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Chapter 1: Introduction and Outline of Thesis
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1.1 The role of radiation therapy in the management of cancer patients

Radiation therapy is an important treatment modality in the management of cancer. Approx-
imately 77% of lung cancer patients have an indication to receive radiation therapy [1]. As 
technology evolves and new drugs are entering cancer care, integrated or comprehensive 
cancer treatment is becoming mainstream [2]. Specifically, the main treatments for cancer 
include surgery, chemotherapy, immunotherapy, radiotherapy, the last of which plays an 
important role in the integrated treatment. [3]. The use of radiotherapy in combination with 
surgery can improve survival, i.e., extend the survival time of patients treated with neoad-
juvant or consolidation radiotherapy [4, 5]. Concurrent chemoradiotherapy has become a 
standard treatment option for many cancers, such as locally advanced non-small cell lung 
cancer, for which it is the primary curative treatment. [6]. With the advent of immunother-
apy, the pairing with radiotherapy, including optimal dose fractions, is under active investi-
gation.

Several studies have demonstrated that radiotherapy and immunotherapy can have poten-
tially synergistic effects [7, 8]. The PACIFIC study, a milestone in immunotherapy, estab-
lished the status of consolidation immunotherapy following concurrent chemoradiotherapy 
[9]. Radiotherapy can attenuate immune resistance, induce the release of TGF-β, and the 
upregulation of PD-L1 expression as well as the reprogramming of the immune microenvi-
ronment [7, 10]. At the same time, immunogenic cell death due to radiotherapy can promote 
the release of cytokines such as interferons, tumor necrosis factor-α, Interleukin-1 and In-
terleukin-6, etc [11]. Based on some of these findings, several clinical trials incorporating 
radiotherapy and immunotherapy have been designed (e.g., PACIFIC-4 NCT03833154 and 
ISABR NCT03148327).

An increase of radiotherapy efficacy will not only improve the outcomes of patients, but 
also gives patients more options, such as the opportunity to receive surgery for patients who 
are treated with neoadjuvant radiotherapy, and improve the effectiveness of the multidisci-
plinary synergistic treatment model. In addition, radiotherapy gives hope to patients who 
are unable to receive other treatment modalities. In the Netherlands, for example, with the 
use of stereotactic ablative body radiotherapy (SABR), the proportion of untreated elderly 
lung cancer patients is gradually decreasing and, accordingly, survival is increasing [12].

Therefore, with the development of innovative treatment techniques, options and combina-
tions, radiotherapy continues its important role in the treatment of cancer.

1.2 Precision medicine in radiation therapy

While the value of radiotherapy is clear, it also presents challenges. If radiotherapy can be 
used wisely to maximize its value, it can improve patient prognosis and reduce patient pain 
and treatment costs. Conversely, if treatment decisions are not made appropriately, for ex-
ample, if the estimated efficacy of the treatment is far from the actual outcome, it will not 
only fail to improve the prognosis, but also impact other interventions. Specifically, it may 
delay the intervention of other therapies or prevent the immediate use of systemic therapy 
due to side effects of radiation therapy [13]. Therefore, it is crucial to improve the targeting 
of radiotherapy, i.e., to precisely select patients suitable for radiotherapy and to implement 
tailored radiotherapy regimens.
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Precision medicine is not a recent novel concept [14], but it is still relevant in modern times 
and has practical implications that require dedicated research to complete and refine its 
framework. In the field of radiotherapy, precision medicine is widely recognized and accept-
ed, especially with the emergence of novel technologies, and known as precision radiother-
apy [15]. The aim of precision radiotherapy is to give the optimal treatment regimen to each 
patient, based on individualized conditions. As shown in Figure 1, precision radiotherapy 
is achieved by combining it with other treatment modalities to develop a personalized care 
plan with appropriate radiotherapy techniques, ultimately improving the patient’s prognosis 
and reducing the side effects of the treatment(s). One of the elements that make this concept 
possible is a variety of biomarkers that reflect information about a patient’s tumor and/or 
normal organs and thus predict clinical endpoints such as survival and toxicities. [16].

Figure 1. Precision radiotherapy requires predictors from different origins to help make 
clinical decisions and treatment strategies, and the ultimate goal of precision radiotherapy is 
to improve prognosis and reduce toxicity.

Panomics is an important class of biomarkers on which numerous researchers have fo-
cused their work [17, 18]. With the application of next-generation sequencing technology, 
many exciting genomics studies have emerged [19]. In addition, cytokines, immune mi-
croenvironment-related markers, proteome and metabolome have also been shown to have 
prognostic roles and guiding individualized treatment [20]. The estimated radiation dose to 
immune cells has also been demonstrated to correlate with the overall survival of patients 
treated with radiotherapy [21]. However, a limitation of these panomics biomarkers is that 
most of them are difficult to obtain, i.e., by invasive means and at high cost.

One of the main research questions of this thesis is: Is it possible to develop low-cost bio-
markers that can be accessed quickly and non-invasively to assist in clinical decision mak-
ing?
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1.3 Radiomics and Image-based biomarkers

Radiomics, as a non-invasive method to extract quantitative features from medical imag-
es, was proposed in 2012 [22]. On the one hand, radiomics can reflect some of the same 
information as the semantic features obtained by physicians. On the other hand, radiomics 
contains some information that is not available to the naked eye. Radiomics are divided 
into two categories, one is handcrafted features, i.e., already predefined by mathematical 
formulas, and the other is deep learning features, i.e., features automatically extracted by 
models constructed from convolutional neural networks and other means, which have no 
fixed formula and definition [23]. The steps to build a radiomics model from a technical 
point of view are roughly divided into region of interest definition, preprocessing, feature 
extraction, and model building. Thus, radiomics, in contrast to panomics, contains not only 
image-based biomarkers, but also models, or so-called signatures, built on the biomarkers. 
[24]. As a result, radiomics is more accessible, reusable, cost effective, and in most cases 
does not require additional patient examinations. More importantly, it can be combined with 
traditional clinical predictors, and panomics, etc., without mutual exclusivity [25]. It is cur-
rently considered as a promising technology to assist/guide clinical decision making.

Improvements in radiotherapy techniques are always accompanied by advances in imaging 
[26, 27], and a large amount of imaging data is acquired throughout the management of 
radiotherapy patients. Medical imaging, such as diagnostic CT, MRI and PET, is included 
in the pre-treatment diagnosis of most patients. During radiotherapy, planning CT/MRI and 
cone beam CTs are obtained. After radiation therapy, patients are followed up with regular 
imaging examinations. Therefore, radiomics is a worthwhile research area for the field of 
radiotherapy.

There has been a large amount of radiomics studies in the field of radiotherapy [28]. In the 
case of lung cancer, for example, studies on radiomics cover almost every pathological type 
and every stage. As mentioned above in the definition of precision radiotherapy, most of 
the studies are aimed at improving prognosis and reducing the incidence of side effects [29, 
30]. These inspiring studies give researchers confidence and demonstrate its potential for 
application. However, throughout these studies there are also some issues and challenges 
that need to be addressed. The first is the uneven standard of radiomics research, which is 
mainly due to the lack of a corresponding quality evaluation system [31, 32]. Therefore, 
there is a need to develop methodological evaluation criteria for radiomics research 
(Chapter 2) based on the existing quality assessment standards. And based on these meth-
odological evaluation criteria, the published studies should be evaluated to have an objec-
tive assessment of the current stage of radiomics research. Most studies currently include a 
small amount of data (around 50-200 patients) [28, 33], and in our experience, we consider 
this lack of data to be a major obstacle to building clinical hypothesis models. As a result, 
real-world research does not really live up to the “big data” vision. The reasons for this 
come from a variety of sources, including inadequate data storage and management; the 
amount of data available for a particular clinical problem is drastically reduced after rigor-
ous screening based on inclusion and exclusion criteria. A research question in this thesis is 
thus: Is it possible to perform sample expansion / augmentation (Chapter 3) by technical 
means to meet the data requirements of radiomics studies?
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1.4 The need for radiomics and image-based biomarkers in predicting 
the prognosis and toxicity of radiotherapy

From the clinical perspective, most of the current radiomics studies are closely related to 
clinical needs and have practical application prospects [34], but there are still some details 
that are worth exploring. For early-stage NSCLC patients who do not wish to undergo sur-
gery and for those who are medically inoperable, SBRT has become the standard of care. It 
is well tolerated and provides high rates of local control [35]. Nevertheless, distant failure 
in early-stage patients is common. Distant failure is highly correlated with poor prognosis, 
and for patients with distant failure, systemic therapy, such as chemotherapy or tyrosine 
kinase inhibitor (TKI)-targeted therapy, can help improve prognosis. Therefore, there is a 
need to develop a biomarker to effectively predict distant failure in early-stage patients 
treated with SBRT (Chapter 4) and to guide physicians on appropriate treatment for high-
risk groups.

For locally-advanced lung cancer, curative radiotherapy is one of the main treatment modal-
ities. However, there is a large variation in the survival of patients who receive radiotherapy. 
Therefore, the identification of biomarkers predicting the prognosis of these patients is 
relevant and crucial for the radiotherapy field (Chapter 5) with which more attention can 
be given to high-risk patients. On the other hand, because radiotherapy is a double-edged 
sword, radiation pneumonitis (RP) [36] is a major toxicity of lung cancer treated with ra-
diotherapy. RP is a non-infectious pneumonia, induced by radiation, that reduces the quality 
of life of patients and can be fatal in severe cases. It is not uncommon for RP to occur, es-
pecially in patients with locally advanced lung cancer. Robust and reproducible prediction 
models that could estimate the risk of developing RP after lung RT (Chapter 6 and 7) 
would be of tangible clinical value. And for those patients at high risk of developing RP, 
prophylactic medication and active vigilance could be indicated.

1.5 Aim and outline of this thesis

The overall aim of this thesis is to use radiomics to assist in clinical decision-making re-
garding prognosis and toxicity.

Following this introduction, this thesis assesses the quality of published radiomics articles 
and presents a methodological assessment checklist (Chapter 2), introduces a data augmen-
tation method based on a deep learning approach (Chapter 3). The predictive power of ra-
diomics for lung cancer prognosis (Chapters 4-5) and radiotherapy-related toxicity (Chapters 
6-7) are also explored and evaluated with prospective or/and multi-institutional datasets. 
Finally, I discuss the challenges and prospects of radiomics (Chapter 8). The outline of this 
thesis is summarized in Table 1.

Chapter 2 proposes an appraisal matrix with 13 items to assess the methodological quality 
of radiomics studies. Published studies are also evaluated, using esophageal cancer as an 
example.

Chapter 3 uses a dual discriminator super-resolution generative adversarial network to gen-
erate synthetic ground glass nodules that have the potential to become lung cancer. Radiom-
ic features were extracted from both the generated and real nodules, and these features were 
compared.
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Chapter 4 uses PET- and CT-based radiomic features to predict the risk of distant metasta-
ses in patients with early-stage lung cancer who underwent SABR.

Chapter 5 utilizes radiomics features extracted from both normal lung tissue, as well as tu-
mor tissue for prognosis prediction of patients with locally advanced lung cancer.

Chapter 6 combines radiomics, dosiomics and clinical parameters to predict radiation 
pneumonitis and compares it with the benchmark models.

Chapter 7 uses CT images and radiation dose images to predict radiation pneumonitis and 
uses deep learning techniques to make the model applicable to groups with different dose 
patterns without the need for complex retraining.

Chapter 8 discusses the main findings of this thesis and reflections on the results. The lim-
itations of the current radiomics research are described, and the future direction of radiom-
ics in radiotherapy is prospected.

Table 1. The chapters in this thesis.

Section Chapter Title Main finding
Introduction Chapter 1 Introduction of the thesis

Basic research 
in radiomics

Chapter 2 Methodological quality of machine learn-
ing-based quantitative imaging analysis studies 
in esophageal cancer: a systematic review of 
clinical outcome prediction after concurrent 
chemoradiotherapy

M e t h o d o l o g i c a l 
evaluation checklist 
is presented.

Chapter 3 Generation of synthetic ground glass nodules us-
ing generative adversarial networks (GANs)

GAN method can 
generate synthetic 
images.

Biomarkers of 
prognosis

Chapter 4 A PET/CT radiomics model for predicting dis-
tant metastasis in early-stage non-small cell lung 
cancer patients treated with stereotactic body 
radiotherapy: A multicentric study

CT-based combined 
w i t h  P E T- b a s e d 
radiomics can effec-
tively predict DM.

Chapter 5 Combining tumor radiomics features and whole-
lung radiomics features to predict prognosis 
in locally advanced non-small cell lung cancer 
treated with curative radiotherapy

The ro le  of  lung 
t i s sue  canno t  be 
ignored when pre-
dicting OS in lung 
cancer by radiomics.
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Biomarkers of 
toxicity

Chapter 6 Radiomics and dosiomics signature from whole 
lung predicts radiation pneumonitis: a model 
development study with prospective external val-
idation and decision-curve analysis

Dosiomics performs 
better than the DVH 
metric in predicting 
RP.

Chapter 7 Computed tomography and radiation dose im-
ages-based deep-learning model for predicting 
radiation pneumonitis in lung cancer patients af-
ter radiation therapy: A pilot study with external 
validation

Deep learning ap-
proach can help to 
apply the model to 
different cohorts.

Discussion Chapter 8 Discussion and Future Perspectives

Abbreviation: GAN, Generative Adversarial Network; DM, distant metastasis; OS, overall 
survival; DVH, dose-volume histogram; RP, radiation pneumonitis.
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Abstract

Purpose Studies based on machine learning-based quantitative imaging techniques have 
gained much interest in cancer research. The aim of this review is to critically appraise the 
existing machine learning-based quantitative imaging analysis studies predicting outcomes 
of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA 
guidelines.

Methods A systematic review was conducted in accordance with PRISMA guidelines. 
The citation search was performed via PubMed and Embase Ovid databases for literature 
published before April 2021. From each full-text article, study characteristics and model 
information were summarized. We proposed an appraisal matrix with 13 items to assess the 
methodological quality of each study based on recommended best-practices pertaining to 
quality.

Results Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints 
included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy 
with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide 
variation in quality. A total of 30 studies published within the last five years were evaluated 
for methodological quality and we found 11 studies with at least 6 “Good” item ratings.

Conclusion A substantial number of studies lacked prospective registration, external val-
idation, model calibration, and support for use in clinic. To further improve the predictive 
power of machine learning-based models and translate into real clinical applications in 
cancer research, appropriate methodologies, prospective registration and multi-institution 
validation are recommended.

Keywords: Quantitative imaging analysis; Esophageal cancer; Concurrent chemoradiother-
apy; Clinical outcomes; Methodological assessment
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Introduction

Esophageal cancer (EC) is the seventh most common malignancy, and the sixth most com-
mon cause of cancer-related death worldwide [1]. Prognosis for EC patients remains poor to 
date, with a five-year survival chance of 20% [2]. Although the histopathology and disease 
characteristics differ between eastern and western countries due to genetic variations, con-
current chemoradiotherapy (CCRT) plays an important global role in the treatment of EC [3].

The CROSS trial was a landmark study that established the role of neoadjuvant chemora-
diotherapy (nCRT), and laid the foundation of nCRT as the standard of care for resectable 
EC [4]. While CROSS demonstrated that nCRT improved average survival among EC 
patients and side-effect rates were acceptable, it remains clinically meaningful to select pa-
tients that will personally benefit from nCRT versus their probable side effects. Definitive 
chemoradiotherapy is standard of care for unresectable EC [5]. However, it remains difficult 
to predict individual outcomes (e.g., treatment response) of any type of CCRT due to tumor 
heterogeneity between subjects and complex tumor microenvironments within.

Technical advances in radiation delivery such as modulated radiotherapy, image-guidance 
and scanning proton beams have vastly improved target coverage and avoidance of adja-
cent healthy organs. It is practically impossible to entirely avoid some unintended damage 
to nearby organs, which results in radiotherapy complications. A way to predict treatment 
response and side effects at the earliest step of CCRT works hand in hand with radiotherapy 
technology and new drug therapies, and this is essential to guide individually personalized 
treatment, to improve the survival likelihood and to retain high quality of remaining life for 
EC patients.

The spatial and time heterogeneity of solid tumors at the genetic, protein, cellular, micro-
environmental, tissue and organ levels makes it difficult to accurately and representatively 
characterize a tumor using only invasive sampling methods, such as pathology and molec-
ular imaging examination. Quantitative analysis based on volumetric non-invasive imaging 
(i.e. radiomics [6-8]) suggests the attractive hypothesis of measuring whole-tumor hetero-
geneity in vivo. Radiomics makes it feasible to characterize whole-tumor heterogeneity and 
also monitor tumor evolution over time.

Radiomics requires large volumes of clinical imaging data to be converted into a vast 
number of numerical features with the assistance of computers, which can then be mined 
for clinically actionable insights using high-dimensionality machine learning methods. 
Radiomics includes features that are defined a priori by human operators (i.e “handcraft-
ed” features) as well as purely data-driven features arising via end-to-end training of deep 
learning neural networks. A number of key studies and evidence syntheses have shown that 
radiomics has potential to recognize heterogeneity in primary tumors and/or lymph nodes in 
a variety of cancers with clinical applications for diagnosis and prognostication [9-12].

Within EC, radiomics is presently an active area of original research (e.g., in [13, 14]), but 
at time of writing there has been no comprehensive PRISMA-compliant (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) systematic review of radiomics 
specifically addressing methodological robustness and clinical relevance of radiomics for 
patients with EC treated by CCRT. In this systematic review, we present to the reader a 
cohesive critical appraisal of research up to date, and a summary of clinical relevance of ra-
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diomics as a potential tool for predicting (i) treatment outcomes, (ii) longer term prognosis 
and (iii) CCRT treatment-related toxicity.

Methods

1. Eligibility Criteria

We conducted this systematic review from May to June 2021, in accordance with PRISMA 
guidelines [15]. In this study, we included only primary observational studies published 
between May 2011 and June 2021 using either handcrafted and/or deep learning-based ra-
diomics features extracted from clinical imaging - specifically computed tomography (CT), 
magnetic resonance (MR) and positron-emission tomography (PET) - to develop clinical 
prediction models on human primary EC subjects treated by CCRT. Articles eligible for 
critical appraisal had to be published as full texts in peer-reviewed journals in the English 
language within the last 5 years.

2. Exclusion Criteria

Diagnostic accuracy studies evaluating tumor differentiation grade or the diagnosis of 
lesions were excluded. Studies that exclusively addressed modelling on non-radiomic fea-
tures, such as only standardized uptake value (SUV), clinical parameters, and/or dosimetric 
parameters, were excluded. Clinical outcomes that were primarily associated with surgery 
alone, radiotherapy alone, or chemotherapy alone were excluded. Case reports, other (sys-
tematic) reviews, conference abstracts, editorials and expert opinion papers were also ex-
cluded.

3. Search Methods

An initial citation screening in PubMed and EMBASE electronic databases was performed 
on 9 May 2021. We used a search string containing Medical Subject Headings (MeSH) or 
Emtree terms for ‘esophageal cancer’ combined with other text words that related to out-
comes, prediction, model, radiomics (including textural analyses and quantitative analyses), 
and artificial intelligence. The search filters used are provided in the Supplementary Materi-
al Table S1. Articles were also included for screening based on prior knowledge of the au-
thors. We searched the reference section of reviewed papers for any additional articles that 
may have been missed in the electronic databases.

4. Selection Process

Two authors (Z.Z. and L.W.) worked independently on screening PubMed and EMBASE 
records, based on titles and abstracts alone. Candidate articles were combined then any dis-
agreements were resolved by consensus; a third author (Z.S.) was available for adjudication 
but was not required. Full text of the candidate articles were obtained using an institutional 
journal subscription, and examined in detail for eligibility against the aforementioned crite-
ria. Only full-text articles unanimously deemed eligible for review were then included for 
detailed data extraction and critical appraisal.

5. Data Extraction

Two authors (Z.S. and Z.Z.) independently performed extraction of publication details and 
clinical outcomes. From the eligible articles, information pertaining to general study char-
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acteristics were extracted (author, publication year, primary cancer type, imaging protocol, 
treatment modality, sample size) together with radiomics feature-related descriptions (deep 
learning-based or/and handcrafted features, software used for feature extraction, and wheth-
er radiomics features were combined with non-radiomics predictors). Model characteristics 
and primary reported findings of the included studies were also extracted and summarized, 
which included use of retrospectively/prospectively collected patient personal data, the col-
laborating institution(s), sample sizes used to build the model, number of radiomics features 
initially considered versus that retained in the final model, type of model assessed, the re-
ported performance metrics, and results of model calibration if given.

6. Methodological robustness

Classical evaluation tools such as Quality in Prognostic Studies (QUIPS) for prognostic 
studies [16], Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) for di-
agnostic tests [17], and Prediction model Risk Of Bias ASsessment Tool (PROBAST) [18] 
were not specifically designed for high-dimensional predictive modelling studies such as ra-
diomics. Lambin et al. [19] proposed a radiomics quality score (RQS) that assigned “points” 
to various steps in radiomics modelling workflow, and such RQS evaluation approach has 
been previously used [20-24] in reviews. However, specialist evidence synthesis commu-
nities (such as the Cochrane Collaboration), advise that a single numerical score may not 
be appropriate to capture a complex question such as overall methodological robustness of 
a diagnostic/prognostic model. Other reviewers have also used Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [25] type 
as a surrogate measure for quality, but it must be re-emphasized that TRIPOD is a model 
reporting guideline, not in fact a critical appraisal checklist.

In this work, we have applied an assessment metric guided by the RQS together with find-
ings of other radiomics methodological evaluations [26, 27]. Due to the rapid changes in 
machine learning and radiomics expertise in the relevant scientific community, we limited 
the methodological quality appraisal to the included studies published within the past five 
years. The appraisal was initially performed independently by two authors (Z.S. and Z.Z.) 
then combined. Disagreements were resolved by consensus, and an experienced senior 
author (L.W.) adjudicated on differences of evaluation. Each methodological criterion was 
provided a consensus rating of “good”, “moderate” or “poor”, based on 13 specific quality 
criteria :

1. It would have been ideal if a detailed study protocol with its statistical analysis 
plan had been prospectively registered in an open access registry prior to commencement. 
Studies that used prospectively collected patient data was rated as “moderate” since the 
study plan would probably have been registered during internal ethical review. Absence of 
any of the above was deemed “poor”.

2. For reproducibility and comparison between institutions, it is important to provide 
detailed information that documents the image acquisition conditions. Typical information 
might include scanner make/model, scan protocol, enhanced/unenhanced CT scans, tube 
voltage, tube current, slice thickness, voxel size, etc. appropriate to the imaging modality 
examined. Partial or incomplete information was rated “moderate”, but its absence in text 
or supplemental was deemed “poor”.

3. It is widely known that digital image preprocessing steps can strongly influence 



16

the quantitative image analysis results that follow. Studies that give detailed information to 
reproduce the pre-processing steps (typically includes filters for de-noising, intensity nor-
malization, voxel resampling, etc.). Partial or incomplete information was rated “moderate”, 
but its absence in text or supplemental was deemed “poor”.

4. The method by which the region of interest (ROI) for analysis has been defined can 
also influence the generalizability of radiomics models. For instance, automated or semi-au-
tomated delineation of organs may be more consistent than manual delineation. A “good” 
score was given for full information on ROI delineations, including review by experienced 
experts and/or any inter-observer sensitivity checks. Partial information or no information 
were scored “moderate” and “poor”, respectively.

5. Radiomics studies typically consider a massive number of features relative to the 
sample size and the event rate of the outcome of interest, therefore feature selection / di-
mensionality reduction steps are generally needed to reduce risk of overfitting. We deem 
that reproducibility and repeatability tests of feature stability, and/or unsupervised feature 
selection methods (such as principal components analysis or clustering), prior to applying 
supervised learning with the outcome of interest, would be “good”. Partial documentation 
or inadequately justified methods were deemed “moderate”, otherwise “poor” when there 
was a high risk of either over-fitting or false positive association.

6. Potential correlations should be examined between radiomics and non-radiomics 
(other biological) features, since this can identify possible confounders and justify the add-
ed value of imaging features. Adequeate checks for possible correlations are deemed “good”, 
insufficient or limited checks as “moderate”, or if such checks were not attempted then 
“poor”.

7. Since the general idea of a prognostic model is to permit stratification of patients, it 
is important for studies to provide clear justification for defining risk groups, including how 
risk thresholds and optimum operating points had been determined. Stratification based on 
clinical argumentation, or agnostically using median or standard cutoffs (e.g. class proba-
bility of 0.5) were deemed “good”. Use of optimally “tuned” cutoffs or deriving risk groups 
as part of the model optimization step can introduce some loss of robustness, and were thus 
deemed “moderate”. No justification or lack of documentation in this regard were scored as 
“poor”.

8. As emphasized by TRIPOD, model performance should be evaluated with an ex-
ternal validation cohort, ideally with fully independent researchers, scanners, delineations, 
etc. Model performance metrics with strong support in external validation (TRIPOD type 
III) would have been rated as “good”. Validation by non-random split from the training co-
hort (eg by time, location, or some other pre-treatment characteristic) or by multiple repeat-
ed random sampling (k-folds, bootstrapping) were rated “moderate”. However, one-time 
random sampling or no report of model validation at all were rated as “poor”.

9. Models utilizing radiomics features should be able to show added value when 
compared against, or combined with, clinical and/or non-radiomics models. We defined the 
presence of sufficient description about comparison with clinical/non-radiomics model or 
holistic models as “good”, inadequate comparison as “moderate”, and otherwise as “poor”.

10. Model performance should be reported in terms of appropriate discrimination met-
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rics, such as c-index for time-to-event models and AUC for binary classification models. A 
study was deemed “good” if it reported discrimination metrics for training and test dataset (or 
other related metrics) together with confidence intervals and statistical significance. Partial 
information about discrimination was deemed “moderate”, or if no information was provid-
ed then “poor”.

11. As recommended in TRIPOD, model calibration should also be reported in ad-
dition to its discriminative performance. A “good” study provided a test of calibration or 
goodness-of-fit results, together with a calibration figure. Partial information about calibra-
tion was deemed “moderate”, or if no calibration results were given then “poor”.

12. For ease of implementation, studies should discuss the potential clinical utility 
of their model(s) and provide some justification for use, such decision curves analysis or 
cost-benefit analysis. We defined the presence of an estimated clinical utility as “good”, par-
tial or inadequate analysis as “moderate”, and otherwise as “poor”.

13. Studies should report parameters of their model(s) in ample detail to permit inde-
pendent external validation. Those studies rated “good” provided the reader with regression 
coefficients for each feature or otherwise made it possible to calculate risk scores, such 
as making their model(s) accessible via an online repository or by providing a calculation 
aid (e.g. a nomogram). Studies that only reported features selected in the final model were 
deemed “moderate”, however studies that did not provide adequate information to inde-
pendently validate the model were rated “poor”.

7. Objectives

The primary objective was to estimate the overall ability of radiomics models, or models 
containing some radiomics information, to predict clinical outcomes that are of particular 
clinical interest in CCRT for EC. This gives us a picture of the current status of clinical 
readiness of radiomics as a potential tool for clinical decision-making and/or possible incor-
poration of radiomics-powered models into holistic decision support systems. Secondly, we 
included a critical appraisal of reported model performance against the methodological ro-
bustness (i.e. internal validity) because this is key for understanding its clinical applicabil-
ilty, and such robustness informs the degree of wide generalizability (i.e. external validity) 
that might be expected from a reported model.

Results

1 Literature search results

A PRISMA flowchart diagram illustrating article selection is shown in Figure 1. A total 
of 384 records were identified based on the specified search terms (MEDLINE/PubMed 
n=196, EMBASE n=187, and one was found in the cited references of an included article). 
After duplicates removal, there were 245 articles available for screening. Applying the se-
lection criteria led to 52 studies for full-text screening. At the end, a total of 37 articles were 
deemed eligible [28-64], including 30 articles within five years [28-38, 41-43, 45, 47-50, 
52-54, 57-64]

2 Overall characteristics of included studies
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Table 1 and Supplementary Material Table S2 summarizes the general characteristics 
across all included studies. The majority (20 of 37) of studies combined both esophageal 
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAD) patients. There 
were 13 studies conducted exclusively on ESCC patients but only two studies on EAD pa-
tients alone. Two other studies did not actually mention the histopathology type of the co-
horts studied.

The majority of imaging modalities mentioned in the retrieved studies were PET (20/37) 
[28, 30, 34-40, 44-47, 49, 50, 52, 55, 56, 59, 61], CT (16/37) [29, 31-33, 41, 43, 48, 51, 53, 
54, 57, 58, 60, 62-64], and one cone beam CT (CBCT) [42]. Although the search criteria 
included MRI, we did not locate any eligible study in our search.

Figure 1. Flowchart of the literature search and study selection (PRISMA 2009 [65]).

More than half of the included studies (19/37) addressed nCRT [28-30, 33, 35, 38, 40, 43-
47, 49, 52, 54, 56, 61-64]. The majority of patients included in 13 studies were treated 
specifically with radical CCRT [31, 32, 36, 39, 41, 42, 48, 50, 51, 53, 55, 58, 59]. In three 
studies, most patients were treated with CCRT, but the rest received a variety of different 
treatments depending on their situation [34, 57, 60]. There was one study that did not speci-



19

fy the intent of CCRT [37].

The number of patients reported in the included studies ranged from 20 [40, 44, 52, 56] up 
to 464 [60]. Three studies utilized deep learning [46, 53, 64] and all other studies used only 
handcrafted features with Cox proportional hazards, logistic regression (LR), linear regres-
sion, support vector machine (SVM) and random forest (RF) models.

There were a wide range of software tools used to extract radiomics features. The in-house 
codes were predominantly generated in Matlab and Python. The most commonly used [31, 
33, 41, 42] free and open-source software package was 3D Slicer [66], which allowed for 
manual or semi-automatic ROI delineation followed by radiomics features extraction using 
its Radiomics [67] plug-in. Studies using Python and 3D Slicer were almost exclusively 
based on the pyradiomics library [67] developed by Griethuysen et al. Five studies investi-
gated exclusively radiomics features [29, 32, 46, 53, 57], while the other studies examined 
a combination of radiomics with non-radiomics features (most commonly, clinical factors). 
In this review, classical PET features were defined as intensity-related metrics such as stan-
dardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis 
(TLG). There were 8, 7 and 10 studies that combined radiomics with clinical features [33, 
41, 43, 47, 51, 54, 58, 60], classical PET features [39, 44, 52, 55, 56, 59, 61], and both 
clinical and classical PET features [30, 34-38, 40, 45, 49, 50], respectively. Among more 
recently published studies, three included genes as features [28, 63, 64], two included clini-
cal factors with dosimetric features [42, 48], one included histopathologic features [62], and 
one used a combination of clinicopathological, dosimetric, and hematological features [31].

3 Overall characteristics of included studies

The model results from the included studies are summarized in Table 2 and additional de-
tails added in Supplementary Material Table S2. Patient data were mostly retrospectively 
extracted (31/37). Only four studies re-analyzed prospectively collected data, which all 
originated in the CROSS clinical trial [35, 45, 47, 49]. Three studies used both prospective 
and retrospective data, where the prospective data were also re-analyzed from other clinical 
trials [35, 47, 63]. One study did not describe if the data used was retrospectively or pro-
spectively derived [46].

There were few multi-institute studies in general. The majority of studies (27/37) were 
performed within a single institution. Nine studies incorporated data from two distinct insti-
tutes, and one study incorporated data from three distinct institutes.

Study endpoints were broadly classified into three categories: (1) prognosis (9/37), such as 
overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS), (2) 
treatment response (20/37), such as prediction of complete/partial response after radical 
CCRT, and pathology complete response (pCR) after nCRT, and (3) others, such as predic-
tion of lymph node status [47] and radiation pneumonitis (RP) [31, 42]. There were five 
studies that reported both prognosis and treatment response prediction [30, 32, 37, 50, 59].

The number of events of the included studies ranged from 9 [52] to 113 [34], and the num-
ber of radiomics features in the final model ranging from only one [60, 62] up to 40 [43]. 
Overall, the number of events were small relative to the number of selected features. The 
number of positive events from studies predicting treatment-related side effects were over-
all much smaller than those predicting prognosis, which was consistent with real-world in-
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cidences.

The most frequently used model was Cox regression, followed by logistic regression. The 
most widely used machine learning approach was SVM (n=7) but there was high hetero-
geneity in mathematical procedures. The deep learning architectures used were artificial 
neural networks (ANN) in one study [53], and convolutional neural networks (CNN) in two 
studies [46, 64], respectively.

Model performance had been summarized according to different study endpoints. For prog-
nosis, some studies grouped patients by clustering only. Studies that reported the discrim-
inative performance of the models had c-indices ranging from 0.64 [60] to 0.875 [63], and 
AUCs ranging from 0.69 [43] to 0.918 [63] in the training set. As expected, the discrimina-
tive performance overall decreased in the validation/test cohort, with c-indices ranging from 
0.57 [60]-0.719 [63] and AUCs between 0.61 [43, 60] to 0.805 [57] in the validation/test 
set.

For treatment response, reported AUCs were from 0.685 [28] to 1.0 [40] in training set but 
decreased overall in the validation/test sets (AUCs 0.6 [53] to 0.852 [29]). AUCs in the 
training and validation sets for the prediction of lymph node metastases study were 0.82 and 
0.69 [47], respectively, and the AUCs in the validation set for the prediction of RP study 
were 0.921 [31] and 0.905 [42]. Except for RP, the validation set AUCs were roughly in the 
range of 0.6-0.8. Only six studies performed model calibration, four of which used the Hos-
mer-Lemeshow test for goodness of fit [28, 45, 47, 49].
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4 Methodological quality of the included studies

Given the rapid advances in AI tools and radiomics expertise, we restricted the assessment 
of methodological quality of recent radiomics studies published in the last five years [28-
38, 41-43, 45, 47-50, 52-54, 57-64]. Table 3 provides an overview of the distribution of 
methodological quality and reporting completeness of 30 recent studies. A detailed report of 
quality assessment by the authors has been provided in Supplementary Material Table S3. 

No study had been prospectively registered prior to commencement of the radiomics anal-
ysis. Among the 13 methodological items considered, around one-third of the studies re-
ported essential details about image acquisition settings (12/30 rated good), digital image 
preprocessing (only 7/30 rated good) and how ROIs were derived (11/30 rated good).

In terms of feature selection, 11/30 studies evaluated repeatability/reproducibility of in-
dividual features and/or performed well-justified dimensionality reduction prior to fitting 
the final model. Ten studies tested the relationship between radiomics and non-radiomic 
features; out of which 4 showed an association between radiomic features and PET uptake 
measures [36, 50, 59, 61], another 4 showed the relationship between radiomics and gene 
expression [29, 62-64], and the next 2 evaluated correlation between radiomics and clinical 
features [57, 60].

For elements related to reporting model performance, discrimination metrics in training and 
validation, with confidence intervals, were mostly reported well (16/30 studies), but fewer 
studies also included a check for model calibration (12/30 studies). Half (15/30 studies) 
defined clinically-appropriate risk groupings and four studies used median [32, 58] or quar-
tiles [34, 35] as risk group cut-offs, but two studies did not specify how risk groups were 
obtained [36, 60]. A few (5/30 studies) used ROC curves to obtain optimally-tuned cut-offs 
(eg Youden index).

For model validation, we found 10/30 studies used multi-institutional data, and 9/30 used 
internal cross-validation with some form of random splits of data, of which 5/30 studies 
used bootstrap methods ranging from 1000 to 20,000 replicates.

In regards to clinical impact, relatively few studies (8/30) estimated the clinical impact of 
their models, including use of decision curve analysis. Only 3 studies reported on all of 
model discrimination, model performance and clinical utility in the same time [31, 42, 63]. 
The majority of radiomics studies (22/30) had been compared against non-radiomics mod-
els and/or constructed combined models.

As for documentation of the final prognostic model to a degree that permitted independent 
external validation, only 16/30 studies were rated as good. One study failed to reported on 
the features selected in the final model. However, none of these 30 studies made their mod-
els or analysis code available for download from an electronic repository.

We further observed that methodological aspects among recent studies for predicting prog-
nosis was generally somewhat better than for studies aiming to predict treatment response. 
Eleven studies were rated “good” for at least 6 out of 13 assessment items, whereas five 
studies of PFS or/and OS [35, 36, 57, 60, 63], four studies predicted treatment response (pCR 
after nCRT) [29, 38, 54, 64], and two studies predicting RP [31, 42] were of similar ratings. 
The best rating among these studies was scored “good” for 11 out of 13 items [64].
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Figure 2 visually summarises the headline reported discrimination metric (AUC or c-indi-
ces) with the number of methodological items rated “good” in this review. Additionally, we 
have colour-coded the dots to correspond to the TRIPOD type of study. A small number of 
methodologically strong studies near the top of the figure suggest a discriminative perfor-
mance around 0.8 to 0.92 for radiomics prognostic models in EC, followed by a wider scat-
ter of performance metrics for models of lower methodological rigour ranging from 0.61 up 
to 0.94. Interestingly, this overview found no models with a discriminative index lower than 
0.6. The highest reported discrimination metric however coincides with a study of question-
able methodological robustness. Overlaid above this, there is a clear trend of TRIPOD type 
3 or 4 sudy designs obtaining higher methodological robustness ratings than TRIPOD type 
1B, 2A or 2B, with TRIPOD type 1A study designs tending towards the lower methodolog-
ical ratings. A detailed description of different types of prediction model studies covered by 
TRIPOD statement can be found in Reference [68].
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Table 3. Assessment of methodological quality of included studies. 
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1.  Xie et al., 2021 [63]              8 
2.  Beukinga et al., 2021 [28]              3 
3.  Hu et al., 2021 [64]              11 
4.  Wang et al., 2021 [31]              9 
5.  Li Yimin et al., 2020 [36]              6 
6.  Xie et al., 2020 [58]              4 
7.  Hu et al., 2020 [29]              10 
8.  Luo et al., 2020 [41]              4 
9.  Li Yue et al., 2020 [54]              7 
10.  Zhang et al., 2020 [47]              5 
11.  Du et al., 2020 [42]              7 
12.  Foley et al., 2019 [35]              6 
13.  Xie et al., 2019 [57]              6 
14.  Wang et al., 2019 [60]              8 
15.  Chen et al., 2019 [30]              1 
16.  Yan et al., 2019 [32]              2 
17.  Yang et al., 2019 [33]              1 
18.  Jin et al., 2019 [48]              1 
19.  Foley et al., 2018 [34]              3 
20.  Larue et al., 2018 [43]              5 
21.  Beukinga et al., 2018 [49]              5 
22.  Riyahi et al., 2018 [52]              1 
23.  Paul et al., 2017 [37]              1 
24.  Desbordes et al., 2017 [50]              4 
25.  Nakajo et al., 2017 [59]              4 
26.  Beukinga et al., 2017 [45]              5 
27.  Wakatsuki et al., 2017 [62]              2 
28.  Hou et al., 2017 [53]              2 
29.  Yip et al., 2016 [61]              1 
30.  Rossum et al., 2016 [38]              7 

Red circle: Poor rating, Yellow circle: Moderate rating, Green circle: Good rating. 
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Discussion

This systematic review summarized the basic characteristics and the reported results of 
radiomics studies predicting clinical outcomes after CCRT in EC, and assessed the method-
ological quality of recent studies. The included studies focused on the prediction of treat-
ment response and side effects to neoadjuvant and definitive CCRT, and prognosis. Predic-
tion models were constructed by using either handcrafted or deep learning-based radiomics 
features. Although a few methodologically robust studies have reported promising results 
and have demonstrated the potential to be adopted as clinical practice tools, the method-
ological quality of a sizable number of studies remains suboptimal. Future studies have sig-
nificant room for improvement in terms of more complete reporting of essential details of 
the modelling work, more robust methods in construction of the model and better documen-
tation of the final model such that independent external validation can be easily performed.

The results of this review showed that more and more researchers are investigating radiom-
ics for prediction of nCRT response in EC. Most of these studies used pCR as an endpoint, 
with AUC ranging from 0.74 [45] to 0.857 [28]. However, one of the most significant short-
comings is lack of independent validation. We think that more attention should be given to 
testing the wider generalizability of the models through independent external validation. 
In addition, the difference in radiotherapy and chemotherapy regimens used in studies will 
also affect the probability of achieving pCR. Although some studies have combined clinical 
parameters with radiomics, the effect of different treatment regimens on the predictive pow-
er of the final model has not yet been investigated in detail.

Li et al. [54] demonstrated radiomics combined with clinical factors has a superior discrimi-
native performance and a better goodness-of-fit than the clinical model. According to Van et 
al. [38], the addition of comprehensive PET features improves the predictive power of the 
model compared to using only clinical features. Based on the results of the studies included 
in this review, it can be concluded that the predictive power of a multidimensional predic-
tive model is usually higher than that of a predictive model built using a single type of data.

Hu et al. [29] showed that peritumoral CT handcrafted features were less robust than the in-
tratumoral features, and the predictive power of the model could be improved by combining 
peritumoral and intratumoral features. This study also included a radiogenomics analysis 
to explain the association of peritumoral tissue with pCR from the perspective of immune 
microenvironment. This result gives us an indication that the definition of ROI should be 
further explored. Furthermore, Hu et al. [64] conducted a deep learning study that used the 
same cohort of data to extract features by using six CNN models with AUCs in the range of 
0.635-0.805, which demonstrated that deep learning-based radiomics also have the ability 
to predict the response to nCRT.

Three other studies defined endpoints as greater than 30% reduction of tumor [48], Man-
dard grades 1-3 [62], and downstaging [61] and obtained moderate predictive efficacy (AUC 
range was 0.689-0.78). We can see that a radiomics-based model can screen out not only the 
patients who are very sensitive to nCRT, which refers to those who can achieve pCR, but 
also the patients who have partial remission.

In countries such as China and Japan, clinical guidelines recommend concurrent chemo-
radiotherapy as the standard of care, but fewer patients in these countries receive this type 
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of treatment in clinical practice compared to Western countries. The reason for this may be 
related to the different tolerances and responses to side effects in different ethnic groups [69]. 
However, it might also be related to genetics, since a number of studies [70-72] revealed a 
correlation between gene single nucleotide polymorphism and the intrinsic radiosensitivity 
of lung to radiation. Therefore, if rare side effects associated with concurrent chemora-
diotherapy of the esophagus can be accurately predicted, it may be additionally helpful to 
improve the treatment outcome and the quality of patient survival, as well as to assist in 
clinical decision making.

Accurately predicting patient prognosis is still a challenging task, and some studies have 
used radiomics for predicting endpoints such as OS, PFS, and DFS, but the results vary 
widely, with C-index/AUC ranging from 0.57 [60] to 0.822 [50]. These studies used retro-
spective data, and one of the most fundamental problems is that the accuracy of follow-up 
with prognosis as an endpoint cannot always be obtained. In general, the current studies for 
prognostic prediction are pilot investigations, and adding more dimensions such as clinical 
parameters and genetic information can improve the predictive power of model.

With our 13-point methodological assessment criteria, we must emphasise that we are not 
proposing that some models are intrinsically “better” or “worse”. The primary purpose of 
the critical appraisal was to understand which of these reported model results have a high 
likelihood of being successful reproduced independently elsewhere, and thus have higher 
change of wide clinical generalizability. Both reproducibility and generalizability are essen-
tial aspects of our estimation of methodological robustness.

It would have been ideal if data collection and a statistical analysis protocol of radiomics 
modelling studies could have been prospectively registered, but there is presently no wide-
ly held consensus on where the such protocols or modelling studies might be registered in 
advance. We recommend that biomedical modelling registries (e.g., AIMe registry [73]) 
should be given more attention by the radiomics community, so that there exists an opportu-
nity for collaboration, review and advice for improvement prior to commencing a radiomics 
study.

The reviewed studies paid attention to imaging settings, ROI definition, discrimination 
metrics and comparison of radiomics with non-radiomics predictors, however relatively 
few studies gave the same degree of attentiveness to : (i) documenting image pre-process-
ing steps if any were used, (ii) clearly defining and justifying the clinical relevance of risk 
groupings, (iii) testing model calibration and (iv) estimating the clinical impact of the mod-
el, for example by decision curve analysis. We recommend that additional attention be paid 
to the aforementioned aspects by future researchers and journal editors.

Independent validation remains one of the key areas in which future radiomics modelling 
studies in EC could be significantly improved; our review found that the vast majority (27/30 
studies) comprised solely of single-institutional datasets. Reporting of selected features in 
the final model together with regression coefficients would aid reproducibility testing of 
such models. In cases where a regression model has not been used, we recommend that 
models should be made openly accessible to download, or an online calculator of risk scores 
should be provided, to allow other researchers to independently externally validate using 
new datasets.

Adoption of standards and guidelines are expected to have an overall positive effect on 
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widespread generalizability and external validity. If an option for prospective image col-
lection for radiomics study exists, we recommend fully standardized image acquisition and 
reconstruction guidelines such as the EANM Research Limited (EARL) [74], but we also 
acknowledge that (for the present time) the vast majority of images available for radiomics 
study consists of retrospectively extracted data from routine care procedures. In addition to 
standardizing radiomics feature definitions, the Imaging Biomarker Standardization Initia-
tive (IBSI) [75] advises reporting of patient handling, image acquisition, image pre-process-
ing, feature extraction, and model building, hence we also recommend this when reporting 
on radiomics analyses.

Studies reviewed were consistent such that the event rate was low compared to the num-
ber of possible model parameters considered (before feature selection/dimensionality 
reduction). This was especially true for models with treatment side-effects as the primary 
outcome. Increasing the sample size and synthetically enhancing data diversity are two in-
tuitive approaches that may be considered in future. A growing number of domain general-
ization techniques are emerging from the deep learning field, such as domain adaptation [76] 
and meta-learning [77] that could assist the latter approach. However, the more immediate 
solution remains the former, and an option may be to make multi-institutional data publicly 
accessible in a centralized repository such as The Cancer Imaging Archive (TCIA). Alterna-
tively, privacy-preserving federated learning [78] (also known as distributed learning) may 
be a feasible solution that for modelling on private data between institutions without phys-
ically exchanging individual patient data. Federated learning has been shown to be feasible 
in the radiomics domain [79, 80], and also for EC in particular [81].

Based on a small number of methodologically robust studies, we estimated the state of the 
art prognostic performance for radiomics models in EC to be in the ballpark of 0.85. There 
was indeed a correlation between our methodological assessment items with TRIPOD type 
of study, which is in agreement with a systematic review in lung cancer [25]. While we 
noted no studies published with a discriminative index below 0.60, we cannot at the present 
moment conclude whether or not this is a sign of publication bias; to effectively do this, 
we would need a prospective registry of modelling studies, as mentioned previously. This 
has been the widely adopted standard for epidemiological clinical studies (such as random-
ized controlled trials) as a means of incentivizing research transparency and detecting the 
presence of publication bias. Hence, we re-iterate our recommendation that the community 
should come to a consensus about a prospective registry for biomedical modelling studies.

Only a small number of studies at the present time addressed deep learning-based radiom-
ics, however we would expect this number to grow rapidly in future. Different studies sug-
gest that discriminative performance of deep learning models are superior to models based 
only on handcrafted features, however it remains difficult to interpret the significance of 
deep learning features when applied to a specific clinical case. Explainable and interpretable 
deep learning is presently an active area of technical development, and we have seen some 
use of “attention mapping” (e.g., Grad-CAM [82]) to indicate which region of the image 
appears to influence the discrimination strongly. Additionally research is also required to 
determine the relationship between image-based features and biological processes that may 
underpin the observed clinical outcomes. 

We may note a number of limitations of the current systematic review that could poten-
tially be addressed in some future work. First, we were not able to perform a quantative 
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meta-analysis due to the high heterogeneity of the mathematical procedures, even among 
related types of clinical outcome. Instead, we attempted a visual synthesis of reported mod-
el performance versus methodological robustness and TRIPOD study design (see Figure 
2). Secondly, we may have been able to detect more studies by searching in grey literature 
for non-peer reviewed work, however we did not expect studies of high methodological 
quality to appear from those sources. On the other hand, it may have been possible to de-
tect works where the model discriminative performance was between 0.5 to 0.6, whereas 
anything below 0.6 appears to be absent in our eligible articles. Thirdly, while we made 
our best possible attempt at evaluating methodological procedure with an objective criteria, 
independent raters and then combined consensus, some residual amount of subjectivity and 
debatable result of assessment may still persist; we have provided additional detailed notes 
in the supplementary material regarding methodology and tried to make our evaluations as 
transparent as possible. Lastly, we introduced some inclusion bias by only allowing full-
text articles in the English language. This was done for the purely pragmatic reason that all 
authors of this review understood English, and that such selected material will be accessible 
/ understandable to readers of the present review, should they wish to inspect the individual 
papers by themselves.

Conclusions

We summarized the available studies applying radiomics in predicting clinical outcomes 
of esophageal cancer patients who received concurrent chemoradiotherapy. Furthermore, 
the methodological quality of the included studies were analyzed to further improve the 
predictive power of radiomics and unlock the process of translation to clinical applications. 
Due to the limitations of inappropriate methodologies, incomplete and unclear reporting of 
information in radiomics model development and validation phases, the clinical application 
of radiomics has been impeded. The current systematic review pointed out these issues and 
provided our recommendations to increase generalization, biological interpretation, and 
clinical utility of a radiomics model.
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Supplementary Materials

Table S1: Systematic search

Table S2: Detailed image acquisition and model characteristics

Table S3: Assessment of methodological quality of included studies

Supplementary Table 1: Systematic search
a) Medline

(((“Validat”[All Fields] OR ((“predict”[All Fields] OR “predictabilities”[All Fields] OR 
“predictability”[All Fields] OR “predictable”[All Fields] OR “predictably”[All Fields] OR 
“predicted”[All Fields] OR “predicting”[All Fields] OR “prediction”[All Fields] OR “pre-
dictions”[All Fields] OR “predictive”[All Fields] OR “predictively”[All Fields] OR “pre-
dictiveness”[All Fields] OR “predictives”[All Fields] OR “predictivities”[All Fields] OR 
“predictivity”[All Fields] OR “predicts”[All Fields]) AND “ti”[All Fields]) OR “Rule”[All 
Fields] OR ((“predict”[All Fields] OR “predictabilities”[All Fields] OR “predictability”[All 
Fields] OR “predictable”[All Fields] OR “predictably”[All Fields] OR “predicted”[All 
Fields] OR “predicting”[All Fields] OR “prediction”[All Fields] OR “predictions”[All 
Fields] OR “predictive”[All Fields] OR “predictively”[All Fields] OR “predictiveness”[All 
Fields] OR “predictives”[All Fields] OR “predictivities”[All Fields] OR “predictivity”[All 
Fields] OR “predicts”[All Fields]) AND (“outcome”[All Fields] OR “outcomes”[All Fields] 
OR (“risk”[MeSH Terms] OR “risk”[All Fields]) OR (“model”[All Fields] OR “model 
s”[All Fields] OR “modeled”[All Fields] OR “modeler”[All Fields] OR “modeler s”[All 
Fields] OR “modelers”[All Fields] OR “modeling”[All Fields] OR “modelings”[All Fields] 
OR “modelization”[All Fields] OR “modelizations”[All Fields] OR “modelize”[All Fields] 
OR “modelized”[All Fields] OR “modelled”[All Fields] OR “modeller”[All Fields] OR 
“modellers”[All Fields] OR “modelling”[All Fields] OR “modellings”[All Fields] OR 
“models”[All Fields]))) OR ((“history”[MeSH Terms] OR “history”[All Fields] OR “histo-
ries”[All Fields] OR “history”[MeSH Subheading] OR (“variabilities”[All Fields] OR 
“variability”[All Fields] OR “variable”[All Fields] OR “variable s”[All Fields] OR “vari-
ables”[All Fields] OR “variably”[All Fields]) OR (“criteria s”[All Fields] OR “criterias”[All 
Fields] OR “standards”[MeSH Subheading] OR “standards”[All Fields] OR “criteria”[All 
Fields]) OR “Scor”[All Fields] OR (“characteristic”[All Fields] OR “characteristics”[All 
Fields]) OR (“diagnosis”[MeSH Subheading] OR “diagnosis”[All Fields] OR “findings”[All 
Fields] OR “diagnosis”[MeSH Terms] OR “finds”[All Fields] OR “signs and symptom-
s”[MeSH Terms] OR (“signs”[All Fields] AND “symptoms”[All Fields]) OR “signs and 
symptoms”[All Fields] OR “finding”[All Fields]) OR (“factor”[All Fields] OR “factor 
s”[All Fields] OR “factors”[All Fields])) AND (“predict”[All Fields] OR “predictabili-
ties”[All Fields] OR “predictability”[All Fields] OR “predictable”[All Fields] OR “predict-
ably”[All Fields] OR “predicted”[All Fields] OR “predicting”[All Fields] OR “predic-
tion”[All Fields] OR “predictions”[All Fields] OR “predictive”[All Fields] OR 
“predictively”[All Fields] OR “predictiveness”[All Fields] OR “predictives”[All Fields] OR 
“predictivities”[All Fields] OR “predictivity”[All Fields] OR “predicts”[All Fields] OR 
(“model”[All Fields] OR “model s”[All Fields] OR “modeled”[All Fields] OR “model-



45

er”[All Fields] OR “modeler s”[All Fields] OR “modelers”[All Fields] OR “modeling”[All 
Fields] OR “modelings”[All Fields] OR “modelization”[All Fields] OR “modelizations”[All 
Fields] OR “modelize”[All Fields] OR “modelized”[All Fields] OR “modelled”[All Fields] 
OR “modeller”[All Fields] OR “modellers”[All Fields] OR “modelling”[All Fields] OR 
“modellings”[All Fields] OR “models”[All Fields]) OR (“decision”[All Fields] OR “deci-
sion s”[All Fields] OR “decisions”[All Fields] OR “decisive”[All Fields] OR “decisive-
ly”[All Fields]) OR “Identif”[All Fields] OR “Prognos”[All Fields])) OR ((“decision”[All 
Fields] OR “decision s”[All Fields] OR “decisions”[All Fields] OR “decisive”[All Fields] 
OR “decisively”[All Fields]) AND (“model”[All Fields] OR “model s”[All Fields] OR 
“modeled”[All Fields] OR “modeler”[All Fields] OR “modeler s”[All Fields] OR “model-
ers”[All Fields] OR “modeling”[All Fields] OR “modelings”[All Fields] OR “modeliza-
tion”[All Fields] OR “modelizations”[All Fields] OR “modelize”[All Fields] OR “mod-
elized”[All Fields] OR “modelled”[All Fields] OR “modeller”[All Fields] OR 
“modellers”[All Fields] OR “modelling”[All Fields] OR “modellings”[All Fields] OR 
“models”[All Fields] OR (“ambulatory care facilities”[MeSH Terms] OR (“ambulatory”[All 
Fields] AND “care”[All Fields] AND “facilities”[All Fields]) OR “ambulatory care facili-
ties”[All Fields] OR “clinic”[All Fields] OR “clinic s”[All Fields] OR “clinical”[All Fields] 
OR “clinically”[All Fields] OR “clinicals”[All Fields] OR “clinics”[All Fields]) OR (“lo-
gistic models”[MeSH Terms] OR (“logistic”[All Fields] AND “models”[All Fields]) OR 
“logistic models”[All Fields]))) OR ((“prognostic”[All Fields] OR “prognostical”[All 
Fields] OR “prognostically”[All Fields] OR “prognosticate”[All Fields] OR “prognosticat-
ed”[All Fields] OR “prognosticates”[All Fields] OR “prognosticating”[All Fields] OR 
“prognostication”[All Fields] OR “prognostications”[All Fields] OR “prognosticator”[All 
Fields] OR “prognosticators”[All Fields] OR “prognostics”[All Fields]) AND (“histo-
ry”[MeSH Terms] OR “history”[All Fields] OR “histories”[All Fields] OR “history”[MeSH 
Subheading] OR (“variabilities”[All Fields] OR “variability”[All Fields] OR “variable”[All 
Fields] OR “variable s”[All Fields] OR “variables”[All Fields] OR “variably”[All Fields]) 
OR (“criteria s”[All Fields] OR “criterias”[All Fields] OR “standards”[MeSH Subheading] 
OR “standards”[All Fields] OR “criteria”[All Fields]) OR “Scor”[All Fields] OR (“charac-
teristic”[All Fields] OR “characteristics”[All Fields]) OR (“diagnosis”[MeSH Subheading] 
OR “diagnosis”[All Fields] OR “findings”[All Fields] OR “diagnosis”[MeSH Terms] OR 
“finds”[All Fields] OR “signs and symptoms”[MeSH Terms] OR (“signs”[All Fields] AND 
“symptoms”[All Fields]) OR “signs and symptoms”[All Fields] OR “finding”[All Fields]) 
OR (“factor”[All Fields] OR “factor s”[All Fields] OR “factors”[All Fields]) OR (“mod-
el”[All Fields] OR “model s”[All Fields] OR “modeled”[All Fields] OR “modeler”[All 
Fields] OR “modeler s”[All Fields] OR “modelers”[All Fields] OR “modeling”[All Fields] 
OR “modelings”[All Fields] OR “modelization”[All Fields] OR “modelizations”[All 
Fields] OR “modelize”[All Fields] OR “modelized”[All Fields] OR “modelled”[All Fields] 
OR “modeller”[All Fields] OR “modellers”[All Fields] OR “modelling”[All Fields] OR 
“modellings”[All Fields] OR “models”[All Fields]))) OR (“stratification”[All Fields] OR 
“stratifications”[All Fields] OR (“roc curve”[MeSH Terms] OR (“roc”[All Fields] AND 
“curve”[All Fields]) OR “roc curve”[All Fields]) OR (“discriminabilities”[All Fields] OR 
“discriminability”[All Fields] OR “discriminable”[All Fields] OR “discriminably”[All 
Fields] OR “discriminance”[All Fields] OR “discriminant”[All Fields] OR “discrimi-
nants”[All Fields] OR “discriminate”[All Fields] OR “discriminated”[All Fields] OR “dis-
criminates”[All Fields] OR “discriminating”[All Fields] OR “discrimination, psychologi-
cal”[MeSH Terms] OR (“discrimination”[All Fields] AND “psychological”[All Fields]) OR 
“psychological discrimination”[All Fields] OR “discrimination”[All Fields] OR “discrimi-
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nations”[All Fields] OR “discriminative”[All Fields] OR “discriminatively”[All Fields] OR 
“discriminator”[All Fields] OR “discriminators”[All Fields]) OR (“discriminabilities”[All 
Fields] OR “discriminability”[All Fields] OR “discriminable”[All Fields] OR “discrim-
inably”[All Fields] OR “discriminance”[All Fields] OR “discriminant”[All Fields] OR “dis-
criminants”[All Fields] OR “discriminate”[All Fields] OR “discriminated”[All Fields] OR 
“discriminates”[All Fields] OR “discriminating”[All Fields] OR “discrimination, psycho-
logical”[MeSH Terms] OR (“discrimination”[All Fields] AND “psychological”[All Fields]) 
OR “psychological discrimination”[All Fields] OR “discrimination”[All Fields] OR “dis-
criminations”[All Fields] OR “discriminative”[All Fields] OR “discriminatively”[All 
Fields] OR “discriminator”[All Fields] OR “discriminators”[All Fields]) OR (“c basel”[-
Journal] AND (“statistic”[All Fields] OR “statistic s”[All Fields] OR “statistical”[All 
Fields] OR “statistically”[All Fields] OR “statistics”[All Fields])) OR (“c basel”[Journal] 
AND (“statistic”[All Fields] OR “statistic s”[All Fields] OR “statistical”[All Fields] OR 
“statistically”[All Fields] OR “statistics”[All Fields])) OR (“area under curve”[MeSH 
Terms] OR (“area”[All Fields] AND “under”[All Fields] AND “curve”[All Fields]) OR 
“area under curve”[All Fields] OR (“area”[All Fields] AND “under”[All Fields] AND “cur-
ve”[All Fields]) OR “area under the curve”[All Fields]) OR “auc”[All Fields] OR (“cali-
brant”[All Fields] OR “calibrants”[All Fields] OR “calibrate”[All Fields] OR “calibrat-
ed”[All Fields] OR “calibrates”[All Fields] OR “calibrating”[All Fields] OR 
“calibration”[MeSH Terms] OR “calibration”[All Fields] OR “calibrations”[All Fields] OR 
“calibrator”[All Fields] OR “calibrators”[All Fields]) OR (“indicate”[All Fields] OR “indi-
cated”[All Fields] OR “indicates”[All Fields] OR “indicating”[All Fields] OR “indica-
tive”[All Fields] OR “indicatives”[All Fields] OR “indicators and reagents”[Pharmacologi-
cal Action] OR “indicators and reagents”[MeSH Terms] OR (“indicators”[All Fields] AND 
“reagents”[All Fields]) OR “indicators and reagents”[All Fields] OR “indicator”[All Fields] 
OR “indicators”[All Fields] OR “indice”[All Fields] OR “indices”[All Fields]) OR (“algo-
rithm s”[All Fields] OR “algorithmic”[All Fields] OR “algorithmically”[All Fields] OR “al-
gorithmics”[All Fields] OR “algorithmization”[All Fields] OR “algorithms”[MeSH Terms] 
OR “algorithms”[All Fields] OR “algorithm”[All Fields]) OR (“multivariable”[All Fields] 
OR “multivariables”[All Fields] OR “multivariably”[All Fields] OR “multivariance”[All 
Fields] OR “multivariant”[All Fields] OR “multivariate”[All Fields] OR “multivariat-
ed”[All Fields] OR “multivariately”[All Fields] OR “multivariates”[All Fields] OR “multi-
variative”[All Fields])) OR (“predict*”[Title/Abstract] OR “predictive value of 
tests”[MeSH Terms] OR “scor*”[Title/Abstract] OR “observ*”[Title/Abstract] OR “observ-
er variation”[MeSH Terms])) AND ((esophageal cancer[MeSH Terms]) OR (esophageal 
cancers[MeSH Terms]))) AND ((((((computed tomography[Text Word]) OR (CT[Text 
Word])) OR (magnetic resonance imaging[Text Word])) OR (MR*[Text Word])) OR (posi-
tron emission tomography[Text Word])) OR (PET[Text Word]))) AND ((((((((((radiomic[-
Text Word]) OR (radiomics[Text Word])) OR (textur*[Text Word])) OR (quantitative[Text 
Word])) OR (artificial intelligence[Text Word])) OR (AI[Text Word])) OR (deep learning[-
Text Word])) OR (shape[Text Word])) OR (feature[Text Word])) OR (features[Text Word])) 
Filters: Humans, English

b) Embase

1. (‘esophageal cancer’/exp AND ‘computed tomography’/exp OR ‘ct’ OR ‘magnetic 
resonance imaging’/exp OR ‘mr*’ OR ‘pos-itron emission tomography’ OR ‘pet’) AND ‘ra-
diomic’ OR ‘radiomics’ OR ‘textur*’ OR ‘quantitative’ OR ‘artificial in-telligence’ OR ‘ai’ 
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OR ‘deep learning’/exp OR ‘shape’ OR ‘feature’ OR ‘features’:ta,ab,ti

2. ‘validat’ OR ((‘predict’ OR ‘predictabilities’ OR ‘predictability’ OR ‘predictable’ 
OR ‘predictably’ OR ‘predicted’ OR ‘pre-dicting’ OR ‘prediction’ OR ‘predictions’ OR 
‘predictive’ OR ‘predictively’ OR ‘predictiveness’ OR ‘predictives’ OR ‘predictivi-ties’ 
OR ‘predictivity’ OR ‘predicts’) AND ‘ti’) OR ‘rule’ OR ((‘predict’:ta,ab,ti OR ‘pre-
dictabilities’:ta,ab,ti OR ‘predictability’:ta,ab,ti OR ‘predictable’:ta,ab,ti OR ‘predict-
ably’:ta,ab,ti OR ‘predicted’:ta,ab,ti OR ‘predicting’:ta,ab,ti OR ‘prediction’:ta,ab,ti OR 
‘predictions’:ta,ab,ti OR ‘predictive’:ta,ab,ti OR ‘predictively’:ta,ab,ti OR ‘predic-tive-
ness’:ta,ab,ti OR ‘predictives’:ta,ab,ti OR ‘predictivities’:ta,ab,ti OR ‘predictivity’:ta,ab,ti 
OR ‘predicts’:ta,ab,ti) AND (‘outcome’:ta,ab,ti OR ‘outcomes’:ta,ab,ti OR ‘risk’:ta,ab,ti 
OR ‘model’:ta,ab,ti OR ‘model s’:ta,ab,ti OR ‘modeled’:ta,ab,ti OR ‘modeler’:ta,ab,ti OR 
‘modeler s’:ta,ab,ti OR ‘modelers’:ta,ab,ti OR ‘modeling’:ta,ab,ti OR ‘modelings’:ta,ab,ti 
OR ‘modelization’:ta,ab,ti OR ‘modelizations’:ta,ab,ti OR ‘modelize’:ta,ab,ti OR ‘mod-
elized’:ta,ab,ti OR ‘modelled’:ta,ab,ti OR ‘modeller’:ta,ab,ti OR ‘modellers’:ta,ab,ti OR 
‘modelling’:ta,ab,ti OR ‘modellings’:ta,ab,ti OR ‘models’:ta,ab,ti))

3. #1 AND #2 AND ([article]/lim OR [article in press]/lim OR [data papers]/lim) 
AND [english]/lim
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Chapter 3: Dual discriminator Super-Resolu-
tion Generative Adversarial Network-based 
synthetic GGO nodule image augmentation

Adapted from: Zhixiang Wang*; Zhen Zhang*; Ying Feng; Lizza E. L. Hen-
driks; Razvan L. Miclea; Hester Gietema; Janna Schoenmaekers; Andre 
Dekker, Leonard Wee; Alberto Traverso. Generation of Synthetic Ground 
Glass Nodules Using Generative Adversarial Networks (GANs). Eur Radiol 
Exp 2022, 6 (1), 59. https://doi.org/10.1186/s41747-022-00311-y.

* indicates equal contributions
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Abstract
Background Data shortage is a common challenge in developing computer-aided diagnosis 
systems. We developed a generative adversarial network (GAN) model to generate synthet-
ic lung lesions mimicking ground glass nodules (GGNs).

Methods We used 216 computed tomography images with 340 GGNs from the Lung Im-
age Database Consortium and Image Database Resource Initiative database. A GAN model 
retrieving information from the whole image and the GGN region was built. The generated 
samples were evaluated with visual Turing test performed by four experienced radiologists 
or pulmonologists. Radiomic features were compared between real and synthetic nodules. 
Performances were evaluated by area under the curve (AUC) at receiver operating char-
acteristic analysis. In addition, we trained a classification model (ResNet) to investigate 
whether the synthetic GGNs can improve the performances algorithm and how performanc-
es changed as a function of labelled data used in training.

Results Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians. Of 93 radio-
mic features, 58 (62.4%) showed no significant difference between synthetic and real GGNs 
(p ≥ 0.052). The discrimination performances of physicians (AUC 0.68) and radiomics 
(AUC 0.66) were similar, with no-significantly different (p = 0.23), but clinicians achieved 
a better accuracy (AUC 0.74) than radiomics (AUC 0.62) (p < 0.001). The classification 
model trained on datasets with synthetic data performed better than models without the ad-
dition of synthetic data.

Conclusions GAN has promising potential for generating GGNs. Through similar AUC, 
clinicians achieved better ability to diagnose whether the data is synthetic than radiomics.

Keywords: Deep learning, Tomography (x-ray computed), Lung, Neural networks (com-
puter), Solitary pulmonary nodule
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Introduction

Artificial intelligence is a rapidly developing field including many applications in comput-
er vision, such as deep learning (DL) and machine learning methods for the segmentation 
[1] and the classification [2] of anatomical structures and abnormalities in standard of care 
diagnostic imaging. A strong effort is dedicated to the implementation of these methods 
as computer-aided diagnosis (CAD) tools to reduce the time burden of clinical tasks and 
improve radiologists’ detection accuracy. For lung cancer screening, the number of CAD 
systems to automatically identify the presence of pulmonary nodules has exponentially in-
creased in the last 10 years. DL methods have shown an increased detection accuracy for all 
the types of pulmonary nodules (solid, part solid, ground glass opacities) compared to tradi-
tional machine learning methods in low-dose screening computed tomography (CT) scans [3, 
4].

The success of developing robust and widely applicable deep learning-based CAD systems 
relies on the availability of a large amount of curated and annotated data. However, annotat-
ing data consistently has a cost and is dependent on radiologists’ time and availability. Even 
when large amount of data is collected for training DL networks, the problem of class im-
balance may exist. The class imbalance problem refers to some labels (classes) being more 
frequent than others. Due to this unbalance, the DL network will learn better how to classify 
the more frequent samples, with degraded performances for the minority class(es) [5]. In 
the specific case of pulmonary nodule detection, ground glass nodules (GGN), although ac-
counting for only 2.7 to 4.4% of all nodules, are malignant in 63% of the cases [6].

Next to classical statistical methods such as SMOTE (synthetic minority oversampling tech-
nique), researchers have investigated more advanced methods for generating synthetic sam-
ples of original data, to increase and balance the original sample size of the training dataset. 
Recently, generative adversarial networks (GANs) have been proposed as a method to gen-
erate synthetic images to improve the existing oversampling techniques [7]. GANs, which 
are DL algorithms based on game theory, have been applied to several computer vision 
tasks such as image denoising, reconstruction, and, as mentioned, synthetic data generation 
[8, 9]. Briefly, GANs consists of two competing actors: a generator and a discriminator. 
They are used to generate synthetic images/samples and “judge” the quality of the generat-
ed images, respectively. The equilibrium is reached when the synthetic (i.e., fake) samples 
cannot be distinguished from the real distribution [10].

While many studies demonstrated the potential of GANs to generate synthetic images, the 
generated images/samples have not been evaluated by radiologists, and this limits the ac-
ceptance and use of GANs in a clinical setting. In fact, generated images/samples should be 
representative of the “real” population. However, by only focusing on evaluating at the “hu-
man-level” appropriateness of synthetic samples, it is not possible to draw any conclusion 
whether the introduction of synthetic samples in the training samples will improve the de-
tection performances of CAD systems. In principle, it is expected that adding as many syn-
thetic samples as possible to the original data will lead to a CAD system with better detec-
tion performances. It is important to notice that generating synthetic samples via GAN is in 
itself a learning procedure, where the original data is used to train the networks to generate 
the synthetic samples. The ratio between original data available and the quality of generated 
samples is not clear yet.
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In this study, we investigated the following research questions:

Is it possible to use a GAN model to generate synthetic GGNs on low-dose screening CT 
scans that are undisguisable by clinicians from the real samples?

How much labelled data is needed to generate synthetic GGNs of sufficient quality to train 
a CAD for pulmonary nodule detection achieving the same level of performance of a large 
amount of labelled data?

To answer these questions, we developed an optimized GAN model with dual discrimina-
tors to generate GGNs.

Methods

1. Study population

A total of 216 subjects were selected from The Lung Image Database Consortium and Im-
age Database Resource Initiative (LIDC-IDRI) database for this study [11]. In this database, 
the nodules were classified into five grades by four radiologists: 1 = ground glass opacity 
(GGO1); 2 = intermediate between 2 and 3; 3 = part solid; 4 = intermediate between 4 and 5; 
5 = solid. We chose 340 GGN nodules of grades 1 or 2 that were annotated by at least two 
radiologists for our study. To ensure data quality, further confirmation was performed by a 
radiologist (author Z.Z.), with 5 years of experience in lung CT, to verify that all the nod-
ules were GGNs.

2. Image preprocessing

In the preprocessing methods, first, the two-dimensional slices with annotation as GGN 
from the CT volume were extracted. Second, in order to avoid interference from exter-
nal tissues of the lung, we first cropped the lungs from the tissue and background with 
a seed-filling algorithm, which starts from an inner point of the polygon area and draws 
points with the given grey level from inside to outside until the boundary is found. Third, 
the cropped images were padded by 0 in the background to keep every image having the 
same sizes (512 × 512) in the dataset. Fourth, we normalized the data to the range 0–1, as is 
the standard practice in computer vision. Fifth, we erased the nodules from the original po-
sition and saved them as region of interest (ROI) for the training set. In general, each train-
ing batch contained two images: the original image as the target image, which serves as the 
ground truth for the generator (as shown in Figs. 1 and 2), and another image is the input 
image, in which stripped the nodule area, i.e., the ROI region was processed as blank for the 
input image. As shown in Fig. 1, the network generates the nodule from the input image. In 
addition, after generation, there are two discriminators (whole image discriminator and ROI 
discriminator) to evaluate the quality of the whole image and the ROI where the nodule is.
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Figure 1. The pipeline for training the model. First, the generator synthetizes ground glass 
nodules from the background according to the input image. Second, the region of interest 
(ROI) discriminator (red line) and the whole image discriminator (blue line) extract features 
from the ROI and whole image to classify the synthetic image and the target whether the 
synthetic image is real.

Figure 2. The structure of the network. The generator creates the synthetic ground glass 
nodule at the position where the mask in the input. The generator is composed of convo-
lutional layers with a kernel size of 3 × 3, the batch normalization, and the “parametric 
rectified linear unit” (PReLU) activation function. The discriminator was composed of con-
volutional layers with a kernel size of 3 × 3, the batch normalization, and the leaky PReLU 
activation function.

3. Construction of the DL model

The super-resolution generative adversarial network (SRGAN) was used as the backbone 
of the generator [12]. SRGAN compares the features difference in the model between a pair 
of data and train the discriminators to improve the realism of the recovered images. Both 
the whole image discriminator and ROI discriminator are based on a ResNet [13] which is 
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a widely used classical classification networks combined by residual blocks with different 
input sizes and depths of the network. The structure of the network is shown in Fig. 2. For 
training the network, the loss function was as follows:

The Lssim can be used to compare the similarity between two images. In this loss function, 
the whole image is separated into two parts to calculate the loss function respective. G 
and D represent the generator and discriminator, x is the input of the generator. μx and μy 
represent the average of input x,y respectively. σx and σy represent the standard deviation 
of input x,y respectively. σxy is the covariance of x and y. C1 and C2 are constants to avoid 
system errors caused by the denominator being zero.

All images were loaded with an unchanged original size of 512 × 512. The input size of the 
discriminator for the whole image and the ROI image were 512 × 512 and 32 × 32, respec-
tively. An Adam optimizer was used to train both the generator and the discriminator with a 
learning rate of 0.0001. This model was trained using an NVIDIA Tesla V100 SXM2 32 GB 
graphics processing unit.

4. Evaluation of model performance

We evaluated the model performance using both subjective (visual Turing test, VTT) and 
objective (radiomics) approaches. VTT is an assessment method that evaluation the ability 
of a human or doctors to identify attributes and relationships from images [14]. Subjective 
evaluations were performed by two radiologists (authors R.M. and H.G.) and two pulmo-
nologists (authors L.H. and J.S.), who all had more than 5 years of experience in lung CT 
imaging and on a daily basis evaluate chest CT scans. One hundred images (50 real and 50 
synthetic GGNs) were divided into four batches and converted to a DICOM (Digital Im-
aging and COmmunications in Medicine) file with 25 slices of images, and each physician 
was randomly assigned to one of these batches. The physicians categorized the real and 
synthetic GGNs into four classes based on this categorical scale: confidently fake, leaning 
fake, leaning real, and confidently real.

To perform an objective evaluation, radiomic features were calculated from the original and 
generated data. Radiomics refers to the extraction of quantitative information from medical 
images by computing the statistical, morphological, and texture features. The following 
feature categories were extracted using the open source Pyradiomics package (version 3.0.1) 
with default values: first order statistics (n = 18), grey level co-occurrence matrix (n = 24), 

!!"#$%&' = (!(()* + !+,-./(+/)+0)1230.	)*+5.
+ (!(()* + !+,-./(+/)+0)$67	)*+5. 
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grey level dependence matrix (n = 14), grey level run length matrix (n = 16), grey level size 
zone matrix (n = 16), and neighbouring grey tone difference matrix (n = 5) [15–17].

The Kolmogorov–Smirnov test was used for the analysis of whether the distribution of ra-
diomics features were similar between the real and synthetic GGNs. We considered signifi-
cant p values lower than 0.05.

The results of the subjective and objective evaluations were analysed using the area under 
the curve (AUC) at receiver operating characteristic analysis. For the subjective evaluation, 
we took into consideration the VTT results. For the objective evaluation, to compare the 
classification ability of radiomics and radiologist, a logistic regression model was build 
based on radiomic features to classify both real and synthetic GGNs. The same dataset was 
used for the physician evaluations and the radiomics logistic regression model, with a four-
fold cross-validation.

In addition, we also investigated whether the synthetic GGNs can improve the perfor-
mance of a CAD algorithm trained for recognizing GGNs from all types of nodules in the 
LIDC-IDRI dataset and how the performance changed as a function of labelled data used in 
the training.

As a CAD, we used a basic ResNet as the DL classification network with a cross-entropy 
loss function. First, we separated the dataset into 10 training subsets and an independent test 
set. We trained the classification network on portions of the original data ranging from 10 to 
100% of the real data and we separately inferred on the test set. Then, we trained the classi-
fication network on the original data added systematic data generated by the GAN network 
trained in 10% to 100% of real data.

Results

Examples of synthetic GGNs generated in different parts of the lungs with different sur-
rounding tissues are shown in Fig.3. Nodules classified as fake (Fig.3b) show more unnat-
ural characteristics in terms of intensity and morphology than nodules classified as “real” 
(Fig.3a); specifically, “fake nodules” have very high fixed grey values and regular shapes 
such as rectangles.
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Figure 3. Examples of synthetic ground glass nodules (GGNs), the GGNs were categorised 
by physicians to four categories: confidently fake, leaning fake, leaning real, and confident-
ly real. a Synthetic GGNs classified as “real” by clinicians. b Synthetic GGNs with less 
convincing generated lesions (classified as “leaning fake”). c A real GGNs in the original 
LIDC-IDRI dataset.

1. VTT results

Figure 4 presents the combination of the classification results for the four clinicians: of 51 
synthetic GGNs, 19 (37%) were classified as real by clinicians, 8/51 (16%) were classified 
as confidently real, and 11/51 (22%) were classified as leaning real.

Figure 4. Visual Turing test results. a, b Prediction distribution in synthetic and real ground 
glass nodules. c Confusion matrix for the prediction.
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2. Radiomics

Of a total of 93 features, 58 (62.4%) showed no significant difference (p ≥ 0.052) between 
synthetic and real GGNs, and the detailed results are provided in Table 1. Figure 5a shows 
the comparison of the distribution of radiomic features between real and synthetic GGNs, 
the histogram shows the counts of specific feature values, and the differences (p-values) 
in the extracted radiomic features between real and synthetic GGNs were calculated. The 
receiver operating characteristic curves constructed based on the results of VVT by clini-
cians and logistic regression model developed by radiomics features are shown in Fig. 5b. 
We observed a similar classification performance of clinicians (0.68) and radiomics (0.66), 
with no-significantly different (p = 0.23). However, the clinicians achieve significant great 
performance accuracy around 0.74, better than the 0.62 radiomics accuracy (p < 0.001). The 
clinicians achieve better ability to diagnosis whether the data is synthetic than radiomics.

Table 1. Comparison between real and deep learning-generated radiomic features (p-values 
according to the Kolmogorov-Smirnov test)

Class Feature name p-value
Grey level co-occurrence matrix (GLCM) Inverse difference moment 0.984
Grey level size zone matrix (GLSZM) zone percentage 0.935
Grey level dependence matrix (GLDM) Small dependence emphasis 0.933
Grey level co-occurrence matrix (GLCM) Inverse difference 0.926
First order Robust mean absolute deviation 0.903
GLSZM Small area low grey level emphasis 0.860
Grey level run length matrix (GLRLM) Run percentage 0.827
GLRLM high grey level run emphasis 0.729
GLSZM Grey level non-uniformity normalised 0.697
GLRLM Long run emphasis 0.676
GLCM Sum entropy 0.658
GLRLM Long run high grey level emphasis 0.652
GLRLM Run entropy 0.652
First order Entropy 0.643
GLCM Inverse variance 0.616
GLRLM Short run high grey level emphasis 0.582
GLDM high grey level emphasis 0.574
GLCM Joint energy 0.570
GLCM Joint entropy 0.570
GLRLM Run length non-uniformity normalised 0.570
GLRLM Short run emphasis 0.570
First order 90 percentile 0.541

GLDM Small dependence low grey level em-
phasis 0.512
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First order Interquartile range 0.498
GLCM Inverse difference normalised 0.456
GLDM Large dependence emphasis 0.450
GLDM dependence variance 0.445
GLSZM Low grey level zone emphasis 0.445
First order Mean absolute deviation 0.414
GLCM Autocorrelation 0.407
GLDM Dependence non-uniformity normalised 0.403
First order Mean 0.389
GLRLM Run variance 0.375
GLRLM Grey level non-uniformity normalised 0.324
GLCM Maximum probability 0.307
Neighbouring grey tone difference matrix 
(NGTDM) Strength 0.272

GLCM Cluster tendency 0.267
GLCM Inverse difference moment normalised 0.264
GLDM dependence entropy 0.261
GLRLM Short run low grey level emphasis 0.227
First order Minimum 0.212
GLSZM Large area high grey level emphasis 0.202
First order Root mean squared 0.186
GLSZM Large area emphasis 0.178
GLDM Grey level variance 0.170
GLCM Joint average 0,160
GLCM Sum average 0,160
First order uniformity 0,133

GLDM Small dependence high grey level em-
phasis 0,124

GLSZM Zone variance 0,119
First order Variance 0,108
GLCM Sum squares 0,108
GLSZM High grey level zone emphasis 0,105

GLDM Large dependence low grey level em-
phasis 0.082

GLSZM Size zone non-uniformity normalised 0.074
GLSZM Small area emphasis 0.073
GLSZM Large area low grey level emphasis 0.069
GLRLM Grey level variance 0.066
GLCM Informational measure of correlation 2 0.052



77

GLRLM Low grey level run emphasis 0.045
GLSZM Small area high grey level emphasis 0.044
GLCM Cluster prominence 0.022
GLSZM Grey level variance 0.021
NGTDM Contrast 0.020
First order 10th percentile 0.015
GLDM Low grey level emphasis 0.014
GLCM Difference entropy 0.011
GLSZM Zone entropy 0.010
GLRLM Long run low grey level emphasis 0.008
GLCM Informational measure of correlation 1 0.006
GLCM Difference average 0.005
GLCM Maximal correlation coefficient 0.005

GLDM Large dependence high grey level em-
phasis 0.003

First order Maximum 0.002
GLCM Cluster shade 0.002
First order Range 0.001
First order Median 0.000

GLCM Contrast 0.000

GLDM Dependence non-uniformity 0.000
GLSZM Size zone non-uniformity 0.000
NGTDM Busyness 0.000
GLCM Correlation 0.000
GLSZM Grey level non-uniformity 0.000
NGTDM Complexity 0.000
GLCM Difference variance 0.000
NGTDM Coarseness 0.000
First order Skewness 0.000
First order Energy 0.000
First order Total energy 0.000
First order Kurtosis 0.000
GLRLM Run length non-uniformity 0.000
GLDM Grey level non-uniformity 0.000
GLRLM Grey level non-uniformity 0.000
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Figure 5. a. Examples for the comparison of radiomics features distribution between real 
and fake ground glass nodules (GGNs). The comparison of radiomics features distribution 
extracted from synthetic and real images with minimum three p-values shows in the upper 
row. The comparison of radiomics features distribution extracted from synthetic and real 
images with maximum three p-values shows in the lower row. b., c. Receiver operating 
characteristic curve of the prediction of distinguishing real and fake GGNs. by radiologists 
(a) and by the logistic regression model (b).

3. DL classification network

The results of the DL classification network trained using decreasing portions of the dataset 
are shown in Fig.6. When the dataset is 90%, the precision (i.e., positive predictive value) 
was similar between the two groups. How-ever, when the dataset decreased to 50%, the 
performance of the real data only group significantly decreased. On the other hand, synthet-
ic GGNs can increase precision in training the DL network. When the sample decreased to 
10%, the real data has better performance than by adding synthetic data. From Fig.6b, the 
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recall (i.e., sensitivity) of GGN was decreasing when decreasing the dataset both in real 
data only and real data with GAN groups. However, in most cases, models trained on data-
sets with synthetic data performed better than models without the addition of synthetic data.

Figure 6. Comparison precision (i.e., positive predictive value) and recall (i.e., sensitivity) 
between real and added synthetic dataset in different percentages of the training set. The 
blue and the red lines present the performance of the deep learning classification model 
trained by real data and the real data plus synthetic data, respectively. The horizontal axis 
label is the percentage of training data in the dataset. The vertical axis label is the score of 
precision and the recall with the range from 0 to 1.

Discussion

In the present study, we applied a GAN-based model with double discriminators to generate 
GGN in low-dose CT scans. We benchmarked the performance of the model using a quali-
tative (VTT with clinicians) and a quantitative approach (radiomics).

To our knowledge, only one previous study proposed the use of GANs to generate lung 
lesions and performed a VTT [18], which showed that 67% and 100% of the fake nodules 
were marked as real by two radiologists, respectively. Differences exist between this study 
and our study: in the VVT of the cited study [16], the radiologists reviewed the generated 
lesions, but the surrounding tis-sues or the entire lungs were not included in the field of 
view. Moreover, the surrounding tissues and the lung background that has relationship with 
nodules were not considered when training and generating the nodules. Conversely, we gen-
erated GGNs from the whole lung to use the anatomical dependence with the background 
tis-sue [19]. However, the relatively small size of our study compared to the previous re-
search [18] probably influenced the results of the visual Turing test.

Based on our VTT evaluation, we have shown that GAN-generated lung lesions have 
the potential to be very consistent with real lesions. This gives us the opportunity to use 
GAN-generated data to solve real-world problems, such as using the generated data to train 
and test junior doctors, especially for hospitals that do not have large cohort datasets, long-
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time established picture archiving and communication systems, as privacy-preserving syn-
thetic open datasets for research purposes.

More than half of the radiomic features were not statistically different between DL-generat-
ed and real nodules, proving that the generated GGNs are acquiring or learning detailed fea-
tures from the real sample. Furthermore, these consistent radiomic features cover all classes, 
which could support the conclusion that the proposed approach mimics different aspects of 
real nodules. Conversely, one third of the features in this study showed significant differenc-
es in the distribution between the generated and real GGNs. Based on the radiomics results 
and the clinicians’ opinion, we think that the low complexity of the generated GGNs is the 
main reason for the discrepancy between the generated and real GGNs. For example, the 
p-value of the radiomic features coarseness (which can measure the spatial change rate) and 
complexity (which can measure the non-uniformity of local grey levels) between real and 
synthetic GGNs are close to 0, supporting our hypothesis. We hypothesize the following 
explanations: (i) the data source is derived from public databases that have low resolution 
and lots of noise, and (ii) we did not optimize the training process by specifically including 
radiomics features in the loss function.

Based on the radiomics results, we built a “radiomics physician” to discriminate between 
real and generated GGNs, which interestingly is generally consistent with the discrimina-
tory ability of real physicians. It is worth noting that the “radiomics physician” model was 
trained based on a sample of 100 cases, and the physicians have more than 5 years of expe-
rience. Overall, it is a challenging task to discriminate between real and generated GGNs 
for “radiomics physicians” and real physicians.

Finally, we wanted to test how data augmentation with GAN will affect the detection accu-
racy of a CAD system. Figure 6 shows that adding synthetic GGNs to the original dataset 
improves the performance of our DL CAD system. However, there was no significant con-
tribution when the size of the training dataset is under 10% and over 70% of the original 
sample size. We hypothesize that when the training data is under 10%, there is an insuffi-
cient number of samples to train the GAN. A GAN trained on only a few samples cannot 
synthesize the rich diversity and complexity of real GGNs. Based on the results (Fig. 6), 
we conclude that the performance of the DL model increases with the sample size in certain 
ranges of real data samples. However, as shown in Fig. 6, the performance of the DL model 
cannot be improved after a threshold value larger than the sample size, which is the plateau 
of the model. Specifically, for effective dataset size to train a GAN, around 50% of training 
data which include around 100 samples of GGN has the biggest increase in accuracy of 
the classification model when synthetic GGN are added. Overall, from our experiment, we 
found that:

1. Synthetic data has the ability to increase the performance of a DL model   unless only a 
few training samples can be used;

2. From the perspective of cost and effectiveness, around 100 samples are sufficient to 
develop a GAN model that can generate realistic GGNs to significant improve the perfor-
mance of the detection GGN model.

This study has some limitations. First, we used a public dataset for training the model, but 
we want to extend the work to other datasets. In future studies, we will add high-resolution 
data from our center for model enhancement. Second, we only focused on GGNs, because 
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of their lower incidence compared to other types of nodules. However, the dimension and 
density variation of the included GGNs is limited, which has the potential risk of obtaining 
optimistic radiomic assessment results. We will perform transfer learning to generate lung 
nodules and tumours in the future based on the model in this study. Furthermore, the diag-
nosis of malignant GGN is a challenging task for clinical practice. However, in this study, 
we did not generate benign or malignant GGN. To address this issue, we are collecting data 
from the real world with follow-up endpoints and trying to generate qualitative GGN, espe-
cially malignant GGN.

Third, we generated only two-dimensional samples. However, generating three-dimensional 
(3D) images is costly for model training, first, because 3D GANs have a larger number of 
parameters which need more training data and also have a significantly higher requirement 
in hardware when the input data has large scale such as CT images. In the future work, we 
will consider the model compression to decrease the requirement of hardware and the size 
of dataset for training the 3D GAN. We tried to perform our visual Turing tests by getting 
closer as much as possible to a real clinical scenario. Nevertheless, it was out of the scope 
of this study to integrate our DL models within the clinical workstations available to our 
radiologists. As proof-of-concept, we proposed to our radiologists the generated and real 
pulmonary nodules as two-dimensional axial CT images in the standard lung window. Fu-
ture work will include the production of the generated nodules in standard DICOM formats 
in all the 3D projections. We are also investigating the possibility to invest in the develop-
ment of a cloud-based platform to homogenize visual Turing tests for similar experiments. 
In addition, we did not evaluate the morphological features between the generated and real 
GGNs.

Fourth, we have not discussed the trend of data requirement for different task, such as what 
happens when the quality of data is decreased, how many data points need to be added 
when the target size us increased, and whether different sources such as CT and magnetic 
resonance imaging influence the dataset requirements. In the future work, we will design 
experiments to figure out the connection between the data requirement and different tasks.

Fifth, according to the results of the radiomics part, there are still considerable differences 
between the real and generated GGO, and more than one third of the radiomic feature val-
ues were different, which may be a reflection that the GAN method proposed in this study is 
not optimal. Based on this result, there is still much potential for improvement of our algo-
rithm, with a particular focus on improving the level of complexity of the textures.

Sixth, we did not conduct interobserver and intra-observer testing and the degree of dis-
agreement between different readers was not assessed. On the other hand, in our experience, 
the differences between the readers (physicians) included in this study were limited to the 
same broad category, i.e., real or fake. For example, nodules labelled as “confidently real” 
by one physician have the possibility of being labelled as “leaning real” instead of “confi-
dently/leaning fake” by other physicians.

Finally, despite the GANs are an elegant data generation mechanism gaining more and more 
popularity in the medical field, most of them still present a high level of complexity com-
pared for example to traditional DL algorithms such as convolutional neural networks. For 
example, there is no consensus on the most appropriate metric to be used to stop the train-
ing at the best point (global minimum of the loss function). This will sometimes lead to a 
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not satisfactory quality of the generated data. Especially when dealing with medical images, 
the risk of introducing novel, undesired artefacts, and blurry images is not negligible.

In conclusion, in this study, we used GANs to generate GGN and validated these by four 
physicians and radiomics approaches, showing that GAN methods have great potential for 
augmentation of the original dataset.
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Abstract 
Purpose Radiation pneumonitis (RP) is one of the common side effects of radiotherapy in 
the thoracic region. Radiomics and dosiomics quantifies information implicit within medi-
cal images and radiotherapy dose distributions. In this study we demonstrated the prognos-
tic potential of radiomics, dosiomics, and clinical features for RP prediction.

Materials and methods Radiomics, dosiomics, dose-volume histogram (DVH) metrics, 
and clinical parameters were obtained on 314 retrospectively-collected and 35 prospective-
ly-enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk 
score (R-score) and dosiomics risk score (D-score) and DVH-score were calculated based 
on logistic regression after feature selection. Six models were built using different combina-
tions of R-score, D-score, DVH-score, and clinical parameters to evaluate their added prog-
nostic power. Over-optimism was evaluated by bootstrap resampling from the training set, 
and the prospectively-collected cohort was used as the external test set. Model calibration 
and decision-curve characteristics of the best-performing models were evaluated. For ease 
of further evaluation, nomograms were constructed for selected models.

Results A model built by integrating all of R-score, D-score, and clinical parameters had the 
best discriminative ability with area under the curves (AUCs) of 0.793 (95%CI 0.735-0.851), 
0.774 (95%CI 0.762-0.786), and 0.855 (95%CI 0.719-0.990) in the training set, boot-
strapping set, and external test set, respectively. The calibration curve image showed good 
agreement between the predicted and actual values with a slope of 1.21 and an intercept of - 
0.04. The decision curve image showed positive net benefit for the final model based on the 
nomogram.

Conclusion Radiomics and dosiomics features have potential to assist with the prediction 
of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best 
prognostic model in the present study.

Keywords: Radiomics; Dosiomics; Lung cancer; Radiation Pneumonitis
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Introduction

Radiotherapy (RT) plays a crucial role in the management of lung cancer (LC) [1], espe-
cially for locally advanced and unresectable cases [2, 3]. Advances in thoracic RT have 
led to steadily improving prognosis for LC patients, but RT-related side effects remain a 
treatment-limiting concern [4-6]. Radiation pneumonitis (RP) is a common adverse effect 
that degrades patients’ quality of life and can be fatal in severe cases. To date, there is no 
highly effective cure for RP [7], thus prevention of RP remains one of the top clinical prior-
ities during RT dose planning [8, 9]. Robust and reproducible predictive models that could 
estimate the risk of developing RP after lung RT would be of immense clinical value. Such 
estimates could be incorporated into treatment planning and informed shared decision-mak-
ing consultations (such as a choice between starting prophylactic medication or active vigi-
lance).

Studies to date suggest a number of clinical factors, such as smoking status, pre-existing 
lung disease [10], pre-existing cardiac disease [11], and chemotherapy [12], may affect an 
individual’s pre-disposition to develop RP. Although these parameters may indicate towards 
susceptibility, RP remains a disease exhibiting strong inter-person variability [13]; this het-
erogeneity does not appear to be sufficiently well represented in conventional clinical fac-
tors. Single-nucleotide polymorphism (SNPs) [14] and plasma cytokines [15, 16] can also 
be indicative of heterogeneity, and several studies have revealed significant associations 
between SNPs and the occurrence of RP [17], which suggests the feasibility of genetic and 
molecular biomarkers. However, some biomarkers may be subject to vagaries of limited 
spatial sampling and are only available through invasive means.

Radiomics is the high-throughput extraction of quantitative handcrafted features from med-
ical images. Image-based radiomics has the potential to characterize heterogeneity within 
the entire pre-RT lung parenchyma and, in the case where suitable repeated imaging could 
be available, to be able to quantify parenchymal changes during a course of RT in a non-in-
vasive manner. It has been demonstrated that radiomics features are associated with genetic 
heterogeneity (radiogenomics) [18]. There have been several studies that demonstrate the 
potential of radiomics to predict RP [19-21], but building predictive models only from an 
image perspective may not be sufficient. Physicians routinely modify treatment strategies 
based on the patient’s condition. For example, some patients with pre-existing lung disease 
diagnosed by imaging may be prescribed a relatively low dose thereby reducing the chance 
of developing RP and weakening the predictive power of radiomics. Therefore, there is a 
need to incorporate prescription dose information into predictive model.

In a different context, the occurrence of RP is strongly related to RT dose, and therefore a 
number of studies have used dose-volume histogram (DVH) metrics, such as mean lung 
dose (MLD) [22] and volume of the lung receiving 20 Gy (V20) [23], to predict RP. DVH 
parameters are not able to fully describe the immense spatial heterogeneity of dose distribu-
tion, which may be realized through intensity modulated radiation delivery (i.e., IMRT and/
or VMAT) [23, 24]. Dosiomics, conceived as using radiomics tools to characterize spatial 
heterogeneity of RT dose (as opposed to image voxel intensities) provides a greater depth of 
information in contrast to traditional DVH measures [25, 26].

Previous works [19-21, 25, 26] attempt to predict RP solely on the basis of medical (tomo-
graphic) imaging alone, or on the basis of dose information, and those results show that it 
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is highly unlikely to be clinically sufficient by relying exclusively on either the imaging 
features (radiomics) or the dose-volume parameters. There is a lack of studies combining 
radiomics and dosiomics to predict RP in lung cancer, furthermore, studies using rigorous 
and rational steps of selecting handcrafted features are needed. A large sample-based, pro-
spective study is also required to assess the objective predictive power of the models.

In this study, we extracted radiomics features in RT planning CT and dosiomics features in 
3D dose grids from the RT treatment planning system (TPS) and performed objective and 
rigorous feature selection. We evaluated the performance of clinical parameters, radiomics 
features, dosiomics features, and DVH metrics, singly as well as in combination, to predict 
RP after RT to the chest area. We evaluated the prediction models in terms of discriminative 
performance and model calibration using a prospectively collected dataset. Moreover, deci-
sion-curve analysis was used to investigate the potential clinical relevance of such models if 
implemented in routine practice. A nomogram was provided to facilitate future independent 
validation of our work in other clinical settings.

Methods

1. Study design

This study was designed as a Transparent Reporting of a multivariate prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) type 3 study comprising model development 
and independent validation [27]. This study was registered on artificial intelligence in bio-
medical research platform (AIMe, ID: mn9jLf) [28]. The overarching study flow is illustrat-
ed in Figure 1.

Figure 1. Analysis flowchart. Step 1, The radiomics and dosiomics features of the lung 
tissue region were extracted. Step 2, 1000 unique bootstrap samples were taken from all 
samples, features were selected by correlation, least absolute shrinkage (LASSO) embedded 
with logistic regression (LR) and Akaike information criterion (AIC) for modeling. Step 3, 
The model performance was evaluated using discrimination and calibration. Step 4, Clinical 
applications were evaluated using nomogram and decision curves.
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2. Patients

A single-institutional model development cohort of 314 subjects was retrospectively ex-
tracted from institutional records after ethics board approval (IRB/bc2021135), compris-
ing patients diagnosed with LC and treated with radical (chemo)-RT, with either IMRT or 
VMAT techniques, at Anonymized for Review Hospital between January 2013 and De-
cember 2018. For model validation, an additional 35 patients with the same criteria were 
prospectively enrolled with informed consent and same ethics approval (IRB/bc2021135), 
who were treated between October 2018 and March 2019 in the same institution. Detailed 
inclusion and exclusion criteria have been specified in the Supplementary Materials A.

3. Image acquisition and treatment planning

Intravenous contrast-enhanced planning CT scans were acquired on a single Brilliant (Philips 
Medical Systems; Best, The Netherlands) multislice scanner with a standardized protocol: 
120 kVp, 100 mAs, 3 mm slice thickness, 512 x 512 image matrix, 50 cm fields of view, 
0.977 mm pixel spacing and vendor’s default convolution kernel. Experienced radiation on-
cologists delineated the LC gross tumor volume (GTV) and malignant lymph nodes in the 
Pinnacle TPS (Philips Radiation Oncology Systems; Fitchburg, Wisconsin, United States), 
with image fusion against complementary imaging studies whenever available (such as pos-
itron emission tomography).

The GTV was isotropically expanded by 5 mm, as well as subclinical microscopic malig-
nant lesions to derive the clinical target volume (CTV). The planning target volume (PTV) 
was an additional 5 mm isotropic expansion around the CTV. Dosimetrist were instructed to 
cover at least 95% of the PTV with the prescribed RT dose. Delineations conformed to the 
guidelines set by the Radiotherapy and Oncology Group (RTOG). The relevant dose con-
straints were as follows: MLD < 20 Gy, V20 < 30%, and volume of the lung receiving 5 Gy 
(V5) < 60%. All patients were nominally prescribed 2 Gy per fraction once daily. Radiation 
oncologists determined the total prescribed dose based on each patient’s overall physical 
condition and best achievable normal tissue constraints. The actual total RT dose delivered 
ranged between 50 to 70 Gy. The dose grid resolution is 4 mm, and the dose calculation 
algorithm is Collapsed Cone Convolution [29, 30]. The planning CT series with associated 
RT structure delineations and RT planned radiotherapy 3D dose grids were exported from 
Pinnacle in the standard DICOM format.

4. Lung segmentation and RP grading

We extracted radiomics features and dosiomics features from the region corresponding to 
total (left plus right) lung. To ensure consistency of lung segmentation, we quality assured 
the lung delineations for each subject using a deep-learning automatic lung contouring tool 
based on retraining of the published model. The original and automatically generated lung 
outlines were inspected and then manually edited by a single experienced radiation oncolo-
gist (author MY). Two other radiation oncologists (author JQY and ZZ) subsequently inde-
pendently reviewed the lung organ segmentation, and any disputes were resolved by direct 
consultation among all three authors.

The primary outcome RP was defined, in accordance with the Common Terminology Cri-
teria for Adverse Events (CTCAE) v5.0, as symptomatic radiation pneumonitis of CTCAE 
grade 2 or higher within 6 months after the end of RT [12, 16]. Monitoring of RP was based 
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on the combination of clinical examination, reported symptoms, outpatient medical records, 
laboratory tests, chest X-ray, and visual inspection of follow-up CTs, which were all per-
formed at intervals of 1, 3, and 6 months after completion of RT, and then every 6 months 
thereafter.

5. Radiomics and dosiomics features extraction

A total of 103 handcrafted radiomics features were extracted from DICOM CT and RT 
Structures using the “O-RAW” package [31] (based on Pyradiomics v3.7 [32]). These fea-
tures comprised 17 intensity histogram features, 13 morphological (shape) features, and 73 
textural features. No digital image filters were applied during pre-processing. Most of the 
hand-crafted features conformed to the Image Biomarker Standardization Initiative (IBSI) 
[33]; specific divergences from the IBSI at the time of writing have been reported accord-
ing to the PyRadiomics documentation. Radiomics extraction settings are the same as for a 
previous publication [31], and our PyRadiomics parameters setting file has been provided 
in the Supplementary Materials B. For dosiomics features, DICOM RT Dose files were 
first converted as NRRD images using 3D Slicer [34], and then the same feature extraction 
procedure in PyRadiomics was applied for the total lung region. Additionally, voxel-wise 
values in the “dose images” were scaled to represent the absolute physical dose in units of 
Gray (Gy). Isotropic spatial resampling (1 mm) was applied on the CT images and dose im-
ages prior to feature extraction as recommended by previous studies [35].

6. Feature selection

An overview of multi-step feature selection and model construction is given in Figure 1. 
The clinical parameters for modeling were evaluated by using univariate and multivariate 
analyses for twelve clinical parameters with predictive potential. Feature selection for the 
radiomics model and the dosiomics model were performed separately, and has been adapted 
from the feature pooling and signature pooling method used by Compter et al. [36]. In brief, 
the selection process was as follows:

(i) A thousand unique bootstrap samples (with replacement) were drawn from the whole 
training cohort. Within each bootstrap sample, we first minimized the number of strong 
pairwise normalized (Z-score, (original value-mean value)/standard deviation) feature cor-
relations greater than 0.90 or less than -0.90. A least absolute shrinkage (LASSO) loop with 
20-times repeated 5-fold cross-validation embedded with a logistic regression (LR) super-
vised classifier was used to select features. From each of the 1000 bootstraps, we ranked 
each individual feature according to how frequently it was retained by the LASSO-LR.

(ii) We arbitrarily selected some of the top most frequently-appearing individual features 
from the above table. From this small subset of selected features, we built a multivariable 
LR model on each of the same aforementioned bootstraps samples with stepwise backwards 
elimination using the Akaike information criterion (AIC) as metric. From each of these 
1000 bootstraps, we tabulated how many times each combination of one or more features 
(i.e., potential signatures) was retained by the stepwise LR.

(iii) We arbitrarily selected the top most frequently-appearing signature arbitrarily selected 
to build the final multivariable LR model. The coefficients of the final model were fitted us-
ing the original non-bootstrapped development cohort.
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7. Model construction

The clinical model was presented as a multivariable LR model. To this, we added an aggre-
gated Radiomics Risk Score (R-score) and an aggregated Dosiomics Risk Score (D-score), 
separately. The R-score was defined as the linear predictor (LP) of the multivariable LR 
radiomics model, and likewise the D-score was defined as the LP of the multivariable do-
siomics model. For combined models, we assessed the combinations of the clinical factors 
together with either, or both, of the R-score and D-score.

V20 and mean lung dose (MLD) were used to build DVH model, and details of feature 
selection and model construction are provided in the Supplementary Materials C. To ad-
dress the issue of imbalanced data, we performed the Synthetic Minority Oversampling 
Technique (SMOTE) approach in the training set. We also examined the Pearson correlation 
between the R-score and clinical parameters, and between the D-score and dose-volume 
histogram metrics (dosimetrics).

8. Model validation – internal and external

We estimated the over-optimism in model development using the method recommended in 
the TRIPOD guidelines; for each of the 1000 abovementioned pre-defined bootstraps, we 
fitted the LR model coefficients on each bootstrap, and then computed its Area under the 
curve (AUC) of receiver operating characteristic curve (ROC) using the original non-boot-
strapped development cohort. From these 1000 bootstraps, we computed the average AUC 
and its 95% confidence interval.

As external validation, we evaluated the aforementioned models using the prospective-
ly-registered cohort of 35 subjects. Processing of these 35 subjects followed exactly the 
same procedure as for the model development cohort, and none of these subjects were used 
in any way during model construction.

The well-established calibration curve technique was used to assess model goodness of fit 
(i.e., the extent of concordance between the predicted and observed values) again using a 
bootstrap of 1000 repetitions. To facilitate clinical use and support fully independent vali-
dation of our model, a simple nomogram was generated for the R-score, D-score, and the 
selected clinical parameters. Lastly, we tried to discuss the potential clinical utility of our 
model using decision curve analysis (DCA) [37].

9. Statistical analyses

Baseline patient characteristics for continuous variables are presented as mean ± standard 
deviation. For univariate ranking of clinical predictors, Pearson X2 tests and exact Fisher 
tests were used for categorical variables and logistic regression for continuous variables. 
For significance of clinical factors, a two-sided hypothesis test at the a = 0.05 confidence 
level was assumed. Significant characteristics were subsequently combined in multivariable 
logistic regression.

All data had been collated and standardized using the Statistical Package for Social Sci-
ence program (SPSS for Windows, version 27.0; SPSS Inc, Chicago, IL). Feature selection, 
model construction, model performance assessment and decision-curve analysis were all 
performed in R software (version 4.0.5).
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Results

1. Patient characteristics and incidence of RP

The case mix of patients and treatments studied in this model are reported in Table 1. Uni-
variate analysis showed statistically significant differences in interstitial lung disease (ILD), 
concurrent chemoradiotherapy (CCRT), and age between patients with and without RP. 
The overall incidence of CTCAE grade 2 or higher for RP was 21.5% (75 of 349), 21% (66 
of 314) in the retrospective data set, and 25.7% (9 of 35) in the prospective validation set. 
Multivariable analysis indicated that ILD (OR 2.471; 95%CI 1.037-5.888, p = 0.041) and 
age (OR 1.051; 95%CI 1.012-1.085, p =0.008) were independent factors associated with 
RP. A forest plot for the coefficients in the multivariable LR model is shown in Figure 2.

Table 1 Patient Characteristics

Characteristics All retro pts

n (%)

Without RP2

Mean ± SD

With RP2

Mean ± SD

P* Pros pts

n (%)
Age median 61 (30-85) 61 (30-85) 63 (44-79) 0.005 62 (34-75)
Gender 0.523

Male 238 (75.8%) 186 (78.2%) 52 (21.8%) 23 (65.7%)

Female 76 (24.2%) 62 (81.6%) 14 (18.4%) 12 (34.3%)

Smoking 0.569

Yes 244 (77.7%) 191 (78.3%) 53 (21.7%) 26 (74.3%)

No 70 (22.3%) 57 (81.4%) 13 (18.6%) 9 (25.7%)

KPS 0.725

≤80 132 (42.0%) 103 (78.0%) 29 (22.0%) 13 (37.1%)

>80 182 (58.0%) 145 (79.7%) 37l (20.3%) 22 (62.9%)

Diabetes 0.609

  Yes 34 (10.8%) 28 (82.4%) 6 (17.6%) 2 (5.7%)

No 280 (89.2%) 220 (78.6%) 60 (21.4%) 33 (94.3%)

ILD 0.015

  Yes 25 (8.0%) 15 (60.0%) 10 (40.0%) 9 (25.7%)

  No 289 (92.0%) 233 (80.6%) 56 (19.4%) 26 (74.3%)

Pathology 0.656

  LUSC 86 (27.4%) 65 (75.6%) 21 (24.4%) 8 (22.9%)

LUAD 73 (23.2%) 59 (80.8%) 14 (19.2%) 10 (28.6%)

SCLC 155 (49.4%) 124 (80.0%) 31 (20.0%) 17 (48.5%)

Inducchemo 0.739

Yes 287 (91.4%) 226 (78.7%) 61 (21.3%) 31 (88.6%)

No 27 (8.6%) 22 (81.5%) 5 (18.5%) 4 (11.4%)

CCRT 0.047
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Yes 93 (29.6%) 168 (76.0%) 53 (24.0%) 8 (22.9%)

No 221 (70.4%) 80 (86.0%) 13 (14.0%) 27 (77.1%)

Conso chemo 0.116

Yes 179 (57.0%) 147 (82.1%) 32 (17.9%) 19 (54.3%)

No 135 (43.0%) 101 (74.8%) 34 (25.2%) 16 (45.7%)

PGTV(Gy) 59.274±2.977 59.204±3.063 59.539±2.634 0.415 60.200±2.870
Smoking in-
dex

661.540±571.430 641.840±550.543 735.600±643.084 0.237 668.600±550.412

Abbreviations: Retro = retrospective; Pts = patients; Pros = prospective; LUSC = lung 
squamous cell carcinoma; LUAD = lung adenocarcinoma; SCLC = small cell lung cancer; 
IMRT = intensity-modulated radiotherapy; VMAT = volumetric modulated arc therapy; 
chemo = chemotherapy; KPS = Karnofsky performance score; Induc chemo = induction 
chemotherapy; CCRT = concurrent chemoradiotherapy; Conso chemo = consolidation 
chemotherapy; PGTV = planning gross tumor volume.

*The differences in characteristics were evaluated by logistic regression for continuous 
variables or Pearson X2 test and exact Fisher test for categorical variables

Figure 2. Multivariate analysis forest plot by logistic regression. Characteristics with statis-
tically significant univariate analysis were subjected to multivariate analysis, with ILD and 
age as independent predictors of RP. Abbreviations: OR = Odds ratio; ILD = Interstitial 
lung disease; CCRT = Concurrent chemoradiotherapy.

2. Feature selection and risk scores

By inspecting the frequency ranking of individual features, we noted that a threshold fre-
quency of around 600 yielded us 11 radiomics features and 12 dosiomics features. Subse-
quently, we derived a final radiomics signature comprising of 7 features for the R-score, and 
a final dosiomics model of 6 features for the R-score. Detailed tables and graphs from the 
feature selection process, along with the names and definitions of the selected features, are 
provided in the Supplementary Materials D.

The R-score and the D-score were calculated based on the coefficients weighted by LR. The 
formula of R-score and D-score are provided in the Supplementary Materials D. For ease of 
computing the R-score and D-score, a simple calculator has been provided and can be found 
here: only for Windows or MacOS operating systems, (https:// https://github.com/Radiol-
ogyzz/Calculator.git). Instructions for using the calculator are given in the Supplementary 
Materials E.
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Examples of low and high R-score and D-score are given in Figure 3. In this example, ILD 
was evident in the patient with high R-score. The lung tissue of the patient with high D-score 
received higher dose of radiation than the patient with low D-score (the same prescription 
dose for both patients). The results showed no significant correlation (>0.8) by Spearman’s 
analysis between R-score and clinical parameters, D-score and dosimetrics, respectively 
(Supplementary material F Figure 3). However, there were slight differences in the distribu-
tion of R-score for the population with and without ILD, and more noticeable differences in 
the distribution of D-score for the population with different MLD (Supplementary material 
F Figure 4).

3. Comparison of discrimination performance of different models

Prediction performance was quantified as AUC for six models and is summarized in Table 2. 
Other possible combinations of models are provided in the Supplementary material G. The 
model that yielded the highest AUC was the combination of R-score, D-score, and clinical 
parameters. The discrimination performances were 0.793 (95%CI 0.735-0.851) and 0.855 
(95%CI 0.719-0.99), in the training and prospective validation sets, respectively. As the 
estimate of the degree of over-optimism (i.e., over-fitting) during model construction, our 
bootstrap-based validation yielded an AUC of 0.774 (95%CI 0.762-0.786).

Table 2 Discrimination ability of different models according to area under the curve (AUC) 
with 95%CI provided between parentheses.

Model
Train

(95%CI)

Validation by boot-
strapping

(95%CI)

Testing

(95%CI)

R-score
0.676

(0.606-0.745)

0.619

(0.592-0.646)

0.671

(0.558-0.899)

D-score
0.728

(0.665-0.790)

0.687

(0.667-0.706)

0.684

(0.573-0.883)

DVH-score
0.637

(0.570-0.705)

0.628

(0.613-0.642)

0.661

(0.551-0.856)

Clinical parameters
0.664

(0.594-0.735)

0.654

(0.628-0.680)

0.709

(0.509-0.91)

R-score + DVH-score + C
0.728

(0.674-0.803)

0.719

(0.703-0.736)

0.782

(0.686-0.832)

R-score + D-score + C
0.793

(0.735-0.851)

0.774

(0.762-0.786)

0.855

(0.719-0.990)
Abbreviations: R = radiomics risk score; D = dosiomics risk score; DVH = dose-volume 
histogram; C = clinical parameters.

4. Model calibration and decision curve analysis
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A nomogram based on clinical parameters, R-score, and D-score was constructed and is 
shown in Figure 4a. The calibration curve of nomogram validated by bootstrap resampling 
is displayed in Figure 4b, which illustrates good agreement between the predicted proba-
bilities of RP versus the actual observed probabilities. The calibration curve of prospective 
validation set is provided in the Supplementary Material H with a slope of 1.21 and an in-
tercept of - 0.04. DCA (Figure 4c) showed that the prediction model with the combination 
of R-score, D-score and clinical parameters has the best positive net benefits at threshold 
probabilities, implying that a proportion of patients could benefit from using the model to 
assist in clinical decision making.

Figure 4. (a) Nomogram predicting the occurrence of symptom RP. Abbreviations: ILD: 
Interstitial lung disease; R-score = Radiomics risk score; D-score = Dosiomics risk score. 
(b) Calibration curve with a bootstrap resampling validation of prediction model combining 
radiomics risk score, dosiomics risk score, and clinical parameters. Dashed line indicated 
the ideal model in which predicted and actual probabilities were perfectly identical; Red 
line indicated actual performance with apparent accuracy; Green line indicated bootstrap 
corrected estimate of the calibration curve. (c) Decision curve analysis of prediction mod-
els. The color lines represent the DCA of different prediction models, the horizontal black 
line represents the hypothesis that no patients receive interventions, the oblique gray line 
represents the hypothesis that all patients receive the interventions. Abbreviations: R-score 
= Radiomics risk score; D-score = Dosiomics risk score; DVH-score = dose-volume histo-
gram score; C. = clinical parameters.

Discussion

Identifying patients at higher risk of developing RP following thoracic irradiation remains 
an important and topical clinical question, as this adverse event directly affects patient prog-
nosis and reduces quality of life. Patients with RP are a highly heterogeneous group, hence 
this study evaluated non-invasive methods (radiomics and dosiomics) using only pre-treat-
ment information to characterize individual differences. In this study, the dosiomics features 
were shown to have stronger predictive power than the conventional DVH parameters, and 
the combination of a radiomics signature, a dosiomics signature, and two clinical factors 
were found to be predictive of RP. The results demonstrated that all three types of data ap-
pear to carry complementary information relevant to the risk of developing RP. To facilitate 
further clinical evaluation, we provided a nomogram and discuss the potential clinical bene-
fits of applying the RP predictive model.

Several studies to date have been conducted to predict RP by extracting handcrafted radio-
mics features from CT. Cunliffe et al. [38] explored the correlation between radiomics and 
RP and found that 12 radiomics features extracted from CT images of patients with esopha-
geal cancer changed over time in association with the development of RP (AUC=0.78), 
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Figure 3. (a) The left image is the planning CT image of a patient with a low Radiomics 
risk score (R-score). The right image is the radiomics feature (original_ngtdm_Complexity) 
map of CT image at roughly the same level as shown on the left. Feature values are indicat-
ed from dark to light.

(b) The left image is the planning CT image of a patient with a high R-score. The right im-
age is the radiomics feature (original_ngtdm_Complexity) map of CT image at roughly the 
same level as shown on the left.

(c) The left image is the radiation dose (RD) image of a patient with a low Dosiomics risk 
score (D-score). The right image is the dosiomics feature (original_ngtdm_Strength) map of 
RD image at roughly the same level as shown on the left. Feature values are represented by 
rainbow color bar, i.e., from blue to red. The irradiation dose is indicated from dark to light.

(d) The left image is the radiation dose (RD) image of a patient with a high D-score. The 
right image is the dosiomics feature (original_ngtdm_Strength) map of RD image at rough-
ly the same level as shown on the left.
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Figure 4. (a) Nomogram predicting the occurrence of symptom RP. Abbreviations: ILD: 
Interstitial lung disease; R-score = Radiomics risk score; D-score = Dosiomics risk score. 
(b) Calibration curve with a bootstrap resampling validation of prediction model combining 
radiomics risk score, dosiomics risk score, and clinical parameters. Dashed line indicated 
the ideal model in which predicted and actual probabilities were perfectly identical; Red 
line indicated actual performance with apparent accuracy; Green line indicated bootstrap 
corrected estimate of the calibration curve. (c) Decision curve analysis of prediction mod-
els. The color lines represent the DCA of different prediction models, the horizontal black 
line represents the hypothesis that no patients receive interventions, the oblique gray line 
represents the hypothesis that all patients receive the interventions. Abbreviations: R-score 
= Radiomics risk score; D-score = Dosiomics risk score; DVH-score = dose-volume histo-
gram score; C. = clinical parameters.

Discussion

Identifying patients at higher risk of developing RP following thoracic irradiation remains 
an important and topical clinical question, as this adverse event directly affects patient prog-
nosis and reduces quality of life. Patients with RP are a highly heterogeneous group, hence 
this study evaluated non-invasive methods (radiomics and dosiomics) using only pre-treat-
ment information to characterize individual differences. In this study, the dosiomics features 
were shown to have stronger predictive power than the conventional DVH parameters, and 
the combination of a radiomics signature, a dosiomics signature, and two clinical factors 
were found to be predictive of RP. The results demonstrated that all three types of data ap-
pear to carry complementary information relevant to the risk of developing RP. To facilitate 
further clinical evaluation, we provided a nomogram and discuss the potential clinical bene-
fits of applying the RP predictive model.

Several studies to date have been conducted to predict RP by extracting handcrafted radio-
mics features from CT. Cunliffe et al. [38] explored the correlation between radiomics and 
RP and found that 12 radiomics features extracted from CT images of patients with esoph-
ageal cancer changed over time in association with the development of RP (AUC=0.78), 
however, this study focuses on measurement and assessment rather than prediction. Krafft 
et al. [21] performed an in-depth study for lung cancer and concluded that the best predic-
tive power (AUC=0.68) was achieved when combining radiomics, clinical and dosimetric 
parameters to build the model. Similar findings were obtained in a study of esophageal can-
cer by Du et al [20]. They developed a model combining radiomics, clinical and dosimetric 
parameters by studying 96 patients with esophageal cancer (AUC=0.91). Although these 
studies included small sample sizes, they inspired us that the combination of handcrafted ra-
diomics features and dosimetric parameters can improve the predictive power of the model. 
For dosiomics, several studies have demonstrated its potential to predict radiotherapy-relat-
ed endpoints, including prognosis [39-41] and treatment efficacy [42, 43], but there are very 
few studies using handcrafted dosiomics to predict side effects. A recent study published by 
Takanori et al. [25] used a combination of dosiomics and dose-volume indices to predict the 
occurrence of RP and concluded that dosiomics has the ability to predict RP. Liang et al. [26] 
conducted a study on dosiomics prediction of RP and confirmed that dosiomics predictive 
ability was superior to both dosimetric and NTCP predictors (AUC of 0.78 compared to 0.68 
and 0.74), which gives us an idea that dosiomics relative to dosimetrics perhaps possessing 
more dimensional information.
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Based on the results of this study (Table 2) we conclude that the predictive power and sta-
bility (with narrower 95%CI) of the model based on dosiomics features is stronger than 
the model based on dosimetrics. The correlation analysis between dosimetric and D-score 
showed that they are correlated, where D-score correlates with V30, V25, and V20 between 
0.7 and 0.8 (Supplementary material F Figure 3b). Although both dosiomics and dosimet-
ric are quantitative values obtained by calculating from 3D dose distributions, dosiomics 
obtains more detailed information from texture analysis of the dose distribution, while do-
simetric obtains information based on dose-volume histograms. The shape features, which 
measure the dose delivery from another perspective, may also give a stronger predictive 
power to the dosiomics. Combining the results of this study and the published dosiomics 
studies to date, we suggest that neither can replace the other. Inspired by radiomics studies, 
we resampled the RD images to 1 mm. Different dose grids affect dosiomics feature values 
[29], however, the utility of resampling RD images, more specifically, whether resampling 
improves the reproducibility and stability of dosiomics features, requires more research. 
Placidi et al. conducted a multi-institutional basic study on dosiomics features, which con-
cluded that dosiomics is a tool with predictive potential suitable for multi-institutional stud-
ies by analyzing the reproducibility, stability, and sensitivity of dosiomics features [29]. Our 
results also demonstrate that dosiomics have predictive potential and therefore it is worth-
while to investigate dosiomics more extensively and deeply.

To the best of our knowledge, no previous published studies have combined handcrafted 
radiomics, dosiomics, and clinical parameters of lung cancer in various ways and compared 
their ability to predict RP. In this work, we have compared models with radiomics alone, 
and with 3D spatial dose quantitative features (dosiomics) and we then go beyond current 
knowledge by proposing a combined model which shows that radiomics and dosiomics are 
complementary thus leading to improved model performance. We implemented a careful 
and objective feature selection approach, with robustness as the selection principle for each 
step of feature selection rather than best predictive ability, which to some extent avoids 
the occurrence of chance events. After this, the robust model validation approach was con-
ducted and validated using bootstrap datasets and a prospective dataset, respectively, with 
over-optimism correction in both ways. Meanwhile, the number of variables in the model 
was controlled to avoid overfitting. The objective potential of radiomics/dosiomics for pre-
dicting RP was explored according to such a process.

We evaluated the performance of the model in three aspects, discrimination ability, calibra-
tion, and clinical application potential [44-46]. First, the differences between the training 
set, bootstrapping set, and test set are satisfactory in the results of discriminative validation, 
and the fluctuation range of 1000 repetitions is small. Based on this result, we think the 
model has stable prediction ability and low risk of overfitting. Second, the goodness of fit 
is another evaluation criterion for the prediction model. The final comprehensive model has 
excellent calibration, with no significant over- or under-estimation for different risk inter-
vals. Third, a nomogram was built to assist clinical practice, and an offline calculator was 
provided to facilitate the calculation of R/D-score. The potential of the predictive model for 
clinical application was also evaluated using DCA. In Figure 4c, it can be seen that the no-
mogram-based prediction model has positive net benefits. In more detail, the net benefit of 
the prediction model is greater than the hypothesis that all patients receive RP prophylaxis 
or pro-active countermeasures (e.g., taking drugs to prevent RP or reducing the dose of ra-
diotherapy) and that all patients do not receive such measures indiscriminately. It is worth 
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noting that the net benefit of the D-score-based model is higher than that of the DVH-score-
based model, implying that the model with the D-score has more potential clinical benefit. 
In summary, the model we developed has potential clinical utility.

In univariate analysis of clinical parameters, whether receiving CCRT had an effect on the 
occurrence of RP, and the incidence of RP was lower in patients who received CCRT, which 
is not consistent with clinical experience and with findings in most studies [12, 13, 47]. This 
might be a bias due to subjective clinical decision making by physicians. Patients included 
in our study were evaluated by physicians for risk prior to receiving CCRT, and patients 
with poor health status and high incidence of radiation therapy side effects in the opinion 
of physicians would not be given CCRT. Some patients will receive potentially lower pre-
scription doses in the radical dose range with stricter dose constraints of the lung to ensure 
they can complete a full cycle of radiotherapy without serious radiation therapy side effects. 
Similar views have been proposed by other researchers [8]. A negative correlation between 
age and CCRT can be seen in Supplementary material F Figure 3, which also illustrates 
the subjectivity in the setting of the CCRT protocol. Our findings suggest that ILD is a 
risk factor for the development of RP. Clinically, RT may lead to exacerbation of ILD and 
thus interfere with the diagnosis of RP [48]. Accordingly, in this study, the diagnosis of RP 
in patients with ILD was determined by collaboration with radiologists. And it should be 
noted that strictly to define, the ILD mentioned in this study is subclinical ILD, according 
to previous studies. [49, 50]. To investigate the effect of ILD on the model, we excluded 
patients with ILD in all datasets and performed the same independent validation methods 
as described previously. Based on the results (Supplementary Material G), we propose our 
hypothesis: 1. The radiomics model focuses not only on lung texture but also includes other 
information, as there is no significant difference between the model including or excluding 
patients with ILD. 2. The discrimination performance of the model built by dosiomics or 
DVH metrics is improved by excluding patients with ILD, as dose-based models are dif-
ficult to predict RP in patients with ILD. 3. ILD is a critical clinical predictor. In previous 
reports, patients with ILD have high risk of RP, and ILD has been considered a high risk 
factor for fatal RP [51, 52]. A number of studies have been conducted to analyze the rela-
tionship between age and RP [8, 53]. Several studies [54-56] and a meta-analysis [57] have 
shown that older patients have a higher risk of developing RP. However, some studies did 
not find an association between age and the risk of RP [58, 59]. In summary, patients who 
are elderly or/and have ILD should be given more attention and a more comprehensive risk 
assessment before receiving radiotherapy.

A current challenge in radiomics/dosiomics studies is interpretability, and we attempted 
to analyze the omics results from a clinical perspective. The analysis revealed no strong 
correlation between clinical parameters and the R-score (Supplementary material F Figure 
3a). However, imaging radiomics contains a large amount of quantitative information and it 
may not be possible to interpret the full meaning of what it represents using a few clinical 
parameters. The feature maps of radiomics and dosiomics can provide the direct visualiza-
tion of voxel-based feature values. As shown in Figure 3 (a) and (b), the radiomic feature 
“original_ngtdm_Complexity” can reflect the texture characteristics, and for ILD patients, 
higher voxel-based feature values were obtained compared to patients without pre-existing 
lung disease. The dosomic feature “original_ngtdm_Strength” (Figure 3(c) and (d)) shows 
a pattern of variation from high to low dose, which is some reflection of the radiotherapy 
planning pattern. Feature maps of other features are provided in the Supplementary material 
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F Figure 5. We compared the feature maps with the follow-up diagnostic CTs and found that 
the radiomics signature map did not match the areas of symptomatic RP. In contrast, there is 
a significant overlap between some dosiomics feature maps and the symptomatic RP regions 
(Supplementary Material F Figure 6). This is consistent with the clinical understanding that 
the regional localization of symptomatic RP is more closely related to the physical radiation 
dose distribution.

The Rad/Dosiomics features selected in this study include shape features, which give us a 
suggestion that the contouring of the lung tissue is important. Currently, manual segmenta-
tion is still the “gold standard”, but it is time consuming. Therefore, we performed manual 
check to ensure the accuracy and quality of the automatic segmentation, following process-
ing by the automatic segmentation software. We think this approach is suitable for future 
multi-institutional studies to assure accuracy while reducing physician workload. Since 
dosiomics is still relatively little studied, there are no standardized parameter settings yet. 
Although it has common points with imaging radiomics, some of the parameter settings are 
different and have a great impact on the results, so we provide the setting files in Supple-
mentary material B, which also provides a reference for future investigators.

This present study has several limitations. First, although the sample size included in our 
study is relatively large for radiomics/dosiomics RP prediction study, the prospective val-
idation sample size is too small. Our institution’s prospective study is still ongoing and 
continues to expand the sample size. For the scope of this work, we did not yet optimize 
the plan based on the results of the omics model. We acknowledge that the prospective data 
set used in this study was derived from an observational prospective study and no interven-
tions were implemented in those patients based on our abovementioned predictive models. 
By prospective inclusion, we were strictly only able to standardize the follow-up strategy, 
specifically, patients received regular follow-up examinations and RP grade was jointly 
diagnosed by the study investigators, which ensured the highest achievable accuracy and 
consistency of the endpoints, while giving more attention towards patients with likelihood 
of developing RP. At the present time, it is not yet clear which aspect of the treatment plan 
to change in order to intervene correctly in the planning dosimetry process, so this requires 
further work. A prospectively-enrolled clinical study would be important in the clinical im-
plementation process, this is planned for future work, but is not the principal purpose of this 
paper. Second, the current gold standard for predictive model validation is still multi-insti-
tutional real-world external validation. Third, we built a binary prediction model because 
the sample size is limited and as the dataset expands, models that can predict different 
grades are needed. Fourth, pneumonitis associated with immune checkpoint inhibitor (ICI) 
therapy is an important adverse event. However, the relationship between ICI and RP or the 
relationship between ICI-associated pneumonitis and radiotherapy-associated pneumonitis 
remains unclear. Therefore, we excluded patients treated with ICI. Fifth, most current stud-
ies comparing machine learning and deep learning conclude that deep learning has stronger 
predictive power. This study is a pilot study. Therefore, deep learning which is currently 
a “black box” is not applied, and machine learning with observable processing is chosen. 
Finally, individualized treatment should incorporate more multidimensional omics informa-
tion, including genomics and imaging multimodality data. To address several issues above, 
our institution is conducting a multi-institutional study.
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Conclusions

This study was a TRIPOD type 3 prediction model development study, validated using 
bootstrap samples and a prospective validation set. The radiomics, dosiomics signature, and 
clinical parameters associated with RP were selected. By comparing the performance of 
the models built by combining different types of parameters, the best prediction model was 
found with the best performance of the three types of parameters combined. Furthermore, a 
comprehensive nomogram was built to assist in clinical decision making and individualized 
treatment. In the future, a multi-institutional study is needed.
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Supplementary Materials

Supplementary material A

Inclusion and exclusion criteria for retrospective and prospective data

The first dataset was collected retrospectively as a training set and validation set. A total of 
314 patients treated between January 2013 and December 2018 with definitive RT at Ano-
nymized for Review hospital were considered for the retrospective dataset. The inclusion 
criteria were as follows: (1) Patients identified with histologically confirmed NSCLC or 
SCLC. (2) Diagnosed with Stage I-III NSCLC and limited-stage SCLC (American Joint 
Committee on Cancer, 8th edition, 2017) before RT, and patients underwent radical RT. (3) 
No thoracic RT or thoracic surgery prior to RT. (4) CT examinations were performed at 1, 
3, and 6 months (± 15 days) after treatment at Anonymized for Review Hospital. Patients 
were excluded, if treatment break of more than 5 days during RT, if patients received sur-
gical treatment within 6 months after radiotherapy, if patients received adjuvant/concurrent 
immunotherapy, if there was also a second primary tumor, and if the patients had a lung in-
fection within 6 months after radiotherapy, so it was difficult to identify whether it was RP.

The second dataset was collected prospectively at the same institution as a test set. A total 
of 56 patients were enrolled in the study from October 2018 to March 2019. Finally, 35 pa-
tients were included in the analysis. 21 patients were excluded because did not meet the eli-
gible criteria, fourteen of which did not follow up CT as planned, six of which did not com-
plete radiotherapy, and one patient died two months after radiation therapy. The inclusion 
and exclusion criteria were the same as the retrospective dataset and these patients were 
followed-up every month after had received radiotherapy. The follow-up items included 
blood routine examination, C-reactive protein, tumor markers associated with lung cancer, 
chest X-rays, and patients received CT examination at 1, 3, and 6 months (± 7 days) after 
radiotherapy.

Patient Characteristics for prospective data

Supplementary Table 1. Patient Characteristics for prospective data

Characteristics Pros pts

n (%)

Without RP2

Mean ± SD

With RP2

Mean ± SD

P*

Age median 62 (34-75) 61.5 (34-75) 62 (59-68) 0.363
Gender 1.000

Male 23 (65.7%) 17 (73.9%) 6 (26.1%)

Female 12 (34.3%) 9 (75.0%) 3 (25.0%)

Smoking 1.000

Yes 26 (74.3%) 19 (73.1%) 7 (26.9%)

No 9 (25.7%) 7 (77.8%) 2 (22.2%)

KPS 1.000

≤80 13 (37.1%) 10 (76.9%) 3 (23.1%)

>80 22 (62.9%) 16 (72.7%) 6 (27.3%)
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Diabetes 1.000

  Yes 2 (5.7%) 2 (100.0%) 0 (0%)

No 33 (94.3%) 24 (72.7%) 9 (27.3%)

ILD 0.192

  Yes 9 (25.7%) 5 (55.6%) 4 (44.4%)

  No 26 (74.3%) 21 (80.8%) 5 (19.2%)

Pathology 0.776

  LUSC 8 (22.9%) 5 (62.5%) 3 (37.5%)

LUAD 10 (28.6%) 8 (80.0%) 2 (20.0%)

SCLC 17 (48.5%) 13 (76.5%) 4 (23.5%)

Induc chemo 0.553

Yes 31 (88.6%) 22 (71.0%) 9 (29.0%)

No 4 (11.4%) 4 (100.0%) 0 (0%)

CCRT 0.081

Yes 8 (22.9%) 8 (100.0%) 0 (0%)

No 27 (77.1%) 18 (66.7%) 9 (33.3%)

Conso chemo 0.245

Yes 19 (54.3%) 16 (84.2%) 3 (15.8%)

No 16 (45.7%) 10 (62.5%) 6 (37.5%)

PGTV (Gy) 60.200±2.870 60.423±2.862 59.556±2.963 0.436
Smoking index 668.600±550.412 646.154±566.555 733.333±527.376 0.679
Abbreviations: Retro = retrospective; Pts = patients; Pros = prospective; LUSC = lung 
squamous cell carcinoma; LUAD = lung adenocarcinoma; SCLC = small cell lung cancer; 
IMRT = intensity-modulated radiotherapy; VMAT = volumetric modulated arc therapy; 
chemo = chemotherapy; KPS = Karnofsky performance score; Induc chemo = induction 
chemotherapy; CCRT = concurrent chemoradiotherapy; Conso chemo = consolidation 
chemotherapy; PGTV = planning gross tumor volume.

*The differences in characteristics were evaluated by logistic regression for continuous 
variables or Pearson X2 test and exact Fisher test for categorical variables

Supplementary material B

Radiomics and dosiomics features extraction parameter settings file

Radiomics

imageType:

  Original: 

    binWidth: 25
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featureClass:

  shape: # Remove VoxelVolume, correlated to Volume

    - Elongation

    - Flatness

    - LeastAxisLength

    - MajorAxisLength

    - Maximum2DDiameterColumn

    - Maximum2DDiameterRow

    - Maximum2DDiameterSlice

    - Maximum3DDiameter

    - MeshVolume

    - MinorAxisLength

    - Sphericity

    - SurfaceArea

    - SurfaceVolumeRatio

  firstorder: # Remove Total Energy, correlated to Energy  (due to resampling enabled)

    - 10Percentile

    - 90Percentile

    - Energy

    - Entropy

    - InterquartileRange

    - Kurtosis

    - Maximum

    - Mean

    - MeanAbsoluteDeviation

    - Median

    - Minimum

    - Range
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    - RobustMeanAbsoluteDeviation

    - RootMeanSquared

    - Skewness

    - Uniformity

    - Variance

  glcm:  # Disable SumAverage by specifying all other GLCM features available

    - ‘Autocorrelation’

    - ‘JointAverage’

    - ‘ClusterProminence’

    - ‘ClusterShade’

    - ‘ClusterTendency’

    - ‘Contrast’

    - ‘Correlation’

    - ‘DifferenceAverage’

    - ‘DifferenceEntropy’

    - ‘DifferenceVariance’

    - ‘JointEnergy’

    - ‘JointEntropy’

    - ‘Imc1’

    - ‘Imc2’

    - ‘Idm’

    - ‘Idmn’

    - ‘Id’

    - ‘Idn’

    - ‘InverseVariance’

    - ‘MaximumProbability’

    - ‘SumEntropy’

    - ‘SumSquares’
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  glrlm:

  glszm:

  gldm:

  ngtdm:

setting:

  interpolator: ‘sitkBSpline’

  resampledPixelSpacing: [2, 2, 2]

  padDistance: 10  # Extra padding for large sigma valued LoG filtered images

  resegmentRange: [-3, 3]

  resegmentMode: sigma

  voxelArrayShift: 1000

Dosiomics

imageType:

  Original: 

    binWidth: 0.5

featureClass:

  shape: # Remove VoxelVolume, correlated to Volume

    - Elongation

    - Flatness

    - LeastAxisLength

    - MajorAxisLength

    - Maximum2DDiameterColumn

    - Maximum2DDiameterRow

    - Maximum2DDiameterSlice

    - Maximum3DDiameter

    - MeshVolume

    - MinorAxisLength

    - Sphericity
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    - SurfaceArea

    - SurfaceVolumeRatio

  firstorder: # Remove Total Energy, correlated to Energy  (due to resampling enabled)

    - 10Percentile

    - 90Percentile

    - Energy

    - Entropy

    - InterquartileRange

    - Kurtosis

    - Maximum

    - Mean

    - MeanAbsoluteDeviation

    - Median

    - Minimum

    - Range

    - RobustMeanAbsoluteDeviation

    - RootMeanSquared

    - Skewness

    - Uniformity

    - Variance

  glcm:  # Disable SumAverage by specifying all other GLCM features available

    - ‘Autocorrelation’

    - ‘JointAverage’

    - ‘ClusterProminence’

    - ‘ClusterShade’

    - ‘ClusterTendency’

    - ‘Contrast’

    - ‘Correlation’
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    - ‘DifferenceAverage’

    - ‘DifferenceEntropy’

    - ‘DifferenceVariance’

    - ‘JointEnergy’

    - ‘JointEntropy’

    - ‘Imc1’

    - ‘Imc2’

    - ‘Idm’

    - ‘Idmn’

    - ‘Id’

    - ‘Idn’

    - ‘InverseVariance’

    - ‘MaximumProbability’

    - ‘SumEntropy’

    - ‘SumSquares’

  glrlm:

  glszm:

  gldm:

  ngtdm:

setting:

interpolator: ‘sitkBSpline’

  resampledPixelSpacing: [2, 2, 2]

  padDistance: 10  # Extra padding for large sigma valued LoG filtered images

  voxelArrayShift: 0

Supplementary material C

Dose-volume histogram (DVH) metrics selection and model construction

Due to the colinearity of DVH metrics, it does is not suitable to perform the same feature 
selection approaches as radiomics/dosiomics. Instead, the predictive model is built using 
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the already acknowledged metrics V20 and MLD. The DVH-score was defined as the linear 
predictor of the multivariable LR radiomics model.

The validation method was performed in exactly the same way as for the radiomics/dosio-
mics model: (1) For each of the 1000 bootstraps, we fitted the logistic regression model co-
efficients on each bootstrap, and then computed its Area under the curve (AUC) of receiver 
operating characteristic curve (ROC) using the original non-bootstrapped development 
cohort. From these 1000 bootstraps, we computed the average AUC and its 95% confidence 
interval. (2) As external validation, we evaluated the DVH model using the prospective-
ly-registered cohort of 35 subjects. Processing of these 35 subjects followed exactly the 
same procedure as for the model development cohort, and none of these subjects were used 
in any way during model construction.

Since V5 is an important predictor in the IMRT/VMAT era, we also built another DVH 
model by combining V5 and MLD. However, based on this dataset, the predictive power of 
the “V5+MLD” model is worse than that of the “V20+MLD” model, so we used the DVH 
model of V20 and MLD as the comparative model in this study.

Supplementary material D

Feature selection results and graphs

The top twenty features that were screened are displayed in Supplementary Table 1. The 
features are sorted according to the number of frequencies selected and shown in the Sup-
plementary Figure 1. The cut-off points were decided based on the frequency breakpoints 
shown in the graphs. The cut-off points for both radiomics and dosiomics features are 
around 600.

The three most frequently selected signatures are shown in Supplementary Table 2, with 
the highest selected frequencies of 45 and 105 for the radiomics and dosiomics signatures, 
respectively.

Definitions of the selected features are provided in Supplementary Table 3.

Supplementary Table 1a. The top twenty radiomics features that were selected

No. Radiomics features Frequency
1 original_shape_Elongation 1000
2 original_shape_Flatness 922
3 original_shape_MinorAxisLength 871
4 original_shape_MeshVolume 746
5 original_firstorder_90Percentile 700
6 original_glcm_JointEntropy 696
7 original_ngtdm_Complexity 694
8 original_firstorder_Median 684
9 original_shape_Maximum2DDiameterSlice 677
10 original_glszm_LargeAreaEmphasis 670
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11 original_shape_Maximum2DDiameterRow 663
12 original_gldm_DependenceNonUniformityNormalized 603
13 original_gldm_DependenceEntropy 587
14 original_glcm_DifferenceEntropy 563
15 original_ngtdm_Contrast 562
16 original_glszm_SmallAreaLowGrayLevelEmphasis 542
17 original_gldm_SmallDependenceLowGrayLevelEmphasis 537
18 original_shape_LeastAxisLength 525
19 original_shape_SurfaceVolumeRatio 525
20 original_ngtdm_Strength 521

Supplementary Table 1b. The top twenty dosiomics features that were selected

No. dosiomics features Frequency
1 original_shape_Elongation 1000
2 original_glszm_LargeAreaEmphasis 864
3 original_shape_Flatness 736
4 original_ngtdm_Strength 715
5 original_shape_SurfaceArea 704
6 original_shape_MeshVolume 693
7 original_shape_Maximum2DDiameterRow 643
8 original_glszm_GrayLevelVariance 642
9 original_shape_MinorAxisLength 641
10 original_ngtdm_Coarseness 622
11 original_ngtdm_Contrast 605
12 original_glszm_SmallAreaLowGrayLevelEmphasis 594
13 original_gldm_LargeDependenceEmphasis 555
14 original_shape_LeastAxisLength 554
15 original_glcm_DifferenceEntropy 545
16 original_glrlm_ShortRunLowGrayLevelEmphasis 544
17 original_glszm_ZoneEntropy 544
18 original_glrlm_RunLengthNonUniformity 537
19 original_glszm_SmallAreaHighGrayLevelEmphasis 526
20 original_gldm_DependenceEntropy 523

Supplementary Table 2a. The top three frequently selected radiomics signatures

No Signature Freq
1 original_glcm_JointEntropy + original_ngtdm_Complexity 

+ original_shape_Elongation + original_shape_Flatness 
+ original_shape_Maximum2DDiameterSlice + original_
shape_MeshVolume + original_shape_MinorAxisLength

45
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2 original_firstorder_90Percentile + original_firstorder_
Median + original_glcm_JointEntropy + original_ngtdm_
Complexity + original_shape_Elongation + original_
shape_Flatness + original_shape_MeshVolume + original_
shape_MinorAxisLength

40

3 original_firstorder_90Percentile + original_firstorder_
Median + original_glszm_LargeAreaEmphasis + origi-
nal_ngtdm_Complexity + original_shape_Elongation + 
original_shape_Flatness + original_shape_Maximum2D-
DiameterRow + original_shape_MeshVolume + original_
shape_MinorAxisLength

36

Supplementary Table 2b. The top three frequently selected dosiomics signatures

No Signature Freq
1 original_glszm_GrayLevelVariance + original_glszm_

LargeAreaEmphasis + original_ngtdm_Contrast + orig-
inal_ngtdm_Strength + original_shape_MeshVolume + 
original_shape_SurfaceArea

105

2 original_glszm_GrayLevelVariance + original_glszm_
LargeAreaEmphasis + original_ngtdm_Contrast + origi-
nal_ngtdm_Strength + original_shape_MeshVolume

70

3 original_glszm_GrayLevelVariance + original_glszm_
LargeAreaEmphasis + original_ngtdm_Contrast + orig-
inal_ngtdm_Strength + original_shape_MeshVolume + 
original_shape_MinorAxisLength + original_shape_Sur-
faceArea

43

(a)
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(b)

Supplementary Figure 1. (a) The radiomics features are sorted according to the number of 
frequencies selected. (b) The dosiomics features are sorted according to the number of fre-
quencies selected.

Supplementary Table 3. Definitions of the selected features.

Feature Definition
original_glcm_JointEntropy Joint entropy is a measure of the randomness/variability in 

neighborhood intensity values.
original_ngtdm_Complexity An image is considered complex when there are many prim-

itive components in the image, i.e. the image is non-uniform 
and there are many rapid changes in gray level intensity.

original_shape_Elongation Elongation shows the relationship between the two largest 
principal components in the ROI shape. For computational 
reasons, this feature is defined as the inverse of true elonga-
tion.

original_shape_Flatness Flatness shows the relationship between the largest and small-
est principal components in the ROI shape. For computational 
reasons, this feature is defined as the inverse of true flatness.

o r i g i n a l _ s h a p e _ M a x i -

mum2DDiameterSlice

Maximum 2D diameter (Slice) is defined as the largest pair-
wise Euclidean distance between tumor surface mesh vertices 
in the row-column (generally the axial) plane.

original_shape_MeshVol-

ume

The volume of the ROI V is calculated from the triangle mesh 
of the ROI.

original_shape_MinorAxis-

Length

This feature yield the second-largest axis length of the 
ROI-enclosing ellipsoid and is calculated using the largest 
principal component λminor.
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original_glszm_GrayLevel-

Variance

GLV measures the variance in gray level intensities for the 
zones.

original_glszm_LargeAre-

aEmphasis

LAE is a measure of the distribution of large area size zones, 
with a greater value indicative of more larger size zones and 
more coarse textures.

original_ngtdm_Contrast Contrast is a measure of the spatial intensity change, but 
is also dependent on the overall gray level dynamic range. 
Contrast is high when both the dynamic range and the spatial 
change rate are high, i.e. an image with a large range of gray 
levels, with large changes between voxels and their neigh-
bourhood.

original_ngtdm_Strength Strength is a measure of the primitives in an image. Its value 
is high when the primitives are easily defined and visible, i.e. 
an image with slow change in intensity but more large coarse 
differences in gray level intensities.

original_shape_SurfaceArea To calculate the surface area, first the surface area of each 
triangle in the mesh is calculated (1). The total surface area is 
then obtained by taking the sum of all calculated sub-areas (2).

Radiomics (R)-score and Dosiomics (D)-score

We added a constant offset in order to return strictly positive scores.

The R-score was calculated as follows: -1.383 + 1.067*original_glcm_JointEntropy - 
0.370*original_ngtdm_Complexity + 1.605*original_shape_Elongation - 0.635*original_
shape_Flatness + 0.398*original_shape_Maximum2DDiameterSlice + 1.557* original_
shape_MeshVolume - 2.148*original_shape_MinorAxisLength + 4.

The D-score: -1.522 - 0.616*original_glszm_GrayLevelVariance - 0.868*original_glszm_
LargeAreaEmphasis + 0.878*original_ngtdm_Contrast + 0.922*original_ngtdm_Strength + 
1.457*original_shape_MeshVolume - 0.625*original_shape_SurfaceArea + 9.

Supplementary material E

Instructions for R-score and D-score calculator

Selecting either Radiomics risk score (R-score) or Dosiomics risk score (D-score), then en-
ter the feature values into the corresponding input boxes and click the “Calculate” button to 
get the scores.

*This calculator can only be used for research purposes, not for commercial use.
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Supplementary Figure 2. The operator interface of the calculator.

Supplementary material F

Correlations between different parameters

The correlation between the different parameters was calculated (Spearman correlation, R 
version 4.0.5). The results showed no significant correlation (>0.8) between radiomics risk 
score (R-score) and clinical parameters, dosiomics risk score (D-score) and dosimetrics.
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(a)

(b)

Supplementary Figure 3. (a) Correlations between R-score and clinical parameters. (b) 
Correlation between D-score and dosimetrics. Abbreviations: CCRT = concurrent chemo-
radiotherapy; Conso chemo = consolidation chemotherapy; R-score = radiomics risk score; 
D-score = dosiomics risk score; MLD = mean lung dose; MHD = mean heart dose.

Distribution of R-score and D-score
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(a)

(b)
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Supplementary Figure 4. (a) Distribution of radiomics risk score (R-score) in patients with 
and without interstitial lung disease (ILD). (b) Distribution of dosiomics risk score (D-score) 
among patients with mean lung dose (MLD) greater than 10Gy and less than or equal to 
10Gy.

Feature maps

(a)

(b)

Supplementary Figure 5. (a) Radiomics feature map of feature “original_glcm_JointEn-
tropy” for patient with low radiomics risk score (R-score) and patient with high R-score. (b) 
Dosiomics feature map of feature “original_glszm_GrayLevelVariance”, “original_glszm_
LargeAreaEmphasis” and “original_ngtdm_Contrast” for patient with low dosiomics risk 
score (D-score) and patient with high D-score.
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Supplementary material G

Discrimination ability of different combination of Radiomics score, Dosiomics score and 
clinical parameters

Model
Train

(95%CI)

Validation by bootstrapping

(95%CI)

Testing

(95%CI)

R-score + D-score
0.735

(0.673-0.796)

0.729

(0.720-0.736)

0.739

(0.553-0.926)

R-score + C
0.717

(0.652-0.782)

0.701

(0.683-0.719)

0.771

(0.585-0.962)

D-score + C
0.770

(0.710-0.830)

0.755

(0.744-0.765)

0.756

(0.559-0.954)
Abbreviations: R = radiomics risk score; D = dosiomics risk score; C = clinical parameters.

Discrimination ability of different models without patients with interstitial lung disease 
(ILD)

Model
Testing

(95%CI)

Testing without patient with ILD

(95%CI)

R-score
0.671

(0.558-0.899)

0.714

(0.348-1.000)

D-score
0.684

(0.573-0.883)

0.800

(0.613-0.987)

DVH-score
0.661

(0.551-0.856)

0.752

(0.505-1.000)

Clinical parameters
0.709

(0.509-0.91)

0.629

(0.392-0.865)

R-score + D-score + C
0.855

(0.719-0.990)

0.914

(0.785-1.000)
Abbreviations: ILD = interstitial lung disease.

Precision Recall (RP) curve of the model combing R-score, D-score and Clinical parame-
ters on the test set
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Supplementary Figure 6. Precision Recall (RP)-curve

Supplementary material H

Calibration curve of prospective validation set with a bootstrap resampling meth-

od

Supplementary Figure 7. Calibration curve of prospective validation set with a bootstrap 
resampling method. Dashed line indicated the ideal model in which predicted and actual 
probabilities were perfectly identical; Red line indicated actual performance with apparent 
accuracy; Green line indicated bootstrap corrected estimate of the calibration curve.
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Chapter 7: Computed tomography and radia-
tion dose images-based deep-learning model 
for predicting radiation pneumonitis in lung 
cancer patients after radiation therapy: A pilot 
study with external validation

Adapted from: Zhen Zhang*; Zhixiang Wang*; Tianchen Luo; Meng Yan; 
Andre, Dekker; Dirk De Ruysscher; Alberto Traverso; Leonard Wee; Lujun 
Zhao. Computed tomography and radiation dose images-based deep-learn-
ing model for predicting radiation pneumonitis in lung cancer patients after 
radiation therapy: A pilot study with external validation. Radiotherapy and 
Oncology, https://doi.org/10.1016/j.radonc.2023.109581. 

* indicates equal contributions
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Abstract 

Purpose: To develop a deep learning model that combines CT and radiation dose (RD) 
images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who 
received radical (chemo)radiotherapy.

Methods: CT, RD images and clinical parameters were obtained from 314 retrospective-
ly-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who 
were diagnosed with lung cancer and received radical radiotherapy in the dose range of 
50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) 
patients from the clinical trial RTOG 0617 were used for external validation. A ResNet 
architecture was used to develop a prediction model that combines CT and RD features. 
Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 
3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual 
interpretation was implemented using a gradient-weighted class activation map (grad-CAM) 
to observe the area of model attention during the prediction process. To improve the usabili-
ty, ready-to-use online software was developed.

Results: The discriminative ability of a baseline trained model had an AUC of 0.83 for test-
set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the 
model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 
3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of 
interest to the model that contribute to the prediction of RP.

Conclusion: A novel deep learning approach combining CT and RD images can effectively 
and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new 
cohorts.

Keywords: Radiotherapy; Radiation pneumonitis; Deep learning; Artificial intelligence; 
actuarial outcome models



193

Introduction

Radiation pneumonitis (RP) is a relatively common radiotherapy(RT)-related side effect 
[1, 2]; estimates of RP vary from 5%-58% [3] but it is challenging to forecast accurately 
on the individual patient level. The risk of RP constrains the tumoricidal dose that can be 
prescribed and, in serious instances, may directly threaten the life of the patient. Prediction 
models of a patient’s RP risk are hence an active topic in current research work [4, 5].

Dose-volume histogram (DVH) metrics, such as mean lung dose [6], V5 and V20 [7], are 
presently in broad clinical use as surrogates for RP risk. Normal tissue control probability 
(NTCP) can be computed from a DVH of total lungs [8]. These aforementioned DVH indi-
cators do not explicitly account for the spatially heterogeneous distribution of dose in lungs, 
nor do they account for the functional state of lung parenchymal tissue prior to commence-
ment of RT. Hand-crafted features that describe spatial dose non-uniformity (i.e. “dosiom-
ics”) have been recently investigated [9], as were characterization of non-tumour lung tissue 
via image-based analysis (i.e. “radiomics” and texture) [10-12]. To date, few RP studies 
have been performed that combine both dosiomics from a clinical treatment plan and radio-
mics from its corresponding planning CT [13, 14]. These studies have treated the two types 
of data as disjoint feature domains.

A promising direction for predicting RP is a deeper exploration of inter-related effects of 
dose and morphology. First, it is supposed that information about the underlying radio-sen-
sitivity of lung tissue might be encoded into CT-based imaging features. Second, that vari-
ations in applying RT planning national guidelines leads to divergent spatial dose distribu-
tions that are not fully captured in traditional indices such as V20. For example, in China, 
the constraint V20 not exceed 25% - 30% [15, 16], however National Comprehensive Can-
cer Network (NCCN) guidelines recommend 35% - 40%. Within a set of DVH constraints, 
there exists an unlimited number of feasible RT plans that would meet those constraints but 
result in non-comparable spatial dose distributions in normal lung. Third, it is not entirely 
clear how to explicitly define hand-crafted measures that combine both CT and dose infor-
mation into a common feature domain. Last, it remains an open debate about the relative 
merits of hand-crafted features versus deep-learning features in regard to a given clinical 
question.

The objective of this study was to develop and evaluate a deep-learning (DL) model to pre-
dict RP on the basis of CT intensities and Radiotherapy Dose (RD) distributions, using a 
joint feature representation for CT attenuation (radiomics) and dose distribution (dosiomics), 
rather than making an ensemble of separated models. A design criterion was that any such 
DL-based predictions need to be “adjustable” in a relatively simple way to adapt to alterna-
tive prescribed dose and RT planning protocols.

This work describes the implementation a well-known 3D ResNet DL architecture as a gen-
erator of “deep features” in the joint CT-RD representation. A fully-connected (FC) network 
is appended to the end of the ResNet to estimate class probabilities of RP based on deep 
features. We assumed a linearly-weighted mixture of CT and RD, with tunable weights, as 
the input. In the event of different prescribed doses or dose planning procedures at different 
institutions, we assumed that a baseline model has to be subsequently adjusted only for a 
different mixing ratio of CT and RD, as well as to retrain the FC component to use the new 
deep features resulting from the alternative mixing. However, the ResNet part will be kept 
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frozen after training an initial baseline model.

Methods

1. Study design

The overall flow in this study has been illustrated in Figure 1. This study utilizes private 
data from a single institution to train a baseline model. Subsequent model adjustments and 
model performance evaluations used a prospectively collected cohort from the same single 
institution, plus the RTOG-0617 randomized trial dataset [17-20] split into two sets accord-
ing to the prescribed dose (60Gy in control arm and 72Gy in the experiment arm). Grad-
CAM heatmaps were overlaid on the input CT and RD to support clinical interpretation. 
Model discrimination was reported as receiver-operator “area under the curve” (AUC) and 
model calibration was assessed as goodness-of-fit for binary classification. The details of 
each part of the study are as follows.

Figure 1. A, The pipeline of this study: lung segmentation, model construction, model eval-
uation and visualization. B, Lung mask contouring using deep learning based automatic tool 
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and reviewed and modified by two physicians. And model architecture. C, First, test-set-1, 
2, and 3 were used to validate the base model built from training set. Second, forty patients 
from test-sets-2 and 3 were used to adjust the weight and fully connected layers, respective-
ly, and validated by the test-sets-2 and 3 (without forty patients). This step was repeated ten 
times. D, Visualization of the model was achieved by the guided gradient weighted class 
activation mapping.

2. Study population

All patients included this study had confirmed diagnosis of lung cancer and were treated 
with radically-intended radiotherapy (IMRT or VMAT), either with or without concurrent 
chemotherapy. The primary endpoint was symptomatic RP grade 2 or higher according 
to Common Terminology Criteria for Adverse Events (CTCAE) v4.0. In the private insti-
tutional datasets, the presence (or absence) of RP was assessed by experienced radiation 
oncologists based on follow-up CT, blood test and symptoms. In the RTOG dataset, the sta-
tus of RP was documented in individual case reports. In this work, we considered only RP 
events which occurred anytime from the last fraction of radiotherapy up to 6 months after 
the last fraction of radiotherapy, as specifically RT-treatment induced RP.

The Training set consisted of 314 routine care patients retrospectively extracted from ar-
chives at one medical university cancer hospital. These were primarily intended for treat-
ment with 60 Gy, but a range of delivered doses between 50 Gy to 70 Gy was prescribed 
at the treating physicians discretion. Test-set-1 comprised of 35 prospectively registered 
patients from the same institution, also predominantly 60 Gy total intended dose, with vari-
ations of delivered dose at treating physician’s discretion. Training set and Test-set-1 were 
obtained with approval from an internal review board (ref. IRBbc2021135). The discretion-
ary deviations in delivered dose were based on each patient’s overall physical condition and 
best achievable normal tissue constraints. Specific details of Training set and Test-set-1 are 
provided in Supplementary Materials 1A.

Access for secondary re-use of data from the prospectively randomized controlled trial 
RTOG-0617 was obtained through the trial sponsor. From the control arm (60 Gy pre-
scribed dose), 194 subjects were defined as Test-set-2, and from the intervention arm (74 
Gy prescribed dose), 158 subjects were allocated as Test-set-3. Specific details for filtering 
the RTOG-0617 subjects are provided in Supplementary Materials 1B.

3. Data preparation

Planning CT and RD were originally extracted in DICOM format for all subjects. The vox-
el-wise values in the RD images were scaled to represent absolute physical dose in units of 
Gy. We used a deep-learning automatic lung contouring tool based on previous work [22] 
to automatically segment whole lungs. Experienced radiation oncologists (ZZ and MY) 
inspected and (where needed) manually corrected the auto-generated lung masks to ensure 
accuracy and segmentation consistency. Data preparation and preprocessing steps are de-
scribed in Supplementary Materials 2A.

4. Development of deep learning RP models

A 3D ResNet architecture was implemented as the main backbone of the RP model (see 
technical schematic in Supplementary Materials Figure S1). In brief, the pre-processed CT 
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and RD arrays of the same dimensions were passed to the ResNet via linear mixing (W 
layer) immediately followed by a 7x7 convolution layer. In the W layer, we defined the 
composite input source as , where . A and B were thus the mixing ratio of CT and RD, such 
that A was always fixed at unity. Values of A and B were tuned as part of the model training 
process and were determined by back-propagation of the error.

The ResNet was used as an image-based “deep feature” generator; its weights were deter-
mined by training an initial baseline model and thereafter the entire ResNet weights were 
frozen. The RP classification model consisted of average pooling and a fully-connected (FC) 
layer at the end, which uses the deep feature maps generated by the ResNet in order to com-
pute a class probability of RP at a sigmoid function layer. A purely binary classification (RP 
or non-RP) was computed by applying a threshold of 0.5. The core of the ResNet comprised 
eight repeating residual blocks containing convolution (conv), batch normalization (BN) 
and Rectified Linear Unit (ReLU) activation. We used an Adam optimizer with a learning 
rate of 0.0001 and Binary Cross-Entropy as the loss function. The training strategy, loss 
function definition and model tuning hyperparameters are shown in Supplementary Materi-
als 2D.

After training using exclusively the Training set, the baseline model was evaluated in each 
of the three hitherto unseen cohorts i.e., Test-set-1 (medical university cancer hospital, 
60Gy prescribed), Test-set-2 (RTOG-0617 control arm, 60Gy prescribed) and Test-set-3 
(RTOG-0617 experiment arm, 74Gy prescribed).

To examine the feasibility of “adjusting” the model for the same nominal prescribed dose 
but different planning protocol, we attempted two related experiments. First, we randomly 
chose 40 subjects from Test-set-2 without replacement and then proceeded to re-train only 
the CT-RD mixing ratio (i.e., the W layer) and the FC classifier – the ResNet was kept fro-
zen as abovementioned.

As cross-validation, we evaluated the adjusted model using the remainder of Test-set-2 
subjects (hereafter, Test-set-2* = the initial 194 subjects minus the 40 selected for adjust-
ment = 154). To check for random vagaries of selecting 40 patients, we repeated the entire 
experiment 10 times, each time choosing different subsets of 40 patients. Secondly, to see if 
there was added value of using more patients, we adjusted the baseline model using all 194 
subjects prescribed to 60Gy in the RTOG control arm. However, it is no longer possible to 
check for over-optimism using repeated cross-validation, so 1000 times bootstrapping with 
replacement from Test-set-2 (hereafter Test-set-2#) was used to estimate a range of valida-
tion results.

To examine the feasibility of “adjusting” the model for simultaneously different prescribed 
dose and different planning protocol, we re-did the two related experiments above only uti-
lizing Test-set-3.

To help visualize imaging and dose features that influence RP/non-RP prediction, and thus 
assist with clinical interpretation of the model attention area, activation heatmaps were gen-
erated by back-projecting Grad-CAM values as overlay on the planning CT and dose imag-
es (see detail in Supplementary Materials 2C).

5. Comparator RP models as alternatives to deep learning of mixed CT and RD models
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A model employing only CT images and a model employing only RD images were con-
structed with the same process as the combined model described above for comparison.

We compared the aforementioned models against simple logistic regression based either 
on (i) dose-volume histograms (DVH) only, or (ii) clinical parameters only, or (iii) a com-
bination of DVH and clinical parameters. Due to the high degree of correlation that is 
well-known in DVH metrics, we only considered V20 and mean lung dose (MLD) in the 
DVH-based model. For the clinical model, the patient age and presence of interstitial lung 
abnormalities were selected according to Supplementary Material Table S1. Further detailed 
information on the construction of the DVH model and clinical parameters model are pro-
vided in Supplementary Materials 5B.

6. Statistical analysis

The discrimination performance of the model was quantified using area under the receiv-
er-operator curve (AUC), accuracy, sensitivity, and specificity of RP prediction. For all 
performance metrics reported, we estimated 95% confidence intervals by 1000 times boot-
strapping. Goodness-of-fit was tested by calculating the model calibration error [23, 24].

Patients’ baseline characteristics for continuous variables are presented as mean ± standard 
deviation. For univariate analysis of clinical parameters, Pearson chi-squared tests and exact 
Fisher tests were used for categorical variables and logistic regression for continuous vari-
ables. For significance of clinical factors, a two-sided hypothesis test at the a = 0.05 confi-
dence level was assumed. Clinical and DVH data were analyzed in the Statistical Package 
for Social Science program (SPSS for Windows, version 27.0; SPSS Inc, Chicago, IL). 
All deep learning models were constructed and test set performance assessed using Python 
(version 3.8.5) and R software (version 4.0.5), respectively.

7. Code and data availability

Code packages and libraries for constructing our deep learning models are given in 
Supplementary Materials 2. The source code is made open access at https://gitlab.com/
w654053334/rp_prediction.

The RTOG trial dataset may be obtained by contacting the sponsors for secondary re-use 
of data. Training set and Test-set-1 are private institutional collections, which may be made 
available to other researchers upon reasonable request and subject to data sharing agree-
ments – please contact the corresponding author. To assist readers with using our RP model, 
we have prepared an open access online version with user interface (see Supplementary 
Materials 3).

Results

The characteristics of patients are shown in Table 1. Statistically significant heterogeneity 
between groups was observed across the majority of clinical factors, except for age and 
smoking. In Table 2, the clinical factors were grouped by RP versus non-RP. In univariate 
analysis, age, planning tumor volume (PTV), volume of the lung receiving 5 Gy (V5_lung) 
and 20 Gy (V20_lung), and mean lung dose (MLD) were each statistically significantly 
higher in patients with RP versus non-RP. Additional detailed clinical characteristics in the 
four datasets are given in Supplementary materials 1C (Table S1-3).
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Table 1. Patient characteristics in Training set, Test-set-1, 2, and 3.

Characteristics Training set

(n=314)

Mean ± SD

Test set 1

(n=35)

Mean ± SD

Test set 2

(n=194)

Mean ± SD

Test set 3

(n=158)

Mean ± SD

P-value

Age 61 (30-85) 62 (34-75) 64 (37-82) 63 (41-82) 0.243
Gender <0.001

Male 238 (75.8%) 23 (65.7%) 115 (59.3%) 89 (56.3%)

Female 76 (24.2%) 12 (34.3%) 79 (40.7%) 69 (43.7%)

Smoking <0.001

Yes 71 (22.6%) 9 (25.7%) 14 (7.2%) 11 (7.0%)

No 241 (76.8%) 26 (74.3%) 167 (86.1%) 144 (91.1%)

Unknow 2 (0.6%) 0 13 (6.7%) 3 (1.9%)

Histology <0.001

  LUSC 84 (26.8%) 8 (22.9%) 75 (38.7%) 70 (44.3%)

LUAD 75 (23.9%) 10 (28.6%) 86 (44.3%) 63 (39.9%)

LCU —— —— 4 (2.1%) 1 (0.6%)

NOS —— —— 29 (14.9%) 24 (15.2%)

SCLC 155 (49.4%) 17 (48.6%) —— ——

Rt_technique <0.001

3D-CRT —— —— 115 (59.3%) 81 (51.3%)

IMRT 87 (27.7%) 5 (14.3%) 79 (40.7%) 77 (48.7%)

VMAT 227 (72.3%) 30 (85.7%) —— ——

Conso chemo <0.001

Yes 179 (57.0%) 19 (54.3%) 173 (89.2%) 136 (86.1%)

No 135 (43.0%) 16 (45.7%) 21 (10.8%) 22 (13.9%)

PTV (cc) 446.82±188.51 417.72±179.70 507.93±273.31 482.66±261.40 0.014
V5_lung (%) 48.80±10.15 48.82±10.83 57.68±15.29 57.11±14.65 <0.001
V20_lung (%) 24.43±5.24 24.06±4.90 29.06±7.47 31.22±7.96 <0.001
MLD (Gy) 13.37±2.62 13.06±2.61 16.66±4.15 19.16±4.55 <0.001
Abbreviations: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung 
adenocarcinoma; LCU= Large cell undifferentiated; NOS= Non-small cell lung cancer; 
SCLC = small cell lung cancer; Rt_technique = radiotherapy technique used to treat pa-
tient; 3D-CRT=3dimensional comformal radiation therapy; IMRT = intensity-modulated 
radiotherapy; VMAT = volumetric modulated arc therapy; chemo = chemotherapy; Conso 
chemo = consolidation chemotherapy; PTV = planning tumor volume; V5_lung= Lung V5 
(%);V20_lung= Lung V20 (%); MLD = Mean lung dose (Gy).
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Table 2. Patient characteristics group according to outcome of RP or without RP.

Characteristics Without RP

(n=565)

Mean ± SD

With RP

(n=136)

Mean ± SD

P-value

Age median, range (years) 62 (30-86) 65 (38-80) 0.004
Gender 0.170

Male 368 (65.1%) 97 (71.3%)
Female 197 (34.9%) 39 (28.7%)

Smoking 0.229
Yes 464 (82.1%) 114 (83.8%)
No 84 (14.9%) 21 (15.4%)
Unknow 17 (3.0%) 1 (0.7%)

Histology 0.926
  LUSC 189 (33.5%) 48 (35.3%)

LUAD 191 (33.8%) 43 (31.6%)
LCU 5 (0.9%) 0
NOS 43 (7.6%) 10 (7.4%)
SCLC 137 (24.2%) 35 (25.7%)

Histology 0.778
LUSC 189 (33.5%) 48 (35.3%)
NSC-NSCLC 239 (42.3%) 53 (39.0%)
SCLC 137 (24.2%) 35 (25.7%)

Rt_technique 0.620
3D-CRT 162 (28.7%) 34 (25.0%)
IMRT 200 (35.4%) 48 (35.3%)
VMAT 203 (35.9%) 54 (39.7%)

Conso chemo 0.046
Yes 418 (74.0%) 89 (65.4%)
No 147 (26.0%) 47 (34.6%)

PTV (cc) 459.54±226.35 515.30±253.67 0.013
V5_lung (%) 52.50±13.66 55.72±12.70 0.013
V20_lung (%) 26.91±7.22 28.52±6.92 0.020
MLD (Gy) 15.42±4.37 16.21±3.99 0.056
Abbreviations: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung 
adenocarcinoma; LCU= Large cell undifferentiated; NOS= Non-small cell lung cancer; 
SCLC = small cell lung cancer; Rt_technique = radiotherapy technique used to treat pa-
tient; 3D-CRT=3dimensional comformal radiation therapy; IMRT = intensity-modulated 
radiotherapy; VMAT = volumetric modulated arc therapy; chemo = chemotherapy; Conso 
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chemo = consolidation chemotherapy; PTV = planning tumor volume; V5_lung= Lung V5 
(%);V20_lung= Lung V20 (%); MLD = Mean lung dose (Gy).

The predictive performance of models for RP is summarized in Table 3. The baseline model 
performed well on Test-set-1 (AUC 0.83) compared to Test-set-2 (AUC 0.55) and Test-set-3 
(AUC 0.63). However, after adjustment, model discrimination was improved in Test-set-2* 
(AUC 0.65) and Test-set-3* (AUC 0.70), respectively. The discrimination metrics of using 
only a subset of forty patients to adjust model were close to using the entire dataset, with 
small differences in AUC of 0.03 and 0.01, respectively. The accuracy, sensitivity and spec-
ificity largely followed the same pattern of findings as for AUC.

Table 3. Performance of baseline model and adjustments (using 60Gy and 74Gy arms of 
RTOG-0617 trial).

Model Adjustment Evaluation

AUC

(95%CI)

Accuracy

(95%CI)

Sensitivity

(95%CI)

Specificity

(95%CI)

Baseline model No adjustment

Test-set-1 (35)

Test-set-2 (194)

Test-set-3 (158)

0.83

(0.82-0.91)

0.55

(0.47-0.69)

0.63

(0.53-0.72)

0.82

(0.75-0.81)

0.70

(0.57-0.82)

0.66

(0.60-0.73)

0.70

(0.67-0.77)

0.41

(0.39-0.52)

0.60

(0.46-0.74)

0.88

(0.83-0.89)

0.69

(0.61-0.84)

0.68

(0.61-0.75)

Adjusted for 
RTOG 60 Gy 

arm

40 randomly 
selected from 

Test-set-2

Test-set-2* 
(154)

0.65

(0.54-0.77)

0.76

(0.63-0.91)

0.58

(0.48-0.83)

0.70

(0.66-0.98)

Adjusted for 
RTOG 60 Gy 

arm

All subjects 
from 

Test-set-2

Test-set-2# 
(194 bootstrap 

samples)

0.68

(0.58-0.83)

0.78

(0.80-0.89)

0.77

(0.62-0.97)

0.65

(0.60-0.74)

Adjusted for 
RTOG 74 Gy 

arm

40 randomly 
selected from 

Test-set-3

Test-set-3* 
(118)

0.70

(0.63-0.76)

0.71

(0.63-0.83)

0.62

(0.56-0.86)

0.73

(0.67-0.95)

Adjusted for 
RTOG 74 Gy 

arm

All subjects 
from 

Test-set-3

Test-set-3# 
(158 bootstrap 

samples)

0.71

(0.62-0.81)

0.78

(0.73-0.84)

0.68

(0.54-0.83)

0.77

(0.71-0.82)

Abbreviations: AUC = area under receiver operating characteristic curve; 95% CI = 95% 
confidence interval; * the asterisk indicates that the coefficients of CT and RD for this 
model are adjusted with 40 patients for each set; # The pound symbol indicates that the co-
efficients of CT and RD for this model are adjusted using the entire data set. The number in 
parentheses are the sample size for the evaluations.
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The mixing ratio, i.e. A and B weights, for CT and RD from each model were summarized 
in Supplementary Materials 4 Table S4. Across the baseline model and its subsequent ad-
justments, RD was overall more important than CT from an RP prediction perspective. 
Among nominally 60Gy subjects, the post-training weight of RD relative to CT was rea-
sonably stable around 1.5 (range 1.42-1.67). Among nominally 74Gy subjects, the relative 
weight of RD to CT was suppressed to about 1.2 (range 1.20-1.25).

For comparison with the baseline model that included CT and RD, an alternative baseline 
model was constructed by either CT or RD alone and then tested on Test-set-1. The original 
baseline model (with both CT and RD, AUC 0.83) performed better than either CT-only or 
RD-only alternatives (AUC 0.63 for CT and 0.69 for RD, additionally accuracy, sensitivity 
and specificity were reported in Supplementary Materials 5A Table S5).

The discrimination of the DVH-based logistic model was poorer than that of the RD-on-
ly deep learning model (AUC 0.66 vs. 0.69) when evaluated in Test-set-1, and both were 
markedly poorer than the baseline model results. Discrimination of the logistic regression 
model based on clinical parameters (AUC 0.71 in Test-set-1) was poorer than the baseline 
model, but was slightly better than either of the RD-only deep learning and the DVH-only 
logistic regression.

The calibration error of the baseline model was 0.07 in Test-set-1, 0.22 in Test-set-2, and 0.18 
in Test-set-3, indicating that there was no major calibration issue. However, after the model 
adjustment, the average expected calibration error was reduced to 0.14 for Test-set-2, and 
0.13 for Test-set-3.

Some representative examples of 3D (Supplementary Materials Video) and 2D heatmaps 
(Figure 2 and Supplementary Figure S11-13) generated by Grad-CAM may help to illustrate 
the global view for the whole lung and detailed view of each slice, respectively. In patients 
with pre-existing lung disease (the area indicated by the pointer in Figure 2 and Supple-
mentary Figure S11), such as interstitial lung abnormalities or emphysema, model attention 
appears more widely dispersed overall in the lungs. In contrast, for patients without pre-ex-
isting lung disease, relatively narrow distribution of model attention has been observed that 
follows the distribution of dose in the RD (Supplementary Figure S13). This clearly shows 
that, as far as the prediction of RP goes, a good model needs to be trained that can make use 
of (CT) features associated with pre-existing lung disease as well as (RD) features related to 
prominent dose distribution in the normal lungs.

Representative feature maps extracted from each residual block of the RP and non-RP cases 
are shown in Supplementary Materials 2E (Figure S2-9). As the level deepens in the model, 
the extracted features become more complex and abstract. While these features maps are 
very important since the FC layer uses these ResNet-generated feature maps to estimate the 
probability of RP, it nonetheless remains challenging to interpret the feature maps and thus 
visually associate them with clinically meaningful features. Thus, in this respect, the grad-
CAM heatmaps overlaid onto the CT and RD might be potentially more useful by way of 
clinical interpretation.
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A

B

Figure 2. Illustration of attention (heat) map of a 60-year-old male with non-small cell lung 
cancer. A, Two-dimensional attention map. The left image is an overlay of the CT image 
and the attention map, with blue to red representing increasing levels of importance (atten-
tion scale). The area of interstitial lung abnormalities indicated by pointers. The image on 
the right is an overlay of the radiation dose (RD) image and the attention map. From dark to 
light represents low to high dose, and from blue to red represents increasing importance. B, 
Three-dimensional attention map. The different colors represent different levels of impor-
tance (attention scale).

Discussion

In this study, we used pre-treatment radiotherapy planning CT and planned radiation dose 
distribution to build a ResNet-based deep learning model to predict RP. The baseline model 
is trained using a joint representation of features from CT and RD, which we implemented 
using a linear mixing method of the intensity/dose magnitudes. We then showed that such 



203

a baseline model can be subsequently adjusted by only re-training the mixing ratio (i.e., the 
W layer) and the FC classifier for RP, at the start and at the end of the ResNet, respectively, 
without changing any other weights in the ResNet feature extractor itself.

The combination of CT and RD predicted RP reasonably well in Test-set-1, which was ex-
pected since the test set most closely resembled the Training set in terms of prescribed dose, 
RT planning procedure and race cohort. Model performance and model calibration on the 
RTOG-0617 datasets, i.e., Test-set-2 and Test-set-3 were overall improved after adjusting 
the baseline model with either some or all of the each dataset.

However, the adjusted model did not perform as well on either of the RTOG-0617 subsets 
as it performed on Test-set-1. We hypothesize this is because RTOG-0617 data was contrib-
uted unevenly across 185 institutions [17], which may leave a large amount of heterogene-
ity among patients as well as residual differences between scanners, physicians delineations 
and RT planners that the trial protocol could not reconcile, as one can see in Table 1. It was 
interesting that the baseline model initially performed better in Test-set-3 (74Gy) with high-
er AUC and sensitivity compared to Test-set-2 (60Gy), which should have been closer to 
the prescription setting of the training dataset. However, we cannot rule out random chance 
since the baseline model initially performed sub-optimally for both Test-set-2 and Test-
set-3. This may also suggest that treatment delivery modality may not be the critical factor 
for the model, at least relative to lung tissue and dose hotspots, and other sources of clinical 
heterogeneity may be more important. We are unable to resolve this question at present, and 
resolution of such questions needs more detailed study.

Grad-CAM heatmaps overlaid onto CT and RD suggested synergistic information for the 
prediction of RP, that is, the influential features point towards pre-existing lung injury in CT 
and regions of high dose in normal lung. Moreover, we proposed a computationally sim-
plified way to adjust the model to fit different clinical settings. We suggest this a feasible 
method to adapt to different dose groups and planning protocols. However, it must be noted 
that even this limited adjustment-based retraining is still more computationally intensive 
than retraining a conventional machine learning model from scratch; as such, it is presently 
computationally unfeasible to perform more than a dozen repetitions of cross-validation or 
bootstraps during training.

This study included a retrospective single-institutional dataset as training set, and three 
other cohorts to evaluate the performance of our model. All test sets were prospectively 
collected to ensure the best available accuracy of registering the primary outcome of RP. 
In clinical practice, an RP event needs to be diagnosed by following up patients’ symptoms 
and examinations. To distinguish RP from other types of pneumonia, follow-up CT exam-
inations, routine blood tests, and C-reactive protein may be used. The endpoint of this study 
is grade 2 or higher RP, because patients with grade 2 RP require medical intervention and 
their activities of daily living are affected.

In this study, As mentioned, the relative importance of RD relative to CT was about 1.5 
in most cases, except for the 74Gy Test-set-3 where it appeared suppressed to about 1.2. 
A possible reason for this is that the standard dose (60Gy) can induce RP in patients with 
intrinsic lung susceptibility to RP, but increasing prescribed dose to 74Gy seems not to be 
additionally effective at inducing RP. Although the method proposed in this study is poten-
tially an efficient way to update the baseline model for a new clinical setting, it is still possi-
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ble to obtain a biased dataset with randomly sampling 40 patients [27], therefore if a larger 
dataset may be used for adjustment, we expect the model will be more robust.

Some interesting points were found based on the attention maps (Figure 2 and Supplemen-
tary Materials 6 Figure S11-13), where we tried to understand the “diagnostic” logic of the 
model. The results of this study are consistent with previous insights [28-30] and based on 
our data set, interstitial lung abnormality is an influential factor for the occurrence of RP. 
In the future, as the sample size expands, the model based only on patients with interstitial 
lung abnormalities can be developed and compared with the model developed in this study 
by Grad-CAM approach. Another feature is that the attentional areas tend to be located 
more in the central area of the lungs than in the peripheral areas. We speculate that there are 
two reasons for this phenomenon. First, RD is denser in the central part because of the ir-
radiation of metastatic lymph nodes [31, 32]. Secondly, the dose received by the heart may 
be another factor in the development of RP [33, 34]. Krafft et al. found that cardiac DVH 
metrics improved the predictive power of radiomics models for RP prediction [12]. In our 
previous study, cardiac comorbidity was also found to be an independent predictor of RP 
[35].

Based on these observations, we speculate that the predictive logic of the model may be as 
follows: for patients with pre-existing lung disease, which was determined in collaboration 
with radiologists, the model pays attention to lung tissue with disease and analyzes these 
areas in conjunction with RD distribution. For patients with overall good (no lung disease) 
status, the model preferentially pays attention to regions of high dose and predicts RP main-
ly using the RD features. For most patients, the central part of the lung and the regions adja-
cent to the heart are more important than the peripheral lung. We also compared an RD-only 
deep learning model with the DVH-based model, which is another commonly used model 
in clinical practice. From the results, the predictive power of the DVH-based model is not 
better than that of the RD-based deep learning model.

The result of this study has a few real-world clinical implications. In this study, we did not 
iteratively tune the decision threshold of the model. In practice, we may select the thresh-
olds that prioritize either higher sensitivity or higher specificity, but we could not do both. 
Patients with very low probability of RP could receive standard or adequate doses if adjust-
ed models with high specificity were used for these hospitals, which might improve their 
prognosis [1, 2]. For patients with a very high probability of RP, physicians can give these 
patients more frequent examinations or preventive medications to lower the grade of RP or 
prevent it from occurring [36]. Alternatively, this clinical tool may be of assistance during 
the doctor-patient consultation about risks and expectations of treatment.

There were several limitations in this study. The deep learning model with complex neural 
networks needs a large dataset to avoid overfitting. We included 701 patients in this study 
and although, to best of our knowledge, this is the largest dataset on the topic of artificial 
intelligence model to predict RP, model development will benefit further from even larger 
datasets including heterogeneity of CT scanners, dose planning systems, etc. different insti-
tutions with improvements expected both in terms of performance and in terms of general-
izability across backgrounds, scanners, treatment strategies and patients. Second, this model 
did not include combinations of clinical parameters including cytokines. Our previous stud-
ies and others have demonstrated that it has predictive value for RP [37, 38]. The combina-
tion of cytokines could improve the performance of the model [39], however, the present 
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aim of our study was to focus on a non-invasive approach to modeling and therefore cyto-
kines were not included. A potential benefit is that this model can be directly embedded into 
RT planning systems, as it only needs CT and RD information and can export its predictions 
directly to other systems for clinical decision support. In addition, patients included in this 
study did not receive concurrent chemotherapy with the same regimen, and we think that 
the predictive power of the model could be improved if clinical factors were harmonized. 
On the reverse side, it is difficult to maintain the same treatment regimen everywhere in the 
world, and the generalizability of the model would be affected if only patients receiving the 
same chemotherapy regimen were included. 

Finally, we did not include patients who received immunotherapy, which is already a stan-
dard therapy for local advanced lung cancer patients now. And the incidence of pneumonitis 
is higher with the addition of durvalumab after concurrent chemo-radiotherapy [40, 41]. 
There are still challenges to be addressed before including patients receiving immunothera-
py in the analysis, such as differential diagnosis of immune checkpoint inhibitor therapy-re-
lated pneumonitis and RP and datasets containing large sample sizes of patients receiving 
immunotherapy. The model we developed in this study can served as a base (pre-trained) 
model for future studies that include patients receiving immunotherapy [42].

In summary, we successfully developed a deep learning model to predict RP, and this model 
can be adjusted easily to fit new cohorts. We tried to uncover the model prediction logic by 
a visualization approach. In addition, a ready-to-use online software was developed to assist 
clinical practice. Despite several limitations, we believe that deep learning algorithm pos-
sesses great potential to sever as a clinical assistant tool.
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Supplementary Materials

1. Dataset

A. Details of training set and test set 1

Training set

The training dataset was collected retrospectively from hospital archives. A total of 314 
patients treated between January 2013 and December 2018 with definitive RT at Tianjin 
medical university cancer hospital were retrieved with IRB permission. The inclusion cri-
teria were: (1) Patients identified with histologically confirmed NSCLC or SCLC. (2) Di-
agnosed with Stage I-III NSCLC and limited-stage SCLC (American Joint Committee on 
Cancer, 8th edition, 2017) before RT, and patients underwent radical RT. (3) No thoracic RT 
or thoracic surgery prior to RT. (4) CT examinations were performed at 1, 3, and 6 months 
(± 15 days) after treatment. Patients were excluded, if treatment break of more than 5 days 
occurred during RT, or if patients received surgical treatment within 6 months after radio-
therapy, of if there was also a second primary tumor, or if the patients had a significant lung 
infection within 6 months after radiotherapy leading to concern about a potentially non-RT 
related origin RP. 

Test set 1

This dataset was registered prospectively at the same institution as the above training set. 
A total of 56 patients were enrolled from October 2018 to March 2019. Finally, 35 patients 
were included in the analysis. 21 patients were excluded because did not meet the eligible 
criteria, fourteen of which did not follow up CT as planned, six of which did not complete 
radiotherapy, and one patient died two months after radiation therapy. The inclusion and 
exclusion criteria were the same as for the training dataset. These registered patients were 
followed-up every month after concluding radiotherapy. The follow-up items included 
blood routine examination, C-reactive protein, tumor markers associated with lung cancer, 
and chest X-rays. Furthermore, patients received CT examination at 1, 3, and 6 months (± 7 
days) after end of radiotherapy.

Image acquisition and treatment planning

Intravenous contrast-enhanced planning CT scans were acquired on a single Brilliant (Philips 
Medical Systems; Best, The Netherlands) multislice scanner with a standardized protocol: 
120 kVp, 100 mAs, 3 mm slice thickness, 512 x 512 image matrix, 50 cm fields of view, 
0.977 mm pixel spacing and vendor’s default convolution kernel. Experienced radiation on-
cologists delineated the lung cancer gross tumor volume (GTV) and malignant lymph nodes 
in the Pinnacle treatment planning system (Philips Radiation Oncology Systems; Fitch-
burg, Wisconsin, United States), with image fusion against complementary imaging studies 
whenever available (such as positron emission tomography).

The GTV was isotropically expanded by 5 mm, as well as subclinical microscopic malig-
nant lesions to derive the clinical target volume (CTV). The planning target volume (PTV) 
was an additional 5 mm isotropic expansion around the CTV. Dosimetrist were instructed to 
cover at least 95% of the PTV with the prescribed RT dose. Delineations conformed to the 
guidelines set by the Radiotherapy and Oncology Group (RTOG). The relevant dose con-
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straints were as follows: MLD <20 Gy, V20 <30%, and volume of the lung receiving 5 Gy 
(V5) <60%. All patients were nominally prescribed 2Gy per fraction once daily. Radiation 
oncologists determined the total prescribed dose based on each patient’s overall physical 
condition and best achievable normal tissue constraints. The actual total RT dose delivered 
ranged between 50 to 70 Gy. The planning CT series with associated RT structure delinea-
tions and RT planned radiotherapy 3D dose grids were exported from Pinnacle in the stan-
dard DICOM format.

B. Details for re-use of RTOG-0617 dataset (test set 2 and 3)

Patients randomized to the control arm (60 Gy dose) were designated as Test Set 2, and pa-
tients that were allocated to the intervention arm (74 Gy dose) were designated as Test set 
3. Specific details of the RTOG-0617 trial may be obtained from the trial protocol and pub-
lished articles.

Inclusion criteria

1. Patients received full course of radiotherapy. 2. The thickness of CT images ranges from 
1.25mm to 3mm. 3. Field of view is 500mm diameter and each axial image dimension 
should be 512 x 512, such that the final reconstructed per pixel spatial resolution falls be-
tween 0.9mm and 1.3mm. 4. Either IV contrast or non-IV contrast CT images.

Exclusion criteria

1. Patients diagnosed with (infectious) pneumonia rather than radiation pneumonitis. 2. No 
corresponding CT images were available. 3. Abnormal CT images with same pixel values 
(-1024) for the whole lung. 4. With multiple plan and dose files, cannot determine which 
one was applied. 5. CT images that include only part of the lung.

C. Characteristics of included patients (Table S1-3)

Supplementary table S1. Patient characteristics in training set, test set 1.

Character-
istics

Training set

n (%)

Without RP

Mean ± SD

With RP

Mean ± SD

P* Test set 1

n (%)
Age medi-
an

61 (30-85) 61 (30-85) 63 (44-79) 0.005* 62 (34-75)

Gender 0.523

Male 238(75.8%) 186(78.2%) 52(21.8%) 23 (65.7%)

Female 76(24.2%) 62(81.6%) 14(18.4%) 12 (34.3%)

Smoking 0.569

Yes 244(77.7%) 191(78.3%) 53(21.7%) 26 (74.3%)

No 70(22.3%) 57(81.4%) 13(18.6%) 9 (25.7%)

KPS 0.725

≤80 132(42.0%) 103(78.0%) 29(22.0%) 13 (37.1%)

>80 182(58.0%) 145(79.7%) 37l(20.3%) 22 (62.9%)

Diabetes 0.609
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  Yes 34(10.8%) 28(82.4%) 6(17.6%) 2 (5.7%)

No 280(89.2%) 220(78.6%) 60(21.4%) 33 (94.3%)

ILA 0.015*
  Yes 25(8.0%) 15(60.0%) 10(40.0%) 9 (25.7%)

  No 289(92.0%) 233(80.6%) 56(19.4%) 26 (74.3%)

Pathology 0.656

  LUSC 86(27.4%) 65(75.6%) 21(24.4%) 8 (22.9%)

LUAD 73(23.2%) 59(80.8%) 14(19.2%) 10 (28.6%)

SCLC 155(49.4%) 124(80.0%) 31(20.0%) 17 (48.5%)

Induc che-
mo

0.739

Yes 287(91.4%) 226(78.7%) 61(21.3%) 31 (88.6%)

No 27(8.6%) 22(81.5%) 5(18.5%) 4 (11.4%)

CCRT 0.047

Yes 93(29.6%) 168(76.0%) 53(24.0%) 8 (22.9%)

No 221(70.4%) 80(86.0%) 13(14.0%) 27 (77.1%)

Conso che-
mo

0.116

Yes 179(57.0%) 147(82.1%) 32(17.9%) 19 (54.3%)

No 135(43.0%) 101(74.8%) 34(25.2%) 16 (45.7%)

P G T -
V(Gy)

59.274±2.977 59.204±3.063 59.539±2.634 0.415 60.200±2.870

S m o k i n g 
index

661.540±571.430 641.840±550.543 735.600±643.084 0.237 668.600±550.412

Abbreviations: LUSC = lung squamous cell carcinoma; LUAD = lung adenocarcinoma; 
SCLC = small cell lung cancer; IMRT = intensity-modulated radiotherapy; VMAT = vol-
umetric modulated arc therapy; chemo = chemotherapy; KPS = Karnofsky performance 
score; ILA = interstitial lung abnormalities; Induc chemo = induction chemotherapy; CCRT 
= concurrent chemoradiotherapy; Conso chemo = consolidation chemotherapy; PGTV = 
planning gross tumor volume.

* Statistically significant

Supplementary table S2. Patient characteristics in test set 2.

Characteristics All pts

n (%)

Without RP

Mean ± SD

With RP

Mean ± SD

P*

Age median 64(37-82) 64(37-82) 65.5(38-80) 0.239

Arm 0.792

No cetuximab 105(54.1%) 87(82.9%) 18(17.1%)

Cetuximab 89(45.9%) 75(84.3%) 14(15.7%)
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Gender 0.990

Male 115(59.3%) 96(83.5%) 19(16.5%)

Female 79(40.7%) 66(83.5%) 13(16.5%)

Race 0.316

American Indian/Alaskan Native 1(0.5%) 1(100.0%) 0(0.0%)

Asian 6(3.1%) 6(100.0%) 0(0.0%)

Black or African American 16(8.2%) 16(100.0%) 0(0.0%)

Native Hawaiian/Other Pacific

Islander

1(0.5%) 1(100.0%) 0(0.0%)

White 169(87.1%) 137(81.1%) 32(18.9%)

Unknown 1(0.5%) 1(100.0%) 0(0.0%)

Ethnicity 0.112

Hispanic or Latino 5(2.6%) 3(60.0%) 2(40.0%)

Not Hispanic or Latino 181(93.3%) 151(83.4%) 30(16.6%)

Unknown 8(4.1%) 8(100.0%) 0(0.0%)

Zubrod 0.906

Normal activity 117(60.3%) 98(83.8%) 19(16.2%)

Symptoms,but nearly fully 

ambulatory

77(39.7%) 64(83.1%) 13(16.9%)

Histology 0.880

Squamous cell carcinoma 78(38.7%) 64(85.3%) 11(14.7%)

Adenocarcinoma 86(44.3%) 70(81.4%) 16(18.6%)

Large cell undifferentiated 4(2.1%) 4(100.0%) 0(0.0%)

Non-small cell lung cancer NOS 29(14.9%) 24(82.8%) 5(17.2%)

Histology grouped 0.586

Non-squamous histology 119(61.3%) 98(82.4%) 21(17.6%)

Squamous histology 75(38.7%) 64(85.3%) 11(14.7%)

AJCC Stage 0.073

IIIA, or N2 135(69.6%) 117(86.7%) 18(13.3%)

IIIB, or N3 59(30.4%) 45(76.3%) 14(23.7%)

RT technique 0.079

3D-CRT 106(54.6%) 84(79.2%) 22(20.8%)

IMRT 88(45.4%) 78(88.6%) 10(11.4%)

EGFR H-Score 0.020*

No H-Score 103(53.1%) 92(89.3%) 11(10.7%)



215

H-Score able to be determined 91(46.9%) 70(76.9%) 21(23.1%)

Smoking history 0.351

Non-smoker 14(7.2%) 10(71.4%) 4(28.6%)

Former light smoker 16(8.2%) 14(87.5%) 2(12.5%)

Former heavy smoker 70(36.1%) 57(81.4%) 13(18.6%)

Current smoker 81(41.8%) 68(84.0%) 13(16.0%)

Unknown 13(6.7%) 13(100.0%) 0(0.0%)

PTV (cc) 507.934±273.307 501.690±264.952 539.548±315.003 0.474

V5_lung 57.676±15.288 57.458±15.122 58.781±16.312 0.654

V20_lung 29.056±7.472 28.890±7.440 29.896±7.696 0.486

Dmean_lung 16.664±4.146 16.551±4.163 17.238±4.075 0.394

Received_conc_cetuximab 0.792

No 105(54.1%) 87(82.9%) 18(17.1%)

Yes 89(45.9%) 75(84.3%) 14(15.7%)

Received_cons_chemo 0.982

No 21(10.8%) 17(81.0%) 4(19.0%)

Yes 173(89.2%) 145(83.8%) 28(16.2%)

Received_cons_cetuximab 0.853

No 112(57.7%) 94(83.9%) 18(16.1%)

Yes 82(42.3%) 68(82.9%) 14(17.1%)

Survival_status 0.172

Alive 88(45.4%) 77(87.5%) 11(12.5%)

Dead 106(54.6%) 85(80.2%) 21(19.8%)

Survival_months 2 3 . 6 0 4 ( 2 . 5 6 2 -
61.465)

2 3 . 9 8 2 ( 2 . 5 6 2 -
61.465)

1 9 . 3 3 3 ( 4 . 4 6 8 -
57.293)

0.380

Local_failure_months 1 8 . 6 9 3 ( 1 . 4 1 3 -
60.447)

1 9 . 1 3 6 ( 1 . 4 1 3 -
60.447)

1 7 . 5 5 9 ( 4 . 4 6 8 -
56.669)

0.931

Distant_failure_months 1 5 . 6 2 1 ( 2 . 5 6 2 -
61.465)

1 6 . 1 9 6 ( 2 . 5 6 2 -
61.465)

1 0 . 9 7 2 ( 3 . 6 7 9 -
47.963)

0.149

Progress ion_free_survival_
months

11 . 5 3 1 ( 1 . 4 1 3 -
60.447)

11 . 6 6 2 ( 1 . 4 1 3 -
60.447)

1 0 . 6 2 7 ( 3 . 6 7 9 -
47.963)

0.492

Abbreviations: Pts = patients; RP = radiation pneumonitis; NOS = Non-small-cell lung can-
cer not otherwise specified; AJCC = American Joint Committee on Cancer; Rt technique = 
radiotherapy technique used to treat patient; 3D-CRT=3dimensional comformal radiation 
therapy; IMRT = intensity-modulated radiotherapy; EGFR H-Score = epidermal growth fac-
tor receptor immunohistochemistry scores; PTV = planning tumor volume; V5_lung= Lung 
V5 (%);V20_lung= Lung V20 (%); Dmean_lung = Mean lung dose (Gy); conc_cetuximab 
= concurrent cetuximab; cons_chemo = consolidation chemotherapy; cons_cetuximab = 
consolidation cetuximab. * Statistically significant
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Supplementary table S3. Patient characteristics in test set 3.

Characteristics All pts

n (%)

Without RP

Mean ± SD

With RP

Mean ± SD

P*

Age median  63(41-82)  62(41-82) 67 (46-76) 0.244

Arm 0.284

No cetuximab 85(53.8%) 72(84.7%) 13(15.3%)

Cetuximab 73(46.2%) 57(78.1%) 16(21.9%)

Gender 0.129

Male 89(56.3%) 69(77.5%) 20(22.5%)

Female 69(43.7%) 60(87.0%) 9(13.0%)

Race 1.000

American Indian/Alaskan Native 1(0.6%) 1(100.0%) 0(0.0%)

Asian 4(2.5%) 4(100.0%) 0(0.0%)

Black or African American 17(10.8%) 14(82.4%) 3(17.6%)

White 136(86.1%) 110(80.9%) 26(19.1%)

Ethnicity 0.710

Hispanic or Latino 4(2.5%) 3(75.0%) 1(25.0%)

Not Hispanic or Latino 152(96.2%) 124(81.6%) 28(18.4%)

Unknown 2(1.3%) 2(100.0%) 0(0.0%)

Zubrod 0.962

Normal activity 92(58.2%) 75(81.5%) 17(18.5%)

Symptoms,but nearly fully 

ambulatory

66(41.8%) 54(81.8%) 12(18.2%)

Histology 0.938

Squamous cell carcinoma 70(44.3%) 57(81.4%) 13(18.6%)

Adenocarcinoma 63(39.9%) 52(82.5%) 11(17.5%)

Large cell undifferentiated 1(0.6%) 1(100.0%) 0(0.0%)

Non-small cell lung cancer NOS 24(15.2%) 19(79.2%) 5(20.8%)

Histology grouped 0.950

Non-squamous histology 88(55.7%) 72(81.8%) 16(18.2%)

Squamous histology 70(44.3%) 57(81.4%) 13(18.6%)

AJCC Stage 0.696

IIIA, or N2 103(65.2%) 85(82.5%) 18(17.5%)

IIIB, or N3 55(34.8%) 44(80.0%) 11(20.0%)

RT technique 0.528
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3D-CRT 90(57.0%) 75(83.3%) 15(16.7%)

IMRT 68(43.0%) 54(79.4%) 14(20.6%)

EGFR H-Score 0.804

No H-Score 85(53.8%) 70(82.4%) 15(17.6%)

H-Score able to be determined 73(46.2%) 59(80.8%) 14(19.2%)

Smoking history 0.133

Non-smoker 11(7.0%) 10(90.9%) 1(9.1%)

Former light smoker 14(8.9%) 12(85.7%) 2(14.3%)

Former heavy smoker 52(32.9%) 37(71.2%) 15(28.8%)

Current smoker 78(49.4%) 68(87.2%) 10(12.8%)

Unknown 3(1.9%) 2(66.7%) 1(33.3%)

PTV (cc) 482.660±261.390 472.956±243.796 525.828±330.203 0.328

V5_lung 57.109±14.654 56.205±14.385 61.133±15.411 0.104

V20_lung 31.223±7.960 30.853±7.473 32.869±9.828 0.218

Dmean_lung 19.159±4.553 18.967±4.480 20.017±4.849 0.262

Received_conc_cetuximab 0.284

No 85(53.8%) 72(84.7%) 13(15.3%)

Yes 73(46.2%) 57(78.1%) 16(21.9%)

Received_cons_chemo 0.749

No 22(13.9%) 19(86.4%) 3(13.6%)

Yes 136(86.1%) 110(80.9%) 26(19.1%)

Received_cons_cetuximab 0.089

No 93(58.9%) 80(86.0%) 13(14.0%)

Yes 65(41.1%) 49(75.4%) 16(24.6%)

Survival_status 0.499

Alive 52(32.9%) 44(84.6%) 8(15.4%)

Dead 106(67.1%) 85(80.2%) 21(19.8%)

Survival_months 2 0 . 2 5 3 ( 0 . 4 9 3 -
59.560)

2 0 . 8 2 8 ( 0 . 4 9 3 -
59.560)

1 8 . 5 2 8 ( 3 . 0 2 2 -
47.799)

0.229

Local_failure_months 1 3 . 7 3 2 ( 0 . 4 9 3 -
59.560)

1 3 . 7 9 8 ( 0 . 4 9 3 -
59.560)

1 2 . 1 2 2 ( 3 . 0 2 2 -
47.799)

0.557

Distant_failure_months 11 . 8 2 7 ( 0 . 4 9 3 -
59.560)

11 . 6 6 2 ( 0 . 4 9 3 -
59.560)

1 3 . 5 3 5 ( 3 . 0 2 2 -
46.058)

0.935

Progress ion_free_surviva l_
months

9 . 8 2 3 ( 0 . 4 9 3 -
59.560)

9 . 8 8 8 ( 0 . 4 9 3 -
59.560)

9 . 5 2 7 ( 3 . 0 2 2 -
46.058)

0.475

Abbreviations: Pts = patients; RP = radiation pneumonitis; NOS = Non-small-cell lung can-
cer not otherwise specified; AJCC = American Joint Committee on Cancer; Rt technique = 
radiotherapy technique used to treat patient; 3D-CRT=3dimensional comformal radiation 
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therapy; IMRT = intensity-modulated radiotherapy; EGFR H-Score = epidermal growth fac-
tor receptor immunohistochemistry scores; PTV = planning tumor volume; V5_lung= Lung 
V5 (%);V20_lung= Lung V20 (%); Dmean_lung = Mean lung dose (Gy); conc_cetuximab 
= concurrent cetuximab; cons_chemo = consolidation chemotherapy; cons_cetuximab = 
consolidation cetuximab.

* Statistically significant

2. Pre-processing and model construction

A. Pre-processing

1) all images were resampled to a 1mm x 1mm x 1mm resolution; 2) images were cropped 
according to total lung mask that was contoured using a deep learning-based automatic tool 
and reviewed and modified by two physicians (ZZ and MY) to ensure the correctness of the 
delineations, and 3) normalization of CT images was based on the adjusted lung window. 
Since the lung window used in daily clinical practice is not perfectly suited for deep learn-
ing approaches, we modified it to -500 (center) and 1200 (range) for the image normaliza-
tion process. RD images are normalized according to a range of 0-80. 4) To reduce the hard-
ware requirements, images were compressed to 84 x 84 x 84. 5) 20% of the training set was 
randomly chosen as the validation set to evaluate the model performance during training. 6) 
Data augmentation methods were used to increase the number and diversity of training data.

Data augmentation:

1. Random affine transform.

Random affine transformation of the image keeping center invariant with the probability of 
0.8.

2.Random rotate

Random rotate of the images with 0-90 degrees with the probability of 0.8.

2. Random flip

Random flip of the image with the channels of x, y and z with the probability of 0.8.

3. Random zoom transform.

Random zoom of the images from the 80% to 100% of input size with the probability of 0.5.

4. Random spatial crop

Random crop the spatial crop of the images from the size of 70 to 84 in each channel with 
the random center.

The data preprocessing method was applied by SimpleITK (v2.0.2). The data augmentation 
was applied based on MONAI package (v0.8.0).
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ResNet

The ResNet(Residual Neural Network)model is one of the widely used classification model 
was designed by Kaiming He [1]. Traditional convolutional networks have more or less 
information loss, gradients disappear or explode in the model The ResNet solves this prob-
lem by directly passing the input information to the output, the integrity of the information 
is protected. The entire network only needs to learn the part of the difference between the 
input and output, which simplifies the learning goals and difficulty. The biggest innovation 
of ResNet is that there are many bypasses to directly connect the input to the output layers, 
this structure is also called shortcut or skip connections. The residual block was designed by 
this innovation shown in Figure 1B. There are different ResNet models from ResNet10 to 
ResNet152 that are named according to the number of residual blocks.

Architecture

The architecture of proposed network is shown in Figure 1B, which is composed of weight 
layer, 3D convolution layers and one fully connection (FC) layer.

The weight layer is composed of two weights, which can be obtained for CT and RD from 
different datasets with diverse treatment patterns. The function of weights is shown below.

The ResNet was selected as the backbone of the model with the weight layer as the top of 
the model to give the weights of combine the CT and radiation dose images.

In RP prediction processing, the paired CT and radiation dose images was sent into the 
model as the input. Then, it was combined by the weight layer and the convolution layers 
will extract 512 high-level features from the input. Finally, the fully connection layer with 
Sigmoid activation function will predict the probability of the patient will have RP after 
treatment according to extracted features.

The model was built on PyTorch (v1.7.1). All code was written on python language (v3.8.5) 
The experiments were performed on a workstation with one NVIDIA Quadro T2000 (4GB) 
GPU.

C. Grad-CAM

To obtain the deeper understanding how the model makes the decision to classification 
whether the patient will have RP. The gradient-weighted class activation mapping (Grad 
CAM) was applied to visualize the interpretation for the proposed model.

Class activation map (CAM) shows the most significant position of the model through the 
visual thermal map, so it can be used to explain how the model make the decision [2]. The 
CAM method exploits the abundant spatial and semantic information in the convolution 
layers, replace the fully connection layer with global average layer, and replace the feature 

0+12ℎ4$ =
0$

∑ 013
$45

 

0+12ℎ4$ is the weight for each input channel. 0$ is the value in weight layers. 6"
∑ 6$%
"&'

 calculates the 

rate of specific input channel’s weight in all input channels. 
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map with the mean value of all pixels of the feature map as the activation map.

The Grad CAM is class-specific, meaning it can produce a separate visualization for every 
class present in the image, which is the upgrade method of CAM, uses the gradients of the 
target concept flowing into the final convolutional layer to produce a coarse localization 
map highlighting the important regions in the image for predicting the concept [3].

The workflow of Grad CAM shown in Figure 1B and Figure S1.

The function of Grad CAM is shown below:

D. Deep learning network training strategy

The model was trained by the Adam optimizer with a learning rate of 0.0001. The Binary 
Cross-Entropy loss function was selected to train the model.

To avoid overfitting, the following method were used: 1. The Batch Normalization (BN) 
was used on the features after the average pooling. 2.The Dropout layer was used on the 
features after BN with the rate of 0.5. 3. The L2 regulation penalty were added on the 
weights of fully connection layers. 4. The early stopping method was used in the training 
process.

a!" =
1
Z%% &'#

&($%&'(
 

))*+,-./0# = *+),(%.&#(&
&

) 

($%&  presents the feature map from the last convolution layer in the model, k is the number of channels, 

i,j are the position of pixels. '# is the prediction of the specific c-th class. 12
!

1/"#$
 means the gradient of 

the c-th class to the feature map. By averaging this gradient per channel, we can get a k-dimensional 

vector which is the weights for feature map channels. 
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3. Instructions of the online tool for radiation pneumonitis prediction (Figure 
S10)

* This tool can only be used for research purposes, not for commercial use.

1. Use the whole lung contour as the only mask in the structure file, which you can do 
with the treatment planning system for radiotherapy or other contouring tools. Please fol-
low the guidelines set by the Radiotherapy and Oncology Group (RTOG) (DOI:10.1016/
j.ijrobp.2010.07.1977) [4].

2. Convert the planning CT, radiation dose images and structure file to nrrd format and re-
name them to ‘CT’, ‘RD’ and ‘RS’, we recommend using 3D slicer for this step. During this 
process, please remove all information about the patient.

3. Uploading these three files and press ‘prediction’ button and wait for the calculation.

Online tool: https://flask-web-zx.herokuapp.com/

Supplementary Figure S10. Radiation pneumonitis prediction online tool

4. Weights of CT and radiation dose (RD) for the models (Table S4)

Supplementary Table S4. The weights for CT and RD from each model.

Dataset Weight of CT Weight of RD (mean, range)
Training set 1 1.42
Test set 2* 1 1.53 (1.50-1.58)
Test set 2# 1 1.67
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Test set 3* 1 1.20 (1.02-1.41)
Test set 3# 1 1.25

* The asterisk indicates that the coefficients of CT and RD for this model are adjusted with 
40 patients for each set; # The pound symbol indicates that the coefficients of CT and RD 
for this model are adjusted using the entire data set.

5. CT, RD, DVH and clinical based model

A. Deep learning model constructed by CT or RD

Supplementary Table S5. Performance of deep learning model constructed by CT or RD 
alone.

Model AUC

(95%CI)

Accuracy

(95%CI)

Sensitivity

(95%CI)

Specificity

(95%CI)
CT 0.630

(0.571-0.674)

0.582

(0.535-0.628)

0.565

(0.503-0.617)

0.612

(0.552-0.689)
RD 0.686

(0.637-0.735)

0.646

(0.602-0.690)

0.659

(0.599-0.719)

0.632

(0.568-0.695)
B. Dose-volume histogram (DVH) metrics and clinical parameters selection and model con-
struction

Due to the collinearity of DVH metrics, it does is not suitable to perform the complex fea-
ture selection approaches. Instead, the predictive model is built using the already acknowl-
edged metrics V20 and mean lung dose.

The logistic regression method was used to build this model based on the training set (314 
subjects). As external validation, we evaluated the DVH model using the prospectively-reg-
istered cohort of 35 subjects (test-set-1). Processing of these 35 subjects followed exactly 
the same procedure as for the model development cohort, and none of these subjects were 
used in any way during model construction.

The clinical model was presented as a multivariable logistic regression model. The predic-
tors (age and interstitial lung abnormalities) were selected according to Table S1.

The training and validation strategies are the same as those described in the previous para-
graph for the DVH model.

6. Attention maps (Figure S11-13)

Supplementary Figure S11 Attention map of a patient with interstitial lung abnormality.
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Supplementary Figure S12 Attention map shows attention areas around the heart region

Supplementary Figure S13 Attention map shows attention areas roughly follow radiation 
dose distribution
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Chapter 8: Discussion
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8.1 Executive summary

In this thesis, I have explored the potential utilization of radiomics and image-based bio-
markers in radiotherapy. Three aspects were investigated: 1. methodological refinement and 
exploration of radiomics studies (Chapter 2 and 3). 2. The role of radiomics in radiotherapy 
prognosis (Chapter 4 and 5). 3. The value of image-based biomarker for radiotherapy side 
effect prediction (Chapter 6 and 7). Radiomics, as a field at the intersection of medicine, 
computer science, and engineering, has many pitfalls that are likely to be overlooked in the 
steps of implementation. I think that a practical checklist covering methodological and clin-
ical utility is a solution to this problem. Therefore, in Chapter 2 I integrated engineering and 
clinical perspectives to propose assessment criteria for evaluating the quality of machine 
learning-based quantitative imaging analysis studies. The checklist covers several aspects 
such as data preparation, data processing, and clinical potential assessment. The checklist 
will allow investigators to self-check the repeatability, reproducibility, and clinical potential 
utilities of image-based biomarker studies in their future experiments. It is worth stating 
that it is not our initial intention to require or expect future studies to conform to every item 
in the checklist, which would be very difficult to achieve, limited by the objective research 
environment. Because researchers with different disciplinary backgrounds pursue varying 
research priorities, investigators can be selective in the use of certain items in the checklist 
depending on the goals pursued. In developing the checklist, I found that most of the pub-
lished studies included relatively small sample sizes, thus leading to the study in Chapter 3. 
In this study, I demonstrated that deep learning has the potential to generate synthetic sam-
ples that expand the training set. Its application to lung cancer is currently under investiga-
tion. While the results are encouraging, we should be aware that there is still a long way to 
go from demonstrating its potential to being used in real-world research. The fact that some 
of the generated samples will still be recognized by doctors as artificial also shows that our 
algorithm is not perfect.

After specifying the qualitative evaluation criteria that should be followed for the imple-
mentation of radiomics and image-based biomarker studies, I explored the application of 
radiomics to practical clinical problems. Prospective data or/and multicenter data were used 
in the studies included in this thesis to validate the models to ensure that model validation 
results were as objective as possible. Improving patient prognosis is one of the main clin-
ical concerns and the most important goal in refining treatment modalities. In Chapter 4, I 
predicted distant metastases in early-stage lung cancer patients who received SBRT. This 
is of great relevance in a clinical context where clinical decisions after SBRT are diverse 
for this group of patients, where the decision of whether to give the patient systemic thera-
py or not is a difficult one. Therefore, based on this prediction model, patients with a high 
risk of distant metastases can be treated aggressively as well as followed up more intensely 
[1]. Also, tumors with a high risk of metastasis tend to be more aggressive, so this model 
might also guide the choice of drugs. It should be noted that the patients in this study were 
all from China, a developing country with unevenly developed medical resources. Some of 
the patients were treated in developed cities and then returned to places of residence where 
medical resources are relatively scarce, so close imaging follow-up was difficult for them. 
Selective and aggressive follow-up of patients, i.e., those at high risk, is more practical 
and easier to accomplish. In addition, this study examined the application of multimodality 
radiomics in prognosis. Both CT images reflecting tissue anatomical information and PET 
functional images containing metabolic information were investigated. Based on this study 



229

and the results of Chapters 6 and 7, I believe that performing integration of images based on 
different imaging rationales, and thus association with multidimensional data such as clini-
cal parameters, can improve the predictive power and generalizability of prediction models. 
Patients with early-stage lung cancer have a high likelihood of achieving long-term survival 
[2], so I chose distant metastasis as an the endpoint for clinical decision making. In contrast, 
for patients with locally advanced disease, their overall survival is shorter and the primary 
indicator for assessing many treatment strategies and therapeutic techniques [3]. In Chapter 
5, I explore the prediction of overall survival in locally advanced lung cancer. Region of 
interest (ROI) selection is an important step in radiomics research, but most of the studies 
published so far focus on malignant tissues, which is admittedly one of the determinants of 
overall survival, but the underlying status of normal tissues, especially organs such as the 
heart and lungs, is also strongly associated with survival [4]. In the study, I used radiomics 
features of both tumor tissue and lung tissue to build prediction models, and in a subgroup 
analysis, the results showed that overall survival could be predicted based on tumor tissue 
or lung tissue alone. This demonstrated that both tissues contain survival-related informa-
tion and combining these two aspects might lead to models with better predictive power. 
This is reasonable because the underlying status of lung tissue reflects not only the patient’s 
pre-existing disease, but also the tolerance to treatment for some cases.

Overall, in Chapter 4 and 5, I demonstrated that radiomics can make prognostic predictions. 
From a technical point of view, the use of simple statistical models, such as logistic regres-
sion or Cox proportional hazards regression, can be effective in predicting prognosis. From 
a clinical perspective, the results of the radiomics prediction models are consistent with 
clinical understanding, as discussed in Chapters 4 and 5, respectively. Having an accurate 
assessment of prognosis is essential for making clinical decisions, and based on the risk as-
sessment values output by the model, physicians can individualize patient treatment to im-
prove patient prognosis. On the flip side, predictive models can also help physicians stratify 
risk populations, allowing physicians to achieve greater clinical management effectiveness 
with their limited time. The model also has a contribution to patients and from an economic 
point of view, which is described in the “Research Impact” section.

Radiotherapy is bittersweet and can be accompanied by side effects while treating the dis-
ease. In Chapters 6 and 7 I explored one of the common side effects of radiotherapy, radia-
tion pneumonitis. Radiation pneumonitis is a non-infectious pneumonia due to radiation that 
is difficult to treat [5], making it important to predict its occurrence [6]. Clinically, patients 
with high chance of developing radiation pneumonitis will be given relatively low radiation 
doses or prophylactic medications. From a practical standpoint, it is not possible to give 
prophylactic medications to all patients or to closely monitor every patient, which is uneco-
nomical and time constrained. Therefore, based on the output of the prediction model, we 
can target and closely monitor the high-risk group, which also increases the likelihood of 
early and timely detection of radiation pneumonitis. It broadens the treatment window and 
has the potential to reduce the rate of severe disease and mortality in radiation pneumonitis. 
In these two studies, I used dose images that are not much explored yet. The application of 
dose images in radiomics is known as dosiomics. As mentioned before, radiation pneumo-
nitis is caused by radiation and therefore focusing only on the basal state of the lung tissue 
is not sufficient and should be included in the evaluation together with information on radi-
ation dose. Dose-volume histogram (DVH) parameters have been widely used in previous 
studies and in clinical practice, but they are only an approximation of the radiation dose dis-
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tribution. Dosiomics (Chapter 6) allows one to explore the details of the dose distribution, 
like radiomics to obtain texture information from medical images. Unlike dosiomics with 
handcrafted features, features extracted by deep learning models are not pre-defined, and in 
Chapter 7 I demonstrated that deep learning-based dose features also have predictive power. 

For image-based biomarker studies, the generalizability of the model is a challenge. Apply-
ing established models to different cohorts is difficult for complex reasons, including het-
erogeneity of human races and healthcare systems, different equipment for data collection, 
and differences in treatment protocols. In Chapter 7, I used a deep learning approach to 
address the issue of generalizability to clusters with heterogeneity to some extent. Although 
in Chapter 6 I demonstrated that the inclusion of clinical parameters improved the predic-
tive power of the model, how to include clinical parameters in deep learning is currently a 
question without a perfect answer, and specifically, in which module of deep learning and in 
what form, remains to be investigated.

In conclusion, in Chapters 6 and 7, I demonstrated the feasibility of using CT images and 
dose images to predict radiation pneumonitis. From a technical point of view, the use of a 
suitable model construction allows the synergistic effect of the two different sources of im-
ages. From a clinical point of view, the radiation pneumonitis prediction model can be used 
as a part of precision radiotherapy. It allows physicians to give individualized treatment 
regimens, more appropriate follow-up to patients, and to provide better physician-patient 
communication.

Chapters 4 to 7, the clinical application studies, followed as much as possible the method-
ological quality checklist presented in Chapter 2. For example, for improving repeatability 
and reproducibility, I used automatic segmentation tools to ensure consistency, and settings 
for the parameters were provided in the appendix of the articles. In terms of clinical utility, 
I used decision curve analysis or provided a nomogram, and online automated calculation 
tools. In the practice of these studies (Chapter 4 to 7) I found this checklist (Chapter 2) to be 
helpful and feasible. However, I also experienced that some items could not be implement-
ed due to the objective conditions of the studies. For example, exploring the association 
of radiomics with other types of features could not be realized due to the limitation of data 
sources. In addition, I included as many samples as possible in the studies, for example, in 
Chapter 7 I used the largest dataset in the field of radiomics research for radiation pneu-
monitis, 701 patients, but this falls far short of the “big data” requirement, which urges us 
to continue to refine the algorithms presented in Chapter 3 so that they can be used in re-
al-world studies.

8.2 Limitations of this work

Some limitations of the studies in this thesis should be noted. First, I developed predictive 
models for prognosis and toxicity, and users can optimize clinical decisions based on the 
model outputs. But the trade-off between prognosis and toxicity has not been explored in 
depth. Finding a balance between therapeutic efficacy and side effects that allows patients 
to obtain the best possible outcome while suffering less is a worthwhile but unexamined 
study in this thesis. This can only be achieved through both clinical and engineering efforts. 
From a clinical perspective, a dataset with more detailed endpoints is needed, i.e., a dataset 
with at least the ground truth for both prognostic and side effects endpoints. From an engi-
neering perspective, the selection of appropriate models or algorithms is crucial and still to 
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be explored.

Second, this thesis did not conduct a comparison of different modeling algorithms and did 
not explore the models in depth. Statistical models, logistic regression or Cox proportional 
hazards regression, were used in chapters 3 to 6, instead of using models such as XGBoost 
that were considered in many studies to have stronger predictive power and to exploit the 
nonlinear relationship of features [7, 8]. The main reasons for this are, firstly, the logical 
simplicity of these algorithms I used, which have a stronger explanatory nature, due to their 
ability to obtain the weights of each feature. Secondly, the aim of our study was to demon-
strate that radiomics or image-based biomarkers have potential for clinical applications and 
high predictive indicators were not our main goal. In Chapter 7, the deep learning algorithm 
I used is suitable, but it is not known if it is optimal.

Third, I did not provide a biological explanation for the selected features. Although I made 
medical knowledge-based speculations about the meaning of the features or the predictive 
logic of the model based on the equations of the features (Chapters 4, 5 and 6) or the feature 
maps (Chapters 6 and 7), this was not sufficiently rigorous. Several articles [9] have been 
published on biological interpretation of image-based biomarkers by methods such as pro-
teomic and genomics as introduced in the Introduction section (Chapter 1). I agree that this 
is an important tool to unravel the “black box” of radiomics research, which is an objective 
and rigorous approach.

Finally, I did not validate the model in the real world, which is a deficiency in the vast ma-
jority of current studies. What I should acknowledge as a researcher is that the data I used, 
even prospectively, were influenced by the inclusion and exclusion criteria, which inevita-
bly results in bias in the included data, even if the degree of bias is very small, the impact 
on the model is not known. To make it more objective and realistic, we should measure the 
performance of the model in the real-world and routine clinical setting.

8.3 Future perspectives

This thesis investigated the future role of radiomics and image-based biomarkers in sup-
porting clinical decision making. Through implementation of these studies, I believe that 
artificial intelligence will shine in the future in the field of medical imaging. However, there 
are currently only a few cases where tasks such as prediction are applied to daily clinical 
applications other than automatic segmentation applications for clinical work. The reasons 
for this include many aspects such as technology, ethics, and policy. As a physician in ra-
diotherapy who has learned some radiomics techniques, I would like to present some of my 
views on the future development of this field only for clinical and engineering purposes.

First, in the future, the cooperation between disciplines will be closer and the integration of 
resources will be the direction. This is divided into two aspects. The first aspect is that the 
combination of medicine and engineering will be more frequent, because both doctors and 
technicians have gained a deeper understanding of the application of artificial intelligence 
in the medical field in recent years, and are subjectively more willing to cooperate and have 
an understanding of the need for cooperation. The second aspect is that crossover between 
medical disciplines is more common, as the role of radiotherapy is currently complementary 
to other treatments (Chapter 1), regardless of the patient’s stage.

Second, the advancement of technology and the use of reasonable technology. These are 
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two different aspects. Advances in technology, such as the application of federated learn-
ing will address the issue of cross-institutional data transfer to some extent, especially for 
cross-country data sharing where there are many policy issues, and the application of the 
technology will help researchers meet policy requirements. Applying the suitable technolo-
gy means choosing the most appropriate technology from the perspective of clinical needs 
and tasks, rather than the most advanced technology. This goes hand in hand with the first 
point mentioned above.

Third, based on the above two points, the establishment of a platform that can integrate 
technology and clinical needs. I established the prototype of such a platform for daily clin-
ical applications in Chapter 7. In the future, as technology evolves, more and more easy-to-
use and efficient platforms will emerge. This will lower the threshold of technical knowl-
edge for users (clinical decision makers), while the modular platform can be personalized 
and changed according to the needs of users. This will facilitate the practical application of 
image-based biomarkers.
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Summary
A large number of medical images are acquired during the management of radiotherapy 
patients, including in pre-radiotherapy diagnosis, during the treatment of radiotherapy, mon-
itoring of side effects and efficacy. In recent years, many studies have demonstrated that 
quantitatively extracted features from such images can be used as biomarkers to assist in 
clinical decision making. One of the widely studied approaches is radiomics, where features 
are quantitatively extracted from images non-invasively, and biomarkers based on these 
features are screened and modeled by machine learning approaches. However, there are still 
methodological and clinical application challenges, and accordingly, this thesis investigated 
the following three aspects: a) methodological quality assessment of radiomics studies. B) 
prognostic value of image-extracted biomarkers in lung cancer patients undergoing radio-
therapy. C) prediction of a radiotherapy side effect, radiation pneumonitis, by image-based 
machine learning models.

In this thesis, an objective methodological quality assessment of current radiomics research 
was presented, based on which a methodological assessment checklist was proposed (Chap-
ter 2). Difficulties faced in research such as insufficient sample size may be alleviated by 
methods such as deep learning (Chapter 3). This thesis also demonstrated the prognostic 
(Chapters 4 and 5) and toxicity prediction (Chapters 6 and 7) capabilities of image-derived 
biomarkers and compared them to benchmark models commonly used in clinical settings. 
The results demonstrated that image-derived biomarkers have the potential for clinical ap-
plication and that combining multi-modality images and multi-dimensional information can 
improve the power of the models (Chapters 4 and 6). Selection of regions of interest (Chapter 
5) and model building algorithms (Chapter 8) based on clinical needs is critical.

Overall, this thesis demonstrated the potential for future applications of image-derived bio-
markers for the management of radiotherapy patients and to support clinical decision mak-
ing.
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Samenvatting
Een aanzienlijke hoeveelheid medische beelden worden gemaakt tijdens de radiothera-
peutische behandeling van patiënten, zoals gedurende de diagnose voor de radiotherapie, 
tijdens de behandeling met radiotherapie, en gedurende monitoring van bijwerkingen en 
effectiviteit na de behandeling. De laatste jaren hebben vele studies aangetoond dat kwan-
titatief uit beelden geëxtraheerde kenmerken kunnen worden gebruikt als biomarkers ter 
ondersteuning van de klinische besluitvorming. Deze benadering heet Radiomics waarbij 
“machine learning” wordt gebruikt om kenmerken te screenen en te combineren in model-
len.. Voor de toepassing van Radiomics zijn er echter nog enkele methodologische en klin-
ische uitdagingen, en daarom werden in dit proefschrift de volgende drie aspecten onder-
zocht: a) methodologische kwaliteitsbeoordeling van radiomics-studies. b) prognostische 
waarde van uit beelden geëxtraheerde biomarkers bij longkankerpatiënten die radiotherapie 
ondergaan. c) voorspelling van bijwerkingen van radiotherapie, stralingspneumonitis, door 
beeldgebaseerde machine-learning modellen.

In dit proefschrift wordt een objectieve methodologische kwaliteitsbeoordeling van het 
huidige radiomics-onderzoek gepresenteerd, op basis waarvan een methodologische beoor-
delingschecklist is voorgesteld (hoofdstuk 2). Uitdagingen voor dergelijk onderzoek, zoals 
onvoldoende steekproefgrootte, kunnen worden verlicht door methoden als deep learning 
(hoofdstuk 3). In dit proefschrift werden ook de prognostische (hoofdstukken 4 en 5) en 
toxiciteit-voorspellende waarde (hoofdstukken 6 en 7) van uit beelden afgeleide biomarkers 
aangetoond en vergeleken met de benchmarkmodellen die gewoonlijk in klinische settings 
worden gebruikt. De resultaten toonden aan dat van beelden afgeleide biomarkers potentieel 
hebben voor klinische toepassing en dat het combineren van multimodale beelden en mul-
tidimensionale informatie de kracht van de modellen kan verbeteren (hoofdstukken 4 en 6). 
Selectie van de interessante gebieden op een beeld (hoofdstuk 5) en van model-algoritmen 
(hoofdstuk 8) op basis van klinische behoeften is van cruciaal belang.

In het algemeen toonde dit proefschrift het potentieel aan voor toekomstige toepassingen 
van uit beelden afgeleide biomarkers voor de radiotherapeutische behandeling van patiënten 
en ter ondersteuning van klinische besluitvorming.
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Impact
1. Clinical impact

This thesis examined radiomics and image-based biomarkers in the context of clinical 
needs. The outcomes studied are the most important for radiation oncologists to consider 
when making clinical decisions. There are three implications for the clinic. First, different 
sources of information used in our daily work, such as clinical parameters, tumor metabolic 
information, and anatomical imaging information can be valuable in the field of artificial 
intelligence (Chapters 4, 6, and 7). Clinical cognition is the basis of AI research in the med-
ical field. In Chapter 5, I optimized the ROI based on clinical experience and demonstrated 
that clinical knowledge could guide the optimization of models. Second, the efficacy of 
parameters based on radiomics, for example, may meet or even exceed the benchmark pa-
rameters currently used in the clinical practice. In Chapter 6, I demonstrated that dosiomics 
predictive power outperforms current benchmark DVH parameters. Third, artificial intel-
ligence tools have the potential to be embedded in daily clinical practice. The application 
platforms presented in Chapter 7 evidence the potential for future applications of artificial 
intelligence.

Overall, this thesis contributes to the application of radiomics and artificial intelligence to 
assist clinical work and update clinical tools.

2. Technological impact

Although I do not propose new algorithms or invent new hardware in this paper, there are 
several lessons learned from the application of the technology that can help technologists 
working in the field. First, problems that are considered clinically intractable can be ac-
complished using the appropriate technology needed for the clinical task. As discussed 
previously, predictive power beyond the benchmark model can be achieved using simple 
artificial intelligence models. Again, the approach presented in Chapter 7 adapts commonly 
used algorithms to specific tasks, dynamically combining CT images and radiation dose 
images to achieve results that are difficult to accomplish with non-artificial intelligence ap-
proaches. Second, trials and studies from a technical perspective should take full account of 
clinical experience and clinical needs. For example, the image preprocessing methods and 
the choice of algorithms, should be adapted to the task context. Third, I follow the tenet of 
open science and made our code, configuration files and data as open as possible. This can 
be made available to future technologists for reference.

3. Impact on patients

Although the users of the model developed in this thesis are physicians, it is the patients 
who are ultimately the recipient of the clinical intervention. The methods and models pre-
sented in this thesis have practical implications for patients.

First, in terms of practical benefits to patients, the approach proposed in this thesis can help 
optimize clinical decision making, thereby prolonging patient prognosis (Chapters 4 and 5) 
and reducing patient suffering (Chapters 6 and 7). They may also be used to inform patients 
better of their expected outcomes and ultimately in shared decision making, where appro-
priate.
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Second, from a financial burden perspective, as a result of accurate screening of high-risk 
groups, physicians will be able to target patients for closer follow-up or recommend certain 
treatments or medications. Considering the whole population, this will reduce the overall 
economic burden. All of the models developed in this thesis are based on routine examina-
tions without the need to undertake expensive tests such as genetic sequencing. Hardware 
such as computers are reusable. Therefore, patients do not have to bear additional costs. 
This is important for society as a whole, but especially important in countries, such as Chi-
na, in which patients themselves have to pay a significant part of the treatment cost.

4. Societal impact

In this thesis, we demonstrated the potential of image-derived biomarkers for clinical ap-
plications. From a societal perspective, effective support for clinical decision making can 
reduce the financial burden on patients and insurance expenditures, thereby increasing the 
effectiveness of health insurance utilization.

The application of the clinical prediction models presented in the paper has the potential to 
provide better treatment protocols for patients, reduce the incidence of side effects, and im-
prove prognosis. As a result, the workload of physicians can be reduced to some extent and 
more medical resources can be freed up to serve the society.

At the same time, this thesis provides an explanation of the clinical applications of AI, 
which may improve physicians’ acceptance of AI and thus contribute to the future applica-
tion of AI tools in the real world.
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