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Chapter 1: Introduction and Outline of Thesis



1.1 The role of radiation therapy in the management of cancer patients

Radiation therapy is an important treatment modality in the management of cancer. Approx-
imately 77% of lung cancer patients have an indication to receive radiation therapy [1]. As
technology evolves and new drugs are entering cancer care, integrated or comprehensive
cancer treatment is becoming mainstream [2]. Specifically, the main treatments for cancer
include surgery, chemotherapy, immunotherapy, radiotherapy, the last of which plays an
important role in the integrated treatment. [3]. The use of radiotherapy in combination with
surgery can improve survival, i.e., extend the survival time of patients treated with neoad-
juvant or consolidation radiotherapy [4, 5]. Concurrent chemoradiotherapy has become a
standard treatment option for many cancers, such as locally advanced non-small cell lung
cancer, for which it is the primary curative treatment. [6]. With the advent of immunother-
apy, the pairing with radiotherapy, including optimal dose fractions, is under active investi-
gation.

Several studies have demonstrated that radiotherapy and immunotherapy can have poten-
tially synergistic effects [7, 8]. The PACIFIC study, a milestone in immunotherapy, estab-
lished the status of consolidation immunotherapy following concurrent chemoradiotherapy
[9]. Radiotherapy can attenuate immune resistance, induce the release of TGF-B, and the
upregulation of PD-L1 expression as well as the reprogramming of the immune microenvi-
ronment [7, 10]. At the same time, immunogenic cell death due to radiotherapy can promote
the release of cytokines such as interferons, tumor necrosis factor-o, Interleukin-1 and In-
terleukin-6, etc [11]. Based on some of these findings, several clinical trials incorporating
radiotherapy and immunotherapy have been designed (e.g., PACIFIC-4 NCT03833154 and
ISABR NCT03148327).

An increase of radiotherapy efficacy will not only improve the outcomes of patients, but
also gives patients more options, such as the opportunity to receive surgery for patients who
are treated with neoadjuvant radiotherapy, and improve the effectiveness of the multidisci-
plinary synergistic treatment model. In addition, radiotherapy gives hope to patients who
are unable to receive other treatment modalities. In the Netherlands, for example, with the
use of stereotactic ablative body radiotherapy (SABR), the proportion of untreated elderly
lung cancer patients is gradually decreasing and, accordingly, survival is increasing [12].

Therefore, with the development of innovative treatment techniques, options and combina-
tions, radiotherapy continues its important role in the treatment of cancer.

1.2 Precision medicine in radiation therapy

While the value of radiotherapy is clear, it also presents challenges. If radiotherapy can be
used wisely to maximize its value, it can improve patient prognosis and reduce patient pain
and treatment costs. Conversely, if treatment decisions are not made appropriately, for ex-
ample, if the estimated efficacy of the treatment is far from the actual outcome, it will not
only fail to improve the prognosis, but also impact other interventions. Specifically, it may
delay the intervention of other therapies or prevent the immediate use of systemic therapy
due to side effects of radiation therapy [13]. Therefore, it is crucial to improve the targeting
of radiotherapy, i.e., to precisely select patients suitable for radiotherapy and to implement
tailored radiotherapy regimens.
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Precision medicine is not a recent novel concept [14], but it is still relevant in modern times
and has practical implications that require dedicated research to complete and refine its
framework. In the field of radiotherapy, precision medicine is widely recognized and accept-
ed, especially with the emergence of novel technologies, and known as precision radiother-
apy [15]. The aim of precision radiotherapy is to give the optimal treatment regimen to each
patient, based on individualized conditions. As shown in Figure 1, precision radiotherapy
is achieved by combining it with other treatment modalities to develop a personalized care
plan with appropriate radiotherapy techniques, ultimately improving the patient’s prognosis
and reducing the side effects of the treatment(s). One of the elements that make this concept
possible is a variety of biomarkers that reflect information about a patient’s tumor and/or
normal organs and thus predict clinical endpoints such as survival and toxicities. [16].

* Age ®Surgery + RT
Clinical * Stage 0= 100 ]=]3) 8 * Chemotherapy +RT
predictors * Pathology MOdallty *RT + Immunotherapy

* Panomics * Hyper/hypo-fraction
¢ Radiomics * Photon/Proton

Biomarkers [SrSuss RS LT L (VRT/VMAT/TOMO/ Cyber

Improving Reducing
prognosis toxicity

Figure 1. Precision radiotherapy requires predictors from different origins to help make
clinical decisions and treatment strategies, and the ultimate goal of precision radiotherapy is
to improve prognosis and reduce toxicity.

Panomics is an important class of biomarkers on which numerous researchers have fo-
cused their work [17, 18]. With the application of next-generation sequencing technology,
many exciting genomics studies have emerged [19]. In addition, cytokines, immune mi-
croenvironment-related markers, proteome and metabolome have also been shown to have
prognostic roles and guiding individualized treatment [20]. The estimated radiation dose to
immune cells has also been demonstrated to correlate with the overall survival of patients
treated with radiotherapy [21]. However, a limitation of these panomics biomarkers is that
most of them are difficult to obtain, i.e., by invasive means and at high cost.

One of the main research questions of this thesis is: Is it possible to develop low-cost bio-
markers that can be accessed quickly and non-invasively to assist in clinical decision mak-
ing?



1.3 Radiomics and Image-based biomarkers

Radiomics, as a non-invasive method to extract quantitative features from medical imag-
es, was proposed in 2012 [22]. On the one hand, radiomics can reflect some of the same
information as the semantic features obtained by physicians. On the other hand, radiomics
contains some information that is not available to the naked eye. Radiomics are divided
into two categories, one is handcrafted features, i.e., already predefined by mathematical
formulas, and the other is deep learning features, i.e., features automatically extracted by
models constructed from convolutional neural networks and other means, which have no
fixed formula and definition [23]. The steps to build a radiomics model from a technical
point of view are roughly divided into region of interest definition, preprocessing, feature
extraction, and model building. Thus, radiomics, in contrast to panomics, contains not only
image-based biomarkers, but also models, or so-called signatures, built on the biomarkers.
[24]. As a result, radiomics is more accessible, reusable, cost effective, and in most cases
does not require additional patient examinations. More importantly, it can be combined with
traditional clinical predictors, and panomics, etc., without mutual exclusivity [25]. It is cur-
rently considered as a promising technology to assist/guide clinical decision making.

Improvements in radiotherapy techniques are always accompanied by advances in imaging
[26, 27], and a large amount of imaging data is acquired throughout the management of
radiotherapy patients. Medical imaging, such as diagnostic CT, MRI and PET, is included
in the pre-treatment diagnosis of most patients. During radiotherapy, planning CT/MRI and
cone beam CTs are obtained. After radiation therapy, patients are followed up with regular
imaging examinations. Therefore, radiomics is a worthwhile research area for the field of
radiotherapy.

There has been a large amount of radiomics studies in the field of radiotherapy [28]. In the
case of lung cancer, for example, studies on radiomics cover almost every pathological type
and every stage. As mentioned above in the definition of precision radiotherapy, most of
the studies are aimed at improving prognosis and reducing the incidence of side effects [29,
30]. These inspiring studies give researchers confidence and demonstrate its potential for
application. However, throughout these studies there are also some issues and challenges
that need to be addressed. The first is the uneven standard of radiomics research, which is
mainly due to the lack of a corresponding quality evaluation system [31, 32]. Therefore,
there is a need to develop methodological evaluation criteria for radiomics research
(Chapter 2) based on the existing quality assessment standards. And based on these meth-
odological evaluation criteria, the published studies should be evaluated to have an objec-
tive assessment of the current stage of radiomics research. Most studies currently include a
small amount of data (around 50-200 patients) [28, 33], and in our experience, we consider
this lack of data to be a major obstacle to building clinical hypothesis models. As a result,
real-world research does not really live up to the “big data” vision. The reasons for this
come from a variety of sources, including inadequate data storage and management; the
amount of data available for a particular clinical problem is drastically reduced after rigor-
ous screening based on inclusion and exclusion criteria. A research question in this thesis is
thus: Is it possible to perform sample expansion / augmentation (Chapter 3) by technical
means to meet the data requirements of radiomics studies?



1.4 The need for radiomics and image-based biomarkers in predicting
the prognosis and toxicity of radiotherapy

From the clinical perspective, most of the current radiomics studies are closely related to
clinical needs and have practical application prospects [34], but there are still some details
that are worth exploring. For early-stage NSCLC patients who do not wish to undergo sur-
gery and for those who are medically inoperable, SBRT has become the standard of care. It
is well tolerated and provides high rates of local control [35]. Nevertheless, distant failure
in early-stage patients is common. Distant failure is highly correlated with poor prognosis,
and for patients with distant failure, systemic therapy, such as chemotherapy or tyrosine
kinase inhibitor (TKI)-targeted therapy, can help improve prognosis. Therefore, there is a
need to develop a biomarker to effectively predict distant failure in early-stage patients
treated with SBRT (Chapter 4) and to guide physicians on appropriate treatment for high-
risk groups.

For locally-advanced lung cancer, curative radiotherapy is one of the main treatment modal-
ities. However, there is a large variation in the survival of patients who receive radiotherapy.
Therefore, the identification of biomarkers predicting the prognosis of these patients is
relevant and crucial for the radiotherapy field (Chapter 5) with which more attention can
be given to high-risk patients. On the other hand, because radiotherapy is a double-edged
sword, radiation pneumonitis (RP) [36] is a major toxicity of lung cancer treated with ra-
diotherapy. RP is a non-infectious pneumonia, induced by radiation, that reduces the quality
of life of patients and can be fatal in severe cases. It is not uncommon for RP to occur, es-
pecially in patients with locally advanced lung cancer. Robust and reproducible prediction
models that could estimate the risk of developing RP after lung RT (Chapter 6 and 7)
would be of tangible clinical value. And for those patients at high risk of developing RP,
prophylactic medication and active vigilance could be indicated.

1.5 Aim and outline of this thesis

The overall aim of this thesis is to use radiomics to assist in clinical decision-making re-
garding prognosis and toxicity.

Following this introduction, this thesis assesses the quality of published radiomics articles
and presents a methodological assessment checklist (Chapter 2), introduces a data augmen-
tation method based on a deep learning approach (Chapter 3). The predictive power of ra-
diomics for lung cancer prognosis (Chapters 4-5) and radiotherapy-related toxicity (Chapters
6-7) are also explored and evaluated with prospective or/and multi-institutional datasets.
Finally, I discuss the challenges and prospects of radiomics (Chapter 8). The outline of this
thesis is summarized in Table 1.

Chapter 2 proposes an appraisal matrix with 13 items to assess the methodological quality
of radiomics studies. Published studies are also evaluated, using esophageal cancer as an
example.

Chapter 3 uses a dual discriminator super-resolution generative adversarial network to gen-
erate synthetic ground glass nodules that have the potential to become lung cancer. Radiom-
ic features were extracted from both the generated and real nodules, and these features were
compared.



Chapter 4 uses PET- and CT-based radiomic features to predict the risk of distant metasta-
ses in patients with early-stage lung cancer who underwent SABR.

Chapter 5 utilizes radiomics features extracted from both normal lung tissue, as well as tu-
mor tissue for prognosis prediction of patients with locally advanced Iung cancer.

Chapter 6 combines radiomics, dosiomics and clinical parameters to predict radiation
pneumonitis and compares it with the benchmark models.

Chapter 7 uses CT images and radiation dose images to predict radiation pneumonitis and
uses deep learning techniques to make the model applicable to groups with different dose
patterns without the need for complex retraining.

Chapter 8 discusses the main findings of this thesis and reflections on the results. The lim-
itations of the current radiomics research are described, and the future direction of radiom-

ics in radiotherapy is prospected.

Table 1. The chapters in this thesis.

Section Chapter  Title Main finding
Introduction Chapter 1 Introduction of the thesis
Basic research  Chapter 2 Methodological quality of machine learn- Methodological
in radiomics ing-based quantitative imaging analysis studies evaluation checklist
in esophageal cancer: a systematic review of is presented.
clinical outcome prediction after concurrent
chemoradiotherapy
Chapter 3 Generation of synthetic ground glass nodules us- GAN method can
ing generative adversarial networks (GANs) generate synthetic
images.
Biomarkers of Chapter 4 A PET/CT radiomics model for predicting dis- CT-based combined
prognosis tant metastasis in early-stage non-small cell lung with PET-based
cancer patients treated with stereotactic body radiomics can effec-
radiotherapy: A multicentric study tively predict DM.
Chapter 5 Combining tumor radiomics features and whole- The role of lung

lung radiomics features to predict prognosis
in locally advanced non-small cell lung cancer
treated with curative radiotherapy

tissue cannot be
ignored when pre-
dicting OS in lung
cancer by radiomics.




Biomarkers of Chapter 6 Radiomics and dosiomics signature from whole

toxicity lung predicts radiation pneumonitis: a model
development study with prospective external val-
idation and decision-curve analysis

Chapter 7 Computed tomography and radiation dose im-
ages-based deep-learning model for predicting
radiation pneumonitis in lung cancer patients af-
ter radiation therapy: A pilot study with external
validation

Dosiomics performs
better than the DVH
metric in predicting
RP.

Deep learning ap-
proach can help to
apply the model to
different cohorts.

Discussion Chapter 8 Discussion and Future Perspectives

Abbreviation: GAN, Generative Adversarial Network; DM, distant metastasis; OS, overall

survival; DVH, dose-volume histogram; RP, radiation pneumonitis.
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Abstract

Purpose Studies based on machine learning-based quantitative imaging techniques have
gained much interest in cancer research. The aim of this review is to critically appraise the
existing machine learning-based quantitative imaging analysis studies predicting outcomes
of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA
guidelines.

Methods A systematic review was conducted in accordance with PRISMA guidelines.
The citation search was performed via PubMed and Embase Ovid databases for literature
published before April 2021. From each full-text article, study characteristics and model
information were summarized. We proposed an appraisal matrix with 13 items to assess the
methodological quality of each study based on recommended best-practices pertaining to
quality.

Results Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints
included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy
with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide
variation in quality. A total of 30 studies published within the last five years were evaluated
for methodological quality and we found 11 studies with at least 6 “Good” item ratings.

Conclusion A substantial number of studies lacked prospective registration, external val-
idation, model calibration, and support for use in clinic. To further improve the predictive
power of machine learning-based models and translate into real clinical applications in
cancer research, appropriate methodologies, prospective registration and multi-institution
validation are recommended.

Keywords: Quantitative imaging analysis; Esophageal cancer; Concurrent chemoradiother-
apy; Clinical outcomes; Methodological assessment
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Introduction

Esophageal cancer (EC) is the seventh most common malignancy, and the sixth most com-
mon cause of cancer-related death worldwide [1]. Prognosis for EC patients remains poor to
date, with a five-year survival chance of 20% [2]. Although the histopathology and disease
characteristics differ between eastern and western countries due to genetic variations, con-
current chemoradiotherapy (CCRT) plays an important global role in the treatment of EC [3].

The CROSS trial was a landmark study that established the role of neoadjuvant chemora-
diotherapy (nCRT), and laid the foundation of nCRT as the standard of care for resectable
EC [4]. While CROSS demonstrated that nCRT improved average survival among EC
patients and side-effect rates were acceptable, it remains clinically meaningful to select pa-
tients that will personally benefit from nCRT versus their probable side effects. Definitive
chemoradiotherapy is standard of care for unresectable EC [5]. However, it remains difficult
to predict individual outcomes (e.g., treatment response) of any type of CCRT due to tumor
heterogeneity between subjects and complex tumor microenvironments within.

Technical advances in radiation delivery such as modulated radiotherapy, image-guidance
and scanning proton beams have vastly improved target coverage and avoidance of adja-
cent healthy organs. It is practically impossible to entirely avoid some unintended damage
to nearby organs, which results in radiotherapy complications. A way to predict treatment
response and side effects at the earliest step of CCRT works hand in hand with radiotherapy
technology and new drug therapies, and this is essential to guide individually personalized
treatment, to improve the survival likelihood and to retain high quality of remaining life for
EC patients.

The spatial and time heterogeneity of solid tumors at the genetic, protein, cellular, micro-
environmental, tissue and organ levels makes it difficult to accurately and representatively
characterize a tumor using only invasive sampling methods, such as pathology and molec-
ular imaging examination. Quantitative analysis based on volumetric non-invasive imaging
(i.e. radiomics [6-8]) suggests the attractive hypothesis of measuring whole-tumor hetero-
geneity in vivo. Radiomics makes it feasible to characterize whole-tumor heterogeneity and
also monitor tumor evolution over time.

Radiomics requires large volumes of clinical imaging data to be converted into a vast
number of numerical features with the assistance of computers, which can then be mined
for clinically actionable insights using high-dimensionality machine learning methods.
Radiomics includes features that are defined a priori by human operators (i.e “handcraft-
ed” features) as well as purely data-driven features arising via end-to-end training of deep
learning neural networks. A number of key studies and evidence syntheses have shown that
radiomics has potential to recognize heterogeneity in primary tumors and/or lymph nodes in
a variety of cancers with clinical applications for diagnosis and prognostication [9-12].

Within EC, radiomics is presently an active area of original research (e.g., in [13, 14]), but
at time of writing there has been no comprehensive PRISMA-compliant (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) systematic review of radiomics
specifically addressing methodological robustness and clinical relevance of radiomics for
patients with EC treated by CCRT. In this systematic review, we present to the reader a
cohesive critical appraisal of research up to date, and a summary of clinical relevance of ra-
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diomics as a potential tool for predicting (i) treatment outcomes, (ii) longer term prognosis
and (iii) CCRT treatment-related toxicity.

Methods
1. Eligibility Criteria

We conducted this systematic review from May to June 2021, in accordance with PRISMA
guidelines [15]. In this study, we included only primary observational studies published
between May 2011 and June 2021 using either handcrafted and/or deep learning-based ra-
diomics features extracted from clinical imaging - specifically computed tomography (CT),
magnetic resonance (MR) and positron-emission tomography (PET) - to develop clinical
prediction models on human primary EC subjects treated by CCRT. Articles eligible for
critical appraisal had to be published as full texts in peer-reviewed journals in the English
language within the last 5 years.

2. Exclusion Criteria

Diagnostic accuracy studies evaluating tumor differentiation grade or the diagnosis of
lesions were excluded. Studies that exclusively addressed modelling on non-radiomic fea-
tures, such as only standardized uptake value (SUV), clinical parameters, and/or dosimetric
parameters, were excluded. Clinical outcomes that were primarily associated with surgery
alone, radiotherapy alone, or chemotherapy alone were excluded. Case reports, other (sys-
tematic) reviews, conference abstracts, editorials and expert opinion papers were also ex-
cluded.

3. Search Methods

An initial citation screening in PubMed and EMBASE electronic databases was performed
on 9 May 2021. We used a search string containing Medical Subject Headings (MeSH) or
Emtree terms for ‘esophageal cancer’ combined with other text words that related to out-
comes, prediction, model, radiomics (including textural analyses and quantitative analyses),
and artificial intelligence. The search filters used are provided in the Supplementary Materi-
al Table S1. Articles were also included for screening based on prior knowledge of the au-
thors. We searched the reference section of reviewed papers for any additional articles that
may have been missed in the electronic databases.

4. Selection Process

Two authors (Z.Z. and L.W.) worked independently on screening PubMed and EMBASE
records, based on titles and abstracts alone. Candidate articles were combined then any dis-
agreements were resolved by consensus; a third author (Z.S.) was available for adjudication
but was not required. Full text of the candidate articles were obtained using an institutional
journal subscription, and examined in detail for eligibility against the aforementioned crite-
ria. Only full-text articles unanimously deemed eligible for review were then included for
detailed data extraction and critical appraisal.

5. Data Extraction

Two authors (Z.S. and Z.Z.) independently performed extraction of publication details and
clinical outcomes. From the eligible articles, information pertaining to general study char-
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acteristics were extracted (author, publication year, primary cancer type, imaging protocol,
treatment modality, sample size) together with radiomics feature-related descriptions (deep
learning-based or/and handcrafted features, software used for feature extraction, and wheth-
er radiomics features were combined with non-radiomics predictors). Model characteristics
and primary reported findings of the included studies were also extracted and summarized,
which included use of retrospectively/prospectively collected patient personal data, the col-
laborating institution(s), sample sizes used to build the model, number of radiomics features
initially considered versus that retained in the final model, type of model assessed, the re-
ported performance metrics, and results of model calibration if given.

6. Methodological robustness

Classical evaluation tools such as Quality in Prognostic Studies (QUIPS) for prognostic
studies [16], Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) for di-
agnostic tests [17], and Prediction model Risk Of Bias ASsessment Tool (PROBAST) [18]
were not specifically designed for high-dimensional predictive modelling studies such as ra-
diomics. Lambin et al. [19] proposed a radiomics quality score (RQS) that assigned “points”
to various steps in radiomics modelling workflow, and such RQS evaluation approach has
been previously used [20-24] in reviews. However, specialist evidence synthesis commu-
nities (such as the Cochrane Collaboration), advise that a single numerical score may not
be appropriate to capture a complex question such as overall methodological robustness of
a diagnostic/prognostic model. Other reviewers have also used Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [25] type
as a surrogate measure for quality, but it must be re-emphasized that TRIPOD is a model
reporting guideline, not in fact a critical appraisal checklist.

In this work, we have applied an assessment metric guided by the RQS together with find-
ings of other radiomics methodological evaluations [26, 27]. Due to the rapid changes in
machine learning and radiomics expertise in the relevant scientific community, we limited
the methodological quality appraisal to the included studies published within the past five
years. The appraisal was initially performed independently by two authors (Z.S. and Z.Z.)
then combined. Disagreements were resolved by consensus, and an experienced senior
author (L.W.) adjudicated on differences of evaluation. Each methodological criterion was
provided a consensus rating of “good”, “moderate” or “poor”, based on 13 specific quality
criteria :

1. It would have been ideal if a detailed study protocol with its statistical analysis
plan had been prospectively registered in an open access registry prior to commencement.
Studies that used prospectively collected patient data was rated as “moderate” since the
study plan would probably have been registered during internal ethical review. Absence of
any of the above was deemed “poor”.

2. For reproducibility and comparison between institutions, it is important to provide
detailed information that documents the image acquisition conditions. Typical information
might include scanner make/model, scan protocol, enhanced/unenhanced CT scans, tube
voltage, tube current, slice thickness, voxel size, etc. appropriate to the imaging modality
examined. Partial or incomplete information was rated “moderate”, but its absence in text
or supplemental was deemed “poor”.

3. It is widely known that digital image preprocessing steps can strongly influence
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the quantitative image analysis results that follow. Studies that give detailed information to
reproduce the pre-processing steps (typically includes filters for de-noising, intensity nor-
malization, voxel resampling, etc.). Partial or incomplete information was rated “moderate”,
but its absence in text or supplemental was deemed “poor”.

4. The method by which the region of interest (ROI) for analysis has been defined can
also influence the generalizability of radiomics models. For instance, automated or semi-au-
tomated delineation of organs may be more consistent than manual delineation. A “good”
score was given for full information on ROI delineations, including review by experienced
experts and/or any inter-observer sensitivity checks. Partial information or no information
were scored “moderate” and “poor”, respectively.

5. Radiomics studies typically consider a massive number of features relative to the
sample size and the event rate of the outcome of interest, therefore feature selection / di-
mensionality reduction steps are generally needed to reduce risk of overfitting. We deem
that reproducibility and repeatability tests of feature stability, and/or unsupervised feature
selection methods (such as principal components analysis or clustering), prior to applying
supervised learning with the outcome of interest, would be “good”. Partial documentation
or inadequately justified methods were deemed “moderate”, otherwise “poor” when there
was a high risk of either over-fitting or false positive association.

6. Potential correlations should be examined between radiomics and non-radiomics
(other biological) features, since this can identify possible confounders and justify the add-
ed value of imaging features. Adequeate checks for possible correlations are deemed “good”,
insufficient or limited checks as “moderate”, or if such checks were not attempted then
“poor”.

7. Since the general idea of a prognostic model is to permit stratification of patients, it
is important for studies to provide clear justification for defining risk groups, including how
risk thresholds and optimum operating points had been determined. Stratification based on
clinical argumentation, or agnostically using median or standard cutoffs (e.g. class proba-
bility of 0.5) were deemed “good”. Use of optimally “tuned” cutoffs or deriving risk groups
as part of the model optimization step can introduce some loss of robustness, and were thus
deemed “moderate”. No justification or lack of documentation in this regard were scored as
“poor”.

8. As emphasized by TRIPOD, model performance should be evaluated with an ex-
ternal validation cohort, ideally with fully independent researchers, scanners, delineations,
etc. Model performance metrics with strong support in external validation (TRIPOD type
IIT) would have been rated as “good”. Validation by non-random split from the training co-
hort (eg by time, location, or some other pre-treatment characteristic) or by multiple repeat-
ed random sampling (k-folds, bootstrapping) were rated “moderate”. However, one-time
random sampling or no report of model validation at all were rated as “poor”.

9. Models utilizing radiomics features should be able to show added value when
compared against, or combined with, clinical and/or non-radiomics models. We defined the
presence of sufficient description about comparison with clinical/non-radiomics model or
holistic models as “good”, inadequate comparison as “moderate”, and otherwise as “poor”.

10. Model performance should be reported in terms of appropriate discrimination met-
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rics, such as c-index for time-to-event models and AUC for binary classification models. A
study was deemed “good” if it reported discrimination metrics for training and test dataset (or
other related metrics) together with confidence intervals and statistical significance. Partial
information about discrimination was deemed “moderate”, or if no information was provid-
ed then “poor”.

I1. As recommended in TRIPOD, model calibration should also be reported in ad-
dition to its discriminative performance. A “good” study provided a test of calibration or
goodness-of-fit results, together with a calibration figure. Partial information about calibra-
tion was deemed “moderate”, or if no calibration results were given then “poor”.

12. For ease of implementation, studies should discuss the potential clinical utility
of their model(s) and provide some justification for use, such decision curves analysis or
cost-benefit analysis. We defined the presence of an estimated clinical utility as “good”, par-
tial or inadequate analysis as “moderate”, and otherwise as “poor”.

13. Studies should report parameters of their model(s) in ample detail to permit inde-
pendent external validation. Those studies rated “good” provided the reader with regression
coefficients for each feature or otherwise made it possible to calculate risk scores, such
as making their model(s) accessible via an online repository or by providing a calculation
aid (e.g. a nomogram). Studies that only reported features selected in the final model were
deemed “moderate”, however studies that did not provide adequate information to inde-
pendently validate the model were rated “poor”.

7. Objectives

The primary objective was to estimate the overall ability of radiomics models, or models
containing some radiomics information, to predict clinical outcomes that are of particular
clinical interest in CCRT for EC. This gives us a picture of the current status of clinical
readiness of radiomics as a potential tool for clinical decision-making and/or possible incor-
poration of radiomics-powered models into holistic decision support systems. Secondly, we
included a critical appraisal of reported model performance against the methodological ro-
bustness (i.e. internal validity) because this is key for understanding its clinical applicabil-
ilty, and such robustness informs the degree of wide generalizability (i.e. external validity)
that might be expected from a reported model.

Results

1 Literature search results

A PRISMA flowchart diagram illustrating article selection is shown in Figure 1. A total
of 384 records were identified based on the specified search terms (MEDLINE/PubMed
n=196, EMBASE n=187, and one was found in the cited references of an included article).
After duplicates removal, there were 245 articles available for screening. Applying the se-
lection criteria led to 52 studies for full-text screening. At the end, a total of 37 articles were
deemed eligible [28-64], including 30 articles within five years [28-38, 41-43, 45, 47-50,
52-54, 57-64]

2 Overall characteristics of included studies
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Table 1 and Supplementary Material Table S2 summarizes the general characteristics
across all included studies. The majority (20 of 37) of studies combined both esophageal
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAD) patients. There
were 13 studies conducted exclusively on ESCC patients but only two studies on EAD pa-
tients alone. Two other studies did not actually mention the histopathology type of the co-
horts studied.

The majority of imaging modalities mentioned in the retrieved studies were PET (20/37)
[28, 30, 34-40, 44-47, 49, 50, 52, 55, 56, 59, 61], CT (16/37) [29, 31-33, 41, 43, 48, 51, 53,
54, 57, 58, 60, 62-64], and one cone beam CT (CBCT) [42]. Although the search criteria
included MRI, we did not locate any eligible study in our search.

—
Records identified through Additional records identified from:
5 database searching: Citation searching (n = 1)
w® MEDLINE(Pubmed) (n = 196)
= EMBASE (Ovid) (n = 187)
t
)
=
Y \ 4
Records after duplicates removed
(n = 245)
80
£
&
g A 4
n Records screened N Records excluded
(n =245) > (n=193)
)
—
v Full-text articles excluded
> (n = 15), with reasons:
5 Full-text articles assessed 1. Only use SUV related
i) for eligibility parameters (n=9)
w (n=52) 2. Study protocol (n=1)
3. Investigating the stability
of radiomic features (n=1)
4. Diagnosis of radiation
) pneumonitis (n = 1)
5. Using the short diameter
A 4 X
of the largest LN as predictor
E Studies included in (n=1)
E] qualitative synthesis 6. Radiotherapy alone (n = 1)
E (n=37) 7. The endpoint is mainly
related to surgery (n=1)

—

Figure 1. Flowchart of the literature search and study selection (PRISMA 2009 [65]).

More than half of the included studies (19/37) addressed nCRT [28-30, 33, 35, 38, 40, 43-
47, 49, 52, 54, 56, 61-64]. The majority of patients included in 13 studies were treated
specifically with radical CCRT [31, 32, 36, 39, 41, 42, 48, 50, 51, 53, 55, 58, 59]. In three
studies, most patients were treated with CCRT, but the rest received a variety of different
treatments depending on their situation [34, 57, 60]. There was one study that did not speci-
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fy the intent of CCRT [37].

The number of patients reported in the included studies ranged from 20 [40, 44, 52, 56] up
to 464 [60]. Three studies utilized deep learning [46, 53, 64] and all other studies used only
handcrafted features with Cox proportional hazards, logistic regression (LR), linear regres-
sion, support vector machine (SVM) and random forest (RF) models.

There were a wide range of software tools used to extract radiomics features. The in-house
codes were predominantly generated in Matlab and Python. The most commonly used [31,
33, 41, 42] free and open-source software package was 3D Slicer [66], which allowed for
manual or semi-automatic ROI delineation followed by radiomics features extraction using
its Radiomics [67] plug-in. Studies using Python and 3D Slicer were almost exclusively
based on the pyradiomics library [67] developed by Griethuysen et al. Five studies investi-
gated exclusively radiomics features [29, 32, 46, 53, 57], while the other studies examined
a combination of radiomics with non-radiomics features (most commonly, clinical factors).
In this review, classical PET features were defined as intensity-related metrics such as stan-
dardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis
(TLG). There were 8, 7 and 10 studies that combined radiomics with clinical features [33,
41, 43, 47, 51, 54, 58, 60], classical PET features [39, 44, 52, 55, 56, 59, 61], and both
clinical and classical PET features [30, 34-38, 40, 45, 49, 50], respectively. Among more
recently published studies, three included genes as features [28, 63, 64], two included clini-
cal factors with dosimetric features [42, 48], one included histopathologic features [62], and
one used a combination of clinicopathological, dosimetric, and hematological features [31].

3 Overall characteristics of included studies

The model results from the included studies are summarized in Table 2 and additional de-
tails added in Supplementary Material Table S2. Patient data were mostly retrospectively
extracted (31/37). Only four studies re-analyzed prospectively collected data, which all
originated in the CROSS clinical trial [35, 45, 47, 49]. Three studies used both prospective
and retrospective data, where the prospective data were also re-analyzed from other clinical
trials [35, 47, 63]. One study did not describe if the data used was retrospectively or pro-
spectively derived [46].

There were few multi-institute studies in general. The majority of studies (27/37) were
performed within a single institution. Nine studies incorporated data from two distinct insti-
tutes, and one study incorporated data from three distinct institutes.

Study endpoints were broadly classified into three categories: (1) prognosis (9/37), such as
overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS), (2)
treatment response (20/37), such as prediction of complete/partial response after radical
CCRT, and pathology complete response (pCR) after nCRT, and (3) others, such as predic-
tion of lymph node status [47] and radiation pneumonitis (RP) [31, 42]. There were five
studies that reported both prognosis and treatment response prediction [30, 32, 37, 50, 59].

The number of events of the included studies ranged from 9 [52] to 113 [34], and the num-
ber of radiomics features in the final model ranging from only one [60, 62] up to 40 [43].
Overall, the number of events were small relative to the number of selected features. The
number of positive events from studies predicting treatment-related side effects were over-
all much smaller than those predicting prognosis, which was consistent with real-world in-
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cidences.

The most frequently used model was Cox regression, followed by logistic regression. The
most widely used machine learning approach was SVM (n=7) but there was high hetero-
geneity in mathematical procedures. The deep learning architectures used were artificial
neural networks (ANN) in one study [53], and convolutional neural networks (CNN) in two
studies [46, 64], respectively.

Model performance had been summarized according to different study endpoints. For prog-
nosis, some studies grouped patients by clustering only. Studies that reported the discrim-
inative performance of the models had c-indices ranging from 0.64 [60] to 0.875 [63], and
AUCs ranging from 0.69 [43] to 0.918 [63] in the training set. As expected, the discrimina-
tive performance overall decreased in the validation/test cohort, with c-indices ranging from
0.57 [60]-0.719 [63] and AUCs between 0.61 [43, 60] to 0.805 [57] in the validation/test
set.

For treatment response, reported AUCs were from 0.685 [28] to 1.0 [40] in training set but
decreased overall in the validation/test sets (AUCs 0.6 [53] to 0.852 [29]). AUCs in the
training and validation sets for the prediction of lymph node metastases study were 0.82 and
0.69 [47], respectively, and the AUCs in the validation set for the prediction of RP study
were 0.921 [31] and 0.905 [42]. Except for RP, the validation set AUCs were roughly in the
range of 0.6-0.8. Only six studies performed model calibration, four of which used the Hos-
mer-Lemeshow test for goodness of fit [28, 45, 47, 49].
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4 Methodological quality of the included studies

Given the rapid advances in Al tools and radiomics expertise, we restricted the assessment
of methodological quality of recent radiomics studies published in the last five years [28-
38, 41-43, 45, 47-50, 52-54, 57-64]. Table 3 provides an overview of the distribution of
methodological quality and reporting completeness of 30 recent studies. A detailed report of
quality assessment by the authors has been provided in Supplementary Material Table S3.

No study had been prospectively registered prior to commencement of the radiomics anal-
ysis. Among the 13 methodological items considered, around one-third of the studies re-
ported essential details about image acquisition settings (12/30 rated good), digital image
preprocessing (only 7/30 rated good) and how ROIs were derived (11/30 rated good).

In terms of feature selection, 11/30 studies evaluated repeatability/reproducibility of in-
dividual features and/or performed well-justified dimensionality reduction prior to fitting
the final model. Ten studies tested the relationship between radiomics and non-radiomic
features; out of which 4 showed an association between radiomic features and PET uptake
measures [36, 50, 59, 61], another 4 showed the relationship between radiomics and gene
expression [29, 62-64], and the next 2 evaluated correlation between radiomics and clinical
features [57, 60].

For elements related to reporting model performance, discrimination metrics in training and
validation, with confidence intervals, were mostly reported well (16/30 studies), but fewer
studies also included a check for model calibration (12/30 studies). Half (15/30 studies)
defined clinically-appropriate risk groupings and four studies used median [32, 58] or quar-
tiles [34, 35] as risk group cut-offs, but two studies did not specify how risk groups were
obtained [36, 60]. A few (5/30 studies) used ROC curves to obtain optimally-tuned cut-offs
(eg Youden index).

For model validation, we found 10/30 studies used multi-institutional data, and 9/30 used
internal cross-validation with some form of random splits of data, of which 5/30 studies
used bootstrap methods ranging from 1000 to 20,000 replicates.

In regards to clinical impact, relatively few studies (8/30) estimated the clinical impact of
their models, including use of decision curve analysis. Only 3 studies reported on all of
model discrimination, model performance and clinical utility in the same time [31, 42, 63].
The majority of radiomics studies (22/30) had been compared against non-radiomics mod-
els and/or constructed combined models.

As for documentation of the final prognostic model to a degree that permitted independent
external validation, only 16/30 studies were rated as good. One study failed to reported on
the features selected in the final model. However, none of these 30 studies made their mod-
els or analysis code available for download from an electronic repository.

We further observed that methodological aspects among recent studies for predicting prog-
nosis was generally somewhat better than for studies aiming to predict treatment response.
Eleven studies were rated “good” for at least 6 out of 13 assessment items, whereas five
studies of PFS or/and OS [35, 36, 57, 60, 63], four studies predicted treatment response (pCR
after nCRT) [29, 38, 54, 64], and two studies predicting RP [31, 42] were of similar ratings.
The best rating among these studies was scored “good” for 11 out of 13 items [64].
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Figure 2 visually summarises the headline reported discrimination metric (AUC or c-indi-
ces) with the number of methodological items rated “good” in this review. Additionally, we
have colour-coded the dots to correspond to the TRIPOD type of study. A small number of
methodologically strong studies near the top of the figure suggest a discriminative perfor-
mance around 0.8 to 0.92 for radiomics prognostic models in EC, followed by a wider scat-
ter of performance metrics for models of lower methodological rigour ranging from 0.61 up
to 0.94. Interestingly, this overview found no models with a discriminative index lower than
0.6. The highest reported discrimination metric however coincides with a study of question-
able methodological robustness. Overlaid above this, there is a clear trend of TRIPOD type
3 or 4 sudy designs obtaining higher methodological robustness ratings than TRIPOD type
1B, 2A or 2B, with TRIPOD type 1A study designs tending towards the lower methodolog-
ical ratings. A detailed description of different types of prediction model studies covered by
TRIPOD statement can be found in Reference [68].
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Table 3. Assessment of methodological quality of included studies.

‘ Correlations with non-radiomics biomarkers

|w o | Number of items rated good

—
—

2
<
g 3
5 5
NEIE R 2
=|e|g 2 2|3
2 HEHERHEREE
Number Reference % K § —§ & |8 § g g
2lelglsl 52|28 2|E|Els|2
ol alg|E =| € S|l °
2lal&|5|5]88lg| 2|52 2| 6
HEREEEEEIHEEEE
SRR EEEE R EEEE:
IR EEETEEE R
EE|E|la| - S|l>|o|Aal=|4a]..
1. Xic et al., 2021 [63]
2. Beukinga et al., 2021 [28] 0 0 00 0001
3. Hu et al., 2021 [64] 0000 090000
4, Wang et al,, 2021 [31] 00000 00000
. Li Yimin et al, 2020 [36] 00 | 0 900000
6. Xie et al., 2020 [58] 1000000000
7. Hu et al., 2020 [29] 00000 00000
8. Luo et al., 2020 [41] L) 0000 090
9. Li Yue et al., 2020 [54] 0000 O 0000
10. Zhang et al., 2020 [47] JDD:J:J
1. Du et al,, 2020 [42] 0000
2. Foley et al., 2019 [35] 000000
13. Xie et al., 2019 [57] L 00000
14, Wang et al., 2019 [60] 0000
1s. Chen et al., 2019 [30] 0000
16. Yan ctal., 2019 [32] 00001
17. Yangetal, 201933 @) 0 004
18, Jin et al., 2019 [48] ] o 0
19. Foley ctal, 2018 [34] @) 000
20. Laruc ctal, 2018 [43] @) 000
21. Beukinga et al., 2018 [49] ' L]r :_]r
2. Riyahi etal, 2018 [52] @) 0000 04
23. Paul et al., 2017 [37] 00 000000«
24. Desbordes et al., 2017 [50] u N J-ur ur
2s. Nakajoetal. 2017[59] @ | 000 000 0¢
26. Beukingactal.2017[45] @ 0000 0000
27. | wakasukietal,2017[62] @ @000 0O OO
28. Hou et al., 2017 [53] 9 0 0 0000
2. Yip ctal., 2016 [61] 0000 000 00
30. Rossum ct al., 2016 [38] o0 000 0000

Red circle: Poor rating, Yellow circle: Moderate rating, Green circle: Good rating.
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Discussion

This systematic review summarized the basic characteristics and the reported results of
radiomics studies predicting clinical outcomes after CCRT in EC, and assessed the method-
ological quality of recent studies. The included studies focused on the prediction of treat-
ment response and side effects to neoadjuvant and definitive CCRT, and prognosis. Predic-
tion models were constructed by using either handcrafted or deep learning-based radiomics
features. Although a few methodologically robust studies have reported promising results
and have demonstrated the potential to be adopted as clinical practice tools, the method-
ological quality of a sizable number of studies remains suboptimal. Future studies have sig-
nificant room for improvement in terms of more complete reporting of essential details of
the modelling work, more robust methods in construction of the model and better documen-
tation of the final model such that independent external validation can be easily performed.

The results of this review showed that more and more researchers are investigating radiom-
ics for prediction of nCRT response in EC. Most of these studies used pCR as an endpoint,
with AUC ranging from 0.74 [45] to 0.857 [28]. However, one of the most significant short-
comings is lack of independent validation. We think that more attention should be given to
testing the wider generalizability of the models through independent external validation.
In addition, the difference in radiotherapy and chemotherapy regimens used in studies will
also affect the probability of achieving pCR. Although some studies have combined clinical
parameters with radiomics, the effect of different treatment regimens on the predictive pow-
er of the final model has not yet been investigated in detail.

Li et al. [54] demonstrated radiomics combined with clinical factors has a superior discrimi-
native performance and a better goodness-of-fit than the clinical model. According to Van et
al. [38], the addition of comprehensive PET features improves the predictive power of the
model compared to using only clinical features. Based on the results of the studies included
in this review, it can be concluded that the predictive power of a multidimensional predic-
tive model is usually higher than that of a predictive model built using a single type of data.

Hu et al. [29] showed that peritumoral CT handcrafted features were less robust than the in-
tratumoral features, and the predictive power of the model could be improved by combining
peritumoral and intratumoral features. This study also included a radiogenomics analysis
to explain the association of peritumoral tissue with pCR from the perspective of immune
microenvironment. This result gives us an indication that the definition of ROI should be
further explored. Furthermore, Hu et al. [64] conducted a deep learning study that used the
same cohort of data to extract features by using six CNN models with AUCs in the range of
0.635-0.805, which demonstrated that deep learning-based radiomics also have the ability
to predict the response to nCRT.

Three other studies defined endpoints as greater than 30% reduction of tumor [48], Man-
dard grades 1-3 [62], and downstaging [61] and obtained moderate predictive efficacy (AUC
range was 0.689-0.78). We can see that a radiomics-based model can screen out not only the
patients who are very sensitive to nCRT, which refers to those who can achieve pCR, but
also the patients who have partial remission.

In countries such as China and Japan, clinical guidelines recommend concurrent chemo-
radiotherapy as the standard of care, but fewer patients in these countries receive this type
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of treatment in clinical practice compared to Western countries. The reason for this may be
related to the different tolerances and responses to side effects in different ethnic groups [69].
However, it might also be related to genetics, since a number of studies [70-72] revealed a
correlation between gene single nucleotide polymorphism and the intrinsic radiosensitivity
of lung to radiation. Therefore, if rare side effects associated with concurrent chemora-
diotherapy of the esophagus can be accurately predicted, it may be additionally helpful to
improve the treatment outcome and the quality of patient survival, as well as to assist in
clinical decision making.

Accurately predicting patient prognosis is still a challenging task, and some studies have
used radiomics for predicting endpoints such as OS, PFS, and DFS, but the results vary
widely, with C-index/AUC ranging from 0.57 [60] to 0.822 [50]. These studies used retro-
spective data, and one of the most fundamental problems is that the accuracy of follow-up
with prognosis as an endpoint cannot always be obtained. In general, the current studies for
prognostic prediction are pilot investigations, and adding more dimensions such as clinical
parameters and genetic information can improve the predictive power of model.

With our 13-point methodological assessment criteria, we must emphasise that we are not
proposing that some models are intrinsically “better” or “worse”. The primary purpose of
the critical appraisal was to understand which of these reported model results have a high
likelihood of being successful reproduced independently elsewhere, and thus have higher
change of wide clinical generalizability. Both reproducibility and generalizability are essen-
tial aspects of our estimation of methodological robustness.

It would have been ideal if data collection and a statistical analysis protocol of radiomics
modelling studies could have been prospectively registered, but there is presently no wide-
ly held consensus on where the such protocols or modelling studies might be registered in
advance. We recommend that biomedical modelling registries (e.g., AIMe registry [73])
should be given more attention by the radiomics community, so that there exists an opportu-
nity for collaboration, review and advice for improvement prior to commencing a radiomics
study.

The reviewed studies paid attention to imaging settings, ROI definition, discrimination
metrics and comparison of radiomics with non-radiomics predictors, however relatively
few studies gave the same degree of attentiveness to : (i) documenting image pre-process-
ing steps if any were used, (ii) clearly defining and justifying the clinical relevance of risk
groupings, (iii) testing model calibration and (iv) estimating the clinical impact of the mod-
el, for example by decision curve analysis. We recommend that additional attention be paid
to the aforementioned aspects by future researchers and journal editors.

Independent validation remains one of the key areas in which future radiomics modelling
studies in EC could be significantly improved; our review found that the vast majority (27/30
studies) comprised solely of single-institutional datasets. Reporting of selected features in
the final model together with regression coefficients would aid reproducibility testing of
such models. In cases where a regression model has not been used, we recommend that
models should be made openly accessible to download, or an online calculator of risk scores
should be provided, to allow other researchers to independently externally validate using
new datasets.

Adoption of standards and guidelines are expected to have an overall positive effect on
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widespread generalizability and external validity. If an option for prospective image col-
lection for radiomics study exists, we recommend fully standardized image acquisition and
reconstruction guidelines such as the EANM Research Limited (EARL) [74], but we also
acknowledge that (for the present time) the vast majority of images available for radiomics
study consists of retrospectively extracted data from routine care procedures. In addition to
standardizing radiomics feature definitions, the Imaging Biomarker Standardization Initia-
tive (IBSI) [75] advises reporting of patient handling, image acquisition, image pre-process-
ing, feature extraction, and model building, hence we also recommend this when reporting
on radiomics analyses.

Studies reviewed were consistent such that the event rate was low compared to the num-
ber of possible model parameters considered (before feature selection/dimensionality
reduction). This was especially true for models with treatment side-effects as the primary
outcome. Increasing the sample size and synthetically enhancing data diversity are two in-
tuitive approaches that may be considered in future. A growing number of domain general-
ization techniques are emerging from the deep learning field, such as domain adaptation [76]
and meta-learning [77] that could assist the latter approach. However, the more immediate
solution remains the former, and an option may be to make multi-institutional data publicly
accessible in a centralized repository such as The Cancer Imaging Archive (TCIA). Alterna-
tively, privacy-preserving federated learning [78] (also known as distributed learning) may
be a feasible solution that for modelling on private data between institutions without phys-
ically exchanging individual patient data. Federated learning has been shown to be feasible
in the radiomics domain [79, 80], and also for EC in particular [81].

Based on a small number of methodologically robust studies, we estimated the state of the
art prognostic performance for radiomics models in EC to be in the ballpark of 0.85. There
was indeed a correlation between our methodological assessment items with TRIPOD type
of study, which is in agreement with a systematic review in lung cancer [25]. While we
noted no studies published with a discriminative index below 0.60, we cannot at the present
moment conclude whether or not this is a sign of publication bias; to effectively do this,
we would need a prospective registry of modelling studies, as mentioned previously. This
has been the widely adopted standard for epidemiological clinical studies (such as random-
ized controlled trials) as a means of incentivizing research transparency and detecting the
presence of publication bias. Hence, we re-iterate our recommendation that the community
should come to a consensus about a prospective registry for biomedical modelling studies.

Only a small number of studies at the present time addressed deep learning-based radiom-
ics, however we would expect this number to grow rapidly in future. Different studies sug-
gest that discriminative performance of deep learning models are superior to models based
only on handcrafted features, however it remains difficult to interpret the significance of
deep learning features when applied to a specific clinical case. Explainable and interpretable
deep learning is presently an active area of technical development, and we have seen some
use of “attention mapping” (e.g., Grad-CAM [82]) to indicate which region of the image
appears to influence the discrimination strongly. Additionally research is also required to
determine the relationship between image-based features and biological processes that may
underpin the observed clinical outcomes.

We may note a number of limitations of the current systematic review that could poten-
tially be addressed in some future work. First, we were not able to perform a quantative
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meta-analysis due to the high heterogeneity of the mathematical procedures, even among
related types of clinical outcome. Instead, we attempted a visual synthesis of reported mod-
el performance versus methodological robustness and TRIPOD study design (see Figure
2). Secondly, we may have been able to detect more studies by searching in grey literature
for non-peer reviewed work, however we did not expect studies of high methodological
quality to appear from those sources. On the other hand, it may have been possible to de-
tect works where the model discriminative performance was between 0.5 to 0.6, whereas
anything below 0.6 appears to be absent in our eligible articles. Thirdly, while we made
our best possible attempt at evaluating methodological procedure with an objective criteria,
independent raters and then combined consensus, some residual amount of subjectivity and
debatable result of assessment may still persist; we have provided additional detailed notes
in the supplementary material regarding methodology and tried to make our evaluations as
transparent as possible. Lastly, we introduced some inclusion bias by only allowing full-
text articles in the English language. This was done for the purely pragmatic reason that all
authors of this review understood English, and that such selected material will be accessible
/ understandable to readers of the present review, should they wish to inspect the individual
papers by themselves.

Conclusions

We summarized the available studies applying radiomics in predicting clinical outcomes
of esophageal cancer patients who received concurrent chemoradiotherapy. Furthermore,
the methodological quality of the included studies were analyzed to further improve the
predictive power of radiomics and unlock the process of translation to clinical applications.
Due to the limitations of inappropriate methodologies, incomplete and unclear reporting of
information in radiomics model development and validation phases, the clinical application
of radiomics has been impeded. The current systematic review pointed out these issues and
provided our recommendations to increase generalization, biological interpretation, and
clinical utility of a radiomics model.
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Supplementary Materials
Table S1: Systematic search
Table S2: Detailed image acquisition and model characteristics

Table S3: Assessment of methodological quality of included studies

Supplementary Table 1: Systematic search
a) Medline

(((*“Validat”[All Fields] OR ((“predict”[All Fields] OR “predictabilities”’[All Fields] OR
“predictability”[All Fields] OR “predictable”[All Fields] OR “predictably”[All Fields] OR
“predicted”[All Fields] OR “predicting”’[All Fields] OR “prediction”[All Fields] OR “pre-
dictions”[All Fields] OR “predictive”[All Fields] OR “predictively”[All Fields] OR “pre-
dictiveness”[All Fields] OR “predictives”[All Fields] OR “predictivities”[All Fields] OR
“predictivity”’[All Fields] OR “predicts”[All Fields]) AND “ti”’[All Fields]) OR “Rule”[All
Fields] OR ((“predict”’[All Fields] OR “predictabilities”’[All Fields] OR “predictability”’[All
Fields] OR “predictable”’[All Fields] OR “predictably”’[All Fields] OR “predicted”[All
Fields] OR “predicting”[All Fields] OR “prediction”[All Fields] OR “predictions”[All
Fields] OR “predictive”[All Fields] OR “predictively”’[All Fields] OR “predictiveness”’[All
Fields] OR “predictives”[All Fields] OR “predictivities”[All Fields] OR “predictivity”[All
Fields] OR “predicts”[All Fields]) AND (“outcome”[All Fields] OR “outcomes”[All Fields]
OR (“risk”[MeSH Terms] OR “risk”[All Fields]) OR (“model”[All Fields] OR “model
s”[All Fields] OR “modeled”’[All Fields] OR “modeler”[All Fields] OR “modeler s”[All
Fields] OR “modelers”[All Fields] OR “modeling”’[All Fields] OR “modelings”[All Fields]
OR “modelization”[All Fields] OR “modelizations”[All Fields] OR “modelize”[All Fields]
OR “modelized”[All Fields] OR “modelled”[All Fields] OR “modeller’[All Fields] OR
“modellers”[All Fields] OR “modelling”[All Fields] OR “modellings”[All Fields] OR
“models”[All Fields]))) OR ((“history”’[MeSH Terms] OR “history”’[All Fields] OR “histo-
ries”[All Fields] OR “history”[MeSH Subheading] OR (“variabilities”’[All Fields] OR
“variability”’[All Fields] OR “variable”[All Fields] OR “variable s”[All Fields] OR “vari-
ables”[All Fields] OR “variably”[All Fields]) OR (“criteria s”[All Fields] OR “criterias”[All
Fields] OR “standards”[MeSH Subheading] OR “standards”[All Fields] OR “criteria”[All
Fields]) OR “Scor”[All Fields] OR (“characteristic”’[All Fields] OR “characteristics”[All
Fields]) OR (“diagnosis”[MeSH Subheading] OR “diagnosis”[All Fields] OR “findings”[All
Fields] OR “diagnosis”[MeSH Terms] OR “finds”[All Fields] OR “signs and symptom-
s”[MeSH Terms] OR (“signs”[All Fields] AND “symptoms”[All Fields]) OR “signs and
symptoms”’[All Fields] OR “finding”[All Fields]) OR (“factor”’[All Fields] OR “factor
s”[All Fields] OR “factors”[All Fields])) AND (“predict”’[All Fields] OR “predictabili-
ties”[All Fields] OR “predictability”[All Fields] OR “predictable”[All Fields] OR “predict-
ably”’[All Fields] OR “predicted”’[All Fields] OR “predicting”[All Fields] OR “predic-
tion”[All Fields] OR “predictions”[All Fields] OR “predictive”[All Fields] OR
“predictively”’[All Fields] OR “predictiveness”’[All Fields] OR “predictives”[All Fields] OR
“predictivities”[All Fields] OR “predictivity”’[All Fields] OR “predicts”’[All Fields] OR
(“model”’[All Fields] OR “model s”’[All Fields] OR “modeled”[All Fields] OR “model-
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er’[All Fields] OR “modeler s”[All Fields] OR “modelers”[All Fields] OR “modeling”[All
Fields] OR “modelings”[All Fields] OR “modelization”[All Fields] OR “modelizations”[All
Fields] OR “modelize”[All Fields] OR “modelized”’[All Fields] OR “modelled”’[All Fields]
OR “modeller”’[All Fields] OR “modellers”[All Fields] OR “modelling”’[All Fields] OR
“modellings”[All Fields] OR “models”[All Fields]) OR (“decision”[All Fields] OR “deci-
sion s”’[All Fields] OR “decisions”[All Fields] OR “decisive”[All Fields] OR “decisive-
ly”[All Fields]) OR “Identif’[All Fields] OR “Prognos”[All Fields])) OR ((“decision”[All
Fields] OR “decision s”’[All Fields] OR “decisions”’[All Fields] OR “decisive”’[All Fields]
OR “decisively”’[All Fields]) AND (“model”[All Fields] OR “model s”[All Fields] OR
“modeled”[All Fields] OR “modeler”’[All Fields] OR “modeler s”[All Fields] OR “model-
ers”[All Fields] OR “modeling”[All Fields] OR “modelings”[All Fields] OR “modeliza-
tion”[All Fields] OR “modelizations”[All Fields] OR “modelize”[All Fields] OR “mod-
elized”[All Fields] OR “modelled”[All Fields] OR “modeller”[All Fields] OR
“modellers”[All Fields] OR “modelling”[All Fields] OR “modellings”[All Fields] OR
“models”[All Fields] OR (“ambulatory care facilities”[MeSH Terms] OR (“ambulatory”’[All
Fields] AND “care”[All Fields] AND “facilities”[All Fields]) OR “ambulatory care facili-
ties”’[All Fields] OR “clinic”[All Fields] OR “clinic s”’[All Fields] OR “clinical”[All Fields]
OR “clinically”[All Fields] OR “clinicals”[All Fields] OR “clinics”[All Fields]) OR (“lo-
gistic models”[MeSH Terms] OR (“logistic”’[All Fields] AND “models”[All Fields]) OR
“logistic models”[All Fields]))) OR ((“prognostic”’[All Fields] OR “prognostical”[All
Fields] OR “prognostically”’[All Fields] OR “prognosticate”[All Fields] OR “prognosticat-
ed”[All Fields] OR “prognosticates”[All Fields] OR “prognosticating”[All Fields] OR
“prognostication”[All Fields] OR “prognostications”[All Fields] OR “prognosticator”[All
Fields] OR “prognosticators”[All Fields] OR “prognostics”’[All Fields]) AND (“histo-
ry”[MeSH Terms] OR “history”[All Fields] OR “histories”[All Fields] OR “history”[MeSH
Subheading] OR (“variabilities”’[All Fields] OR “variability”’[All Fields] OR “variable”[All
Fields] OR “variable s”[All Fields] OR “variables”[All Fields] OR “variably”[All Fields])
OR (“criteria s”[All Fields] OR “criterias”[All Fields] OR “standards”’[MeSH Subheading]
OR “standards”[All Fields] OR “criteria”[All Fields]) OR “Scor”[All Fields] OR (“charac-
teristic”[All Fields] OR “characteristics”[All Fields]) OR (“diagnosis”[MeSH Subheading]
OR “diagnosis”[All Fields] OR “findings”’[All Fields] OR “diagnosis”’[MeSH Terms] OR
“finds”[All Fields] OR “signs and symptoms”’[MeSH Terms] OR (“signs”[All Fields] AND
“symptoms”[All Fields]) OR “signs and symptoms”[All Fields] OR “finding”[All Fields])
OR (“factor”[All Fields] OR “factor s”[All Fields] OR “factors”[All Fields]) OR (“mod-
el”[All Fields] OR “model s”[All Fields] OR “modeled”[All Fields] OR “modeler”’[All
Fields] OR “modeler s”[All Fields] OR “modelers”[All Fields] OR “modeling”[All Fields]
OR “modelings”[All Fields] OR “modelization”[All Fields] OR “modelizations”[All
Fields] OR “modelize”’[All Fields] OR “modelized”[All Fields] OR “modelled”[All Fields]
OR “modeller”[All Fields] OR “modellers”[All Fields] OR “modelling”’[All Fields] OR
“modellings”[All Fields] OR “models”[All Fields]))) OR (“stratification”[All Fields] OR
“stratifications”[All Fields] OR (“roc curve”[MeSH Terms] OR (“roc”[All Fields] AND
“curve”[All Fields]) OR “roc curve”[All Fields]) OR (“discriminabilities”[All Fields] OR
“discriminability”’[All Fields] OR “discriminable”[All Fields] OR “discriminably”[All
Fields] OR “discriminance”[All Fields] OR “discriminant”[All Fields] OR “discrimi-
nants”’[All Fields] OR “discriminate”[All Fields] OR “discriminated”[All Fields] OR “dis-
criminates”[All Fields] OR “discriminating”[All Fields] OR “discrimination, psychologi-
cal”’[MeSH Terms] OR (“discrimination”[All Fields] AND “psychological”’[All Fields]) OR
“psychological discrimination”[All Fields] OR “discrimination”[All Fields] OR “discrimi-
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nations”[All Fields] OR “discriminative”[All Fields] OR “discriminatively”’[All Fields] OR
“discriminator”[All Fields] OR “discriminators”[All Fields]) OR (“discriminabilities”’[ All
Fields] OR “discriminability”’[All Fields] OR “discriminable”[All Fields] OR “discrim-
inably”[All Fields] OR “discriminance”[All Fields] OR “discriminant”[All Fields] OR “dis-
criminants”[All Fields] OR “discriminate”[All Fields] OR “discriminated”[All Fields] OR
“discriminates”[All Fields] OR “discriminating”[All Fields] OR “discrimination, psycho-
logical”’[MeSH Terms] OR (“discrimination”[All Fields] AND “psychological”’[All Fields])
OR “psychological discrimination”[All Fields] OR “discrimination”[All Fields] OR “dis-
criminations”[All Fields] OR “discriminative”[All Fields] OR “discriminatively”[All
Fields] OR “discriminator”’[All Fields] OR “discriminators”[All Fields]) OR (“c basel”[-
Journal] AND (“statistic”[All Fields] OR “statistic s”[All Fields] OR “statistical”’[All
Fields] OR “statistically”[All Fields] OR “statistics”[All Fields])) OR (“c basel”[Journal]
AND (“statistic”’[All Fields] OR “statistic s”’[All Fields] OR “statistical”’[All Fields] OR
“statistically”[All Fields] OR “statistics”[All Fields])) OR (“area under curve”’[MeSH
Terms] OR (“area”[All Fields] AND “under”[All Fields] AND “curve”[All Fields]) OR
“area under curve”’[All Fields] OR (“area”[All Fields] AND “under”[All Fields] AND “cur-
ve”’[All Fields]) OR “area under the curve”[All Fields]) OR “auc”[All Fields] OR (“cali-
brant”[All Fields] OR “calibrants”[All Fields] OR “calibrate”[All Fields] OR “calibrat-
ed”[All Fields] OR “calibrates”[All Fields] OR “calibrating”[All Fields] OR
“calibration”[MeSH Terms] OR “calibration”[All Fields] OR “calibrations”[All Fields] OR
“calibrator”’[All Fields] OR “calibrators”[All Fields]) OR (“indicate”[All Fields] OR “indi-
cated”[All Fields] OR “indicates”[All Fields] OR “indicating”[All Fields] OR “indica-
tive”’[All Fields] OR “indicatives”[All Fields] OR “indicators and reagents”[Pharmacologi-
cal Action] OR “indicators and reagents”’[MeSH Terms] OR (“indicators”[All Fields] AND
“reagents”[All Fields]) OR “indicators and reagents”[All Fields] OR “indicator”’[All Fields]
OR “indicators”[All Fields] OR “indice”[All Fields] OR “indices”[All Fields]) OR (“algo-
rithm s”[All Fields] OR “algorithmic”[All Fields] OR “algorithmically”[All Fields] OR “al-
gorithmics”[All Fields] OR “algorithmization[All Fields] OR “algorithms”[MeSH Terms]
OR “algorithms”[All Fields] OR “algorithm”[All Fields]) OR (“multivariable”[All Fields]
OR “multivariables”[All Fields] OR “multivariably”[All Fields] OR “multivariance”[All
Fields] OR “multivariant”[All Fields] OR “multivariate”[All Fields] OR “multivariat-
ed”’[All Fields] OR “multivariately”[All Fields] OR “multivariates”[All Fields] OR “multi-
variative”[All Fields])) OR (“predict*”[Title/Abstract] OR “predictive value of
tests”[MeSH Terms] OR “scor*”’[Title/Abstract] OR “observ*”’[Title/Abstract] OR “observ-
er variation”[MeSH Terms])) AND ((esophageal cancer[MeSH Terms]) OR (esophageal
cancers[MeSH Terms]))) AND ((((((computed tomography[Text Word]) OR (CT[Text
Word])) OR (magnetic resonance imaging[Text Word])) OR (MR*[Text Word])) OR (posi-
tron emission tomography[Text Word])) OR (PET[Text Word]))) AND ((((((((((radiomic[-
Text Word]) OR (radiomics[Text Word])) OR (textur*[Text Word])) OR (quantitative[ Text
Word])) OR (artificial intelligence[ Text Word])) OR (AI[Text Word])) OR (deep learning[-
Text Word])) OR (shape[Text Word])) OR (feature[Text Word])) OR (features[ Text Word]))
Filters: Humans, English

b) Embase

1. (‘esophageal cancer’/exp AND ‘computed tomography’/exp OR ‘ct’ OR ‘magnetic
resonance imaging’/exp OR ‘mr*’ OR ‘pos-itron emission tomography’ OR ‘pet’) AND ‘ra-
diomic’ OR ‘radiomics’ OR ‘textur®*’ OR ‘quantitative’ OR ‘artificial in-telligence’ OR ‘ai’
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OR ‘deep learning’/exp OR ‘shape’ OR ‘feature’ OR ‘features’:ta,ab,ti

2. ‘validat” OR ((‘predict’ OR ‘predictabilities” OR ‘predictability’ OR ‘predictable’
OR ‘predictably’ OR ‘predicted’ OR ‘pre-dicting” OR ‘prediction’ OR ‘predictions’ OR
‘predictive’ OR ‘predictively’ OR ‘predictiveness’ OR ‘predictives” OR ‘predictivi-ties’
OR ‘predictivity’ OR ‘predicts’) AND ‘ti’) OR ‘rule’ OR ((‘predict’:ta,ab,ti OR ‘pre-
dictabilities’:ta,ab,ti OR ‘predictability’:ta,ab,ti OR ‘predictable’:ta,ab,ti OR ‘predict-
ably’:ta,ab,ti OR ‘predicted’:ta,ab,ti OR ‘predicting’:ta,ab,ti OR ‘prediction’:ta,ab,ti OR
‘predictions’:ta,ab,ti OR ‘predictive’:ta,ab,ti OR ‘predictively’:ta,ab,ti OR ‘predic-tive-
ness’:ta,ab,ti OR ‘predictives’:ta,ab,ti OR ‘predictivities’:ta,ab,ti OR ‘predictivity’:ta,ab,ti
OR ‘predicts’:ta,ab,ti) AND (‘outcome’:ta,ab,ti OR ‘outcomes’:ta,ab,ti OR ‘risk’:ta,ab,ti
OR ‘model’:ta,ab,ti OR ‘model s’:ta,ab,ti OR ‘modeled’:ta,ab,ti OR ‘modeler’:ta,ab,ti OR
‘modeler s’:ta,ab,ti OR ‘modelers’:ta,ab,ti OR ‘modeling’:ta,ab,ti OR ‘modelings’:ta,ab,ti
OR ‘modelization’:ta,ab,ti OR ‘modelizations’:ta,ab,ti OR ‘modelize’:ta,ab,ti OR ‘mod-
elized’:ta,ab,ti OR ‘modelled’:ta,ab,ti OR ‘modeller’:ta,ab,ti OR ‘modellers’:ta,ab,ti OR
‘modelling’:ta,ab,ti OR ‘modellings’:ta,ab,ti OR ‘models’:ta,ab,ti))

3. #1 AND #2 AND ([article]/lim OR [article in press]/lim OR [data papers]/lim)
AND [english]/lim
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Chapter 3: Dual discriminator Super-Resolu-
tion Generative Adversarial Network-based
synthetic GGO nodule image augmentation

Adapted from: Zhixiang Wang*; Zhen Zhang*; Ying Feng; Lizza E. L. Hen-
driks; Razvan L. Miclea; Hester Gietema; Janna Schoenmaekers; Andre
Dekker, Leonard Wee,; Alberto Traverso. Generation of Synthetic Ground
Glass Nodules Using Generative Adversarial Networks (GANs). Eur Radiol
Exp 2022, 6 (1), 59. https://doi.org/10.1186/s41747-022-00311-y.

* indicates equal contributions
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Abstract

Background Data shortage is a common challenge in developing computer-aided diagnosis
systems. We developed a generative adversarial network (GAN) model to generate synthet-
ic lung lesions mimicking ground glass nodules (GGNSs).

Methods We used 216 computed tomography images with 340 GGNs from the Lung Im-
age Database Consortium and Image Database Resource Initiative database. A GAN model
retrieving information from the whole image and the GGN region was built. The generated
samples were evaluated with visual Turing test performed by four experienced radiologists
or pulmonologists. Radiomic features were compared between real and synthetic nodules.
Performances were evaluated by area under the curve (AUC) at receiver operating char-
acteristic analysis. In addition, we trained a classification model (ResNet) to investigate
whether the synthetic GGNs can improve the performances algorithm and how performanc-
es changed as a function of labelled data used in training.

Results Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians. Of 93 radio-
mic features, 58 (62.4%) showed no significant difference between synthetic and real GGNs
(p = 0.052). The discrimination performances of physicians (AUC 0.68) and radiomics
(AUC 0.66) were similar, with no-significantly different (p = 0.23), but clinicians achieved
a better accuracy (AUC 0.74) than radiomics (AUC 0.62) (p < 0.001). The classification
model trained on datasets with synthetic data performed better than models without the ad-
dition of synthetic data.

Conclusions GAN has promising potential for generating GGNs. Through similar AUC,
clinicians achieved better ability to diagnose whether the data is synthetic than radiomics.

Keywords: Deep learning, Tomography (x-ray computed), Lung, Neural networks (com-
puter), Solitary pulmonary nodule
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Introduction

Artificial intelligence is a rapidly developing field including many applications in comput-
er vision, such as deep learning (DL) and machine learning methods for the segmentation
[1] and the classification [2] of anatomical structures and abnormalities in standard of care
diagnostic imaging. A strong effort is dedicated to the implementation of these methods
as computer-aided diagnosis (CAD) tools to reduce the time burden of clinical tasks and
improve radiologists’ detection accuracy. For lung cancer screening, the number of CAD
systems to automatically identify the presence of pulmonary nodules has exponentially in-
creased in the last 10 years. DL methods have shown an increased detection accuracy for all
the types of pulmonary nodules (solid, part solid, ground glass opacities) compared to tradi-
tional machine learning methods in low-dose screening computed tomography (CT) scans [3,
4].

The success of developing robust and widely applicable deep learning-based CAD systems
relies on the availability of a large amount of curated and annotated data. However, annotat-
ing data consistently has a cost and is dependent on radiologists’ time and availability. Even
when large amount of data is collected for training DL networks, the problem of class im-
balance may exist. The class imbalance problem refers to some labels (classes) being more
frequent than others. Due to this unbalance, the DL network will learn better how to classify
the more frequent samples, with degraded performances for the minority class(es) [5]. In
the specific case of pulmonary nodule detection, ground glass nodules (GGN), although ac-
counting for only 2.7 to 4.4% of all nodules, are malignant in 63% of the cases [6].

Next to classical statistical methods such as SMOTE (synthetic minority oversampling tech-
nique), researchers have investigated more advanced methods for generating synthetic sam-
ples of original data, to increase and balance the original sample size of the training dataset.
Recently, generative adversarial networks (GANs) have been proposed as a method to gen-
erate synthetic images to improve the existing oversampling techniques [7]. GANs, which
are DL algorithms based on game theory, have been applied to several computer vision
tasks such as image denoising, reconstruction, and, as mentioned, synthetic data generation
[8, 9]. Briefly, GANs consists of two competing actors: a generator and a discriminator.
They are used to generate synthetic images/samples and “judge” the quality of the generat-
ed images, respectively. The equilibrium is reached when the synthetic (i.e., fake) samples
cannot be distinguished from the real distribution [10].

While many studies demonstrated the potential of GANS to generate synthetic images, the
generated images/samples have not been evaluated by radiologists, and this limits the ac-
ceptance and use of GANSs in a clinical setting. In fact, generated images/samples should be
representative of the “real” population. However, by only focusing on evaluating at the “hu-
man-level” appropriateness of synthetic samples, it is not possible to draw any conclusion
whether the introduction of synthetic samples in the training samples will improve the de-
tection performances of CAD systems. In principle, it is expected that adding as many syn-
thetic samples as possible to the original data will lead to a CAD system with better detec-
tion performances. It is important to notice that generating synthetic samples via GAN is in
itself a learning procedure, where the original data is used to train the networks to generate
the synthetic samples. The ratio between original data available and the quality of generated
samples is not clear yet.
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In this study, we investigated the following research questions:

Is it possible to use a GAN model to generate synthetic GGNs on low-dose screening CT
scans that are undisguisable by clinicians from the real samples?

How much labelled data is needed to generate synthetic GGNs of sufficient quality to train
a CAD for pulmonary nodule detection achieving the same level of performance of a large
amount of labelled data?

To answer these questions, we developed an optimized GAN model with dual discrimina-
tors to generate GGNss.

Methods

1. Study population

A total of 216 subjects were selected from The Lung Image Database Consortium and Im-
age Database Resource Initiative (LIDC-IDRI) database for this study [11]. In this database,
the nodules were classified into five grades by four radiologists: 1 = ground glass opacity
(GGOL1); 2 = intermediate between 2 and 3; 3 = part solid; 4 = intermediate between 4 and 5;
5 = solid. We chose 340 GGN nodules of grades 1 or 2 that were annotated by at least two
radiologists for our study. To ensure data quality, further confirmation was performed by a
radiologist (author Z.Z.), with 5 years of experience in lung CT, to verify that all the nod-
ules were GGNs.

2. Image preprocessing

In the preprocessing methods, first, the two-dimensional slices with annotation as GGN
from the CT volume were extracted. Second, in order to avoid interference from exter-
nal tissues of the lung, we first cropped the lungs from the tissue and background with
a seed-filling algorithm, which starts from an inner point of the polygon area and draws
points with the given grey level from inside to outside until the boundary is found. Third,
the cropped images were padded by 0 in the background to keep every image having the
same sizes (512 x 512) in the dataset. Fourth, we normalized the data to the range 01, as is
the standard practice in computer vision. Fifth, we erased the nodules from the original po-
sition and saved them as region of interest (ROI) for the training set. In general, each train-
ing batch contained two images: the original image as the target image, which serves as the
ground truth for the generator (as shown in Figs. 1 and 2), and another image is the input
image, in which stripped the nodule area, i.e., the ROI region was processed as blank for the
input image. As shown in Fig. 1, the network generates the nodule from the input image. In
addition, after generation, there are two discriminators (whole image discriminator and ROI
discriminator) to evaluate the quality of the whole image and the ROI where the nodule is.
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Figure 1. The pipeline for training the model. First, the generator synthetizes ground glass
nodules from the background according to the input image. Second, the region of interest
(ROI) discriminator (red line) and the whole image discriminator (blue line) extract features
from the ROI and whole image to classify the synthetic image and the target whether the
synthetic image is real.
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Figure 2. The structure of the network. The generator creates the synthetic ground glass
nodule at the position where the mask in the input. The generator is composed of convo-
lutional layers with a kernel size of 3 X 3, the batch normalization, and the “parametric
rectified linear unit” (PReLU) activation function. The discriminator was composed of con-

volutional layers with a kernel size of 3 x 3, the batch normalization, and the leaky PReLU
activation function.

3. Construction of the DL model

The super-resolution generative adversarial network (SRGAN) was used as the backbone
of the generator [12]. SRGAN compares the features difference in the model between a pair
of data and train the discriminators to improve the realism of the recovered images. Both
the whole image discriminator and ROI discriminator are based on a ResNet [13] which is
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a widely used classical classification networks combined by residual blocks with different
input sizes and depths of the network. The structure of the network is shown in Fig. 2. For
training the network, the loss function was as follows:

LDZSRGAN = (Lssim + Ladversarial)whole image (1)

+ (Lssim + Ladversarial)ROI image

N ()
Logversariat = Z —logD(G(x))
Cpxpy + C1) + (0xy + C3) 3)

Lein(x,y) =1—
SSLm( y) (ﬂxzﬂyz + Cl)(o-xzo-yz + CZ)

The Lssim can be used to compare the similarity between two images. In this loss function,
the whole image is separated into two parts to calculate the loss function respective. G

and D represent the generator and discriminator, x is the input of the generator. pux and py
represent the average of input x,y respectively. ox and oy represent the standard deviation
of input x,y respectively. oxy is the covariance of x and y. C1 and C2 are constants to avoid
system errors caused by the denominator being zero.

All images were loaded with an unchanged original size of 512 x 512. The input size of the
discriminator for the whole image and the ROI image were 512 x 512 and 32 X 32, respec-
tively. An Adam optimizer was used to train both the generator and the discriminator with a
learning rate of 0.0001. This model was trained using an NVIDIA Tesla V100 SXM2 32 GB
graphics processing unit.

4. Evaluation of model performance

We evaluated the model performance using both subjective (visual Turing test, VTT) and
objective (radiomics) approaches. VTIT is an assessment method that evaluation the ability
of a human or doctors to identify attributes and relationships from images [14]. Subjective
evaluations were performed by two radiologists (authors R.M. and H.G.) and two pulmo-
nologists (authors L.H. and J.S.), who all had more than 5 years of experience in lung CT
imaging and on a daily basis evaluate chest CT scans. One hundred images (50 real and 50
synthetic GGNs) were divided into four batches and converted to a DICOM (Digital Im-
aging and COmmunications in Medicine) file with 25 slices of images, and each physician
was randomly assigned to one of these batches. The physicians categorized the real and
synthetic GGNs into four classes based on this categorical scale: confidently fake, leaning
fake, leaning real, and confidently real.

To perform an objective evaluation, radiomic features were calculated from the original and
generated data. Radiomics refers to the extraction of quantitative information from medical
images by computing the statistical, morphological, and texture features. The following
feature categories were extracted using the open source Pyradiomics package (version 3.0.1)
with default values: first order statistics (n = 18), grey level co-occurrence matrix (n = 24),
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grey level dependence matrix (n = 14), grey level run length matrix (n = 16), grey level size
zone matrix (n = 16), and neighbouring grey tone difference matrix (n = 5) [15-17].

The Kolmogorov—Smirnov test was used for the analysis of whether the distribution of ra-
diomics features were similar between the real and synthetic GGNs. We considered signifi-
cant p values lower than 0.05.

The results of the subjective and objective evaluations were analysed using the area under
the curve (AUC) at receiver operating characteristic analysis. For the subjective evaluation,
we took into consideration the VTT results. For the objective evaluation, to compare the
classification ability of radiomics and radiologist, a logistic regression model was build
based on radiomic features to classify both real and synthetic GGNs. The same dataset was
used for the physician evaluations and the radiomics logistic regression model, with a four-
fold cross-validation.

In addition, we also investigated whether the synthetic GGNs can improve the perfor-
mance of a CAD algorithm trained for recognizing GGNs from all types of nodules in the
LIDC-IDRI dataset and how the performance changed as a function of labelled data used in
the training.

As a CAD, we used a basic ResNet as the DL classification network with a cross-entropy
loss function. First, we separated the dataset into 10 training subsets and an independent test
set. We trained the classification network on portions of the original data ranging from 10 to
100% of the real data and we separately inferred on the test set. Then, we trained the classi-
fication network on the original data added systematic data generated by the GAN network
trained in 10% to 100% of real data.

Results

Examples of synthetic GGNs generated in different parts of the lungs with different sur-
rounding tissues are shown in Fig.3. Nodules classified as fake (Fig.3b) show more unnat-
ural characteristics in terms of intensity and morphology than nodules classified as “real”
(Fig.3a); specifically, “fake nodules” have very high fixed grey values and regular shapes
such as rectangles.
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Figure 3. Examples of synthetic ground glass nodules (GGNs), the GGNs were categorised
by physicians to four categories: confidently fake, leaning fake, leaning real, and confident-
ly real. a Synthetic GGNSs classified as “real” by clinicians. b Synthetic GGNs with less
convincing generated lesions (classified as “leaning fake”). ¢ A real GGNs in the original
LIDC-IDRI dataset.

1. VTT results

Figure 4 presents the combination of the classification results for the four clinicians: of 51
synthetic GGNs, 19 (37%) were classified as real by clinicians, 8/51 (16%) were classified
as confidently real, and 11/51 (22%) were classified as leaning real.

Synthetic data Real data Confusion matrix

Confidently FAKE
Confidently REAL

Confidently REAL y - 19

15.7%
Confidently FAKE 26.5%

Leaning FAKE
20.4%

True labels

27.5% A2.9%

Real Fake
Is

Leaning REAL Diagnosed label

(a) (b) (c)

Leaning FAKE

Figure 4. Visual Turing test results. a, b Prediction distribution in synthetic and real ground
glass nodules. ¢ Confusion matrix for the prediction.
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2. Radiomics

Of a total of 93 features, 58 (62.4%) showed no significant difference (p > 0.052) between
synthetic and real GGNs, and the detailed results are provided in Table 1. Figure 5a shows
the comparison of the distribution of radiomic features between real and synthetic GGNss,
the histogram shows the counts of specific feature values, and the differences (p-values)
in the extracted radiomic features between real and synthetic GGNs were calculated. The
receiver operating characteristic curves constructed based on the results of VVT by clini-
cians and logistic regression model developed by radiomics features are shown in Fig. 5b.
We observed a similar classification performance of clinicians (0.68) and radiomics (0.66),
with no-significantly different (p = 0.23). However, the clinicians achieve significant great
performance accuracy around 0.74, better than the 0.62 radiomics accuracy (p < 0.001). The
clinicians achieve better ability to diagnosis whether the data is synthetic than radiomics.

Table 1. Comparison between real and deep learning-generated radiomic features (p-values
according to the Kolmogorov-Smirnov test)

Class Feature name p-value
Grey level co-occurrence matrix (GLCM) Inverse difference moment 0.984
Grey level size zone matrix (GLSZM) zone percentage 0.935
Grey level dependence matrix (GLDM) Small dependence emphasis 0.933
Grey level co-occurrence matrix (GLCM) Inverse difference 0.926
First order Robust mean absolute deviation 0.903
GLSZM Small area low grey level emphasis 0.860
Grey level run length matrix (GLRLM) Run percentage 0.827
GLRLM high grey level run emphasis 0.729
GLSZM Grey level non-uniformity normalised ~ 0.697
GLRLM Long run emphasis 0.676
GLCM Sum entropy 0.658
GLRLM Long run high grey level emphasis 0.652
GLRLM Run entropy 0.652
First order Entropy 0.643
GLCM Inverse variance 0.616
GLRLM Short run high grey level emphasis 0.582
GLDM high grey level emphasis 0.574
GLCM Joint energy 0.570
GLCM Joint entropy 0.570
GLRLM Run length non-uniformity normalised  0.570
GLRLM Short run emphasis 0.570
First order 90 percentile 0.541
GLDM I?}rlr:;llls dependence low grey level em- 0512
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First order
GLCM
GLDM
GLDM
GLSZM
First order
GLCM
GLDM
First order
GLRLM
GLRLM
GLCM

Neighbouring grey tone difference matrix
(NGTDM)

GLCM
GLCM
GLDM
GLRLM
First order
GLSZM
First order
GLSZM
GLDM
GLCM
GLCM

First order
GLDM
GLSZM

First order
GLCM
GLSZM

GLDM

GLSZM
GLSZM
GLSZM
GLRLM
GLCM

Interquartile range

Inverse difference normalised

Large dependence emphasis
dependence variance

Low grey level zone emphasis

Mean absolute deviation
Autocorrelation

Dependence non-uniformity normalised
Mean

Run variance

Grey level non-uniformity normalised

Maximum probability
Strength

Cluster tendency

Inverse difference moment normalised
dependence entropy

Short run low grey level emphasis
Minimum

Large area high grey level emphasis
Root mean squared

Large area emphasis

Grey level variance

Joint average

Sum average

uniformity

Small dependence high grey level em-
phasis

Zone variance

Variance

Sum squares

High grey level zone emphasis

Large dependence low grey level em-
phasis

Size zone non-uniformity normalised
Small area emphasis

Large area low grey level emphasis
Grey level variance

Informational measure of correlation 2

0.498
0.456
0.450
0.445
0.445
0.414
0.407
0.403
0.389
0.375
0.324
0.307

0.272

0.267
0.264
0.261
0.227
0.212
0.202
0.186
0.178
0.170
0,160
0,160
0,133

0,124

0,119
0,108
0,108
0,105

0.082

0.074
0.073
0.069
0.066
0.052
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Low grey level run emphasis
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Contrast

10th percentile

Low grey level emphasis
Difference entropy

Zone entropy

Long run low grey level emphasis
Informational measure of correlation 1
Difference average

Maximal correlation coefficient

Large dependence high grey level em-
phasis

Maximum

Cluster shade

Range

Median

Contrast

Dependence non-uniformity
Size zone non-uniformity
Busyness

Correlation

Grey level non-uniformity
Complexity

Difference variance
Coarseness

Skewness

Energy

Total energy

Kurtosis

Run length non-uniformity
Grey level non-uniformity

Grey level non-uniformity

0.045
0.044
0.022
0.021
0.020
0.015
0.014
0.011
0.010
0.008
0.006
0.005
0.005

0.003

0.002
0.002
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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0.000
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Figure 5. a. Examples for the comparison of radiomics features distribution between real
and fake ground glass nodules (GGNs). The comparison of radiomics features distribution
extracted from synthetic and real images with minimum three p-values shows in the upper
row. The comparison of radiomics features distribution extracted from synthetic and real
images with maximum three p-values shows in the lower row. b., ¢. Receiver operating
characteristic curve of the prediction of distinguishing real and fake GGNs. by radiologists
(a) and by the logistic regression model (b).

3. DL classification network

The results of the DL classification network trained using decreasing portions of the dataset
are shown in Fig.6. When the dataset is 90%, the precision (i.e., positive predictive value)
was similar between the two groups. How-ever, when the dataset decreased to 50%, the
performance of the real data only group significantly decreased. On the other hand, synthet-
ic GGNs can increase precision in training the DL network. When the sample decreased to
10%, the real data has better performance than by adding synthetic data. From Fig.6b, the

78



recall (i.e., sensitivity) of GGN was decreasing when decreasing the dataset both in real
data only and real data with GAN groups. However, in most cases, models trained on data-
sets with synthetic data performed better than models without the addition of synthetic data.

Precision Recall

il
i s -

—— with GAN F: —— with GAN
lv —=- real o / —-=- real

10% 20% 30% 40% 50% 60% 70% B0% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% B0% 90% 100%

Figure 6. Comparison precision (i.e., positive predictive value) and recall (i.e., sensitivity)
between real and added synthetic dataset in different percentages of the training set. The
blue and the red lines present the performance of the deep learning classification model
trained by real data and the real data plus synthetic data, respectively. The horizontal axis
label is the percentage of training data in the dataset. The vertical axis label is the score of

precision and the recall with the range from 0 to 1.

Discussion

In the present study, we applied a GAN-based model with double discriminators to generate
GGN in low-dose CT scans. We benchmarked the performance of the model using a quali-
tative (VTT with clinicians) and a quantitative approach (radiomics).

To our knowledge, only one previous study proposed the use of GANs to generate lung
lesions and performed a VTT [18], which showed that 67% and 100% of the fake nodules
were marked as real by two radiologists, respectively. Differences exist between this study
and our study: in the VVT of the cited study [16], the radiologists reviewed the generated
lesions, but the surrounding tis-sues or the entire lungs were not included in the field of
view. Moreover, the surrounding tissues and the lung background that has relationship with
nodules were not considered when training and generating the nodules. Conversely, we gen-
erated GGNs from the whole lung to use the anatomical dependence with the background
tis-sue [19]. However, the relatively small size of our study compared to the previous re-

search [18] probably influenced the results of the visual Turing test.

Based on our VTT evaluation, we have shown that GAN-generated lung lesions have
the potential to be very consistent with real lesions. This gives us the opportunity to use
GAN-generated data to solve real-world problems, such as using the generated data to train
and test junior doctors, especially for hospitals that do not have large cohort datasets, long-
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time established picture archiving and communication systems, as privacy-preserving syn-
thetic open datasets for research purposes.

More than half of the radiomic features were not statistically different between DL-generat-
ed and real nodules, proving that the generated GGNSs are acquiring or learning detailed fea-
tures from the real sample. Furthermore, these consistent radiomic features cover all classes,
which could support the conclusion that the proposed approach mimics different aspects of
real nodules. Conversely, one third of the features in this study showed significant differenc-
es in the distribution between the generated and real GGNs. Based on the radiomics results
and the clinicians’ opinion, we think that the low complexity of the generated GGNSs is the
main reason for the discrepancy between the generated and real GGNs. For example, the
p-value of the radiomic features coarseness (which can measure the spatial change rate) and
complexity (which can measure the non-uniformity of local grey levels) between real and
synthetic GGNs are close to 0, supporting our hypothesis. We hypothesize the following
explanations: (i) the data source is derived from public databases that have low resolution
and lots of noise, and (ii) we did not optimize the training process by specifically including
radiomics features in the loss function.

Based on the radiomics results, we built a “radiomics physician” to discriminate between
real and generated GGNs, which interestingly is generally consistent with the discrimina-
tory ability of real physicians. It is worth noting that the “radiomics physician” model was
trained based on a sample of 100 cases, and the physicians have more than 5 years of expe-
rience. Overall, it is a challenging task to discriminate between real and generated GGN's
for “radiomics physicians” and real physicians.

Finally, we wanted to test how data augmentation with GAN will affect the detection accu-
racy of a CAD system. Figure 6 shows that adding synthetic GGNs to the original dataset
improves the performance of our DL CAD system. However, there was no significant con-
tribution when the size of the training dataset is under 10% and over 70% of the original
sample size. We hypothesize that when the training data is under 10%, there is an insuffi-
cient number of samples to train the GAN. A GAN trained on only a few samples cannot
synthesize the rich diversity and complexity of real GGNs. Based on the results (Fig. 6),
we conclude that the performance of the DL model increases with the sample size in certain
ranges of real data samples. However, as shown in Fig. 6, the performance of the DL model
cannot be improved after a threshold value larger than the sample size, which is the plateau
of the model. Specifically, for effective dataset size to train a GAN, around 50% of training
data which include around 100 samples of GGN has the biggest increase in accuracy of
the classification model when synthetic GGN are added. Overall, from our experiment, we
found that:

1. Synthetic data has the ability to increase the performance of a DL model unless only a
few training samples can be used;

2. From the perspective of cost and effectiveness, around 100 samples are sufficient to
develop a GAN model that can generate realistic GGNs to significant improve the perfor-
mance of the detection GGN model.

This study has some limitations. First, we used a public dataset for training the model, but
we want to extend the work to other datasets. In future studies, we will add high-resolution
data from our center for model enhancement. Second, we only focused on GGNs, because
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of their lower incidence compared to other types of nodules. However, the dimension and
density variation of the included GGNs is limited, which has the potential risk of obtaining
optimistic radiomic assessment results. We will perform transfer learning to generate lung
nodules and tumours in the future based on the model in this study. Furthermore, the diag-
nosis of malignant GGN is a challenging task for clinical practice. However, in this study,
we did not generate benign or malignant GGN. To address this issue, we are collecting data
from the real world with follow-up endpoints and trying to generate qualitative GGN, espe-
cially malignant GGN.

Third, we generated only two-dimensional samples. However, generating three-dimensional
(3D) images is costly for model training, first, because 3D GANSs have a larger number of
parameters which need more training data and also have a significantly higher requirement
in hardware when the input data has large scale such as CT images. In the future work, we
will consider the model compression to decrease the requirement of hardware and the size
of dataset for training the 3D GAN. We tried to perform our visual Turing tests by getting
closer as much as possible to a real clinical scenario. Nevertheless, it was out of the scope
of this study to integrate our DL models within the clinical workstations available to our
radiologists. As proof-of-concept, we proposed to our radiologists the generated and real
pulmonary nodules as two-dimensional axial CT images in the standard lung window. Fu-
ture work will include the production of the generated nodules in standard DICOM formats
in all the 3D projections. We are also investigating the possibility to invest in the develop-
ment of a cloud-based platform to homogenize visual Turing tests for similar experiments.
In addition, we did not evaluate the morphological features between the generated and real
GGNeE.

Fourth, we have not discussed the trend of data requirement for different task, such as what
happens when the quality of data is decreased, how many data points need to be added
when the target size us increased, and whether different sources such as CT and magnetic
resonance imaging influence the dataset requirements. In the future work, we will design
experiments to figure out the connection between the data requirement and different tasks.

Fifth, according to the results of the radiomics part, there are still considerable differences
between the real and generated GGO, and more than one third of the radiomic feature val-
ues were different, which may be a reflection that the GAN method proposed in this study is
not optimal. Based on this result, there is still much potential for improvement of our algo-
rithm, with a particular focus on improving the level of complexity of the textures.

Sixth, we did not conduct interobserver and intra-observer testing and the degree of dis-
agreement between different readers was not assessed. On the other hand, in our experience,
the differences between the readers (physicians) included in this study were limited to the
same broad category, i.c., real or fake. For example, nodules labelled as “confidently real”
by one physician have the possibility of being labelled as “leaning real” instead of “confi-
dently/leaning fake” by other physicians.

Finally, despite the GANs are an elegant data generation mechanism gaining more and more
popularity in the medical field, most of them still present a high level of complexity com-
pared for example to traditional DL algorithms such as convolutional neural networks. For
example, there is no consensus on the most appropriate metric to be used to stop the train-
ing at the best point (global minimum of the loss function). This will sometimes lead to a
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not satisfactory quality of the generated data. Especially when dealing with medical images,
the risk of introducing novel, undesired artefacts, and blurry images is not negligible.

In conclusion, in this study, we used GANs to generate GGN and validated these by four
physicians and radiomics approaches, showing that GAN methods have great potential for
augmentation of the original dataset.
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Abstract

Purpose Radiation pneumonitis (RP) is one of the common side effects of radiotherapy in
the thoracic region. Radiomics and dosiomics quantifies information implicit within medi-
cal images and radiotherapy dose distributions. In this study we demonstrated the prognos-
tic potential of radiomics, dosiomics, and clinical features for RP prediction.

Materials and methods Radiomics, dosiomics, dose-volume histogram (DVH) metrics,
and clinical parameters were obtained on 314 retrospectively-collected and 35 prospective-
ly-enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk
score (R-score) and dosiomics risk score (D-score) and DVH-score were calculated based
on logistic regression after feature selection. Six models were built using different combina-
tions of R-score, D-score, DVH-score, and clinical parameters to evaluate their added prog-
nostic power. Over-optimism was evaluated by bootstrap resampling from the training set,
and the prospectively-collected cohort was used as the external test set. Model calibration
and decision-curve characteristics of the best-performing models were evaluated. For ease
of further evaluation, nomograms were constructed for selected models.

Results A model built by integrating all of R-score, D-score, and clinical parameters had the
best discriminative ability with area under the curves (AUCs) of 0.793 (95%CI 0.735-0.851),
0.774 (95%CI 0.762-0.786), and 0.855 (95%CI 0.719-0.990) in the training set, boot-
strapping set, and external test set, respectively. The calibration curve image showed good
agreement between the predicted and actual values with a slope of 1.21 and an intercept of -
0.04. The decision curve image showed positive net benefit for the final model based on the
nomogram.

Conclusion Radiomics and dosiomics features have potential to assist with the prediction
of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best
prognostic model in the present study.

Keywords: Radiomics; Dosiomics; Lung cancer; Radiation Pneumonitis
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Introduction

Radiotherapy (RT) plays a crucial role in the management of lung cancer (LC) [1], espe-
cially for locally advanced and unresectable cases [2, 3]. Advances in thoracic RT have
led to steadily improving prognosis for LC patients, but RT-related side effects remain a
treatment-limiting concern [4-6]. Radiation pneumonitis (RP) is a common adverse effect
that degrades patients’ quality of life and can be fatal in severe cases. To date, there is no
highly effective cure for RP [7], thus prevention of RP remains one of the top clinical prior-
ities during RT dose planning [8, 9]. Robust and reproducible predictive models that could
estimate the risk of developing RP after lung RT would be of immense clinical value. Such
estimates could be incorporated into treatment planning and informed shared decision-mak-
ing consultations (such as a choice between starting prophylactic medication or active vigi-
lance).

Studies to date suggest a number of clinical factors, such as smoking status, pre-existing
lung disease [10], pre-existing cardiac disease [11], and chemotherapy [12], may affect an
individual’s pre-disposition to develop RP. Although these parameters may indicate towards
susceptibility, RP remains a disease exhibiting strong inter-person variability [13]; this het-
erogeneity does not appear to be sufficiently well represented in conventional clinical fac-
tors. Single-nucleotide polymorphism (SNPs) [14] and plasma cytokines [15, 16] can also
be indicative of heterogeneity, and several studies have revealed significant associations
between SNPs and the occurrence of RP [17], which suggests the feasibility of genetic and
molecular biomarkers. However, some biomarkers may be subject to vagaries of limited
spatial sampling and are only available through invasive means.

Radiomics is the high-throughput extraction of quantitative handcrafted features from med-
ical images. Image-based radiomics has the potential to characterize heterogeneity within
the entire pre-RT lung parenchyma and, in the case where suitable repeated imaging could
be available, to be able to quantify parenchymal changes during a course of RT in a non-in-
vasive manner. It has been demonstrated that radiomics features are associated with genetic
heterogeneity (radiogenomics) [18]. There have been several studies that demonstrate the
potential of radiomics to predict RP [19-21], but building predictive models only from an
image perspective may not be sufficient. Physicians routinely modify treatment strategies
based on the patient’s condition. For example, some patients with pre-existing lung disease
diagnosed by imaging may be prescribed a relatively low dose thereby reducing the chance
of developing RP and weakening the predictive power of radiomics. Therefore, there is a
need to incorporate prescription dose information into predictive model.

In a different context, the occurrence of RP is strongly related to RT dose, and therefore a
number of studies have used dose-volume histogram (DVH) metrics, such as mean lung
dose (MLD) [22] and volume of the lung receiving 20 Gy (V20) [23], to predict RP. DVH
parameters are not able to fully describe the immense spatial heterogeneity of dose distribu-
tion, which may be realized through intensity modulated radiation delivery (i.e., IMRT and/
or VMAT) [23, 24]. Dosiomics, conceived as using radiomics tools to characterize spatial
heterogeneity of RT dose (as opposed to image voxel intensities) provides a greater depth of
information in contrast to traditional DVH measures [25, 26].

Previous works [19-21, 25, 26] attempt to predict RP solely on the basis of medical (tomo-
graphic) imaging alone, or on the basis of dose information, and those results show that it
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is highly unlikely to be clinically sufficient by relying exclusively on either the imaging
features (radiomics) or the dose-volume parameters. There is a lack of studies combining
radiomics and dosiomics to predict RP in lung cancer, furthermore, studies using rigorous
and rational steps of selecting handcrafted features are needed. A large sample-based, pro-
spective study is also required to assess the objective predictive power of the models.

In this study, we extracted radiomics features in RT planning CT and dosiomics features in
3D dose grids from the RT treatment planning system (TPS) and performed objective and
rigorous feature selection. We evaluated the performance of clinical parameters, radiomics
features, dosiomics features, and DVH metrics, singly as well as in combination, to predict
RP after RT to the chest area. We evaluated the prediction models in terms of discriminative
performance and model calibration using a prospectively collected dataset. Moreover, deci-
sion-curve analysis was used to investigate the potential clinical relevance of such models if
implemented in routine practice. A nomogram was provided to facilitate future independent
validation of our work in other clinical settings.

Methods

1. Study design

This study was designed as a Transparent Reporting of a multivariate prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) type 3 study comprising model development
and independent validation [27]. This study was registered on artificial intelligence in bio-
medical research platform (AIMe, ID: mn9jLf) [28]. The overarching study flow is illustrat-
ed in Figure 1.

Step1 Step 2 Step3 Step4
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Figure 1. Analysis flowchart. Step 1, The radiomics and dosiomics features of the lung
tissue region were extracted. Step 2, 1000 unique bootstrap samples were taken from all
samples, features were selected by correlation, least absolute shrinkage (LASSO) embedded
with logistic regression (LR) and Akaike information criterion (AIC) for modeling. Step 3,
The model performance was evaluated using discrimination and calibration. Step 4, Clinical
applications were evaluated using nomogram and decision curves.
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2. Patients

A single-institutional model development cohort of 314 subjects was retrospectively ex-
tracted from institutional records after ethics board approval (IRB/bc2021135), compris-
ing patients diagnosed with LC and treated with radical (chemo)-RT, with either IMRT or
VMAT techniques, at Anonymized for Review Hospital between January 2013 and De-
cember 2018. For model validation, an additional 35 patients with the same criteria were
prospectively enrolled with informed consent and same ethics approval (IRB/bc2021135),
who were treated between October 2018 and March 2019 in the same institution. Detailed
inclusion and exclusion criteria have been specified in the Supplementary Materials A.

3. Image acquisition and treatment planning

Intravenous contrast-enhanced planning CT scans were acquired on a single Brilliant (Philips
Medical Systems; Best, The Netherlands) multislice scanner with a standardized protocol:
120 kVp, 100 mAs, 3 mm slice thickness, 512 x 512 image matrix, 50 cm fields of view,
0.977 mm pixel spacing and vendor’s default convolution kernel. Experienced radiation on-
cologists delineated the LC gross tumor volume (GTV) and malignant lymph nodes in the
Pinnacle TPS (Philips Radiation Oncology Systems; Fitchburg, Wisconsin, United States),
with image fusion against complementary imaging studies whenever available (such as pos-
itron emission tomography).

The GTV was isotropically expanded by 5 mm, as well as subclinical microscopic malig-
nant lesions to derive the clinical target volume (CTV). The planning target volume (PTV)
was an additional 5 mm isotropic expansion around the CTV. Dosimetrist were instructed to
cover at least 95% of the PTV with the prescribed RT dose. Delineations conformed to the
guidelines set by the Radiotherapy and Oncology Group (RTOG). The relevant dose con-
straints were as follows: MLD < 20 Gy, V20 < 30%, and volume of the lung receiving 5 Gy
(V5) < 60%. All patients were nominally prescribed 2 Gy per fraction once daily. Radiation
oncologists determined the total prescribed dose based on each patient’s overall physical
condition and best achievable normal tissue constraints. The actual total RT dose delivered
ranged between 50 to 70 Gy. The dose grid resolution is 4 mm, and the dose calculation
algorithm is Collapsed Cone Convolution [29, 30]. The planning CT series with associated
RT structure delineations and RT planned radiotherapy 3D dose grids were exported from
Pinnacle in the standard DICOM format.

4. Lung segmentation and RP grading

We extracted radiomics features and dosiomics features from the region corresponding to
total (left plus right) lung. To ensure consistency of lung segmentation, we quality assured
the lung delineations for each subject using a deep-learning automatic lung contouring tool
based on retraining of the published model. The original and automatically generated lung
outlines were inspected and then manually edited by a single experienced radiation oncolo-
gist (author MY). Two other radiation oncologists (author JQY and ZZ) subsequently inde-
pendently reviewed the lung organ segmentation, and any disputes were resolved by direct
consultation among all three authors.

The primary outcome RP was defined, in accordance with the Common Terminology Cri-
teria for Adverse Events (CTCAE) v5.0, as symptomatic radiation pneumonitis of CTCAE
grade 2 or higher within 6 months after the end of RT [12, 16]. Monitoring of RP was based
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on the combination of clinical examination, reported symptoms, outpatient medical records,
laboratory tests, chest X-ray, and visual inspection of follow-up CTs, which were all per-
formed at intervals of 1, 3, and 6 months after completion of RT, and then every 6 months
thereafter.

5. Radiomics and dosiomics features extraction

A total of 103 handcrafted radiomics features were extracted from DICOM CT and RT
Structures using the “O-RAW” package [31] (based on Pyradiomics v3.7 [32]). These fea-
tures comprised 17 intensity histogram features, 13 morphological (shape) features, and 73
textural features. No digital image filters were applied during pre-processing. Most of the
hand-crafted features conformed to the Image Biomarker Standardization Initiative (IBSI)
[33]; specific divergences from the IBSI at the time of writing have been reported accord-
ing to the PyRadiomics documentation. Radiomics extraction settings are the same as for a
previous publication [31], and our PyRadiomics parameters setting file has been provided
in the Supplementary Materials B. For dosiomics features, DICOM RT Dose files were
first converted as NRRD images using 3D Slicer [34], and then the same feature extraction
procedure in PyRadiomics was applied for the total lung region. Additionally, voxel-wise
values in the “dose images” were scaled to represent the absolute physical dose in units of
Gray (Gy). Isotropic spatial resampling (1 mm) was applied on the CT images and dose im-
ages prior to feature extraction as recommended by previous studies [35].

6. Feature selection

An overview of multi-step feature selection and model construction is given in Figure 1.
The clinical parameters for modeling were evaluated by using univariate and multivariate
analyses for twelve clinical parameters with predictive potential. Feature selection for the
radiomics model and the dosiomics model were performed separately, and has been adapted
from the feature pooling and signature pooling method used by Compter et al. [36]. In brief,
the selection process was as follows:

(i) A thousand unique bootstrap samples (with replacement) were drawn from the whole
training cohort. Within each bootstrap sample, we first minimized the number of strong
pairwise normalized (Z-score, (original value-mean value)/standard deviation) feature cor-
relations greater than 0.90 or less than -0.90. A least absolute shrinkage (LASSO) loop with
20-times repeated 5-fold cross-validation embedded with a logistic regression (LR) super-
vised classifier was used to select features. From each of the 1000 bootstraps, we ranked
each individual feature according to how frequently it was retained by the LASSO-LR.

(i) We arbitrarily selected some of the top most frequently-appearing individual features
from the above table. From this small subset of selected features, we built a multivariable
LR model on each of the same aforementioned bootstraps samples with stepwise backwards
elimination using the Akaike information criterion (AIC) as metric. From each of these
1000 bootstraps, we tabulated how many times each combination of one or more features
(i.e., potential signatures) was retained by the stepwise LR.

(ii1) We arbitrarily selected the top most frequently-appearing signature arbitrarily selected
to build the final multivariable LR model. The coefficients of the final model were fitted us-
ing the original non-bootstrapped development cohort.
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7. Model construction

The clinical model was presented as a multivariable LR model. To this, we added an aggre-
gated Radiomics Risk Score (R-score) and an aggregated Dosiomics Risk Score (D-score),
separately. The R-score was defined as the linear predictor (LP) of the multivariable LR
radiomics model, and likewise the D-score was defined as the LP of the multivariable do-
siomics model. For combined models, we assessed the combinations of the clinical factors
together with either, or both, of the R-score and D-score.

V20 and mean lung dose (MLD) were used to build DVH model, and details of feature
selection and model construction are provided in the Supplementary Materials C. To ad-
dress the issue of imbalanced data, we performed the Synthetic Minority Oversampling
Technique (SMOTE) approach in the training set. We also examined the Pearson correlation
between the R-score and clinical parameters, and between the D-score and dose-volume
histogram metrics (dosimetrics).

8. Model validation — internal and external

We estimated the over-optimism in model development using the method recommended in
the TRIPOD guidelines; for each of the 1000 abovementioned pre-defined bootstraps, we
fitted the LR model coefficients on each bootstrap, and then computed its Area under the
curve (AUC) of receiver operating characteristic curve (ROC) using the original non-boot-
strapped development cohort. From these 1000 bootstraps, we computed the average AUC
and its 95% confidence interval.

As external validation, we evaluated the aforementioned models using the prospective-
ly-registered cohort of 35 subjects. Processing of these 35 subjects followed exactly the
same procedure as for the model development cohort, and none of these subjects were used
in any way during model construction.

The well-established calibration curve technique was used to assess model goodness of fit
(i.e., the extent of concordance between the predicted and observed values) again using a
bootstrap of 1000 repetitions. To facilitate clinical use and support fully independent vali-
dation of our model, a simple nomogram was generated for the R-score, D-score, and the
selected clinical parameters. Lastly, we tried to discuss the potential clinical utility of our
model using decision curve analysis (DCA) [37].

9. Statistical analyses

Baseline patient characteristics for continuous variables are presented as mean + standard
deviation. For univariate ranking of clinical predictors, Pearson X2 tests and exact Fisher
tests were used for categorical variables and logistic regression for continuous variables.
For significance of clinical factors, a two-sided hypothesis test at the a = 0.05 confidence
level was assumed. Significant characteristics were subsequently combined in multivariable
logistic regression.

All data had been collated and standardized using the Statistical Package for Social Sci-
ence program (SPSS for Windows, version 27.0; SPSS Inc, Chicago, IL). Feature selection,
model construction, model performance assessment and decision-curve analysis were all
performed in R software (version 4.0.5).
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Results

1. Patient characteristics and incidence of RP

The case mix of patients and treatments studied in this model are reported in Table 1. Uni-
variate analysis showed statistically significant differences in interstitial lung disease (ILD),
concurrent chemoradiotherapy (CCRT), and age between patients with and without RP.
The overall incidence of CTCAE grade 2 or higher for RP was 21.5% (75 of 349), 21% (66
of 314) in the retrospective data set, and 25.7% (9 of 35) in the prospective validation set.
Multivariable analysis indicated that ILD (OR 2.471; 95%CI 1.037-5.888, p = 0.041) and
age (OR 1.051; 95%CI 1.012-1.085, p =0.008) were independent factors associated with
RP. A forest plot for the coefficients in the multivariable LR model is shown in Figure 2.

Table 1 Patient Characteristics

Characteristics All retro pts Without RP2 With RP2 p* Pros pts
n (%) Mean = SD Mean = SD n (%)
Age median 61 (30-85) 61 (30-85) 63 (44-79) 0.005 62 (34-75)
Gender 0.523
Male 238 (75.8%) 186 (78.2%) 52 (21.8%) 23 (65.7%)
Female 76 (24.2%) 62 (81.6%) 14 (18.4%) 12 (34.3%)
Smoking 0.569
Yes 244 (77.7%) 191 (78.3%) 53 (21.7%) 26 (74.3%)
No 70 (22.3%) 57 (81.4%) 13 (18.6%) 9 (25.7%)
KPS 0.725
<80 132 (42.0%) 103 (78.0%) 29 (22.0%) 13 (37.1%)
>80 182 (58.0%) 145 (79.7%) 371(20.3%) 22 (62.9%)
Diabetes 0.609
Yes 34 (10.8%) 28 (82.4%) 6 (17.6%) 2 (5.7%)
No 280 (89.2%) 220 (78.6%) 60 (21.4%) 33 (94.3%)
ILD 0.015
Yes 25 (8.0%) 15 (60.0%) 10 (40.0%) 9 (25.7%)
No 289 (92.0%) 233 (80.6%) 56 (19.4%) 26 (74.3%)
Pathology 0.656
LUSC 86 (27.4%) 65 (75.6%) 21 (24.4%) 8 (22.9%)
LUAD 73 (23.2%) 59 (80.8%) 14 (19.2%) 10 (28.6%)
SCLC 155 (49.4%) 124 (80.0%) 31 (20.0%) 17 (48.5%)
Inducchemo 0.739
Yes 287 (91.4%) 226 (78.7%) 61 (21.3%) 31 (88.6%)
No 27 (8.6%) 22 (81.5%) 5 (18.5%) 4 (11.4%)
CCRT 0.047
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Yes 93 (29.6%) 168 (76.0%) 53 (24.0%) 8 (22.9%)

No 221 (70.4%) 80 (86.0%) 13 (14.0%) 27 (77.1%)
Conso chemo 0.116

Yes 179 (57.0%) 147 (82.1%) 32 (17.9%) 19 (54.3%)

No 135 (43.0%) 101 (74.8%) 34 (25.2%) 16 (45.7%)

PGTV(Gy) 59.274+2.977 59.204+3.063 59.5394+2.634 0.415 60.200+2.870
Smoking in- 661.540+£571.430 641.840+£550.543 735.600+643.084 0.237 668.600+550.412
dex

Abbreviations: Retro = retrospective; Pts = patients; Pros = prospective; LUSC = lung
squamous cell carcinoma; LUAD = lung adenocarcinoma, SCLC = small cell lung cancer,
IMRT = intensity-modulated radiotherapy;, VMAT = volumetric modulated arc therapy,
chemo = chemotherapy;, KPS = Karnofsky performance score, Induc chemo = induction
chemotherapy;, CCRT = concurrent chemoradiotherapy; Conso chemo = consolidation
chemotherapy; PGTV = planning gross tumor volume.

*The differences in characteristics were evaluated by logistic regression for continuous
variables or Pearson X2 test and exact Fisher test for categorical variables

Variable OR(95% Cl) Pvalue
ILD ' = 1 2.471(1.037-5.888) 0.041
CCRT —— 0.591(0.298-1.170) 0.131
Age m 1.051(1.012-1.085) 0.008
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0 05 1 15 2 25 3 35 4 45 5 55 6

Figure 2. Multivariate analysis forest plot by logistic regression. Characteristics with statis-
tically significant univariate analysis were subjected to multivariate analysis, with ILD and
age as independent predictors of RP. Abbreviations: OR = Odds ratio; ILD = Interstitial
lung disease; CCRT = Concurrent chemoradiotherapy.

2. Feature selection and risk scores

By inspecting the frequency ranking of individual features, we noted that a threshold fre-
quency of around 600 yielded us 11 radiomics features and 12 dosiomics features. Subse-
quently, we derived a final radiomics signature comprising of 7 features for the R-score, and
a final dosiomics model of 6 features for the R-score. Detailed tables and graphs from the
feature selection process, along with the names and definitions of the selected features, are
provided in the Supplementary Materials D.

The R-score and the D-score were calculated based on the coefficients weighted by LR. The
formula of R-score and D-score are provided in the Supplementary Materials D. For ease of
computing the R-score and D-score, a simple calculator has been provided and can be found
here: only for Windows or MacOS operating systems, (https:// https://github.com/Radiol-
ogyzz/Calculator.git). Instructions for using the calculator are given in the Supplementary
Materials E.
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Examples of low and high R-score and D-score are given in Figure 3. In this example, ILD
was evident in the patient with high R-score. The lung tissue of the patient with high D-score
received higher dose of radiation than the patient with low D-score (the same prescription
dose for both patients). The results showed no significant correlation (>0.8) by Spearman’s
analysis between R-score and clinical parameters, D-score and dosimetrics, respectively
(Supplementary material F Figure 3). However, there were slight differences in the distribu-
tion of R-score for the population with and without ILD, and more noticeable differences in
the distribution of D-score for the population with different MLD (Supplementary material
F Figure 4).

3. Comparison of discrimination performance of different models

Prediction performance was quantified as AUC for six models and is summarized in Table 2.
Other possible combinations of models are provided in the Supplementary material G. The
model that yielded the highest AUC was the combination of R-score, D-score, and clinical
parameters. The discrimination performances were 0.793 (95%CI 0.735-0.851) and 0.855
(95%CI 0.719-0.99), in the training and prospective validation sets, respectively. As the
estimate of the degree of over-optimism (i.e., over-fitting) during model construction, our
bootstrap-based validation yielded an AUC of 0.774 (95%CI 0.762-0.786).

Table 2 Discrimination ability of different models according to area under the curve (AUC)
with 95%CI provided between parentheses.

Train Validation l?y boot- Testing
Model strapping
o 0,
(95%CI) (95%CT) (95%CI)
0.676 0.619 0.671
R-score
(0.606-0.745) (0.592-0.646) (0.558-0.899)
0.728 0.687 0.684
D-score
(0.665-0.790) (0.667-0.706) (0.573-0.883)
0.637 0.628 0.661
DVH-score
(0.570-0.705) (0.613-0.642) (0.551-0.856)
0.664 0.654 0.709
Clinical parameters
(0.594-0.735) (0.628-0.680) (0.509-0.91)
0.728 0.719 0.782

R-score + DVH-score + C

R-score + D-score + C

(0.674-0.803)
0.793

(0.735-0.851)

(0.703-0.736)
0.774

(0.762-0.786)

(0.686-0.832)
0.855

(0.719-0.990)

Abbreviations: R = radiomics risk score; D = dosiomics risk score; DVH = dose-volume

histogram; C = clinical parameters.

4. Model calibration and decision curve analysis
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A nomogram based on clinical parameters, R-score, and D-score was constructed and is
shown in Figure 4a. The calibration curve of nomogram validated by bootstrap resampling
is displayed in Figure 4b, which illustrates good agreement between the predicted proba-
bilities of RP versus the actual observed probabilities. The calibration curve of prospective
validation set is provided in the Supplementary Material H with a slope of 1.21 and an in-
tercept of - 0.04. DCA (Figure 4c) showed that the prediction model with the combination
of R-score, D-score and clinical parameters has the best positive net benefits at threshold
probabilities, implying that a proportion of patients could benefit from using the model to
assist in clinical decision making.
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nosis and reduces quality of life. Patients with RP are a highly heterogeneous group, hence
this study evaluated non-invasive methods (radiomics and dosiomics) using only pre-treat-
ment information to characterize individual differences. In this study, the dosiomics features
were shown to have stronger predictive power than the conventional DVH parameters, and
the combination of a radiomics signature, a dosiomics signature, and two clinical factors
were found to be predictive of RP. The results demonstrated that all three types of data ap-
pear to carry complementary information relevant to the risk of developing RP. To facilitate
further clinical evaluation, we provided a nomogram and discuss the potential clinical bene-
fits of applying the RP predictive model.

Several studies to date have been conducted to predict RP by extracting handcrafted radio-
mics features from CT. Cunliffe et al. [38] explored the correlation between radiomics and
RP and found that 12 radiomics features extracted from CT images of patients with esopha-
geal cancer changed over time in association with the development of RP (AUC=0.78),
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Figure 3. (a) The left image is the planning CT image of a patient with a low Radiomics
risk score (R-score). The right image is the radiomics feature (original ngtdm_ Complexity)
map of CT image at roughly the same level as shown on the left. Feature values are indicat-
ed from dark to light.

(b) The left image is the planning CT image of a patient with a high R-score. The right im-
age is the radiomics feature (original ngtdm_ Complexity) map of CT image at roughly the
same level as shown on the left.

(c) The left image is the radiation dose (RD) image of a patient with a low Dosiomics risk
score (D-score). The right image is the dosiomics feature (original ngtdm_Strength) map of
RD image at roughly the same level as shown on the left. Feature values are represented by
rainbow color bar, i.e., from blue to red. The irradiation dose is indicated from dark to light.

(d) The left image is the radiation dose (RD) image of a patient with a high D-score. The
right image is the dosiomics feature (original ngtdm_Strength) map of RD image at rough-
ly the same level as shown on the left.
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Figure 4. (a) Nomogram predicting the occurrence of symptom RP. Abbreviations: ILD:
Interstitial lung disease; R-score = Radiomics risk score; D-score = Dosiomics risk score.
(b) Calibration curve with a bootstrap resampling validation of prediction model combining
radiomics risk score, dosiomics risk score, and clinical parameters. Dashed line indicated
the ideal model in which predicted and actual probabilities were perfectly identical; Red
line indicated actual performance with apparent accuracy; Green line indicated bootstrap
corrected estimate of the calibration curve. (¢) Decision curve analysis of prediction mod-
els. The color lines represent the DCA of different prediction models, the horizontal black
line represents the hypothesis that no patients receive interventions, the oblique gray line
represents the hypothesis that all patients receive the interventions. Abbreviations: R-score
= Radiomics risk score; D-score = Dosiomics risk score; DVH-score = dose-volume histo-
gram score; C. = clinical parameters.

Discussion

Identifying patients at higher risk of developing RP following thoracic irradiation remains
an important and topical clinical question, as this adverse event directly affects patient prog-
nosis and reduces quality of life. Patients with RP are a highly heterogeneous group, hence
this study evaluated non-invasive methods (radiomics and dosiomics) using only pre-treat-
ment information to characterize individual differences. In this study, the dosiomics features
were shown to have stronger predictive power than the conventional DVH parameters, and
the combination of a radiomics signature, a dosiomics signature, and two clinical factors
were found to be predictive of RP. The results demonstrated that all three types of data ap-
pear to carry complementary information relevant to the risk of developing RP. To facilitate
further clinical evaluation, we provided a nomogram and discuss the potential clinical bene-
fits of applying the RP predictive model.

Several studies to date have been conducted to predict RP by extracting handcrafted radio-
mics features from CT. Cunliffe et al. [38] explored the correlation between radiomics and
RP and found that 12 radiomics features extracted from CT images of patients with esoph-
ageal cancer changed over time in association with the development of RP (AUC=0.78),
however, this study focuses on measurement and assessment rather than prediction. Krafft
et al. [21] performed an in-depth study for lung cancer and concluded that the best predic-
tive power (AUC=0.68) was achieved when combining radiomics, clinical and dosimetric
parameters to build the model. Similar findings were obtained in a study of esophageal can-
cer by Du et al [20]. They developed a model combining radiomics, clinical and dosimetric
parameters by studying 96 patients with esophageal cancer (AUC=0.91). Although these
studies included small sample sizes, they inspired us that the combination of handcrafted ra-
diomics features and dosimetric parameters can improve the predictive power of the model.
For dosiomics, several studies have demonstrated its potential to predict radiotherapy-relat-
ed endpoints, including prognosis [39-41] and treatment efficacy [42, 43], but there are very
few studies using handcrafted dosiomics to predict side effects. A recent study published by
Takanori et al. [25] used a combination of dosiomics and dose-volume indices to predict the
occurrence of RP and concluded that dosiomics has the ability to predict RP. Liang et al. [26]
conducted a study on dosiomics prediction of RP and confirmed that dosiomics predictive
ability was superior to both dosimetric and NTCP predictors (AUC of 0.78 compared to 0.68
and 0.74), which gives us an idea that dosiomics relative to dosimetrics perhaps possessing
more dimensional information.
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Based on the results of this study (Table 2) we conclude that the predictive power and sta-
bility (with narrower 95%CI) of the model based on dosiomics features is stronger than
the model based on dosimetrics. The correlation analysis between dosimetric and D-score
showed that they are correlated, where D-score correlates with V30, V25, and V20 between
0.7 and 0.8 (Supplementary material F Figure 3b). Although both dosiomics and dosimet-
ric are quantitative values obtained by calculating from 3D dose distributions, dosiomics
obtains more detailed information from texture analysis of the dose distribution, while do-
simetric obtains information based on dose-volume histograms. The shape features, which
measure the dose delivery from another perspective, may also give a stronger predictive
power to the dosiomics. Combining the results of this study and the published dosiomics
studies to date, we suggest that neither can replace the other. Inspired by radiomics studies,
we resampled the RD images to 1 mm. Different dose grids affect dosiomics feature values
[29], however, the utility of resampling RD images, more specifically, whether resampling
improves the reproducibility and stability of dosiomics features, requires more research.
Placidi et al. conducted a multi-institutional basic study on dosiomics features, which con-
cluded that dosiomics is a tool with predictive potential suitable for multi-institutional stud-
ies by analyzing the reproducibility, stability, and sensitivity of dosiomics features [29]. Our
results also demonstrate that dosiomics have predictive potential and therefore it is worth-
while to investigate dosiomics more extensively and deeply.

To the best of our knowledge, no previous published studies have combined handcrafted
radiomics, dosiomics, and clinical parameters of lung cancer in various ways and compared
their ability to predict RP. In this work, we have compared models with radiomics alone,
and with 3D spatial dose quantitative features (dosiomics) and we then go beyond current
knowledge by proposing a combined model which shows that radiomics and dosiomics are
complementary thus leading to improved model performance. We implemented a careful
and objective feature selection approach, with robustness as the selection principle for each
step of feature selection rather than best predictive ability, which to some extent avoids
the occurrence of chance events. After this, the robust model validation approach was con-
ducted and validated using bootstrap datasets and a prospective dataset, respectively, with
over-optimism correction in both ways. Meanwhile, the number of variables in the model
was controlled to avoid overfitting. The objective potential of radiomics/dosiomics for pre-
dicting RP was explored according to such a process.

We evaluated the performance of the model in three aspects, discrimination ability, calibra-
tion, and clinical application potential [44-46]. First, the differences between the training
set, bootstrapping set, and test set are satisfactory in the results of discriminative validation,
and the fluctuation range of 1000 repetitions is small. Based on this result, we think the
model has stable prediction ability and low risk of overfitting. Second, the goodness of fit
is another evaluation criterion for the prediction model. The final comprehensive model has
excellent calibration, with no significant over- or under-estimation for different risk inter-
vals. Third, a nomogram was built to assist clinical practice, and an offline calculator was
provided to facilitate the calculation of R/D-score. The potential of the predictive model for
clinical application was also evaluated using DCA. In Figure 4c, it can be seen that the no-
mogram-based prediction model has positive net benefits. In more detail, the net benefit of
the prediction model is greater than the hypothesis that all patients receive RP prophylaxis
or pro-active countermeasures (e.g., taking drugs to prevent RP or reducing the dose of ra-
diotherapy) and that all patients do not receive such measures indiscriminately. It is worth
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noting that the net benefit of the D-score-based model is higher than that of the DVH-score-
based model, implying that the model with the D-score has more potential clinical benefit.
In summary, the model we developed has potential clinical utility.

In univariate analysis of clinical parameters, whether receiving CCRT had an effect on the
occurrence of RP, and the incidence of RP was lower in patients who received CCRT, which
is not consistent with clinical experience and with findings in most studies [12, 13, 47]. This
might be a bias due to subjective clinical decision making by physicians. Patients included
in our study were evaluated by physicians for risk prior to receiving CCRT, and patients
with poor health status and high incidence of radiation therapy side effects in the opinion
of physicians would not be given CCRT. Some patients will receive potentially lower pre-
scription doses in the radical dose range with stricter dose constraints of the lung to ensure
they can complete a full cycle of radiotherapy without serious radiation therapy side effects.
Similar views have been proposed by other researchers [8]. A negative correlation between
age and CCRT can be seen in Supplementary material F Figure 3, which also illustrates
the subjectivity in the setting of the CCRT protocol. Our findings suggest that ILD is a
risk factor for the development of RP. Clinically, RT may lead to exacerbation of ILD and
thus interfere with the diagnosis of RP [48]. Accordingly, in this study, the diagnosis of RP
in patients with ILD was determined by collaboration with radiologists. And it should be
noted that strictly to define, the ILD mentioned in this study is subclinical ILD, according
to previous studies. [49, 50]. To investigate the effect of ILD on the model, we excluded
patients with ILD in all datasets and performed the same independent validation methods
as described previously. Based on the results (Supplementary Material G), we propose our
hypothesis: 1. The radiomics model focuses not only on lung texture but also includes other
information, as there is no significant difference between the model including or excluding
patients with ILD. 2. The discrimination performance of the model built by dosiomics or
DVH metrics is improved by excluding patients with ILD, as dose-based models are dif-
ficult to predict RP in patients with ILD. 3. ILD is a critical clinical predictor. In previous
reports, patients with ILD have high risk of RP, and ILD has been considered a high risk
factor for fatal RP [51, 52]. A number of studies have been conducted to analyze the rela-
tionship between age and RP [8, 53]. Several studies [54-56] and a meta-analysis [57] have
shown that older patients have a higher risk of developing RP. However, some studies did
not find an association between age and the risk of RP [58, 59]. In summary, patients who
are elderly or/and have ILD should be given more attention and a more comprehensive risk
assessment before receiving radiotherapy.

A current challenge in radiomics/dosiomics studies is interpretability, and we attempted
to analyze the omics results from a clinical perspective. The analysis revealed no strong
correlation between clinical parameters and the R-score (Supplementary material F Figure
3a). However, imaging radiomics contains a large amount of quantitative information and it
may not be possible to interpret the full meaning of what it represents using a few clinical
parameters. The feature maps of radiomics and dosiomics can provide the direct visualiza-
tion of voxel-based feature values. As shown in Figure 3 (a) and (b), the radiomic feature
“original _ngtdm Complexity” can reflect the texture characteristics, and for ILD patients,
higher voxel-based feature values were obtained compared to patients without pre-existing
lung disease. The dosomic feature “original ngtdm Strength” (Figure 3(c) and (d)) shows
a pattern of variation from high to low dose, which is some reflection of the radiotherapy
planning pattern. Feature maps of other features are provided in the Supplementary material
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F Figure 5. We compared the feature maps with the follow-up diagnostic CTs and found that
the radiomics signature map did not match the areas of symptomatic RP. In contrast, there is
a significant overlap between some dosiomics feature maps and the symptomatic RP regions
(Supplementary Material F Figure 6). This is consistent with the clinical understanding that
the regional localization of symptomatic RP is more closely related to the physical radiation
dose distribution.

The Rad/Dosiomics features selected in this study include shape features, which give us a
suggestion that the contouring of the lung tissue is important. Currently, manual segmenta-
tion is still the “gold standard”, but it is time consuming. Therefore, we performed manual
check to ensure the accuracy and quality of the automatic segmentation, following process-
ing by the automatic segmentation software. We think this approach is suitable for future
multi-institutional studies to assure accuracy while reducing physician workload. Since
dosiomics is still relatively little studied, there are no standardized parameter settings yet.
Although it has common points with imaging radiomics, some of the parameter settings are
different and have a great impact on the results, so we provide the setting files in Supple-
mentary material B, which also provides a reference for future investigators.

This present study has several limitations. First, although the sample size included in our
study is relatively large for radiomics/dosiomics RP prediction study, the prospective val-
idation sample size is too small. Our institution’s prospective study is still ongoing and
continues to expand the sample size. For the scope of this work, we did not yet optimize
the plan based on the results of the omics model. We acknowledge that the prospective data
set used in this study was derived from an observational prospective study and no interven-
tions were implemented in those patients based on our abovementioned predictive models.
By prospective inclusion, we were strictly only able to standardize the follow-up strategy,
specifically, patients received regular follow-up examinations and RP grade was jointly
diagnosed by the study investigators, which ensured the highest achievable accuracy and
consistency of the endpoints, while giving more attention towards patients with likelihood
of developing RP. At the present time, it is not yet clear which aspect of the treatment plan
to change in order to intervene correctly in the planning dosimetry process, so this requires
further work. A prospectively-enrolled clinical study would be important in the clinical im-
plementation process, this is planned for future work, but is not the principal purpose of this
paper. Second, the current gold standard for predictive model validation is still multi-insti-
tutional real-world external validation. Third, we built a binary prediction model because
the sample size is limited and as the dataset expands, models that can predict different
grades are needed. Fourth, pneumonitis associated with immune checkpoint inhibitor (ICT)
therapy is an important adverse event. However, the relationship between ICI and RP or the
relationship between ICI-associated pneumonitis and radiotherapy-associated pneumonitis
remains unclear. Therefore, we excluded patients treated with ICI. Fifth, most current stud-
ies comparing machine learning and deep learning conclude that deep learning has stronger
predictive power. This study is a pilot study. Therefore, deep learning which is currently
a “black box” is not applied, and machine learning with observable processing is chosen.
Finally, individualized treatment should incorporate more multidimensional omics informa-
tion, including genomics and imaging multimodality data. To address several issues above,
our institution is conducting a multi-institutional study.
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Conclusions

This study was a TRIPOD type 3 prediction model development study, validated using
bootstrap samples and a prospective validation set. The radiomics, dosiomics signature, and
clinical parameters associated with RP were selected. By comparing the performance of
the models built by combining different types of parameters, the best prediction model was
found with the best performance of the three types of parameters combined. Furthermore, a
comprehensive nomogram was built to assist in clinical decision making and individualized
treatment. In the future, a multi-institutional study is needed.
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Supplementary Materials

Supplementary material A

Inclusion and exclusion criteria for retrospective and prospective data

The first dataset was collected retrospectively as a training set and validation set. A total of
314 patients treated between January 2013 and December 2018 with definitive RT at Ano-
nymized for Review hospital were considered for the retrospective dataset. The inclusion
criteria were as follows: (1) Patients identified with histologically confirmed NSCLC or
SCLC. (2) Diagnosed with Stage I-III NSCLC and limited-stage SCLC (American Joint
Committee on Cancer, 8th edition, 2017) before RT, and patients underwent radical RT. (3)
No thoracic RT or thoracic surgery prior to RT. (4) CT examinations were performed at 1,
3, and 6 months (+ 15 days) after treatment at Anonymized for Review Hospital. Patients
were excluded, if treatment break of more than 5 days during RT, if patients received sur-
gical treatment within 6 months after radiotherapy, if patients received adjuvant/concurrent
immunotherapy, if there was also a second primary tumor, and if the patients had a lung in-
fection within 6 months after radiotherapy, so it was difficult to identify whether it was RP.

The second dataset was collected prospectively at the same institution as a test set. A total
of 56 patients were enrolled in the study from October 2018 to March 2019. Finally, 35 pa-
tients were included in the analysis. 21 patients were excluded because did not meet the eli-
gible criteria, fourteen of which did not follow up CT as planned, six of which did not com-
plete radiotherapy, and one patient died two months after radiation therapy. The inclusion
and exclusion criteria were the same as the retrospective dataset and these patients were
followed-up every month after had received radiotherapy. The follow-up items included
blood routine examination, C-reactive protein, tumor markers associated with lung cancer,
chest X-rays, and patients received CT examination at 1, 3, and 6 months (£ 7 days) after
radiotherapy.

Patient Characteristics for prospective data

Supplementary Table 1. Patient Characteristics for prospective data

Characteristics  Pros pts Without RP2 With RP2 p*
n (%) Mean + SD Mean + SD
Age median 62 (34-75) 61.5 (34-75) 62 (59-68) 0.363
Gender 1.000
Male 23 (65.7%) 17 (73.9%) 6 (26.1%)
Female 12 (34.3%) 9 (75.0%) 3 (25.0%)
Smoking 1.000
Yes 26 (74.3%) 19 (73.1%) 7 (26.9%)
No 9 (25.7%) 7 (77.8%) 2 (22.2%)
KPS 1.000
<80 13 (37.1%) 10 (76.9%) 3 (23.1%)
>80 22 (62.9%) 16 (72.7%) 6 (27.3%)
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Diabetes 1.000

Yes 2 (5.7%) 2 (100.0%) 0 (0%)
No 33 (94.3%) 24 (72.7%) 9 (27.3%)
ILD 0.192
Yes 9 (25.7%) 5 (55.6%) 4 (44.4%)
No 26 (74.3%) 21 (80.8%) 5 (19.2%)
Pathology 0.776
LUSC 8 (22.9%) 5 (62.5%) 3 (37.5%)
LUAD 10 (28.6%) 8 (80.0%) 2 (20.0%)
SCLC 17 (48.5%) 13 (76.5%) 4(23.5%)
Induc chemo 0.553
Yes 31 (88.6%) 22 (71.0%) 9 (29.0%)
No 4 (11.4%) 4 (100.0%) 0 (0%)
CCRT 0.081
Yes 8 (22.9%) 8 (100.0%) 0 (0%)
No 27 (77.1%) 18 (66.7%) 9 (33.3%)
Conso chemo 0.245
Yes 19 (54.3%) 16 (84.2%) 3 (15.8%)
No 16 (45.7%) 10 (62.5%) 6 (37.5%)
PGTV (Gy) 60.200+2.870 60.423+2.862 59.556+2.963 0.436

Smoking index 668.600+550.412 646.154+566.555 733.333+£527.376  0.679

Abbreviations.: Retro = retrospective, Pts = patients;, Pros = prospective; LUSC = lung
squamous cell carcinoma; LUAD = lung adenocarcinoma,; SCLC = small cell lung cancer;,
IMRT = intensity-modulated radiotherapy;, VMAT = volumetric modulated arc therapy,
chemo = chemotherapy;, KPS = Karnofsky performance score,; Induc chemo = induction
chemotherapy; CCRT = concurrent chemoradiotherapy, Conso chemo = consolidation
chemotherapy;, PGTV = planning gross tumor volume.

*The differences in characteristics were evaluated by logistic regression for continuous
variables or Pearson X2 test and exact Fisher test for categorical variables

Supplementary material B
Radiomics and dosiomics features extraction parameter settings file
Radiomics
imageType:
Original:

binWidth: 25
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featureClass:
shape: # Remove VoxelVolume, correlated to Volume
- Elongation
- Flatness
- LeastAxisLength
- MajorAxisLength
- Maximum2DDiameterColumn
- Maximum2DDiameterRow
- Maximum2DDiameterSlice
- Maximum3DDiameter
- MeshVolume
- MinorAxisLength
- Sphericity
- SurfaceArea
- SurfaceVolumeRatio
firstorder: # Remove Total Energy, correlated to Energy (due to resampling enabled)

- 10Percentile
- 90Percentile
- Energy
- Entropy
- InterquartileRange
- Kurtosis
- Maximum
- Mean
- MeanAbsoluteDeviation
- Median
- Minimum

- Range
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- RobustMeanAbsoluteDeviation
- RootMeanSquared
- Skewness
- Uniformity
- Variance
glem: # Disable SumAverage by specifying all other GLCM features available
- “‘Autocorrelation’
- ‘JointAverage’
- ‘ClusterProminence’
- ‘ClusterShade’
- ‘ClusterTendency’
- ‘Contrast’

- ‘Correlation’

‘DifferenceAverage’

‘DifferenceEntropy’
- ‘DifferenceVariance’
- ‘JointEnergy’

- ‘JointEntropy’

- ‘Imc1”

- ‘Imc2’

- ‘Idm’

- ‘Idmn’

-d

- ‘Idn’

- ‘InverseVariance’

- ‘MaximumProbability’
- ‘SumEntropy’

- ‘SumSquares’
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glrlm:
glszm:
gldm:
ngtdm:
setting:
interpolator: ‘sitkBSpline’
resampledPixelSpacing: [2, 2, 2]
padDistance: 10 # Extra padding for large sigma valued LoG filtered images
resegmentRange: [-3, 3]
resegmentMode: sigma
voxelArrayShift: 1000
Dosiomics
imageType:
Original:
binWidth: 0.5
featureClass:
shape: # Remove VoxelVolume, correlated to Volume
- Elongation
- Flatness
- LeastAxisLength
- MajorAxisLength
- Maximum2DDiameterColumn
- Maximum2DDiameterRow
- Maximum2DDiameterSlice
- Maximum3DDiameter
- MeshVolume
- MinorAxisLength

- Sphericity
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- SurfaceArea
- SurfaceVolumeRatio
firstorder: # Remove Total Energy, correlated to Energy (due to resampling enabled)
- 10Percentile
- 90Percentile
- Energy
- Entropy
- InterquartileRange
- Kurtosis
- Maximum
- Mean
- MeanAbsoluteDeviation
- Median
- Minimum
- Range
- RobustMeanAbsoluteDeviation
- RootMeanSquared
- Skewness
- Uniformity
- Variance
glem: # Disable SumAverage by specifying all other GLCM features available
- “‘Autocorrelation’
- ‘JointAverage’
- ‘ClusterProminence’
- ‘ClusterShade’
- ‘ClusterTendency’
- ‘Contrast’

- ‘Correlation’
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- ‘DifferenceAverage’
- ‘DifferenceEntropy’
- ‘DifferenceVariance’
- ‘JointEnergy’
- ‘JointEntropy’
- ‘Imc1”’
- ‘Imc2’
- ‘Idm’
- ‘Idmn’
-d
- ‘Idw’
- ‘InverseVariance’
- ‘MaximumProbability’
- ‘SumEntropy’
- ‘SumSquares’
glrlm:
glszm:
gldm:
ngtdm:
setting:
interpolator: ‘sitkBSpline’
resampledPixelSpacing: [2, 2, 2]
padDistance: 10 # Extra padding for large sigma valued LoG filtered images
voxelArrayShift: 0

Supplementary material C
Dose-volume histogram (DVH) metrics selection and model construction

Due to the colinearity of DVH metrics, it does is not suitable to perform the same feature
selection approaches as radiomics/dosiomics. Instead, the predictive model is built using
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the already acknowledged metrics V20 and MLD. The DVH-score was defined as the linear
predictor of the multivariable LR radiomics model.

The validation method was performed in exactly the same way as for the radiomics/dosio-
mics model: (1) For each of the 1000 bootstraps, we fitted the logistic regression model co-
efficients on each bootstrap, and then computed its Area under the curve (AUC) of receiver
operating characteristic curve (ROC) using the original non-bootstrapped development
cohort. From these 1000 bootstraps, we computed the average AUC and its 95% confidence
interval. (2) As external validation, we evaluated the DVH model using the prospective-
ly-registered cohort of 35 subjects. Processing of these 35 subjects followed exactly the
same procedure as for the model development cohort, and none of these subjects were used
in any way during model construction.

Since V5 is an important predictor in the IMRT/VMAT era, we also built another DVH
model by combining V5 and MLD. However, based on this dataset, the predictive power of
the “V5+MLD” model is worse than that of the “V20+MLD” model, so we used the DVH
model of V20 and MLD as the comparative model in this study.

Supplementary material D
Feature selection results and graphs

The top twenty features that were screened are displayed in Supplementary Table 1. The
features are sorted according to the number of frequencies selected and shown in the Sup-
plementary Figure 1. The cut-off points were decided based on the frequency breakpoints
shown in the graphs. The cut-off points for both radiomics and dosiomics features are
around 600.

The three most frequently selected signatures are shown in Supplementary Table 2, with
the highest selected frequencies of 45 and 105 for the radiomics and dosiomics signatures,
respectively.

Definitions of the selected features are provided in Supplementary Table 3.

Supplementary Table 1a. The top twenty radiomics features that were selected

No. Radiomics features Frequency
1 original shape Elongation 1000
2 original shape Flatness 922
3 original shape MinorAxisLength 871
4 original shape MeshVolume 746
5 original firstorder 90Percentile 700
6 original glem JointEntropy 696
7 original ngtdm_Complexity 694
8 original firstorder Median 684
9 original shape Maximum2DDiameterSlice 677
10 original glszm LargeAreaEmphasis 670
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11
12
13
14
15
16
17
18
19
20

original shape Maximum2DDiameterRow

original gldm DependenceNonUniformityNormalized
original gldm DependenceEntropy

original glem DifferenceEntropy

original ngtdm_Contrast

original glszm SmallArealLowGrayLevelEmphasis
original gldm SmallDependenceLowGrayLevelEmphasis
original shape LeastAxisLength

original shape SurfaceVolumeRatio
original ngtdm Strength

663
603
587
563
562
542
537
525
525
521

Supplementary Table 1b. The top twenty dosiomics features that were selected

No. dosiomics features Frequency
1 original shape Elongation 1000
2 original glszm LargeAreaEmphasis 864
3 original shape Flatness 736
4 original ngtdm_Strength 715
5 original shape SurfaceArea 704
6 original shape MeshVolume 693
7 original shape Maximum2DDiameterRow 643
8 original glszm GrayLevelVariance 642
9 original shape MinorAxisLength 641
10 original ngtdm Coarseness 622
11 original ngtdm Contrast 605
12 original glszm SmallAreaLowGrayLevelEmphasis 594
13 original gldm LargeDependenceEmphasis 555
14  original shape LeastAxisLength 554
15  original glem DifferenceEntropy 545
16  original glrlm ShortRunLowGrayLevelEmphasis 544
17  original glszm ZoneEntropy 544
18  original glrlm RunLengthNonUniformity 537
19  original glszm SmallAreaHighGrayLevelEmphasis 526
20  original gldm DependenceEntropy 523

Supplementary Table 2a. The top three frequently selected radiomics signatures

No Signature

Freq

1

original glem JointEntropy + original ngtdm Complexity
+ original_shape Elongation + original shape_Flatness
+ original_shape Maximum2DDiameterSlice + original
shape MeshVolume + original shape MinorAxisLength

45
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2 original_firstorder_90Percentile + original_ firstorder 40
Median + original glem JointEntropy + original ngtdm
Complexity + original shape Elongation + original
shape Flatness + original shape MeshVolume + original
shape MinorAxisLength

3 original firstorder 90Percentile + original firstorder 36
Median + original glszm LargeAreaEmphasis + origi-
nal ngtdm Complexity + original shape Elongation +
original shape Flatness + original shape Maximum2D-
DiameterRow + original shape MeshVolume + original
shape MinorAxisLength

Supplementary Table 2b. The top three frequently selected dosiomics signatures

No Signature Freq

1 original glszm GrayLevelVariance + original glszm 105
LargeAreaEmphasis + original ngtdm Contrast + orig-
inal_ngtdm_Strength + original shape MeshVolume +
original shape SurfaceArea

2 original glszm GrayLevelVariance + original glszm 70
LargeAreaEmphasis + original ngtdm_Contrast + origi-
nal ngtdm_Strength + original shape MeshVolume

3 original glszm GrayLevelVariance + original _glszm_ 43
LargeAreaEmphasis + original ngtdm Contrast + orig-
inal ngtdm_Strength + original shape MeshVolume +
original shape MinorAxisLength + original shape Sur-
faceArea
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Supplementary Figure 1. (a) The radiomics features are sorted according to the number of
frequencies selected. (b) The dosiomics features are sorted according to the number of fre-

quencies selected.

Supplementary Table 3. Definitions of the selected features.

Feature

Definition

original glem JointEntropy

Joint entropy is a measure of the randomness/variability in
neighborhood intensity values.

original ngtdm_ Complexity

An image is considered complex when there are many prim-
itive components in the image, i.e. the image is non-uniform
and there are many rapid changes in gray level intensity.

original shape Elongation

Elongation shows the relationship between the two largest
principal components in the ROI shape. For computational
reasons, this feature is defined as the inverse of true elonga-
tion.

original shape Flatness

Flatness shows the relationship between the largest and small-
est principal components in the ROI shape. For computational
reasons, this feature is defined as the inverse of true flatness.

original shape Maxi-

mum?2DDiameterSlice

Maximum 2D diameter (Slice) is defined as the largest pair-
wise Euclidean distance between tumor surface mesh vertices
in the row-column (generally the axial) plane.

original shape MeshVol-

ume

The volume of the ROI V is calculated from the triangle mesh
of the ROL.

original shape MinorAxis-

Length

This feature yield the second-largest axis length of the
ROI-enclosing ellipsoid and is calculated using the largest
principal component Aminor.
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original glszm GrayLevel-|GLV measures the variance in gray level intensities for the
zones.

Variance
original glszm LargeAre-|LAE is a measure of the distribution of large area size zones,
with a greater value indicative of more larger size zones and
aEmphasis more coarse textures.

original ngtdm Contrast |Contrast is a measure of the spatial intensity change, but
is also dependent on the overall gray level dynamic range.
Contrast is high when both the dynamic range and the spatial
change rate are high, i.e. an image with a large range of gray
levels, with large changes between voxels and their neigh-
bourhood.

original ngtdm Strength  [Strength is a measure of the primitives in an image. Its value
is high when the primitives are easily defined and visible, i.e.
an image with slow change in intensity but more large coarse
differences in gray level intensities,

original shape SurfaceArea|To calculate the surface area, first the surface area of each
triangle in the mesh is calculated (1). The total surface area is
then obtained by taking the sum of all calculated sub-areas (2).

Radiomics (R)-score and Dosiomics (D)-score
We added a constant offset in order to return strictly positive scores.

The R-score was calculated as follows: -1.383 + 1.067*original _glcm_JointEntropy -
0.370*original ngtdm Complexity + 1.605*original shape Elongation - 0.635*original
shape Flatness + 0.398*original shape Maximum2DDiameterSlice + 1.557* original
shape MeshVolume - 2.148*original shape MinorAxisLength + 4.

The D-score: -1.522 - 0.616*original glszm GrayLevelVariance - 0.868*original glszm
LargeAreaEmphasis + 0.878*original ngtdm_Contrast + 0.922*original ngtdm_Strength +
1.457*original_shape MeshVolume - 0.625*original shape SurfaceArea + 9.

Supplementary material E
Instructions for R-score and D-score calculator

Selecting either Radiomics risk score (R-score) or Dosiomics risk score (D-score), then en-
ter the feature values into the corresponding input boxes and click the “Calculate” button to
get the scores.

*This calculator can only be used for research purposes, not for commercial use.
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This calculator is only for non-commercial uses

{ cucitoe

uuuuuu

Please type the following inputs:
original_giszm_GrayLevelvariance: ey
riginal_glszm_LargeAreaEmphasis: Dos-score is:

original_ngtam_Contrast ;
original_ngtdm_Strength:
original_shape_MeshVolume:

7.211866050646972

originel_shape_SurfaceArea:

Supplementary Figure 2. The operator interface of the calculator.

Supplementary material F
Correlations between different parameters

The correlation between the different parameters was calculated (Spearman correlation, R
version 4.0.5). The results showed no significant correlation (>0.8) between radiomics risk
score (R-score) and clinical parameters, dosiomics risk score (D-score) and dosimetrics.
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Supplementary Figure 3. (a) Correlations between R-score and clinical parameters. (b)
Correlation between D-score and dosimetrics. Abbreviations: CCRT = concurrent chemo-
radiotherapy; Conso chemo = consolidation chemotherapy; R-score = radiomics risk score;
D-score = dosiomics risk score; MLD = mean lung dose; MHD = mean heart dose.
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Supplementary Figure 4. (a) Distribution of radiomics risk score (R-score) in patients with
and without interstitial lung disease (ILD). (b) Distribution of dosiomics risk score (D-score)
among patients with mean lung dose (MLD) greater than 10Gy and less than or equal to

10Gy.
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Supplementary Figure 5. (a) Radiomics feature map of feature “original glem JointEn-
tropy” for patient with low radiomics risk score (R-score) and patient with high R-score. (b)
Dosiomics feature map of feature “original glszm GrayLevelVariance”, “original glszm
LargeAreaEmphasis” and “original ngtdm Contrast” for patient with low dosiomics risk
score (D-score) and patient with high D-score.
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Supplementary material G

Discrimination ability of different combination of Radiomics score, Dosiomics score and
clinical parameters

Train Validation by bootstrapping Testing
Model
(95%CI) (95%CI) (95%CI)
0.735 0.729 0.739

R-score + D-score

(0.553-0.926)

(0.673-0.796) (0.720-0.736)

0.717 0.701 0.771
R-score + C
(0.652-0.782) (0.683-0.719) (0.585-0.962)
0.770 0.755 0.756
D-score + C

(0.710-0.830) (0.744-0.765) (0.559-0.954)
Abbreviations: R = radiomics risk score; D = dosiomics risk score; C = clinical parameters.

Discrimination ability of different models without patients with interstitial lung disease
(ILD)

Testing Testing without patient with ILD
Model
(95%CI) (95%CI)
0.671 0.714
R-score
(0.558-0.899) (0.348-1.000)
0.684 0.800
D-score
(0.573-0.883) (0.613-0.987)
0.661 0.752
DVH-score
(0.551-0.856) (0.505-1.000)
0.709 0.629
Clinical parameters
(0.509-0.91) (0.392-0.865)
0.855 0914

R-score + D-score + C

(0.719-0.990)

(0.785-1.000)

Abbreviations: ILD = interstitial lung disease.

Precision Recall (RP) curve of the model combing R-score, D-score and Clinical parame-

ters on the test set
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Calibration curve of prospective validation set with a bootstrap resampling meth-
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Supplementary Figure 7. Calibration curve of prospective validation set with a bootstrap
resampling method. Dashed line indicated the ideal model in which predicted and actual
probabilities were perfectly identical; Red line indicated actual performance with apparent
accuracy; Green line indicated bootstrap corrected estimate of the calibration curve.
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Chapter 7: Computed tomography and radia-
tion dose images-based deep-learning model
for predicting radiation pneumonitis in lung
cancer patients after radiation therapy: A pilot
study with external validation

Adapted from: Zhen Zhang*,; Zhixiang Wang*, Tianchen Luo, Meng Yan,
Andre, Dekker; Dirk De Ruysscher; Alberto Traverso, Leonard Wee; Lujun
Zhao. Computed tomography and radiation dose images-based deep-learn-
ing model for predicting radiation pneumonitis in lung cancer patients after
radiation therapy: A pilot study with external validation. Radiotherapy and
Oncology, https://doi.org/10.1016/j.radonc.2023.109581.

* indicates equal contributions
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Abstract

Purpose: To develop a deep learning model that combines CT and radiation dose (RD)
images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who
received radical (chemo)radiotherapy.

Methods: CT, RD images and clinical parameters were obtained from 314 retrospective-
ly-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who
were diagnosed with lung cancer and received radical radiotherapy in the dose range of
50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3)
patients from the clinical trial RTOG 0617 were used for external validation. A ResNet
architecture was used to develop a prediction model that combines CT and RD features.
Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or
3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual
interpretation was implemented using a gradient-weighted class activation map (grad-CAM)
to observe the area of model attention during the prediction process. To improve the usabili-
ty, ready-to-use online software was developed.

Results: The discriminative ability of a baseline trained model had an AUC of 0.83 for test-
set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the
model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and
3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of
interest to the model that contribute to the prediction of RP.

Conclusion: A novel deep learning approach combining CT and RD images can effectively
and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new
cohorts.

Keywords: Radiotherapy; Radiation pneumonitis; Deep learning; Artificial intelligence;
actuarial outcome models
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Introduction

Radiation pneumonitis (RP) is a relatively common radiotherapy(RT)-related side effect
[1, 2]; estimates of RP vary from 5%-58% [3] but it is challenging to forecast accurately
on the individual patient level. The risk of RP constrains the tumoricidal dose that can be
prescribed and, in serious instances, may directly threaten the life of the patient. Prediction
models of a patient’s RP risk are hence an active topic in current research work [4, 5].

Dose-volume histogram (DVH) metrics, such as mean lung dose [6], V5 and V20 [7], are
presently in broad clinical use as surrogates for RP risk. Normal tissue control probability
(NTCP) can be computed from a DVH of total lungs [8]. These aforementioned DVH indi-
cators do not explicitly account for the spatially heterogeneous distribution of dose in lungs,
nor do they account for the functional state of lung parenchymal tissue prior to commence-
ment of RT. Hand-crafted features that describe spatial dose non-uniformity (i.e. “dosiom-
ics”) have been recently investigated [9], as were characterization of non-tumour lung tissue
via image-based analysis (i.e. “radiomics” and texture) [10-12]. To date, few RP studies
have been performed that combine both dosiomics from a clinical treatment plan and radio-
mics from its corresponding planning CT [13, 14]. These studies have treated the two types
of data as disjoint feature domains.

A promising direction for predicting RP is a deeper exploration of inter-related effects of
dose and morphology. First, it is supposed that information about the underlying radio-sen-
sitivity of lung tissue might be encoded into CT-based imaging features. Second, that vari-
ations in applying RT planning national guidelines leads to divergent spatial dose distribu-
tions that are not fully captured in traditional indices such as V20. For example, in China,
the constraint V20 not exceed 25% - 30% [15, 16], however National Comprehensive Can-
cer Network (NCCN) guidelines recommend 35% - 40%. Within a set of DVH constraints,
there exists an unlimited number of feasible RT plans that would meet those constraints but
result in non-comparable spatial dose distributions in normal lung. Third, it is not entirely
clear how to explicitly define hand-crafted measures that combine both CT and dose infor-
mation into a common feature domain. Last, it remains an open debate about the relative
merits of hand-crafted features versus deep-learning features in regard to a given clinical
question.

The objective of this study was to develop and evaluate a deep-learning (DL) model to pre-
dict RP on the basis of CT intensities and Radiotherapy Dose (RD) distributions, using a
joint feature representation for CT attenuation (radiomics) and dose distribution (dosiomics),
rather than making an ensemble of separated models. A design criterion was that any such
DL-based predictions need to be “adjustable” in a relatively simple way to adapt to alterna-
tive prescribed dose and RT planning protocols.

This work describes the implementation a well-known 3D ResNet DL architecture as a gen-
erator of “deep features” in the joint CT-RD representation. A fully-connected (FC) network
is appended to the end of the ResNet to estimate class probabilities of RP based on deep
features. We assumed a linearly-weighted mixture of CT and RD, with tunable weights, as
the input. In the event of different prescribed doses or dose planning procedures at different
institutions, we assumed that a baseline model has to be subsequently adjusted only for a
different mixing ratio of CT and RD, as well as to retrain the FC component to use the new
deep features resulting from the alternative mixing. However, the ResNet part will be kept
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frozen after training an initial baseline model.

Methods
1. Study design

The overall flow in this study has been illustrated in Figure 1. This study utilizes private
data from a single institution to train a baseline model. Subsequent model adjustments and
model performance evaluations used a prospectively collected cohort from the same single
institution, plus the RTOG-0617 randomized trial dataset [17-20] split into two sets accord-
ing to the prescribed dose (60Gy in control arm and 72Gy in the experiment arm). Grad-
CAM heatmaps were overlaid on the input CT and RD to support clinical interpretation.
Model discrimination was reported as receiver-operator “area under the curve” (AUC) and
model calibration was assessed as goodness-of-fit for binary classification. The details of
each part of the study are as follows.

Testset1
weight adjustment by
40 patients
Test set 2 Test set 2

weight adjustment by

40 patients
Testset 3 Testset 3

Training set
(train and validation
set for model
construction)

Visualization

grad-CAM

Deep Learning Model evaluation

Model

Calibration

Lung segmentation

N

Deep Learning
based Auto-seg

Feature
Extraction
Module

Review and modify

Figure 1. A, The pipeline of this study: lung segmentation, model construction, model eval-
uation and visualization. B, Lung mask contouring using deep learning based automatic tool
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and reviewed and modified by two physicians. And model architecture. C, First, test-set-1,
2, and 3 were used to validate the base model built from training set. Second, forty patients
from test-sets-2 and 3 were used to adjust the weight and fully connected layers, respective-
ly, and validated by the test-sets-2 and 3 (without forty patients). This step was repeated ten
times. D, Visualization of the model was achieved by the guided gradient weighted class
activation mapping.

2. Study population

All patients included this study had confirmed diagnosis of lung cancer and were treated
with radically-intended radiotherapy (IMRT or VMAT), either with or without concurrent
chemotherapy. The primary endpoint was symptomatic RP grade 2 or higher according
to Common Terminology Criteria for Adverse Events (CTCAE) v4.0. In the private insti-
tutional datasets, the presence (or absence) of RP was assessed by experienced radiation
oncologists based on follow-up CT, blood test and symptoms. In the RTOG dataset, the sta-
tus of RP was documented in individual case reports. In this work, we considered only RP
events which occurred anytime from the last fraction of radiotherapy up to 6 months after
the last fraction of radiotherapy, as specifically RT-treatment induced RP.

The Training set consisted of 314 routine care patients retrospectively extracted from ar-
chives at one medical university cancer hospital. These were primarily intended for treat-
ment with 60 Gy, but a range of delivered doses between 50 Gy to 70 Gy was prescribed
at the treating physicians discretion. Test-set-1 comprised of 35 prospectively registered
patients from the same institution, also predominantly 60 Gy total intended dose, with vari-
ations of delivered dose at treating physician’s discretion. Training set and Test-set-1 were
obtained with approval from an internal review board (ref. IRBbc2021135). The discretion-
ary deviations in delivered dose were based on each patient’s overall physical condition and
best achievable normal tissue constraints. Specific details of Training set and Test-set-1 are
provided in Supplementary Materials 1A.

Access for secondary re-use of data from the prospectively randomized controlled trial
RTOG-0617 was obtained through the trial sponsor. From the control arm (60 Gy pre-
scribed dose), 194 subjects were defined as Test-set-2, and from the intervention arm (74
Gy prescribed dose), 158 subjects were allocated as Test-set-3. Specific details for filtering
the RTOG-0617 subjects are provided in Supplementary Materials 1B.

3. Data preparation

Planning CT and RD were originally extracted in DICOM format for all subjects. The vox-
el-wise values in the RD images were scaled to represent absolute physical dose in units of
Gy. We used a deep-learning automatic lung contouring tool based on previous work [22]
to automatically segment whole lungs. Experienced radiation oncologists (ZZ and MY)
inspected and (where needed) manually corrected the auto-generated lung masks to ensure
accuracy and segmentation consistency. Data preparation and preprocessing steps are de-
scribed in Supplementary Materials 2A.

4. Development of deep learning RP models

A 3D ResNet architecture was implemented as the main backbone of the RP model (see
technical schematic in Supplementary Materials Figure S1). In brief, the pre-processed CT
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and RD arrays of the same dimensions were passed to the ResNet via linear mixing (W
layer) immediately followed by a 7x7 convolution layer. In the W layer, we defined the
composite input source as, where . A and B were thus the mixing ratio of CT and RD, such
that A was always fixed at unity. Values of A and B were tuned as part of the model training
process and were determined by back-propagation of the error.

The ResNet was used as an image-based “deep feature” generator; its weights were deter-
mined by training an initial baseline model and thereafter the entire ResNet weights were
frozen. The RP classification model consisted of average pooling and a fully-connected (FC)
layer at the end, which uses the deep feature maps generated by the ResNet in order to com-
pute a class probability of RP at a sigmoid function layer. A purely binary classification (RP
or non-RP) was computed by applying a threshold of 0.5. The core of the ResNet comprised
eight repeating residual blocks containing convolution (conv), batch normalization (BN)
and Rectified Linear Unit (ReLU) activation. We used an Adam optimizer with a learning
rate of 0.0001 and Binary Cross-Entropy as the loss function. The training strategy, loss
function definition and model tuning hyperparameters are shown in Supplementary Materi-
als 2D.

After training using exclusively the Training set, the baseline model was evaluated in each
of the three hitherto unseen cohorts i.e., Test-set-1 (medical university cancer hospital,
60Gy prescribed), Test-set-2 (RTOG-0617 control arm, 60Gy prescribed) and Test-set-3
(RTOG-0617 experiment arm, 74Gy prescribed).

To examine the feasibility of “adjusting” the model for the same nominal prescribed dose
but different planning protocol, we attempted two related experiments. First, we randomly
chose 40 subjects from Test-set-2 without replacement and then proceeded to re-train only
the CT-RD mixing ratio (i.e., the W layer) and the FC classifier — the ResNet was kept fro-
zen as abovementioned.

As cross-validation, we evaluated the adjusted model using the remainder of Test-set-2
subjects (hereafter, Test-set-2* = the initial 194 subjects minus the 40 selected for adjust-
ment = 154). To check for random vagaries of selecting 40 patients, we repeated the entire
experiment 10 times, each time choosing different subsets of 40 patients. Secondly, to see if
there was added value of using more patients, we adjusted the baseline model using all 194
subjects prescribed to 60Gy in the RTOG control arm. However, it is no longer possible to
check for over-optimism using repeated cross-validation, so 1000 times bootstrapping with
replacement from Test-set-2 (hereafter Test-set-2#) was used to estimate a range of valida-
tion results.

To examine the feasibility of “adjusting” the model for simultaneously different prescribed
dose and different planning protocol, we re-did the two related experiments above only uti-
lizing Test-set-3.

To help visualize imaging and dose features that influence RP/non-RP prediction, and thus
assist with clinical interpretation of the model attention area, activation heatmaps were gen-
erated by back-projecting Grad-CAM values as overlay on the planning CT and dose imag-
es (see detail in Supplementary Materials 2C).

5. Comparator RP models as alternatives to deep learning of mixed CT and RD models
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A model employing only CT images and a model employing only RD images were con-
structed with the same process as the combined model described above for comparison.

We compared the aforementioned models against simple logistic regression based either
on (i) dose-volume histograms (DVH) only, or (ii) clinical parameters only, or (iii) a com-
bination of DVH and clinical parameters. Due to the high degree of correlation that is
well-known in DVH metrics, we only considered V20 and mean lung dose (MLD) in the
DVH-based model. For the clinical model, the patient age and presence of interstitial lung
abnormalities were selected according to Supplementary Material Table S1. Further detailed
information on the construction of the DVH model and clinical parameters model are pro-
vided in Supplementary Materials 5B.

6. Statistical analysis

The discrimination performance of the model was quantified using area under the receiv-
er-operator curve (AUC), accuracy, sensitivity, and specificity of RP prediction. For all
performance metrics reported, we estimated 95% confidence intervals by 1000 times boot-
strapping. Goodness-of-fit was tested by calculating the model calibration error [23, 24].

Patients’ baseline characteristics for continuous variables are presented as mean + standard
deviation. For univariate analysis of clinical parameters, Pearson chi-squared tests and exact
Fisher tests were used for categorical variables and logistic regression for continuous vari-
ables. For significance of clinical factors, a two-sided hypothesis test at the a = 0.05 confi-
dence level was assumed. Clinical and DVH data were analyzed in the Statistical Package
for Social Science program (SPSS for Windows, version 27.0; SPSS Inc, Chicago, IL).
All deep learning models were constructed and test set performance assessed using Python
(version 3.8.5) and R software (version 4.0.5), respectively.

7. Code and data availability

Code packages and libraries for constructing our deep learning models are given in
Supplementary Materials 2. The source code is made open access at https://gitlab.com/
w654053334/rp_prediction.

The RTOG trial dataset may be obtained by contacting the sponsors for secondary re-use
of data. Training set and Test-set-1 are private institutional collections, which may be made
available to other researchers upon reasonable request and subject to data sharing agree-
ments — please contact the corresponding author. To assist readers with using our RP model,
we have prepared an open access online version with user interface (see Supplementary
Materials 3).

Results

The characteristics of patients are shown in Table 1. Statistically significant heterogeneity
between groups was observed across the majority of clinical factors, except for age and
smoking. In Table 2, the clinical factors were grouped by RP versus non-RP. In univariate
analysis, age, planning tumor volume (PTV), volume of the lung receiving 5 Gy (V5_lung)
and 20 Gy (V20 _lung), and mean lung dose (MLD) were each statistically significantly
higher in patients with RP versus non-RP. Additional detailed clinical characteristics in the
four datasets are given in Supplementary materials 1C (Table S1-3).
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Table 1. Patient characteristics in Training set, Test-set-1, 2, and 3.

Characteristics Training set Test set 1 Test set 2 Test set 3 P-value
(n=314) (n=35) (n=194) (n=158)
Mean + SD Mean + SD Mean + SD Mean + SD
Age 61 (30-85) 62 (34-75) 64 (37-82) 63 (41-82) 0.243
Gender <0.001
Male 238 (75.8%) 23 (65.7%) 115 (59.3%) 89 (56.3%)
Female 76 (24.2%) 12 (34.3%) 79 (40.7%) 69 (43.7%)
Smoking <0.001
Yes 71 (22.6%) 9 (25.7%) 14 (7.2%) 11 (7.0%)
No 241 (76.8%) 26 (74.3%) 167 (86.1%) 144 (91.1%)
Unknow 2 (0.6%) 0 13 (6.7%) 3 (1.9%)
Histology <0.001
LUSC 84 (26.8%) 8 (22.9%) 75 (38.7%) 70 (44.3%)
LUAD 75 (23.9%) 10 (28.6%) 86 (44.3%) 63 (39.9%)
LCU —_— —_— 4 (2.1%) 1 (0.6%)
NOS  — —_— 29 (14.9%) 24 (15.2%)
SCLC 155 (49.4%) 17 (48.6%) —_— —
Rt _technique <0.001
3D-CRT —_— —_— 115 (59.3%) 81 (51.3%)
IMRT 87 (27.7%) 5(14.3%) 79 (40.7%) 77 (48.7%)
VMAT 227 (72.3%) 30 (85.7%) —_— —
Conso chemo <0.001
Yes 179 (57.0%) 19 (54.3%) 173 (89.2%) 136 (86.1%)
No 135 (43.0%) 16 (45.7%) 21(10.8%) 22 (13.9%)
PTV (cc) 446.82+188.51 417.72+179.70 507.93+273.31 482.66+261.40 0.014
V5_lung (%) 48.80+10.15 48.82+10.83  57.68+15.29 57.11+£14.65 <0.001
V20 _lung (%) 24.43+5.24 24.06+4.90 29.06+7.47 31.22+7.96 <0.001
MLD (Gy) 13.374£2.62 13.06+2.61 16.66+4.15 19.16+4.55 <0.001

Abbreviations: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung
adenocarcinoma; LCU= Large cell undifferentiated; NOS= Non-small cell lung cancer;
SCLC = small cell lung cancer; Rt technique = radiotherapy technique used to treat pa-
tient; 3D-CRT=3dimensional comformal radiation therapy; IMRT = intensity-modulated
radiotherapy; VMAT = volumetric modulated arc therapy; chemo = chemotherapy; Conso
chemo = consolidation chemotherapy; PTV = planning tumor volume; V5 lung= Lung V5
(%);V20_lung= Lung V20 (%); MLD = Mean lung dose (Gy).
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Table 2. Patient characteristics group according to outcome of RP or without RP.

Characteristics Without RP With RP P-value
(n=565) (n=136)
Mean + SD Mean + SD

Age median, range (years) 62 (30-86) 65 (38-80) 0.004

Gender 0.170
Male 368 (65.1%) 97 (71.3%)

Female 197 (34.9%) 39 (28.7%)
Smoking 0.229
Yes 464 (82.1%) 114 (83.8%)
No 84 (14.9%) 21 (15.4%)
Unknow 17 (3.0%) 1 (0.7%)
Histology 0.926
LUSC 189 (33.5%) 48 (35.3%)
LUAD 191 (33.8%) 43 (31.6%)
LCU 5(0.9%) 0
NOS 43 (7.6%) 10 (7.4%)
SCLC 137 (24.2%) 35 (25.7%)

Histology 0.778
LUSC 189 (33.5%) 48 (35.3%)
NSC-NSCLC 239 (42.3%) 53 (39.0%)

SCLC 137 (24.2%) 35 (25.7%)

Rt technique 0.620
3D-CRT 162 (28.7%) 34 (25.0%)

IMRT 200 (35.4%) 48 (35.3%)
VMAT 203 (35.9%) 54 (39.7%)

Conso chemo 0.046
Yes 418 (74.0%) 89 (65.4%)

No 147 (26.0%) 47 (34.6%)

PTV (cc) 459.54+226.35  515.30+253.67  0.013

V5 lung (%) 52.50+13.66 55.72+12.70 0.013

V20 lung (%) 26.91+£7.22 28.52+6.92 0.020

MLD (Gy) 15.42+4.37 16.21+£3.99 0.056

Abbreviations.: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung
adenocarcinoma; LCU= Large cell undifferentiated; NOS= Non-small cell lung cancer;
SCLC = small cell lung cancer; Rt technique = radiotherapy technique used to treat pa-
tient; 3D-CRT=3dimensional comformal radiation therapy; IMRT = intensity-modulated
radiotherapy; VMAT = volumetric modulated arc therapy; chemo = chemotherapy; Conso
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chemo = consolidation chemotherapy; PTV = planning tumor volume; V5 lung= Lung V5
(%);V20_lung= Lung V20 (%); MLD = Mean lung dose (Gy).

The predictive performance of models for RP is summarized in Table 3. The baseline model
performed well on Test-set-1 (AUC 0.83) compared to Test-set-2 (AUC 0.55) and Test-set-3
(AUC 0.63). However, after adjustment, model discrimination was improved in Test-set-2*
(AUC 0.65) and Test-set-3* (AUC 0.70), respectively. The discrimination metrics of using
only a subset of forty patients to adjust model were close to using the entire dataset, with
small differences in AUC of 0.03 and 0.01, respectively. The accuracy, sensitivity and spec-
ificity largely followed the same pattern of findings as for AUC.

Table 3. Performance of baseline model and adjustments (using 60Gy and 74Gy arms of
RTOG-0617 trial).

AUC Accuracy | Sensitivity |Specificity
Model Adjustment Evaluation (95%CI) | (95%CI) (95%CI) | (95%CI)
Test-set-1 (35) 0.83 0.82 0.70 0.88
Test-set-2 (194)|(0.82-0.91) [ (0.75-0.81) | (0.67-0.77) |(0.83-0.89)
Test-set-3 (158)]  0.55 0.70 0.41 0.69
Baseline model | No adjustment
(0.47-0.69) | (0.57-0.82) | (0.39-0.52) |(0.61-0.84)
0.63 0.66 0.60 0.68
(0.53-0.72) | (0.60-0.73) | (0.46-0.74) |(0.61-0.75)
Test-set-2* 0.65 0.76 0.58 0.70
Adjusted for 40 randomly (154)
RTOG 60 Gy | Sclected from (0.54-0.77)| (0.63-0.91) | (0.48-0.83) [(0.66-0.98)
arm Test-set-2
Adjusted for All subjects Test-set-2# 0.68 0.78 0.77 0.65
from (194 bootstrap
RTOG 60 Gy (0.58-0.83) | (0.80-0.89) | (0.62-0.97) |(0.60-0.74)
arm samples)
Test-set-2
Adjusted for 40 randomly Test-set-3* 0.70 0.71 0.62 0.73
RTOG 74 G selected from (118)
Y (0.63-0.76) | (0.63-0.83) | (0.56-0.86) |(0.67-0.95)
arm Test-set-3
Adjusted for All subjects Test-set-3# 0.71 0.78 0.68 0.77
from (158 bootstrap
RTOS;;“ Gy : 3 samples)  |(0:62-0.81)| (0.73-0.84) | (0.54-0.83) [(0.71-0.82)
est-set-

Abbreviations: AUC = area under receiver operating characteristic curve; 95% CI = 95%
confidence interval; * the asterisk indicates that the coefficients of CT and RD for this
model are adjusted with 40 patients for each set; # The pound symbol indicates that the co-
efficients of CT and RD for this model are adjusted using the entire data set. The number in
parentheses are the sample size for the evaluations.
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The mixing ratio, i.e. A and B weights, for CT and RD from each model were summarized
in Supplementary Materials 4 Table S4. Across the baseline model and its subsequent ad-
justments, RD was overall more important than CT from an RP prediction perspective.
Among nominally 60Gy subjects, the post-training weight of RD relative to CT was rea-
sonably stable around 1.5 (range 1.42-1.67). Among nominally 74Gy subjects, the relative
weight of RD to CT was suppressed to about 1.2 (range 1.20-1.25).

For comparison with the baseline model that included CT and RD, an alternative baseline
model was constructed by either CT or RD alone and then tested on Test-set-1. The original
baseline model (with both CT and RD, AUC 0.83) performed better than either CT-only or
RD-only alternatives (AUC 0.63 for CT and 0.69 for RD, additionally accuracy, sensitivity
and specificity were reported in Supplementary Materials 5A Table S5).

The discrimination of the DVH-based logistic model was poorer than that of the RD-on-
ly deep learning model (AUC 0.66 vs. 0.69) when evaluated in Test-set-1, and both were
markedly poorer than the baseline model results. Discrimination of the logistic regression
model based on clinical parameters (AUC 0.71 in Test-set-1) was poorer than the baseline
model, but was slightly better than either of the RD-only deep learning and the DVH-only
logistic regression.

The calibration error of the baseline model was 0.07 in Test-set-1, 0.22 in Test-set-2, and 0.18
in Test-set-3, indicating that there was no major calibration issue. However, after the model
adjustment, the average expected calibration error was reduced to 0.14 for Test-set-2, and
0.13 for Test-set-3.

Some representative examples of 3D (Supplementary Materials Video) and 2D heatmaps
(Figure 2 and Supplementary Figure S11-13) generated by Grad-CAM may help to illustrate
the global view for the whole lung and detailed view of each slice, respectively. In patients
with pre-existing lung disease (the area indicated by the pointer in Figure 2 and Supple-
mentary Figure S11), such as interstitial lung abnormalities or emphysema, model attention
appears more widely dispersed overall in the lungs. In contrast, for patients without pre-ex-
isting lung disease, relatively narrow distribution of model attention has been observed that
follows the distribution of dose in the RD (Supplementary Figure S13). This clearly shows
that, as far as the prediction of RP goes, a good model needs to be trained that can make use
of (CT) features associated with pre-existing lung disease as well as (RD) features related to
prominent dose distribution in the normal lungs.

Representative feature maps extracted from each residual block of the RP and non-RP cases
are shown in Supplementary Materials 2E (Figure S2-9). As the level deepens in the model,
the extracted features become more complex and abstract. While these features maps are
very important since the FC layer uses these ResNet-generated feature maps to estimate the
probability of RP, it nonetheless remains challenging to interpret the feature maps and thus
visually associate them with clinically meaningful features. Thus, in this respect, the grad-
CAM heatmaps overlaid onto the CT and RD might be potentially more useful by way of
clinical interpretation.
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Figure 2. [llustration of attention (heat) map of a 60-year-old male with non-small cell lung
cancer. A, Two-dimensional attention map. The left image is an overlay of the CT image
and the attention map, with blue to red representing increasing levels of importance (atten-
tion scale). The area of interstitial lung abnormalities indicated by pointers. The image on
the right is an overlay of the radiation dose (RD) image and the attention map. From dark to
light represents low to high dose, and from blue to red represents increasing importance. B,
Three-dimensional attention map. The different colors represent different levels of impor-
tance (attention scale).

Discussion

In this study, we used pre-treatment radiotherapy planning CT and planned radiation dose
distribution to build a ResNet-based deep learning model to predict RP. The baseline model
is trained using a joint representation of features from CT and RD, which we implemented
using a linear mixing method of the intensity/dose magnitudes. We then showed that such

202



a baseline model can be subsequently adjusted by only re-training the mixing ratio (i.e., the
W layer) and the FC classifier for RP, at the start and at the end of the ResNet, respectively,
without changing any other weights in the ResNet feature extractor itself.

The combination of CT and RD predicted RP reasonably well in Test-set-1, which was ex-
pected since the test set most closely resembled the Training set in terms of prescribed dose,
RT planning procedure and race cohort. Model performance and model calibration on the
RTOG-0617 datasets, i.e., Test-set-2 and Test-set-3 were overall improved after adjusting
the baseline model with either some or all of the each dataset.

However, the adjusted model did not perform as well on either of the RTOG-0617 subsets
as it performed on Test-set-1. We hypothesize this is because RTOG-0617 data was contrib-
uted unevenly across 185 institutions [17], which may leave a large amount of heterogene-
ity among patients as well as residual differences between scanners, physicians delineations
and RT planners that the trial protocol could not reconcile, as one can see in Table 1. It was
interesting that the baseline model initially performed better in Test-set-3 (74Gy) with high-
er AUC and sensitivity compared to Test-set-2 (60Gy), which should have been closer to
the prescription setting of the training dataset. However, we cannot rule out random chance
since the baseline model initially performed sub-optimally for both Test-set-2 and Test-
set-3. This may also suggest that treatment delivery modality may not be the critical factor
for the model, at least relative to lung tissue and dose hotspots, and other sources of clinical
heterogeneity may be more important. We are unable to resolve this question at present, and
resolution of such questions needs more detailed study.

Grad-CAM heatmaps overlaid onto CT and RD suggested synergistic information for the
prediction of RP, that is, the influential features point towards pre-existing lung injury in CT
and regions of high dose in normal lung. Moreover, we proposed a computationally sim-
plified way to adjust the model to fit different clinical settings. We suggest this a feasible
method to adapt to different dose groups and planning protocols. However, it must be noted
that even this limited adjustment-based retraining is still more computationally intensive
than retraining a conventional machine learning model from scratch; as such, it is presently
computationally unfeasible to perform more than a dozen repetitions of cross-validation or
bootstraps during training.

This study included a retrospective single-institutional dataset as training set, and three
other cohorts to evaluate the performance of our model. All test sets were prospectively
collected to ensure the best available accuracy of registering the primary outcome of RP.
In clinical practice, an RP event needs to be diagnosed by following up patients’ symptoms
and examinations. To distinguish RP from other types of pneumonia, follow-up CT exam-
inations, routine blood tests, and C-reactive protein may be used. The endpoint of this study
is grade 2 or higher RP, because patients with grade 2 RP require medical intervention and
their activities of daily living are affected.

In this study, As mentioned, the relative importance of RD relative to CT was about 1.5
in most cases, except for the 74Gy Test-set-3 where it appeared suppressed to about 1.2.
A possible reason for this is that the standard dose (60Gy) can induce RP in patients with
intrinsic lung susceptibility to RP, but increasing prescribed dose to 74Gy seems not to be
additionally effective at inducing RP. Although the method proposed in this study is poten-
tially an efficient way to update the baseline model for a new clinical setting, it is still possi-
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ble to obtain a biased dataset with randomly sampling 40 patients [27], therefore if a larger
dataset may be used for adjustment, we expect the model will be more robust.

Some interesting points were found based on the attention maps (Figure 2 and Supplemen-
tary Materials 6 Figure S11-13), where we tried to understand the “diagnostic” logic of the
model. The results of this study are consistent with previous insights [28-30] and based on
our data set, interstitial lung abnormality is an influential factor for the occurrence of RP.
In the future, as the sample size expands, the model based only on patients with interstitial
lung abnormalities can be developed and compared with the model developed in this study
by Grad-CAM approach. Another feature is that the attentional areas tend to be located
more in the central area of the lungs than in the peripheral areas. We speculate that there are
two reasons for this phenomenon. First, RD is denser in the central part because of the ir-
radiation of metastatic lymph nodes [31, 32]. Secondly, the dose received by the heart may
be another factor in the development of RP [33, 34]. Krafft et al. found that cardiac DVH
metrics improved the predictive power of radiomics models for RP prediction [12]. In our
previous study, cardiac comorbidity was also found to be an independent predictor of RP
[35].

Based on these observations, we speculate that the predictive logic of the model may be as
follows: for patients with pre-existing lung disease, which was determined in collaboration
with radiologists, the model pays attention to lung tissue with disease and analyzes these
areas in conjunction with RD distribution. For patients with overall good (no lung disease)
status, the model preferentially pays attention to regions of high dose and predicts RP main-
ly using the RD features. For most patients, the central part of the lung and the regions adja-
cent to the heart are more important than the peripheral lung. We also compared an RD-only
deep learning model with the DVH-based model, which is another commonly used model
in clinical practice. From the results, the predictive power of the DVH-based model is not
better than that of the RD-based deep learning model.

The result of this study has a few real-world clinical implications. In this study, we did not
iteratively tune the decision threshold of the model. In practice, we may select the thresh-
olds that prioritize either higher sensitivity or higher specificity, but we could not do both.
Patients with very low probability of RP could receive standard or adequate doses if adjust-
ed models with high specificity were used for these hospitals, which might improve their
prognosis [1, 2]. For patients with a very high probability of RP, physicians can give these
patients more frequent examinations or preventive medications to lower the grade of RP or
prevent it from occurring [36]. Alternatively, this clinical tool may be of assistance during
the doctor-patient consultation about risks and expectations of treatment.

There were several limitations in this study. The deep learning model with complex neural
networks needs a large dataset to avoid overfitting. We included 701 patients in this study
and although, to best of our knowledge, this is the largest dataset on the topic of artificial
intelligence model to predict RP, model development will benefit further from even larger
datasets including heterogeneity of CT scanners, dose planning systems, etc. different insti-
tutions with improvements expected both in terms of performance and in terms of general-
izability across backgrounds, scanners, treatment strategies and patients. Second, this model
did not include combinations of clinical parameters including cytokines. Our previous stud-
ies and others have demonstrated that it has predictive value for RP [37, 38]. The combina-
tion of cytokines could improve the performance of the model [39], however, the present
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aim of our study was to focus on a non-invasive approach to modeling and therefore cyto-
kines were not included. A potential benefit is that this model can be directly embedded into
RT planning systems, as it only needs CT and RD information and can export its predictions
directly to other systems for clinical decision support. In addition, patients included in this
study did not receive concurrent chemotherapy with the same regimen, and we think that
the predictive power of the model could be improved if clinical factors were harmonized.
On the reverse side, it is difficult to maintain the same treatment regimen everywhere in the
world, and the generalizability of the model would be affected if only patients receiving the
same chemotherapy regimen were included.

Finally, we did not include patients who received immunotherapy, which is already a stan-
dard therapy for local advanced lung cancer patients now. And the incidence of pneumonitis
is higher with the addition of durvalumab after concurrent chemo-radiotherapy [40, 41].
There are still challenges to be addressed before including patients receiving immunothera-
py in the analysis, such as differential diagnosis of immune checkpoint inhibitor therapy-re-
lated pneumonitis and RP and datasets containing large sample sizes of patients receiving
immunotherapy. The model we developed in this study can served as a base (pre-trained)
model for future studies that include patients receiving immunotherapy [42].

In summary, we successfully developed a deep learning model to predict RP, and this model
can be adjusted easily to fit new cohorts. We tried to uncover the model prediction logic by
a visualization approach. In addition, a ready-to-use online software was developed to assist
clinical practice. Despite several limitations, we believe that deep learning algorithm pos-
sesses great potential to sever as a clinical assistant tool.

205



References

1. Luo H-S, Huang H-C, Lin L-X. Effect of modern high-dose versus standard-dose
radiation in definitive concurrent chemo-radiotherapy on outcome of esophageal squamous
cell cancer: a meta-analysis. Radiation Oncology. 2019;14:178. doi:10.1186/s13014-019-
1386-x.

2. Ladbury CJ, Rusthoven CG, Camidge DR, Kavanagh BD, Nath SK. Impact of Ra-
diation Dose to the Host Immune System on Tumor Control and Survival for Stage I1I Non-
Small Cell Lung Cancer Treated with Definitive Radiation Therapy. International Journal of
Radiation Oncology*Biology*Physics. 2019;105:346-55. doi:10.1016/j.ijrobp.2019.05.064.

3. Arroyo-Hernandez M, Maldonado F, Lozano-Ruiz F, Mufioz-Montafio W, Nufez-
Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med.
2021;21:9. doi:10.1186/s12890-020-01376-4.

4. Ullah T, Patel H, Pena GM, Shah R, Fein AM. A contemporary review of radiation
pneumonitis. Curr Opin Pulm Med. 2020;26:321-5. doi:10.1097/MCP.0000000000000682.

5. Késmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, et
al. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis,
management, and literature review. Radiation Oncology (London, England). 2020;15:214.
doi:10.1186/s13014-020-01654-9.

6. Liu Y, Wang W, Shiue K, Yao H, Cerra-Franco A, Shapiro RH, et al. Risk factors
for symptomatic radiation pneumonitis after stereotactic body radiation therapy (SBRT) in
patients with non-small cell lung cancer. Radiotherapy and Oncology: Journal of the Euro-
pean Society for Therapeutic Radiology and Oncology. 2021;156:231-8. doi:10.1016/j.ra-
donc.2020.10.015.

7. Saha A, Beasley M, Hatton N, Dickinson P, Franks K, Clarke K, et al. Clinical and
dosimetric predictors of radiation pneumonitis in early-stage lung cancer treated with Ste-
reotactic Ablative radiotherapy (SABR) - An analysis of UK’s largest cohort of lung SABR
patients. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Ra-
diology and Oncology. 2021;156:153-9. doi:10.1016/j.radonc.2020.12.015.

8. Prasanna PG, Rawojc K, Guha C, Buchsbaum JC, Miszczyk JU, Coleman CN.
Normal Tissue Injury Induced by Photon and Proton Therapies: Gaps and Opportuni-
ties. International Journal of Radiation Oncology, Biology, Physics. 2021;110:1325-40.
doi:10.1016/j.ijrobp.2021.02.043.

9. Bourbonne V, Da-Ano R, Jaouen V, Lucia F, Dissaux G, Bert J, et al. Radiomics
analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radio-
therapy and Oncology: Journal of the European Society for Therapeutic Radiology and On-
cology. 2021;155:144-50. doi:10.1016/j.radonc.2020.10.040.

10. Wang L, Gao Z, Li C, Sun L, Li J, Yu J, et al. Computed tomography-based del-
ta-radiomics analysis for discriminating radiation pneumonitis in patients with esophageal
cancer after radiation therapy. International Journal of Radiation Oncology, Biology, Phys-
ics. 2021. doi:10.1016/j.ijrobp.2021.04.047.

206



11. Du F, Tang N, Cui Y, Wang W, Zhang Y, Li Z, et al. A Novel Nomogram Mod-
el Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation
Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy. Front Oncol.
2020;10:596013. doi:10.3389/fonc.2020.596013.

12. Krafft SP, Rao A, Stingo F, Briere TM, Court LE, Liao Z, et al. The utility of quan-
titative CT radiomics features for improved prediction of radiation pneumonitis. Med Phys.
2018;45:5317-24. doi:10.1002/mp.13150.

13. Puttanawarut C, Sirirutbunkajorn N, Tawong N, Jiarpinitnun C, Khachonkham S,
Pattaranutaporn P, et al. Radiomic and Dosiomic Features for the Prediction of Radiation
Pneumonitis Across Esophageal Cancer and Lung Cancer. Front Oncol. 2022;12.

14. Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L, et al. Radiomics and dosiom-
ics signature from whole lung predicts radiation pneumonitis: a model development study
with prospective external validation and decision-curve analysis. International Journal
of Radiation Oncology, Biology, Physics. 2022:S0360-3016(22)03189-3. doi:10.1016/
j-1jrobp.2022.08.047.

15. Wei J, Zhang Z, Yu J, Jia H, Tian J, Meng C, et al. Meta-analysis of the incidence
of radiation pneumonitis between European, American and Asian populations. Chinese
Journal of Radiation Oncology. 2021;30:556-62. doi:10.3760/cma.j.cn113030-20201114-
00554.

16. Liu Z, Liu W, Ji K, Wang P, Wang X, Zhao L. Simultaneous integrated dose
reduction intensity-modulated radiotherapy applied to an elective nodal area of limit-
ed-stage small-cell lung cancer. Experimental and Therapeutic Medicine. 2015;10:2083-7.
doi:10.3892/etm.2015.2835.

17. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al.
Standard-dose versus high-dose conformal radiotherapy with concurrent and consolida-
tion carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or
IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3
study. Lancet Oncol. 2015;16:187-99. doi:10.1016/S1470-2045(14)71207-0.

18. Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, et al.
Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemo-
radiotherapy With or Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung
Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical
Oncology. 2020;38:706-14. doi:10.1200/JC0O.19.01162.

19. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Im-
aging Archive (TCIA): maintaining and operating a public information repository. Journal
of Digital Imaging. 2013;26:1045-57. doi:10.1007/s10278-013-9622-7.

20. Bradley J, Forster K. Data from NSCLC-Cetuximab. The Cancer Imaging Archive.
2018. doi:10.7937/TCIA.2018.jze75u7v.

21. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et
al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Mag-
netic Resonance Imaging. 2012;30:1323-41. doi:10.1016/j.mri.2012.05.001.

207



22. Hofmanninger J, Prayer F, Pan J, Rohrich S, Prosch H, Langs G. Automatic lung
segmentation in routine imaging is primarily a data diversity problem, not a methodology
problem. European Radiology Experimental. 2020;4:50. doi:10.1186/s41747-020-00173-2.

23. Shi Z, Zhang Z, Liu Z, Zhao L, Ye Z, Dekker A, et al. Methodological quality of
machine learning-based quantitative imaging analysis studies in esophageal cancer: a sys-
tematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J
Nucl Med Mol Imaging. 2021. doi:10.1007/s00259-021-05658-9.

24, Naeini MP, Cooper GF, Hauskrecht M. Obtaining Well Calibrated Probabilities
Using Bayesian Binning. Proc Conf AAAI Artif Intell. 2015;2015:2901-7.

25. Vial A, Stirling D, Field M, Ros M, Ritz C, Carolan M, et al. The role of deep
learning and radiomic feature extraction in cancer-specific predictive modelling: a review.
Translational Cancer Research. 2018;7. doi:10.21037/21823.

26. Georgiou T, Liu Y, Chen W, Lew M. A survey of traditional and deep learn-
ing-based feature descriptors for high dimensional data in computer vision. Int J Multimed
Info Retr. 2020;9:135-70. doi:10.1007/s13735-019-00183-w.

27. Shahinfar S, Meek P, Falzon G. “How many images do I need?”” Understanding
how sample size per class affects deep learning model performance metrics for balanced
designs in autonomous wildlife monitoring. Ecological Informatics. 2020;57:101085.
doi:10.1016/j.ecoinf.2020.101085.

28. Kocak Z, Evans ES, Zhou S-M, Miller KL, Folz RJ, Shafman TD, et al. Challeng-
es in defining radiation pneumonitis in patients with lung cancer. International Journal of
Radiation Oncology, Biology, Physics. 2005;62:635-8. doi:10.1016/j.ijrobp.2004.12.023.

29. Doi H, Nakamatsu K, Nishimura Y. Stereotactic body radiotherapy in patients with
chronic obstructive pulmonary disease and interstitial pneumonia: a review. Int J Clin On-
col. 2019;24:899-909. doi:10.1007/s10147-019-01432-y.

30. Okumura M, Hojo H, Nakamura M, Hiyama T, Nakamura N, Zenda S, et al. Ra-
diation pneumonitis after palliative radiotherapy in cancer patients with interstitial lung
disease. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Ra-
diology and Oncology. 2021;161:47-54. doi:10.1016/j.radonc.2021.05.026.

31. Jiang X, Li T, Liu Y, Zhou L, Xu Y, Zhou X, et al. Planning analysis for locally
advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulat-
ed radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-
VMAT). Radiation Oncology. 2011;6:140. doi:10.1186/1748-717X-6-140.

32. Chang JY. Intensity-Modulated Radiotherapy, Not 3 Dimensional Conformal, Is
the Preferred Technique for Treating Locally Advanced Lung Cancer. Seminars in Radiation
Oncology. 2015;25:110-6. doi:10.1016/j.semradonc.2014.11.002.

33. Shepherd AF, locolano M, Leeman J, Imber BS, Wild AT, Offin M, et al. Clini-
cal and Dosimetric Predictors of Radiation Pneumonitis in Patients With Non-Small Cell

208



Lung Cancer Undergoing Postoperative Radiation Therapy. Practical Radiation Oncology.
2021;11:e52-e62. doi:10.1016/j.prro.2020.09.014.

34, Keffer S, Guy CL, Weiss E. Fatal Radiation Pneumonitis: Literature Re-
view and Case Series. Advances in Radiation Oncology. 2020;5:238-49. doi:10.1016/
j.adro.2019.08.010.

35. Nalbantov G, Kietselaer B, Vandecasteele K, Oberije C, Berbee M, Troost E, et al.
Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung
cancer patients. Radiotherapy and Oncology: Journal of the European Society for Therapeu-
tic Radiology and Oncology. 2013;109:100-6. doi:10.1016/j.radonc.2013.08.035.

36. Konkol M, Sniatata P, Milecki P. Radiation-induced lung injury — what do we
know in the era of modern radiotherapy? Reports of Practical Oncology and Radiotherapy.
2022;0. doi:10.5603/RPOR.a2022.0046.

37. Niu X, Li H, Chen Z, Liu Y, Kan M, Zhou D, et al. A study of ethnic differences
in TGFB1 gene polymorphisms and effects on the risk of radiation pneumonitis in non-
small-cell lung cancer. Journal of Thoracic Oncology: Official Publication of the Inter-
national Association for the Study of Lung Cancer. 2012;7:1668-75. doi:10.1097/JTO.
0b013e318267cf5b.

38. Zhao L, Wang L, Ji W, Wang X, Zhu X, Hayman JA, et al. Elevation of plasma
TGF-betal during radiation therapy predicts radiation-induced lung toxicity in patients
with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Inter-
national Journal of Radiation Oncology, Biology, Physics. 2009;74:1385-90. doi:10.1016/
j-1jrobp.2008.10.065.

39. Wang L, Liang S, Li C, Sun X, Pang L, Meng X, et al. A Novel Nomogram and
Risk Classification System Predicting Radiation Pneumonitis in Patients With Esophageal
Cancer Receiving Radiation Therapy. Int J Radiat Oncol Biol Phys. 2019;105:1074-85.
doi:10.1016/j.ijrobp.2019.08.024.

40. BiJ, Qian J, Yang D, Sun L, Lin S, Li Y, et al. Dosimetric Risk Factors for Acute
Radiation Pneumonitis in Patients With Prior Receipt of Immune Checkpoint Inhibitors.
Front Immunol. 2021;12:828858. doi:10.3389/fimmu.2021.828858.

41. Vansteenkiste J, Naidoo J, Faivre-Finn C, Ozgiiroglu M, Villegas A, Daniel D, et
al. MA05.02 PACIFIC Subgroup Analysis: Pneumonitis in Stage III, Unresectable NSCLC
Patients Treated with Durvalumab vs. Placebo After CRT. Journal of Thoracic Oncology.
2018;13:S370-S1. doi:10.1016/}.jtho.2018.08.350.

42. Greenspan H, Ginneken By, Summers RM. Guest Editorial Deep Learning in Med-
ical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans
Med Imaging. 2016;35:1153-9. doi:10.1109/TMI1.2016.2553401.

209



Acknowledgments

This manuscript was prepared using data from datasets (RTOG-0617; NCT00533949-Dl1,
D2, D3) from the NCTN/NCORP Data Archive of the National Cancer Institute’s (NCI’s)
National Clinical Trials Network (NCTN). Data were originally collected from a clinical
trial (identifier NCT00533949; “A Randomized Phase III Comparison of Standard-Dose (60
Gy) Versus High-Dose (74 Gy) Conformal Radiotherapy with Concurrent and Consolida-
tion Carboplatin/Paclitaxel +/- Cetuximab (IND #103444) in Patients With Stage IIIA/IIIB
Non-Small Cell Lung Cancer”). All analyses and conclusions in this manuscript are the sole
responsibility of the authors and do not necessarily reflect the opinions or views of the clini-
cal trial investigators, the NCTN, the NCORP or the NCI.

210



Supplementary Materials

1. Dataset
A. Details of training set and test set 1
Training set

The training dataset was collected retrospectively from hospital archives. A total of 314
patients treated between January 2013 and December 2018 with definitive RT at Tianjin
medical university cancer hospital were retrieved with IRB permission. The inclusion cri-
teria were: (1) Patients identified with histologically confirmed NSCLC or SCLC. (2) Di-
agnosed with Stage I-III NSCLC and limited-stage SCLC (American Joint Committee on
Cancer, 8th edition, 2017) before RT, and patients underwent radical RT. (3) No thoracic RT
or thoracic surgery prior to RT. (4) CT examinations were performed at 1, 3, and 6 months
(+ 15 days) after treatment. Patients were excluded, if treatment break of more than 5 days
occurred during RT, or if patients received surgical treatment within 6 months after radio-
therapy, of if there was also a second primary tumor, or if the patients had a significant lung
infection within 6 months after radiotherapy leading to concern about a potentially non-RT
related origin RP.

Test set 1

This dataset was registered prospectively at the same institution as the above training set.
A total of 56 patients were enrolled from October 2018 to March 2019. Finally, 35 patients
were included in the analysis. 21 patients were excluded because did not meet the eligible
criteria, fourteen of which did not follow up CT as planned, six of which did not complete
radiotherapy, and one patient died two months after radiation therapy. The inclusion and
exclusion criteria were the same as for the training dataset. These registered patients were
followed-up every month after concluding radiotherapy. The follow-up items included
blood routine examination, C-reactive protein, tumor markers associated with lung cancer,
and chest X-rays. Furthermore, patients received CT examination at 1, 3, and 6 months (+ 7
days) after end of radiotherapy.

Image acquisition and treatment planning

Intravenous contrast-enhanced planning CT scans were acquired on a single Brilliant (Philips
Medical Systems; Best, The Netherlands) multislice scanner with a standardized protocol:
120 kVp, 100 mAs, 3 mm slice thickness, 512 x 512 image matrix, 50 cm fields of view,
0.977 mm pixel spacing and vendor’s default convolution kernel. Experienced radiation on-
cologists delineated the lung cancer gross tumor volume (GTV) and malignant lymph nodes
in the Pinnacle treatment planning system (Philips Radiation Oncology Systems; Fitch-
burg, Wisconsin, United States), with image fusion against complementary imaging studies
whenever available (such as positron emission tomography).

The GTV was isotropically expanded by 5 mm, as well as subclinical microscopic malig-
nant lesions to derive the clinical target volume (CTV). The planning target volume (PTV)
was an additional 5 mm isotropic expansion around the CTV. Dosimetrist were instructed to
cover at least 95% of the PTV with the prescribed RT dose. Delineations conformed to the
guidelines set by the Radiotherapy and Oncology Group (RTOG). The relevant dose con-
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straints were as follows: MLD <20 Gy, V20 <30%, and volume of the lung receiving 5 Gy
(V5) <60%. All patients were nominally prescribed 2Gy per fraction once daily. Radiation
oncologists determined the total prescribed dose based on each patient’s overall physical
condition and best achievable normal tissue constraints. The actual total RT dose delivered
ranged between 50 to 70 Gy. The planning CT series with associated RT structure delinea-
tions and RT planned radiotherapy 3D dose grids were exported from Pinnacle in the stan-
dard DICOM format.

B. Details for re-use of RTOG-0617 dataset (test set 2 and 3)

Patients randomized to the control arm (60 Gy dose) were designated as Test Set 2, and pa-
tients that were allocated to the intervention arm (74 Gy dose) were designated as Test set
3. Specific details of the RTOG-0617 trial may be obtained from the trial protocol and pub-
lished articles.

Inclusion criteria

1. Patients received full course of radiotherapy. 2. The thickness of CT images ranges from
1.25mm to 3mm. 3. Field of view is 500mm diameter and each axial image dimension
should be 512 x 512, such that the final reconstructed per pixel spatial resolution falls be-
tween 0.9mm and 1.3mm. 4. Either IV contrast or non-IV contrast CT images.

Exclusion criteria

1. Patients diagnosed with (infectious) pneumonia rather than radiation pneumonitis. 2. No
corresponding CT images were available. 3. Abnormal CT images with same pixel values
(-1024) for the whole lung. 4. With multiple plan and dose files, cannot determine which
one was applied. 5. CT images that include only part of the lung.

C. Characteristics of included patients (Table S1-3)

Supplementary table S1. Patient characteristics in training set, test set 1.

Character- Training set Without RP With RP p* Test set 1
sties n (%) Mean + SD Mean + SD n (%)
Age medi- 61 (30-85) 61 (30-85) 63 (44-79) 0.005* 62 (34-75)
an
Gender 0.523
Male  238(75.8%) 186(78.2%) 52(21.8%) 23 (65.7%)
Female 76(24.2%) 62(81.6%) 14(18.4%) 12 (34.3%)
Smoking 0.569
Yes 244(77.7%) 191(78.3%) 53(21.7%) 26 (74.3%)
No 70(22.3%) 57(81.4%) 13(18.6%) 9(25.7%)
KPS 0.725
<80 132(42.0%) 103(78.0%) 29(22.0%) 13 (37.1%)
>80 182(58.0%) 145(79.7%) 371(20.3%) 22 (62.9%)
Diabetes 0.609
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Yes 34(10.8%) 28(82.4%) 6(17.6%) 2(5.7%)

No 280(89.2%) 220(78.6%) 60(21.4%) 33 (94.3%)
ILA 0.015%
Yes 25(8.0%) 15(60.0%) 10(40.0%) 9 (25.7%)
No 289(92.0%) 233(80.6%) 56(19.4%) 26 (74.3%)
Pathology 0.656
LUSC  86(27.4%) 65(75.6%) 21(24.4%) 8(22.9%)
LUAD 73(23.2%) 59(80.8%) 14(19.2%) 10 (28.6%)
SCLC  155(49.4%) 124(80.0%) 31(20.0%) 17 (48.5%)
Induc che- 0.739
mo
Yes 287(91.4%) 226(78.7%) 61(21.3%) 31 (88.6%)
No 27(8.6%) 22(81.5%) 5(18.5%) 4 (11.4%)
CCRT 0.047
Yes 93(29.6%) 168(76.0%) 53(24.0%) 8 (22.9%)
No 221(70.4%) 80(86.0%) 13(14.0%) 27 (77.1%)
Conso che- 0.116
mo
Yes 179(57.0%) 147(82.1%) 32(17.9%) 19 (54.3%)
No 135(43.0%) 101(74.8%) 34(25.2%) 16 (45.7%)
P G T -59.27442.977 59.204+3.063 59.539+2.634 0.415 60.200+2.870
V(Gy)

Smoking 661.540+571.430 641.840+£550.543 735.600+643.084 0.237 668.600+550.412
index

Abbreviations: LUSC = lung squamous cell carcinoma; LUAD = lung adenocarcinoma;
SCLC = small cell lung cancer; IMRT = intensity-modulated radiotherapy; VMAT = vol-
umetric modulated arc therapy; chemo = chemotherapy; KPS = Karnofsky performance
score; ILA = interstitial lung abnormalities; Induc chemo = induction chemotherapy; CCRT
= concurrent chemoradiotherapy; Conso chemo = consolidation chemotherapy; PGTV =
planning gross tumor volume.

* Statistically significant

Supplementary table S2. Patient characteristics in test set 2.

Characteristics All pts Without RP With RP p*

n (%) Mean + SD Mean + SD
Age median 64(37-82) 64(37-82) 65.5(38-80) 0.239
Arm 0.792
No cetuximab 105(54.1%) 87(82.9%) 18(17.1%)
Cetuximab 89(45.9%) 75(84.3%) 14(15.7%)
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Gender
Male
Female
Race
American Indian/Alaskan Native
Asian
Black or African American

Native Hawaiian/Other Pacific

Islander
White

Unknown

Ethnicity

Hispanic or Latino

Not Hispanic or Latino
Unknown

Zubrod

Normal activity
Symptoms,but nearly fully
ambulatory

Histology

Squamous cell carcinoma
Adenocarcinoma

Large cell undifferentiated
Non-small cell lung cancer NOS
Histology grouped
Non-squamous histology
Squamous histology
AJCC Stage

IIIA, or N2

IIIB, or N3

RT technique

3D-CRT

IMRT

EGFR H-Score

No H-Score

115(59.3%)
79(40.7%)

1(0.5%)
6(3.1%)
16(8.2%)
1(0.5%)

169(87.1%)
1(0.5%)

5(2.6%)
181(93.3%)
8(4.1%)

117(60.3%)
77(39.7%)

78(38.7%)
86(44.3%)
4(2.1%)

29(14.9%)

119(61.3%)
75(38.7%)

135(69.6%)
59(30.4%)

106(54.6%)
88(45.4%)

103(53.1%)

96(83.5%)
66(83.5%)

1(100.0%)
6(100.0%)
16(100.0%)
1(100.0%)

137(81.1%)
1(100.0%)

3(60.0%)
151(83.4%)
8(100.0%)

98(83.8%)
64(83.1%)

64(85.3%)
70(81.4%)
4(100.0%)
24(82.8%)

98(82.4%)
64(85.3%)

117(86.7%)
45(76.3%)

84(79.2%)
78(88.6%)

92(89.3%)

19(16.5%)
13(16.5%)

0(0.0%)
0(0.0%)
0(0.0%)
0(0.0%)

32(18.9%)
0(0.0%)

2(40.0%)
30(16.6%)
0(0.0%)

19(16.2%)
13(16.9%)

11(14.7%)
16(18.6%)
0(0.0%)
5(17.2%)

21(17.6%)
11(14.7%)

18(13.3%)
14(23.7%)

22(20.8%)
10(11.4%)

11(10.7%)

0.990

0.316

0.112

0.906

0.880

0.586

0.073

0.079

0.020*
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H-Score able to be determined 91(46.9%) 70(76.9%) 21(23.1%)

Smoking history 0.351

Non-smoker 14(7.2%) 10(71.4%) 4(28.6%)

Former light smoker 16(8.2%) 14(87.5%) 2(12.5%)

Former heavy smoker 70(36.1%) 57(81.4%) 13(18.6%)

Current smoker 81(41.8%) 68(84.0%) 13(16.0%)

Unknown 13(6.7%) 13(100.0%) 0(0.0%)

PTV (cc) 507.934+273.307 501.6904+264.952 539.548+315.003 0.474

V5_lung 57.676+15.288  57.458+15.122  58.781£16.312  0.654

V20_lung 29.056+7.472 28.890+7.440 29.896+7.696 0.486

Dmean_lung 16.664+4.146 16.551+4.163 17.238+4.075 0.394

Received_conc_cetuximab 0.792

No 105(54.1%) 87(82.9%) 18(17.1%)

Yes 89(45.9%) 75(84.3%) 14(15.7%)

Received_cons_chemo 0.982

No 21(10.8%) 17(81.0%) 4(19.0%)

Yes 173(89.2%) 145(83.8%) 28(16.2%)

Received_cons_cetuximab 0.853

No 112(57.7%) 94(83.9%) 18(16.1%)

Yes 82(42.3%) 68(82.9%) 14(17.1%)

Survival_status 0.172

Alive 88(45.4%) 77(87.5%) 11(12.5%)

Dead 106(54.6%) 85(80.2%) 21(19.8%)

Survival_months 23.604(2.562-23.982(2.562-19.333(4.468-0.380
61.465) 61.465) 57.293)

Local_failure_months 18.693(1.413-19.136(1.413-17.559(4.468-0.931
60.447) 60.447) 56.669)

Distant_failure_months 15.621(2.562-16.196(2.562-10.972(3.679-0.149
61.465) 61.465) 47.963)

Progression_free_survival_11.531(1.413-11.662(1.413-10.627(3.679-0.492

months 60.447) 60.447) 47.963)

Abbreviations: Pts = patients; RP = radiation pneumonitis; NOS = Non-small-cell lung can-
cer not otherwise specified; AJCC = American Joint Committee on Cancer; Rt technique =
radiotherapy technique used to treat patient; 3D-CRT=3dimensional comformal radiation
therapy; IMRT = intensity-modulated radiotherapy; EGFR H-Score = epidermal growth fac-
tor receptor immunohistochemistry scores; PTV = planning tumor volume; V5 lung= Lung
V5 (%);V20_lung= Lung V20 (%); Dmean_lung = Mean lung dose (Gy); conc_cetuximab
= concurrent cetuximab; cons_chemo = consolidation chemotherapy; cons_cetuximab =
consolidation cetuximab. * Statistically significant
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Supplementary table S3. Patient characteristics in test set 3.

Characteristics

Age median
Arm
No cetuximab
Cetuximab
Gender

Male

Female
Race
American Indian/Alaskan Native
Asian
Black or African American
White
Ethnicity
Hispanic or Latino
Not Hispanic or Latino
Unknown
Zubrod
Normal activity
Symptoms,but nearly fully
ambulatory
Histology
Squamous cell carcinoma
Adenocarcinoma
Large cell undifferentiated
Non-small cell lung cancer NOS
Histology grouped
Non-squamous histology
Squamous histology
AJCC Stage
IITA, or N2
1IIB, or N3
RT technique

All pts

n (%)
63(41-82)

85(53.8%)
73(46.2%)

89(56.3%)
69(43.7%)

1(0.6%)
4(2.5%)
17(10.8%)
136(86.1%)

4(2.5%)
152(96.2%)
2(1.3%)

92(58.2%)
66(41.8%)

70(44.3%)
63(39.9%)
1(0.6%)

24(15.2%)

88(55.7%)
70(44.3%)

103(65.2%)
55(34.8%)

Without RP

Mean + SD
62(41-82)

72(84.7%)
57(78.1%)

69(77.5%)
60(87.0%)

1(100.0%)
4(100.0%)
14(82.4%)
110(80.9%)

3(75.0%)
124(81.6%)
2(100.0%)

75(81.5%)
54(81.8%)

57(81.4%)
52(82.5%)
1(100.0%)
19(79.2%)

72(81.8%)
57(81.4%)

85(82.5%)
44(80.0%)

With RP

Mean = SD
67 (46-76)

13(15.3%)
16(21.9%)

20(22.5%)
9(13.0%)

0(0.0%)
0(0.0%)
3(17.6%)
26(19.1%)

1(25.0%)
28(18.4%)
0(0.0%)

17(18.5%)
12(18.2%)

13(18.6%)
11(17.5%)
0(0.0%)
5(20.8%)

16(18.2%)
13(18.6%)

18(17.5%)
11(20.0%)

0.244
0.284

0.129

1.000

0.710

0.962

0.938

0.950

0.696

0.528
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3D-CRT

IMRT

EGFR H-Score
No H-Score

H-Score able to be determined

Smoking history
Non-smoker

Former light smoker
Former heavy smoker
Current smoker
Unknown

PTV (cc)

V5 _lung

V20_lung
Dmean_lung
Received_conc_cetuximab
No

Yes
Received_cons_chemo
No

Yes
Received_cons_cetuximab
No

Yes

Survival_status

Alive

Dead

Survival_months
Local_failure_months

Distant_failure_months

90(57.0%)
68(43.0%)

85(53.8%)
73(46.2%)

11(7.0%)
14(8.9%)
52(32.9%)
78(49.4%)
3(1.9%)
482.660+261.390
57.109+14.654
31.22347.960
19.159+4.553

85(53.8%)
73(46.2%)

22(13.9%)
136(86.1%)

93(58.9%)
65(41.1%)

52(32.9%)
106(67.1%)

75(83.3%)
54(79.4%)

70(82.4%)
59(80.8%)

10(90.9%)
12(85.7%)
37(71.2%)
68(87.2%)
2(66.7%)
472.956+243.796
56.205+14.385
30.853+7.473
18.967+4.480

72(84.7%)
57(78.1%)

19(86.4%)
110(80.9%)

80(86.0%)
49(75.4%)

44(84.6%)
85(80.2%)

15(16.7%)
14(20.6%)

0.804
15(17.6%)
14(19.2%)

0.133
1(9.1%)
2(14.3%)
15(28.8%)
10(12.8%)
1(33.3%)
525.828+330.203 0.328

61.133£15.411  0.104
32.869+9.828  0.218
20.017+4.849  0.262

0.284
13(15.3%)
16(21.9%)

0.749
3(13.6%)
26(19.1%)

0.089
13(14.0%)
16(24.6%)

0.499
8(15.4%)

21(19.8%)

20.253(0.493-20.828(0.493-18.528(3.022-0.229

59.560)

59.560)

47.799)

13.732(0.493-13.798(0.493-12.122(3.022-0.557

59.560)

59.560)

47.799)

11.827(0.493-11.662(0.493-13.535(3.022-0.935

59.560)

59.560)

46.058)

Progression_free_survival_9.823(0.493-9.888(0.493-9.527(3.022-0.475

months

59.560)

59.560)

46.058)

Abbreviations: Pts = patients; RP = radiation pneumonitis; NOS = Non-small-cell lung can-
cer not otherwise specified; AJCC = American Joint Committee on Cancer; Rt technique =
radiotherapy technique used to treat patient; 3D-CRT=3dimensional comformal radiation
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therapy; IMRT = intensity-modulated radiotherapy; EGFR H-Score = epidermal growth fac-
tor receptor immunohistochemistry scores; PTV = planning tumor volume; V5 lung= Lung
V5 (%);V20_lung= Lung V20 (%); Dmean_lung = Mean lung dose (Gy); conc_cetuximab
= concurrent cetuximab; cons_chemo = consolidation chemotherapy; cons_cetuximab =
consolidation cetuximab.

* Statistically significant
2. Pre-processing and model construction
A. Pre-processing

1) all images were resampled to a Imm x Imm x Imm resolution; 2) images were cropped
according to total lung mask that was contoured using a deep learning-based automatic tool
and reviewed and modified by two physicians (ZZ and MY) to ensure the correctness of the
delineations, and 3) normalization of CT images was based on the adjusted lung window.
Since the lung window used in daily clinical practice is not perfectly suited for deep learn-
ing approaches, we modified it to -500 (center) and 1200 (range) for the image normaliza-
tion process. RD images are normalized according to a range of 0-80. 4) To reduce the hard-
ware requirements, images were compressed to 84 x 84 x 84. 5) 20% of the training set was
randomly chosen as the validation set to evaluate the model performance during training. 6)
Data augmentation methods were used to increase the number and diversity of training data.

Data augmentation:
1. Random affine transform.

Random affine transformation of the image keeping center invariant with the probability of
0.8.

2.Random rotate

Random rotate of the images with 0-90 degrees with the probability of 0.8.

2. Random flip

Random flip of the image with the channels of x, y and z with the probability of 0.8.

3. Random zoom transform.

Random zoom of the images from the 80% to 100% of input size with the probability of 0.5.
4. Random spatial crop

Random crop the spatial crop of the images from the size of 70 to 84 in each channel with
the random center.

The data preprocessing method was applied by SimpleITK (v2.0.2). The data augmentation
was applied based on MONALI package (v0.8.0).
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ResNet

The ResNet(Residual Neural Network)model is one of the widely used classification model
was designed by Kaiming He [1]. Traditional convolutional networks have more or less
information loss, gradients disappear or explode in the model The ResNet solves this prob-
lem by directly passing the input information to the output, the integrity of the information
is protected. The entire network only needs to learn the part of the difference between the
input and output, which simplifies the learning goals and difficulty. The biggest innovation
of ResNet is that there are many bypasses to directly connect the input to the output layers,
this structure is also called shortcut or skip connections. The residual block was designed by
this innovation shown in Figure 1B. There are different ResNet models from ResNet10 to
ResNet152 that are named according to the number of residual blocks.

Architecture

The architecture of proposed network is shown in Figure 1B, which is composed of weight
layer, 3D convolution layers and one fully connection (FC) layer.

The weight layer is composed of two weights, which can be obtained for CT and RD from
different datasets with diverse treatment patterns. The function of weights is shown below.

Weight; = =——
' im0 Wi

Wi calculates the

Weight; is the weight for each input channel. W; is the value in weight layers. Sowi
i=0

rate of specific input channel’s weight in all input channels.

The ResNet was selected as the backbone of the model with the weight layer as the top of
the model to give the weights of combine the CT and radiation dose images.

In RP prediction processing, the paired CT and radiation dose images was sent into the
model as the input. Then, it was combined by the weight layer and the convolution layers
will extract 512 high-level features from the input. Finally, the fully connection layer with
Sigmoid activation function will predict the probability of the patient will have RP after
treatment according to extracted features.

The model was built on PyTorch (v1.7.1). All code was written on python language (v3.8.5)
The experiments were performed on a workstation with one NVIDIA Quadro T2000 (4GB)
GPU.

C. Grad-CAM

To obtain the deeper understanding how the model makes the decision to classification
whether the patient will have RP. The gradient-weighted class activation mapping (Grad
CAM) was applied to visualize the interpretation for the proposed model.

Class activation map (CAM) shows the most significant position of the model through the
visual thermal map, so it can be used to explain how the model make the decision [2]. The
CAM method exploits the abundant spatial and semantic information in the convolution
layers, replace the fully connection layer with global average layer, and replace the feature
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map with the mean value of all pixels of the feature map as the activation map.

The Grad CAM is class-specific, meaning it can produce a separate visualization for every
class present in the image, which is the upgrade method of CAM, uses the gradients of the
target concept flowing into the final convolutional layer to produce a coarse localization
map highlighting the important regions in the image for predicting the concept [3].

The workflow of Grad CAM shown in Figure 1B and Figure S1.

The function of Grad CAM is shown below:

flyy e
3
Z — & 0A4;;
Léraa-cam = ReLU(Z agA*)
K

Ai»‘j presents the feature map from the last convolution layer in the model, k is the number of channels,

c
i,j are the position of pixels. y¢ is the prediction of the specific c-th class. 5% means the gradient of
ij

the c-th class to the feature map. By averaging this gradient per channel, we can get a k-dimensional

vector which is the weights for feature map channels.

D. Deep learning network training strategy

The model was trained by the Adam optimizer with a learning rate of 0.0001. The Binary
Cross-Entropy loss function was selected to train the model.

To avoid overfitting, the following method were used: 1. The Batch Normalization (BN)
was used on the features after the average pooling. 2.The Dropout layer was used on the
features after BN with the rate of 0.5. 3. The L2 regulation penalty were added on the
weights of fully connection layers. 4. The early stopping method was used in the training
process.
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3. Instructions of the online tool for radiation pneumonitis prediction (Figure
S10)

* This tool can only be used for research purposes, not for commercial use.

1. Use the whole lung contour as the only mask in the structure file, which you can do
with the treatment planning system for radiotherapy or other contouring tools. Please fol-
low the guidelines set by the Radiotherapy and Oncology Group (RTOG) (DOI:10.1016/
j-1jrobp.2010.07.1977) [4].

2. Convert the planning CT, radiation dose images and structure file to nrrd format and re-
name them to ‘CT’, ‘RD’ and ‘RS’, we recommend using 3D slicer for this step. During this
process, please remove all information about the patient.

3. Uploading these three files and press ‘prediction’ button and wait for the calculation.

Online tool: https://flask-web-zx.herokuapp.com/

Supplementary Figure S10. Radiation pneumonitis prediction online tool

RP prediction Online Tool

Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer
patients after radiation therapy

Upload Radiation CT file Upload Radiation Dose file
.. i, B | FEe

Informations:

Upload Files: Not yet
Upload Radiation structure/mask file

M =%t Upload file Prediction processing:Not yet

prediction

Parient Risk:%

* This tool can only be used for research purposes, not for commercial use.

1. Use the whole lung contour as the only mask in the structure file, which you can do with the treatment
planning system for radiotherapy or other contouring tools. Please follow the guidelines set by the
Radiotherapy and Oncology Group (RTOG) (DOI:10.1016/.ijrobp.2010.07.1977).

2. Convert the planning CT, radiation dose images and structure file to nrrd format, we recommend using 3D
slicer for this step. During this process, please remove all information about the patient

The example data can be download here:Example Data

3. Uploading these three files and press ‘prediction” button and wait for the calculation.

Need help?

Please concat with:

Zhixiang wang@maasiro.nl

radiologyzhangzhen@gmail.com

@Copyright2022 Z. Wang Z. Zhang AllRightsReserved.

4. Weights of CT and radiation dose (RD) for the models (Table S4)

Supplementary Table S4. The weights for CT and RD from each model.

Dataset Weight of CT | Weight of RD (mean, range)
Training set 1 1.42
Test set 2* 1 1.53 (1.50-1.58)
Test set 2° 1 1.67
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Test set 3* 1 1.20 (1.02-1.41)
Test set 3* 1 1.25

* The asterisk indicates that the coefficients of CT and RD for this model are adjusted with
40 patients for each set; # The pound symbol indicates that the coefficients of CT and RD
for this model are adjusted using the entire data set.

5. CT, RD, DVH and clinical based model

A. Deep learning model constructed by CT or RD

Supplementary Table S5. Performance of deep learning model constructed by CT or RD
alone.

Model AUC Accuracy Sensitivity Specificity
(95%CI) (95%CI) (95%CI) (95%CI)
CT 0.630 0.582 0.565 0.612

(0.571-0.674)  (0.535-0.628) (0.503-0.617) (0.552-0.689)
RD 0.686 0.646 0.659 0.632

(0.637-0.735)  (0.602-0.690) (0.599-0.719) (0.568-0.695)

B. Dose-volume histogram (DVH) metrics and clinical parameters selection and model con-
struction

Due to the collinearity of DVH metrics, it does is not suitable to perform the complex fea-
ture selection approaches. Instead, the predictive model is built using the already acknowl-
edged metrics V20 and mean lung dose.

The logistic regression method was used to build this model based on the training set (314
subjects). As external validation, we evaluated the DVH model using the prospectively-reg-
istered cohort of 35 subjects (test-set-1). Processing of these 35 subjects followed exactly
the same procedure as for the model development cohort, and none of these subjects were
used in any way during model construction.

The clinical model was presented as a multivariable logistic regression model. The predic-
tors (age and interstitial lung abnormalities) were selected according to Table S1.

The training and validation strategies are the same as those described in the previous para-
graph for the DVH model.

6. Attention maps (Figure S11-13)

Supplementary Figure S11 Attention map of a patient with interstitial lung abnormality.
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Low High
Attention scale

Supplementary Figure S12 Attention map shows attention areas around the heart region

Low High
Attention scale

Supplementary Figure S13 Attention map shows attention areas roughly follow radiation
dose distribution

Attention scale
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8.1 Executive summary

In this thesis, I have explored the potential utilization of radiomics and image-based bio-
markers in radiotherapy. Three aspects were investigated: 1. methodological refinement and
exploration of radiomics studies (Chapter 2 and 3). 2. The role of radiomics in radiotherapy
prognosis (Chapter 4 and 5). 3. The value of image-based biomarker for radiotherapy side
effect prediction (Chapter 6 and 7). Radiomics, as a field at the intersection of medicine,
computer science, and engineering, has many pitfalls that are likely to be overlooked in the
steps of implementation. I think that a practical checklist covering methodological and clin-
ical utility is a solution to this problem. Therefore, in Chapter 2 I integrated engineering and
clinical perspectives to propose assessment criteria for evaluating the quality of machine
learning-based quantitative imaging analysis studies. The checklist covers several aspects
such as data preparation, data processing, and clinical potential assessment. The checklist
will allow investigators to self-check the repeatability, reproducibility, and clinical potential
utilities of image-based biomarker studies in their future experiments. It is worth stating
that it is not our initial intention to require or expect future studies to conform to every item
in the checklist, which would be very difficult to achieve, limited by the objective research
environment. Because researchers with different disciplinary backgrounds pursue varying
research priorities, investigators can be selective in the use of certain items in the checklist
depending on the goals pursued. In developing the checklist, I found that most of the pub-
lished studies included relatively small sample sizes, thus leading to the study in Chapter 3.
In this study, I demonstrated that deep learning has the potential to generate synthetic sam-
ples that expand the training set. Its application to lung cancer is currently under investiga-
tion. While the results are encouraging, we should be aware that there is still a long way to
go from demonstrating its potential to being used in real-world research. The fact that some
of the generated samples will still be recognized by doctors as artificial also shows that our
algorithm is not perfect.

After specifying the qualitative evaluation criteria that should be followed for the imple-
mentation of radiomics and image-based biomarker studies, I explored the application of
radiomics to practical clinical problems. Prospective data or/and multicenter data were used
in the studies included in this thesis to validate the models to ensure that model validation
results were as objective as possible. Improving patient prognosis is one of the main clin-
ical concerns and the most important goal in refining treatment modalities. In Chapter 4, I
predicted distant metastases in early-stage lung cancer patients who received SBRT. This
is of great relevance in a clinical context where clinical decisions after SBRT are diverse
for this group of patients, where the decision of whether to give the patient systemic thera-
py or not is a difficult one. Therefore, based on this prediction model, patients with a high
risk of distant metastases can be treated aggressively as well as followed up more intensely
[1]. Also, tumors with a high risk of metastasis tend to be more aggressive, so this model
might also guide the choice of drugs. It should be noted that the patients in this study were
all from China, a developing country with unevenly developed medical resources. Some of
the patients were treated in developed cities and then returned to places of residence where
medical resources are relatively scarce, so close imaging follow-up was difficult for them.
Selective and aggressive follow-up of patients, i.e., those at high risk, is more practical
and easier to accomplish. In addition, this study examined the application of multimodality
radiomics in prognosis. Both CT images reflecting tissue anatomical information and PET
functional images containing metabolic information were investigated. Based on this study
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and the results of Chapters 6 and 7, I believe that performing integration of images based on
different imaging rationales, and thus association with multidimensional data such as clini-
cal parameters, can improve the predictive power and generalizability of prediction models.
Patients with early-stage lung cancer have a high likelihood of achieving long-term survival
[2], so I chose distant metastasis as an the endpoint for clinical decision making. In contrast,
for patients with locally advanced disease, their overall survival is shorter and the primary
indicator for assessing many treatment strategies and therapeutic techniques [3]. In Chapter
5, I explore the prediction of overall survival in locally advanced lung cancer. Region of
interest (ROI) selection is an important step in radiomics research, but most of the studies
published so far focus on malignant tissues, which is admittedly one of the determinants of
overall survival, but the underlying status of normal tissues, especially organs such as the
heart and lungs, is also strongly associated with survival [4]. In the study, I used radiomics
features of both tumor tissue and lung tissue to build prediction models, and in a subgroup
analysis, the results showed that overall survival could be predicted based on tumor tissue
or lung tissue alone. This demonstrated that both tissues contain survival-related informa-
tion and combining these two aspects might lead to models with better predictive power.
This is reasonable because the underlying status of lung tissue reflects not only the patient’s
pre-existing disease, but also the tolerance to treatment for some cases.

Overall, in Chapter 4 and 5, I demonstrated that radiomics can make prognostic predictions.
From a technical point of view, the use of simple statistical models, such as logistic regres-
sion or Cox proportional hazards regression, can be effective in predicting prognosis. From
a clinical perspective, the results of the radiomics prediction models are consistent with
clinical understanding, as discussed in Chapters 4 and 5, respectively. Having an accurate
assessment of prognosis is essential for making clinical decisions, and based on the risk as-
sessment values output by the model, physicians can individualize patient treatment to im-
prove patient prognosis. On the flip side, predictive models can also help physicians stratify
risk populations, allowing physicians to achieve greater clinical management effectiveness
with their limited time. The model also has a contribution to patients and from an economic
point of view, which is described in the “Research Impact” section.

Radiotherapy is bittersweet and can be accompanied by side effects while treating the dis-
ease. In Chapters 6 and 7 I explored one of the common side effects of radiotherapy, radia-
tion pneumonitis. Radiation pneumonitis is a non-infectious pneumonia due to radiation that
is difficult to treat [5], making it important to predict its occurrence [6]. Clinically, patients
with high chance of developing radiation pneumonitis will be given relatively low radiation
doses or prophylactic medications. From a practical standpoint, it is not possible to give
prophylactic medications to all patients or to closely monitor every patient, which is uneco-
nomical and time constrained. Therefore, based on the output of the prediction model, we
can target and closely monitor the high-risk group, which also increases the likelihood of
early and timely detection of radiation pneumonitis. It broadens the treatment window and
has the potential to reduce the rate of severe disease and mortality in radiation pneumonitis.
In these two studies, I used dose images that are not much explored yet. The application of
dose images in radiomics is known as dosiomics. As mentioned before, radiation pneumo-
nitis is caused by radiation and therefore focusing only on the basal state of the lung tissue
is not sufficient and should be included in the evaluation together with information on radi-
ation dose. Dose-volume histogram (DVH) parameters have been widely used in previous
studies and in clinical practice, but they are only an approximation of the radiation dose dis-
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tribution. Dosiomics (Chapter 6) allows one to explore the details of the dose distribution,
like radiomics to obtain texture information from medical images. Unlike dosiomics with
handcrafted features, features extracted by deep learning models are not pre-defined, and in
Chapter 7 I demonstrated that deep learning-based dose features also have predictive power.

For image-based biomarker studies, the generalizability of the model is a challenge. Apply-
ing established models to different cohorts is difficult for complex reasons, including het-
erogeneity of human races and healthcare systems, different equipment for data collection,
and differences in treatment protocols. In Chapter 7, I used a deep learning approach to
address the issue of generalizability to clusters with heterogeneity to some extent. Although
in Chapter 6 I demonstrated that the inclusion of clinical parameters improved the predic-
tive power of the model, how to include clinical parameters in deep learning is currently a
question without a perfect answer, and specifically, in which module of deep learning and in
what form, remains to be investigated.

In conclusion, in Chapters 6 and 7, I demonstrated the feasibility of using CT images and
dose images to predict radiation pneumonitis. From a technical point of view, the use of a
suitable model construction allows the synergistic effect of the two different sources of im-
ages. From a clinical point of view, the radiation pneumonitis prediction model can be used
as a part of precision radiotherapy. It allows physicians to give individualized treatment
regimens, more appropriate follow-up to patients, and to provide better physician-patient
communication.

Chapters 4 to 7, the clinical application studies, followed as much as possible the method-
ological quality checklist presented in Chapter 2. For example, for improving repeatability
and reproducibility, I used automatic segmentation tools to ensure consistency, and settings
for the parameters were provided in the appendix of the articles. In terms of clinical utility,
I used decision curve analysis or provided a nomogram, and online automated calculation
tools. In the practice of these studies (Chapter 4 to 7) I found this checklist (Chapter 2) to be
helpful and feasible. However, I also experienced that some items could not be implement-
ed due to the objective conditions of the studies. For example, exploring the association
of radiomics with other types of features could not be realized due to the limitation of data
sources. In addition, I included as many samples as possible in the studies, for example, in
Chapter 7 I used the largest dataset in the field of radiomics research for radiation pneu-
monitis, 701 patients, but this falls far short of the “big data” requirement, which urges us
to continue to refine the algorithms presented in Chapter 3 so that they can be used in re-
al-world studies.

8.2 Limitations of this work

Some limitations of the studies in this thesis should be noted. First, I developed predictive
models for prognosis and toxicity, and users can optimize clinical decisions based on the
model outputs. But the trade-off between prognosis and toxicity has not been explored in
depth. Finding a balance between therapeutic efficacy and side effects that allows patients
to obtain the best possible outcome while suffering less is a worthwhile but unexamined
study in this thesis. This can only be achieved through both clinical and engineering efforts.
From a clinical perspective, a dataset with more detailed endpoints is needed, i.e., a dataset
with at least the ground truth for both prognostic and side effects endpoints. From an engi-
neering perspective, the selection of appropriate models or algorithms is crucial and still to
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be explored.

Second, this thesis did not conduct a comparison of different modeling algorithms and did
not explore the models in depth. Statistical models, logistic regression or Cox proportional
hazards regression, were used in chapters 3 to 6, instead of using models such as XGBoost
that were considered in many studies to have stronger predictive power and to exploit the
nonlinear relationship of features [7, 8]. The main reasons for this are, firstly, the logical
simplicity of these algorithms I used, which have a stronger explanatory nature, due to their
ability to obtain the weights of each feature. Secondly, the aim of our study was to demon-
strate that radiomics or image-based biomarkers have potential for clinical applications and
high predictive indicators were not our main goal. In Chapter 7, the deep learning algorithm
I used is suitable, but it is not known if it is optimal.

Third, I did not provide a biological explanation for the selected features. Although I made
medical knowledge-based speculations about the meaning of the features or the predictive
logic of the model based on the equations of the features (Chapters 4, 5 and 6) or the feature
maps (Chapters 6 and 7), this was not sufficiently rigorous. Several articles [9] have been
published on biological interpretation of image-based biomarkers by methods such as pro-
teomic and genomics as introduced in the Introduction section (Chapter 1). I agree that this
is an important tool to unravel the “black box™ of radiomics research, which is an objective
and rigorous approach.

Finally, I did not validate the model in the real world, which is a deficiency in the vast ma-
jority of current studies. What I should acknowledge as a researcher is that the data I used,
even prospectively, were influenced by the inclusion and exclusion criteria, which inevita-
bly results in bias in the included data, even if the degree of bias is very small, the impact
on the model is not known. To make it more objective and realistic, we should measure the
performance of the model in the real-world and routine clinical setting.

8.3 Future perspectives

This thesis investigated the future role of radiomics and image-based biomarkers in sup-
porting clinical decision making. Through implementation of these studies, I believe that
artificial intelligence will shine in the future in the field of medical imaging. However, there
are currently only a few cases where tasks such as prediction are applied to daily clinical
applications other than automatic segmentation applications for clinical work. The reasons
for this include many aspects such as technology, ethics, and policy. As a physician in ra-
diotherapy who has learned some radiomics techniques, I would like to present some of my
views on the future development of this field only for clinical and engineering purposes.

First, in the future, the cooperation between disciplines will be closer and the integration of
resources will be the direction. This is divided into two aspects. The first aspect is that the
combination of medicine and engineering will be more frequent, because both doctors and
technicians have gained a deeper understanding of the application of artificial intelligence
in the medical field in recent years, and are subjectively more willing to cooperate and have
an understanding of the need for cooperation. The second aspect is that crossover between
medical disciplines is more common, as the role of radiotherapy is currently complementary
to other treatments (Chapter 1), regardless of the patient’s stage.

Second, the advancement of technology and the use of reasonable technology. These are
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two different aspects. Advances in technology, such as the application of federated learn-
ing will address the issue of cross-institutional data transfer to some extent, especially for
cross-country data sharing where there are many policy issues, and the application of the
technology will help researchers meet policy requirements. Applying the suitable technolo-
gy means choosing the most appropriate technology from the perspective of clinical needs
and tasks, rather than the most advanced technology. This goes hand in hand with the first
point mentioned above.

Third, based on the above two points, the establishment of a platform that can integrate
technology and clinical needs. I established the prototype of such a platform for daily clin-
ical applications in Chapter 7. In the future, as technology evolves, more and more easy-to-
use and efficient platforms will emerge. This will lower the threshold of technical knowl-
edge for users (clinical decision makers), while the modular platform can be personalized
and changed according to the needs of users. This will facilitate the practical application of
image-based biomarkers.
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Summary

A large number of medical images are acquired during the management of radiotherapy
patients, including in pre-radiotherapy diagnosis, during the treatment of radiotherapy, mon-
itoring of side effects and efficacy. In recent years, many studies have demonstrated that
quantitatively extracted features from such images can be used as biomarkers to assist in
clinical decision making. One of the widely studied approaches is radiomics, where features
are quantitatively extracted from images non-invasively, and biomarkers based on these
features are screened and modeled by machine learning approaches. However, there are still
methodological and clinical application challenges, and accordingly, this thesis investigated
the following three aspects: a) methodological quality assessment of radiomics studies. B)
prognostic value of image-extracted biomarkers in lung cancer patients undergoing radio-
therapy. C) prediction of a radiotherapy side effect, radiation pneumonitis, by image-based
machine learning models.

In this thesis, an objective methodological quality assessment of current radiomics research
was presented, based on which a methodological assessment checklist was proposed (Chap-
ter 2). Difficulties faced in research such as insufficient sample size may be alleviated by
methods such as deep learning (Chapter 3). This thesis also demonstrated the prognostic
(Chapters 4 and 5) and toxicity prediction (Chapters 6 and 7) capabilities of image-derived
biomarkers and compared them to benchmark models commonly used in clinical settings.
The results demonstrated that image-derived biomarkers have the potential for clinical ap-
plication and that combining multi-modality images and multi-dimensional information can
improve the power of the models (Chapters 4 and 6). Selection of regions of interest (Chapter
5) and model building algorithms (Chapter 8) based on clinical needs is critical.

Overall, this thesis demonstrated the potential for future applications of image-derived bio-
markers for the management of radiotherapy patients and to support clinical decision mak-

ing.
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Samenvatting

Een aanzienlijke hoeveelheid medische beelden worden gemaakt tijdens de radiothera-
peutische behandeling van patiénten, zoals gedurende de diagnose voor de radiotherapie,
tijdens de behandeling met radiotherapie, en gedurende monitoring van bijwerkingen en
effectiviteit na de behandeling. De laatste jaren hebben vele studies aangetoond dat kwan-
titatief uit beelden geéxtraheerde kenmerken kunnen worden gebruikt als biomarkers ter
ondersteuning van de klinische besluitvorming. Deze benadering heet Radiomics waarbij
“machine learning” wordt gebruikt om kenmerken te screenen en te combineren in model-
len.. Voor de toepassing van Radiomics zijn er echter nog enkele methodologische en klin-
ische uitdagingen, en daarom werden in dit proefschrift de volgende drie aspecten onder-
zocht: a) methodologische kwaliteitsbeoordeling van radiomics-studies. b) prognostische
waarde van uit beelden geéxtraheerde biomarkers bij longkankerpatiénten die radiotherapie
ondergaan. c¢) voorspelling van bijwerkingen van radiotherapie, stralingspneumonitis, door
beeldgebaseerde machine-learning modellen.

In dit proefschrift wordt een objectieve methodologische kwaliteitsbeoordeling van het
huidige radiomics-onderzoek gepresenteerd, op basis waarvan een methodologische beoor-
delingschecklist is voorgesteld (hoofdstuk 2). Uitdagingen voor dergelijk onderzoek, zoals
onvoldoende steekproefgrootte, kunnen worden verlicht door methoden als deep learning
(hoofdstuk 3). In dit proefschrift werden ook de prognostische (hoofdstukken 4 en 5) en
toxiciteit-voorspellende waarde (hoofdstukken 6 en 7) van uit beelden afgeleide biomarkers
aangetoond en vergeleken met de benchmarkmodellen die gewoonlijk in klinische settings
worden gebruikt. De resultaten toonden aan dat van beelden afgeleide biomarkers potentieel
hebben voor klinische toepassing en dat het combineren van multimodale beelden en mul-
tidimensionale informatie de kracht van de modellen kan verbeteren (hoofdstukken 4 en 6).
Selectie van de interessante gebieden op een beeld (hoofdstuk 5) en van model-algoritmen
(hoofdstuk 8) op basis van klinische behoeften is van cruciaal belang.

In het algemeen toonde dit proefschrift het potentieel aan voor toekomstige toepassingen
van uit beelden afgeleide biomarkers voor de radiotherapeutische behandeling van patiénten
en ter ondersteuning van klinische besluitvorming.
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Impact

1. Clinical impact

This thesis examined radiomics and image-based biomarkers in the context of clinical
needs. The outcomes studied are the most important for radiation oncologists to consider
when making clinical decisions. There are three implications for the clinic. First, different
sources of information used in our daily work, such as clinical parameters, tumor metabolic
information, and anatomical imaging information can be valuable in the field of artificial
intelligence (Chapters 4, 6, and 7). Clinical cognition is the basis of Al research in the med-
ical field. In Chapter 5, I optimized the ROI based on clinical experience and demonstrated
that clinical knowledge could guide the optimization of models. Second, the efficacy of
parameters based on radiomics, for example, may meet or even exceed the benchmark pa-
rameters currently used in the clinical practice. In Chapter 6, I demonstrated that dosiomics
predictive power outperforms current benchmark DVH parameters. Third, artificial intel-
ligence tools have the potential to be embedded in daily clinical practice. The application
platforms presented in Chapter 7 evidence the potential for future applications of artificial
intelligence.

Overall, this thesis contributes to the application of radiomics and artificial intelligence to
assist clinical work and update clinical tools.

2. Technological impact

Although I do not propose new algorithms or invent new hardware in this paper, there are
several lessons learned from the application of the technology that can help technologists
working in the field. First, problems that are considered clinically intractable can be ac-
complished using the appropriate technology needed for the clinical task. As discussed
previously, predictive power beyond the benchmark model can be achieved using simple
artificial intelligence models. Again, the approach presented in Chapter 7 adapts commonly
used algorithms to specific tasks, dynamically combining CT images and radiation dose
images to achieve results that are difficult to accomplish with non-artificial intelligence ap-
proaches. Second, trials and studies from a technical perspective should take full account of
clinical experience and clinical needs. For example, the image preprocessing methods and
the choice of algorithms, should be adapted to the task context. Third, I follow the tenet of
open science and made our code, configuration files and data as open as possible. This can
be made available to future technologists for reference.

3. Impact on patients

Although the users of the model developed in this thesis are physicians, it is the patients
who are ultimately the recipient of the clinical intervention. The methods and models pre-
sented in this thesis have practical implications for patients.

First, in terms of practical benefits to patients, the approach proposed in this thesis can help
optimize clinical decision making, thereby prolonging patient prognosis (Chapters 4 and 5)
and reducing patient suffering (Chapters 6 and 7). They may also be used to inform patients
better of their expected outcomes and ultimately in shared decision making, where appro-
priate.
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Second, from a financial burden perspective, as a result of accurate screening of high-risk
groups, physicians will be able to target patients for closer follow-up or recommend certain
treatments or medications. Considering the whole population, this will reduce the overall
economic burden. All of the models developed in this thesis are based on routine examina-
tions without the need to undertake expensive tests such as genetic sequencing. Hardware
such as computers are reusable. Therefore, patients do not have to bear additional costs.
This is important for society as a whole, but especially important in countries, such as Chi-
na, in which patients themselves have to pay a significant part of the treatment cost.

4. Societal impact

In this thesis, we demonstrated the potential of image-derived biomarkers for clinical ap-
plications. From a societal perspective, effective support for clinical decision making can
reduce the financial burden on patients and insurance expenditures, thereby increasing the
effectiveness of health insurance utilization.

The application of the clinical prediction models presented in the paper has the potential to
provide better treatment protocols for patients, reduce the incidence of side effects, and im-
prove prognosis. As a result, the workload of physicians can be reduced to some extent and
more medical resources can be freed up to serve the society.

At the same time, this thesis provides an explanation of the clinical applications of Al,
which may improve physicians’ acceptance of Al and thus contribute to the future applica-
tion of Al tools in the real world.
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