
remains an important challenge.

Multi-modalities and Genomic data
Multi-modality data refers to a variety of medical data used for the in-depth study of
disease mechanisms and phenotypes, which takes into account multiple forms and
sources of data, such as MRI, CT, electroencephalograms, optical microscopy images,
(3).

More and more studies have found that multi-modality data can provide
complementary information for clinical decision-making. For example, multi-modality
data can be used to extract medical data from different perspectives by computer
vision methods, and Natural Language Processing algorithms to provide highly
granular information(4). Furthermore, gene technologies can also play an important
role in improving diagnosis and treatment plan in AI healthcare. Gene technologies
can help doctors trace the relationship between genes and diseases. Gene analysis and
AI technologies can be used to analyze the genome of the patients to improve
healthcare decisions and care quality(5). However, the collection of genetic data is
difficult due to its high cost, legal and privacy issues. In my previous work, I collected
patient data (include biomarkers and medical images) from different countries and
hospitals. In future work, I will incorporate gene data into the research, establish the
mapping between genes and other modalities data through AI algorithm, to find out
the expression of genes in different modalities such as the effect of gene expression
on CT images.

The long-tail distribution
The long-tail distribution of data is a common phenomenon in machine learning tasks,
that is, the minority of categories have a higher frequency while most categories have
a lower frequency. In medical AI, the long-tail distribution of data can lead to
insufficient and inaccurate training. This is because smaller attributes may be
overlooked, and the model is not sensitive to complex patterns and possible anomalies.

In addition, a model based on this distribution may overfit the data because many
variables of the same size are ignored. Finally, the long-tail distribution of data may
lead to model biases, as many common variables will be emphasized and re-positioned
while fewer variables may be overlooked. To address this problem, I designed some
GAN models as data augmentation methods that can generate synthetic data, which
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can help to solve part of the long-tail distribution problem. However, optimizing and
iterating the algorithm from the perspective of decision-making is also worth
exploring, such as few-shot learning and zero-shot learning.

Future perspectives

Model structure and loss function design
A GAN is composed of a generator and a discriminator, which are trained and
compete alternately to make the generator create more realistic images. However,
there is no direct loss function to train the generator, which causes the generator to
not always achieve the expected effect. The model structure and loss function should
be designed carefully to solve the non-convergence and pattern collapse. Optimizing
the loss function is a significant challenge in deep learning, particularly in
unsupervised tasks like GANs. This process can help reduce errors and improve the
network's convergence speed during training. (6). In chapters 3 and 4, I tackled this
challenge by optimizing the GAN model's structure and loss function. This
modification allowed the model to focus more on the specific details of the image,
rather than treating the entire image as a single entity.
Second, in traditional generation tasks, the image is always directly created from
random noise, which makes it hard for the model to control the detail of generated
image. The diffusion model proposed by Ho et. al(7) uses the model to reverse the
process of gradually turning the image into noise. It became the hot point in 2022,
because of its strong and stable generation capability. The key point of the diffusion
model is that it tries to restore step-by-step the image from noise. This inspiration can
also be used in GANs applications to make them more stable and powerful. That will
possibly bring GAN applications closer to real-world clinical use.
Finally, most research on image generation is based on single timepoint 1D, 2D and 3D
images, presently. The development of diseases or tumors over time in medical
imaging is also an interesting question, and in future work using AI to predict the
disease development image may be an interesting application.

Model compression
Except for more stable and high-quality generation, model compression is one of the
most important directions. The smaller the model, the lower the hardware
requirement, will make it usable to more hospitals. Meanwhile, the smaller model can
sharply decrease the speed of forward calculation. Time consumption performance has
a significant impact on clinical tasks, especially for auto-plan generation and medical
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image super-resolution tasks. For example, some researchers achieve real-time
applications by design of a smaller model like in Chapter 2, which is one of the model
compression methods. Model pruning, quantization, and distillation can also be used
to compress the model in future research.

Multi-center and federated learning
Multi-center medical data is composed of medical data collected and analyzed from
different hospitals and research cases with the same standard indicators, allowing for
the comparison of results between multiple centers and/or multiple research studies
across different regions/locations (8). They facilitate conducting large-scale studies as
more samples and greater data can be used from different distribution, allowing
researchers to draw conclusions and make sound inferences more quickly, avoid over-
fitting and make the model more close to real-world applications. They can also
facilitate comparison between different regions while exploring different practices in
different hospitals. Multi-center data can provide more information for AI to analyze
and predict more accurately for accurate diagnoses, further improving the application
of AI in the healthcare. However, multi-center data requires a lot of time and
hardware costs for image transmission and storage; while clinical data is protected by
privacy and law, many challenges and restrictions are faced when it comes to the
collaboration of multiple centers. Federated learning is proposed(9), which is a
distributed machine learning approach that combines models from multiple machines
to create more accurate solutions. Its advantages include accelerated computation
speed, reduced load on computer databases, protection of user privacy, and better
support for big data processing tasks.

Few-shot/Zero-shot learning
The "Few-shot/zero-shot learning" algorithm can be used to build medical AI models
in the case of insufficient sample size or imbalanced data, thus improving the
generalization ability of the models (10). The basic idea of few-shot/zero-shot learning
is to use some auxiliary data (usually non-labeled samples) for model training in the
case of very few input samples, thus obtaining more accurate prediction results.

This technology can be used for diagnosing rare diseases, as the sample size for rare
diseases is extremely limited. Using a few-shot/zero-shot learning algorithm can
greatly improve the accuracy of diagnosing rare cancers, even when there's only a
small amount of data available.(11). In addition, it can also be used in intelligent
inspection technologies, such as the detection of heart disease, to more accurately
identify the patterns of heart disease (12).

In my research, although I collected hundreds of samples to train the model, I found
that for the prediction of some specific categories of data (Chapter 6), such as
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pathology, it is difficult to collect samples of rare categories, the sample size is
insufficient, and the commonly used machine/deep learning methods cannot
effectively establish the prediction model. Facing this situation, few-shot learning
would be the appropriate method. In my future research, I will try to develop an
algorithm based on the few/zero shot learning method to make a predictive model in
rare cases.

Conclusions
In this thesis, several AI applications for medical data augmentation applications were
proposed and extensively verified though various experiments. The presented research
showed the value of AI-based generation tasks, highlighted the benefits of deep
learning models trained with synthetic data, and demonstrated the potential of AI-
generated synthetic data for medical research and AI training. Meanwhile, the
potential of AI diagnosis to make accurate decisions from different types of clinical
data from macroscopic to microscopic has also been demonstrated. Finally, AI can be
an auxiliary tool to support clinicians.
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Summary
The application of Artificial Intelligence (AI) to solve medical tasks has seen
remarkable progress in the recent years, yet a number of challenges persist concerning
data augmentation and decision-making. In terms of data augmentation, the
availability of large, high-quality unimodal and multi-modal clinical datasets is
essential for deep learning but is often a significant obstacle. While traditional data
augmentation methods such as flipping, rotating, zooming, etc. can increase the size
of the dataset, they are insufficient to address data imbalance issues.

Generative Adversarial Networks (GANs) have shown great promise as a generative
model for clinical data augmentation, capable of learning and imitating the
distribution and features (e.g., shape, boundary, strength, texture, etc.) of each image
to generate synthetic, but realistic data that does not exist in the original dataset. This
can be used to generate simulated clinical data for training deep learning models.
With regards to decision-making, the diversity of formats of medical data presents
considerable challenges from macro image data to micro biomarkers. Different data
sources have their own specific type and structure, which results in significant
discrepancies in the format and content of the data. However, faced with different
data and diseases, it is still necessary to design different models to deal with specific
complex problems. In addition, the contribution of an AI-based diagnostic or
prognostic model to clinical decision making still needs to be evaluated.

In this thesis, advances are made in AI applications in oncology for data augmentation
and decision-making.

For the data augmentation, I mainly focus on the GAN model to generate clinical data
as a data augmentation method. To further explore this, I tried to design an SRGAN
(Super-Resolution GAN) for Ground Glass Nodule (GGN) generation, with two
discriminators to capture global and local details during training processing.
Qualitative visual Turing test (VTT) with clinicians and quantitative radiomics
experiments were conducted to assess the similarity between GAN-generated and real
lung lesions.

The results of these experiments indicate that GAN-generated data could be used to
train and test junior doctors, particularly in hospitals without large datasets,
established Picture Archiving and Communication Systems (PACS) or for privacy-
preserving synthetic open datasets for research purposes. I also proposed a self-
attention cycleGAN model to generate synthetic pneumonia from Radiation
Pneumonitis (RP) and COVID-19 radiography datasets as a data augmentation method
to solve data imbalance problems and create synthetic data with clearer details. A
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classification model was trained with generated data, and it had an excellent
performance on several classification metrics indicating that the method can
significantly improve the accuracy of the classification model compared with
traditional data augmentation methods. Therefore, the potential of the proposed
method as a general data augmentation tool to assist in overcoming the sample
imbalance problem in medical image datasets, is demonstrated.

In terms of decision-making, AI diagnosis models with different modalities of medical
data source were developed. Bootstrap samples and a prospective validation set were
used to validate a model which demonstrated that radiomic features extracted from
the CT and the radiotherapy dose matrices could assist doctors in predicting of
Radiation Pneumonitis (RP). Furthermore, a comprehensive nomogram was built to
support clinical decision-making and personalized treatment. A decision tree model
was then developed to identify the correlation between preoperative circulating
leukocytes (such as MO/LY, differentiation status, CA125 level, NE, ascites cytology,
LY%, and age) and ovarian cancer survival.

Finally, machine learning models were built and evaluated to provide a rapid diagnosis
prediction and assist clinicians in providing effective treatment advice for endometrial
carcinoma, with comparisons between clinicians with and without the assistance of
models demonstrating the contribution of AI-based models.

Overall, this thesis has confirmed the hypothesis that AI-based techniques can yield
high-caliber medical data suitable for instruction of machine learning and deep
learning models, with the ultimate goal of improving their classification performance.

Furthermore, AI decision models can leverage different sources of medical data for
diagnoses and provide support to clinicians in the field of oncology.
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Samenvatting
De toepassing van Kunstmatige Intelligentie (KI) om medische taken op te lossen
heeft opmerkelijke vooruitgang geboekt in de afgelopen jaren, maar er blijven nog
steeds uitdagingen bestaan op het gebied van gegevensuitbreiding en besluitvorming.
Met betrekking tot gegevensuitbreiding is de beschikbaarheid van grote,
hoogwaardige unimodale en multimodale klinische datasets essentieel voor deep
learning, maar is vaak een belangrijke hindernis. Traditionele methoden voor
gegevensuitbreiding, zoals omdraaien, roteren, zoomen, enz., kunnen de omvang van
de dataset vergroten, maar zijn ontoereikend om problemen met
gegevensonevenwichtigheden aan te pakken.

Generative Adversarial Networks (GAN's) hebben veelbelovende resultaten getoond
als generatief model voor gegevensuitbreiding in de klinische praktijk, waardoor
synthetische maar realistische gegevens kunnen worden gegenereerd die niet in de
oorspronkelijke dataset voorkomen. Dit kan worden gebruikt om gesimuleerde
klinische gegevens te genereren voor de training van deep learning-modellen. Met
betrekking tot besluitvorming presenteren de verschillende formaten van medische
gegevens aanzienlijke uitdagingen van macrobeeldgegevens tot microbiomarkers.

In deze thesis worden vorderingen gemaakt in AI-toepassingen in de oncologie voor
gegevensuitbreiding en besluitvorming.

Voor de gegevensuitbreiding richt ik me voornamelijk op het GAN-model om
klinische gegevens te genereren als een methode voor gegevensuitbreiding. Om dit
verder te verkennen, heb ik geprobeerd een SRGAN (Super-Resolution GAN) te
ontwerpen voor Ground Glass Nodule (GGN) generatie, met twee discriminatoren om
globale en lokale details vast te leggen tijdens het trainingsproces. Kwalitatieve visuele
Turing-test (VTT) met clinici en kwantitatieve radiomics-experimenten werden
uitgevoerd om de gelijkenis tussen GAN-generatie en echte longlaesies te beoordelen.

De resultaten van deze experimenten geven aan dat GAN-genereren gegevens gebruikt
kunnen worden om junior artsen op te leiden en te testen, vooral in ziekenhuizen
zonder grote datasets, gevestigde Picture Archiving and Communication Systems
(PACS) of voor privacy-beschermende synthetische open datasets voor
onderzoeksdoeleinden. Ik stelde ook een zelf-aandacht CycleGAN-model voor om
synthetische longontsteking te genereren van stralingspneumonitis (RP) en COVID-19
radiografie datasets als een methode voor gegevensaugmentatie om
gegevensonevenwichtigheden op te lossen en synthetische gegevens met duidelijkere
details te creëren. Er werd een classificatiemodel getraind met gegenereerde gegevens,
en het had uitstekende prestaties op verschillende classificatiemetrics, wat aangeeft
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dat de methode de nauwkeurigheid van het classificatiemodel aanzienlijk kan
verbeteren in vergelijking met traditionele methoden voor gegevensaugmentatie.
Daarom wordt de potentie van de voorgestelde methode als algemeen hulpmiddel
voor gegevensaugmentatie aangetoond om te helpen bij het overwinnen van het
probleem van steekproefonevenwichtigheid in medische beeldgegevens.

Op het gebied van besluitvorming werden AI-diagnosemodellen ontwikkeld met
verschillende modaliteiten van medische gegevensbron. Bootstrap-samples en een
prospectieve validatieset werden gebruikt om een model te valideren dat aantoonde
dat radiomische kenmerken, geëxtraheerd uit de CT- en radiotherapie-doseermatrices,
artsen konden helpen bij het voorspellen van stralingspneumonitis (RP). Bovendien
werd een uitgebreide nomogram gebouwd om klinische besluitvorming en
gepersonaliseerde behandeling te ondersteunen. Vervolgens werd er een
beslissingsboommodel ontwikkeld om de correlatie tussen preoperatieve circulerende
leukocyten (zoals MO/LY, differentiatie-status, CA125-niveau, NE, ascites cytologie,
LY%, en leeftijd) en ovariumkankersurvival te identificeren.

Ten slotte werden machine learning-modellen gebouwd en geëvalueerd om een snelle
diagnosevoorspelling te bieden en clinici te ondersteunen bij het geven van effectief
behandelingadvies voor baarmoederkanker, waarbij vergelijkingen tussen clinici met
en zonder de hulp van modellen de bijdrage van op AI gebaseerde modellen aantonen.

Over het algemeen heeft deze scriptie de hypothese bevestigd dat op AI gebaseerde
technieken medische gegevens van hoog kaliber kunnen opleveren die geschikt zijn
voor het instrueren van machine learning- en deep learning-modellen, met als
uiteindelijk doel hun classificatieprestaties te verbeteren. Bovendien kunnen AI-
beslissingsmodellen verschillende bronnen van medische gegevens benutten voor
diagnoses en ondersteuning bieden aan clinici op het gebied van oncologie.
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Research Impact
Artificial intelligence (AI) has shown remarkable power in the medical field in
applications such as diagnosis[1], tumor detection[2], organ segmentation[3]. However,
the large data requirement and complex diagnosis processing hinders the application
of AI in the clinic.
In this thesis, I studied AI applications for clinical data augmentation and how they
play a role in diagnosis. These studies will have clinical, technological, societal and
scientific impacts.

Clinical impact
This thesis examines the application of artificial intelligence (AI) in oncology at the
level of data and decisions. Firstly, data augmentation using AI can help to improve
the effectiveness of diagnostic or classification models for diseases that are not
common and alleviate the problem of insufficient data to some extent (Chapter 2,3,4).
Secondly, for clinical decision making, different sources of information such as
medical images, clinical features and biomarkers can be valuable in the field of
medical AI (Chapter 5,6). Finally, AI has great promise as an auxiliary tool to clinical
diagnostics (Chapter 7). In summary, I proved that AI can generate high quality data
and can support diagnostics in oncology.

Technological impact
There are several lessons that can help during Artificial intelligence (AI) model design
and deployment. At the data level, Generative Adversarial Networks (GANs) are prone
to gradient collapse during training due to a flaw in their fundamentals, where all
generated samples are concentrated in the same class. In this case, the design of
discriminators and loss functions can be effective in reducing this situation (Chapter
3). Secondly, if the quality of the images generated by the GAN is unsatisfactory,
focusing on optimizing the generator such as adding an attention module or
modifying the generator loss function can improve the image quality (Chapter 4). At
the decision-making level, the importance and data types of the different modalities
differ, and the data pre-processing part should be paid attention to before using
multimodal data, unifying the different data types and magnitudes to avoid the
excessive impact of a single data (Chapter 5,6,7).

Societal impact
In this thesis, I demonstrate the potential of AI for clinical applications in oncology.
Data augmentation methods can lower the threshold for deployment of AI models,
expanding the range of diseases to which they can be applied, reducing upfront
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preparation time, and speeding up the development process. AI can significantly
improve the efficiency of doctors and reduce their workload, thereby improving the
efficiency of the healthcare system. Finally, this thesis presents experiments on the
clinical application of AI, demonstrating that AI as a tool can significantly improve the
diagnostic accuracy of clinicians and safeguard the lives of patients.

Scientific impact
First, all studies are open access and are published in scientific and professional
journals with high impact factors (e.g., International journal of radiation oncology,
IEEE Access, European Radiology Experimental, Precision Cancer Medicine, Journal of
ovarian research) that have more influence and transmissibility in the scientific
community. Second, through this thesis, I built a strong connection between the
Chinese hospitals and Maastricht University, which will promote the cooperation of
scientific researchers between the two countries in the future and contribute to
international academic development and cooperation. Third, all the code and projects
have followed the tenet of open science and open source. This may help promote
interdisciplinary research, obtain technical support, reduce the time spent on
academic research in the same field, and improve the productivity of researchers.
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