
 

 

 

Short-term impact of anthropogenic environment on
neuroplasticity
Citation for published version (APA):

Kunikullaya Ubrangala, K. (2023). Short-term impact of anthropogenic environment on neuroplasticity: A
study among humans and animals. [Doctoral Thesis, Maastricht University]. Maastricht University.
https://doi.org/10.26481/dis.20230705kk

Document status and date:
Published: 01/01/2023

DOI:
10.26481/dis.20230705kk

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 29 Apr. 2024

https://doi.org/10.26481/dis.20230705kk
https://doi.org/10.26481/dis.20230705kk
https://cris.maastrichtuniversity.nl/en/publications/807b5166-1f42-4f8f-b210-9e82a1af29a5


          

 



         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents, in-laws, husband and daughter. 

 

 

 

 



             

    

 
 

 

Short-term impact of anthropogenic environment on neuroplasticity – 

a study among humans and animals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Thesis Structure            

2 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Kirthana Kunikullaya U, Maastricht 2023 

Short-term impact of anthropogenic environment on neuroplasticity – a study among 

humans and animals 

Cover design: Kirthana Kunikullaya U 

Published by: Maastricht University and University Rennes 

ISBN: 978-94-6469-432-1 

All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted 

in any form or by any means, without the prior written permission of the copyright holder. 

 



Thesis Structure            

3 | P a g e  
 

 

Short-term impact of anthropogenic environment on 

neuroplasticity – a study among humans and animals 

 

 

 

DISSERTATION 

To obtain the degree of 

Doctor at Maastricht University, 

on the authority of the Rector Magnificus, 

Prof. Dr. Pamela Habibović, 

in accordance with  

the decision of the Board of Deans 

To be defended in public on Wednesday 05 July 2023, at 16:00 hours 

by 

Kirthana Kunikullaya U. 

 

 

 

 

 

 



Thesis Structure            

4 | P a g e  
 

Supervisors 

Prof. Dr. Harry W. M. Steinbusch, Maastricht University 

Prof. Thierry D. Charlier, University of Rennes 

 

Co-supervisor 

Dr. Jodi L Pawluski, University of Rennes 

 

Assessment Committee 

Prof. Dr. Peter J. Peters (Chair), Maastricht University 

Prof. Dr. Elia Formisano, Maastricht University 

Prof. Dr. Bernadette M. Jansma, Maastricht University 

Prof. Dr. Xavier Coumoul, University of Paris 

Prof. Dr. Marc Vérin, University of Rennes 

 

 

 

 

 

 

 

 

 

 

 

 

 



Thesis Structure            

5 | P a g e  
 

Table of Contents 
 

Chapter 1: Introduction ............................................................................................... 14 

1 Neuroplasticity .......................................................................................................... 14 

2 Anthropogenic Factors .............................................................................................. 44 

3 Exposome and Neuroplasticity .................................................................................. 46 

4 Impact of acoustic stimuli on neuroplasticity in humans: Specific effects of Music .... 56 

5 Impact of chemical stimuli on neuroplasticity in animals: Neonicotinoid Thiacloprid .. 64 

6 Need of this thesis .................................................................................................... 66 

7 Aims of this thesis ..................................................................................................... 71 

8 References: .............................................................................................................. 72 

Chapter 2: Stress, cardiovascular and autonomic responses on exposure to 

environmental stimuli among humans .......................................................................... 92 

1 Introduction ............................................................................................................... 93 

2 Materials and Methods .............................................................................................. 95 

3 Results .................................................................................................................... 105 

4 Discussion .............................................................................................................. 117 

5 Conclusions ............................................................................................................ 121 

6 Supplementary Information ..................................................................................... 122 

7 References ............................................................................................................. 132 

Chapter 3: Neural and cognitive responses to environmental stimuli among humans 140 

1 Abstract .................................................................................................................. 140 

2 Introduction ............................................................................................................. 141 

3 Materials and Methods ............................................................................................ 144 

4 Results .................................................................................................................... 151 

5 Discussion .............................................................................................................. 158 



Thesis Structure            

6 | P a g e  
 

6 Conclusion and Future Perspectives ....................................................................... 164 

7 References ............................................................................................................. 166 

Chapter 4: Short-term Impact of anthropogenic environment on neuroplasticity using 

animals ...................................................................................................................... 172 

1 Abstract .................................................................................................................. 172 

2 Introduction ............................................................................................................. 173 

3 Material and Methods ............................................................................................. 176 

4 Results .................................................................................................................... 179 

5 Discussion .............................................................................................................. 185 

6 Conclusions ............................................................................................................ 194 

7 Supplementary Information ..................................................................................... 194 

8 References ............................................................................................................. 197 

Chapter 5: Discussion and Summary ........................................................................ 206 

Future perspectives ................................................................................................... 216 

Summary ................................................................................................................... 218 

References ................................................................................................................ 219 

Chapter 6: Valorization ............................................................................................. 222 

References ................................................................................................................ 225 

Appendix 

About the Author ........................................................................................................ 230 

List of Publications ..................................................................................................... 231 

Acknowledgments ...................................................................................................... 234 

 

 

 

 



Thesis Structure            

7 | P a g e  
 

List of Abbreviations 

3β HSD 3β-Hydroxysteroid Dehydrogenase 

5-HT 5-Hydroxytryptamine / Serotonin 

AC Adenylyl Cyclase 

ACC Anterior Cingulate Cortex 

ACh Acetylcholine  

AChE Acetylcholinesterase  

ACTH Adrenocorticotropic Hormone/Corticotropin 

AD Alzheimer’s  

ADI Acceptable Daily Intake  

AMP Adenosine Monophosphate 

AMPA Amino-3-Hydroxy-5-Methyl-Isoxazole-4-Propionic Acid  

AN Arcuate Nucleus  

ANCOVA Analysis of Covariance  

ANOVA Analysis of Variance  

ANS Autonomic Nervous System  

aNSCs Active Neural Stem Cells  

AOEL Acceptable Operator Exposure Level  

ASR Artifact Subspace Reconstruction  

ATP Adenosine Triphosphate 

BBB Blood-Brain Barrier  

BC Basket Cell 

BDNF Brain-Derived Neurotrophic Factor 

BLA Basolateral Amygdala 

BM Basomedial Nucleus Of Amygdala 

BMI Body Mass Index  

BNST Bed Nucleus Of The Stria Terminalis  

BP Blood Pressure 

CA Cornu Ammonis  

CE Central Nucleus 

CN Cochlear Nuclei 

CNS Central Nervous System  

CNTF Ciliary Neurotrophic Factor  

CO Carbon Monoxide  

CorrCA Correlated Component Analysis  

CP Cortical Plate 

CR Cajal-Retzius  

CREB Cyclic Amp-Response Element-Binding Protein  

CRH/CRF Corticotropin-Releasing Hormone/Factor  

DA Dopamine 

DAG Diacylglycerol  

DBP Diastolic Blood Pressure 

DCX Doublecortin  

DFA Detrended Fluctuation Analysis  



Thesis Structure            

8 | P a g e  
 

DG Dentate Gyrus  

DMH Dorsomedial Hypothalamus 

DMN Default Mode Network  

DMSO Dimethyl Sulphoxide 

ECG Electrocardiogram  

EDF European Data Format  

EE Environmental Enrichment  

EEG Electroencephalogram  

ELISA Enzyme Linked Immunosorbent Assay 

eNSCs Embryonic Neural Stem Cells  

Erα Estrogen Receptor Alpha 

Erβ Estrogen Receptor Beta 

ESC Embryonic Stem Cells  

EU European Union  

FFT Fast Fourier Transformation  

FSH Follicle-Stimulating Hormone  

GABA Gamma Amino Butyric Acidergic  

GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase 

GD Gestation Day  

GFAP Glial Fibrillary Acid Protein 

GlucRs Glucocorticoid Receptors 

GnRH Gonadotropin-Releasing Hormone  

GPER G-Protein Coupled Estrogen Receptor 

GR Granule cells 

GRH Growth Hormone–Releasing Hormone  

GW Gestational Week  

HF High-Frequency  

HPA Hypothalamo–Pituitary-Adrenal  

HR Heart Rate  

HRV Heart Rate Variability  

IC Inferior Colliculus 

ICMR Indian Council For Medical Research  

IGF-1 Insulin-Like Growth Factor 

IN Intercalated Neurons 

INM Interkinetic Nuclear Migration  

IP3 Inositol 1,4,5-Triphosphate  

IPCs Intermediate Progenitor Cells  

IQR Interquartile Range 

ISC Intersubject Correlation  

IZ Intermediate Zone 

LA Lateral Nucleus  

LD Lactation Day  

LF Low-Frequency  

LHo Luteinizing Hormone  

LH Lateral Hypothalamus  



Thesis Structure            

9 | P a g e  
 

LTD Long-Term Depression  

LTP Long-Term Potentiation  

M1 Primary Motor Cortex 

mAChRs Muscarinic Acetylcholine Receptors  

MAP Mitogen-Activated Protein Kinase  

MCC Middle Cingulate Cortex 

MDD Major Depression Disorder  

ME Medial Nucleus 

MEG Mangetoencephalography 

MGB Medial Geniculate Body 

mGluR Metabotropic Glutamate Receptor  

MGN Medial Geniculate Nuclei  

MPTP Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine  

MR Minerocorticoid Receptor  

MRI Magnetic Resonance Imaging  

MS Musical Stimuli  

MZ Marginal Zone 

NAc Nucleus Accumbens 

nAChRs Nicotinic Acetylcholine Receptors  

NC Deep Nuclei 

NE Norepinephrine 

NECs Neuroepithelial Cells  

NF-kB Nuclear Factor Kappa B Protein Complex  

NMDA N-Methyl-D-Aspartate Glutamate Receptor  

NO2 Nitrogen Dioxide  

NOAEL No Observed Adverse Effect Level 

nu Normalized Units  

O3 Ozone  

OB Olfactory Bulb  

OFC Orbitofrontal Cortex  

PBPK Physiologically Based Pharmacokinetic  

PC Purkinje Cell  

PCNA Proliferative Cell Nuclear Antigen  

PD Parkinson’s Disease  

PDE Phosphodiesterase 

PET Positron Emission Tomography  

PFC Prefrontal Cortex  

PI Principal Investigator  

PIH Prolactin-Inhibiting Hormone  

PH Posterior Hypothalamus 

PKA Protein Kinase A 

PKC Protein Kinase C 

PL Paralaminar Nucleus  

PM Particulate Matter  

PMC Premotor Cortex 



Thesis Structure            

10 | P a g e  
 

PND Postnatal Day 

PNS Parasympathetic  

POA Preoptic Area  

PPPs Plant Protection Products  

PRH Prolactin-Releasing Hormone  

PRL Prolactin  

PTSD Post-Traumatic Stress Disorder  

PVN Paraventricular Nucleus 

qNSCs Quiescent Neural Stem Cells  

qPCR Quantitative Polymerase Chain Reaction 

RCZ Rostral Cingulate Zone 

RG Radial Glial  

RGL Radial Glia-Like  

RGUHS Rajiv Gandhi University Of Health Sciences  

RM-ANOVA Repeated Measures of Anova  

RMS Rostral Migratory Stream  

RMSSD Root Square of The Mean Squared Difference Of Successive NN intervals 

Rsk Ribosomal S6 Protein Kinase 

sAA Salivary Alpha-Amylase 

SAM Sympathetic–Adrenal–Medullary System  

SBP Systolic Blood Pressure 

sCort Salivary Cortisol 

SDNN Standard Deviation of NN Intervals 

SEM Standard Error of The Mean  

SEZ Subependymal Zone  

SGZ Subgranular Zone  

SMA Pre-Supplementary Motor Area  

SNS Sympathetic  

SO2 Sulphur Dioxide  

SON  Supraoptic Nuclei 

SP Subplate  

STAI State-Trait Anxiety Inventory  

SVZ Subventricular Zone  

TP Total Power 

TRH Thyrotropin-Releasing Hormone  

TrkB Tropomyosin Receptor Kinase B-Bdnf Receptor  

TSH Thyroid-Stimulating Hormone/Thyrotropin 

UV Ultraviolet Radiation  

VAS Visual Analog Scale  

VGCC  Voltage-Gated Calcium Channel 

VLF Very Low-Frequency  

VMH Ventromedial Hypothalamus  

VN Vestibular Nuclei 

VTA Ventral Tegmental Area  

VZ Ventricular Zone  



Chapter 1: Introduction           

 
 

 

 

 

 

 



Chapter 1: Introduction           

12 | P a g e  
 

 

 

 

 

 



Chapter 1: Introduction           

13 | P a g e  
 

 

Chapter 1 
Introduction 
 



Chapter 1: Introduction           

14 | P a g e  
 

Chapter 1: Introduction 

Human physiology and health are impacted by the environment. The field of 

environmental health has progressed over time, but evidence concerning the effects of 

the environment on health is based predominantly on epidemiological studies. The 

nervous system is highly sensitive to the environment and thus anthropogenic factors 

have a significant impact on brain plasticity. Although a large array of studies focus on 

the potential negative impact of environmental factors, it should be noted that some 

factors can have a positive impact.  

In this chapter, the concepts of neuroplasticity and anthropogenic stimuli are 

introduced. This is followed by a brief overview of the latest literature on the factors that 

influence neuroplasticity in general. The exposure of humans and animals to different 

anthropogenic stimuli, and their effects on overall health, with specific emphasis on 

neuroplasticity, is then explained. Based on the focus of the current thesis, the effects of 

anthropogenic stimuli, one potentially positive (auditory) and one potentially negative 

stimulus (chemical) are detailed, with the need for this thesis.  

1 Neuroplasticity 

The concept of plasticity came from the term plastic, originally ‘plasticus’ in Latin 

which comes from the Greek term ‘plastikós’ or ‘plastos’ meaning ‘molded, formed’. 

Applying this moldability capacity to the brain, the concept was introduced into 

neuroscience.  Neuroplasticity (neural or brain plasticity) is a process where the brain can 

adapt itself structurally and functionally in response to intrinsic or extrinsic stimuli by 

reorganizing its morphology, functions, or connections at different levels. Cajal suggested 

that the brain could increase its capacity by augmenting the number of synapses (1). The 

stimuli can be physical, electrical, chemical, and psychological, including injuries, such as 

a stroke or trauma (2). A few classic examples of plasticity in humans are the 

observations: (a) sign language activating the auditory association areas in individuals 

who become deaf before language skills are fully developed, or, (b) better localization of 

sound in people who succumbed to early blindness (functional changes in the brain areas 

that are activated due to loss of function of a few areas); and (c) structurally, an increase 

in cortical (increase size of auditory areas for tones or altered somatosensory 
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representation of fingers) and cerebellar plasticity (increased size) in response to 

experience (training, learned precise finger movements) in musicians (violinists/ pianists) 

(3). This concept of ‘activity-dependent learning’ shows that neuroplasticity is influenced 

by experience-based stimuli that can be biological, and environmental. There also exists 

a critical period when the brain is developing and the time of stimulus exposure remains 

crucial. This is due to genetic influences as well as epigenetic influences one is exposed 

to in-utero during pregnancy or post-birth. These critical periods are observed in all 

animals, studied to date, including humans. Significant plastic abilities may be lost or 

limited if the stimulus does not occur during this critical period (4,5). This concept of critical 

periods was proposed by Charles Stockhard, who exposed fish embryos to different 

chemicals and observed the change in their development (6).   

At a cellular level, short- and long-term plastic changes in the neuronal or synaptic 

function occur because of the history of repeated discharge at the synapse. A few 

examples of such plasticity are changes in dendritic morphology, habituation, 

sensitization, long-term potentiation, or depression. Neurogenesis is one of the postulated 

mechanisms involved in neuroplasticity (as seen in the hippocampus, and olfactory bulb). 

The neuroplastic processes also include dynamic reconfiguration of neural connections, 

cell shape, size, and myelination. Neuroendocrine plasticity, i.e., altering the hormonal 

levels, or proportion of secretory cells to meet the demands at different stages of life is 

an added example of plasticity (3).  

In this chapter, the current knowledge of neurogenesis during development and 

adult neurogenesis, the chronological time points of their development in mice and 

humans, followed by a brief note on the mechanisms of neuroplasticity are introduced. 

Neuroplasticity in specific structures is introduced, followed by an overview of how these 

structures and their effects are integrated with the autonomic nervous system (ANS). 

1.1. Development of the Brain and Neurogenesis  

Neurogenesis involves the active production of new neurons, glia, and other cells, 

and neural lineages from undifferentiated neural progenitors or stem cells. It is most active 

in prenatal development and is responsible for the growth of the brain. It. After fertilization, 

the single-celled zygote undergoes multiple mitotic divisions from the morula and then 

transforms into the blastula (non-mammalian term) or blastocyst (human development). 
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During 3rd gestational week (GW) in humans, gastrulation occurs, transforming the 

blastula into a multilayered and multidimensional structure (7). Embryonic stem cells 

(ESC) can be isolated from the developing mouse blastocyst around embryonic day (E) 

3.5. By E6.5, three germ layers can be observed, the endoderm, the mesoderm, and the 

ectoderm (8,9). The ectoderm is responsible for the formation of the neural tube, which 

gives rise to the brain, spinal cord, and posterior pituitary. The peripheral nervous system, 

on the other hand, originates from the neural crests (10). As the neural tube develops, it 

undergoes rostrocaudal and dorsoventral differentiation. The rostral part of the neural 

tube divides into three primary vesicles, namely the forebrain, midbrain, and the 

hindbrain. The inner cavities of these vesicles later fill with cerebrospinal fluid. Meanwhile, 

the caudal portion of the neural tube gives rise to the spinal cord, which is influenced by 

its immediate environment. Specifically, the dorsal side of the spinal cord receives 

sensory inputs, while the ventral side is responsible for motor signals (11). 

Neurons and glial cells are formed from pseudostratified epithelial or 

neuroepithelial cells (NECs), also known as embryonic neural stem cells (eNSCs), 

which line the cerebral ventricles. These NSCs, at various stages of development, begin 

to differentiate into distinct lineages that ultimately give rise to specialized neurons or glial 

cells (12). During early development, the NECs divide symmetrically to produce more 

NECs. Some of these NECs then develop into early neurons. As the brain epithelium 

thickens, the NECs become elongated and transform into radial glial (RG) cells. These 

cells remain in contact with both the pial and ventricular surfaces, and their cell bodies 

are situated within the ventricular zone (VZ). In mice, NECs become activated around 

E8 and develop into early RG cells around E14. The RG cells divide asymmetrically to 

produce intermediate progenitor cells (IPCs). These IPCs can give rise to neurons 

(nIPCs) or different types of glial cells, including oligodendrocytes (oIPCs) and astrocytes 

(aIPCs) (13). Around the same time, the tight junctional complexes that connect the 

neuroepithelial cells (NECs) change into adherens junctions (14). Additionally, the aIPCs 

form connections with the endothelial cells of the developing cerebral vasculature, 

thereby creating the blood-brain barrier (13). Similar to NECs, RG cells maintain apical-

basal polarity, bordering the ventricles, and undergo interkinetic nuclear migration 
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(INM) - a complex mitotic behavior that helps maintain a pseudostratified epithelium within 

the VZ (Fig 1).  

 

Fig 1: Modes of neurogenesis during cortical development. MZ, marginal zone; NE, 

neuroepithelium; nIPC, neurogenic intermediate progenitor cell; oligodendrocytes 

(oIPCs); VZ, ventricular zone; SVZ, subventricular zone (13). 

Before describing neuroproliferation, the cell division phases are briefly introduced. 

Cell cycle/division is the process through which cells replicate and make two new cells. It 

has different stages called G1, S, G2, and M. G1: cell is preparing to divide. S: DNA 

replication occurs, making copies of the DNA for the daughter cells. G2: There is 

organization and condensation of the new genetic material, and preparation to divide. M: 

M stands for mitosis, where the cell divides producing two daughter cells each with its 

copy of the genetic material. After the M phase, based on the situation and factors, the 

cell cycle can begin again (15). During neurogenesis, cells undergo the S phase at the 

basal surface of the VZ and the M phase at the apical surface, while nuclei in G1 and G2 

phases transition between the S and M phases in the mid-region. As the cortex develops, 

the length of the cell cycle increases mainly through the extension of the G1 phase. At 

the same time, cells start to undergo asymmetric cell division, and the fraction of cells 

that differentiate into neurons increases, while the percentage of cells remaining as 

progenitors decreases. Toward the end of cortical development, the majority of neural 

progenitors produce two daughter cells that differentiate into neurons, leading to a gradual 
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depletion of neural precursors (16). Therefore, cortical neurons are generated by RG cells 

through direct asymmetric division or indirectly via the generation of nIPCs and one round 

of amplification, or two rounds of division and further amplification. Most, if not all, 

neurogenic lineages in the nervous system are founded by RGs and a subpopulation of 

astrocytes. Once a cell has exited the cell cycle, it must migrate out of the VZ toward its 

final layers in the developing neocortex/cortical plate (CP) (the future layer 2 to 6 of the 

neocortex). Around E11, the initial set of neurons migrates to form the preplate, which is 

the first stage of corticogenesis before the development of the CP (Fig 2). The CP 

comprises migrating and immature CP neurons that are densely packed with rudimentary 

cell processes and is separated from the germinal layer by an intermediate zone (IZ) of 

axons. The subsequent wave of neuronal migration (∼E13) splits the preplate into two 

layers: the more superficial marginal zone (MZ), which includes the Cajal-Retzius (CR) 

cells, and the deeper subplate (SP), which comprises the rest of the primordial cells, 

with postmitotic SP neurons and well-developed cellular processes. The CR cells are a 

transient cell population of the central nervous system (CNS) that is critical for brain 

development. In the neocortex, they release reelin to guide the radial migration of 

projection neurons. Two types of migration have been identified during neurogenesis: 

radial migration, in which cells move from the progenitor zone towards the brain surface 

following the neural tube, and tangential migration, in which cells migrate perpendicular 

to the direction of radial migration (17). Later in neurogenesis (~E14.5-E16.5), many 

neurons are derived indirectly through divisions of IPCs in the SVZ. At the end of 

embryological development, RG cells reduce and disappear in most brain regions. In 

mammals, most RG cells transform into astrocytes.  
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Fig 2: The developing human cerebral cortex schematic at 26th GW. The germinal 

zone is the VZ and SVZ in which cell divisions take place. The subplate (SP) and 

the intermediate zone (IZ) lie between the SVZ and the cortical plate (CP). The 

outermost layer is the marginal zone (MZ) (18). 

Primates and humans provide extensive care to their young post-parturition and 

through early development, the critical periods (Fig 3). The critical period in brain 

development refers to a specific time during early childhood when the brain is particularly 

sensitive to environmental inputs, and is "critical" or "sensitive" experiences for the proper 

development of brain circuits. During this period, the brain is more malleable and capable 

of being shaped by experiences. The exact timing of the critical period varies depending 

on the specific brain circuit and the developmental process involved. For example, the 

critical period for language development, necessary for the development of language 

circuits, is thought to be between birth and approximately 5-7 years of age. If a child does 

not receive adequate exposure to language during this time, they may have difficulty 

acquiring language later in life. The critical period for visual development occurs between 

birth and approximately 2-3 years of age.  
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Synaptogenesis (the formation of new inter-neuronal connections) continues 

throughout the lifespan, with a certain degree of synaptic pruning based on the availability 

of trophic factors and experience. Early in brain development, synaptogenesis is at its 

peak, known as exuberant synaptogenesis. The brain undergoes significant growth and 

refinement during early childhood, with neural connections becoming stronger and more 

efficient. During this period, the brain increases in size (brains of infants is approximately 

30% of the adult size), doubling within the first year of life (19), and continues to develop 

throughout early adolescence (20). The formation and strengthening of synapses, and 

pruning of unused synapses, contribute to changes in neural connections and overall 

neural architecture. Changes in gene expression, particularly through epigenetic 

mechanisms, can also contribute to neuroplasticity. Experience-dependent plasticity, 

such as through learning and sensory stimulation, can enhance the brain's adaptive 

capabilities. Hormones such as estrogens (17β-Estradiol) and androgens (testosterone) 

can impact brain development and plasticity during adolescence. Various factors, such 

as stress, exercise, and environmental enrichment, can modulate postnatal 

neuroplasticity in the human brain. Certain regions such as the prefrontal cortex (PFC), 

which is involved in higher-order thinking and decision-making, undergoes significant 

development and refinement during adolescence (21). Traumatic experiences during 

childhood and adolescence can have negative effects on brain development and 

plasticity, leading to long-term impacts on mental health and well-being. Thus, the whole 

process of neurogenesis, cellular migration early in development, critical periods, 

myelination, and synaptogenesis through adolescence, are significant vulnerable periods 

when the brain is susceptible to a variety of environmental stimuli, both positively and 

negatively impacting stimuli.  
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Fig 3: Brain development and neuroplasticity in humans (22). 

1.2. Neuroplasticity in adults 

The persistence of neurogenesis in adults is a remarkable example of brain 

plasticity. Although the idea of neurogenesis in adults was initially proposed by Joseph 

Altman in the 1960s, concrete evidence was not established until the 1980s, when 

Fernando Nottebohm researched the process in songbirds (23). It was difficult to accept 

the concept, as several scientists showed that there is a sharp drop in neurogenesis as 

the brain ages (24,25). However, neuroscientists reported that neurogenesis in the lateral 

SVZ and dentate gyrus (DG) of the hippocampus persists in aged human brains (26–29). 

After several years of research, the adult brain, although largely postmitotic, is now known 

to have dividing cells that can produce both glia and neurons. This process is also seen 

in rats, mice, songbirds, and nonhuman primates (30). To demonstrate the process, 

scientists treated cancer patients with bromodeoxyuridine (BrdU) and observed if new 

neurons were born in postpartum brain tissues, and found that the DG and SVZ had 

dividing progenitor cells. BrdU is a thymidine analog, that gets incorporated into the DNA 

of newly dividing cells (31).  

It is worth noting that adult NSCs exist in two distinct stages in the adult SVZ: 

quiescent (qNSCs) or active (aNSCs). The aNSCs are responsible for tissue 

replenishment, while the qNSCs serve as a backup to replace active stem cells. This 

strategy may be in place to avoid the depletion of the stem cell pool and prevent the 

accumulation of potentially tumorigenic mutations. The qNSCs can be activated by 

stochastic mechanisms, feedback signals resulting from the loss of active stem cells, or 
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extensive tissue damage. The presence of both of these different pools in the same region 

emphasizes the importance of the “neurogenic niche” that produces specific factors to 

maintain the cells' proliferative state (32). The regions that have been extensively studied 

for the process of adult neurogenesis are the ventricular-subventricular or 

subependymal zone (SVZ/SEZ) adjacent to the lateral ventricles and the subgranular 

zone (SGZ) of the DG of the hippocampus (33).  

The qNSCs are also known as radial glia-like (RGL) cells due to their morphology 

and ontogeny. When activated, RGL cells can divide to self-renew and/or produce nIPCs, 

which undergo multiple rounds of proliferation before differentiating into neuroblasts 

(type A cells). Unlike RGL cells, nIPCs usually have multipolar processes and do not 

remain in contact with the ventricle or pial surface, and they do not undergo INM (13). 

About 25% of these neuroblasts survive and mature to become DG granule neurons (34). 

Newborn cells derived from NSCs in the DG develop into excitatory, glutamatergic 

granule cells (GRs) that integrate into the pre-existing hippocampal circuits. It is worth 

noting that SGZ cells do not necessarily migrate, whereas SEZ cells differentiate and 

migrate toward the olfactory bulb (OB) through the rostral migratory stream (RMS). Direct 

neurogenesis is more common in the OB, while indirect neurogenesis is more common 

in the neocortex (see reviews (35,36). Neurotransmitters involved include dopamine, 

gamma amino butyric acid (GABA), and glutamate. Several genes are known to control 

the RG cells (see (37)). 

Activated qNSCs/RGLs in the SGZ undergo (34): 

1. Asymmetric division to self-renew and generate either an astrocyte or an IPC. This 

is the more common outcome in a healthy adult brain.  

2. Symmetric self-renewal division to generate two RGLs (type B1 cells). 

3. Symmetric division to produce two astrocytes or two IPCs without self-renewal. 

This is more frequent with age and leads to a reduction in NSCs in aged brains. 

4. Differentiate directly into an astrocyte without undergoing cell division. 

More recently, adult neurogenesis is shown to occur in other regions such as the 

hypothalamus arcuate nucleus and the median eminence, striatum, substantia 

nigra, habenula, cerebellum, cortex, and amygdala (38) (Fig 4). While some studies 

have proposed the presence of endogenous stem cell pools within these regions to form 
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new neurons. Others have demonstrated that these are cells from the hippocampus, that 

have migrated to the PFC, striatum (39), substantia nigra (40), and amygdala (41), after 

deviating from the RMS. Adult neurogenesis has functional significance. For example, in 

the habenula, it is linked to the regulation of the circadian cycle and stress response, 

affecting the antidepressant effect of fluoxetine (42,43); in the cerebellum, new GRs and 

interneurons contribute to learning and adapting motor skills based on environmental 

cues (44). The process of neurogenesis can be modulated by various factors, including 

growth factors, cytokines, hormones, neurotransmitters, drugs, and environmental 

exposures. While stroke, seizures, and brain trauma have negative effects, exercise, and 

enrichment have positive impacts on the process of neurogenesis (23,38). Despite 

several lines of evidence, conflicting findings make it challenging to reach a definitive 

conclusion about the presence of adult neurogenesis in human brains (see reviews 

(45,46)). 

 

Fig 4: Postulated sites of adult neurogenesis and their functional significance - the 

hippocampal DG, SGV, SVZ, hypothalamus, PFC, striatum, substantia nigra, and 

amygdala (38). 

Adult neuroplastic processes reduce with ageing. The processes such as synaptic 

potentiation, synaptogenesis, and cortical map reorganization are reduced with ageing, 



Chapter 1: Introduction           

24 | P a g e  
 

and associated with widespread neuronal and synaptic atrophy (47). There is thus 

cognitive decline that compensates for the age-related reduction in neuroplasticity.  

1.3. Mechanisms of Plasticity  

The mechanisms underlying neuroplasticity are diverse, encompassing neuronal 

sprouting, synaptogenesis, and neurogenesis, which may be inherent or acquired through 

experience. These mechanisms may contribute to both developmental and adaptive 

plasticity in response to injury. Beyond synaptogenesis and neurogenesis, molecular 

mechanisms such as angiogenesis (formation of new blood vessels) and gliogenesis also 

play a role in neuroplasticity (48). At a molecular level, neuroplastic changes occur via 

gene transcription, protein synthesis, and signaling pathways, with cascades of 

intracellular proteins transmitting signals from receptors to the DNA (49). The influx of 

calcium (Ca2+) through depolarization or N-methyl-D-aspartate (NMDA) glutamate 

receptor and sodium (Na+) through amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid 

(AMPA) glutamate receptor activates signaling pathways. These pathways include 

Ca2+/calmodulin-dependent protein kinase (CaMKII), extracellular regulated kinase 1/2 

(ERK1/2), mitogen-activated protein kinase (MAPK), and the brain-derived neurotrophic 

factor/tropomyosin receptor kinase B receptor (BDNF/TrkB) pathway. Transient 

increases in calcium and cAMP levels trigger the necessary events for short-term synaptic 

plasticity. This then leads to the activation of cyclic AMP-response element-binding 

protein (CREB) or the nuclear factor kappa B protein complex (NF-kB) in the nucleus, 

which modulates gene transcription and protein synthesis, thereby initiating long-term 

plasticity processes (1,50). CREB is a major transcription factor implicated in both cellular 

and behavioral learning and memory models, affecting various gene targets (51), 

depending on the cell type, the length of stimulation, as well as the magnitude of 

stimulation. Neurotrophic factors are gene targets linked to learning, memory, and stress, 

and to study the effects of antidepressant treatment. Among these, BDNF is an abundant 

factor in the brain and is of particular interest. CaMKII, when autophosphorylated, remains 

active even when calcium levels drop, which is crucial for long-term plasticity. These and 

other mechanisms are discussed in detail in (52,53) (Fig 5). 
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Fig 5: Molecular pathways involved in neuroplasticity (53); VGCC, voltage-gated 

calcium channel; 5-HT, 5-hydroxytryptamine (serotonin); NE, norepinephrine; DA, 

dopamine; AC, adenylyl cyclase; ATP, adenosine triphosphate; AMP, adenosine 

monophosphate; PDE, phosphodiesterase; PKC, protein kinase C; PKA, protein 

kinase A; Rsk, ribosomal S6 protein kinase. 

At a cellular level, changes can be categorized as either structural or functional. 

Structural changes encompass neuronal plasticity, dendritic plasticity, and synaptic 

plasticity. Neurogenesis is an example of neuronal plasticity and occurs in distinct phases, 

as previously mentioned. Dendritic plasticity involves alterations in the number or 

complexity of dendritic spines, with a higher number of spines and more complex dendritic 

branches indicating greater synaptic strength (54,55). Dendritic spines mark the location 

of glutaminergic synapses and play a crucial role in synaptic plasticity (56). Rapid 

changes (acute neuroplasticity) in dendritic spine shape and number can occur within 

minutes to hours following Ca2+/CaMKII-dependent glutamate release. Adaptations at the 

cellular level in response to experiences involve modifications in presynaptic and 



Chapter 1: Introduction           

26 | P a g e  
 

postsynaptic elements. Consistent and repetitive usage of a peripheral organ can bring 

about neuroplastic changes in its corresponding brain region including the higher release 

of neurotransmitters and neurotrophins from the presynaptic neuron, reduced reuptake 

and breakdown of neurotransmitters in the synaptic cleft, and the addition of more 

receptors on the postsynaptic cell membrane (49). Neuroplasticity may also occur when 

neighboring healthy neurons take over the function of impaired neurons in the brain as a 

result of injury or disease (57). 

Synaptic plasticity refers to the ability of synapses to change their strength through 

short- and long-term functional changes. Habituation occurs when a neutral stimulus is 

repeatedly presented, resulting in a decrease in the electrical response due to a decrease 

in intracellular Ca2+. Sensitization is the prolonged augmented postsynaptic responses 

after a stimulus is paired with a noxious stimulus, resulting from presynaptic facilitation 

and a change in adenylyl cyclase. Scientists have long believed that neurons that activate 

in tandem are more likely to form a connection. This is the "Hebbian Principle," which 

provides a foundation for learning via synaptic connections (58). In contrast, the principle 

of "use it or lose it" also applies to neuroplasticity, with a decrease in the strength of the 

connection between neurons resulting from a lack of activity between them (59). 

Experience-dependent synaptic plasticity, including long-term potentiation (LTP) and 

long-term depression (LTD), is key to learning and memory. LTP involves increased 

synaptic strength and requires activation of increased intracellular Ca2+, glutamate 

receptors, and enhanced postsynaptic potential response last for days, while LTD results 

in a persistent decrease in synaptic strength produced by slower stimulation and is 

associated with a smaller rise in Ca2+ (60). Both involve protein synthesis and modulated 

growth of the presynaptic and postsynaptic neurons and their connections (3). 

1.4. Specific brain regions, development, connections, functions, and neuroplasticity  

The hippocampus and amygdala are among the most extensively researched brain 

regions in terms of their neuroplasticity. This thesis provides a brief overview of these 

regions, and their development, followed by a discussion of other plastic regions such as 

the cerebellum, cerebral cortex, and hypothalamus. Some of these regions are 

associated with sexual behavior since steroidal hormones exert their actions primarily in 

the brain. Additionally, these regions are integral parts of the limbic system, which 
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regulates various autonomic responses in the periphery. Thus, the integration of these 

neuroplastic regions with the endocrine, limbic, and ANS is briefly explored. 

Hippocampus 

The hippocampus, a curved brain structure connecting the septal nuclei of the 

forebrain and the temporal cortex, plays a crucial role in forming and storing episodic and 

semantic declarative memories. It has been one of the most thoroughly investigated 

regions since H.M.'s case, who lost the ability to form new declarative memories after 

hippocampal removal (61). The discovery of activity-dependent synaptic plasticity (62), 

and hippocampal place cells (63) further enhanced our understanding of its 

neurophysiology. The hippocampus can be divided into three main subdivisions, which 

are the DG, cornu ammonis (CA) CA1, and CA3, with an additional CA2. The entorhinal 

cortex sends both spatial and non-spatial information to the hippocampus, which then 

transmits the information through different pathways: from the EC to the DG, CA1, and 

CA3 via perforant path fibers, from the DG to CA3 pyramidal neurons via mossy fibers, 

from CA3 to CA1 pyramidal neurons via Schaffer collaterals, and from CA1 to the cortex 

in a unidirectional, feed-forward excitation manner. This creates the tri-synaptic 

hippocampal circuit (64) (Fig 6). There exists a polysynaptic pathway that plays a role 

in semantic memory while the direct intra-hippocampal pathway has episodic and spatial 

memory functions (65). The CA1 region is the major output from the hippocampus. It 

sends projections to various regions of the brain, such as the anterior thalamus, 

hypothalamus, subiculum, and lateral septum through the fornix, ventral striatum, 

amygdala, PFC, and other areas of the limbic system. The hippocampus is important in 

emotional behavior through its connections with the amygdala and also helps to regulate 

hypothalamic functions (as explained later). Thus, the hippocampus serves as an 

additional pathway through which incoming sensory signals can trigger behavioral 

responses (66).  
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Fig 6: Schematic of the structure and circuits within the hippocampus (67). 

The period of hippocampal neurogenesis in rodents is compressed within <10 

embryonic days, from day 10 to 18. In humans, this occurs within 2 weeks, from 16 to 

18th GW (68). Adult neurogenesis in the hippocampus, as explained before (also see 

(69)), can be influenced by various factors, such as exercise, enrichment, and growth 

factors, which promote neurogenesis, while neurotoxins and ageing-related 

neurodegeneration inhibit it (70). The hippocampus, through several genetic, molecular, 

and electrochemical mechanisms, plays a role in both long-term and short-term plasticity 

(see (71)).  

Amygdala 

The amygdala, situated in the medial temporal lobe is often described as the 

‘window’ that allows the limbic system to perceive a person's position in the world (66). It 

plays a critical role in processing socially and emotionally relevant information and 

eliciting responses. The effects of medial temporal lobe lesions on monkey behavior were 

studied by Klüver and Bucy (72), which resulted in several behavioral changes (such as 

increased exploration, hypersexuality, and hyperorality) and psychic blindness, including 

the absence of fear and anger, and loss of social interactions. People with amygdala 

lesions exhibit emotional deficits, including impaired recognition of facial expressions and 
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abnormal social behavior and decision-making (73,74). In humans, the amygdala 

structure is discernible by the 8th GW and is mature by 8 months in utero. Structural 

connectivity across the cortex is seen by the 13th GW. The major amygdala nuclei are 

fully formed by the 15th GW. Postnatally, the amygdala undergoes rapid growth before 3 

months of age (75–79). In mice, the cellular components of the amygdala are seen 

between E10-14 (80,81). Each nucleus of the amygdala receives reciprocal inputs from 

multiple brain regions, both cortical and subcortical (Fig 7). It is linked to emotional and 

social aspects of memory (82), attention (74), and perception (83) through its connections 

with the hippocampus, orbital and medial PFC, and sensory cortex.  

 

Fig 7: Connections of the Amygdala - BLA—basolateral (basal) nucleus; BM—

basomedial (accessory basal) nucleus; CE—central nucleus; Co—cortical nucleus; 

IN—intercalated neurons; ME—medial nucleus; LA—lateral nucleus; PL—

paralaminar nucleus (84)  
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The amygdala in primates consists of 13 nuclei and cortical fields. The lateral 

nucleus (LA) is the primary afferent structure that receives projections from the neocortex 

and transmits them to other amygdala nuclei and other parts of the LA. The basolateral 

amygdala (BLA) through its connections with the orbitofrontal cortex, the medial PFC, the 

ventral striatum, the nucleus accumbens (NAc), the bed nucleus of the stria terminalis 

(BNST), and the central nucleus (CE) forms sensory information flow loops between the 

amygdala and cerebral cortex (85). The CA1 neurons have bidirectional projections to 

and from the BLA (71,86). The basomedial (BM) amygdala projects into the CE, secreting 

corticotropin-releasing hormone/factor (CRH/CRF), enkephalins, and neurotensin, and 

expresses dopamine, estrogen and serotonin receptors (87), playing an important role in 

sex hormone-regulated motivational behavior. The paralaminar nucleus (PL) also has a 

high concentration of CRH receptors and is innervated by serotoninergic fibers (88,89). 

The medial nucleus (ME) mostly contains GABAergic neurons, and psychological stress 

activates it, which, in turn, leads to activation of the hypothalamo–pituitary-adrenal (HPA) 

axis and secretion of ACTH (90). The CE is the main source of efferent fibers of the 

amygdala and has a unique role in converting sensory information into a physiological 

response and behavior change (91), such as rage, aggression (66), social learning and 

memory, pheromonal processing, and reproductive-associated behaviors. The CE 

contains the second highest density of CRH/CRF in its GABAergic neurons, the first being 

the hypothalamus (92). The central part of the amygdala receives inhibitory projections 

from the PFC and orbitofrontal cortex, is linked to the hypothalamus and brain stem nuclei, 

and plays a role in regulating cardiac function and modulating emotional responses (see 

(93–95)). Stimulation of certain amygdaloid nuclei can also result in rage, escape, 

punishment, pain, and fear similar to the hypothalamus (96). The amygdala through its 

neuro-hormonal connections plays a chief role in emotional processing (97). It is also 

essential for memory association, and "records" the emotional aspect of memory to 

enable an individual to react effectively upon repeated exposure (98). 

Adult neurogenesis was demonstrated in the amygdala of adult primates' rostral 

temporal lobe cells (41). Later several other species were also shown to elicit amygdala 

neurogenesis (for their effects on social behavior, hormonal release, and 

neurotransmission see review (96)) A volumetric growth of the human amygdala is seen 
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during adolescence, paralleled by an increase in neuronal cell number (99). A recent 

study using 14C radiocarbon analysis demonstrated post-natal turnover of neurons in the 

human amygdala based on a quiescent and a cycling neuronal population with about a 

35% fraction of renewing cells (100). Using stereological analysis of 52 human brains (24 

neurotypical and 28 with autism spectrum disorder) of ages ranging from 2 to 48 years, it 

was found that the number of mature neurons increased in the basal and accessory basal 

nuclei of the amygdala from childhood to adulthood, while the immature neurons within 

the PL decreased. Additionally, individuals with autism had an initial surplus of amygdala 

neurons in childhood, which then reduced in adulthood across nuclei (99). Thus, the 

neurogenesis process is highly linked with the occurrence and development of 

neurological disorders. 

Cerebellum 

The cerebellum, situated beneath the temporal and occipital lobes of the cerebral 

cortex, is a part of the hindbrain composed of a thin, densely folded cerebellar cortex 

surrounding the deep cerebellar nuclei. In 1898, the cerebellum was named the ‘head 

ganglion of the proprioceptive system’ by Charles Sherrington due to its role in motor 

functions. The deep cerebellar nuclei consist of the dentate, globose, emboliform, and 

fastigial nuclei. The cerebellar cortex has 3 layers: an external molecular layer, a one-

cell-thick Purkinje cell (PC) layer, and an internal granular layer. There are five types of 

neurons in the cerebellar cortex, which are the PC, granule (GR), basket (BC), stellate, 

and Golgi cells. GRs release glutamate, while the rest of the cells release GABA. The 

cerebellar cortex has two primary excitatory inputs: climbing fibers and mossy fibers. 

Climbing fibers originate from a single source, the inferior olivary nuclei, and project to 

the primary dendrites of the PC. The mossy fibers provide direct proprioceptive input from 

all parts of the body and input from the cerebral cortex via the pontine nuclei to the 

cerebellar cortex. They end on the dendrites of GRs in complex synaptic groupings called 

glomeruli (3) (Fig 8). 
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Fig 8: Diagram of nuclei and connections in the cerebellum. Plus (+) and minus (–) 

signs indicate whether endings are excitatory or inhibitory. In the fig - BC, basket 

cell; GC, Golgi cell; GR, granule cell; NC, Deep nuclei; PC, Purkinje cell (3). 

Research conducted on mice can provide valuable insights into defining 

pathogenic mechanisms because the developmental mechanisms of the cerebellum are 

highly conserved between rodents and humans (101). In mice, PCs are born at E10.5–

E13.5, GRs at middle to late stages (E13.5 onward), GABAergic interneurons at E10.5–

E11.5, and Golgi cells at E13.5 (peak E14–E16) (101). Further, the cells migrate in 

different ways, radial, and tangential, through the embryonic period (see review (102)). In 

mice, the exponential proliferation of the GC progenitors occurs after birth, while, in 

humans, it starts at 35 to 42 embryonic days, achieving a peak at the 32nd GW and 

continues during postnatal age (103) until the second year (104). Interestingly, evidence 

of adult neurogenesis has been obtained in transgenic mice after cerebellar injury in the 

granular outer layer, rabbits during peripubertal ages in the subpial layer, and PC layer, 

though more research is needed to further confirm these findings (44,46,105). 

The cerebellum plays a crucial role in motor control and learning. It has been 

proposed that the cerebellar cortex serves as a probable site for motor memory storage, 

and several molecular and cellular investigations support the hypothesis that the 

cerebellar cortex plays a crucial role in motor learning and could be a vital location for 

learning-related plasticity making the cerebellum a suitable model to study neuronal 

plasticity, learning, and repair (106,107). For instance, musicians have larger cerebellum 

than non-musicians due to the acquisition of precise finger movements. The plasticity of 

parallel fiber-PC has been extensively studied, indicating that general plasticity 

mechanisms may underlie cerebellar plasticity during learning (108). The mechanism of 
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learning may involve LTD of climbing fibers, leading to the decreased firing of parallel 

fibers. Metabotropic glutamate receptor (mGluR) activation can trigger an increase in 

intracellular inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) levels or a 

decrease in intracellular cAMP levels, resulting in cerebellar synaptic plasticity (3). The 

cerebellar vermis is involved in the retention of fear memory consolidation (109,110) (for 

a review see (111)). Evidence suggests that the cerebellum is also involved in non-motor 

functions such as language, cognition, and emotion. Integration with the hypothalamus 

(as discussed later) was revealed in the 1980s (112), and this integration, along with the 

cerebellum's many unknown functions, makes it a special organ.  

Cerebral Cortex 

Over the past two decades, there have been numerous reports of plasticity 

phenomena in the cerebral cortex following ischemic injury, both in animal models and in 

human stroke survivors. Experience is identified as one of the most powerful modulators 

of cortical plasticity, both structurally and functionally (113). The mechanisms underlying 

experience-dependent plasticity have been predominantly investigated in sensory 

cortices, with a focus on how sensory input regulates synaptic modifications, neural circuit 

reorganization, and cortical function (114). During critical periods, plasticity can be 

significantly modified by both environmental and genetic factors to optimize its function in 

that environment. Indeed, this plasticity plays a crucial role in shaping our perception of 

vision, hearing, touch, taste, and olfaction early in development. However, evidence of 

cortical remodeling is also observed in adults learning new skills, conditioning 

experiments, localized neural stimulation, and when there is a loss of peripheral input (as 

reviewed in (115)). Engaging in a sensory task that requires learning through repeated 

practice, attention, and engagement improves performance, indicating the involvement of 

higher-order frontal brain regions (116). The basal forebrain, which is rich in cholinergic 

neurons, is one of the main regions involved in attention-based plasticity. Stimulation of 

the nucleus basalis of Meynert paired with tones induces rapid plasticity in the primary 

auditory and visual areas (117). Another extensively studied form of plasticity is induced 

by sensory deafferentation. For instance, individuals who are deaf show enhanced visual 

and vibrotactile skills (118,119) (Fig 9). Similarly, early visual deprivation results in cortical 

reorganization with stronger sound localization in the occipital cortex and reduced 
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activation of the medial temporal cortex of blind participants (120). Various molecular 

mechanisms have been proposed to underlie cortical plasticity, including dendritic, 

axonal, and synaptic plasticity (121). The development of the cerebral cortex occurs from 

E10-17 in mice and between 7-18 GW in humans (122).  

 

Fig 9: Representation of neuroplasticity in the cortex: A: Normal hearing sense - 

auditory inputs from the cochlea reach inferior colliculi, medial geniculate nuclei 

(MGN) in the thalamus, followed by relay to the auditory cortex. Visual stimuli 

normally relay onto the superior colliculus and lateral geniculate nuclei before 

transmitting signals to the visual cortices;  B, C: Compensatory plasticity in a deaf 

individual, the auditory areas gradually respond to different other sensory stimuli 

(eg: visual stimuli) compensating for the auditory sense loss, and plasticity in 

different areas of the cerebral cortex in a deaf person listening to music (118,123).  

Hypothalamus 

The hypothalamus is a cluster of neuronal nuclei situated at the base of the third 

ventricle in the diencephalon, comprising just 1% of the brain mass. It is the "master 

endocrine gland," and "head ganglion of the autonomic system," as Charles 

Sherrington named it. Through its many nuclei (Fig. 10), the hypothalamus plays a critical 

role in the regulation of arterial pressure, thirst and water retention, appetite and energy 

expenditure, temperature control, and endocrine regulation. The hypothalamus receives 

input from various sources, including sensory input from the external environment (visual, 

olfactory, auditory, and temperature), as well as visceral and pain receptors, and 

receptors in circumventricular organs that signal changes in blood levels of circulating 
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chemicals. The hypothalamic neurons (especially those in the paraventricular nucleus-

PVN, dorsomedial hypothalamus-DMH, and perifornical area) then establish direct and 

indirect connections with autonomic preganglionic neurons (124). The dorsal forebrain 

bundle, medial longitudinal fasciculus, and mamillotegmental tracts are the primary 

pathways that facilitate communication between the hypothalamus and other regions of 

the brain to regulate the ANS. The central autonomic network comprises various 

regions in the cortex, amygdala, hypothalamus, midbrain, pons, and several nuclei in the 

medulla that receive inputs related to homeostasis, emotions, and sensations from other 

parts of the brain, the environment, and the body. All of these inputs are integrated to 

generate an appropriate response, which is rapidly transmitted to the heart through the 

ANS (125), as described later. The inputs from basal forebrain septal nuclei, and 

amygdala project into the hypothalamus via the medial forebrain bundle. 

 

 

Fig 10: Group of nuclei in the Hypothalamus (3) 

Hypothalamic neurogenesis occurs between E10-E16 in the mouse when one can 

identify genes responsible for neurogenesis to be enriched (126,127). However, 

gliogenesis and neuronal migration processes continue postnatally (Fig 12). In humans, 

hormone activity in the HPA axis can be detected between 8 to 12th GW (128). Different 

nuclear areas of the hypothalamus develop at different gestational periods. At 24 to 33rd 

GW, the fetal human hypothalamus takes an adult-like appearance (129). Novel 

neurogenic niches have been identified in the adult hypothalamic 3rd ventricular wall and 
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its vicinity, including PVN, ventromedial hypothalamus (VMH), arcuate nucleus (AN), and 

median eminence (130–134). The hypothalamus undergoes age-related changes, with 

some regions showing a decline in cell numbers while others remain active (supraoptic 

nuclei-SON and PVN) with evident sex-specificity (see review (135)). Tanycytes, the 

NSCs in the hypothalamus, can proliferate in certain conditions and divide symmetrically 

or asymmetrically to give rise to IPCs (Fig 11). These IPCs differentiate into neurons, 

astrocytes, or oligodendrocytes and integrate into neural circuits to regulate physiological 

activities (see review (136)). The process is aided by factors like BDNF and ciliary 

neurotrophic factor (CNTF) (96,136). Studies have shown that neurogenesis and 

gliogenesis are linked with hypothalamic functions like control of metabolism (137), 

reproduction, thermoregulation, sleep, ageing, sensory information processing, and 

neuroendocrine regulation (136). 

 

Fig 11: Schematic of hypothalamic neurogenesis and gliogenesis (136)  

Sensory experience during the postnatal period, particularly mother-pup 

interaction, plays a crucial role in regulating neuroplasticity of the HPA axis throughout 

the animal's lifetime, leading to improved cognitive functions and reduced stress response 

(lower CRH expression, and increased hippocampal glucocorticoid receptors (GlucR) 

levels (138–142)). Hormones like estradiol can interact with energy balance disruptions 

and affect prenatal and adult neurogenesis (143,144).  

The focus of this thesis is on the cardiovascular, endocrine, and limbic roles of the 

hypothalamus. In general, stimulation in the posterior hypothalamus (PH) and lateral 

hypothalamus (LH) increases the arterial pressure and heart rate (HR), whereas 

stimulation in the POA often has opposite effects (66). The PVN, the right anterior aspect 

of the LH/supraoptic nuclei (SON), and the AN have been proposed to have 

cardiovascular regulatory activity (145). There are six established hypothalamic-
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releasing and inhibiting hormones. These are CRH, thyrotropin-releasing hormone 

(TRH), growth hormone releasing hormone (GRH), somatostatin, gonadotropin-releasing 

hormone (GnRH), prolactin-inhibiting hormone (PIH) and prolactin-releasing hormone 

(PRH). The anterior pituitary, under the influence of the hypothalamic hormones, 

secretes six hormones: the adrenocorticotropic hormone (corticotropin, ACTH) under the 

control of CRH, thyroid-stimulating hormone (thyrotropin, TSH) under the control of TRH, 

growth hormone under the control of GRH, follicle-stimulating hormone (FSH) and 

luteinizing hormone (LHo) both under control of GnRH, and prolactin (PRL) under the 

control of PRH/PIH. Thus, the hypothalamus through the network of the hypothalamo-

hypophysial portal system of blood vessels (Fig 24), controls the release of anterior 

pituitary hormones. The hormones, oxytocin, and vasopressin, of the posterior pituitary 

gland, are synthesized in the cell bodies of the magnocellular neurons in the SON and 

PVN and are transported through the axons of the hypothalamohypophyseal tract system 

to their endings in the posterior lobe, where they are secreted in response to electrical 

activity in the endings (3). A few important functions of these hormones include metabolic 

functions, growth, development (GH, Insulin-like growth factor – IGF-1), gonadal functions 

and sexual behaviors (FSH, LHo, estrogens, progesterone), stress, inflammation, 

metabolic functions (ACTH, cortisol), metabolic functions, energy regulation (TSH, T3, 

T4), and water balance.  

The HPA axis is involved in stress and hormone regulation. Its primary effectors 

are located in the PVN, anterior pituitary, and adrenal gland. When stressed, CRF triggers 

the release of ACTH into the bloodstream. ACTH's primary target is the adrenal cortex, 

where it stimulates glucocorticoid and mineralocorticoid secretion. Glucocorticoids 

interact with GlucRs that are widely distributed throughout the body, inducing 

physiological changes. The HPA axis is further modulated by glucocorticoids, acting via 

GlucRs in the hypophysiotropic neurons of the PVN, hippocampus, and PFC (layers II, 

III, and VI) through genomic, delayed feedback, and rapid nongenomic feedback systems. 

In contrast, the amygdala is thought to activate the HPA axis, promoting glucocorticoid 

synthesis and triggering stress responses. While glucocorticoids have adaptive effects, 

excessive HPA axis activation can contribute to the development of pathologies (146).  
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The regulation of emotions involves various nuclei in the hypothalamus, which has 

been established through experiments on mammals and observation of human diseases. 

Stimulation of the LH results in increased activity, aggression, and stimulation of the VMH 

induces satiety, decreased eating, and a sense of tranquility. The anterior and posterior 

hypothalamus regulates sexual behavior (66). In addition, the key brain regions 

responsible for rewarding sensations are situated along the path of the medial forebrain 

bundle in LH and VMH. Other brain regions, such as the septum, amygdala, specific 

thalamic areas, and basal ganglia, also participate in regulating rewards. Conversely, the 

regions of the hypothalamus's periventricular zones, hippocampus, and amygdala act as 

punishment centers. 

Autonomic nervous system (ANS) 

The ANS regulates a range of involuntary physiological processes, such as HR, 

blood pressure (BP), respiration, digestion, and sexual behaviors. It comprises three 

distinct anatomical divisions: the sympathetic (SNS), parasympathetic (PNS), and enteric 

nervous systems. The ANS involves a two-neuron chain that innervates the visceral target 

tissues, including cardiac muscle, smooth muscle, secretory glands, and immune system 

cells, through preganglionic neurons. The SNS is a thoracolumbar (T1-L2) system that 

originates from the intermediolateral cell column of the lateral horn of the spinal cord and 

acts through the chain of ganglia and collateral ganglia. The SNS is designed to elicit 

fight-or-flight reactions in emergencies. In contrast, the PNS, which is a craniosacral 

system, originates from brainstem nuclei associated with cranial nerves III, VII, IX, and X, 

and arises from the intermediate gray horn in the S2-S4 spinal cord. Connections from 

III, VII, and IX cranial nerves act through cranial nerve ganglia, while connections from 

the vagal system (X) and sacral system act through intramural ganglia in or near the target 

tissue. The PNS serves as a homeostatic reparative system (147) (Fig 12). Preganglionic 

sympathetic and parasympathetic axons both use acetylcholine (ACh) as the 

neurotransmitter. Most sympathetic postganglionic axons release norepinephrine (NE) 

while the postganglionic parasympathetic axons release ACh. However, the 

postganglionic sympathetic nerve fibers to the sweat glands and very few blood vessels 

are cholinergic (Fig 13). 
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Fig 12: The general organization of the ANS. Note the autonomic nuclei in the 

brainstem, and intermediolateral horn of the spinal cord gives rise to preganglionic 

neurons. The sympathetic chain (red), parasympathetic outputs (blue), and the 

modified postganglionic sympathetic neurons - chromaffin cells in the adrenal 

medulla (147).  
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Fig 13: The autonomic nerve chains and neurotransmitters (66). 

ACh acts on muscarinic (mAChRs) and the nicotinic acetylcholine receptors 

(nAChRs). ACh is then broken down by the extracellular Acetylcholinesterase (AChE). 

Each nAChR is made up of five subunits that form a central pore or channel. The five 

subunits designated as α, β, γ, δ, and ε are each coded by different genes. The brain 

nAChRs are composed of alpha and beta (α2-α7, α9–10, and β2–4) subunits that form 

homo- or hetero-pentameric ion channels with diverse pharmacological properties (148). 

The most common subunits in the brain are α7 and α4β2. The ACh binds to α subunits 

inducing a conformational change in the protein so that the channel opens, and permits 

the passage of Na+ and other cations to produce a depolarizing potential. There are five 

types of muscarinic cholinergic receptors (M1–M5) (3). In this thesis, we used a chemical 

that binds to nAChRs and modifies its actions. These receptors are susceptible to 

neuroplastic effects, especially postnatally, which may be caused by early life stress and 

other environmental exposures (149,150).  

The function of the ANS can be measured non-invasively from physiologic signals 

of HR, respiratory rate, and BP. Heart rate variability (HRV) (Fig 14) refers to the variation 

in the time interval between consecutive heartbeats (variability seen in each R-R interval 

on electrocardiogram recordings). It is a measure of the fluctuations in HR that occur due 

to changes in the ANS activity. After power spectral analysis of the waveforms, one gets 



Chapter 1: Introduction           

41 | P a g e  
 

the high-frequency variability (0.15–0.4 Hz) that reflects parasympathetic function and is 

influenced by the respiratory rate, while low-frequency variability (0.04–0.15 Hz) is due to 

a combination of both divisions of ANS and baroreflex-induced changes in HR. Low HRV 

is associated with sympathetic dominance and high HRV is associated with 

parasympathetic dominance. HRV has been used as a tool for assessing various health 

conditions, such as cardiovascular disease, diabetes, and stress-related disorders. In 

addition, HRV biofeedback has been used as a therapeutic technique to improve ANS 

balance and overall health (see (151,152)). 

 

Fig 14: Analysis of HRV in sinus rhythm. HF = high-frequency, LF = low-frequency, 

PSD = power spectral density (153). 

1.5. Integration of the regions 

The HPA axis's activity is regulated by extrahypothalamic limbic structures, 

especially the hippocampus, and amygdala (154,155). The intricate interplay between the 

ANS and the limbic system provides a foundation for physical and emotional experiences 

that shape behavior, emotional, and neuropsychiatric health from prenatal development 

to adulthood. The limbic system is made up of several structures, such as the amygdala, 

thalamus, fornix, olfactory cortex, hippocampus, hypothalamus, and cingulate gyrus (Fig 

15). During early brain development, these structures develop multiple interconnections 

and connect to the brainstem ANS centers to regulate the ANS's outflow to the body and 

modulate visceral functions. This may be affected by the ‘intrauterine milieu’, including 

maternal preconception health and stress hormone levels during pregnancy (156). Over 
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a lifetime, these connections strengthen or weaken depending on the environment, 

stress, and other exposures (157).  

 

Fig 15: The limbic system, showing the key position of the hypothalamus. Note the 

inputs received by the hypothalamus from centers and periphery, which in turn 

manifests its actions through the ANS (66,158). 

The activation of hippocampal neurons inhibits the HPA axis, while the amygdala 

exerts a significant facilitatory effect (154). The hippocampus expresses a high level of 

adrenal steroid receptors, both GlucR and mineralocorticoid receptors (MR), and is 

indirectly linked with the HPA axis through the amygdala e.g., hippocampus-modulated 

contextual fear memory-related autonomic responses (159). When stimulated, the 

hippocampus decreases neuronal activity in the PVN and inhibits glucocorticoid 

secretion, functioning as a negative feedback regulator of the stress response. But, 

prolonged and severe stress disrupts this control, resulting in stress-related damage 

(discussed later). On the other hand, the amygdala plays a critical role in fear, anxiety, 

and the activation of the HPA axis. The amygdala has a direct and indirect connection 

with the hypothalamus: a) BNST connects the amygdala with the preoptic area (POA) of 

the hypothalamus, b) The ventral amygdalofugal pathway situated in the medial forebrain 

bundle directly connects the CE and BLA with the hypothalamus, c) An indirect pathway 

consists of GABAergic projections from the amygdala CE to the BNST (disinhibition) (160) 

and the efferences which retro project to CRH cells in the hypothalamic PVN (161–163). 

A stressor or memory of a negative event activates the amygdala that sends stress 

response signals to the hypothalamus and brainstem sympathetic centers to elicit 

corticosterone secretion, increase arterial pressure and HR, decrease gastrointestinal 
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motility and secretion, defecation, micturition, increase pupillary dilation, piloerection, and 

secretion of anterior pituitary hormones, including gonadotropins (66) (Fig 16). Other 

limbic structures and cortex, insular cortex, anterior cingulate cortex, and the infralimbic 

cortex have been implicated in descending control of the cardiopulmonary system (for 

more on cortical control over the ANS see (164)).  

 

Fig 16: The integrated control of ANS a) Representation in a rodent brain b) Core 

areas involved in emotional modulation are depicted in gray. The hippocampus and 

cerebellum are only indirectly involved (165,166)). DMN Vagus – Dorsal Motor 

nucleus of the vagus; DM – Dorsomedial; Periforn – Perifornical; L.Hypoth – Lateral 

Hypothalamus; Nc – Nucleus; VL – Ventrolateral. 

There is sizable evidence documenting that integration is one of the major 

functions of the cerebellum. For example, cerebellar influences on visceral functions 

have been described (see review (111)). The cerebellum, via its connection with the 

hypothalamus (167), is involved in controlling vasomotor reflexes, the somatic and 

autonomic manifestations of shame rage, pupil nictitating membrane, respiration, and 

gastrointestinal functions. The reciprocal cerebellar hypothalamic pathway has been 

suggested as the pathway that influences the ANS (111,112,168). The cerebellum is 

linked to emotional expression and behavior through its connections to the rostral basal 

forebrain (169). Molecular components of the circadian rhythm have been observed in 
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the cerebellar cortex (170). Interestingly, the hypothalamic histaminergic and orexinergic 

systems, which regulate the ANS, innervate the entire brain, including the cerebellum, 

and may modulate cerebellar neurons to participate in motor control and somatic-non 

somatic integration (171). The fastigial-hypothalamic glutamatergic transmission 

mediates the effect of cerebellar fastigial glutamatergic neurons on humoral immunity 

(172). Recent research has also identified non-motor functions of the cerebellum in fear 

responses, fear memory, social behavior, cognition, and spatial navigation, which occur 

indirectly through connections to the limbic areas mentioned above, in addition to medial 

PFC, thalamus, reticular formation, sensorimotor cortex, and medial septum (173). 

2 Anthropogenic Factors  

The term “anthropogenic” is used for referring to the environmental change 

caused by people, either directly or indirectly. It was Paul Crutzen who introduced the 

term "Anthropocene" in the mid-1970s and was first used by Russian geologist Alexey 

Pavlov and by British ecologist Arthur Tansley (174).  Anthropogenic factors are those 

that occur due to human activities. It is more often used in the context of chemical or 

biological wastes that are produced and released into the environment by human 

activities. For example, carbon dioxide, methane, and ozone-depleting gas are one of 

the primary factors driving anthropogenic climate change (175). The rising levels of 

industrial chemicals in the soil, water, and air, depletion of essential minerals and gases 

from the soil, mining, deforestation, wastewater disposal of heavy metal contaminants, 

and drug waste from industries and medical settings have become a bottleneck to 

environmental sustainability (176).  

How a person's health is influenced by the different types of exposure they are 

subjected to during their lifetime, introduces us to the term “exposome”, a concept 

presented in 2005 by Christopher Paul Wild, a cancer epidemiologist (177). The 

exposome is proposed to complement the genome, wherein an individual’s exposure 

begins before birth and includes insults from chemical, dietary, lifestyle, biological, and 

occupational sources. This exposome interacts with an individual’s unique characteristics 

such as genetics, epigenetics, and physiological outcome to impact health acutely but 

also in the long term (Fig 17, Table 1). Current epidemiological data suggest that only 
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10% of the occurrence of human diseases is linked to genetic anomalies, leaving the 

exposome a major factor influencing health (178,179).  

 

Fig 17: Exposome interact with one’s unique genomic characteristics that in turn 

affect health and disease 

Table 1: The exposome: Comprehensive list of environmental exposures 

potentially impacting human health 

External 

- Meteorology Climate change, temperature, humidity, wind, atmospheric pressure 

- Outdoor exposures 
Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Carbon monoxide (CO), Ozone 

(O3), Particulate matter (PM), radiation, Ultraviolet radiation (UV), traffic, pollen 

- Built environment 

Population density, building density, facilities, green space, walkability, 

neighborhood safety, accessibility to resources (e.g., hospitals, bus stations), 

noise 

- Home environment 
PM, NO2, CO, aldehydes, metals, plasticizers, dust, pets, pests, allergen (e.g., 

house dust mites), mold, fungi, microbes, endotoxin 

- Personal behavior Diets, physical activity, tobacco smoke, alcohol, drugs, sleep, sex, cosmetics 

- Social economic 

factors 
Social factors, education, economy, psychological and mental stress 

- Food and water 

contaminants 
Fertilizers, metals, pesticides, plasticizers, flame retardants 



Chapter 1: Introduction           

46 | P a g e  
 

- Medications Medicines, surgeries 

- Occupational 

exposures 
Chemicals, dust, metals, virus, animal proteins, plants, heat/cold stress 

Adapted from (180). 

3 Exposome and Neuroplasticity 

Brain plasticity is an adaptation to the environment with phylogenetic (eg: humans 

as a species) and ontogenetic (from birth to old age) evolutionary advantages. This 

adaptation allows an organism to change to survive in its environment by providing better 

tools for coping with the world. The complexity and the dynamic structural and functional 

changes of the nervous system linked notably to learning make the brain vulnerable to a 

variety of environmental insults. There is evidence that genetic and lifestyle factors can 

influence brain plasticity in humans and animals (181). The development of the brain is 

not solely determined by genetic inheritance from parents but is also influenced by a 

multitude of environmental, biochemical, and physical factors. These factors can include 

diet, stress, exposure to drugs, as well as sensory and motor experiences, which can 

shape the developing brain in various ways. Similarly, the adult brain is capable of 

plasticity and can be altered by a range of experiences including sensory and motor 

stimulation, task learning, prenatal experiences, exposure to neurotrophic factors, 

psychoactive drugs, diet, exercise, stress, and the process of ageing. Essentially, almost 

every experience has the potential to induce changes in both brain structure and 

behavior to some degree (182). Some factors can increase and decrease brain plasticity 

(Fig 18). Below is a short review of each of these factors and how they influence 

neuroplasticity with a few examples.  
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Fig 18: Factors that affect Neuroplasticity 

Factors negatively impacting neuroplasticity 

Environmental influences on neuroplasticity are not minor (183). For example, 

the synthesis of vitamin D is regulated by exposure to sunlight. The incidence of multiple 

sclerosis, a demyelinating disease of the spinal cord, is known to be associated with 

geography, with higher incidence rates observed farther from the equator. Climate 

change can also contribute to brain diseases by increasing exposure to environmental 

neurotoxins, infectious diseases, and diseases related to food and malnutrition (see 

review (184)). For instance, air pollution, particularly high levels of particulate matter, 

nitrogen dioxide, ozone, and carbon monoxide, has been linked to increased incidence 

of migraine and Parkinson's disease, with stronger effects seen on high-temperature days 

(185-187). Temperature changes can affect gene expression (188), neuronal structure, 

brain organization (189), and learning ability (190). Hyperthermia, for example, has been 

shown to increase the occurrence of epileptic seizures, induce neuronal injury in the 

amygdala and hippocampus (191), and interfere with GABA receptor signaling (192). 

Changing climates also favor the growth of weeds and pests, which in turn leads to more 

diseases in plants and a greater need for herbicides, pesticides, insecticides, and other 

chemicals that eventually enter the food chain and affect humans (193). Malnutrition 
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during early development is another example of how the environment can affect mental 

health by influencing neurodevelopment (194). 

While sedentary behavior has been shown to have a negative impact, exercise 

has been consistently proven to have beneficial effects on neuroplasticity. Magnetic 

resonance imaging (MRI) images in sedentary middle-aged humans showed lower medial 

temporal lobe thickness (195), and in overweight or obese children lower gray matter 

volume in different brain regions was documented (196). High-fat diet results in insulin 

resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation, impaired 

synaptic plasticity, loss of blood-brain barrier integrity, and reduced cerebral blood flow, 

overall resulting in the development of cognitive deficits, reviewed in (197). A 

multidisciplinary treatment program (diet restriction, cognitive behavioral therapy, and 

physical activity) in obese children showed an improvement in neuroplasticity (198). 

Several social factors influence neuroplasticity (see review (199)). Briefly, the review 

explains the factors that play a role from the perinatal period (early life stress, maternal 

care, or growing in nurturing environments) to the end of life. Moderate to severe stress 

affects the amygdala in ways opposite to that seen in the hippocampus and the PFC. 

Since this thesis dealt with early adversity through exposure to toxins and also alternative 

solutions to manage stress and anxiety, these two, i.e., stress and early life adversity and 

their effects on neuroplasticity will be briefly reviewed here.  

To describe the strain on a particular structure or entity, stress is a broad term that 

is used in various fields. In life sciences, stress is defined as any perturbing life 

situations/events, including physiological and perceived psychological stressors that 

provoke adaptive bodily responses to maintain organisms' well-being or homeostasis 

(200). Stress is a natural response to certain situations or events that are perceived as 

challenging, threatening, or demanding. While stress is a regular part of daily life, 

excessive adverse experiences, and prolonged stress can lead to physical health 

problems such as cardiovascular, digestive, and metabolic diseases, as well as mental 

health issues such as anxiety, depression, post-traumatic stress disorder, schizophrenia, 

drug abuse and relapse in humans. Importantly, stress pathways connect the limbic 

network of areas, including the hippocampus, amygdala, hypothalamus, the ANS, and 

the endocrine system of the body. Stress significantly affects learning and memory in 
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terms of neuroplasticity, and the type, duration, and intensity of the stressor determine 

the effects. The best-known example of altered structural plasticity in response to stress 

is the atrophy of hippocampal neurons, which was first described by McEwen and 

colleagues (201,202).  

Chronic stress can have deleterious effects on the brain, such as inducing 

hippocampal dendritic atrophy, exacerbating apoptosis, and suppressing neurogenesis, 

ultimately leading to lower hippocampal volumes, suppression of LTP, and memory 

impairments. In contrast, studies have shown that chronic stress can also cause 

hypertrophy of neurons in the amygdala, particularly the BLA (203). The emotional 

arousal produced by stress can enhance learning and memory via the synaptic plasticity 

of amygdala-dependent pathways, which may explain why traumatic events and post-

traumatic stress disorder (PTSD) can lead to intense, long-term memories. The amygdala 

has connections with almost every cortical area, including the hippocampus (86). The 

HPA axis plays a crucial role in promoting resilience to stress. Stress and the release of 

CRH, ACTH, glucocorticoids (cortisol in humans and corticosterone in rodents), and their 

action on GlucR forming a closed-loop feedback system were explained before (204,205) 

(Fig 19). Stress-induced changes resulting from GlucR activation can be long-lasting and 

alter future stress reactivity through epigenetic mechanisms, including loss of dendritic 

complexity in the hippocampus (206).  
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Fig 19: The hippocampus, PFC, and amygdala on the HPA axis. (207). 

Studies have shown that in addition to the cortisol response, an increase in ACh 

release was also observed in the hippocampus after acute stress (208,209). Stress 

activates the septohippocampal cholinergic pathway within minutes, inducing gene 

expression changes and ACh-mediated neuroendocrine, emotional, and physiological 

responses by stimulating the HPA axis (210). ACh acts as a neuromodulator and alters 

the state of neurons in response to changing environmental stimuli, similar to 

glucocorticoids during stressful events (see review (211)). In the ventral tegmental area 

(VTA), activation of α4/α6β4-containing nAChRs modulates dopaminergic transmission, 

whereas α7 nAChRs modulate glutamate release and α4β2*nAChRs regulate the release 

of GABA (212) (Fig 20). The mesolimbic dopaminergic pathway involves extra-

hypothalamic structures such as the PFC, hippocampus, amygdala, NAc, and VTA, which 

modulate the stress-HPA axis and are innervated by basal forebrain cholinergic neurons 

(213). Addictive drugs such as nicotine and ethanol act via the central cholinergic system 

and the dopaminergic reward system of the brain. Nicotine can bind to the nAChRs, which 
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are expressed on neurons within the mesolimbic dopaminergic pathway, and also 

mediates the rewarding and reinforcing properties of ethanol. Ethanol does not directly 

modulate nAChRs but instead increases the release of ACh, which in turn modulates 

other neurotransmitters (214).  

 

Fig 20: A, C: The expression and co-expression of nAChR subunits across different 

brain regions in rodents and humans. B: Model of the nicotinic acetylcholine-gated 

ion channel (3), D: nAChRs are also observed in the cerebellum and striatum 

(213,215). 

The interaction of glucocorticoid with ACh in the brain is reviewed in (216). Optimal 

levels of ACh mediate sustained attention and facilitate learning and memory. Excess 

ACh increases the symptoms of anxiety, depression, and reactivity to stress. This was 

recently studied and reviewed in (217,218) (Fig 21).  
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Fig 21: In passive coping, cholinergic afferents release little ACh. When there is 

moderate or brief exposure to stress, ACh and other neurotransmitters are 

transiently released, leading to increased activity of GABAergic interneurons and 

other neurons. This coordinated increase in activity enhances signal-to-noise in 

the network and promotes coping behaviors such as increased attention. However, 

if ACh release is prolonged or dysregulated, it can disrupt the balance between 

excitatory and inhibitory networks, causing asynchrony and maladaptive 

behavioral responses (217). 

Early life adversity is another significant factor that increases the risk of 

developing mental illnesses like depression and PTSD and can also predict a poor 

prognosis. In rodents and higher primates, early adverse experiences such as prenatal 

maternal stress, maternal separation, variable foraging demand, or low maternal care can 

result in structural and functional changes in a network of brain regions that play a role in 

neuroendocrine control, autonomic regulation, and vigilance (219,220). Early life 

adversity thus causes lasting structural and regulatory adaptations in the neuroendocrine 

system predisposing to or sometimes protecting from stress-related diseases later in life 

(221–223). While studies have concentrated on psychological stress as a factor, early 

exposure to neurotoxins (exposure to drugs/chemicals/drug abuse) contributes 

equally to developmental neurological disorders and can have a devastating lifelong 

effect on the architecture of the brain. In a review published in 2006 (224), it was observed 
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that more than 200 chemicals were then known to be neurotoxic to adult human beings 

and there were many thousands of pesticides, solvents, and other industrial chemicals in 

widespread use that had never been tested for neurodevelopmental toxicity. Chemical 

exposure early in life is harmful due to the vulnerability of the fetus at this critical stage. 

The placenta fails to block the passage of all environmental toxicants, blood–brain barrier 

provides only partial protection, and postnatally, neurotoxins may be transferred through 

breastmilk (225,226). Neurotoxicants may lead to acute or chronic changes. Lead 

poisoning causes psychosis, myelin loss, and axonal degeneration. Long-term exposure 

to neurotoxicants often initiates neurodegenerative diseases, Alzheimer’s (AD), and 

Parkinson’s disease (PD). Exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) causes behavioral phenotypes similar to PD. Although genetic causes 

predominate among the etiological factors for AD, high aluminum and zinc 

exposure/consumption is proposed as a causative factor for AD. Other than MPTP, 

compounds including industrial gas, organophosphate insecticides, and certain 

pharmaceuticals, solvents such as trichloroethylene, methanol, ethanol, and industrial 

and home cleaners exposure to metals, and pesticides (paraquat and rotenone), metals 

such as lead, iron or manganese, have all been repeatedly implicated as risk factors for 

the development of neurological diseases are extensively presented and discussed in a 

large number of reviews (see for example (183,227)) (Fig 22). 

 

Fig 22: Early exposure to neurotoxins and their consequences (reviewed in (224)). 

Factors positively impacting neuroplasticity 

Exercise, diet, and sleep are three behaviors that represent essential pillars of 

mental health because of their impact on the structure and function of the brain. It is well 
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understood that good nutrition, regular exercise, and sufficient sleep are fundamental to 

maintaining a healthy lifestyle (228). A cross-sectional study revealed that sleep quality, 

adequate fruit and vegetable intake, and regular physical activity improve depressive 

symptoms and well-being in young adults (229). Human studies have shown that 

exercise can increase the levels of BDNF and other growth factors, stimulate 

neurogenesis, and improve mental performance while increasing resistance to brain insult 

(230). Epidemiological studies show that regular exercise reduces the risk of cognitive 

decline in ageing adults. Introducing exercise during mid-life has also been shown to 

reduce the risk of cognitive decline in late-life and dementia occurrence (231). Exercise 

attenuates neurodegeneration, including AD (232,233), improves mood in depressed 

individuals (234), and improves cognition and sensory-motor attention in children with 

attention deficit hyperactive disorders (235). Animal studies have also demonstrated the 

beneficial neuroplastic effects of exercise. Recently, enhancement of structural synaptic 

plasticity of the hippocampus and PFC was observed in AD models of mice after treadmill 

exercise for 12 weeks (236). After acrobatic exercise and acrobatic exercise along with a 

retention period of 8 weeks young male Wistar rats performed better on motor 

performance tests along with higher synaptic protein expressions in different limbic, 

striatal, and motor brain areas, compared to sedentary rats (237). The introduction of 

exercise intervention even after a brain insult often has been shown to improve the 

condition of the patient or animal models of disease. Intensive daily treadmill exercise in 

a mouse model of Parkinson's disease led to improved motor function and increased 

dopamine release and reduced clearance (238). Physical exercise as a therapeutic 

intervention in rehabilitation programs for stroke patients is routinely recommended, for 

its multiple benefits, including improvement in aphasia, balance, and cognition (239,240). 

Many stimuli the human is exposed to are beyond the control of the individual, but 

nutrition is not. For positive effects of diet on neuroplasticity see reviews (241–243). 

Randomized clinical trials support the role of vegetarian or plant-based foods (citrus fruits, 

grapes, berries, cocoa, nuts, green tea, and coffee) in improving specific domains of 

cognition, in particular, the frontal executive function (244). Intermittent fasting, exercise, 

and followed recovery result in repeated metabolic switches and are shown to promote 

neuroplasticity (245). A recent meta-analysis revealed the overall positive effects of 
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whole-food diets on pain, with emphasis on more research required in this direction (246). 

Sleep rejuvenates the brain daily. Sleep aids in consolidating memory, the process of 

learning, and, mechanisms of neural plasticity, with a role in functional recovery from 

clinical conditions such as stroke, AD, and depression (247–249). In rat models, the 

sleep-wake cycle is shown to control the gene transcription in the cortex and 

hippocampus, promoting synaptogenesis (250). Sleep thus allows for homeostatic 

mechanisms to optimize the functioning of neural networks, which are important for 

memory, cognition, behavior, and information processing (251). 

Cognitive therapy, and experience-dependent influences, such as language 

acquisition, mindfulness meditation, and learning music (discussed later), have shown 

significant positive effects on brain development and neuroplasticity in human and animal 

studies. One of the chief principles for neuroplasticity includes the “Use it or lose it” 

phenomenon, which explains how learning, repetition, time spent in a cognitively 

stimulating activity, and the intensity of engagement in such an activity can stimulate the 

process of neurogenesis, synaptic plasticity, dendritic growth and thus neuroplasticity 

(252). Sensory experiences (passive stimulation from the external environment) during 

critical periods rapidly organize our sensory-motor cortex. Plasticity during adulthood is 

tightly regulated by a variety of cellular and molecular processes, and is susceptible to 

brain insults, resulting in neurological disorders (dementia, depression, addiction) (253). 

As discussed before, the neural plasticity described in musicians versus non-musicians 

and the increase in the cortical representation of fingers among violinists is a classic 

example of learning-dependent neuroplasticity (254).  

Environmental enrichment (EE) is defined as a combination of complex 

inanimate and social stimulation (255). For EE, lab animals are raised in spacious 

environments that are rich in stimuli, featuring a diverse array of frequently rotated objects 

with varying shapes. The objective is to enhance the well-being of animals by offering 

them various forms of sensory and cognitive stimulation, higher levels of physical activity, 

more opportunities for social interaction, encouraging exploratory behaviors. EE is found 

to have a significant impact on the CNS in terms of functionality, structure, and genetics, 

both during the critical period and in adulthood. Rats living in EE conditions exhibit higher 

levels of hippocampal LTP, which is related to synaptic plasticity and memory retention 
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(256). Accompanying the functional improvement observed, a significant increase in 

cortical thickness, enhanced dendritic arborization, a greater number of dendritic spines, 

higher synaptic density, and post-synaptic thickening was observed in several brain 

regions, including the hippocampus (257). Furthermore, exposure to EE results in 

increased hippocampal neurogenesis and integration of newly born cells into functional 

circuits (256). At the molecular level, EE leads to significant changes in the expression of 

numerous genes involved in neuronal structure, excitability, synaptic transmission, and 

plasticity (258). EE also modulates the synthesis and secretion of neurotrophic factors 

throughout the brain and affects the cholinergic, serotoninergic, and noradrenergic 

systems (259,260). Therefore, EE is currently being implemented as a rehabilitation 

treatment for stroke patients, and other clinical applications have been proposed (see 

reviews (261–263).    

 

It is worth mentioning that the impact of anthropogenic parameters on brain 

neuroplasticity is mostly studied independently and very little information is available on 

the impact of the combination of multiple factors, i.e. exposome. This was further 

reinforced in a recent review (264), particularly when it involved toxicology. As introduced 

above, we find exposome acts as the common factor influencing neuroplasticity. It is 

therefore important to understand the link between exposure of human beings or animals 

to anthropogenic stimuli (positive or negative) and their effects on physiological 

parameters and neuroplasticity. In this thesis, the effect of two anthropogenic stimuli: 

acoustic stimulus, and chemical exposure among humans and animals was 

investigated. These two anthropogenic stimuli, with specific emphasis on their known 

neuroplastic effects will now be discussed. 

4 Impact of acoustic stimuli on neuroplasticity in humans: 

Specific effects of Music   

"Natural" refers to something existing or occurring in nature, without human 

intervention or manipulation. Natural experiences shape an individual mentally and 

physically, and there is evidence related to their beneficial effects. Natural sounds are 

considered the most complex sound types that provide a wide array of information such 
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as the species, season, and also temporal basis of the same (265). Forests, plain 

grasslands, and wetlands are composed of a diverse array of sounds produced by 

mammals, birds, amphibians, and insects (266). Added to this are the sounds of wind, 

rustling grass, rain, tree leaves, rivers, streams, or beach sounds. A detailed review of 

the beneficial effects of natural sounds can be found in (267).  About 100 years ago, the 

German physician and Nobel Prize winner Robert Koch predicted that “one-day mankind 

will have to fight the burden of noise as fiercely as plague and cholera.” Among the 

auditory anthropogenic stimuli that humans and animals are exposed to, noise is 

deleterious to day-to-day functioning, delays maturation, and has side effects on the 

reproductive system, brain, and behavior (268–273). As the focus of the current thesis 

was on the positive impact of anthropogenic auditory input on humans, we chose music 

as the acoustic stimulus.  

Music is a man-made entity. It is thus not wrong to call it anthropogenic. Music has 

a significant positive impact on humans and the ecosystem. Thus, music forms a 

meaningful intervention to be explored more in detail, from a neuroscientific perspective. 

In the current thesis, we focus on the effect of music on general anxiety, stress, ANS, and 

CNS. Music is an aesthetic stimulus that evokes a subjective experience in every 

individual involved with it, be it in the production of new music or a simple exercise such 

as listening to music. Music has been shown to reduce peri-operative and operative 

anxiety along with a reduction in BP, HR, and the respiratory rate in patients undergoing 

surgical procedures such as gastrointestinal endoscopy (274), colonoscopy (275), and 

cardiac patients (276). Music therapy is commonly used in health-related areas such as 

pain clinics, intensive care units, peri-operative set-ups, scan waiting rooms, and pediatric 

units (277). Newer studies emphasize the effect of different types of music in promoting 

relaxation and reducing anxiety and stress levels (278–280). Meditative classical music 

lowers the neuroendocrine markers of stress (281,282). A recent systematic review of 

eleven randomized trials consistently showed that music therapy (ranging from 15–60 

minutes) reduced the anxiety and stress of critically ill patients (283).  

Music may be a way to help young people reduce negative emotions (284). Young 

people report that they often have a collection of favourite ‘tunes’ that they listen to when 

they are feeling ‘stressed out’ (285). Many correlational research studies have been 
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conducted to determine the relationship between different genres of music and stress 

(286). Participants in bad moods often choose highly energetic, joyful music for longer 

periods and were more decisive in exercising their musical preferences. More than half 

of the time that was stipulated for the participants to listen, participants chose to listen to 

enjoyable music (285). In one study participants indicated that the melody was the most 

effective and instrumentation was the least effective among musical components in 

reducing State-Trait Anxiety Inventory (STAI) scores (287). A broad body of literature 

exists on the potential health benefits of Mozart’s music and certain genres of music (288). 

Exploration of the effect of Indian music, melodic scales, scientifically on anxiety or stress 

is currently limited (289–292). Listening to classical Indian instrumental music reduced 

psychological distress (measured using questionnaires or galvanic skin response) in lab 

and clinical settings (289,293–295). Settling on the conclusions drawn from the outputs 

of available Indian scientific literature is difficult due to small sample sizes or inherent 

study design deficiencies (296,297). Thus, to address these lacunae, in this thesis, the 

physiological effects of different Indian melodic scales were tested on young healthy 

individuals.  

Music and brain plasticity were further reviewed in (298) (Fig 23). Multiple sensory-

motor and cognitive capabilities of the brain are engaged when one is trained to play a 

musical instrument. Playing music induces feed-forward and feedback interactions 

between the multiple sensory inputs, motor output, as well as engages higher-order 

cognitive functions such as memory, attention, emotion, combining skills in auditory 

perception, kinaesthetic control, visual perception, and pattern recognition, and 

processing of the musical syntax (299–302). Learning highly rewarding or pleasurable 

musical stimuli drives neuroplasticity (303,304). It was shown that musicians had 

increased cortical excitability in the motor cortex and had larger and more stable auditory-

evoked magnetic fields, compared to non-musicians (305–307). Significant neuroplastic 

changes occur with musical training as evident in neuroimaging studies (see reviews 

(298,308)).   
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Fig 23: Musical training-induced neuroplastic changes (298). 

Neural substrates that participate in music-evoked emotions are several of the 

limbic system structures. Previous works have shown that there is considerable overlap 

between the regions that give rise to everyday emotions and those that are responsible 

for music-induced emotions. The results of the meta-analysis of several studies showed 

involvement of the amygdala, the hippocampi, the ventral striatum (including the NAc) 

extending into the ventral pallidum, the head of the left caudate nucleus, the auditory 

cortex, the pre‑supplementary motor area (SMA), the cingulate cortex and the 

orbitofrontal cortex (OFC) (309) (Fig 24). Other than the emotional responses, music 

induces neuroendocrine plasticity, since many of the above-mentioned regions connect 

with the hypothalamus.  
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Fig 24: Brain correlates of music-evoked emotions (309). Note that the auditory 

cortex (AC) also projects to the orbitofrontal cortex (OFC) and the cingulate cortex. 

ACC, anterior cingulate cortex; CN, cochlear nuclei; IC, inferior colliculus; M1, 

primary motor cortex; MCC, middle cingulate cortex; MGB, medial geniculate body; 

NAc, nucleus accumbens; PMC, premotor cortex; RCZ, rostral cingulate zone; VN, 

vestibular nuclei. 

Interestingly, not just playing music and active music training, passive listening 

to music (also called receptive music) can also induce neuroplastic changes. Fourteen 

participants with early-stage cognitive decline who underwent three weeks of daily music 

listening for an hour duration had significant cognitive improvement along with functional 

and structural brain changes. However, the change was more evident in musicians 

compared to non-musicians (310). A detailed review of the benefits of music listening may 

be seen in (311) and the positive effects of listening to music on fetal cognitive, social, 

and emotional development (312). Recent studies have provided evidence of how music-

induced plasticity can be used to prevent and treat neurological impairments, including 
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psychiatric, neurodevelopmental disorders, and acquired brain injuries (stroke) (313,314) 

as well as in neurorehabilitation (315–317). For example, in a recent study, listening to 

vocal music in stroke patients, for 3 months, enhanced verbal memory, and selectively 

increased gray matter volume in left temporal areas and functional connectivity in the 

default mode network than listening to instrumental music or audiobooks (314). Listening 

to music is associated with neurochemical changes that are associated with reducing 

anxiety and stress. These neurochemicals include the increased release of dopamine, 

oxytocin, endogenous opioids, reduced cortisol, and beta-endorphin (318).  Neural 

connectivity and functional neural plasticity also improve after listening to music as 

evidenced by Electroencephalogram (EEG) and fMRI studies. Evidence suggests 

preterm infants who listened to music from 33rd GW until term showed increased 

functional connectivity between the primary auditory cortex and the thalamus and the 

middle cingulate cortex and the striatum when listening again to the known music (319). 

A recent study observed that music not only induces relaxation and alertness but also 

improves functional connectivity across different brain regions (320,321). EEG power of 

most of the brain waves increased, indicating a ‘mind-wandering effect’, during passive 

listening to music (322). The power in the alpha-band in the parietal and occipital areas 

of both hemispheres was shown to rise during listening to music (popular classical 

symphonic pieces), with a decrease in the peak frequency of the alpha-band. However, 

on repeated listening, these changes were attenuated (323,324). Music is a complex 

combination of various features that include, pitch, tempo, dynamic contrasts, melodic 

scales, and so on, it is important to understand the effect of systematically combined 

musical features, to create the music that best suits one’s needs, for therapeutic 

purposes. Importantly, how the brain responds to passive listening to different melodic 

scales, irrespective of training, remains to be elucidated in detail.   

Other than the CNS, music affects the ANS. Since ANS is affected by several 

systemic chronic disorders (325) finding efficient strategies for the prevention of these 

disorders is important. The strategies for restoring the autonomic balance include 

behavioral interventions (e.g., meditation, yoga, physical activity, lifestyle modifications, 

smoking cessation, etc). Studies have demonstrated short-term improvement in 

autonomic tone during or after a single session of listening to music. Research suggests 
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the use of music for better long-term regulation of the autonomic tone (326,327). In our 

previous study on hypertensives, we showed that long-term passive listening to music 

can help in better regulation of BP and the ANS (328,329). Listening to music between 

the 32nd and 38th GW was shown to modulate the ANS function in the fetus in a positive 

direction (330).  

Currently, the application of music in experimental animals is lagging. It is 

observed that different animals, including piglets, chimpanzees, and adult rodents have 

better cortical plasticity when grown in an enriched environment, including auditory 

enrichment (331–333). Perinatal exposure of mice to music was shown to have a positive 

influence on BDNF/TrkB signaling pathway targets, including PDK1, that improved 

learning and memory functions (maze learning task) (334). A recent review observed that 

music interventions among rodents led to positive structural and chemical neuroplastic 

changes along with improvement in animal behavior, and immune functions (335,336). 

There exists a hypothesis that music induces neurogenesis and is thus a promising 

therapy for patients with neurodegenerative diseases (337,338). After middle cerebral 

artery occlusion in rat models, the motor functions improved, the BDNF protein level of 

the ipsilateral hemisphere motor cortex was higher, and BDNF and Glial fibrillary acid 

protein (GFAP) accumulated at the damage boundary in a group that had 12 hours 

compared to 1-hour music sessions. Longer duration of therapy sessions was associated 

with longer cell synapses and better cell-to-cell connections, with mature activated 

astrocytes, indicating that music therapy was beneficial to improve poststroke motor 

function and promote neuronal repair in the long term (339). Previously, studies have 

shown that music exposure was associated with improved spatial memory performances 

and increased hippocampal and DG BDNF levels in adult rats (340,341). A recent study 

tested this hypothesis on ageing rats. They showed that after 4 months of music exposure 

spatial reference memory was not impaired in cognitively impaired middle-aged (14-

month) rats and 8 months of music exposure improved both working memory and spatial 

reversal learning capacity. However, these changes were not associated with cell 

proliferation changes or levels of BDNF expression in the hippocampus and frontal cortex 

(342). Thus more studies are needed to confirm the positive neuroplastic effects of music, 

in animals. 
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Brain plasticity can be measured by neuroimaging and neurophysiological 

techniques. In this thesis, EEG was used to understand acute changes in the brain after 

the acoustic stimulus. EEG is a record of a brain's electric potential oscillation from 20 to 

256 electrodes applied on the human scalp. The most commonly studied waveforms 

include alpha (8 to 12Hz), beta (13 to 30Hz), delta (0.5 to 4Hz), and theta (4 to 7Hz) (343) 

(Fig 25). EEG is commonly used for diagnostic and prognostic purposes, in conjunction 

with other methods, and reflects cortical reorganization. EEG measurements indicate 

changes in power bands on exposure to environmental stimuli or a thought process that 

occurs within. EEG changes can also be used to investigate neural plasticity in 

neurological disorders, with a focus on cerebrovascular and neurodegenerative diseases 

(344).  

 

Fig 25: Electroencephalogram lead placement as per the international 10-20 system 

of electrode placement and the different waveforms (alpha, beta, theta, and delta) 

and their frequencies (343,345). 

Music is a time-based stimulus and EEG is well suited to investigate the time-

locked brain responses as the temporal resolution is sufficiently high. When a set of 

individuals are exposed to the same sensory stimulus, few individuals will have typical 

experiences and they are said to be engaged with the stimulus. This can be measured 

by inter-subject correlation (ISC), which evaluates the similarity of an individual's brain 

over some time with that of another individual or a group, in a given region of the brain. 

ISC is often used with fMRI or EEG data from individuals visualizing a moving stimulus 

such as a movie clipping or listening to a speech. Essentially observation of synchronized 

responses, if any, in a group of participants listening to music indicates a socio-behavioral 

response to musical stimuli, having implications in the management of mental health 
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conditions. In the present thesis other than power spectral changes and correlated 

component analysis of EEG, the concept of ISC and engagement with Indian music 

modes was explored.  

5 Impact of chemical stimuli on neuroplasticity in animals: 

Neonicotinoid Thiacloprid 

Human-caused environmental changes are many and are driving global 

biodiversity loss. However, the effects of these anthropogenic changes on species 

composition (genetic alterations), physiology, and ecosystem functioning are poorly 

understood (346). Pesticides are individual substances or substance mixtures designed 

for preventing, destroying, or mitigating groups of harmful organisms (pests), including 

unwanted plants or animals. The term pesticides include insecticides, herbicides, 

rodenticides, fungicides, disinfectants, attractants, plant defoliants, swimming pool 

treatments, Plant Protection Products (PPPs), and plant growth regulators. Pesticides are 

used primarily in the agricultural sector to protect against crop deterioration and are 

essential for food production (347). It has been estimated that only about 0.1% of the 

pesticides reach the target organisms and the remaining bulk contaminates the 

surrounding components of the water, air, and soil ecosystem environment (348). The 

period of these anthropogenic stimuli ranges over millennia and not merely the last two 

centuries of industrialization (349). It is therefore important to study the influence of 

chemicals persisting in the environment despite a few being banned. Neonicotinoids 

are derivative insecticides of synthetic nicotinoids and are commonly used in agriculture, 

aquaculture (fish farming), pet treatment, and in urban pest control. Neonicotinoids are 

structurally related to nicotine and target nAChRs (350) (Fig 26). These pesticides 

showed a strong affinity for insect receptors while exhibiting a very low affinity to 

vertebrate subunits (see (351,352)). Initial results revealed that neonicotinoids were less 

toxic to the handlers and non-target organisms in comparison to other insecticides such 

as organophosphate and carbamate (352).  
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Fig 26: List of Neonicotinoids that mimic nicotine in activating nAChRs in target 

and non-target species (353).  

Pesticides in the soil are degraded either by physical, chemical, physical-chemical, 

or microbial degradation (354). They easily adhere to the surface of plants, animals, and 

human beings, and thus do not degrade as expected. Microbial degradation decides the 

fate of neonicotinoid insecticides in the soil (355,356). Further, studies suggested that 

several neonicotinoids, including imidacloprid, acetamiprid, and thiacloprid can readily 

cross the intestinal barrier (357,358) and the blood-brain barrier (358–362),  and these 

pesticides and their metabolites were found in human biological samples, confirming 

human exposure (363–369). The European Union (EU) restricted the use of the 

neonicotinoids Clothianidin, Imidacloprid, and Thiamethoxam in plant protection and seed 

treatment products, due to their deleterious effects on pollinators, honeybees, and other 

non-target insects. Later in 2020, due to its impact on pollinating invertebrates and its 

endocrine disruptor effects in vertebrates, thiacloprid was banned (370). However, 

thiacloprid is still being used in other continents, and the intensive use of neonicotinoids 

and the persistence of the molecule in the plant and the environment contribute to the 

increased exposure of non-target invertebrates (honeybees and other pollinating insects) 

and vertebrates (371,372). Due to systemic distribution throughout the plant (350,372), 

the molecule is found in fruits and vegetables from around the world (373–378). This 
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chronic exposure to neonicotinoids and their potential bioavailability in the mammalian 

organism raises questions and concerns about potential adverse health effects in humans 

(379).  

Among the different neonicotinoids, this thesis explored the effect of thiacloprid 

as most of the previous studies have concentrated on the impact of imidacloprid, 

acetamiprid, or clothianidin on the brain and the endocrine system, far less is known about 

the potential long-term effect of early exposure to thiacloprid (380), and the proportion of 

species affected, even at lower concentrations is much higher for thiacloprid than other 

neonicotinoids (381). Though several studies have looked into the deleterious effects of 

neonicotinoids on neuroplasticity (382), very little is known about the potential 

neuroplastic effects seen after early exposure to thiacloprid, during the perinatal 

critical period of embryonic development.  

6 Need of this thesis 

Due to the ease of study and predominant usage of vision for our experiences, 

visual stimuli, and their effects have been the focus of research. However, human beings 

being multisensory, the beneficial effects of other non-visual sensory experiences also 

become equally important. Based on a literature search, acoustic stimulation is one of 

the second most well-studied sensory stimuli. Only a complete understanding of our 

acoustic environment along with other sensory inputs will help us in deciding the enriching 

sensory inputs we wish to retain in comparison to the various negatively impacting 

anthropogenic stimuli that we may decide and take actions to reduce. It would be 

interesting to research more of such anthropogenic stimuli that are propounded to have 

a positive impact, to study potential physiological effects and their neuroplastic effects. 

Music is a promising intervention that is ubiquitous across human cultures. Music 

listening involves the sensory processing of acoustic stimuli (peripheral nervous system) 

followed by cognitive and emotional processing in a neural network (central system) 

producing pleasurable physical and emotional experiences. While there is a growing body 

of research on the effects of music on health, there is still much that is not fully 

understood. Furthermore, music is made up of many features. These include tempo, 

rhythm, lyrical component, percussion, timbre, harmony, tones, and modes (a 

combination of notes or tones called ragas in Indian music). It is not yet clear which 
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specific musical elements or characteristics are most beneficial for various health 

outcomes, and whether different types of music have different effects. Additionally, the 

mechanisms underlying the effects of music on the brain and body are not yet fully 

understood, although there is evidence that music can affect neurotransmitter systems, 

such as the dopaminergic and opioid systems. There is also ongoing research exploring 

the potential role of individual differences in musical preferences, as well as the influence 

of cultural and social factors on the effects of music on health. In this thesis, in chapters 

2 and 3 (clinical studies), we chose to explore the short-term effect of listening to different 

modes on stress, anxiety, autonomic and central neuroplasticity. 

Among the different anthropogenic stimulants that have a significant impact every 

time human or animal is exposed to them, are chemicals. Humans consume chemicals 

as drugs, for the treatment of any ailments, and this is usually of known concentration 

and composition for a given duration. Then there is ‘addiction’ in the form of drug abuse, 

where humans know the composition, and this usually lasts for a longer duration, with 

well-known side effects, and is very often treatable. Other than these, humans and 

animals are often exposed to chemicals such as pesticides, which are consumed 

unknowingly through water or food. These pesticides can affect the organ systems of 

humans and animals, depending on their composition, often having a synergistic effect 

with a combination of chemicals, and this consumption happens over a long time, with 

slow accumulation in the body. If we can identify the relevant exposures, we can 

potentially intervene to reduce the burden of disease occurrence. Future studies may 

combine both, i.e., one anthropogenic stimulus with proven positive impact and one with 

negative, to find if, the negative impact can be reversed in any potential way. We 

investigated the impact of chemical exposure on the CNS using animals. Most of the 

previous studies have been on imidacloprid, and not many have looked into the effect of 

thiacloprid, which is highly toxic as well. Some research has shown that thiacloprid can 

have developmental neurotoxic effects in animals.  However, more research is needed to 

understand the precise mechanisms of thiacloprid's neurotoxicity and how exposure 

levels might impact human health, particularly in vulnerable populations such as 

developing fetuses and infants. Additionally, the long-term effects of thiacloprid exposure 

on neurological function and behavior have not been fully studied. In the current thesis, 
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the effects of perinatal chemical exposure to the neonicotinoid thiacloprid at different 

doses on neuroplasticity markers were investigated in zebrafish and mice using the 

quantitative Polymerase chain reaction (qPCR) approach, in chapter 4 (preclinical 

studies). 

Given the 3Rs (i.e. reduction, refinement, and replacement) alternatives agenda, 

additional experimental model systems/technologies need to be further developed and 

incorporated into exposome studies. The final aim of the EU Directive 2010/63/EU was 

and is to replace all animal research with non-animal methods of research, such as 

organoids or computer simulations (383). There are several alternative models to animals 

for neurotoxin research, including a) Cell cultures: Cultured cells, such as neuronal cell 

lines, using mouse and rat primary neuronal cells (384,385) and neural precursor cells 

derived from human induced pluripotent stem cells (386). These include the two-

dimensional (2D) functional, manipulatable networks that can incorporate many neuronal 

subtypes and other cell types (e.g., glia). However, cell lines and cultures may not fully 

represent the physiological characteristics of primary cells in the brain. They do not 

replicate the complex interactions and organization of cells in a living organism, limiting 

the ability to observe complex biological responses to neurotoxicants. Cell lines are often 

limited to a specific cell type, making it difficult to study interactions between different 

types of cells in the brain. Finally, cell lines are difficult to maintain in culture, and they 

can change over time, leading to inconsistencies in results between experiments. Overall, 

while cell lines offer a useful tool for neurotoxicity research, their limitations highlight the 

need for complementary approaches, such as organoids, to better recapitulate the 

complexity of the brain in vitro; b) Organoids: Organoids are structures that resemble 

mini-organs. The potential for the use of organoids to research human physiology and 

pathology range from human stem cell-derived organoids to study liver, gut, infectious 

diseases, and autoimmune diseases, to neurological diseases (387,388). These are 

three-dimensional (3D) networks that can be formed using scaffolds and microfluidic 

devices to include the features of 3D regionalization, while some organoids are scaffold-

free and free-floating. Four-dimensional (4D) ‘assembloids’ expand 3D models by 

integrating vasculature, or combining other body regions, such as the gut to mimic the 

brain/gut axis (389). Organoids have emerged as a valuable tool in neurotoxin research 
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due to their ability to replicate the complexity of the brain. Advantages of using organoids 

include the ability to study human-specific effects, reproduce genetic variability, and 

investigate the impact of environmental factors such as toxins. One can test and screen 

for toxicity more cost-effectively and ethically than animal studies. Additionally, organoids 

can be genetically modified and studied at various stages of development, allowing 

researchers to identify key developmental windows during which exposure to toxins may 

be particularly harmful. Overall, the use of organoids in neurotoxin research holds great 

promise. Some limitations must be considered. First, organoids are not a perfect replica 

of the human brain, and there may be differences in the organization of brain regions. 

They are often too small to study complex brain functions and neural circuits and they 

lack the complexity of a whole organism. Finally, organoids require a complex and 

expensive experimental setup, including specialized equipment and personnel with 

advanced training in stem cell culture (390); c) Computational models: These simulate 

the effects of neurotoxins on the brain, allowing researchers to predict the potential 

outcomes of exposure. However, there are several limitations to using this; d) Human 

studies: Human studies can provide direct evidence of the effects of neurotoxins on the 

brain, but they are limited by ethical considerations and the difficulty of controlling 

exposure to toxins in a real-world setting. 

While in vitro toxicity studies are cheap, quick, and easy, they poorly correlate with 

in vivo mechanisms and therefore the observations have limited translational value (see 

(391)). In vitro data are generally not decisive by themselves but, can enhance animal 

data but can be difficult to extrapolate to intact organisms because of out of context from 

their microenvironment and thus exhibition of different non-reliable responses (392). The 

long-term effects of developmental exposure to any chemical in a laboratory setting are 

difficult using in vitro models. This also means there is a lack of understanding of the 

effect on the structure of the brain, the normal physiology, including the impact of other 

organ systems such as the integration of hormones and microbiomes. Further, the 

detection of neurotoxicity is different from other toxicities because of the complexity of the 

brain (393). An in vivo model is useful in that way, as the early developmental exposure 

to a chemical will impact the physiological development of the brain, with the whole 

organism being intact, until the day of analysis. Zebrafish are promising candidates for 
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intermediate models. Mice are also another good model for developmental 

neurotoxicology research. 

Zebrafish are often used for developmental neurotoxicity studies because they 

share many similarities with humans in terms of the development and organization of their 

nervous system (394). Zebrafish possess a high degree of genetic, morphological, and 

physiological homology with humans (395,396). Zebrafish are significantly more complex 

than cultured cells and other model systems, such as Drosophila melanogaster. 

Additionally, zebrafish embryos are transparent, which allows researchers to visualize 

and track the development of the nervous system in real-time. Zebrafish are also relatively 

easy to maintain and breed, and they have a short generation time. This allows for rapid 

screening of large numbers of compounds, by simple soaking of embryos (397) making 

zebrafish ideal for high-throughput screening (398). Another advantage of using zebrafish 

is that brain development occurs within 3 days post-fertilization (for more on zebrafish for 

studying neurotoxicity see (399,400)). According to the EU Directive, the 96 to 120 hpf 

zebrafish embryos and larvae, serve as an alternative to animal experimentation and thus 

do not under the regulatory frameworks dealing with animal experimentation. Mice are 

good models for several reasons: a) Mice nervous system is structurally and functionally 

similar to humans, including similarities in development, neurotransmitter systems, and 

neural circuitry (401); b) Mice have a relatively short gestation period and life span, 

making it possible to study the effects of neurotoxicants on multiple generations in a 

shorter period than in larger animals; c) Mice are relatively easy to breed and maintain in 

laboratory settings, making them a convenient and cost-effective model for 

developmental neurotoxicity studies; d) There are well-established protocols and assays 

for measuring neurodevelopmental outcomes in mice, allowing for standardized and 

reproducible studies across laboratories. 

This thesis included mouse models in addition to zebrafish. The optic tectum is the 

predominant brain structure in zebrafish, while in mice and other mammals, it is the 

neocortex. Despite this structural difference, the two species share several similarities in 

terms of cellular and synaptic structure. Both the animals share the hypothalamo-pituitary-

adrenal/intrarenal axis system in regulation of stress and hormones. However, when it 

comes to translating a specific chemical exposure protocol from one species to another, 
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pharmacokinetics must be taken into consideration. Mice are exposed to toxicants 

through their diet or by manual administration. The distribution in the fetal tissues is 

affected by the presence of the placenta during pregnancy. Zebrafish, on the other hand, 

absorb toxicants directly from their environment, including through a porous chorion that 

surrounds the embryo during early development. Additionally, both models exhibit 

neurotoxic effects after exposure to nicotine during development, which is due to the 

highly conserved cholinergic mechanisms present in both species (402). Since thiacloprid 

is a neonicotinoid that acts on the central cholinergic system, it was important to include 

both these species in this thesis. 

7 Aims of this thesis 

1. Explore the short-term effects of anthropogenic auditory stimuli on physiological 

parameters among healthy human beings. 

2. Evaluate the neuroplastic effects of perinatal exposure to toxic anthropogenic 

stimulant neonicotinoid in animals. 

 

Fig 27: Theme of this thesis - Study of physiological effects of one positive stimulus 

(Music) in human beings and Study of Neuroplastic effects of one negative 

stimulant (Neonicotinoid) in animals (zebrafish, and mice) 
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Chapter 2: Stress, cardiovascular and autonomic 

responses on exposure to environmental stimuli among 

humans 

Effect of Indian Music as an Auditory Stimulus on Physiological Measures of 

Stress, Anxiety, Cardiovascular and Autonomic Responses in Humans—A 

Randomized Controlled Trial 

Kirthana Kunikullaya Ubrangala1,2, Radhika Kunnavil3, Mamta Sanjeeva Vernekar4, Jaisri 

Goturu5, Vijayadas6, V. S. Prakash7, Nandagudi Srinivasa Murthy8 

Abstract 

This study aims to explore the possible range of change after a single session of auditory 

stimulation with three different ‘Modes’ of musical stimuli (MS) on anxiety, biomarkers of 

stress, and cardiovascular parameters among healthy young individuals. In this 

randomized control trial, 140 healthy young adults, aged 18–30 years, were randomly 

assigned to three MS groups (Mode/Raga Miyan ki Todi, Malkauns, and Puriya) and one 

control group (natural sounds). The outcome measurements of the State-Trait Anxiety 

Inventory, salivary alpha-amylase (sAA), salivary cortisol (sCort), blood pressure, and 

heart rate variability (HRV) were collected at three time points: before (M1), during (M2), 

and after the intervention (M3). State anxiety was reduced significantly with raga Puriya 

(p = 0.018), followed by raga Malkauns and raga Miyan Ki Todi. All the groups showed a 

significant reduction in sAA. Raga Miyan ki Todi and Puriya caused an arousal effect (as 

evidenced by HRV) during the intervention and significant relaxation after the intervention 

(both p < 0.005). Raga Malkauns and the control group had a sustained rise in 

parasympathetic activity over 30 min. Future studies should try to use other modes and 

features to develop a better scientific foundation for the use of Indian music in medicine. 

Keywords: Indian music; heart rate variability; stress; anxiety; STAI; state anxiety; trait 

anxiety; blood pressure; melodic modes 
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1 Introduction  

The seven main functions of music are summarized to be background 

entertainment, recall of memories, diversion, emotion regulation, self-regulation, self-

reflection, and social bonding. This umbrella review of the health effects of participation 

in performing arts, including music participation, reported positive effects in five domains 

(auditory, cognitive, immune system, self-reported health/wellbeing, and social 

functioning) (1). Though music is predominantly used as a form of entertainment the use 

of music for attaining health benefits dates back over centuries, probably since the 

Paleolithic period (2). Music Therapy is defined as the evidence-based use of music as 

an intervention as per the individual needs of the patient, be it physical, emotional, 

cognitive, or social, as per the American Music Therapy Association (3). It is seen that 

music, when used as an intervention, affects health (4,5) through different processes, 

which are yet to be well understood. Mechanisms put forth include the impact on the 

nervous system, the limbic system, (6) the autonomic nervous system (7), as well as 

synchronization of the body’s natural rhythms (for example, heart rate or respiratory rate) 

with the rhythm of the music (1,2,8). Music is a safe, inexpensive, easily administered 

intervention that can be used for anxiety reduction and has proven to be beneficial in 

various diseases that include cardiovascular, neurological, and oncological diseases, as 

reviewed in (9,10). 

The relaxation effects of music on stress, anxiety, and lowering of the 

neurohumoral markers have been evaluated in several research works (11–18). Active 

music intervention has proven to be beneficial in people afflicted with post-traumatic 

stress disorder (19,20). Young people report that music can help them relax and often 

have a collection of favorite ‘tunes’ that they listen to when they feel stressed out (15,21). 

In a cross-sectional study, we observed a significant drop in state anxiety after listening 

to Indian music (22), and in another follow-up study, we observed a significant reduction 

in state and trait anxiety after 3 months of Indian music intervention on 100 pre-

hypertensives and hypertensives (23). Recent meta-analysis reports show that music is 

efficient in reducing anxiety levels (24,25), though some emphasized the need for 

additional research to endorse the same (26). Among the physiological measurements 
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that can be correlated with anxiety and stress are the cardiovascular parameters such as 

blood pressure (BP) and autonomic functions (that control the heart). Music-based 

interventions have largely been carried out on patients with hypertension (23,27–31) 

studying cardiovascular effects or perioperative conditions (25,32–35) studying anxiety. 

Listening to sedative music decreased heart rate (HR) and BP and was shown to work as 

effectively as benzodiazepines in reducing BP (36). 

Heart rate variability (HRV) is a marker of cardiac autonomic functions (37) and 

has also been commonly investigated in music intervention studies (38). Several studies 

reported decreased HRV, indicating physiological relaxation (33,39–42), while some 

reported no change (43), and a few others showed an increase in HRV on listening to 

music (arousal effect) (40,44). The overall effect also depends on the mood (21), 

preferences (45), tempo, genre, and various other factors (40), for example, listening to 

preferred music caused an increase in sympathetic activity, regardless of the type of 

music (calming or stimulating) (46). It is important to understand the genre and features 

of the music used in a study before interpreting the HRV findings. It may also be observed 

that there is evidence of music’s varied effects on stress, anxiety, the cardiovascular 

system (BP and HRV), and the mechanisms behind it. Although a subjective reduction in 

stress levels was recorded, objective measurements (47,48) or psychophysiological 

signals have not always shown the same (49,50). A systematic review and meta-analysis 

also failed to establish a cause-effect relationship between the intervention and BP 

reduction (51). It is thus important to have both subjective and objective measurements 

during music intervention to draw reasonable conclusions. 

Among the music features, works on the effect of listening to different 

modes/melodic scales to elicit the difference in physiological effects, if any, are very few. 

Among the different genres, very little literature is available on Indian music as a scientific 

intervention, despite the rich repertoire of modes in this genre, for producing relaxation 

effects or health benefits (22,52–56). Indian music is broadly classified into Hindustani 

and Carnatic music, each having its system of modes (called ragas). Ancient literature on 

Indian music (Gandharva Veda, a part of the Sama Veda and ‘Raga Chikitsa’ manuscript) 

mentions various modes that have health benefits (23,57,58). A ‘raga’ (melodic mode) is 
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a set of musical notes presented in an orderly manner to generate a melody out of the 

same and has the “effect of coloring the hearts of men” (22,52,58,59). Each melodic mode 

is said to induce a specific emotion (called ‘rasa’) (58,60,61). Scientific studies that have 

analyzed emotions after listening to Indian classical music have observed that the tonality 

of the scale is an important factor that determines the emotions perceived (52,54,55). To 

the best of our knowledge, not many studies have included behavioral parameters with 

physiological measurements while listening to different modes of Indian music. 

With this purview, this study tried to elucidate the effects of listening to Indian 

classical music on different behavioral and physiological parameters among young 

healthy individuals. Music is a complex stimulus that unfolds over time, it is important to 

understand the effect of systematically combined musical features during an average 

duration of listening. Our specific hypothesis was that distinct cardiovascular and 

behavioral responses would be associated with passive listening to each specific auditory 

stimulus, the response being specific to the melodic mode. For this, we chose three Indian 

modes (ragasðPuriya, Malkauns, and Miyan ki Todi). The primary outcome measure 

was to evaluate the state and trait anxiety levels, biomarkers of stress, blood pressure, 

and autonomic functions (HRV) after short-term listening to pre-recorded music in each 

of the three modes mentioned above. 

2 Materials and Methods  

2.1. Study Design 

A prospective, parallel-group, triple-blinded, randomized controlled trial was 

conducted with an experimental study design, with a sample of 140, randomized into 4 

groups, A to D, with a sample of 35 participants in each group. The four acoustic stimuli 

(stored as .mp3 files) were coded by a person uninvolved in the current study as A, B, C, 

and D, to be used as respective group interventions. 
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2.2. Ethical Approvals 

The study protocol was approved by the institutional scientific committee on human 

research and ethical review board (Reference: MSRMC/EC/2017, dated: 25 July 2017). 

The study period ranged from 2019 to 2021 (June 2019—first recruitment and February 

2021—last recruitment). The data presented here were taken from a larger experiment 

(full trial protocol: NCT03790462 on clinicaltrials.gov.in). The research was conducted 

following the Declaration of Helsinki guidelines (62). 

2.3. The Basis for Sample Size 

After music intervention, the State-Trait Anxiety Inventory-6 (STAI-6) anxiety 

scores changed from 33.3 (23.3–41.7) to 30 (20–40), respectively (Median (interquartile 

range—IQR)), in a previous study (63). Using these data, considering the minimum 

difference of 4 units in the STAI score before and after the intervention, with an effect size 

of 0.7, power of 85%, and an alpha error of 5%, the sample size was calculated to be 35 

in each group. 

2.4. Recruitment 

The study participants were recruited from a group of educational institutions in the 

city of Bengaluru, Karnataka, India. Healthy Indian individuals aged 18–30 years were 

invited to participate in the study via an open call for participants for the study posted 

online (social media) and notice board advertisements across the institutions. Given the 

objectives of the study, to avoid cultural familiarity differences, only Indians were invited 

to participate in this study. Participants who responded to the call were sent an online 

questionnaire via Google forms.  

2.5. Inclusion and Exclusion Criteria 

Inclusion criteria were participants volunteering for the study, aged 18–30 years, 

of either gender and medically and surgically healthy individuals (initially self-reported—

based on the online questionnaire and later confirmed on visiting the lab). The participants 

had to be non-smokers and non-alcoholics. Participants on any medication (based on 

drug intake history, drugs known to affect the BP or autonomic status of the individual) 
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were excluded from the study. Pregnancy and body mass index (BMI) >30 kg/m2 were 

the other exclusion criteria. 

2.6. Baseline Demographic Data Recording 

A web-based questionnaire (Google forms) was designed and implemented for 

this study. This questionnaire contained details such as a unique identification number 

for each subject, subject’s name, gender, socio-demographic details, education 

background, drug history, present report or history of non-communicable diseases if any, 

and family history of non-communicable disorders, and smoking and alcohol history. A 

questionnaire containing details inquiring about the participants’ preference for any type 

of music and previous experience with music (instrumental or vocal training) was also 

included. After screening >300 individuals who responded to the call, 166 completed the 

Google form. Following the collection of data online, the participants were invited for 

further data collection in the lab. Out of 166 participants who answered the online 

questionnaire, 154 participants reported to the lab. The principal investigator (PI) and Co-

PI enrolled participants in the study. 

2.7. Randomization 

The total sample size (n = 140) was randomized into 4 groups using a simple 

randomization technique where the random numbers were computer-generated using MS 

Excel (4 sets of 35 each). The numbers generated were kept in a sealed, opaque 

envelope which was opened by the research assistant after the baseline assessment of 

each participant who assigned them to each of the four groups (Consort diagram Figure 

1). 
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Figure 1. Consort diagram of participant recruitment, distribution, and follow-up. 

2.8. Interventions 

Three groups (A, B, C) received one of the ragas/modes as an acoustic 

intervention, while the fourth group (Group D/control arm) received natural sounds as an 
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acoustic stimulus (all audio clips were coded as A, B, C, and D by a person uninvolved in 

the study). 

2.8.1. Music Intervention 

Ten-minute, tailor-made instrumental renditions of 3 modes were digitally pre-

recorded and played via headphones (64) connected to a laptop, at a uniform volume 

(50%). Group A received raga Miyan ki Todi, group B received raga Malkauns, and group 

C received raga Puriya (Table 1). These modes were chosen based on the criterium of 

having beneficial cardiovascular effects as per ancient music literature (23,57,61,65). The 

music was tuned to be at a frequency of 329.63 Hz (the tonic or ‘Sa’ at Pitch E). Details 

about each mode used and the notes can be found in the supplementary file (S). The 

start and end time of the music was marked using an event marker in the software. 

We instructed the participants to listen to this with eyes closed, and minds relaxed, 

for the duration it was played. The music was recorded by an eminent musician in India 

(exclusively for the present study) with the drone (tanpura) in tonic in the background and 

flute/Bansuri playing the respective alaap in the above-mentioned scales. A specific 

rhythmic structure or tempo was not there for this musical piece, and percussion 

instruments were avoided. The ‘Bansuri’ is a flute in India made from a single hollow shaft 

of bamboo with six or seven finger holes, held horizontally while playing (66). As there 

was very little literature available on the most relaxing or soothing instrument, we chose 

bansuri for this study based on common instruments used commercially to produce 

relaxing music tapes. Instrumental music helped us avoid percussion (tempo) (67–74), 

lyrics, and the emotions or semantic processing due to them, and thus the music had 

minimal pitch dynamics, contrasts, and rhythm in it. 
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Table 1. The three chosen Indian melodic modes, the names of the notes in 

Hindustani music, and Western scale equivalents. 

Svara/Note Hindustani Name Staff Note Western Scale Interval Name 

 Raga Miyan ki Todi (Scale A) (heptatonic, G appears in descent) 

S Shadja C Perfect unison 

r Komal Rishab D  ʐ Minor second 

g Komal Gandhar E  ʐ Minor third 

M Tivra Madhyam F# Augmented fourth 

P Pancham G Perfect fifth 

d Komal Dhaivat A  ʐ Minor sixth 

N Shuddha Nishad B Major seventh 

 Raga Malkauns (Scale B) Ascent and descent sameðpentatonic 

S Shadja C Perfect unison 

g Komal Gandhar E  ʐ Minor third 

m Shuddha Madhyam F Perfect fourth 

d Komal Dhaivat A  ʐ Minor sixth 

n Komal Nishad B  ʐ Minor seventh 

 Raga Puriya (Scale C) C, D ,ʐ E, G ,ʐ G, A/A ,ʐ B (hexatonic) 

S Shadja C Perfect unison 

r Komal Rishab D  ʐ Minor second 

G Shuddha Gandhar E Major third 

M Tivra Madhyam F# Augmented fourth 

D Shuddha Dhaivat A Major sixth 

N Shuddha Nishad B Major seventh 

 

2.8.2. Control Group Intervention 

The control group (Group D) did not receive any music intervention, but since the 

complete recording lasted for 30 min duration, it was possible for the participants to feel 

sleepy (sleep is anxiolytic, which would alter the current objective). Thus, natural sounds 

(birds chirping and flowing river) were played for 10 s duration once every 2 min in the 

middle ten min (during intervention); a total of 50 s in the middle ten minutes. This also 

ensured uniformity of intervention between the groups. 
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2.9. First Visit to the Lab 

Before visiting the lab, all participants were instructed to come after overnight 

fasting, with a light breakfast, to abstain from tea and coffee about 2 h before the 

recording, and abstain from exhaustive exercise, for the preceding 24 h. Female 

participants were asked to visit the lab during the follicular phase of their menstrual cycle. 

The study protocol and the rights to withdraw their participation from the study were 

explained to the participants, after which written informed consent to participate in the 

study was obtained. A general health check-up was done for all participants. The BMI 

was calculated, and BP was measured twice. The healthy cardiovascular system of the 

volunteers was defined by measuring BP, which confirmed their non-hypertensive state, 

and by measuring baseline HR, which confirmed their non-tachycardiac state. 

Normotensives were included as per inclusion criteria (excluded n = 10; Baseline systolic 

BP—SBP > 120 mm Hg). Healthy participants (n = 144) were recruited (Consort diagram 

Figure 1). Though 10.4% of participants were current alcoholics, their baseline BP was 

within the normal range and were included in the study after being instructed to abstain 

from smoking/alcohol 24 h before the recording. 

2.10. Second Visit to the Lab 

All the recordings were carried out between 09:00 and 11:00 a.m. in an isolated 

room at a stable temperature between 20 and 22 °C, in a noise-free atmosphere. After 

the participants responded to the STAI Form Y (between 0 to 5 min—T5, explained 

further), they were asked to relax in the supine position for 10 min before the tests, with 

their eyes closed. Participants were carefully monitored to ensure there were no 

significant respiratory or postural changes during the session. During this time (first 5 

min), electrocardiogram (ECG) electrodes in lead II were applied, similar to previous 

studies (64), headphones were adjusted, and comfort with the pre-set volume (50% on 

laptop) was tested. The BP cuff was tied to the left arm of the participant and a reading 

was taken so that the participant understands the process of automatic cuff inflation and 

deflation. At the end of the first 10 min the baseline BP was recorded, and the protocol 

was begun. At the beginning of the protocol, one saliva oral swab was inserted into the 



Chapter 2: Music, Stress and ANS         

102 | P a g e  
 

participants’ mouths and kept sublingually. The first 10 min of baseline ECG recording 

commenced. At the end of 10 min (M1), digital measurement of BP (SBP, diastolic BP—

DBP, and HR) was done (recorded as pre-intervention readings) and saliva samples were 

taken. This was repeated at 20 (M2) and 30 (M3) minutes later (see Figure 2 for the 

process of recording). After the 30 min protocol, the participants were asked to complete 

the STAI Form-Y (between 35–40 min—T35), recorded as post-intervention STAI scores, 

and rate the valence of intervention on a 10-point visual analog scale (VAS). All saliva 

swabs were stored at 4°C until centrifugation. The saliva samples were then centrifuged 

at 3000 rpm for 15 min and supernatant saliva was stored at −80°C until further analysis 

within 1 h of saliva collection. Pre, during, and post-intervention data analysis of BP, HRV, 

STAI, and salivary stress markers (salivary cortisol—sCort and salivary alpha-amylase—

sAA (ELISA- Enzyme-linked immunosorbent assay)) was done. 

 

Figure 2. Study protocol; T5, T10, T20, T30, T35 is the time in minutes; STAI—State-

Trait Anxiety Inventory; BP—Blood pressure; HRV—Heart rate variability; ECG—

Electrocardiogram; sAA—Salivary Alpha-amylase; sCort—Salivary Cortisol. 

 



Chapter 2: Music, Stress and ANS         

103 | P a g e  
 

2.11. Behavioral Measures 

2.11.1 Measurement of Anxiety 

The State-Trait Anxiety Inventory (STAI) (Form Y) for adults is a validated 

questionnaire (75) implemented in the current study, as explained in (22). Briefly, 

participants had to respond to 40 questions by rating themselves on a four-point Likert 

scale (1—Not at all, 2—Somewhat, 3—Moderately so, 4—Very much so), resulting in a 

range of possible scores between 20 to 80 on both the State and Trait subscales (75). It 

differentiates between the temporary condition of “State anxiety” (feeling at the moment, 

in Form Y 1) and the more general and long-standing quality of “Trait anxiety” (feeling in 

general, in Form Y 2) (75,76). The STAI has demonstrated good internal consistency 

(average as >0.89) and test–retest reliability (average r ¼ 0.88) at multiple time intervals. 

The reliability of the STAI in patients with an anxiety disorder is found to be between 0.87 

and 0.93 (77,78). One of the STAI forms in group D had more than 3 missing values and 

was thus not included for further analysis. 

2.12. Physiological Parameters 

2.12.1 Saliva for Biomarkers of Stress 

To measure free cortisol levels, which reflects hypothalamic–pituitary–adrenal 

system (HPA) activity, and salivary alpha-amylase (sAA), which indicates the activity of 

the sympathetic–adrenal–medullary system (SAM) (79–81), saliva was collected using 

the SalivaBio Oral Swab (Salimetrics LLC, State College, PA, USA) every 10 min (Figure 

2). Salivary alpha-amylase was assessed using a Salimetrics Salivary Alpha-Amylase 

Assay Kit (Salimetrics LLC, State College, PA, USA), following the manufacturer’s 

guidelines. Results were expressed in U/mL. The intra-assay precision coefficient of 

variation (%) was 2.5–7.2%, and the inter-assay precision was 3.6–5.8%. Salivary levels 

of cortisol were assessed using the Expanded Range High Sensitivity Salivary Cortisol 

Enzyme Immunoassay Kit (Salimetrics LLC, State College, PA, USA), following the 

manufacturer’s guidelines. Results were expressed in µg/dL. The intra-assay coefficient 

of variation was 5.5–5.68%, and the inter-assay coefficient of variation was 6.3–6.7%. 
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2.13. Cardiovascular Parameters 

2.13.1. Blood Pressure (BP) and Heart Rate (HR) 

A standardized digital BP monitor was used (Omron HEM-7130-L, OMRON 

Healthcare Manufacturing Vietnam Co., Ltd., Sourced from Haryana, India) to measure 

BP (82). The measurements of SBP (in mm of Hg), DBP (mm Hg), and HR in beats per 

minute were noted once every 10 min (Figure 2). 

2.13.2. Electrocardiogram Recording and Heart Rate Variability Analysis 

The Electrocardiogram (ECG) was recorded in Lead II (sample rate of 1000 Hz) 

for ten minutes as this is twice the minimum window required for HRV analysis. The data 

were recorded using Power lab 15 T LabChart Pro 8 software (ADInstruments, Sydney, 

Australia) and analyzed as described in (37). Analysis of HRV was done by the same 

investigator to avoid sources of error. The HRV parameters analyzed using fast Fourier 

transformation (FFT size: 1024) were SDNN—the standard deviation of NN intervals, 

RMSSD—root square of the mean squared difference of successive NNs, NN50—

number of pairs of successive NNs that differ by more than 50 ms, pNN50—the proportion 

of NN50 divided by the total number of NNs, spectral components such as Very Low-

Frequency (VLF), Low-Frequency (LF), and High-Frequency (HF) components in 

absolute values of power (ms2) and normalized units (nu), and LF/HF. Pre (M1), during 

(M2), and post-intervention (M2) parameters of HRV (as an average of a minimum of 5 

min of recording, during each condition) were analyzed. During analysis, one of the HRV 

readings was not saved in group A and one in group D was too noisy, and they were thus 

not analyzed and were deleted from further processing. 

2.14. Statistical Analysis 

Analysis was conducted at three levels: (1) group-wise (within and between) 

behavioral analysis of anxiety scores and stress markers, (2) group-wise (within and 

between) analysis of cardiovascular responses, and (3) regression analysis to investigate 

the relationship between the acoustic stimulus used and the cardiovascular and 

behavioral responses. Data were analyzed using SPSS software version 18.0 software 
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(SPSS Inc. Released 2009. IBM SPSS Inc., Chicago, IL, USA). The continuous variables 

were analyzed using descriptive statistics such as mean and SD or median and 

interquartile range as per skewness of data. The qualitative/categorical variables were 

analyzed using frequency and percentage. The normality of the BP and HRV data was 

checked by applying the Kolmogorov–Smirnov Test. The categorical variables were 

tested for differences in proportion using the Chi-Square test of significance. Pre- and 

post-intervention data analysis of state and trait anxiety scores were compared using 

Wilcoxon’s signed-rank test. The Independent t-test was used to compare the differences 

between the groups. Baseline comparisons were carried out using a one-way analysis of 

variance (ANOVA). BP, HRV, and salivary parameters were compared across different 

groups pre, during, and post-intervention using repeated measures of ANOVA (RM-

ANOVA). The HRV parameter’s absolute levels and log-transformed levels were 

compared using RM-ANOVA with sphericity assumption. Further, a two-way RM-ANOVA 

analysis was done to inspect the interaction between the intervention group and time. 

Analysis of covariance (ANCOVA) was used to assess the effect of various covariates, 

viz., age, age groups, gender, smoking, alcoholism, involvement in mind-body relaxation 

techniques, physical activity, and music training, on the change in STAI, BP, and HRV 

parameters over time. Apart from tabulation, data were also depicted graphically using 

box plots and line diagrams. A two-tailed p-value <0.05 was considered statistically 

significant at a 5% level of significance. 

3 Results 

3.1. Sociodemographic Data 

The socio-demographic data showed that the groups were comparable (Table 2), 

except for their educational status. There were more graduate students in the music 

intervention groups compared to the control groups (p < 0.001). About 30 to 45% of 

participants were trained in music, but the distribution of participants across the groups 

was comparable. Participants were predominantly trained in Indian music, with more than 

70% trained for more than a year. About 85% of participants considered themselves 

familiar with or experts in Indian classical music (supplementary file Table S1). 
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Table 2. Sociodemographic characteristics of participants. 

Variables Group A Group B Group C Group D p-Value 

Sample N = 37 
(%) N = 36 (%) N = 36 (%) N = 35 (%) 

 

Age (Years) 
 

    

<=18 9 (24.3) 5 (13.9) 6 (16.7) 4 (11.4) 

0.171 
19–21 18 (48.6) 18 (50.0) 15 (41.7) 19 (54.3) 

22–24 8 (21.6) 11 (30.6) 11 (30.6) 4 (11.4) 

>=25 2 (5.4) 2 (5.6) 4 (11.1) 8 (22.9) 
Age (years) 
Mean, SD 20.54, 2.5 20.75, 2.5 21.11, 2.6 21.26, 3.0 0.646 

Gender 
 

    

Female 29 (78.4) 20 (55.6) 24 (66.7) 25 (71.4) 
0.202 

Male 8 (21.6) 16 (44.4) 12 (33.3) 10 (28.6) 

Education 
 

    

High school/ 
Intermediate 16 (43.2) 7 (19.4) 16 (44.4) 29 (82.9) 

<0.001 
Graduate/ 

Postgraduate 21 (56.8) 29 (80.6) 20 (55.6) 6 (17.1) 

Marital status 
 

    

Married 36 (97.3) 35 (97.2) 35 (97.2) 33 (94.3) 
0.875 

Single 1 (2.7) 1 (2.8) 1 (2.8) 2 (5.7) 

Diet 
 

    

Vegetarian 14 (37.8) 11 (30.6) 7 (19.4) 16 (45.7) 
0.112 

Non-vegetarian 23 (62.2) 25 (69.4) 29 (80.6) 19 (54.3) 
BMI (kg/m2) 
Mean, SD 

23.17, 
3.96 22.96, 4.71 22.16, 3.47 22.47, 4.10 0.714 

Music Training 
Yes/No (%) 17 (45.9) 14 (38.9) 11 (30.6) 12 (34.3) 0.562 

 
1 Note: N is the number of participants in each group; All the values of the two groups are 

in absolute values and parenthesis contain percentages; a p-Value of <0.05 is considered 

significant; P calculated using Chi-square test/Fisher exact test; Mean age and BMI 

comparison were done using ANOVA. 

3.2. Behavioral Analysis 
 

3.2.1 STAI 

Pre-intervention levels of the state and trait score (T5), across the groups, were 

comparable (for the state, F(3, 138) = 0.170, p = 0.917; and for the trait, F(3, 138) = 0.811, 

p = 0.490). Comparison of state anxiety STAI scores between all three music intervention 
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groups showed statistical significance (reduction) within the group. The maximum 

reduction in state score was with raga Puriya (mead difference—md = 3.94, p = 0.018), 

the next being raga Malkauns (md = 3.83, p = 0.057), followed by raga Miyan ki Todi (md 

= 2.35, p = 0.054). The reduction in the control group was mild, with md being 0.32 

(statistically not significant) (Table 3, Figure 3a,b). Between the groups, there was no 

significant difference in the T35 state score (p = 0.696). On comparison of the difference 

in means of pre–post values between the groups, there was no significant difference in 

state score (p = 0.319). A comparison of trait anxiety scores showed that group C (raga 

Puriya) had a statistically significant increase in trait score (increase by 2.33 mean level, 

p = 0.011) (Table 3, Figure 3c,d). Between the groups, the T35 trait score was not 

significant (p = 0.660). There were no significant differences in the pre–post values of trait 

scores between the groups (p = 0.634). On multivariate analysis, none of the confounding 

variables seemed to affect the change in STAI scores (both state and trait). 
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Figure 3. (a,b) Comparison of state score on STAI-Y1; (c,d) Trait score on STAI-Y1; 

(e) Salivary stress markers—Cortisol in μg/dL, (f) Alpha-amylase in U/mL, (g) VAS 

(valence rating), and (h) change in state anxiety score with VAS scoring—among 

the four groups at different time points (T5 is 5 min before the protocol began, and 

T35 is 35 min after the protocol or 5 min after the protocol was completed). Note: *: 

p < 0.05, **: p < 0.01, *** p < 0.001. 

Table 3. Comparison of pre and post-intervention STAI scores between four groups. 

Group Mean SD md 
Quartiles 

p 
25 50 75 

STAI State Anxiety 

A (N = 37) 
Pre 35.16 10.8 

2.35 
28.5 33 40 

0.054 
Post 32.81 10.7 24.5 30 39 

B (N = 36) 
Pre 34.92 12.3 

3.83 
24.5 30.5 44.3 

0.057 
Post 31.08 8.9 23.5 29 34 

C (N = 36) 
Pre 36.11 11.7 

3.94 
25.5 35.5 43.8 

0.018 
Post 32.17 10.3 25 29.5 37 

D (N = 34) 
Pre 34.21 7.2 

0.32 
30 32.5 37 

0.781 
Post 33.74 8.3 28 30.5 40 

STAI Trait Anxiety 

A (N = 37) 
Pre 56 10.4 

−1.87 
47 58 63.5 

0.057 
Post 57.87 9.8 51 58 64 

B (N = 36) 
Pre 57.44 8.4 

−1.08 
51.25 57 64 

0.135 
Post 58.53 8.2 53.3 59 63 

C (N = 36) 
Pre 57.69 9.3 

−2.33 
51 57.5 64.5 

0.011 
Post 60.03 9.4 53 60 66.8 

D (N = 34) 
Pre 59.32 8.0 

−0.88 
53 60 65 

0.302 
Post 60.09 9.0 54 61 67 

Note: p-value < 0.05 was considered significant, calculated using paired t-test. 
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3.3. Physiological Parameters 

3.3.1 Biomarkers of Stress 

Pre-intervention levels of sAA and sCort (M1), across the groups, were 

comparable (for sAA, P, F(3, 127) = 1.421, p = 0.240; for sCort, F(3, 126) = 0.197, p = 

0.898). Mean sCort levels reduced maximally in the control group (F = 12.34, p < 0.0001). 

Mean sAA levels reduced in all four groups significantly at M2, after which the levels 

increased slightly more than baseline levels. The drop in sAA was maximal at M2 with 

raga Puriya (F = 67.01, p < 0.0001), which increased at M3 to a level higher than within 

the group baseline and in comparison with other groups (Figure 3e,f; post hoc analysis in 

the supplementary file, Table S2). The visual analog score and corresponding state 

scores did not vary significantly across groups (Figure 3g,h). 

3.4. Cardiovascular Parameters 

3.4.1. Blood Pressure and Heart Rate 

Pre-intervention levels of BP and HR (M1 levels), across the groups, were 

comparable (for SBP, F(3, 139) = 0.463, p = 0.708; for DBP, F(3, 139) = 1.053, p = 0.371; 

for HR, F(3, 139) = 0.417, p = 0.741). On RM-ANOVA analysis of the intervention effects, 

no significant differences were observed in SBP and DBP in any of the groups (Figure 4, 

explanation elaborated in Supplementary text S4). Heart rate increased with raga Miyan 

ki Todi intervention and reduced below baseline levels at M3 (F = 3.645, p = 0.031), with 

maximum difference seen between M2 and M3 (mean difference = 3.351 drops, p = 

0.073) (detailed in the supplementary file, Table S3a,b). It may be observed that, in line 

with the STAI state anxiety, SBP and HR reduced maximally with Raga Puriya. 
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Figure 4. Comparison of (a,b) systolic BP (SBP), (c,d) Diastolic BP (DBP), and (e,f) 

Heart rate among the four groups at different time points (M1 is at the 10th minute, 

M2 is at the 20th minute, M3 is at the 30th minute). Note: *: p < 0.05.  
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On multivariate analysis, it was found that age and physical activity had a 

significant effect on change in the mean SBP. There was a statistically significant effect 

of age group on SBP, F (1, 132) = 5.572, p = 0.020, and involvement in physical activity 

on SBP, F (1, 132) = 4.664, p = 0.033. However, the percentage of variation in SBP that 

could be explained by the independent variables mentioned in the table was only 10% (R 

Squared = 0.107). On gender-wise and subgroup analysis based on involvement in 

physical activity, no significant differences were observed in BP or HR levels. The 

particular age group of 22–24 years old showed a significant effect (F = 3.308, p = 0.043), 

based on time (i.e., M1 vs. M2 vs. M3 SBP levels); however, group-wise means difference 

was statistically not significant. On comparison of DBP levels based on age groups, we 

observed that participants aged 18 years showed significant changes in DBP based on 

time (F = 7.337, p = 0.002) and interaction effect (time and group, F = 2.773, p = 0.024). 

A subgroup analysis based on training in music failed to show significant differences in 

BP or HR. 

3.4.2. Heart Rate Variability 

All pre-intervention HRV parameters across the groups were comparable (all HRV 

parameters had p > 0.05, data in Tables S4 and S5, supplementary file), except for VLF 

ms2 (high in group C and low in group A, F(3, 138) = 2.878, p = 0.038). The comparison 

of intervention was done using RM-ANOVA (for actual values and statistics, see the 

supplementary file, Tables S4–S6). 

3.4.2a Time-Domain Parameters of Heart Rate Variability 

There was a continuous rise in mean NN among the music intervention groups 

through the 30-min protocol, but in the control group, the change was minimal at M3 (last 

10 minutes, after intervention). Post hoc comparisons revealed a significant rise from M1 

(first ten minutes before intervention) to M3 mean NN with raga Miyan ki Todi (difference 

of 22.67 ms; p < 0.001), raga Malkauns (difference of 33.15; p < 0.001), and raga Puriya 

(difference of 23.46; p = 0.01). Group listening to Raga Malkauns (difference of 24.78; p 

< 0.001) and the control group (difference was 18.74; p < 0.001) had a significant rise 

from M1 to M2 (min ten minutes, during intervention) (Figure 5a,b). The mean HR change 

was statistically significant in all the groups, with results inverse to that of mean NN. The 
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maximal significant change was with raga Malkauns, where HR reduced by a value of 

2.05 bpm (p < 0.001) from M1 to M2 and 2.86 bpm (p < 0.001) from M1 to M3. The next 

maximal significant change was observed with raga Puriya, with a drop of 1.92 bpm (p = 

0.01), and raga Miyan ki Todi, with a drop of 1.79 bpm (p = 0.01) from M1 to M3. The 

control group had a significant drop from M1 to M2 by about 1.7 bpm (p < 0.001) (Table 

S4, Figure 5c,d). The SDNN change was significant in all the groups. The maximal 

significant change in SDNN was with Puriya, where SDNN increased by 12.24 ms (p < 

0.001), followed by raga Miyan ki Todi, where the level of the rise was 10.03 ms (p < 

0.001) from M2 to M3. A significant M1 to M3 SDNN increase was seen with raga 

Malkauns (difference of 7.19; p = 0.05) and the control group (difference of 9.51; p < 

0.001) (Figure 5e,f). The mean RMSSD, similar to SDNN, reduced during M2 with Puriya 

and raga Miyan ki Todi, but increased beyond baseline during M3; the change was 

statistically significant in both these groups. The maximal significant change in RMSSD 

was with Puriya, where the RMSSD increased by 9.70 ms (p = 0.06), and Raga Miyan ki 

Todi, where the level of the rise was 9.49 ms (p = 0.04) from M2 to M3. In the control 

group, the RMSSD increased significantly from M1 to M3 (7.97 units (p = 0.03)) and M2 

to M3 (4.36 units (p = 0.04)). Group B did not show a significant change in RMSSD (Figure 

5g,h). The pNN50 (%) between M1 and M3 was statistically significant only with raga 

Puriya (Figure 5i,j; Table S4, supplementary file). 



Chapter 2: Music, Stress and ANS         

114 | P a g e  
 

 



Chapter 2: Music, Stress and ANS         

115 | P a g e  
 

Figure 5. Comparison of Time domain parameters of HRV among the four groups 

at different time points ((M1, M2, M3 is the measurement of HRV pre-intervention 

(T10), during the intervention (T20), and post-intervention (T30)). (a,b) Mean NN 

interval in ms; (c,d) Mean HR (bpm); (e,f) SDNN in ms; (g,h) RMSSD; (i,j) Percentage 

of NN50 in %. Note: * p < 0.05, ** p < 0.01, *** p < 0.001. 

3.4.2b Frequency-Domain Parameters of Heart Rate Variability 

In line with the findings of time-domain HRV parameters, TP reduced during M2 

with raga Miyan ki Todi and raga Puriya, and increased beyond baseline levels at M3, 

while in groups B (raga Malkauns) and D (control), TP continuously increased. The 

maximal significant change in TP (ms2) was with Puriya, where TP increased by 2211.1 

units (p = 0.04), followed by raga Miyan ki Todi, where the level of the rise was 1597.1 

units (p = 0.01) from M2 to M3. A significant TP increase was seen from M1 to M3 with 

raga Miyan ki Todi (difference of 1414.3; p = 0.01) and raga Malkauns (difference of 

1379.9; p = 0.03) (Figure 6a,b). There was a significant difference in mean VLF power 

(ms2) with raga Malkauns and raga Puriya (p = 0.013 and 0.007, respectively). The power 

spectrum of HRV in the VLF range reduced significantly at M2 (by 459.96 units; p = 0.05) 

and tended to increase at M3 (by 652.62 units; p = 0.03) with raga Puriya. VLF change 

was also significant, with raga Malkauns showing a continuous rise in VLF power, the M1 

to M3 difference being statistically significant (630.87 units change; p = 0.03) (Figure 

6c,d). Like SDNN, RMSSD, and TP, the LF in ms2 also reduced during M2 with raga 

Miyan ki Todi and raga Puriya and increased beyond baseline levels at M3. In that, the 

change between M2 to M3 was statistically significant with raga Miyan ki Todi (rise by 

551.22 units; p = 0.04), while the change between M1 and M3 was significant with raga 

Puriya (rise of 457.38 units; p = 0.01) (Figure 6e,f). The LF (nu) reduced significantly only 

with raga Miyan ki Todi (p = 0.014) and increased beyond baseline levels post-

intervention (pairwise comparison of M2 to M3, 4.26 units; p = 0.03) (Figure 6g,h). A 

significant rise was seen in HF (ms2) only in the control group (p = 0.041) (Figure 6i,j). 

There was a significant change in the LF/HF ratio observed only with raga Miyan ki Todi 

(p = 0.028), wherein the LF/HF ratio reduced slightly during the intervention and later 

increased beyond baseline levels post-intervention (Figure 6k,l; Table S5, supplementary 

file). 
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Figure 6. Comparison of frequency-domain parameters of HRV among the four 

groups at different time points ((M1, M2, M3 is the measurement of HRV pre-

intervention (T10), during the intervention (T20), and post-intervention (T30)). (a,b) 

TP in ms2; (c,d) VLF in ms2; (e,f) LF in ms2; (g,h) LF in nu; (i,j) HF in ms2; (k,l) Ratio 

of LF/HF. Note: * p < 0.05, ** p < 0.01, *** p < 0.001. 

On univariate analysis of HRV parameters, none of the confounding factors (based 

on questionnaire data) were found to be associated with the change in the HRV 

parameters, except VLF ms2. Alcoholism history seemed to affect the VLF ms2 difference: 

F(1, 131) = 4.844, p = 0.029 (log-converted VLF ms2 difference F(1, 131) = 7.880, p = 

0.006). It was observed that there was a significant effect of time (M1, M2, M3) on 

participants who were non-alcoholics (F = 11.315, p < 0.0001), compared to alcoholics. 

Group-wise, no difference was observed. However, the percentage of variation in VLF 

ms2 that could be explained by the independent variables (Supplementary Table S6) was 

only 9–10%. 
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4 Discussion 

In this study, we assessed the effect of passive listening to three different acoustic 

stimuli (Indian classical music modes) on the cardiovascular electrophysiological effects 

and subjective behavioral responses (anxiety and stress) among normal healthy 

individuals and compared them with a control group listening to natural sounds. Three 

different modes/ragas of Indian classical music used as interventions were Miyan ki Todi 

for group A, Malkauns for group B, and Puriya for group C. Those in the control arm 

(group D) relaxed for 30 min while listening to intermittent natural sounds for a very short 

duration. Sociodemographically, the groups matched, except for educational status, with 

more graduates or postgraduates in the three intervention groups compared to the control 

group. All groups matched based on their musical training as well. 

4.1. Behavioral Analysis 

4.1.1 Anxiety 

As listening to music can initiate a multitude of cognitive processes in the brain 

(83), it might be assumed that music also influences stress-related cognitive processes 

and, as a consequence, physiological responses (12). Anxiety was measured in the 

current study using a standard validated State-Trait Anxiety Inventory (STAI) Form Y. The 

three intervention groups showed a significant drop in state anxiety, while the control 

group had an insignificant mild drop. The maximum reduction in the state score was with 

raga Puriya, followed by raga Malkauns and raga Miyan Ki Todi. This reduction in state 

anxiety indicated a relaxation response to listening to music. In contrast, trait anxiety 

increased in all four groups, which could be due to chance or the boredom that set in after 

answering multiple questions (trait anxiety formed the last 20 questions). A shorter 

version of the STAI might have been a better tool to assess the trait anxiety after 30–40 

min of the protocol. Furthermore, a reduction in trait anxiety might occur after a few weeks 

or months of music intervention, as we observed previously among pre-hypertensives 

after listening to raga Bhimpalas for 15 min a day, for a minimum of 5 days a week, 

followed up after 3 months duration (23,38). In comparison, the three other modes (raga 

Ahir Bhairav, Raga Kaunsi Kanada, and Raga Bhimpalas) reduced the state anxiety 
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levels, with raga Kaunsi Kanada causing maximal reduction (22). The current study’s 

findings are similar to this, wherein any music intervention reduced anxiety levels, but the 

level of reduction depended on the melodic mode and, probably, its features. A reduction 

in anxiety after listening to music is the most consistent finding reported in field studies 

with patients (84–86) and laboratory-based studies (15,84,85). Music may be a way to 

help young people reduce negative emotions (15). Another study suggested listening to 

relaxing music (based on the music rating scale); in particular, classical music led the 

listener to experience positive emotions (STAI-Y and Relaxation Rating Scale) and an 

increase in parasympathetic nervous system arousal (physiological assessment of HR, 

respiration, and skin conductance) (15). 

4.2. Biomarkers of Stress 

In the current study, we observed that the mean sCort levels reduced in all three 

music intervention groups during the intervention, but maximally in the control group, 

which was statistically significant. This is similar to previous research that found lower 

sCort in the music group when compared to the control groups, but the levels were lowest 

when participants listened to the sound of rippling water (used as an acoustic control 

condition) (12). In the current study, the control group received natural sounds for about 

50 s in the mid ten min, indicating that natural sounds have a higher impact on cortisol 

levels. Several studies have documented either no change or a drop in sCort levels either 

after listening to music or passive listening to music during a stress task (87–90). A 

decrease in serum cortisol levels was found to be better among men compared to women 

upon listening to music by Mozart and Strauss (91). A recent study also observed that the 

listening environment mattered for this change in cortisol levels or emotions, in that, the 

cortisol levels were generally lower at home than in the laboratory, though it reduced both 

in home and lab settings after listening to music (92). In the current study, the mean sAA 

levels reduced in all four groups significantly during the intervention, after which the levels 

increased slightly more than baseline levels. Post hoc analysis showed a significant 

maximal drop in sAA with raga Malkauns, followed by raga Miyan Ki Todi and then raga 

Puriya. The rise post-intervention was maximal with raga Malkauns, followed by raga 

Miyan Ki Todi and raga Puriya. This observation is in line with the HRV changes during 
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and post-intervention, where Malkauns exhibited a parasympathetic response during the 

intervention, while Miyan Ki Todi and Puriya showed sympathetic responses. A study 

observed an association between sAA and music-induced arousal, with energizing music 

increasing and relaxing music decreasing sAA. They proposed that the best effect of 

music was recorded when participants listened to the music with the intent of ‘relaxation’, 

which might lead to reduced sAA and sCort levels (47). In addition to this, another study 

revealed that listening to Tibetan music before surgery reduced the state score and sAA 

levels, while in the control group (who wore headphones with no sounds), the state score 

remained unchanged and the sAA level increased (93). 

4.3. Cardiovascular Parameters 

4.3.1. Blood Pressure 

The changes in SBP and DBP were insignificant in all the groups of the present 

study. A large change in BP was not expected, as all individuals were healthy, aged 18 

to 30 years in the current study. Subtle differences in BP were observed in the music 

intervention groups compared to the control group and also between different modes. 

Most music-based research has used music as an intervention among hypertensives 

(23,31), or during or after stressful tasks (94), with very few among healthy individuals in 

the absence of a task. A meta-analysis showed that music therapy, which is a more 

intensive intervention than the present study, led to a significant reduction in SBP, DBP, 

and HR compared to those who did not receive music therapy (29). Thus, with a longer 

duration of listening, across multiple days or sessions, differences in SBP and DBP would 

be evident. Self-selected sedative music induced both aroused and sedative emotions 

and a slight but significant increase in HR (95). In the present study, participants were not 

given a choice to select their music, or their preference was not taken into account during 

the planning of the intervention. In addition, continuous monitoring of BP fluctuations 

might have aided us to obtain more conclusive results. 

4.3.2. Heart Rate Variability 

In the present study, we found that the mean NN interval increased and the mean 

HR reduced significantly in all four groups. The maximal significant change in HR was 
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with raga Malkauns. When looking at the time and frequency-domain measurements we 

observed that raga Miyan ki Todi (group A) and Puriya (group C) caused arousal effects 

in the form of a drop of SDNN, RMSSD, TP (ms2), VLF (ms2), LF (ms2), and HF (ms2) 

during the intervention, with significant relaxation after the intervention was stopped. 

SDNN and RMSSD are strong indicators of parasympathetic activity (37,96). This shows 

that raga Miyan ki Todi and Puriya caused sympathetic arousal during music while 

increasing the parasympathetic response after the music has stopped. This seems similar 

to previous studies showing increased sympathetic activity, regardless of the type of 

music (calming or stimulating) (46,97), and a classic paper by Bernardi et al., where a 

pause after playing music for 2 min exhibited the maximal relaxation response (40). In 

contrast, the raga Malkauns results went hand-in-hand with the control group, wherein a 

sustained increase in parasympathetic response was observed over 30 min. These 

findings are partly in sync with the BP results quoted above, suggesting that the changes 

observed between the cardiovascular and the autonomic system were in parallel. A recent 

review observed that, out of 29 randomized trials and pre to post-intervention studies, 26 

studies suggested a significant positive impact of music on HRV (50). In a study where 

raga Malkauns were used as an intervention in different forms (vocal rendition, sitar 

recital, and Rabindra sangeet), Rabindra sangeet had the most relaxing effect. In 

addition, alaap delivered at a fast tempo increased excitement, while, like the current 

study, alaap at a slow tempo resulted in calming the mood (56). Unlike in the current 

study, meditative music has been shown to reduce state anxiety and HR, and increase 

the HF norm of HRV (98). These results also confirm the importance of analysis of 

temporal changes in physiological parameters when using music as an intervention, as 

the music unfolds over time (99). Other studies on HRV using music intervention have 

been detailed before in (38,50). Regarding the mechanism behind the effect of auditory 

stimulation and cardiac autonomic regulation, it was hypothesized that pleasurable songs 

induce dopamine release in the striatal system, which is involved in autonomic regulation, 

and this topic has been well-reviewed in (100). 
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4.4. Future Directions 

The current study used a triple-blinded, randomized control trial design and 

showed that listening to three different Indian modes caused behavioral and 

cardiovascular modifications among healthy adults. This is the first study of its kind to 

focus on how Indian melodies may alter physiological measures related to stress, arousal, 

and anxiety. Clinically, this study promotes the idea of the use of music, and particular 

modes, to facilitate relaxation, prevent cardiovascular disease, and provide an alternative 

treatment strategy. Future studies may find it beneficial to expand the present findings to 

other melodies, provide longer periods of music listening, and more closely investigate in 

both males and females how reproductive steroid hormones may play a role in the 

physiological measures assessed. It would also be interesting to investigate factors 

related to perception and emotion, such as personality and music preferences, in future 

work. Further analysis of the musical features and the components (e.g., temporal 

analysis of note/tonal variations, pitch, tempo, dynamics, contrast) of the music used may 

enhance our understanding of the physiological effects. 

5 Conclusions 

Among the different relaxation therapies known to us, music is an important 

modality, as it is an easy-to-follow, easy-to-use, inexpensive mode of relaxation. This 

study provides evidence that listening to music for just 10 min can have an acute reduction 

in anxiety and improvement in cardiovascular parameters, depending on the mode. 

Future studies may try to elucidate the role of music after intervention over a longer 

duration or a few months of intervention, as done in (1,2). Though all three modes (ragas) 

reduced state anxiety scores, raga Puriya caused a maximal reduction in state anxiety 

scores, followed by Malkauns and Miyan ki Todi. Cardiovascular effects went in hand with 

the behavioral recordings, in that raga Puriya and raga Miyan ki Todi produced an arousal 

effect during music intervention but caused significant relaxation after the intervention 

was stopped. In contrast, raga Malkauns reduced state anxiety, significantly increased 

the mean NN interval, and reduced HR. This proves that listening to music, in general, 

cannot be said to produce a relaxation effect; rather, the timing of the effect, the 

notes/tones present in the music given, and the combination of notes (modes) as a whole 
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that produces a particular effect. Future studies need to emphasize the health benefits of 

various aspects of different acoustic stimuli, including other types and genres of music, 

and establish solid evidence for the usage of the same in different medical disorders. 

6 Supplementary Information 

The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/ejihpe12100108/s1 (101,102,103,104,105). 

S1.   Music intervention – Melodic scales in detail 

Miyan ki Todi, the raga A of this study, is a Hindustani classical raga that gave 

its name to the Todi thaat, one of the ten modes of Hindustani classical music, also known 

as Darbari Todi, and sometimes Shuddha Todi, is amongst the more popular morning 

ragas of Hindustani music. The scale of Miyan ki Todi is Arohana: S r g m d N S' or 'd 'N 

S r g m d N S' or S r g m d P, m d N S' or S r g m P, m d N S' and Avarohana: S' N d P m 

g r S or S' N d P m d m g r g r S. Vadi and Samavadi are Komal Dha and Komal Ga. Re, 

ga, and dha are intoned slightly low, and tivra ma is very sharp. Bhatkhande pronounces 

Komal Dha as Vadi (primarily dominant), but some musicians accord this status to Komal 

Ga. According to him, Komal Ga and Komal Re, are candidates for the status of samvadi 

(secondary dominant). Todi is a Raga of the late morning. The prescribed time for the 

raga is the first three-hour slot after sunrise. The equivalent raga in Carnatic music is 

Shubhapantuvarali. Miyan ki Todi predominantly is mostly pervaded by a pensive, 

mournful mood which is then relieved in the drut (faster tempo) part, by a festive piece, 

possibly to alleviate the heavy pathos in the earlier stages of rendering, though not 

always. The composition is such as to afford an artist of high caliber to mold it in either 

the inherent pensive mood or to entirely present a festive mood. Despite this, the raga 

has attained a decent presence in the classicist as well as romanticist genres of 

Hindustani music. The common phrases used in this scale are:  N. N. S r g / r g r / r g M^ 

P or r g M^ g P/ g M^ d P / M^ g M^ d / N d P / d d  N S’ [or] M^ d N S’/ N S’ r’ g’ r’/ d N S’ 

r’ g’ / r’ g’ r’ S’/ N r’ N d P / M^ P d M^ g [or] N d M^ g / r g r S [1]. Popular songs based 

on this raga are: Bhini bhini bhor (Asha Bhosle's Album Dil Padosi Hai), aeri mai to prem 

diwani mera dard na jane koi (A meerabai bhajan from the movie ï Meera), Watan pe jo 
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fida hoga (movie ï Phool bane angaare)[2], oora serabahude neenu (title track of T N 

Seetharam Kannada serial ómagalu jaanakiô). 

Raga Malkauns belongs to Kalyan thaat, and is a majestic and somewhat 

introverted pentatonic raga. Ma is the pivotal tone of this raga and the tone in which the 

first string of the tanpura is usually tuned. Ga, Dha, and Ni may slightly oscillate. Malkauns 

should be performed in a slow and dignified manner, and to bring out its ethos the notes 

should be linked by glides, in particular N / D, D / M, and M / G [3]. Time: Late night, 12 - 

3. Aarohan (ascending scale): S G M D N M D S*; Avaraohan (descending scale): S* N 

D M G M G S, D S; * indicates a higher (third) octave. The Rishabh and the pancham are 

skipped in the scale. It is an audhav - audhav (5 notes in ascent and descent of the scale) 

vakra (nishad is rarely employed in avaroh). The vaadi samavaadi swaras for this raga 

are d and g. The vishranti sthaan for this scale are G; D; S'; - D; G;. Example of sanchar 

(move/ phrases / flow) through this raga, S; G M D G M G ; M G ; G S ; ,D ,D S ; ,N ,M ,D 

S ; S G M D ; G M G ; M D S' ; N M D ; G M M G ; S ; ,D ,D S;. It is this preponderance of 

the tivra madhyam, thus intense training is required to perform this raga. Time for best 

effects is between (12 night - 3 am): 3rd prahar of the night (Ragas are divided into 

prahaars whereby each raga has a specific period of the day when it is performed). The 

popular Hindi film songs based on raga Malkauns include Aaye Sur Ke Panchhi Aaye 

(Movie - Sur Sangam), Adha Hai Chandrama Raat Adhi and Tu Chhupi Hai Kahan 

(Navrang), Man Tarapat Hari Darshan Ko (Baiju Bawra) [3]. Malkauns was the Raga B 

in this study. 

Raga Puriya is a major hexatonic raga (Shadhav ï Shadhav) of Hindustani 

classical music, belonging to the marwa thaat. Best performed just after sunset (2nd 

prahar of the night). What is common among all types of Puriya raag are komal (flat) Re, 

shuddha (natural) Ga, tivra (sharp) Ma, and shuddha (natural) Ni. Aarohan: N r G M D N 

r S and avarohan: S N D M G r S N or r N D M Gg, M G r S. Pancham Varjya. Rishabh 

Komal, Madhyam Teevra. Rest all Shuddha Swaras. Mandra Saptak Nishad is the Nyas 

swar in Puriya. Illustrative combinations are: N r G ; G r ,N ,D ,N; ,N ,M ,D S; G M D N; N 

M G; G M D G M G; r S; G M D N D S'; N r' N M G ; G M D G M G r S [4]. In this raga, N-

M and D-G sangati is observed. Nishad is often skipped in Aaroh like G M D N D S'.  Raag 
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Puriya is often referred to as king of night ragas. The rasa / emotions related to this raga 

are Shanti (equanimity/peace) and Gambhir (seriousness) [5]. Puriya was the Raga C 

in this study. Pure Puriya has not been very commonly used for film music. 

S2.   Music exposure and Training: 

Of the participants who were trained, 41 of them had received training for more than 

a year. Concerning musical training, all groups were comparable, with statistically no 

significant differences between them.  

Table S1: Music preference questionnaire descriptive statistics 

Variables Group A Group B Group C Group D P-Value 

 N=37 (%) N=36 (%) N=36 (%) N=35 (%)  

Training in Music      

Yes 17 (45.9) 14 (38.9) 11 (30.6) 12 (34.3) 0.562 

No 20 (54.1) 22 (61.1) 25 (69.4) 23 (65.7)  

The trained genre of music      

Indian 14 (82.4) 11 (78.6) 9 (81.8) 10 (83.3) 0.898 

Western 2 (11.8) 2 (14.3) 1 (9.1) 1 (8.3)  

Both 1 (5.9) 1 (7.1) 1 (9.1) 1 (8.3)  

Duration of training in music      

≤1 year 2 (11.8) 4 (28.6) 3 (27.3) 2 (16.7) 0.619 

> 1 year 15 (88.2) 10 (71.4) 8 (72.7) 10 (83.3)  

Note: 

a) N is the number of participants in each group. 

b) All the values of the two groups are in absolute values and in parenthesis are in percentages. 

c) P value < 0.05 was considered significant 

d) P calculated using Chi-square / Fisher exact test. 

S3.   Salivary Stress markers 

Table S2: Post-hoc analysis of sAA and sCort 

  Grou

p 

    Mean 

Differenc

e (I-J) 

Std. 

Error 

P 

Value.b 

95% Confidence Interval for 

Differenceb 

            Lower Bound Upper Bound 

Salivary 

Cortisol in 

U/mL 

D Pr

e 

Du

r 

.079* .024 .007 .019 .139 

    Po

st 

-.021 .019 .807 -.069 .027 

  Du

r 

Po

st 

-.100* .021 .000 -.155 -.046 

A Pr

e 

Du

r 

66.154* 6.542 .000 49.456 82.852 
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Salivary Alpha 

Amylase in 

U/mL 

  

  Du

r 

Po

st 

-80.228* 10.720 .000 -107.589 -52.866 

B Pr

e 

Du

r 

73.108* 7.078 .000 54.995 91.220 

    Po

st 

-26.663* 8.962 .019 -49.597 -3.729 

  Du

r 

Po

st 

-99.771* 10.417 .000 -126.427 -73.115 

C Pr

e 

Du

r 

63.538* 6.149 .000 47.541 79.534 

  Du

r 

Po

st 

-74.661* 7.942 .000 -95.322 -54.001 

D Pr

e 

Du

r 

60.913* 5.104 .000 47.851 73.974 

  Du

r 

Po

st 

-72.714* 7.504 .000 -91.917 -53.510 

  Based on estimated marginal means 

  *. The mean difference is significant at the .05 level. 

  b. Adjustment for multiple comparisons: Bonferroni. 

 

S4.   Blood pressure and Heart Rate 

On comparison of pre-intervention levels of all SBP, DBP, and HR, across the 

groups, it was observed that they were comparable (SBP, P = 0.708, DBP, P = 0.371, 

and HR, P = 0.741). Between the groups, we did not find any statistically significant 

difference (SBP: group A, P=0.794, B, P=0.416, C, P=0.234, D, P=0.215; DBP: group A, 

P=0.208, B, P=0.484, C, P=0.622, D, P=0.429). No significant differences were observed 

in SBP in any of the groups (See figure in main text 4a,4b). However, there was a 

continuous trend of reduction in SBP in groups C and D. In group B, SBP was reduced 

only during the intervention, and returned to pre-intervention levels after the intervention. 

In group A, SBP increased slightly with music. Similar to SBP, DBP change was 

statistically not significant in any of the groups (See figure in main text 4c,4d). A trend of 

sustained rise was observed in groups B and C with and after the intervention. While in 

group A, DBP reduced with music and returned to baseline after the intervention. In the 

control group, DBP increased slightly with the intervention, followed by a mild reduction 

after the intervention.  In groups, B, C, and D a sustained drop in HR was observed 

throughout the 30 minutes duration, with group C having a higher drop in HR during the 

intervention (See figure in main text 4e,4f). 
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Table S3: Pairwise comparison of HR in group A based on time (Pre=1, Dur=2, Post=3) 

RANDOM 

GROUP 

(I) 

TIME 

(J) 

TIME 

Mean 

Difference 

(I-J) 

Std. 

Error 

P 

valuea 

95% Confidence 

Interval for Differencea 

Lower 

Bound 

Upper 

Bound 

A 1 2 -.676 1.084 1.000 -3.397 2.045 

3 2.676 1.403 .193 -.846 6.197 

2 1 .676 1.084 1.000 -2.045 3.397 

3 3.351 1.424 .073* -.225 6.928 

3 1 -2.676 1.403 .193 -6.197 .846 

2 -3.351 1.424 .073 -6.928 .225 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

S5.   Heart rate Variability 

Table S4: Comparison of time-domain parameters of HRV between the four groups 

 
 Mean SD Min Max 

Percentiles F(dftime, dferror) = F 

value 
P 

 25 50 75 

Mean 

NN 

(ms) 

A 

Pre 832.57 118.5 620.38 1086.49 743.07 821.55 895.36 

(2,70)=8.854 <0.0001 Dur 844.19 127.7 632.18 1121.28 758.83 830.08 905.14 

Post 855.23 126.7 619.8 1125.15 776.01 839.84 922.31 

B 

Pre 844.49 143.8 557.96 1151.72 746.13 860.74 945.53 

(1.585,53.874)=16.908 <0.0001 Dur 869 149.3 573.24 1207.65 760.84 887.42 1002.58 

Post 877.22 147.6 607.72 1202.98 768.23 877.55 1000.37 

C 

Pre 861.24 129.7 598.65 1179.46 782.3 837.65 953.48 

(2,70)=3.642 0.031 Dur 869.06 127.2 595.91 1196.59 776.75 859.66 935.82 

Post 884.7 133.1 603.84 1233.71 783.54 865.35 951.85 

D 

Pre 843.94 131.3 626.76 1119.1 751.33 811.11 953.43 

(1.247,41.143)=5.844 0.015 Dur 862.68 131.2 628.03 1154.47 790.99 828.34 952.19 

Post 863.42 128.4 587.25 1162.77 790.9 849.58 934.38 

Mean 

HR 

A 

Pre 73.44 10.1 55.22 96.71 67.01 73.03 80.75 

(2,70)=5.256 0.008 Dur 72.63 10.7 53.51 94.91 66.29 72.28 79.07 

Post 71.65 10.5 53.33 96.81 65.06 71.45 77.33 

B 

Pre 73.24 13.5 52.1 107.54 63.46 69.72 80.42 

(1.625,55.249)=14.987 <0.0001 Dur 71.2 13.2 49.68 104.67 59.85 67.61 78.87 

Post 70.41 12.5 49.88 98.73 59.98 68.37 78.1 

C 
Pre 71.2 10.7 50.87 100.23 62.94 71.63 76.7 

(2,70)=3.907 0.025 
Dur 70.44 10.1 50.14 100.69 64.13 69.8 77.25 
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Post 69.28 10.2 48.63 99.36 63.05 69.34 76.58 

D 

Pre 72.78 11.3 53.61 95.73 63.21 74.16 79.97 

(1.177,38.837)=5.109 0.024 Dur 71.08 10.5 51.97 95.54 63.39 72.58 76.61 

Post 70.99 10.6 51.6 102.17 65.4 70.68 75.88 

SDNN 

A 

Pre 66.07 30.5 19.76 152.49 45.92 61.3 78.39 

(2,70)=11.208 <0.001 Dur 64.38 32.1 21.94 167.05 44.35 57.71 69.56 

Post 74.41 36.1 19.89 165.59 53.12 64.9 94.15 

B 

Pre 63.9 27.9 20.49 125.52 40.1 63.3 82.46 

(2,68)=4.066 0.022 Dur 67.11 31.9 16.26 148.53 39.36 66.13 91.04 

Post 71.2 31.9 19.46 147.24 40.29 72.8 94.73 

C 

Pre 71.83 34.7 28.58 173.05 48.66 64.57 87.48 

(2,70)=9.068 <0.001 Dur 66.59 29.9 25.19 136.92 42.75 63.22 79.99 

Post 78.82 38.5 30.6 182.07 53 68.44 96.62 

D 

Pre 62.12 24.4 20.56 129.43 41.66 58.32 80.07 

(2,66)=8.580 <0.001 Dur 64.97 24.1 25.33 128.67 43.92 65.06 83.2 

Post 71.63 27.2 22.26 132.79 49.61 67.44 90.62 

RMSSD 

A 

Pre 65.2 45.8 14.76 230.66 37.74 51.57 75.6 

(2,70)=4.619 0.013 Dur 63.67 50.3 10 260.82 32.57 50.06 77.09 

Post 73.15 55.2 13.58 258.84 34.08 56.69 84.53 

B 

Pre 61.71 41.7 8.91 167.28 28.73 58.43 81.11 

(2,68)=3.207 0.05 Dur 66.74 48.3 7.47 191.13 29.97 64.91 80.94 

Post 67.27 45.3 10.57 195.64 29.56 64.39 87.41 

C 

Pre 70.39 48.3 13.14 185.39 34.76 53.4 97.38 

(2,70)=3.34 0.041 Dur 67.64 47.7 14.79 216.71 34.63 54.36 83.76 

Post 77.34 55.7 17.36 277.13 38.03 55.32 97.57 

D 

Pre 58.99 32.0 11.4 127.27 35.37 48.15 83.45 

(2,66)=6.31 0.003 Dur 62.6 31.5 12.18 131.82 37.51 59.58 83.91 

Post 66.96 33.7 11.4 147.01 40.22 62.03 95.94 

NN50 

A 

Pre 226.19 132.6 1 486 110.75 253.5 310.75 

(2,70)=1.363 0.263 Dur 213 140.1 0 460 71 213 302.5 

Post 231.56 144.2 1 484 85.5 231.5 347 

B 

Pre 223.31 185.6 0 566 52 223.5 391.5 

(1.435,48.794)=0.248 0.707 Dur 215 162.9 0 528 68.5 213.5 330 

Post 219.94 160.1 1 530 74 215 312 

C 

Pre 258.42 190.6 2 664 92.25 198.5 425.5 

(1.66,58.243)=0.034 0.946 Dur 257.28 171.7 3 536 94 270.5 436.25 

Post 254.64 142.4 12 544 125.5 243 376.25 

D 

Pre 236.47 183.1 1 890 98 201.5 356.5 

(1.178,58.352)=0.204 0.789 Dur 246.94 162.0 2 746 118.5 255 341 

Post 247.15 137.2 0 496 135.75 280 344 

pNN50 

A 

Pre 30.45 19.9 0.12 78.41 13.46 30.6 42.34 

(2,70)=1.588 0.212 Dur 30.86 22.4 0 82.64 9.31 31.47 44.11 

Post 32.97 22.5 0.1 80.66 10.86 30.63 41.06 

B 
Pre 32.19 26.2 0 83.07 6.84 34.25 52.07 

(1.393,47.375)=2.147 0.142 
Dur 33.34 26.5 0 80.4 7.33 35.1 52.76 
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Post 35.04 26.1 0.1 82.66 8.44 37.5 55.97 

C 

Pre 34.99 24.7 0.21 75.43 10.87 33.18 54.16 

(1.756,61.469)=3.128 0.06 Dur 35.13 24.9 0.31 82.59 12.33 33.62 52.07 

Post 37.92 23.4 1.15 79.07 16.76 37.53 56.02 

D 

Pre 31.61 22.5 0.1 71.77 12.06 26.27 52.85 

(1.235,40.765)=3.088 0.078 Dur 33.54 21.9 0.19 72.01 14.58 34.54 52.39 

Post 35.34 21.1 0 71.62 16.78 35.3 52.54 

Table S5: Comparison of frequency domain parameters of HRV between the four groups 

 

 Mean SD Min Max Percentiles F(dftime, 
dferror) = 
F value 

P 

 

25 50 75 

TP 
(ms2) 

A Pre 5095.
95 

5419.
2 

420.1
6 

22146
.9 

2011.06 3380.3 5599.52 (2,70)=7.
291 

0.001 

Dur 4913.
12 

5759.
5 

427.1
3 

27246
.6 

1433.55 3048.35 4568.31 

Po
st 

6510.
2 

6838.
6 

335.1
6 

26477
.4 

2637.89 3680.8 8644.46 

B Pre 4495.
09 

3770.
9 

338.8
4 

14823
.3 

1449.76 3737.17 6117.14 (1.748,6
1.167)=4

.421 

0.020 

Dur 5048.
44 

4646.
1 

258.7
8 

19947
.9 

1326.04 3668.72 7551.1 

Po
st 

5875 5286.
2 

303.7
8 

22966
.3 

1488.67 4798.3 7988.89 

C Pre 6149.
24 

6509.
2 

539.6
3 

30386
.7 

2190.71 4216.17 7983.97 (2,70)=4.
702 

0.012 

Dur 5291.
66 

5276.
2 

546.9
8 

20559
.6 

1510.47 3755.9 6523.42 

Po
st 

7502.
7 

8286.
2 

815.0
9 

33352
.4 

2270.37 4306.67 9433.66 

D Pre 4177.
44 

3342.
3 

395.4
4 

14789
.2 

1641.55 3070.9 6440.53 (2,66)=3.
8 

0.027 

Dur 4567.
27 

3465.
4 

645.9
3 

15867
.7 

1993.28 3449.98 6487.22 

Po
st 

5255.
51 

3774.
2 

432.5
9 

17376 2409.59 4113.7 7291.77 

VLF(m
s2) 

A Pre 1060.
76 

641.9 194.1
3 

2695.
84 

644.46 902.33 1479.56 (1.595,5
5.824)=3

.127 

0.063 

Dur 1117.
27 

1101.
3 

157.7
6 

5277.
33 

448.31 776.43 1164.49 

Po
st 

1537.
73 

1568.
3 

98.11 8131.
27 

599.09 1127.61 1575.58 

B Pre 1113.
18 

935.5 146.1
2 

3957.
64 

402.58 746.13 1552.25 (2,70)=4.
595 

0.013 

Dur 1300.
72 

1047.
0 

119.8
2 

3847.
22 

547.56 866.94 1876.43 

Po
st 

1744.
05 

1689.
5 

69.21 7374.
79 

574.94 1321.68 1798.24 

C Pre 1878.
68 

2249.
1 

196.8
3 

11816
.5 

641.15 1129.85 2063.46 (2,70)=5.
313 

0.007 
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Dur 1418.
72 

1908.
4 

93.97 11297
.7 

464.35 886.17 1785.35 

Po
st 

2071.
34 

2887.
3 

142.9 15538 625.55 1335.72 2295.61 

D Pre 1151.
48 

1038.
4 

77.69 5336.
71 

489.1 892.08 1402.54 (2,66)=0.
806 

0.451 

Dur 1336.
48 

1264.
7 

320.4
2 

7449.
73 

633.41 1068.22 1632.61 

Po
st 

1404.
73 

1012.
3 

100.1
4 

4537.
77 

736.91 1225.15 1683.94 

LF 
ms2 

A Pre 1364.
42 

1474.
0 

103.1
1 

7839.
03 

388.75 924.06 1784.1 (1.330,4
6.538)=4

.71 

0.026 

Dur 1220.
28 

1409.
4 

142.1
1 

7303.
4 

321.76 851.67 1464.24 

Po
st 

1771.
5 

1830.
6 

134.0
3 

7245.
26 

524.82 1140.08 2012.94 

B Pre 1131.
91 

1010.
8 

61.49 4601.
4 

427.35 857.15 1556.1 (1.439,5
0.378)=2

.502 

0.108 

Dur 1214.
31 

1135.
3 

81.89 4121.
94 

381.04 709.15 1927.15 

Po
st 

1524.
86 

1883.
8 

167.1
2 

10786
.4 

571.66 1047.09 1897.06 

C Pre 1503.
04 

1628.
1 

159.1
8 

7876.
05 

585 907.87 1820.27 (1.284,4
4.942)=4

.559 

0.029 

Dur 1232.
27 

1063.
5 

111.1
9 

4491.
08 

470.35 980.56 1726.92 

Po
st 

1960.
42 

2150.
8 

257.7
8 

11504 642.69 1050 2973.81 

D Pre 1171.
37 

1188.
6 

93.36 6494.
83 

420.6 877.64 1518.69 (1.555,5
3.393)=1

.87 

0.172 

Dur 1295.
99 

1266.
7 

168.9
3 

5964.
73 

486.54 881.23 1587.72 

Po
st 

1539.
95 

1426.
8 

217.3
3 

7140.
09 

663.82 1156.17 2002.34 

LF nu A Pre 40.44 15.8 10.04 79.63 29.14 41.43 51.12 (2,70)=4.
535 

0.014 

Dur 39.56 16.3 10.1 74.73 29.34 42.78 50.25 

Po
st 

43.83 19.3 6.18 82.62 25.72 46.46 58.05 

B Pre 43.25 21.1 9.16 85.14 25.55 39.75 57.9 (2,70)=0.
746 

0.478 

Dur 42.41 21.7 9.94 84.62 25.86 38.38 58.96 

Po
st 

44.33 20.7 13.5 79.48 25.8 40.67 62.77 

C Pre 42.29 17.4 14.6 83 29.69 42.93 52.42 (2,70)=2.
141 

0.125 

Dur 40.66 18.8 11.87 87.23 25.97 37.84 49.43 

Po
st 

43.48 17.8 6.55 81.41 27.44 45.74 55.97 

D Pre 41.73 13.9 20.24 67.72 30.71 41.35 52.37 (2,66)=0.
87 

0.424 

Dur 41.4 15.4 20.31 79.86 28.86 39.13 51.02 

Po
st 

43.48 15.1 17.8 70.97 31.55 41.91 52.16 

HF 
ms2 

A Pre 2300.
53 

3508.
0 

102.7 15196
.9 

407.58 1223.75 2255.82 (2,70)=2.
106 

0.129 
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Dur 2205.
29 

3845.
6 

98.3 20973
.8 

411.45 977.11 1922.42 

Po
st 

2724 4135.
8 

91.38 19746
.4 

492.49 1151.97 2155.6 

B Pre 1952.
82 

2494.
1 

33.24 11426
.6 

394.03 1232.09 3079.13 (2,70)=1.
677 

0.194 

Dur 2223.
82 

3020.
5 

22.34 14610
.3 

323.41 1621.43 2601.11 

Po
st 

2312.
33 

2959.
0 

47.96 13970 399.83 1592.69 2725.47 

C Pre 2069.
48 

2154.
3 

49.18 8027.
73 

502.94 1177.53 3043.25 (2,70)=2.
227 

0.115 

Dur 2150.
6 

2591.
3 

97.16 10952
.5 

476.94 1084.4 2833.33 

Po
st 

2645.
22 

2961.
8 

158.6
5 

11548
.2 

534.86 1313.53 4035.13 

D Pre 1591.
07 

1545.
0 

75.73 5533.
11 

398.95 1067.53 2321.29 (1.190,3
9.274)=4

.203 

0.041 

Dur 1709.
74 

1479.
9 

87.44 5035.
98 

567.68 1302.84 2704.98 

Po
st 

2047.
83 

1897.
6 

97.09 7072.
91 

558.5 1513.38 3154.41 

HF nu A Pre 49.14 14.6 14.43 76.68 40.59 49.39 59.21 (2,70)=2.
402 

0.098 

Dur 49.43 15.4 22.45 78.69 40.78 49.36 59.43 

Po
st 

46.47 17.1 12.87 78.73 35.35 41.79 57.72 

B Pre 48.8 19.1 11.92 82.58 34.39 51.84 59.4 (2,70)=0.
401 

0.672 

Dur 50.02 19.1 12.05 78.64 34.13 54.58 63.74 

Po
st 

49.19 18.8 16.65 80.95 32.09 53.98 64.43 

C Pre 50.02 16.2 15.33 80.01 40.03 49.87 62.66 (2,70)=1.
759 

0.18 

Dur 52.01 18.0 11.5 81.19 43.68 53.86 65.6 

Po
st 

49.38 17.4 16.37 81.26 38.23 47.1 65.53 

D Pre 49.34 14.3 17.34 72.88 35.2 51.35 59.64 (1.716,5
6.627)=0

.775 

0.448 

Dur 51.37 14.8 19.02 71.32 38.57 52.97 64.92 

Po
st 

49.44 14.0 25.14 74.29 36.69 52.51 60.39 

LF/HF A Pre 1.01 0.8 0.15 4.16 0.57 0.83 1.26 (1.457,5
1.004)=4

.385 

0.028 

Dur 0.97 0.7 0.14 3.24 0.57 0.89 1.11 

Po
st 

1.23 1.0 0.08 5.25 0.61 1.09 1.5 

B Pre 1.39 1.6 0.12 7.14 0.41 0.76 1.71 (1.474,5
1.579)=0

.039 

0.922 

Dur 1.38 1.6 0.13 7.02 0.41 0.7 1.77 

Po
st 

1.35 1.3 0.17 4.77 0.4 0.73 2.05 

C Pre 1.14 1.2 0.19 5.42 0.47 0.86 1.27 (1.672,5
5.165)=0

.043 

0.936 

Dur 1.18 1.5 0.18 7.59 0.44 0.67 1.1 

Po
st 

1.16 1.1 0.22 4.97 0.42 0.95 1.44 

D Pre 1.03 0.7 0.28 3.45 0.5 0.82 1.43 0.746 
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Dur 1.02 0.8 0.3 4.2 0.44 0.75 1.27 (1.676,5
8.663)=0

.242 
Po
st 

1.09 0.8 0.24 2.99 0.52 0.79 1.42 

Table S6: ANCOVA analysis of VLF ms2 – based on drinking history 

  

Alcoholism 

history 

F P value time F P value 

Time*group 

VLF (ms2) Yes 0.833 0.445 2.828 0.027 

No 11.121 <0.0001 0.836 0.534 

Log VLF 

(ms2) 

Yes 0.200 0.820 1.438 0.233 

No 11.315 <0.0001 1.893 0.083 
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Chapter 3: Neural and cognitive responses to 

environmental stimuli among humans 

Acoustic stimulation with different modes of Indian music on 

electroencephalographic correlated components and intersubject correlation 

– a randomized controlled trial 

Kirthana Kunikullaya U1,2, Arun Sasidharan3, Vijayadas4, Radhika Kunnavil5, Jaisri 

Goturu6, Nandagudi Srinivasa Murthy7 

1 Abstract 

Electroencephalogram (EEG) studies evaluating the correlated brain changes and inter-

subject correlation (ISC) have often used western music as the acoustic stimulus. The 

current study employed Indian music to understand inter-brain synchronization. This 

randomized controlled triple-blind study with four groups (three music interventions: mode 

or raga Miyan ki Todi, Malkauns, and Puriya and one control group) involved 35 

participants in each group. EEG power spectrums before (BI), during (DI), and after 

acoustic interventions (AI), were measured and analyzed for correlated components (C1, 

C2, and C3), as well as scores of ISC. A hierarchical general linear model with cluster 

statistics to the electrode-level data and robust ANOVA with post hoc tests were applied. 

Results of the study showed that left frontal gamma power increased with raga Malkauns 

DI, while raga Miyan ki Todi showed a frontal increase in beta1 power, and raga Puriya 

showed a decrease in right frontoparietal delta power AI. The raga Malkauns and raga 

Miyan ki Todi groups showed a decrease in C1 (globally distributed low-frequency 

activity) and an increase in C2 (posteriorly dominant alpha-beta1 activity) power, while 

raga Puriya showed a weak decrease in C1. In ISC scores, the raga Puriya group showed 

a marginal drop in C3 (peripherally dominant broad-band activity) after the intervention. 

These findings demonstrate specific mode-dependent correlated EEG components that 

persist after the listening period. The short-term functional neuroplastic effects were 

postulated to be due to default-mode network activity and autobiographical memory. 

Overall, this study adds to our understanding of the effects of Indian music on brain 

activity and inter-brain synchronization.  
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correlation; correlated component analysis. 

2 Introduction 

Studies have shown that exposure to natural environments can reduce stress and 

induce positive attitudes through stimulation of the sensory systems (1–3). One of the 

universal ways a human connects with the environment is through engagement, which is 

defined behaviorally as a commitment to attend to the stimulus. Similar to other sensory 

experiences, acoustic stimulus, especially music, engages a person and helps to induce and 

perceive different emotions (4,5). Music not just entertains an individual but affects cognition 

(6,7), modulates emotions (8–10), and reduces stress (11–13). These responses can be 

recorded using subjective measures such as emotion questionnaires, valence, and arousal 

(14) and objective measures such as electrocardiography (15), electroencephalograph 

(EEG), and functional magnetic resonance (fMRI) (16,17). Previously studies that have 

recorded EEG with music have predominantly concentrated on the groupwise or stimulus-

specific power spectral changes (17–19). It was observed that listening to Indonesian 

Gamelan music increased EEG beta power, bilateral temporal region blood flow, and freshly 

recruited the posterior portions of precuneus bilaterally (cerebral blood flow positively 

correlated with the beta power in these regions) (20), indicating music-evoked memory recall 

or visual imagery (21). Listening to instrumental music (raga Desi Todi), for 20 days (30 min 

each day) reduced anxiety and increased alpha power on EEG (22). Using multifractal 

detrended fluctuation analysis (DFA) of EEG, it was shown that listening to a drone instrument 

(tanpura) increased the complexity of the frontal alpha and theta power (23). Music therapy 

for stress reduction increased posterior theta power and decreased mid-frontal beta and 

posterior alpha power, along with a reduction in the degree of anxiety (24). It is important to 

note that the duration of the music stimulus in several studies ranged from a few seconds to 

about 3 minutes. A Digital music study conducted in 2019 examined music consumption 

across people aged 16–64 years, in different geographical locations in India to conclude that 

Indians spend approximately 19.1 hours of music per week (higher than the 18 hours average 

in remaining parts of the world) (25). This would make up to about two hours a day. Thus, in 

a natural setting one listens to music for longer durations. Previously we have shown that 

there is an overall effect on the EEG power spectrum while listening to different modes of 
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Indian music, lasting for durations over ten minutes. The highlight of this study was that we 

noted significant temporal differences within short bins of time intervals (every 2 minutes) that 

were analyzed as the music was heard over this duration (17). Therefore, while studying 

engagement to a stimulus such as music, which in itself is a time-based stimulus that unfolds 

over time, it is important to give music that lasts for relatively natural durations. 

Further, when a set of individuals are exposed to the same sensory stimulus, few 

individuals will have typical experiences and they are said to be engaged with the stimulus. 

However, the experience of few remains atypical, which is said to be due to the typicality of 

their stimulus-evoked brain activity (26). This can be measured by inter-subject correlation 

(ISC), which evaluates the similarity of an individual's brain over some time with that of 

another individual or a group, in a given region of the brain. Recently, this concept of brain-

to-brain synchrony or ISC was reviewed (27), and for a tutorial see (28). ISC is often used 

with fMRI or EEG data from individuals visualizing a moving stimulus such as a movie clipping 

or listening to a speech (26,29–33). ISC has been explored using an fMRI approach with 

relatively natural listening conditions as well as emotion-inducing music stimuli (such as sad 

music) (34,35). While the advantage of music-related fMRI investigations is source 

localization, the constraint of fMRI, which may have resulted in an insufficient grasp of music-

induced brain responses, is that the conventional experimental setups mandate repeated, 

and concise stimuli to simulate the anticipated hemodynamic response, thus making the 

music stimuli given, last for shorter durations. It will be interesting to understand music-based 

engagement and ISC through the recording of EEG for two reasons, one, Music is a time-

based stimulus and EEG is well suited to investigate the time-locked brain responses as the 

temporal resolution is sufficiently high; second, the melodic modes or scales of music are 

made up of a set of organized tones at particular frequencies implicated to induce specific 

emotions, and thus varied brain responses. Essentially observation of synchronized 

responses, if any, in a group of participants for music indicates a socio-behavioral response 

to musical stimuli, having implications in the management of mental health conditions 

generating atypical socio-behavioral network responses (autism, schizophrenia). ISC of 

neural responses is said to be well-suited for measuring musical engagement (36). Music-

induced EEG changes and ISC patterns are now more often studied to identify the 

unmodelled neural patterns in response to listening or playing music (37–41). A recent EEG-

based music study showed that ISC can be modulated by musical training and familiarity with 
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the musical genre (39). Although previous studies have investigated the brain responses 

during continuous listening to relatively simple musical stimuli or controlled auditory 

paradigms (18,42,43), there is a dearth of parallel studies that examine how the human brain 

processes the multitude of musical features present in naturalistic musical stimuli. 

To date, there has been little discussion on changes in EEG power and ISCs on 

receptive listening to Indian music. Similar to western music, the Indian musical system has 

several scales or modes (44), which are made of a given set of tones or frequencies, 

presented in an orderly manner, to generate an emotion of their own. Examining the short-

term plastic changes in the brain on exposure to complete musical pieces, made up of specific 

modes, that may be inducing different emotions, can assist in comprehending the distinctive 

functions of specific neural regions spatially and temporally in portraying emotional 

encounters. It is still unknown if ISC varies with different musical/melodic modes within a 

particular genre. In the current study, we evaluated the engagement of participants while 

listening to different acoustic stimuli, using different modes of Indian music through recording 

of EEG changes. This study is part of a larger study where cardiovascular and other 

physiological parameters were reported after intervention with three modes of Indian music 

i.e., raga Miyan ki Todi, raga Malkauns, and raga Puriya. We observed that the state anxiety 

and salivary stress measures were reduced with all three modes of music. The autonomic 

changes as measured using heart rate variability, were specific to the mode heard and the 

time of intervention (45). In the current manuscript, we report the detailed EEG findings, ISC, 

and correlated component analysis. The main objective was to analyze the spectral variations 

of EEG power and the cortical response to music during listening to three different melodic 

modes, in addition to ISCs. We also explored if the effects lasted beyond the intervention 

period. We hypothesized that different modes of music would induce different 

electrophysiological changes and would produce specific correlated components of cortical 

frequency as per the mode heard and due to the repetition of the phrases during the 

elaboration of a given melodic mode (in the given duration) the overall ISC may reduce. 

Based on previous studies (30,38), we took an exploratory approach and calculated ISC from 

the maximally correlated components. We found that each mode induced specific power 

spectral changes in EEG. Correlated component analysis of the EEG,  during and after the 

intervention, revealed that there was a decrease in low-frequency and an increase in high-

frequency activity on listening to raga Malkauns and raga Miyan ki Todi, while raga Puriya 
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showed a weak decrease in low-frequency activity. We did not observe significant changes 

in ISC scores. This indicated mode-dependent short-term functional cortical effects that 

persisted after the listening period. 

3 Materials and Methods 

3.1 Study design & ethics 

This was a prospective randomized controlled trial with a triple-blind design (part 

of a larger trial (45)) with 140 participants who were randomly divided into 4 groups, with 

35 participants in each group. Though triple-blinded in design, once the participants were 

given the intervention they knew if they were in the music or the control group. Albeit the 

participants were familiar with Indian modes and tones due to their cultural background, 

none of them had been exposed to this musical piece before. Each group received one 

of the acoustic interventions, group A received raga Miyan ki Todi, group B received raga 

Malkauns and group C received raga Puriya, with group D as a control group. We 

recorded EEGs during three tasks: silence, music listening, and silence (each lasting 10 

minutes) and compared them with the control (no music). The study period ranged from 

2019 to 2021 (June 2019 - first recruitment and February 2021 - last recruitment). The 

data presented here were taken from a larger experiment (full trial protocol: 

NCT03790462 on clinicaltrials.gov.in). The research was conducted following the 

Declaration of Helsinki guidelines. The study protocol was approved by the institutional 

scientific committee on human research and the ethical review board (Reference: 

MSRMC/EC/2017, dated: 25/07/2017). 

3.2 The basis for sample size 

The sample size was calculated based on a previous study where the change in 

State-Trait Anxiety Inventory-6 (STAI-6) anxiety median and IQR scores was from 33.3 

(23.3–41.7) before music intervention and to 30 (20–40) after music intervention. 

Considering the minimum difference of 4 units in the STAI score, with an effect size of 

0.7, power of 85%, and an alpha error of 5%, the sample size was calculated to be 35 in 

each group (46). 
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3.3 Recruitment 

The study participants were recruited from a group of educational institutions in the 

city of Bengaluru, Karnataka, India. Healthy right-handed aged 18–30 years were invited 

to participate in the study via an open call for participants for the study posted online 

(social media) and notice board advertisements across the institutions. Given the 

objectives of the study, to avoid cultural familiarity differences, only Indians were invited 

to participate in this study. Participants who responded to the call were sent an online 

questionnaire via Google forms, as explained in (17,45). They had to be fluent in English, 

with normal hearing, and without cognitive or decisional impairments, and those who were 

not smokers or alcoholics were invited to participate in the study. Participants with any 

past or current medical or surgical disorders, and self-reported BMI of over 30 kg/m2 were 

excluded from the study (Fig 1). The rest of the participants were invited to the lab for 

further recordings.   

3.4 Randomization 

A simple randomization technique was used to randomly select participants into four 

groups (Fig 1). The random numbers were generated using MS Excel (4 sets of 35 each) 

and sealed in an opaque envelope. The serial number of the participants was written on 

the top of the envelope. The envelope was opened by the research assistant after the 

baseline assessment of each participant and then they were assigned to their respective 

arms. The participants knew understood that they were in the music intervention group 

once the intervention began, though they did not know the mode. All the investigators 

who did the outcome assessments were blinded to the interventions. 
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Figure 1: Consort diagram of participant recruitment, distribution, and follow-up 

3.5 Intervention 

         All participants listened to the acoustic intervention through headphones 

[considered ideal according to review (47)], connected to a laptop, at a uniform volume 

(50%). The acoustic stimulus was coded as A, B, C & D by a person uninvolved in the 
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project. We instructed the participants to listen to this with their eyes closed, and minds 

relaxed, for the duration it was played (10 to 12 minutes). Three melodic scales 

(modes/ragas) were chosen and implemented as interventions.  Indian classical melodic 

scales/modes (ragas) Malkauns (pentatonic: C, E ,ʐ F, A ,ʐ B )ʐ, Puriya (hexatonic: C, D ,ʐ 

E, F#, A, B) & Miyan ki Todi (heptatonic: C, D ,ʐ E ,ʐ F#, G, A ,ʐ B) were chosen based on 

our previous work [Table 1], where we standardized the music (11,12,45). In this study, 

solo instrumental Indian music modes were used, without percussion or lyrics, ensuring 

uniformity of the intervention. As repetition is said to reduce ISC values (30–32), the 

acoustic stimuli were not repeated within the same individual or between groups. 

Table 1: The three chosen Indian melodic modes, the names of the notes in 
Hindustani music, and Western scale equivalents. 

Svara/Note Hindustani Name Staff Note Western Scale Interval Name 

 Raga Miyan ki Todi (Scale A) (heptatonic, G appears in descent) 

S Shadja C Perfect unison 

r Komal Rishab D  ʐ Minor second 

g Komal Gandhar E  ʐ Minor third 

M Tivra Madhyam F# Augmented fourth 

P Pancham G Perfect fifth 

d Komal Dhaivat A  ʐ Minor sixth 

N Shuddha Nishad B Major seventh 

 Raga Malkauns (Scale B) Ascent and descent sameðpentatonic 

S Shadja C Perfect unison 

g Komal Gandhar E  ʐ Minor third 

m Shuddha Madhyam F Perfect fourth 

d Komal Dhaivat A  ʐ Minor sixth 

n Komal Nishad B  ʐ Minor seventh 

 Raga Puriya (Scale C) C, D ,ʐ E, G ,ʐ G, A/A ,ʐ B (hexatonic) 

S Shadja C Perfect unison 

r Komal Rishab D  ʐ Minor second 

G Shuddha Gandhar E Major third 

M Tivra Madhyam F# Augmented fourth 

D Shuddha Dhaivat A Major sixth 

N Shuddha Nishad B Major seventh 
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The music was tuned to a frequency of 329.63 Hz (the tonic or ‘Sa’ at pitch E). The 

music used for this study was 10 to 11-minute-long instrumental (Flute/Bansuri) music 

recorded by an eminent musician (exclusively for the present study), playing the 

improvisation in the respective scales [named alaap (12,45,48) in Indian music]. We 

chose the flute as the instrument to play the melodic scales, as only musical components 

such as pitch, intensity, rhythm, and timbre would be present, without the lyrical and 

percussion components. Participants in group D (the control group) were given 

headphones similar to the intervention group. The audio clip consisted of predominant 

silence for over 10 minutes. The participants in the control group had to lie down in a 

supine position, with the complete recording lasting for over 30 min duration, it was 

possible for the participants to feel sleepy (sleep is anxiolytic, which would alter the 

current objective, and would induce other sleep-related EEG changes). Thus, natural 

sounds (birds chirping and flowing river) were played for 10 s duration once every 2 min 

in the middle ten min (during intervention); a total of 50 s in the middle ten minutes. This 

also ensured uniformity of intervention between the groups, similar to our previous study 

(17,49–57). 

3.6 Process of recordings 

Recordings of EEG were done in a supine position with eyes closed, with the first five 

minutes utilized for attaching EEG electrodes. The participant was asked to relax with 

eyes closed for the next 30 – 35 minutes when the EEG was continuously recorded, with 

the event marking artifacts such as eye movement, jaw movement, and acoustic 

intervention played through headphones, in the mid 10 minutes (Fig 2). We concentrated 

on the effects that would naturally occur during acoustic stimulation, without the 

participation of the participants in any particular cognitive task (58). Subsequently, the 

participant's heads were cleaned and relieved. The recordings were made using a 19-

channel EEG system (Galileo Mizar Lite, EB Neuro, Italy), with silver chloride electrodes 

(Ag-Cl) placed on the scalp after the 10-20 international system of electrode placement 

[active electrodes were placed in Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, 

P3, Pz, P4, T6, O1, O2 and the reference electrode in the ear lobes (A1 & A2)]. 
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Figure 2: Flow chart describing the process of recording 

3.7 Electroencephalographic Data Analysis 

Raw recordings of 3 conditions were marked before, during, and after interventions 

and stored in GalNT software (EB Neuro, Italy). These were then converted to the 

standard European Data Format (EDF). As the EEG data exported from the device did 

not have markers, a researcher manually recorded the timings for each of the 3 study 

conditions (i.e., Before, during, and after the intervention) in the device software. These 

timings were carefully corrected for data clipped off during acquisition pauses (there was 

at least one pause per subject). Using custom code written in MATLAB software, event 

marker files (.evt files required for the next step) were generated for each EEG file, 

denoting the 7-minute continuous segments within each of the 3 study conditions (skipped 

the initial 1 minute of each condition to avoid artifacts during transitions) (17). These data 

were then subjected to pre-processing using EEGLAB (59) functions (version: 2021). This 

included: 0.5-40Hz bandpass filtering, automated bad channel and bad segment removal 

by artifact subspace reconstruction (ASR) approach (60), bad channel spline 

interpolation, and average re-referencing - all done with custom written codes in MATLAB 

software (version: 2021b). The cleaned EEG data would be discontinuous with multiple 

short bad segments removed (varied across participants) and ‘boundary markers' added 
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to handle boundary effects during further analysis (which do not require long continuous 

EEG segments). Therefore, these were further visually inspected and only data from 

participants who had a total of at least 3 min of good quality EEG for all three portions 

were chosen for further analysis.  

Band power was evaluated using FFT-based power spectral analysis on each of 

the EEG segments (with 2 seconds nonoverlapping Hanning windowed subepochs giving 

0.5Hz resolution) and grouped in standard frequency bands (Delta: 1-4Hz, Theta: 4-7Hz, 

Alpha: 8-13Hz, Beta: 13-30Hz, and Gamma: 30-45Hz), for all 19 EEG channels, across 

all files. The gamma power was limited to <45Hz) due to the low sampling rate (128Hz) 

and potential filter effects in this frequency band.   

As multi-channel EEG captures spatially distributed activity of prominent brain 

networks, instead of analyzing individual electrodes, we decided to use a linear 

combination electrode-level spectral activity that captures EEG spectral activity most 

correlated between participants. Correlated component analysis (CorrCA) helped achieve 

this and is conceptually based on canonical correlation analysis. This approach has been 

used in prior studies on time-domain data to extract multi-electrode EEG components 

related to music listening and video viewing (30,39). We used frequency domain data, 

i.e., the average power spectral data within each 10 min condition, for CorrCA. CorrCA 

also gives the forward model topography and time series of the components which could 

be used for spectral and other analyses that are typically done on single electrode data. 

For CorrCA, we used the code available at http://www.parralab.org/isc/. For the current 

analysis, we performed CorrCA on compiled spectral data from each group separately to 

capture the components most prominent to each intervention and selected the first three 

components per group with the highest ISC values at the group level. The subject-level 

total power across the spectra of each component was examined for the intervention 

effect between groups. Furthermore, the ISC values at the subject level were compared 

as a measure of engagement within the conditions. For statistical analysis, the data during 

and after the intervention were subtracted from the data before the intervention and then 

used for comparisons between groups. The results were also compiled into a Master 
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Chart for further processing in a statistical tool using other physiological, psychological, 

and socio-demographic variables. 

3.8 Statistical analysis   

        Data were analyzed using SPSS software version 18.0 (SPSS Inc. Released in 

2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.). The continuous 

variables were analyzed using descriptive statistics and the qualitative/categorical 

variables were analyzed using frequency and percentage.  For statistical analysis of 

electrode-level EEG spectral data, we applied a hierarchical general linear model with 

cluster statistics to the electrode-level data using functions of the LIMO toolbox in 

MATLAB software. For statistical analysis of component-level spectral data and ISC 

scores, we applied robust one-way repeated measures ANOVA on trimmed mean 

followed by posthoc Yuen’s trimmed mean test (20% trimming) (61) and p-values 

adjusted using Holm’s correction (62), using Jamovi software written in R language. Two-

tailed p value ≤0.05 was considered statistically significant at a 5% level of significance. 

4 Results 

All the sociodemographic characteristics were comparable between the groups as 

we reported in (45), except educational status, which was adjusted for during 

physiological parameters analysis. There were no differences in familiarity with music or 

training between the groups.  

4.1 Electrode-Level Band Power Changes Relative to Baseline 

We calculated the power changes across the scalp for each subject, relative to the 

baseline power before the intervention, for each frequency band. These power changes 

were obtained as first-level beta values of a hierarchical general linear model approach 

described in the Methods section. During the intervention, the most prominent changes 

were a global decrease in alpha power for all intervention groups and a frontocentral 

increase in beta/gamma for two of the music intervention groups (raga Malkauns and raga 

Miyan ki Todi) (Fig 3). After the intervention, the most prominent change was a frontal 

decrease in delta power and a frontal increase in beta1 power in most groups (Fig 4). 
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Figure 3: Scalp maps representing the average changes in electrode-level band 

power during the intervention 

 

Figure 4: Scalp maps representing the average electrode-level band power 

changes after intervention 

To evaluate the group differences, a second-level analysis was done where each music 

intervention group was statistically compared with the control group and cluster statistics 

(tfce) was employed to determine the significant changes. Based on this analysis, the 

group listening to raga Malkauns showed a significant increase in gamma power in the 
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left frontal regions during the intervention (Fig 5). While the group listening to raga Puriya 

showed a right frontoparietal decrease in delta power and those to raga Miyan ki Todi 

showed a frontal increase in beta1 power, after the intervention (Fig 6).

 

Figure 5: Scalp maps showing the differences between the groups in electrode-

level band power between the intervention and control groups during the 

intervention. 
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Figure 6: Scalp maps showing group differences in electrode-level band power 

between the intervention and control groups after intervention. 

4.2 Correlated component analysis (CorrCA) based on Inter Subject 

Correlation (ISC) 

To explore the most temporally consistent EEG pattern for the different conditions 

and groups, we performed a Correlated Component Analysis (CorrCA), which extracts 

the components correlated between subjects. As our EEG segments were not well timed 

for intervention stimuli, we used frequency domain data (average power spectral data 

within each 10 min condition) for CorrCA. Based on the spectral distribution of the first 

three most correlated components, the first component is globally distributed low-

frequency activity (C1), the second component represents posterior dominant alpha-

beta1 activity (C2), and the third component represent peripherally dominant broad-band 

activity (C3) (Fig 7). 
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Figure 7: Scalp distribution and spectral pattern of the first three components (C1, 

C2 & C3) based on CorrCA before (7a), during (7b), and after (7c) intervention. 
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Figure 8: Change in the total spectral power of the components (C1, C2, & C3) 

between the four groups during and after the intervention, relative to before the 

intervention [C1 during (8A) C1 after (8B) C2 during (8C) C2 after (8D) C3 during 

(8E) C3 after (8F) intervention]. 

In terms of the spectral dynamics of the CorrCA components, both raga Malkauns and 

raga Miyan ki Todi groups showed a similar pattern of decrease in C1 power and increase 

in C2 power during intervention relative to baseline when compared to the control group 
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(Fig 8). Even after the intervention, this pattern was strong for raga Malkauns but weaker 

for raga Miyan ki Todi. Whereas raga Puriya showed only a weak decrease in C1 (after 

intervention), compared to the control group. 

 

Figure 9: Change in the inter-subject correlation scores of the components (C1, C2, 

& C3) between the four groups during and after the intervention, relative to before 

the intervention [C1 during (8A) C1 after (8B) C2 during (8C) C2 after (8D) C3 during 

(8E) C3 after (8F) intervention]. 
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ISC scores were comparable between groups, except for raga Puriya, which showed a 

marginal drop in C3 after intervention (Fig 9). 

5 Discussion 

In this study, we evaluated the spectral effect of EEG of acoustic stimuli (three Indian 

music and one control stimulus) in healthy young participants, the intervention lasting 10 

minutes. The three musical stimuli consisted of instrumental music based on different 

ragas of Indian classical music (raga Miyan ki Todi, raga Malkauns, and raga Puriya) that 

were chosen based on Indian music ancient literature (44,63). The socio-demographic 

data was comparable across the groups (45). In the electrode-level analysis of EEG, 

during the intervention, the raga Malkauns group showed a significant increase in left 

frontal gamma power. After the intervention, the Puriya raga group showed a decrease in 

the right frontoparietal delta power, and the Miyan ki Todi raga group showed a frontal 

increase in beta1 power. Exploring this further, the component-level analysis showed a 

decrease in C1 power (globally distributed low-frequency activity) and an increase in C2 

power (posterior dominant alpha-beta1 activity) with raga Malkauns (strong both during 

and after intervention) and raga Miyan ki Todi (strong during and weak after intervention), 

whereas raga Puriya showed only a weak decrease in C1 (after intervention), compared 

to the control group. 

5.1 EEG power spectral patterns 

On electrode-level power spectral analysis, we saw a decrease in delta power and an 

increase in beta1 and gamma power, and no significant change in alpha power, in music 

intervention groups relative to the control group.  

Several EEG studies report conflicting evidence of electrode-level power spectral 

changes (decrease or increase, or null responses) when listening to music. For example, 

an EEG study that used Mozart's K.448 music (64), reported a significant drop in alpha 

power during listening globally (F3-C3, F4-C4, C3-T3, C4-T4, T3-O1, and T4-O2) which 

persisted in posterior sites (T3-O1, T4-O2, O1-C3, and O2-C4) post-music, compared to 

pre-music alpha power. This study also observed a significant decrease in theta (at T3-
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O1 & O1-C3) and beta (at T3-O1, O1-C3 & O2-C4) power during listening, which partially 

persisted after music. Alpha power is often associated with active inhibition and therefore 

a drop in alpha power could indicate an overall increase in the level of brain activation (or 

disinhibition) that occurred when listening to the acoustic stimulus (65) or when actively 

participating in processing or anticipating a stimulus (66). But since alpha power drop co-

occurred with drop-in closer spectral bands (theta and beta) while listening to music, the 

spectral specificity mentioned before may not be true. Another EEG study that involved 

listening to popular classical symphonic pieces has shown that the alpha power increased 

in the parietal and occipital areas of both hemispheres during listening and that the 

maximum frequency of the alpha band was significantly reduced (19). The authors 

concluded that the level of brain activation was reduced on listening to music.  

A previous study observed a reduction in delta power after slow-wave sleep brain-

wave music, and this the authors interpreted to be a positive effect on sleep quality (67). 

Alternatively, conflicting evidence exists that this reduced delta could be due to lesser 

sleep (68). Listening to natural music has been found to drive the beta, theta, and delta 

activity (69), especially when the rhythm of the music falls in these frequency ranges. A 

MEG study of responses to pain induced during listening to preferred music versus 

personalized entrainment music found that preferred music reduced delta power in the 

cingulate gyrus, while entrainment music led to changes in gamma power in the 

somatosensory regions (70). The drop in delta power after stopping raga Puriya in the 

current study could be due to alertness or divergent thinking after stopping the 

intervention (71). Other frequency bands found to change when listening to a Mozart 

musical piece, Sonata K.448, were reduced theta power in the left temporal area; 

increased beta in the left and right temporal, the left frontal, and increased alpha1 power 

in the left temporal region (72). It was found that the power of low-frequency brain waves 

increased in the auditory cortex with a gradual increase in theta and alpha power in the 

amygdala and orbitofrontal cortex (probable higher analysis of music) with time along with 

an increase in the power of alpha, theta and beta1 waves in the orbitofrontal cortex while 

listening to consonant sounds (18). Taken together, there could be a globally distributed 

alpha activity that decreases along with other frequency bands (like delta, theta, and beta) 

and a more posterior dominant alpha activity that increases while listening to engaging 
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music. This is possibly what our component-level analysis captured as C1 power 

decreases and C2 power increases during and after music listening. Similarly, studies 

have found a co-occurrence of power changes in higher frequency bands. In one study, 

enhanced spatial performance after exposure to music was associated with a lower alpha 

2 (10.5-11.97 Hz) and a higher beta 1 (12.02-17.97 Hz) (72). In another study, there was 

a uniform reduction of alpha power and an increase in the gamma high power localized 

in the electrodes over or nearby the auditory-cortex brain regions (e.g. FT7, TP7, FC3, 

FT8, T4), during music listening (58). This may be captured by the slight increase in C3 

power during listening in the raga Malkauns group. 

Alpha activity in EEG often increases with an increase in task demands (for example, 

answering questions about stimuli) (73). The beta and alpha rhythms are seen in the 

awake state and in that, beta rhythm is usually associated with increased alertness, 

cortical integrity, stress, strong emotions, and cognitive processes (74,75). As reported 

before,  a significant increase in EEG beta power during music listening, positively 

correlated with regional cerebral blood flow (20). This was proposed to be due to active 

cognitive sound processing, within the premotor-posterior parietal framework. Similar to 

beta, an increase in gamma activity is associated with selective attention, working 

memory, and conscious stimulus recognition (76,77). Beta rhythms are shown to predict 

listener-specific neural signatures in naturalistic music listening (78). Gamma activity has 

been implicated in the perceptual binding of musical features at the sensory level and the 

matching of external acoustic information to internal thought processes to form 

meaningful concepts (79,80). Gamma is also found to be higher in trained musicians, 

reflecting improved binding of musical features (81–83) and may be related to musical 

expectations (84). A previous study observed that dancers had strengthened theta and 

gamma synchrony during music relative to silence and silent dance. Musicians in contrast 

had decreased alpha and beta synchrony to music (85). A recent study recorded lower 

gamma event-related synchronization among dancers, during listening to preferred 

music, said to be due to selective attention to stimuli while probably planning/imagining 

dance movements. Alternatively, the rise in gamma and beta was postulated to be due to 

familiar music, which increases emotional provocation (86). The same study also showed 

a significant decrease in alpha activity for their expertise-related music compared to other 
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music, probably due to inhibition release (87) and cortical involvement in listening to their 

own music. Therefore, the decrease in globally distributed low-frequency activity (C1), the 

increase in posterior dominant alpha-beta1 activity (C2), and the weak increase in 

peripherally dominant broad-band activity that includes beta/gamma (C3), shown most 

prominently by the group raga Malkauns, (and insignificantly by raga Miyan ki Todi) could 

be due to attention modulation, increased alertness, binding of music features or may 

also serve as a reliable indicator of liking to music (88). 

5.2 Significance of Component-Level Analysis Based on Intersubject 

Correlation 

In the current study, ISC scores were comparable between the groups, except with 

raga Puriya which showed a marginal drop in C3 power (peripherally dominant broad-

band activity) after the intervention. ISC examines shared brain responses between 

participants, the degree to which their responses match each other, and musical stimuli, 

it represents the degree to which the music is gripping their brains and is driving their 

experience (39). The ISC of EEG has been used as an index of engagement with 

naturalistic stimuli such as movies, stories, speeches, and music. The ISC has both lower-

level processes, such as sensory processing, and higher-level processes, such as 

memory retention (29,31). However, ISC is shown to be affected by attention (30,89) and 

is capable of tracking musical engagement even though the behavior is not recorded. 

When attention is diverted away from sensory processes, the resulting ISC is shown to 

be smaller among participants (89,90). Thus, when attention is allocated to the stimulus, 

ISC is increased. Our results strengthen the notion that ISC is linked to engagement with 

the stimulus. A recent study found that ISC reduced after repeated listening to familiar 

music compared to unfamiliar classical music pieces (stimuli of 60 – 90 seconds) and that 

slower music is associated with higher rates of mind-wandering (39). Consequently, 

slower tempos might cause decreased focus on the music, resulting in greater differences 

in physiological responses among individuals and ultimately lower ISC as shown in 

previous studies (29,91,92). It is important to note that all the participants were Indians, 

and the music was exclusively recorded for the current study (not familiar with the 

clippings used). But, we cannot exclude the participants' prior exposure to these tones or 
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combinations of tones. Concerning familiarity, in a previous study, the ISC of the relative 

component (RC1) in EEG was highest for a foreign language narrative and lowest for an 

English narrative among fluent English speakers (32).  

As our EEG segments were not very well time-locked to intervention stimuli, we 

used frequency domain data (average power spectral data within each 10 min condition) 

for CorrCA, based on the spectral distribution of the first three most correlated 

components. In the current study, we used the first three components with the highest 

ISC values in each group, and their ISC values were statistically comparable and showed 

similar patterns. This means that we captured spatiospectral components that showed 

comparable engagement during the session and their spectral pattern might better 

represent the intervention-related changes. Previous studies have observed that passive 

listening to natural music evoked significant intersubject and stimulus-response 

correlations, suggesting distinct neural correlates of musical engagement (37). Another 

recent study also showed significant ISC during periods of escalated tension with natural 

music (cello, strings) but at the high point, there was no significance (38). These authors 

have also recorded that EEG ISCs are highest for the remix stimulus that had more 

attention-catching musical events and lowest for our most repetitive manipulation, 

Tremolo (40). Our hypothesis that repetition of the phrases may reduce ISC was partially 

true only for the group that listened to raga Puriya.  Further, the music used in the current 

study did not have peaks, tension, or emotionally charged variations as in previous 

studies (35,38). The music was created to produce an overall relaxing effect which might 

have resulted in more groupwise comparable results of ISC. 

Our EEG spectral findings, especially those from component-level analysis, align 

with findings related to default mode network (DMN) activity and its relation to imagery or 

self-referential thoughts. To support this notion, a high-density EEG study that 

intermittently switched the attention of participants from internal (autobiographical 

remembering) to external processing (GO-NO-GO task) processing, found that 

autobiographical remembering was associated with an increase in spectral power in alpha 

and beta and a decreased in the delta band (93). At the source level, the alpha power 

increase was localized to regions of DMN. The decrease in delta power is more 
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pronounced when the autobiographical contents have positive emotions. Furthermore, 

the more posteriorly distributed alpha increase would suggest a relatively higher activity 

in the anterior DMN hub, which is involved in mostly conscious modeling, planning, and 

control functions, and relatively lower activity in the posterior hub, which is involved in 

mostly unconscious processes that include self-representation, emotion, and salience 

detection (94). However, there are some methodological limitations in this study. Due to 

the lower density of the EEG electrodes, we cannot verify the relation of our finding to the 

DMN activity through source localization analysis. The contribution of acoustic salience, 

which is the acoustic features in the stimulus itself that might have contributed to the 

increased perceptibility of the listener and also the top-down attention of based on 

previous knowledge, and current goals as one of the causes of the observed changes 

cannot be ruled out (95). A recent meta-analytic review on music perception and attention 

involvement observed that the perception and production of music relied on the auditory 

and sensorimotor cortices, while music imagery involved the parietal regions, indicating 

the recruitment of different brain structures in musical processing with the interaction 

between the environment (bottom-up) and internal thoughts (top-down) (96). 

Furthermore, we had not collected phenomenological reports after the intervention 

sessions that could be subjected to structured analysis and correlated with the EEG 

findings. These limitations should be addressed in subsequent studies.  

To corroborate these findings with autonomic changes and anxiety levels, all three 

music interventions were found to reduce state anxiety levels, along with a reduction in 

salivary alpha-amylase (45). During the intervention, the raga Miyan ki Todi and raga 

Puriya groups had a significant drop in the parasympathetic parameters of heart rate 

variability (HRV), while after the intervention these two modes led to a significant increase 

in the parasympathetic response. In contrast, the raga Malkauns group showed a 

sustained rise in parasympathetic tone, similar to that seen in the control group. However, 

raga Malkauns caused a significant reduction in anxiety levels that was not observed in 

the control group. Though we did not find any difference in the visual analog scale for the 

liking of the music, it may be observed that functional neural plasticity could occur even 

when not subjectively perceived. In this study, the electrocardiogram data, from which 

HRV was derived was computed for a minimum of 5 minutes to a maximum of 10 minutes 
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for each condition, which meant that the participants had heard most of the phrases of 

the musical piece. It would be interesting to understand whether these autonomic 

changes also exhibit ISC as done in a previous study (92), and are modified after 

controlling for baseline data from the control group, as seen in the current EEG study. 

6 Conclusion and Future Perspectives 

To our knowledge, this is the first time that three acoustic stimuli in the form of Indian 

melodic modes have been studied systematically and scientifically as acoustic 

interventions for their short-term neuroplastic effect on the EEG power spectrum, with 

ISC-based component-level analysis, among a comparatively larger sample of healthy 

young individuals. Reduction in globally distributed low-frequency activity and increase in 

posterior dominant alpha-beta1 activity may be characteristic of passive listening to 

relaxing Indian modes, which may persist even after 10 minutes of the listening period. 

Among the modes, raga Malkauns showed this effect most prominently, followed by raga 

Miyan ki Todi and least by raga Puriya. As the increase in posterior alpha and low beta 

power is associated with DMN activity and a decrease in delta power with positive 

emotional memory, the spectral pattern we observed may indicate the observation of 

positive autobiographical memory while listening to musical modes and thus contribute to 

a relaxing experience. Further studies may include phenomenological reports to support 

these findings and build a stronger scientific foundation for the use of music in medicine. 

As ISC-based brain activity is modulated by training, studies may try to explore the effect 

of musical training, exposure to different genres, correlation with music features, and 

genre familiarity aspects. Different musical stimuli that are known to be emotionally 

stimulating can be studied, as ISC is said to vary with time-based emotional stimuli such 

as stories or movies. To exactly know the neural substrates activated within and between 

participants passively listening to the different scales, it is better to use higher-density 

EEG or fMRI data. 
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Chapter 4: Short-term Impact of anthropogenic 

environment on neuroplasticity using animals 

Perinatal exposure to the neonicotinoid thiacloprid impacts neuroplasticity 

and neuroendocrine system in vertebrates 

Kirthana Kunikullaya U, Zuzanna Baran, Valentine de l'Estoile, Jodi L Pawluski, Harry 

WM Steinbusch, Fatima Smagulova, Thierry D Charlier 

1 Abstract 

Neonicotinoids are a set of insecticides until they were recently banned as they 

targeted nicotinic receptors of the cholinergic system of non-target vertebrates including 

fish. Chronic persistence of these insecticides in the soil, drinking water, and edible 

substances led to this study where we investigated the effects of a neonicotinoid 

thiacloprid on the nervous system in parallel in zebrafish and mouse models. Zebrafish 

embryos were exposed from 1 day post fertilization (dpf) to 6 dpf to 10-6 M to 10-8 M 

thiacloprid. Mice were treated during gestation, from embryonic day 6 to 15 (0, 0.06, 0.6 

mg/kg/day or 6 mg/kg/day of thiacloprid). Whole heads of 6dpf zebrafish 

eleutheroembryos and 4 brain regions from thirty-five days old mouse offspring were 

investigated for neurogenesis [(doublecortin (DCX), proliferative cell nuclear antigen 

(PCNA), nestin)], neuronal [neurogenin, brain-derived neurotrophic factor (BDNF) 

synaptophysin, and synapsin Iia] and endocrine (estrogen receptors alpha, beta, and 

aromatase) markers by RT-qPCR.  In the zebrafish, exposure to different doses of 

thiacloprid did not affect any of the markers. This could be due to the dose used or 

receptor specificity indicating the need for further investigations on the effects of 

neonicotinoids in the developing vertebrate brain. In mouse offspring, with 6 mg/kg/day 

of thiacloprid, a significant main effect of dose with an increase in DCX (amygdala), 

decrease in hypothalamic ERβ, nestin, synapsin IIA, hippocampal DCX, PCNA, 

neurogenin, aromatase, nestin, and synaptic markers was observed. Sex-specific 

reduction in BDNF  in the hypothalamus and PCNA in the hippocampus was observed. 

Significant main effects of dose with an increase in DCX, PCNA (at D0.06 in the 

amygdala), PCNA (D0.06 and D0.6 in the cerebellum), synaptophysin (D0.06 in the 



Chapter 4: Neuroplastic effects of Neonicotinoids      

173 | P a g e  
 

hypothalamus), ERα, ERβ, aromatase, nestin, neurogenin (D0.6 in the hippocampus) and 

reduction in aromatase (amygdala), hypothalamic neurogenin, aromatase, nestin, BDNF 

(at D0.06 and D0.6) was observed. Prenatal exposure to thiacloprid resulted in the dose 

and sex-dependent alteration in the neuronal and steroid markers in specific brain areas 

only in mice, not in zebrafish. This could be due to the dose used or receptor specificity 

indicating the need for further investigations on the effects of neonicotinoids in the 

developing vertebrate brain. 

Key Words: thiacloprid, zebrafish, mouse, neurogenesis, neuroplasticity, Aromatase, 

hippocampus, hypothalamus, amygdala 

2 Introduction 

Neonicotinoids are insecticides commonly used in agriculture, aquaculture (fish 

farming), pet treatment, and in urban pest control. Neonicotinoids are structurally related 

to nicotine and target nicotinic cholinergic receptors (nAChRs), the membrane receptors 

sensitive to the neurotransmitter acetylcholine (1). Each neonicotinoid exhibits distinct 

binding to the nAChRs (2,3) and, likely, the specificity of these subunits is also species-

dependent in vertebrates. These receptors are functionally present as homo- or hetero-

pentameric receptors, a combination of alpha subunits α1 to α9 and non-alpha subunits 

(β1 to β4, δ, ε, or γ), and are largely distributed throughout the organism, being present 

at the neuromuscular junction and in the central and peripheral nervous system. The most 

commonly expressed nAchR subtypes on which neonicotinoids are shown to act are the 

heteromeric α4β2, α3β4, and homomeric α7 types of nAchRs (4–7). The structural 

differences between invertebrate and vertebrate nicotinic receptors led to the 

development of neonicotinoids and these pesticides showed a very strong affinity for 

insect receptors while exhibiting a much lower affinity to vertebrate subunits (for 

review:(2,8)). Initial results revealed that neonicotinoids were far less toxic to the handlers 

and non-target organisms in comparison to other insecticides such as organophosphate 

and carbamate (2). 

However, the intensive use of neonicotinoids and the persistence of the molecule 

in the plant and the environment contribute to the increased exposure of non-target 

invertebrates (honeybees and other pollinating insects) and vertebrates (9,10). Indeed, 

due to systemic distribution throughout the plant, the molecule is found in fruits and 
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vegetables from around the world (11–16). A few studies suggest that several 

neonicotinoids, including imidacloprid, acetamiprid, and thiacloprid can readily cross the 

intestinal barrier (17,18) and the blood-brain barrier (18–22),  and these pesticides and 

their metabolites are found in human biological samples, confirming human exposure 

(23–29). Due to chronic exposure to neonicotinoids and their potential bioavailability in 

the mammalian organism, questions and concerns were raised about potential adverse 

health effects in humans (30).   

A large number of studies highlight the impact of several neonicotinoids such as 

acetamiprid, imidacloprid, and clothianidin on vertebrate locomotor activity and behavior 

via a direct impact on the nervous system. For example, imidacloprid or clothianidin was 

shown to significantly increase locomotor activity during various behavioral tests in mice 

and rats, independently of the dose and the exposure period (31–37). Interestingly, the 

opposite effect on locomotor activity was observed in aquatic vertebrate species, 

including amphibians (37,38) and zebrafish (38–40). In addition to locomotion, learning, 

and memory were also affected in rodents following exposure to some neonicotinoids 

(41–43). These behavioral alterations are linked to the impact on neurons and 

neurotransmission in the peripheral and/or central nervous system, as shown by in vitro 

and in vivo studies (39,42,44–49). These alterations of the nervous system could be 

linked to the misactivation of central nicotinic receptors as the cholinergic system 

stemming from the basal forebrain and brainstem innervates the entire central nervous 

system (50,51). Neonicotinoids are shown to reduce the expression of α7 receptors in the 

hippocampus (19). Treatment with acetamiprid was shown to significantly reduce the 

levels of glutamate and its N-methyl-d-aspartate (NMDA)-like receptor subunits, which 

could translate into significant memory deficits (43). The neurotransmission effects of 

neonicotinoids depend on the receptors that are activated as well. Clothianidin led to 

striatal dopamine release via an exocytotic-, vesicular-, and Ca+2-dependent mechanism 

that required the activation of α4 or α7 subunits of nAChRs and not the β2 subunit. The 

authors also noted the dependence on the activation of muscarinic acetylcholine 

receptors (mAChRs) (49,52). Imidacloprid facilitated tyrosine hydroxylase transcription by 

acting as a partial agonist at α3β4 and α7 receptors, causing long-term activation of 

second messenger systems (CREB-PKA-ERK and Rho cascade) (53). Previous studies 
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have shown that nAChR α7 and β2 subunits with clothianidin binding affinity were seen 

in the dentate gyrus neural progenitor cells (54) and that stimulation of α7 nAChR using 

nicotine-cultured hippocampal cells activated ERK 1/2, which promotes the proliferation 

of neural progenitor cells (55). It should also be noted that more recent studies report the 

potential endocrine-disrupting action of neonicotinoid as suggested by a decline in fertility 

rate (56–58), impact on steroidogenic enzymes such as aromatase (59–61), and changes 

in circulating sex hormones, including FSH, estrogens, and testosterone (62–64). The 

brain itself is a major steroidogenic site and neurosteroidogenesis is fundamental for brain 

development and physiology (for reviews: (65–69)). Any change in brain steroid synthesis 

and bioavailability during development, including endocrine disruptor exposure, leads to 

significant long-term defects in brain plasticity and behavior (see for example reviews 

(69–73)).  

While the majority of studies on neonicotinoids focused on the impact of 

imidacloprid, acetamiprid, or clothianidin on the brain and the endocrine system, far less 

is known about the potential long-term effect of early exposure to thiacloprid [(Z)-

thiacloprid (3-((6-Chloro-3-pyridinyl) methyl)-2-thiazolidinylidene) cyanamide (74), 

another widely used neonicotinoid (non-renewal of approval on 3 February 2020 in 

Europe, but repeated emergency authorizations for use in sugar beets and berries, see 

(75)). Thiaclopride shows the same mode of action as the other neonicotinoids although 

its lethal concentration (LC50) is slightly lower in various aquatic invertebrates (76). We, 

therefore, aimed at investigating the impact of early thiacloprid exposure on local steroid 

action in the brain, and link these effects to potential changes in neuroplasticity, including 

neurogenesis and synaptic changes. We also considered potential differences between 

vertebrates and studied the exposure to thiacloprid on zebrafish and mice. Our goal was 

to further highlight potential sex differences in mice, as the majority of studies 

investigating the long-term impact of neonicotinoids on the brain were performed on 

males only (see (77)) while brain neuroplasticity is sexually differentiated (78–80).   
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3 Material and Methods 

3.1 Animals  

Zebrafish (Experiment 1: AB Strain) and mice (Experiment 2a and 2b: Swiss 

Strain) were handled and euthanized in agreement with the guidelines for the use and 

care of laboratory animals and in compliance with French and European regulations on 

animal welfare. The animal facilities used for the present study are licensed by the French 

Ministry of Agriculture (Zebrafish: Biosit ARCHE: agreement number B35-238-40 and 

Mice: IRSET agreement number D35– 238–19). All animal procedures were performed 

according to the Ethics Committee of the Ministry of the Research of France (agreement 

number: 17473-2018110914399411). All experimental procedures followed the ethical 

principles outlined in the Ministry of Research Guide for Care and Use of the Laboratory 

Animals and were approved by the local Animal Experimentation Ethics Committee 

(C2EA-07). 

3.2 Experiment 1. Eleutheroembryo exposure to thiacloprid in Zebrafish 

Adult Zebrafish (cyp19a1b: GFP (73)) were housed in our facility in a recirculation 

system (Zebtec, Tecniplast, Italy) under standard conditions of photoperiod (14 h light and 

10 h dark) and temperature (28°C). Eggs obtained from zebrafish (reproduction ratio  2 

males:1 female) were collected immediately after spawning and grown in E3 medium at 

28°C in glass Petri dishes. Within 4 hours post-fertilization (hpf), developing embryos 

were randomly distributed into 4 groups of approximately 100 eggs: 3 groups were 

exposed to 10-6 M, 10-7 M, or 10-8 M thiacloprid dissolved in DMSO and the control 

group was exposed to DMSO only (4 μL in 40 mL E3). The exposure medium was 

changed every day for 6 days. On day 6, 50-60 eleutheroembryos per group were 

terminally anesthetized with MS222 (50 mg/L). Whole heads were collected, immediately 

frozen in liquid nitrogen, and stored at −80°C before RNA extraction and quantitative real-

time PCR [Fig 2]. This protocol was repeated 7 times such that each experimental 

exposure represents one biological sample and the final number of biological samples is 

7 (n=7). Each sample was sonicated for 15 sec in 250 μl of Nucleozol Reagent 

(Macherey-Nagel) and RNA extractions were performed using the NucleoSpin RNA Plus 

kit (Macherey-Nagel) (81) following the manufacturer’s instructions.   
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Figure 1: Protocol followed for (A) zebrafish (Experiment 1) and (B) mouse 

(Experiment 2a, 2b). In Experiment 2a D0 = Control group and D6 = 6 mg/kg/day 

thiacloprid, oral gavage.  In Experiment 2b D0= Control, D0.06 = 0.06mg/kg/day 

thiacloprid, and D0.6 = 0.6 mg/kg/day thiacloprid.  

3.3 Experiment 2. Exposure to thiacloprid in mice 

3.3.1 Mice Treatment and Dissection 

Outbred Swiss mice (RjOrl) were purchased from Janvier, France, and 

acclimatized in our facilities for one week before random assignment to the treatment 

group. Animals were kept under standard laboratory conditions in a 12:12-h light/dark 

schedule with access to standard mouse chow and tap water ad libitum. Females were 

then bred and the vaginal plug was checked in the morning. The day of the vaginal plug 

was considered embryonic day 0.5 (E0.5) and pregnant females were placed in individual 

cages. From embryonic day E6.5 until E15.5, female mice were treated with 6mg/kg/day 

(experiment 2a), 0.6 or 0.06mg/kg/day (experiment 2b) thiacloprid suspended in olive oil 

via oral gavage (150 microliters, see (58)). The 6mg/kg/day is a dose just around the 

NOAEL in mice and rats during developmental neurotoxicity and carcinogenicity studies 

(75). The control mice received only oil (D0). We treated 5 pregnant females per group 

except 4 for 0.6mg/kg/day. The male and female progeny were weaned on the 21st day 
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and 4 siblings of the same litter were housed per cage. F1 generation male and female 

mice (maximum 2 per litter) were euthanized at the age of 35 days (postnatal day PND35) 

after blood collection from the retro-orbital vein. The brain was dissected and placed 

immediately on dried ice and stored at -80 °C until use.  

Brains were cut into 300 μm thick sections with a cryostat (Microm HM560), and 

bilateral punches were collected using the Stoelting brain punch set (diameter 1.25 mm) 

from 3 areas of interest: hypothalamus, hippocampus, and amygdala. The cerebellum 

was also collected and analyzed in Experiment 2b. Total RNA was extracted using the 

NucleoSpin kit for Nucleozol (Macherey-Nagel) and quantity and quality were determined 

on Thermo Scientific NanoDrop 8000. 

3.4 RT-qPCR 

RNA (1μg) from zebrafish and mice was reverse transcribed using M-MLV reverse 

transcriptase from Promega following the manufacturer’s protocol and using random 

primers. Quantitative PCR was performed using Syber Green (iTaq SYBER, Biorad). We 

targeted cell proliferation (Proliferative cell nuclear antigen, PCNA), neuronal 

differentiation [Nestin, Neurogenin, doublecortin (DCX)] (51,56), neuronal markers [Brain 

derived neurotrophic factor (BDNF), Synaptophysin, Synapsin IIa] and neuroendocrine-

linked proteins (estrogen receptors ERα and ERβ, and aromatase). Activated caspase 3 

was also tested for zebrafish only [See supplementary table 1 for primer sequences].  

Housekeeping genes used were the ef1 for zebrafish and GAPDH for the mouse. The 

threshold cycle (Ct) was determined for each gene and a melting curve was obtained for 

each sample to confirm specificity. Relative gene expressions were calculated using the 

2−ΔΔCt method for relative quantification (82). The fold induction/inhibition was 

determined and expressed as a fold change compared to the normalized control condition 

(the male control group in mice experiments).    

3.5 Statistical analysis  

Data are represented as the mean ± standard error of the mean (SEM). Outliers, 

defined from values outside the mean ± 2 standard deviations, were removed from the 

analysis (the number of animals remaining is plotted in the graphs). The treatment effect 

was analyzed with a one-way analysis of variance (ANOVA) for Experiment 1 (zebrafish) 

and 2-way ANOVA, for Experiment 2 (mice) with sex and dose as factors, for each brain 
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region (Statistica Version 13 (Dell Inc.)). Post hoc analysis was performed using the 

Tukey post hoc test where appropriate. The values were considered statistically 

significant if p was <0.05. The figures were generated using GraphPad Prism (Version 6). 

4 Results 

4.1 Experiment 1: Zebrafish exposure 

In fish, developmental exposure to 3 concentrations of thiacloprid (10-8, 10-7, 10-

6 M) for 6 days did not increase the developmental mortality of the embryos (data not 

shown). In addition, we did not observe an impact of any of the 3 different concentrations 

of thiacloprid on the transcription of any of the markers used in our experimental 

conditions when compared to control samples (p’s >0.05; Figure 2). 

 

Figure 2: Mean (± SEM) fold change (2^-∆∆Ct values) and individual transcription 

levels of 11 genes in zebrafish eleutheroembryos heads following 6 days of 

exposure to three different concentrations of thiacloprid (10-8, 10-7, 10-6 M). No 

statistically no significant difference was observed. 
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4.2 Experiment 2: Mouse exposure 

4.2.1 Experiment 2a 

The first experiment was performed to determine whether in utero exposure to 6 

mg/kg/day thiacloprid, a dose just below the NOAEL (75), would affect neuroendocrine 

and neuroplasticity markers in adolescent male and female mice offspring (PND 35). 

Three regions of interest were investigated: the hypothalamus, the hippocampus, and the 

amygdala. 

4.2.1a Amygdala 

We found a significant main effect of treatment on DCX transcription (F(1, 24)=35.806, 

p<0.0001) with an increase after 6 mg/kg/day thiacloprid exposure (Fig 3). There was no 

other significant main effect or interaction. 

4.2.1b Hypothalamus 

We found a statistically significant effect of thiacloprid exposure on ER beta (F(1, 26) 

= 5.041, p=0.033), nestin (F(1, 25) = 11.339, p= 0.002), and synapsin IIa (F(1, 26) = 

6.021, p= 0.021) transcription in the hypothalamus (Fig 3). It can be noted that there was 

a trend toward an interaction between sex and treatment on nestin transcription (F(1,25) 

=3.047, p=0.09), where the mean fold change was reduced in thiacloprid-exposed 

females compared to the other groups. We also found a significant effect of sex on BNDF 

transcription (F(1, 25)=4.6810, p=0.040) with females exhibiting a reduction compared to 

males and a tendency toward the main effect of treatment (F(1, 25)=3.744, p=0.064) but 

no interaction between treatment and sex, although females seemed to be most affected. 

No other difference was observed in the hypothalamus (see table 1). 

4.2.1c Hippocampus 

We found a significant main effect of thiacloprid exposure, with a reduction of DCX  

(F(1, 23) = 4.988, p=0.036), aromatase (F(1, 27) = 68.360, p<0.0001), neurogenin 

(F(1,24) = 10.903, p=0.003), nestin (F(1, 24) = 23.649, p<0.0001), synapsin IIa (F(1, 27) 

= 106.908, p<0.0001), synaptophysin (F(1, 25) = 32.413, p<0.0001) and PCNA (F(1, 26) 

= 31.671, p<0.0001) transcription. PCNA transcription was impacted by sex (F(1, 26) = 

5.643, p= 0.025) with a reduction in females compared to males but no interaction 

between the 2 factors. There was a trend toward an interaction between sex and 

treatment on PCNA transcription (F(1,26) =3.008, p=0.095), where the mean fold change 
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was reduced in thiacloprid-exposed females compared to the other groups. No other 

difference was observed in the hippocampus (see Fig 3 and Table 1). 

Table 1: Factorial ANOVA of neuroendocrine markers tested in mice during 

Experiment 2a (D0 versus D6) in the amygdala, hippocampus, and hypothalamic 

regions 

    Amygdala Hypothalamus Hippocampus 

    F p F p F p 

DCX Thiacloprid 35.806 .000 .418 .523 4.988 .036 

  Sex .166 .687 .083 .775 .251 .621 

  Sex * Thiacloprid 1.610 .217 .004 .949 .670 .422 

Neurogenin Thiacloprid .665 .423 .491 .491 10.903 .003 

  Sex 1.111 .302 4.063 .057 .058 .812 

  Sex * Thiacloprid .522 .477 .871 .361 .437 .515 

PCNA Thiacloprid 3.298 .081 1.814 .190 31.671 .000 

  Sex .871 .359 2.238 .147 5.643 .025 

  Sex * Thiacloprid .953 .338 1.182 .287 3.008 .095 

ER Beta Thiacloprid .591 .449 5.041 .033 1.297 .265 

  Sex .273 .606 .310 .582 .410 .528 

  Sex * Thiacloprid .135 .716 .919 .347 .009 .926 

Aromatase Thiacloprid 1.646 .211 2.329 .140 68.360 .000 

  Sex .742 .397 3.919 .059 .682 .416 

  Sex * Thiacloprid .423 .521 1.136 .297 .234 .633 

ER Alpha Thiacloprid .971 .333 .912 .349 2.207 .149 

  Sex .570 .457 .443 .512 .000 .994 

  Sex * Thiacloprid .507 .483 .338 .566 .130 .721 

Nestin Thiacloprid .207 .653 11.339 .002 23.648 .000 

  Sex .158 .694 2.402 .134 .091 .765 

  Sex * Thiacloprid .204 .656 3.047 .093 .949 .340 

BDNF Thiacloprid 1.822 .189 3.744 .064 .087 .770 

  Sex 1.921 .178 4.681 .040 .060 .809 

  Sex * Thiacloprid 1.543 .226 1.424 .244 .124 .727 

Synapsin IIA Thiacloprid 1.533 .227 6.021 .021 106.908 .000 

  Sex .130 .722 .029 .866 .084 .774 

  Sex * Thiacloprid 1.557 .223 .952 .338 .003 .959 

Synaptophysin Thiacloprid .034 .856 .012 .913 32.413 .000 

  Sex .423 .521 2.990 .096 .007 .934 

  Sex * Thiacloprid .326 .573 .072 .791 .047 .830 
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Fig 3: Mean (± SEM) fold change (2^- ḊḊςϴΞvalues) and individual transcription levels 

in the amygdala, hippocampus, and hypothalamus in male (M) and female (F) mice 

offspring (PND35) following in utero exposure to thiacloprid (6mg/kg/day); 

***p<0.001 **p<0.01 *p<0.05; ɸ Significant reduction in female mice (a posteriori 

analysis). 

4.2.2 Experiment 2b 

We next investigated the impact of lower doses of thiacloprid (0.6mg/kg/day and 

0.06mg/kg/day) on neuroplasticity and neuroendocrine markers in the amygdala, 

hypothalamus, hippocampus as well as cerebellum. 

4.2.2a Amygdala  

We observed a statistically significant effect of thiacloprid on DCX (F(2, 19) = 

4.065, p= 0.034), PCNA (F(2, 19) = 4.441, p= 0.026), and aromatase (F(2, 19) = 4.116, 

p= 0.033). Post Hoc analysis showed that the lowest dose of 0.06 mg/kg/day significantly 

increased DCX (p=0.021) and PCNA (p= 0.016) transcription compared to the control 

group while the dose of 0.6 mg/kg/day significantly reduced aromatase transcription in 

comparison to the control group (p= 0.042) (Fig 4). There was no sex difference or 

interaction between treatment and sex. No other difference was observed for the other 

transcript in the amygdala. 
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4.2.2b Hypothalamus  

We observed a statistically significant effect of the treatment with a reduction of 

nestin (F(2,19) = 11.914, p= 0.018), neurogenin (F(2,19) = 8.349, p= 0.003), BDNF 

(F(2,19) = 6.771, p= 0.006) and aromatase (F(2, 19) = 6.135, p= 0.009) transcription. 

Post-hoc analysis showed that both doses of thiacloprid (0.6 and 0.06 mg/kg/day) led to 

a significant reduction compared to the control group in the above-mentioned markers. 

There was a significant main effect of thiacloprid on hypothalamic synaptophysin (F(2,19) 

= 5.773, p=0.011), with posthoc showing a significant increase in transcription at the lower 

dose of 0.06 mg/kg/day (p=0.006) as compared to the control group (Fig 4).  There was 

no sex difference or interaction between treatment and sex. No other difference was 

observed for the other transcripts in the hypothalamus. 

4.2.2c Hippocampus 

We found a significant main effect of thiacloprid with an increase in transcription 

levels of the neural markers nestin (F(2,18) = 10.308, p=0.001) and neurogenin (F(2,18) 

= 11.258, p=0.001). Post-hoc analysis showed this impact of thiacloprid due to the higher 

expression level in the group exposed to 0.6 mg/kg/day compared to the control group 

(Nestin: p=0.002; Neurogenin: p=0.002) and to the group exposed to 0.06mg/kg/day 

(Nestin: p=0.002; Neurogenin: p=0.001; see figure 4). Similarly, there was a statistically 

significant increase in the transcription of ERalpha (F(2,18) = 8.598, p=0.002), ERbeta 

(F(2,18) = 9.106, p=0.002), and aromatase (F(2,18) = 7.508, p=0.004), again with the 

0.6mg/kg/day group significantly higher than the control group (ER alpha: p=0.011; ER 

beta: p=0.012; Aromatase: p=0.028) and the 0.06 mg/kg/day (ER alpha: p=0.003; ER 

beta: p=0.002; Aromatase: p=0.004). There was no sex difference nor the interaction 

between treatment and sex. No other difference was observed for the other transcript in 

the hippocampus (see Table 2). 

4.2.2d Cerebellum 

We observed a statistically significant effect of thiacloprid exposure on PCNA 

transcription (F(2, 19) = 9.025, P = 0.002). There was a statistically significant increase 

at the low dose of 0.06 mg/kg/day (p=0.002) and with the higher dose of 0.6 mg/kg/day  

(p=0.011, Figure 4) compared to the control group. There was no sex difference or 
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interaction between treatment and sex. No other difference was observed for the other 

transcript in the cerebellum (see supplementary table 2). 

Table 2: Factorial ANOVA of neural markers tested among mice during Experiment 2b 

(D0, D0.06, D0.6) in the amygdala, hippocampus, hypothalamus, and cerebellar regions 

    Amygdala Cerebellum Hypothalamus Hippocampus 

    F p F p F p F p 

DCX Thiacloprid 4.065 .034 1.491 .250 1.843 .186 .589 .565 

  Sex .014 .908 1.419 .248 .952 .341 1.815 .195 

  Sex * Thiacloprid .624 .546 .896 .425 .402 .675 .363 .701 

Neurogenin Thiacloprid 1.021 .379 2.124 .147 8.349 .003 11.258 .001 

  Sex .435 .517 1.310 .267 .008 .928 .068 .798 

  Sex * Thiacloprid .318 .732 1.808 .191 .144 .867 .046 .955 

PCNA Thiacloprid 4.441 .026 9.025 .002 1.671 .215 .548 .588 

  Sex .813 .379 2.424 .136 .301 .590 1.188 .290 

  Sex * Thiacloprid 1.035 .374 .948 .405 1.937 .171 .214 .809 

ER Beta Thiacloprid 1.661 .216 .673 .522 .833 .450 9.106 .002 

  Sex .011 .916 .157 .696 3.641 .072 .048 .829 

  Sex * Thiacloprid .123 .885 1.717 .206 .312 .736 .152 .860 

Aromatase Thiacloprid 4.116 .033 1.032 .375 6.135 .009 7.508 .004 

  Sex 1.306 .267 .265 .613 .000 .990 .000 .990 

  Sex * Thiacloprid .356 .705 1.324 .289 .158 .855 .084 .920 

ER Alpha Thiacloprid 1.174 .331 .728 .496 .356 .705 8.598 .002 

  Sex .397 .536 .012 .916 1.962 .177 .029 .866 

  Sex * Thiacloprid .050 .951 1.227 .315 .059 .942 .036 .965 

Nestin Thiacloprid 3.164 .065 1.413 .268 11.914 .000 10.308 .001 

  Sex .064 .804 .509 .484 .418 .526 .104 .751 

  Sex * Thiacloprid .012 .988 1.865 .182 .163 .851 .072 .931 

BDNF Thiacloprid 1.109 .350 .961 .400 6.771 .006 1.072 .363 

  Sex .309 .585 .651 .430 .120 .733 .500 .489 

  Sex * Thiacloprid .252 .779 1.986 .165 .010 .990 .968 .399 

Synapsin IIA Thiacloprid 1.782 .195 2.722 .091 1.691 .211 .678 .520 

  Sex .935 .346 .196 .663 .181 .675 1.528 .232 

  Sex * Thiacloprid .574 .573 .466 .634 1.043 .372 .160 .854 

Synaptophys

in 

Thiacloprid 1.942 .171 .137 .873 5.773 .011 .089 .916 

  Sex .437 .517 .397 .536 .025 .876 1.003 .330 

  Sex * Thiacloprid 1.857 .183 2.058 .155 1.305 .294 .218 .806 
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Fig 4: Mean (± SEM) fold change (2^-∆∆Ct values) and individual transcription 

levels of markers (shown as 2^-∆∆Ct values) in the amygdala, hippocampus, 

hypothalamus, and cerebellum in male (M) and female (F) mice offspring (PND35) 

following in utero exposure to thiacloprid (0.06 and 0.6 mg/kg/day) in Experiment 

2b; ***p<0.001 **p<0.01 *p<0.05. 

5 Discussion 

Our objectives were to better define the potential impact of the neonicotinoid 

thiacloprid on neuroplasticity and the neuroendocrine markers in aquatic (zebrafish) and 

terrestrial  (mouse) vertebrates. We did not see any impact of thiacloprid on zebrafish at 

the concentrations and developmental stages investigated, while specific brain regions 

were impacted in mice.  
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5.1 Zebrafish 

Our results show that 120 hours-exposure of zebrafish at three different low 

concentrations of thiacloprid did not affect the mortality nor gene transcription in the whole 

head of eleutheroembryos. These results are to be added to the increasing literature 

investigating the potential impact of various neonicotinoids on the vertebrate central 

nervous system. Zebrafish brains express eight nicotinic AChRs subunits (α2, α3, α4, α6, 

α7, β2, β3, and β4) (83,84) but the potential direct interaction of these subunits with 

thiacloprid, or other neonicotinoids, has not been characterized to our knowledge. 

However, several in vivo studies suggest the direct impact of neonicotinoid exposure on 

the early developmental stage of zebrafish. Indeed, high concentrations of neonicotinoids, 

including thiacloprid, have significant deleterious effects on zebrafish, including 

teratogenic effects, heart rate modulation, increased DNA damage, oxidative stress (85–

90), endocrine disrupting effects (91) and neurobehavioral consequences in zebrafish 

(92–98). For example, early exposure to 45 or 60 mM imidacloprid reduced swimming 

activity and increased startle response in juvenile and adult zebrafish (38). Similarly, lower 

concentrations (0.5mM) of imidacloprid as well as thiacloprid acutely reduced locomotor 

activity in eleutheroembryos (40) but these deleterious effects were reversible, 

independently of the window of exposure (99,100). Xie et al (95) found that concentrations 

above 100 microgram/L (about 0.4 10-6M) affected locomotion and gene transcription 

linked to neurotransmitter systems (acetylcholine, but also GABA and 5-HT). It should be 

noted that the sensitivity to neonicotinoids is not only species-dependent (101–104) but 

also strain-dependent in zebrafish (38,105). In addition, it is likely that neonicotinoids, 

including thiacloprid, will impact specific targets in the zebrafish central nervous system 

and more global approaches should be integrated to study the potential impact of 

neonicotinoids on vertebrates, especially during development. Furthermore, the 

concentrations used in the majority of studies, including ours, are much above 

environmental concentrations (11.493 ± 5.095 ng L-1 (106,107)) albeit higher 

concentrations were observed locally during specific events (1.4microgram/l, or 0.5 10-

8M) and future work should investigate the impact of pesticides on fish at environmentally 

relevant concentrations.   
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5.2 Mice 

In parallel to zebrafish, we investigated the impact of developmental exposure to 

3 doses of thiacloprid on female and male mice offspring during the juvenile stage,  

focusing on several brain regions important for behavior, cognition, social interaction, and 

emotion. The cholinergic system, and more precisely the nicotinic receptors, are already 

functional as early as gestational day 10 in the mouse cortex and day 11 in the 

mesencephalon (108). To highlight their functional importance, a large number of studies 

investigating the impact of cholinergic alteration, including early exposure to nicotine or 

acetylcholinesterase inhibitors such as organophosphate or carbamate have shown a 

long-term impact on neurobehavioral outcomes (109). We show here, in support of other 

studies, that neonicotinoids impact the development of the central nervous system of 

vertebrates, and these alterations are not reversed in the juvenile stage.  More 

importantly, we are the first to show that prenatal exposure to low doses of thiacloprid 

specifically impacts neurogenesis, neuroplasticity, and neuroendocrine functions in a 

dose-dependent and region-dependent manner. 

5.2.1 Neurogenesis 

Neurogenesis is predominant during development but is also observed during 

adolescence and even later in adulthood in the mammalian hippocampus as well as in 

the subventricular zone. More recent data suggest that other brain regions, including the 

amygdala and the hypothalamus, show a significant level of postnatal neurogenesis 

(110,111), including in humans (see for example (112,113)). We found here that in utero 

exposure to various doses of thiacloprid modulates biomarkers of neurogenesis, during 

adolescence, including PCNA (proliferation), Nestin (neural progenitor), neurogenin 

(neuronal specification), and DCX (immature neuron), in both male and female mice. The 

impact of nicotinic receptor agonists or antagonists on neurogenesis is in itself not 

surprising, as the cholinergic system is one of the many neurotransmitter systems 

regulating neurogenesis, both during development but also in adults (review in (114–

116)). Previous studies have shown that neonicotinoids can impact neurogenesis in the 

neonatal cortex or the hippocampus (22,45,117–120). It should be mentioned that most 

of these studies were performed with relatively high doses/concentrations of 
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neonicotinoids However, there is little information on the impact of early cholinergic 

alteration by neonicotinoids on postnatal neurogenesis.  

A few studies suggest that the impact of early exposure to molecules such as 

chlorpyrifos (121) or neonicotinoids including thiacloprid (40) on neurobehavioral 

parameters is transient while other reports suggest otherwise (for example (32,46)). Early 

exposure to thiacloprid may affect the neural progenitor pools and/or their local 

environment (stem cell niche). Further investigation at the cellular level should define how 

in-utero neonicotinoid exposure affects adolescent and adult neurogenesis, in males and 

females.  Evidence using thiacloprid and other neonicotinoids in different non-target 

species does suggest impaired learning and memory (122–124).  

5.2.2 Effect of Thiacloprid on neuroendocrine markers 

Our results suggest thiacloprid may act through these estrogen receptors in a 

region and dose-specific manner to impair the above-mentioned functions in the 

hypothalamus while facilitating the functions of the hippocampus at the mid-dose range. 

At a high dose of thiacloprid, probable neuronal/glial cytotoxicity leads to a drop in most 

of the gene expressions. 

Imidacloprid was shown to interrupt steroidogenesis by inhibiting 3β-HSD and 17β-

HSD enzyme activities (57). Rabbits treated with thiacloprid had a significant decrease in 

serum levels of reproductive hormones and histopathological changes in reproductive 

organs (125). A few studies have shown the induction of aromatase expression in human 

H295R adrenocortical carcinoma cells by two neonicotinoids (thiacloprid and 

thiamethoxam) (61). A recent study showed that thiacloprid, thiamethoxam, and 

imidacloprid affect aromatase expression and activity and significantly increase estradiol 

and estrone production (by co-culture models of fetoplacental steroidogenesis of H295R 

and BeWo cells) at 0.1 and 0.3 μM (59). Another recent study evaluated the effect of 

thiacloprid, and imidacloprid (>63 μM), and observed that thiacloprid and imidacloprid 

induced estrogenic activity at the highest concentrations (126). This was similar to results 

with imidacloprid at concentrations above 10−5 M (127), while some studies have shown 

that thiacloprid and other neonics did not induce any estrogenic activity (128–130). The 

plausible explanation for these variations is the difference in cell models used. These 
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contrasting results strongly indicate the need for further work in this area to confirm the 

findings using in vitro and in vivo models. 

5.2.3 Effect of thiacloprid on synapses  

Exposure to high doses of 6 mg/kg/day of thiacloprid reduced the transcription of 

synapsin IIA and synaptophysin markers significantly. While only synapsin IIa was 

reduced in the hypothalamus, both Synaptophysin and Synapsin IIa were reduced in the 

hippocampus. However, in experiment 2b, at a dose of 0.06 mg/kg/day, synaptophysin in 

the hypothalamus increased.  

It is important to keep in note that these synaptic markers are not specific to the 

cholinergic system and the observed effects might have taken place in other 

neurotransmitter systems. Indeed, the cholinergic system is interconnected with other 

neurotransmitter systems, such as the glutaminergic or dopaminergic system. Future 

studies should surely include immunostaining procedures during developmental and later 

stages in mice models to ascertain these structural changes, if any, seen at neuronal and 

synaptic levels after gestational exposure to different doses of neonicotinoids. Combining 

behavioral analysis will help in confirming the neurological phenotypic pathologies 

associated with developmental neurotoxicity caused by thiacloprid and other 

neonicotinoids.  

5.2.4 Sex differences in thiacloprid exposure 

We observed that the highest dose of thiacloprid in our experiment induced a 

stronger reduction of BDNF and nestin in the hypothalamus and PCNA in the 

hippocampus in females. We cannot define whether the lowest dose could have a sex-

dependent impact as the number of animals per sex was not sufficient. The importance 

of biological sex on physiological responses to chemical exposure is relatively common 

but males are usually more sensitive to environmental stress (when males and females 

are investigated (131–133)).  

Sex is an important variable to be included in the study of neonicotinoids as they 

act through nAchR which are known to be modulated by sex steroids, in particular 

estrogens. Sex differences in the impact of neonicotinoids were previously highlighted. 

For example, A recent study with non-gestational exposure to 5 or 50 mg/kg of clothianidin 

observed sex-specific neurotoxic effects. Males had a more apparent decrease in 
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locomotor activities, elevated anxiety-like behaviors, impairment of short- and long-term 

learning memory, increased c-fos positive cells in the paraventricular thalamic nucleus 

and the dentate gyrus of the hippocampus, and higher concentrations of clothianidin and 

most metabolites in blood and urine. Before this study authors also noted that there were 

no studies on the effect of clothianidin on female animals (134). A single intraperitoneal 

(i.p.) dose of 337 mg/kg of ~99.5% pure imidacloprid to pregnant Sprague–Dawley rats 

on gestation day (GD) 9 increased plasma cholinesterase activity in male offspring only, 

but no sex difference were observed in the brain (77).  Clothianidin exposure at different 

doses during gestation did not result in any sex difference (34). A critical review of the 

developmental neurotoxicity of neonicotinoids has tried to cover published and 

unpublished EPA data as well. Acetamiprid (99% purity) given by gavage from GD 6 to 

Lactation day (LD) 21 noted that at a high dose of 45 mg/kg/day, acetamiprid decreased 

body weight gain in P-females and F1 animals, decreased the acoustic startle response 

in F1 males and was associated with a marginally significant increase in the number of 

errors in the Biel maze in F1 males just after weaning. Caudate-putamen width reduced 

modestly (but significantly) in F1 female rats at 750 ppm (highest dose) of imidacloprid 

on PND72, however, as per the authors, this minimal change could have been unrelated 

to treatment per se. Similarly increased thickness of the hippocampal gyrus (+9%) and 

cerebellum height (+10%) on PND 11 and decreased thickness of the hippocampal gyrus 

(5%) observed in F1 females after clothianidin exposure at 1750 ppm was proposed to 

be spurious and unrelated to treatment (22). Gestational exposure to acetamiprid showed 

that males in the low-dose group (1 mg/kg) had a significant increase in sexual and 

aggressive behaviors, while females remained unaffected (135). Gestational imidacloprid 

exposure led to sex-specific changes with reduced body weight and elevated motor 

activity in treated male mice (32). Similarly, dinotefuran (136) and clothianidin (34) 

exposure induced increased motor activity in adult male mice. Nicotine exposure was 

shown to decrease the expression of the steroidogenic acute regulatory protein (StAR), 

in CA1, CA3, and dentate gyrus regions of the hippocampus in female rats compared to 

the control group and male rats (137).  

Human PET imaging revealed that the binding level of α4β2 nAChRs was higher 

in all brain regions in women than in men (138). Furthermore, among female rats and 
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mice, the basal expression of α4β2 nAChRs is shown to be higher in most brain regions, 

with repeated nicotine treatment reversing this expression, with higher upregulation in 

males (139,140). In fact, at the receptor subunit level, the presence of β2 and α7 nAChRs 

in the dentate gyrus was shown to play a crucial role in offering an advantage to the male 

sex in spatial learning, and memory tasks (141,142). In a recent epidemiological study in 

China, women had higher urinary and blood concentrations of most neonicotinoids (143), 

probably due to greater daily exposure to neonicotinoids.  

5.2.5 Mice and physiological barriers 

Though this study was carried out on a physiological scale, it is important to ask 

how thiacloprid may have had these effects on the transcription of different genes, and in 

particular, if it reached the nAChRs receptors present in the brain. In mice, the blood-

brain barrier (BBB) begins to set up with the onset of angiogenesis, from the 10th 

embryonic development day (85). It was therefore not present at the beginning of 

exposure to thiacloprid and was not fully formed till the end of it. We can therefore 

comment that BBB is not a factor limiting the access of thiacloprid to the nAChRs 

receptors of the central nervous system. The placental barrier may also be involved. To 

the best of our knowledge, very few studies have demonstrated the possibility of 

thiacloprid passing the placental barrier. However, the observed effects imply the ability 

of thiacloprid to pass through some of these barriers but the observed effects may also 

be due to indirect effects of the treatment. For example, metabolites derived from 

thiacloprid that were not investigated in the current study could also have caused the 

observed effects. Some studies have already supported metabolites as a possible 

explanation for the toxicity of these molecules (14,20,21,59) and also for observed sex 

differences (134). Furthermore, neonicotinoids including thiacloprid, acetamiprid, 

nitenpyram, and imidacloprid could freely pass through the BBB and could be detectable 

in the brain of mice (19,144). 

In the current study, four brain regions and three doses of thiacloprid were 

investigated in mice. The cingulate gyrus and other parts of the brain that express 

cholinergic receptors could bring other elements of understanding the effects of 

thiacloprid. The brain is also connected to other organs in the body, such as the liver and 

gonads, via a reciprocal feedback mechanism. The effect of exposure to thiacloprid may 
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also be linked to the inflammatory processes occurring in the other organs. Thiacloprid 

neurotoxicity was also suggested to be due to its functioning as both an antagonist and 

agonist at the nAChR (145,146), which needs to be confirmed by future studies. Knowing 

that the different generations of neonicotinoids do not have the same properties 

(absorption, metabolism, interaction with receptors, etc.), working with other molecules 

would provide complementary data. Likewise, the results differ according to the species 

and sex/gender studied, emphasizing thus the difficulty in defining a unique and 

appropriate model in toxicology studies. Furthermore, it remains unclear whether the 

observed changes in the expression of all the above-mentioned genes translate into 

protein in the brain regions of interest. 

These results also indicate that thiacloprid may not be toxic to all cell types but 

affects each brain region differently and in a dose-dependent, sex-dependent manner. 

This may also be due to the specific subunit of nAchR present in these regions, their 

distribution, and the connection with other neurotransmitter systems.  

5.2.6 Strengths and Limitations 

The acceptable daily intake (ADI) of thiacloprid is 0.01 mg/kg body weight per day 

based on the NOAEL of 1.2 mg/kg body weight per day for liver histopathology and eye 

effects from the 2-year rat study and applying a standard uncertainty factor (UF) of 100. 

The acceptable operator exposure level (AOEL) is 0.02 mg/kg body weight per day based 

on the NOAEL of 2 mg/kg body weight per day for the decreased maternal and fetal 

weight from the developmental toxicity study in rabbits; this NOAEL was supported by the 

rat developmental toxicity study for the increased incidence of pelvic dilation and skeletal 

variations. No correction for oral absorption was needed and a UF of 100 was applied 

(75).  

As per the review paper by Sheets et al (22), our study followed the different 

guidelines laid out to understand the toxic effects of chemicals, such as a minimum of six 

animals per treatment condition that is required for minimal confidence in the results 

(147). The developmental periods also modeled the ideal neural development time during 

gestational periods in human beings. Dose–response evaluations included more than two 

dose levels and statistical analysis was robust. 
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However, as mentioned before with every section of the discussion, there are 

several aspects that this study did not look into. One such example is long-term 

neurological changes, be it at the molecular level or behavioral analysis. Further neuronal 

changes may differ from glial responses to thiacloprid. Also, the dose for zebrafish needs 

to be titrated further to see the neurotoxic effects, if any. Treatment via the oral gavage 

of the pregnant dam and water solution for zebrafish embryos was used to model dietary 

exposure in humans during pregnancy and lactation. Although oral gavage is considered 

somewhat relevant to human exposure conditions, literature has not always supported 

this. For example, it was observed that the oral gavage method increased blood pressure, 

and corticosterone levels (148), and desired concentrations of the drug or chemical of 

interest were not reached in the blood or brain after oral gavage (149). It is important to 

further characterize the cholinergic system in the developing brain of rodents and 

zebrafish, in addition to detailed studies of receptor subunits, location, and distribution 

analysis. Future studies may try to elucidate other mechanisms of action of this chemical.  

Nevertheless, this study is important as neonicotinoids are still the most commonly 

used insecticides that get incorporated into the physiology of the plants and thus cannot 

be cleaned off just by washing or cooking before consumption like surface insecticides. 

Insecticide safety should be determined and risks publicized before registration and 

introduction to the market. Testing for developmental neurotoxicity and general toxicity 

must be routine for all chemicals determined for human use. In general, the world must 

be encouraged to restrict or prohibit the use of synthetic products in the production of 

food (150). Alternatives to insecticide use must also be explored. For example, 

insecticides that do not affect the physiological parameters of non-target species, 

including neural activity are to be explored. Compounds that disrupt insects' respiratory 

energy production or alter growth and development (151) or genetic modification of crops 

to express endotoxins (biological insecticide) such as the Cry protein (δ-endotoxin) 

produced by the Bacillus thuringiensis are toxic to a wide variety of insects (152). 

Biosolarization is a fumigation alternative that employs soil amendments, solar heating, 

microbial activity, and anaerobiosis to create soil conditions that are lethal to pests, but 

safe for humans (153). Plant-derived substances such as corn gluten, black pepper, and 

garlic compounds can be used as biopesticides to control insects. Insect hormones may 
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act as biopesticides to repel bugs, disrupt mating and affect growth. Certain food-grade 

oils such as castor, cinnamon, clove, corn oil, etc are also eligible to be minimum-risk 

pesticide products. Organic pesticides include soaps, hydrogen peroxide, sodium 

hypochlorite, and diatomaceous earth (154).   

6 Conclusions 

Prenatal exposure to thiacloprid resulted in the dose and sex-dependent alteration 

in the neuronal and steroid markers in specific brain areas only in mice, not in zebrafish. 

This could be due to the dose used or receptor specificity indicating the need for further 

investigations on the effects of neonicotinoids in the developing vertebrate brain. 

7 Supplementary Information 

Supplementary Table 1: Oligonucleotide sequences used in real-time quantitative 
polymerase chain reaction experiments 

Primer name Forward 
 

Reverse 
 

Zebrafish 

ef1 5’-AGC AGC AGC TGA GGA GTG AT-3’ 
 

5’-CCG CAT TTG TAG ATC AGA TGG-3' 
 

esr1 (ER Alpha) 5’-CTG GAG ATG CTG GAC GCT CA-3' 5’-GCT GCA GCT CCT CCT CCT GG-3’ 

esr2a (ER Beta2) 5’-GAT CCT CCT GAA CTC CAA CAT G-3’ 5’-CCA GCA GAC ACA GCA GCT TGG A-3’ 

esr2b (ER Beta1) 5’-GAT CCT GCT CAA CTC TAA TAA C-3’ 5’-CCA GCA GAT TCA GCA CCT TCC C-3’ 

cyp19a1b 
(Aromatase) 

5’-TCG GCA CGG CGT GCA ACT AC-3’ 5’-CAT ACC TAT GCA TTG CAG ACC-3’ 

Nestin 5’-ATG CTG GAG AAA CAT GCC ATG 
CAG-3’ 

5’-AGG GTG TTT ACT TGG GCC TGA AA-
3’ 

Neurogenin 1 5′-TGC ACA ACC TTA ACG ACG CAT TGG-
3′ 

5′-TGC CCA GAT GTA GTT GTG AGC GAA-
3′  

BDNF 5′-TTA CGA GAC CAA ATG CAA CC 3′ 5′-CAC GTA AGA CTG GGT TGT CC-3′ 

PCNA 5’-CTCACAGACCAGCAACGTCG-3’ 5’-GGACAGAGGAGTGGCTTTGG-3’ 

Synapsin IIA 5’-GTG ACC ATG CCA GCA TTT-3’ 5’-TGG TTC TCC ACT TTC ACC TT-3’ 

Synaptophysin  5’- ATG CAA AGA GCT GCA CGA AC -3’ 5’-CCC TGA GAG CTG GCA TAC TG -3’ 

Caspase 3 5’- CCG CTG CCC ATC ACT A -3’ 5’- ATC CCT ACA CGA CCA TCT -3’ 

Mice 

GAPDH 5’- GCA TGG CCT TCC GTG TTC C-3’ 5’- ACC ACC CTG TTG CTG TAG CC-3’ 

Erα 5’- AGG CAA AAG GGA TTC CAG GG-3’ 5’- TTG CTG AGG CTT CCT CTT GG-3’ 

Erβ 5’- TTT AGC CAC CCA CTG CCA AT-3’ 5’- CCT TCA CAG GAC CAG ACA CC-3’ 

Aromatase 5’- ATG AGG ACA GGC ACC TTG TG-3’ 5’- GAG GTT CAC GCC ACC TAC TC-3’ 

PCNA 5’- GCC AGA CCT CGT TCC TCT TAG-3’ 5’- CGT GAG ACG AGT CCA TGC TC-3’ 

DCX 5’- GAC CTG ACC CGA TCC TTG TC-3’ 5’- ACG TTG ACA GAC CAG TTG GG-3’ 

Synaptophysin 5’- ATC AAC CCG ATT ACG GGC AG-3’ 5’- TCT CTT GAG CTC TTG CCC AC-3’ 

BDNF 5’- TTG TTT TGT GCC GTT TAC CA-3’ 5’- GGT AAG AGA GCC AGC CAC TG-3’ 

Nestin 5’- GTG ACC CTT GGG TTA GAG GC-3’ 5’- AGA GCA CCT GCC TCT TTT GG-3’ 

Synapsin IIa 5’- GAG ACC ATC CGG AGC TTG AG-3’ 5’- TCA AGT CAT GGG ACA TCG CC-3’ 

Neurogenin 1 5’- CGC TTC GCC TAC AAC TAC ATC-3’ 5’- TAC TGG GGT CAG AGA GTG GGT-3’ 
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Supplementary Table 2: Tukey’s posthoc test Experiment 2a tested in mice during 
Experiment 2a (D0 versus D.6) in the amygdala, hippocampus, and hypothalamic regions 
 

Tukey's     Equal 

varian

ces 

Levene's Test 

for Equality of 

Variances 

t-test for Equality of Means 

  Markers Sex 

t df 

Sig. 

(2-

tailed

) 

Mean 

Differenc

e 

S.E 

Differenc

e 

95% CI of  

Difference 

      Y/N F Sig. Lower Upper 

Amygdala DCX M Y 2.546 .137 -3.296 12 .006 -0.57 0.17 -0.94 -0.19 

      N     -3.554 11.503 .004 -0.57 0.16 -0.92 -0.22 

  DCX F Y 3.541 .084 -5.188 12 .000 -0.87 0.17 -1.24 -0.51 

      N     -4.758 7.144 .002 -0.87 0.18 -1.30 -0.44 

  Synapsin IIA F Y .451 .516 -2.343 11 .039 -0.23 0.10 -0.45 -0.01 

      N     -2.285 9.066 .048 -0.23 0.10 -0.46 0.00 

Hypothalamus Synapsin IIA M Y .385 .544 2.298 15 .036 0.22 0.10 0.02 0.43 

      N     2.173 10.430 .054 0.22 0.10 0.00 0.45 

  Nestin F Y 3.539 .087 3.734 11 .003 0.45 0.12 0.19 0.72 

      N     3.931 8.977 .003 0.45 0.12 0.19 0.71 

  BDNF F Y .206 .659 2.517 11 .029 0.36 0.14 0.04 0.67 

      N     2.594 10.577 .026 0.36 0.14 0.05 0.66 

Hippocampus Neurogenin F Y 1.988 .189 2.923 10 .015 0.33 0.11 0.08 0.58 

      N     2.658 5.843 .039 0.33 0.12 0.02 0.64 

  PCNA M Y 6.886 .020 2.557 14 .023 0.31 0.12 0.05 0.58 

      N     2.818 10.957 .017 0.31 0.11 0.07 0.56 

    F Y .038 .848 5.958 12 .000 0.59 0.10 0.38 0.81 

      N     5.916 10.624 .000 0.59 0.10 0.37 0.81 

  Aromatase M Y .552 .469 5.834 15 .000 0.59 0.10 0.37 0.81 

      N     5.641 11.469 .000 0.59 0.10 0.36 0.82 

    F Y 3.446 .088 5.850 12 .000 0.66 0.11 0.42 0.91 

      N     6.546 9.634 .000 0.66 0.10 0.44 0.89 

  Nestine M Y .250 .625 3.893 14 .002 0.40 0.10 0.18 0.62 

      N     3.840 12.305 .002 0.40 0.10 0.17 0.63 

    F Y .155 .702 3.051 10 .012 0.60 0.20 0.16 1.04 

      N     3.229 7.086 .014 0.60 0.19 0.16 1.04 

  Synapsin IIA M Y 2.222 .157 6.716 15 .000 0.64 0.10 0.44 0.85 

      N     6.082 8.650 .000 0.64 0.11 0.40 0.89 

    F Y 4.926 .046 8.819 12 .000 0.65 0.07 0.49 0.81 

      N     9.871 9.619 .000 0.65 0.07 0.50 0.80 

  
Synaptophys

in 
M Y .141 .713 3.875 14 .002 0.44 0.11 0.20 0.69 

      N     3.907 13.419 .002 0.44 0.11 0.20 0.69 

    F Y .053 .822 4.345 11 .001 0.48 0.11 0.24 0.72 

      N     4.229 7.900 .003 0.48 0.11 0.22 0.74 
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Supplementary Table 3: Tukey’s posthoc test Experiment 2b tested among mice during 
Experiment 2b (D0, D0.06, D0.6) in the amygdala, hippocampus, hypothalamus, and 
cerebellar regions 
 
Tukey's 

Dosage 
Mean 

Difference 
S.E p 

95% Confidence Interval 

Markers Lower Bound Upper Bound 

Amygdala               

DCX 0 0.06 -0.72 0.24 .021 -1.35 -0.10 

PCNA 0 0.06 -1.40 0.45 .016 -2.55 -0.25 

Aromatase 0 0.6 0.32 0.12 .042 0.01 0.62 

Cerebellum               

PCNA 0 0.06 -0.59 0.15 .002 -0.96 -0.22 

    0.6 -0.46 0.14 .011 -0.82 -0.10 

Hypothalamus               

Neurogenin 0 0.06 0.49 0.13 .005 0.14 0.82 

    0.6 0.43 0.13 .010 0.10 0.75 

Aromatase 0 0.06 0.60 0.18 .010 0.14 1.06 

    0.6 0.45 0.17 .046 0.01 0.89 

Nestin 0 0.06 0.58 0.14 .002 0.22 0.94 

    0.6 0.57 0.14 .001 0.22 0.91 

BDNF 0 0.06 0.53 0.16 .010 0.12 0.94 

    0.6 0.45 0.16 .023 0.06 0.85 

Synaptophysin 0 0.06 -1.22 0.34 .006 -2.10 -0.35 

Hippocampus               

Neurogenin 0.6 0 2.38 0.59 .002 0.88 3.88 

    0.06 2.71 0.64 .001 1.09 4.34 

ER Beta 0.6 0 1.30 0.40 .012 0.28 2.31 

    0.06 1.75 0.43 .002 0.65 2.86 

Aromatase 0.6 0 1.03 0.36 .028 0.11 1.95 

    0.06 1.48 0.39 .004 0.48 2.48 

ER Alpha 0.6 0 1.25 0.38 .011 0.28 2.23 

    0.06 1.64 0.42 .003 0.57 2.70 

Nestin 0.6 0 2.12 0.54 .002 0.76 3.49 

    0.06 2.31 0.58 .002 0.83 3.79 
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Chapter 5: Discussion and Summary 

 About 10.7% of the global population suffers from a mental disorder. Concerning 

anxiety disorders, globally, 301.39 million prevalent cases were estimated in 2019 (1). 

Neuroscience research reveals that different mental health disorders such as stress, 

anxiety, depression, and even neurodegeneration and their forthcoming behaviors are 

associated with alterations in neuroplasticity. Thus, it is important to collect evidence 

regarding the etiological factors and if possible, design prevention and treatment 

strategies for this altered neuroplasticity. The plasticity of the human brain is adaptive to 

structural and functional changes based on experience and training leading to functional 

recovery (2).  

Among the various factors that affect neuroplasticity, human physiology and 

health are strongly influenced by the environment. Several factors modulate 

neuroplasticity in a positive and negative direction. The field of environmental health has 

evolved significantly in the recent past but is still based on epidemiological studies. Most 

studies have focused on the potential negative impacts of environmental factors (mainly 

social stress and exposure to chemicals), but some factors have positive effects. Thus, 

it was planned to study one positive and one such negative stimuli on neuroplasticity in 

this thesis. In the first chapter (Chapter 1), the concepts of neuroplasticity, 

anthropogenic factors, and exposome are introduced. The process of neurogenesis 

during development and adulthood is then discussed, indicating the vulnerability of the 

developing brain to exposome. Then the exposure of human beings and animals to 

different anthropogenic stimuli is introduced. The factors that influence neuroplasticity 

are detailed. Specific emphasis is laid on the impact of acoustic and chemical stimuli on 

neuroplasticity. Our objective was to gain more knowledge about the physiological 

impact of potentially positive (auditory stimulation: music) and negative (chemical 

exposure: thiacloprid) stimuli on the peripheral and central nervous systems.  

Among the different stimuli that have shown beneficial effects, music is a 

promising intervention that is ubiquitous across human cultures. Music is a powerful 

sensory stimulus that produces physiological, psychological, and social effects. Both 

listening to music and music playing lead to structural and functional neuroplastic 

changes that are utilized in the management of different non-communicable disorders. 
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Music listening involves the sensory processing of acoustic stimuli (peripheral nervous 

system) followed by cognitive and emotional processing in a neural network (central 

system) producing pleasurable physical and emotional experiences. However, the 

association between acoustic intervention with music, its effects on overall health, and 

the mechanisms behind it remain unclear, and earlier studies reported contrasting 

findings. Thus, we asked the question: What are the short-term effects of positive 

anthropogenic auditory stimuli (music) on physiological parameters among 

healthy human beings? In Chapters 2 and 3, the effects of auditory stimuli (music) 

were studied on the central and autonomic nervous system, through the analysis of 

subjective measures of stress and anxiety, and of physiological parameters 

(electrocardiography, blood pressure, and electroencephalography recordings) in 

humans.  

Chapter 2 details the study where we used a triple-blind, randomized control trial 

design and showed that listening to music led to behavioral and cardiovascular 

modifications among healthy young adults. This chapter demonstrated the effect of 

different musical acoustical stimuli (three modes of music stimuli, named Miyan ki Todi, 

Malkauns, Puriya in Indian music), compared to natural sounds in the environment 

(stimulus given to the control group), on measures of stress, anxiety, blood pressure 

control, and autonomic nervous system tone (measured employing heart rate variability) 

among healthy human beings. Modes are a combination of notes in a given scale of 

music woven together to produce a melody. The melody is the linear succession of 

musical tones that vary in pitch. We showed that all modes of music reduced the levels 

of anxiety and stress to different degrees. The control group did not show a change in 

anxiety levels. However, using heart rate variability measures, we observed that during 

the intervention with two modes (Miyan ki Todi, Puriya), there was an arousal response, 

while after the intervention an improvement in parasympathetic tone (relaxation 

response) was observed. The third mode of music (Malkauns) caused a sustained 

increase in parasympathetic tone, like that observed in the control group. It indicated 

that although musical acoustic stimuli reduced anxiety and stress measures, the timing 

of autonomic changes varies with the mode used as the stimulus.  
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Dysautonomia refers to a group of medical conditions caused by problems with 

the autonomic nervous system (ANS). Worldwide, it affects more than 70 million people. 

Dysautonomia can affect ANS functions such as control of blood pressure, heart rate, 

respiration, gastrointestinal functions, all visceral organ functions, and temperature 

control. Secondary dysautonomia can result from different diseases such as Cancers, 

Diabetes, PD, Rheumatoid arthritis, Amyloidosis, and many such disorders. Currently, 

there is no cure for this condition except for symptomatic management of blood pressure 

(for example for low hypotension, more water and salt intake is prescribed) or other 

autonomic symptoms. The literature review suggests the use of supportive therapy 

modalities, including music as an intervention for the prevention or treatment of 

autonomic dysfunction (3). Interventions based on music therapy, traditional Chinese 

medicine-related treatments, exercise, relaxation, and myofascial release techniques 

are found to be beneficial. Many randomized controlled trials have reported that music 

possesses anxiolytic and analgesic properties, and is associated with decreased heart 

rate, respiration rate, and blood pressure in palliative care settings or perioperative 

periods. Regarding the mechanism behind the effect of auditory stimulation and cardiac 

autonomic regulation, it was hypothesized that pleasurable songs induce dopamine 

release in the striatal system, which is involved in autonomic regulation, and this topic 

has been well-reviewed in (4).  

This is the first study to focus on how Indian modes can alter physiological 

measures related to stress, arousal, and anxiety. Clinically, this study promoted the idea 

of the use of music, and particular modes, to facilitate relaxation, and provide an 

alternative treatment strategy. Future studies may find it beneficial to expand the present 

findings to other melodies, investigate during live music concert sessions, analyze 

temporal variations in heart rate variability during the intervention, and more closely 

investigate gender differences to understand if reproductive steroid hormones can play 

a role in the physiological measures assessed. It would also be interesting to investigate 

factors related to perception and emotion, such as personality and music preferences, 

in future work. Further analysis of the musical features and the components (e.g., 

temporal analysis of note/tonal variations, pitch, tempo, dynamics, and contrast) of the 

music used may enhance our understanding of the physiological effects. 
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Musical stimuli can induce a variety of emotions in individuals. The mode is one 

of the most important structural features that constitute the expressional characteristics 

of music. The mode is a structural feature embodied in the structural relationship among 

the tones that constitute the basic series of music. Two of the modes are natural diatonic 

scales, the Ionian (Natural Major Scale) and the Aeolian (Natural Minor Scale). The 

remaining commonly used modes are Phrygian, Dorian, Mixolydian, and Lydian. In 

Indian music, modes are named ragas, and there are about 72 parent modes called the 

Janaka ragas (containing the 7 notes, Sa Ri Ga Ma Pa Dha Ni, similar to Do Re Mi Fa 

So La Ti of western music), derived from 22 music tones. From these modes are the 

thousands of other modes derived by either eliminating, adding, skipping a few notes, 

or by different permutations and combinations of the tones. The structural difference 

between the major and the minor mode produces distinct sound effects. It is important 

to understand these modes as the literature survey repeatedly suggests that the major 

mode tends to induce positive emotions, while the minor mode tends to induce negative 

emotions. For more on this see (5–7) which was also shown to be true using Indian 

music ragas (8,9). In the current study, though physiological effects varied with the 

modes heard, emotional ratings or valence recordings were not included to conclusively 

comment on the emotional experience the participants might have had. Thus, future 

studies may include studying modes of music and the emotional experience of the 

participant simultaneously.  

In recent years, a lot of research has focused on the physiological effects of 

music. Electroencephalography (EEG) is often used to verify the influence of music on 

human brain activity. Music is considered a powerful brain stimulus, as listening to it can 

activate several brain networks. Music of different kinds and genres may have different 

effects on the human brain. Furthermore, the brain activity of multiple subjects has been 

shown to synchronize during salient moments of natural stimuli, suggesting that the 

correlation of neural responses indexes a brain state operationally termed 'engagement'. 

This is classically studied as Inter-subject correlation (ISC) using fMRI and has recently 

been used to analyze EEG signals on intervention with narrative stimuli, with a temporal 

structure such as a story, movie, or music.  
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In Chapter 3 we analyzed the brain wave changes and frequency distribution 

spectral analysis (measured by EEG) by listening to the same set of acoustical stimuli 

used in chapter 2. On analysis of frequency components across the whole scalp during 

the intervention, a global drop in alpha power in all the groups and a frontocentral 

increase in beta (after intervention) and gamma power (during intervention) were noticed 

with modes Miyan ki Todi and Malkauns respectively. This change in beta was 

postulated to be due to attention modulation, and higher alertness. In EEG, the alpha 

rhythm is said to be associated with global cognitive engagement while beta and theta 

rhythms point towards specific functions, for example, working memory, and there is de-

synchronization in alpha and beta bands during mental imagery (10). The rise in gamma 

was probably indicating the binding of music features or may also be due to liking the 

music based on previous literature. Group-based cluster statistics revealed a rise in left 

frontal gamma power during intervention with mode Malkauns. Group-based cluster 

statistics revealed a drop in the right frontoparietal delta (which could be due to alertness 

or divergent thinking following the stopping of the intervention) and a rise in frontal beta1 

with mode Miyan ki Todi. With the mode Puriya, after the intervention, a widespread drop 

in delta power and a rise in frontal beta1 were observed.  

It was further demonstrated that there existed three most correlated components, 

the first component representing delta or theta power (band1), the second component 

alpha or beta1 power (band2), and the third beta2 or gamma power (band3), with both 

modes Malkauns and Miyan ki Todi showing similar patterns of decrease in the lower 

frequency band (band1) and increase in mid-band (band2) during the intervention, 

compared to baseline and mode Puriya being similar to the control group, with an 

increase in the lower frequency band (band1) and decrease in mid-band (band2) during 

the intervention, compared to baseline.  Shared brain responses among the participants 

as captured by Inter-subject correlations (ISC) were also studied in this chapter. 

Reduction in globally distributed low-frequency activity and increase in posterior 

dominant alpha-beta1 activity may be characteristic of passive listening to relaxing 

Indian modes, which may persist even after 10 minutes of the listening period. Among 

the modes, raga Malkauns showed this effect most prominently, followed by raga Miyan 

ki Todi and least by raga Puriya. As the increase in posterior alpha and low beta power 
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is associated with Default Mode Network (DMN) activity and a decrease in delta power 

with positive emotional memory, the spectral pattern we observed may indicate the 

observation of positive autobiographical memory while listening to musical modes, and 

thus contribute to a relaxing experience.  

In a recent study, preferred music (called favorite music) and researcher-selected 

music (called relaxing music) were used as stimuli to study their effects on the brain. A 

better soothing effect was achieved by using relaxing music in that study, and it was also 

observed that longer periods of listening to relaxing music can cause a more significant 

change (11), which was further confirmed (12). When music pieces were played with 

two instruments, top-down modulations consistently enhanced or better reconstructed 

the relevant instruments than irrelevant ones during the segregation task. This wasn’t 

the case with the integration task as listeners probably employed heterogeneous 

strategies. These findings are similar to those seen with speech and polyphonic music 

perception (13). Familiarity with music is another confounding variable in music studies. 

Human listeners exhibit marked sensitivity to familiar music. Pupil responses showed a 

greater and faster dilation rate to familiar music, consistent with a faster activation of the 

autonomic salience network. EEG showed a later differentiation of the tunes, from 

350 ms after onset. Interestingly the cluster pattern identified in the EEG was very similar 

to that found in the classic memory retrieval paradigms, suggesting that the recognition 

of brief, familiar music snippets, drew on similar processes (14). Music listening has also 

been used to differentiate responses in EEG between major depression disorder (MDD) 

and healthy individuals. During music perception, MDD patients exhibited altered 

functional connectivity in delta and beta bands. MDD patients did not exhibit a lateralized 

effect while healthy people showed a left hemisphere-dominant phenomenon. These 

responses facilitate a new direction toward a diagnosis of connectivity disorders in 

depressed patients using music perception paradigms (15). Music of different valences 

has been shown to alter the EEG activity in emotion-specific regions (16). Music therapy 

and emotion-guided music decisions may be used for improving clinical depression and 

anxiety (17). Music has also been used to understand and elicit emotions in mental 

health conditions such as bipolar disorder, autism, and Alzheimer’s disease (18–20). 

Recently EEG power with a higher beta band and gamma band at the O2 and P4 
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electrodes was used as evidence to conclude that sad music may alleviate pain (21), 

which also has potential value for clinical use. In PD patients EEG power differences are 

partially reduced by listening to music. Music slightly improved the connectivity 

differences, particularly the frontotemporal inter-hemispheric communication which 

might underlie music’s beneficial effects on PD pathophysiology and should be further 

investigated (22). Brain development and morphological changes with age also influence 

the way sounds are processed, with studies showing an age-related increase in inter-

subject variability (23). Neuroplastic effects of music-based interventions and their usage 

for neurorehabilitation were recently reviewed in (24). 

The importance of studying changes in EEG on listening to music is thus not a 

new subject. In our current study, we showed that every mode of music can have a 

different physiological effect as observed on HRV (Chapter 2) or EEG recordings 

(Chapter 3). Further studies may include phenomenological reports to support these 

findings and build a stronger scientific foundation for the use of music in medicine. As 

ISC-based brain activity is modulated by training, studies may try to explore the effect of 

musical training and genre familiarity aspects. Different musical stimuli that are known 

to be emotionally stimulating can be studied, as ISC is said to vary with time-based 

emotional stimuli such as stories or movies. Studies may also include the emotion 

ratings for a better understanding of the exact emotions that might have caused these 

physiological changes. To exactly know the neural substrates activated within and 

between participants passively listening to the different scales, it is better to use higher-

density EEG or fMRI data.  

In the present thesis, we tried to understand the neuroplastic effects of one 

negative anthropogenic stimulus (insecticide) - Chapter 4. Industrialization of the 

agricultural sector has increased the chemical burden on natural ecosystems. Pesticides 

are agricultural chemicals used in agriculture, public health programs, and urban green 

spaces to protect plants and humans from various diseases. The intensive use of 

pesticides (eg: organophosphates, carbamates, pyrethroids, neonicotinoids) and the 

persistence of the molecule in the environment have contributed to the increased 

exposure of non-target invertebrates and vertebrates, including humans. For 

experimental studies, animals are commonly used to understand the negative impact of 
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anthropogenic stimuli on neuroplasticity. Among the various pesticides, though a handful 

of neonicotinoids were banned by the European Union, they continue to be used in some 

countries and they continue to persist in the environment. For the current thesis, we 

chose to study one of the most toxic, persistent insecticides, thiacloprid (Chapter 4), 

where we highlight the developmental neurotoxic potential of this insecticide. Though 

studies have looked into the potential of neonicotinoids from a developmental neurotoxic 

potential point of view, not many have studied the same in the way that the results of 

those can be applied to human health as per European Protection Agency guidelines for 

the study of insecticides. The drawbacks of previous works were the absence of studying 

both sexes, at different doses and the absence of statistical analysis. Different areas of 

the brain, in particular, the cholinergic areas of the brain, that are the prime targets for 

neonicotinoids, for their gene transcription had not been explored before. Thus we asked 

the question, what are the potential short-term neuroplastic effects (as evidenced 

by gene expression) after perinatal exposure to different doses of thiacloprid, a 

toxic anthropogenic stimulant neonicotinoid in animals, zebrafish, and mice 

(Chapter 4)?  

In Chapter 4, we evaluated the effect of perinatal exposure to different doses of 

thiacloprid, a neonicotinoid insecticide, on neuronal markers from whole heads of 

zebrafish larvae and specific brain regions (amygdala, hippocampus, cerebellum, 

hypothalamus) in mouse models. Perinatal exposure to thiacloprid resulted in the dose 

and sex-dependent alteration in the neuronal and steroid markers in specific brain areas 

only in mice, but not in zebrafish. In mouse offspring, a significant main effect of dose 

with an increase in DCX, PCNA (amygdala), PCNA (cerebellum), synaptophysin 

(Hypothalamus), and a decrease in hypothalamic ERβ, nestin, synapsin IIA, BDNF, 

Aromatase, hippocampal DCX, PCNA, neurogenin, aromatase, nestin, and synaptic 

markers was observed. The sex-specific difference in BDNF transcription in the 

hypothalamus and PCNA in the hippocampus was observed. Dose-dependent change 

(from 0.06 to 0.6 mg/kg/day) with an increase in synaptophysin (hypothalamus), ERα, 

ERβ, aromatase, nestin, neurogenin (hippocampus), and reduction in aromatase 

(amygdala), was observed. This work shows that alteration of the cholinergic system by 

neonicotinoid pesticide impacted the neuroendocrine system and the consequences of 
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this alteration should be further investigated in the central (limbic) and peripheral 

nervous system and on the pathophysiology in vertebrates, including humans. 

Our objective was to define the potential impact of the neonicotinoid thiacloprid 

on neuroplasticity and the neuroendocrine system in two vertebrates: the zebrafish and 

the mouse. In our study, we did not see any impact of thiacloprid on zebrafish, 

independent of the dose while specific brain regions in mice were impacted by early 

exposure to this pesticide. Though several genes are expressed during the 

developmental stages of zebrafish, none of the gene expressions changed using three 

different concentrations of thiacloprid. The probable reasons this could be the dosage 

used (which was low compared to previous studies), the duration of exposure, the 

temperature during exposure, species sensitivity difference for the chemical, receptor 

affinity, dynamic regulation of the cholinergic system, or presence of chorion. Analysis 

of the effect of thiacloprid and other such neonicotinoids on cholinergic system 

transcripts and subunits of the receptors is proposed to be taken up in future studies.  

Oxidative stress was proposed to be one of the chief mechanisms for developmental 

neurotoxicity with neonicotinoids. Further studies in this regard will be valuable. Also, 

the dose for zebrafish needs to be titrated further to see the neurotoxic effects, if any. 

Long-term effects at the molecular level in the brain and behavior remain to be explored. 

In mice, thiacloprid caused opposite effects on the hippocampus and the 

amygdala, regions chiefly involved in emotional behavior, memory, learning, fear, and 

stress responses. Further studies may try to elucidate the long-term behavioral 

modifications on developmental exposure to thiacloprid. Inflammatory response 

mounted by these regions may also be further elucidated in future studies. By thiacloprid 

effects on Estrogen receptors and aromatase, we postulated that thiacloprid may act 

through these ER receptors in a region and dose-specific manner to impair the functions 

in the hypothalamus while facilitating the functions of the hippocampus at the mid-dose 

range. At a high dose of thiacloprid, probable neuronal/glial cytotoxicity leads to a drop 

in most of the gene expressions. Recently, neonicotinoids, clothianidin, acetamiprid, and 

dinotefuran were shown to activate G-protein coupled Estrogen receptors (GPER) in a 

dose-dependent manner and thus promote breast cancer proliferation (25). It would be 

interesting to see if GPER in different brain regions is affected by neonicotinoids in future 
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studies. It is important to study the role of thiacloprid and other neonicotinoids on sex-

dependent behaviors and their involvement in the epigenetic causation of neurological 

diseases, such as Alzheimer’s disease in long term through their action as endocrine 

disruptors. In the current study, we found a rise in synaptophysin expression in the 

hypothalamus, indicating a probable rise in synaptic activity at that dose, but due to lack 

of further details, it is difficult to comment about a particular nucleus within the 

hypothalamus that might have been affected, or the neural activity change or the 

eventual protein expression. Despite high concentrations of these synaptic markers in 

different regions of the brain, we did not observe similar alterations in the expression in 

the various regions on exposure to thiacloprid. Future studies should include 

immunostaining procedures during developmental and later stages in mice models to 

ascertain these structural changes, if any, seen at neuronal and synaptic levels after 

gestational exposure to different doses of neonicotinoids. Combining behavioral analysis 

will help in confirming the neurological phenotypic pathologies associated with 

developmental neurotoxicity caused by thiacloprid and other neonicotinoids. Sex 

differences in exposure to neonicotinoids have often been ignored. Since several 

neurological diseases appear to occur in a sex-specific manner, studies on 

neonicotinoids must include sex as a biological variable. Furthermore, neonicotinoids 

could freely pass through the BBB and were detectable in the brain of mice (26,27). The 

results also indicate that thiacloprid may not be toxic to all cell types but affects each 

brain region differently and in a dose-dependent, sex-dependent manner. This may also 

be due to the specific subunit of nAchR present in these regions, their distribution, and 

the connection with other neurotransmitter systems. Differences between neuronal and 

glial responses to thiacloprid are yet to be elucidated.  

This study is important as neonicotinoids are still the most commonly used 

insecticides that get incorporated into the physiology of the plants and thus cannot be 

cleaned off just by washing or cooking before consumption like surface insecticides. 

Furthermore, it should be noted that washing and peeling cannot completely remove 

residues. In the majority of cases, the concentrations do not exceed the legislatively 

determined safe levels. However, these 'safe limits' can underestimate the real health 

risk, as in the case of simultaneous exposure to two or more chemical substances, which 
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occurs in real-life conditions and can have synergistic effects. Pesticide residues have 

also been detected in human breast milk samples, and there are concerns about 

prenatal exposure and health effects in children. Insecticide safety should be determined 

and risks publicized before registration and introduction to the market. Testing for 

developmental neurotoxicity and general toxicity must be routine for all chemicals 

determined for human use. In general, the world must be encouraged to restrict or 

prohibit the use of synthetic products in the production of food (28). Alternatives to 

insecticide use must also be explored, such as the Cry protein (δ-endotoxin) produced 

by the Bacillus thuringiensis, Biosolarization, Plant-derived substances, Insect 

hormones, Certain food-grade oils, and other organic pesticides. We need to try to 

understand the impact of chemicals on non-target species and help to regulate the use 

of these molecules and find alternatives if (neuro)toxicity is present.  

Future perspectives  

Exposome research can facilitate the identification of particular environmental 

factors that contribute to the onset of neurological disorders. The impact of chemical 

exposures currently surpasses biological exposures, and until recently scientists mainly 

focused on the acute consequences of biological exposures. However, a crucial 

constraint of various exposome and health investigations so far is that they concentrate 

on the connections between individual components of the external exposome and 

unfavorable health outcomes. The mechanistic comprehension of the relationship 

between exposure and disease is disregarded in both epidemiological and toxicological 

studies. The recent exposome framework has propelled the domain of molecular 

toxicology by offering the necessary mechanistic examination of the exposome's effects 

on health (29). Understanding the mechanisms involved in developmental neurotoxicity 

should be used to develop focused therapeutic interventions. Furthermore, guidelines 

for testing developmental neurotoxicity may require re-evaluation. There is also a 

necessity to create and verify innovative sets of alternative models and tests for 

developmental neurotoxicity (see a recent review on risk assessment, alternate models, 

and recommendations (30)).  

Neurotoxic effects are often observed as a result of exposure to toxic substances 

during pregnancy, nursing, early childhood, and adolescence. Although these effects 
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may manifest after only a brief period of exposure, research suggests that it may take 

months or even years for the detrimental effects of toxic substances to become clinically 

detectable. Therefore, similar to polio, tuberculosis, or any infectious disease detection 

or vaccination campaigns, it is crucial to conduct thorough epidemiological studies to 

establish risk assessments and possible causal associations between chemical 

exposures and developmental abnormalities in humans. To achieve this, it is necessary 

to quantitatively determine the relationship between internal exposure and exposome. 

Physiologically based pharmacokinetic (PBPK) and quantitative in vitro to in vivo 

extrapolation models can be used for this purpose (30). This will also aid in the early 

detection and treatment of neurological disorders, as well as the prevention of exposure 

risks. This involves analyzing how neurotoxicants interact with an individual's genetic 

susceptibility and exposure to other environmental factors. By understanding the 

interplay between various environmental factors and their impact on neurological health, 

exposome research can contribute to developing personalized prevention and precision 

medicine approaches that consider an individual's unique environmental exposures 

when treating neurological disorders. However, identifying silent neurotoxicity and 

subclinical changes remains a challenge, necessitating further research to develop tools 

for the early identification of exposure risks. It is essential to note that treating 

developmental neurotoxicity is often a multifaceted process that requires a team of 

healthcare professionals from various disciplines, including neurology, pediatrics, 

rehabilitation, and psychology. Exposome research can offer valuable insights to 

policymakers, enabling them to develop more effective public health policies that 

address environmental factors contributing to neurological disorders. 

Although music therapy is effective in treating various neurological conditions 

such as stroke, traumatic brain injury, and Parkinson's disease, its efficacy in treating 

developmental neurotoxicity is uncertain. Developmental neurotoxicity can affect 

different aspects of neurological function, including cognitive, motor, and sensory 

processing abilities. Music intervention may help address certain areas such as 

improving motor coordination, communication, and socialization skills. However, the 

effectiveness of music therapy for developmental neurotoxicity would depend on the 

specific symptoms and underlying condition of the individual. Music can be used as an 
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adjunctive therapy alongside other treatments for the rehabilitation of individuals 

exposed to neurotoxins, providing a more comprehensive approach to treatment. 

Moreover, music has the potential to promote neurogenesis and neuroplasticity and thus 

may be beneficial for treating certain aspects of developmental neurotoxicity. 

Nevertheless, further research is necessary to establish the effectiveness and optimal 

use of music therapy in this context. Recent epigenetic studies have shown that music 

listening may upregulate microRNAs related to neuroplasticity, indicating a potential 

positive impact of music therapy as a way to counteract the negative impact of 

anthropogenic stimuli with positive ones (31). Future studies should look into the 

neuroplastic effects of music as an adjuvant in the management of people exposed to 

chemicals, including psychoactive substances. 

Summary 

● In human studies, we observed that musical acoustic stimuli have specific 

effects on the autonomic nervous system, stress, and anxiety levels. Specific 

modes Miyan Ki Todi and Puriya caused arousal during the intervention while 

improving the parasympathetic tone after the intervention, while mode Malkauns 

led to a sustained rise in parasympathetic tone, as observed in the control group 

receiving natural sounds as stimuli.  

● Neurophysiological study of electroencephalogram during the different modes of 

musical acoustic stimuli showed a higher level of engagement and attention 

during modes Miyan Ki Todi and Puriya, while mode Malkauns led to divergent 

thinking after the intervention. These studies confirmed the acute neuroplastic 

effects of auditory stimuli in human beings. 

● In animal studies, we have observed that chemical environments, such as 

exposure to pesticides, can be causally linked to the alteration of the central 

nervous system. As shown in the present work and adding to the current 

literature, the impact of pesticides will depend on the animal model, the brain 

regions, and the sex of the model, reflecting the complexity of studying the 

consequences of chemical exposure on the nervous system and behavior and its 

extrapolation to the human when required. 
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Chapter 6: Valorization 

In universities, new methods are being used to assess the economic or social 

value of research. Establishing possible valorization routes in project planning brings 

great benefits to society and researchers. From a valorization point of view, this thesis 

targets different groups of scientific and non-scientific individuals in society, as briefly 

discussed below. 

Neurological disorders caused by trauma or illness are a heavy burden not only 

for patients but also for their families, be they those impairing cognitive, sensory-motor 

functions, or autonomic nervous system (ANS) functions. New strategies to prevent and 

manage such neurological diseases must always be sought to reduce the risk and burden 

of disease. The empirical work presented in this thesis first and foremost aimed to better 

understand the short-term effect of one positive anthropogenic auditory stimulus 

(music) on humans and the mechanisms that underlie the observed changes.  The focus 

was on neuroplastic changes, including the central and peripheral nervous systems 

(autonomic nervous systems). Therefore, the present findings are primarily of interest to 

the auditory neuroscience community, studying the neuroscience of music to 

appreciate the varied effects of using different modes of music (Indian classical genre) on 

subjective measures of stress, anxiety, cardiovascular, central nervous, and the ANS. At 

the time of writing this thesis, approximately 35,008 articles have been published using 

the MeSH word ‘Music’ and about 243 articles using ‘Indian Music’ on PubMed. The 

community of music neuroscience researchers has been growing in recent years for the 

exciting possibility of using music intervention to prevent and treat neurological problems, 

involving cognitive, motor, and sensory deficits. In addition to this, this thesis will capture 

the attention of psychotherapists who use cognitive behavioral therapy, mindfulness-

based meditation, or different modes of relaxation therapy to reduce stress and improve 

the mood in emotionally or psychologically affected individuals. It is important for music 

psychologists and therapists who can decide on the number of music features and 

modes of music for patient-centric therapy, based on existing evidence, and that given in 

the current thesis. Research into emotions induced by music may also be further 

explored. Additionally, an improved understanding of the neuronal mechanisms that 
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support the auditory perception of music is of interest to other domains of cognitive 

neuroscience, such as language and vision. Language and music share common 

processing systems (1,2).  

Although the research discussed here has been conducted in healthy volunteers, 

advances in its knowledge can be used to unravel more general pathophysiological 

deficits of stress, anxiety, ANS plasticity, functional and structural cortical neuroplasticity, 

and auditory cognition. For example, Alzheimer’s disease (AD) is often associated with 

loss of memory and autonomic dysfunction (3). Studies using music as an intervention 

has shown that music often stimulates autobiographical memory centers (4), and 

restoration of autonomic balance is one of the main mechanisms of action through which 

music has an effect in Alzheimer's patients (5). Thus, the current thesis is important for 

physicians, and neurologists treating disorders with impaired neuroplasticity or ANS 

disorders and those involved in neurorehabilitation and palliative care. Importantly, the 

current hypothesis of neurological diseases is that stress activates the ANS, which in turn 

results in the activation of the neuroinflammation pathway, triggering a cascade of events 

that result in anxiety, depression, neurodegenerative, and neuroinflammatory disorders  

(6–8). Therefore, it is of utmost importance to develop new strategies for the prevention 

of ANS hyperstimulation and dysfunction. Given the significant side effects of several 

drugs and chemicals in the market (for example see(9)), it is high time, we analyze the 

non-pharmacological interventions available for the prevention and management of 

chronic diseases.  Non-pharmacological interventions have been known since before 

modern pharmacology was developed. Recent systematic reviews declared that though 

non-pharmacological therapy showed promise high-quality evidence was lacking for the 

management of AD (10), and low to mixed-quality studies were observed for the 

management of pain in dementia patients (11) indicating the necessity of more rigorous 

design to validate the results. Our experiments in this thesis may benefit by adding to the 

current literature on the use of music (listening to music/playing instruments/singing) for 

any chronic systemic non-communicable diseases associated with autonomic 

dysfunction. Indeed, the inclusion of music into one’s lifestyle is not a difficult task to 

achieve.  Artists in collaboration with medical specialists can come up with music having 

https://www.zotero.org/google-docs/?4g0gSv
https://www.zotero.org/google-docs/?G8g0N2
https://www.zotero.org/google-docs/?IZ1Cr9
https://www.zotero.org/google-docs/?2jg4iO
https://www.zotero.org/google-docs/?lAK2Z8
https://www.zotero.org/google-docs/?Byucd6
https://www.zotero.org/google-docs/?ls2ZCj
https://www.zotero.org/google-docs/?74NygR
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a combination of specific music features to target a particular physiological effect, and 

also explore long-term changes in neuroplasticity.   

The second part of the thesis aimed to understand the short-term effect of one 

negative anthropogenic chemical stimulus (insecticide-thiacloprid) on animals, 

and the molecular mechanisms that underlie the observed changes. We observed 

significant changes in neuroplastic markers depending on the dose, sex, and species of 

animals. Pro-environmental behavior refers to acts that benefit the natural environment, 

enhance environmental quality, or harm the environment as little as possible (12). 

Environmental social scientists study human-environment interactions (also known as 

sustainability science and coupled human-natural systems research). This thesis 

contributes to understanding the relationships between humans and nature as affected 

not only by local and global factors but also by environmental policies.  Chemical usage 

and release policy in the environment without prior analysis of its effects can harm 

society as a whole. The risks a chemical poses need to be identified, and publicized 

before registration and release into the environment. Although agricultural workers 

receive educational training through governmental and non-governmental institutions, the 

topics are usually around occupational acute poisoning prevention. It is necessary to 

educate them regarding the risks involved with long-term chronic exposure to pesticides 

and other chemicals, proper means of release and disposal of chemicals, and ways to 

reduce the exposure risk for the whole family. On the other hand, increased efforts aimed 

at reducing pesticides are mandatory. The findings of this study necessitate a need for 

regulatory action by the governmental and important international agencies to promote 

alternatives for pest control (or make them non-toxic/less toxic) eliminating the risk of 

pesticide exposure at source in humans and animals (particularly pregnant and children). 

Furthermore, plant geneticists can plan to investigate the probability of creating 

genetically modified plants as is already being tried. It is proposed through this thesis that 

like clinical trials in medicine, where every drug goes through different phases of testing 

for its safety and efficacy, anthropogenic chemicals that are currently present in the 

environment and those that are planned to be released into the environment should go 

through vigorous multiple steps of testing on not just target insects or pests, but also a 

set of non-target vertebrates, in land and aquatic environments (preclinical trials), 
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including trials in humans (at a milder dose). Only after these steps, should the regulatory 

authorities be allowed to utilize such chemicals for agricultural or home-based products. 

Environmental quality standards are required to be developed for all chemicals, and 

all this information should be made easily accessible to the common man. This thesis is 

also important for policymakers across the world who need to understand the impact of 

chemical exposures even at low concentrations on pregnant women and the developing 

fetus, survival, and biodiversity of animals in the land and water. This thesis highlights the 

neuroplastic changes caused by positive and negative stimuli, and long-term effects of 

developmental exposure to adverse stimuli. As a society, it is thus essential to cultivate 

and disseminate methods that enrich neuroplastic changes in the positive direction.  
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