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Given an undirected and connected graph G = (V , E) and two vertices s, t ∈ V , a vertex 
subset S that separates s and t is called an s-t separator, and an s-t separator is called 
minimal if no proper subset of S separates s and t. Moreover, we say that a set S is a 
minimal separator of G if S is a minimal s-t separator for some s and t. In this paper, we 
consider finding a minimal (s-t) separator with maximum weight on a vertex-weighted 
graph. We first prove that these problems are NP-hard. On the other hand, we give an 
O ∗(twO (tw))-time deterministic algorithm based on tree decompositions where O ∗ is the 
order notation omitting the polynomial factor of n. Moreover, we improve the algorithm 
by using the Rank-Based approach and the running time is O ∗(38 · 2ω)tw. Finally, we give 
an O ∗(9tw · W 2)-time randomized algorithm to determine whether there exists a minimal 
(s-t) separator where W is its weight and tw is the treewidth of G .

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Given a connected graph G = (V , E) and two vertices s, t ∈ V , a set S ⊆ V of vertices is called an s-t separator if s and t
belong to different connected components in G \ S , where G \ S = (V \ S, E). If a set S is an s-t separator for some s and t , 
it is simply called a separator. If an s-t separator S is minimal in terms of set inclusion, that is, no proper subset of S also 
separates s and t , it is called a minimal s-t separator. We say that a set S is a minimal separator of G if S is a minimal s-t
separator for some s and t .

Separators and minimal separators are important in several contexts and have indeed been studied intensively. For 
example, they are related to the connectivity of graphs, which is an important notion in many practical applications, such 
as network design, supply chain analysis and so on. From a theoretical point of view, minimal separators are related to 
treewidth or potential maximal cliques, which play key roles in designing fast algorithms [6–8,12].

In this paper, we consider the problem of finding a maximum weight minimal s-t separator of a given weighted graph. 
More precisely, the problem is defined as follows: Given a connected graph G = (V , E), vertices s, t ∈ V and a weight 
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function w : V → N+ , find a minimal s-t separator whose weight 
∑

v∈S w(v) is maximum. The decision version of the 
problem is to decide the existence of minimal s-t separator with weight W . We call this problem Maximum Weight Minimal 
s-t Separator. Similarly, Maximum Weight Minimal Separator is the following problem: Given a connected graph G = (V , E)

and a weight function w : V →N+ , find a minimal separator S whose weight 
∑

v∈S w(v) is maximum. The decision version 
of the problem is to decide the existence of minimal separator with weight W .

This problem arises in the context of supply chain network analysis. When a weighted network represents a supply 
chain where a vertex represents an industry, s and t are virtual vertices representing source and sink respectively, and the 
weight of a vertex represents its financial importance, the maximum weight minimal s-t separator is interpreted as the 
most important set of industries that is influential or vulnerable in the supply chain network.

On the negative side, we show that these problems are NP-hard on bipartite graphs, even if all the vertex weights 
are identical, that is, the problem is to find the maximum size of minimal (s-t) separator. On the other hand, we show 
that Maximum Weight Minimal Separator is fixed-parameter tractable with respect to the solution size and weight. We 
then design FPT algorithms with respect to treewidth. It should be noted that since the condition of s-t connectivity can 
be written in Monadic Second Order Logic, it can be solved in f (tw) · n time by Courcelle’s meta-theorem, where f is a 
computable function and tw is treewidth of the graph. However, the function f forms a tower of exponentials; the existence 
of an FPT algorithm with better running time is not obvious.

In this paper, we propose two parameterized algorithms for Maximum Weight s-t Minimal Separator with respect to 
treewidth. We first propose a 2O (tw log tw)n-time deterministic algorithm based on a standard dynamic programming ap-
proach. However, this algorithm is not a single exponential for treewidth. Thus, we use recent techniques and obtain two 
O ∗(ctw)-time algorithms, where c is a constant and O ∗ is the order notation omitting the polynomial factor of n. One 
is an (38 · 2ω)twtwO (1)n-time deterministic algorithm where ω is the matrix multiplication constant and the other is an 
O ∗(9tw · W 2)-time randomized algorithm for the decision version. The former algorithm is based on the Rank-Based ap-
proach proposed by Bodlaender et al. [4], whereas the latter is based on Cut & Count introduced by Cygan et al. [10]. These 
techniques are proposed to get a single exponential algorithm for connectivity problems. For the latter algorithm, by ap-
plying another technique called fast convolution, we improve the running time by reducing the base of the exponent from 
c = 21 to c = 9; the total running time of the resulting algorithm is O ∗(9tw · W 2), which can be further improved when the 
graph is unweighted. Moreover, Maximum Weight Minimal Separator can be solved by solving O (n2) instances of the s-t
variant (one for each combination of s and t), thus, we obtain (38 ·2ω)twtwO (1)n3-time deterministic and O ∗(9tw · W 2)-time 
randomized algorithms.

1.1. Related work

The number of minimal separators. Minimal separators have been investigated for a long time in many aspects. As men-
tioned above, they are related to treewidth or potential maximal cliques, see for example [7,8,12]. In general, a graph may 
have exponentially many minimal separators, and in fact there exist graphs with �(3n/3) minimal separators [12]. Recently, 
this bound was improved to �(1.4457n) [14]. On the other hand, some graph classes have only polynomially (even linearly) 
many minimal separators. For example, Bouchitté showed that weakly triangulated (weakly chordal) graphs have a polyno-
mial number of separators [7]. As examples of other graph classes with polynomially many minimal separators, there are 
circular-arc graphs [18] and polygon-circle graphs, which are a superclass of circle graphs [22].

On the other hand, Berry et al. presented an O (n3 · Rsep)-time algorithm that enumerates all the minimal separators 
where Rsep is the number of these [2]. By combining these results, we know that Maximum Weight Minimal s-t Separator

can be solved in polynomial time for the graph classes mentioned above. That is, we just enumerate all the minimal 
separators and evaluate the weights of these for such graphs.

Proposition 1.1. Maximum Weight Minimal s-t Separator and Maximum Weight Minimal Separator can be solved in polyno-
mial time for a graph classes that have a polynomial number of minimal separators.

The relationship between minimal separators and treewidth. Minimal separators and treewidth are strongly related. As for 
the number of minimal separators, if a graph has a polynomially many minimal separators, we can compute its treewidth 
in polynomial time [7,8]. Such graph classes include (amongst others) circular-arc graphs (O (n2) [18]), polygon-circle graphs 
(O (n2) [22]), weakly triangulated graphs (O (n2) [7]). Furthermore, computing treewidth is fixed-parameter tractable with 
respect to the maximum size of a minimal separator [21]. This parameter corresponds to the solution size of Maximum 
Weight Minimal Separator on unweighted graphs. In this sense, this paper focuses on the converse relation of these two 
parameters: maximum size of a minimal separator and treewidth. That is, for treewidth as the parameter, we consider the 
fixed parameter tractability of Maximum Weight Minimal Separator.

The comparison with MAX CUT. The Max Cut problem is a classical graph problem where, given an undirected and edge-
weighted graph G = (V , E), we have to find a set S ⊆ V that maximizes 

∑
u∈S,v∈V \S wuv , where wuv is the weight of 

edge (u, v). Both Max Cut and Maximum Weight Minimal Separator are in some sense connectivity problems. However, in 
the former problem the value of a solution is based on edge weights, whereas in the latter problem it is given by vertex 
weights. As such, the problems can behave quite differently: It is known that Max Cut is NP-hard on chordal graphs [5], but 
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on bipartite graphs, it is trivial. In contrast, Maximum Weight Minimal Separator is NP-hard on bipartite graphs but can be 
solved in polynomial time on chordal graphs.

The remainder of this paper is organized as follows: In Section 2, we give basic terminology and definitions. In Section 3, 
we show that the problem is NP-hard, while it is fixed-parameter tractable with respect to the solution size. In Section 4, 
we design a basic dynamic programming algorithm based on tree decompositions and then improve the algorithm by using 
the Rank-Based approach. In Section 5, we give a faster randomized algorithm, using the Cut & Count technique. Finally, we 
conclude the paper in Section 6.

2. Preliminaries

In this section, we give notations, definitions, and some basic concepts. Let G = (V , E) be an undirected, connected, and 
vertex-weighted graph where |V | = n and |E| = m. When we focus on Maximum Weight Minimal s-t Separator, we assume 
that G does not have the edge (s, t), that is, (s, t) /∈ E because otherwise, there is no s-t separator. For V ′ ⊆ V , let G[V ′]
denote the subgraph of G induced by V ′ . Furthermore, we denote the set of neighbors of a vertex v by N(v). We define the 
function [p] as follows: if p is true, then [p] = 1, otherwise [p] = 0.

2.1. Tree decompositions

The algorithms proposed in Sections 4 and 5 are based on dynamic programming on tree decompositions. In this sub-
section, we give the definition of tree decomposition.

Definition 2.1. A tree decomposition of a graph G = (V , E) is defined as a pair 〈X , T 〉, where T is a tree with node set I and 
X = {Xi | i ∈ I} is a collection of subsets of V such that:

1.
⋃

i∈I Xi = V .
2. For every (u, v) ∈ E , there exists an i ∈ I such that {u, v} ⊆ Xi .
3. For every i, j, k ∈ I , if j lies on the path from i to k in T , then Xi ∩ Xk ⊆ X j .

In the following, we call T a decomposition tree, and we use term “nodes” (not “vertices”) for the elements of T to avoid 
confusion. Moreover, we call a subset of V corresponding to a node i ∈ I a bag and denote it by Xi . The width of a tree 
decomposition 〈X , T 〉 is defined by maxi∈I |Xi | − 1, and the treewidth of G , denoted by tw(G), is the minimum width over 
all tree decompositions of G . We sometimes use the notation tw instead of tw(G) for simplicity.

In general, computing tw(G) of a given graph G is NP-hard [1], but fixed-parameter tractable with respect to itself and 
there exists a linear time algorithm if treewidth is fixed [3]. In the following, we assume that a tree decomposition of 
minimum width is given.

Kloks introduced a very useful type of tree decomposition, called nice tree decomposition [17]. More precisely, it is a 
binary tree decomposition which has four types of nodes: leaf, introduce vertex, forget and join. A variant of the notion, 
using a new type of node named introduce edge, was introduced by Cygan et al. [11]. Using nice tree decompositions greatly 
simplifies the algorithms.

Definition 2.2. A tree decomposition 〈X , T 〉 is called nice tree decomposition if it satisfies the following:

1. T is rooted at a designated node r in T satisfying |Xr | = 0, called the root node.
2. Every node of the tree T has at most two children.
3. Each node i in T has one of the following five types:

• A leaf node i has no children and its bag Xi satisfies |Xi | = 0,
• An introduce vertex node i has one child j with Xi = X j ∪ {v} for a vertex v ∈ V ,
• An introduce edge node i has one child j and labeled with an edge (u, v) ∈ E where u, v ∈ Xi and Xi = X j ,
• A forget node i has one child j and satisfies Xi = X j \ {v} for a vertex v ∈ V , and
• A join node i has two child nodes j1, j2 and satisfies X j1 = Xi and X j2 = Xi .

We can transform any tree decomposition to a nice tree decomposition with O (n) bags and the same width in linear 
time [10]. Given a tree decomposition 〈X , T 〉, for each node i, we define a subgraph Gi = (V i, Ei), where V i is the union 
of all bags X j such that j = i or j is a descendant of i in T , and Ei ⊆ E is the set of all edges introduced in i (if i is an 
introduce edge node) and descendants of i.

3. Basic results

In this section, we give two basic results for Maximum Weight Minimal Separator. On the negative side, we show that
Maximum Weight Minimal Separator and Maximum Weight Minimal s-t Separator are NP-hard. On the other hand, we 
show that it is fixed-parameter tractable with respect to W .
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Fig. 1. An example of a construction of G ′ from G . Black vertices correspond to vertices in G , gray vertices correspond to edges in G , and white vertices are 
in V ′ or V ′′ .

3.1. NP-hardness

Theorem 3.1. Maximum Weight Minimal s-t Separator is NP-hard on bipartite graphs even if all the vertex weights are identical.

Proof. We give a reduction from a well-known NP-hard problem, Max Cut ([13]), which, given an unweighted graph G =
(V , E), asks whether there exists a cut (C, V \ C) whose value (|{(u, v) ∈ E | u ∈ C, v ∈ V \ C}|) is at least k.

We construct an instance (G ′, p) of Maximum Weight Minimal s-t Separator from G = (V , E) and positive integer k. We 
first provide a proof for the weighted problem and then explain how to get rid of the weights.

We build the vertex set of G ′ by taking the union of three copies (V , V ′, V ′′) of the vertex set V of G , where we write 
v ′ (resp., v ′′) to denote the vertex corresponding to the copy of v ∈ V in V ′ (resp., V ′′). Furthermore, for each edge e in the 
edge set E of G , we create a corresponding vertex e in G ′ . Finally, we also create two vertices s and t .

We build the edge set of G ′ by making every vertex of V ′ adjacent to s, and every vertex of V ′′ adjacent to t . We 
make every vertex v ∈ V adjacent to its corresponding copies v ′ (in V ′) and v ′′ (in V ′′). Finally, for each edge vertex e
(corresponding to some edge e = (u, v) in G), we take the edges (e, u) and (e, v).

Formally, let G ′ = (V ∪ E ∪ V ′ ∪ V ′′ ∪ {s, t}, E1 ∪ E2), where V ′ = {v ′ | v ∈ V }, V ′′ = {v ′′ | v ∈ V }, E1 = ⋃
e∈E {(u, e), (v, e) |

e = (u, v)} and E2 = ⋃
u∈V {(s, u′), (u′, u)} ∪ ⋃

u∈V {(t, u′′), (u′′, u)}. The vertex weights of G ′ are defined to be w v = 3n + 1
if v ∈ E and 1 otherwise (where n = |V |). The graph G ′ can easily seen to be bipartite, by partitioning the vertices into sets 
{s, t} ∪ V and V ′ ∪ V ′′ ∪ E . We give an example of a construction of G ′ from G in Fig. 1.

We now show that if G has a cut C of weight at least k, then G ′ has a minimal s-t separator S whose weight is at least 
p = (3n + 1)k.

Given C , we construct S by taking the union of the vertices in V ′′ that correspond to some vertex in C , the vertices in 
V ′ that correspond to some vertex not in C , and the vertices corresponding to edges bisected by C . Formally, let S = {u′′ ∈
V ′′ | u ∈ V ∩ C} ∪ {v ′ ∈ V ′ | v ∈ V \ C} ∪ {(u, v) ∈ E | u ∈ C, v ∈ V \ C}.

S is a s-t separator: it is easy to see that the vertices reachable from s (after removing S) are precisely the vertices in V
and V ′ that correspond to vertices in C , together with vertices corresponding to edges between vertices in C . On the other 
hand, the vertices reachable from t are precisely the vertices in V and V ′′ that correspond to vertices not in C , together 
with vertices corresponding to edges between vertices not in C .

Furthermore, S is minimal, since removing from S any vertex e corresponding to an edge e = (u, v) gives rise to an s-t
path s, u′, u, e, v, v ′′, t (if u ∈ C, v /∈ C ) or s, v ′, v, e, u, u′′, t (if u /∈ C, v ∈ C ). Removing from S any vertex v ′ or v ′′ gives rise 
to an s-t path s, v ′, v, v ′′, t .

The weight of S is at least (3n + 1)k since |{(u, v) ∈ E | u ∈ C, v ∈ V \ C}| ≥ k (i.e., since C is a cut that bisects at least k
edges, our separator S includes at least k edge vertices).

We next show that if G ′ has a minimal s-t separator S whose weight is at least p = (3n + 1)k, then G has a cut C of 
weight at least k. By the weighting, S contains at least k vertices in E . Note that for any v ∈ V (G), at least one of v, v ′, v ′′
is included in S , otherwise S does not separate s and t . If S does not contain any v ∈ V , let C be vertices in V that 
are reachable from s after removing S; C is actually a cut, and its weight is k. Otherwise, S contains a vertex v ∈ V . In 
this case, S does not contain any e forming e = (v, x) because otherwise it contradicts the minimality. Then, we construct 
S ′ := S \ {v} ∪ {v ′} ∪ {(v, x) ∈ E} - obtaining a minimal separator of greater weight. By repeating this procedure, we obtain 
a minimal separator S of weight at least (3n + 1)k that does not contain any v ∈ V . This completes the correctness of the 
reduction.

As mentioned above, this reduction can be modified to the unweighted case. To this end, we create 3n + 1 identical 
copies of each edge vertex e (and of its incident edges). In the new reduction, to block the path between u and v , we need 
to remove 3n + 1 copies of e (= (u, v)), which plays the same role as the original vertex having weight 3n + 1. �
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Next, we show how to adapt this proof to the case of Maximum Weight Minimal Separator, which does not require the 
separator to separate s and t (but rather only requires that the separator separates some pair of vertices).

Corollary 3.2. Maximum Weight Minimal Separator is NP-hard on bipartite graphs, even if all the vertex weights are identical.

Proof. We give a reduction from Maximum Weight Minimal s-t Separator. Given an instance (G, p, s, t, w) of Maximum 
Weight Minimal s-t Separator, we add an additional vertex x which we make adjacent to both s and t and we give x
weight w(x) = �v∈V w(v) + 1. We ask whether there exists a minimal separator of weight at least w(x) + p. If S is a 
separator of weight at least w(x) + p, it must necessarily include x, and thus, be an s-t separator. It then follows that S \ {x}
must be an s-t separator of weight at least p in G . The converse easily follows: if S is an s-t separator in G of weight at 
least p, then S ∪ {x} is a separator of weight at least p + w(x) in the modified graph.

The proof for the unweighted case follows similarly to above, by creating w(x) identical copies of x (and noting that our 
hardness proof for Maximum Weight Minimal s-t Separator uses polynomial weights). �

On the other hand, we show that Maximum Weight Minimal Separator is fixed-parameter tractable with respect to the 
solution size k.

Theorem 3.3. For unweighted graphs G, Maximum Weight Minimal Separator is fixed-parameter tractable with respect to the 
solution size k.

Proof. We first determine whether G contains k × k grid minor or not in f (k) · n2-time [16]. If G has an k × k grid minor, 
then G also has a minimal separator of size at least k. Otherwise, the treewidth of G is at most g(k) by the excluded grid 
theorem [20,9]. Therefore, we can use dynamic programming on a tree decomposition of width bounded by a function of k. 
As the Maximum Weight Minimal Separator problem can be formulated in Monadic Second Order Logic, we can solve the 
problem in linear time for fixed k. In this paper, we give more efficient dynamic programming algorithms; see Section 4. �

For vertex-weighted graphs, Maximum Weight Minimal Separator is also fixed-parameter tractable with respect to W .

Corollary 3.4. For vertex-weighted graphs G, Maximum Weight Minimal Separator is fixed-parameter tractable with respect to W .

4. Dynamic programming on tree decompositions

In this section we present an FPT algorithm for Maximum Weight Minimal s-t Separator, parameterized by treewidth. 
We first present an algorithm running in time twO (tw)n. We then show how to improve this algorithm using the Rank-Based 
approach to get a single-exponential time algorithm.

4.1. A twO (tw)n-time algorithm

To be able to use “standard” algorithmic techniques, we reformulate the Maximum Weight Minimal s-t Separator as a 
connectivity problem. In doing so, we can use techniques such as the Rank-Based approach and Cut & Count [11,10]. We 
start with defining the notion of connected s-t partition:

Definition 4.1. A connected s-t partition of weight W is a partition (S, A, B, Q ) of V such that: (1) s ∈ A, t ∈ B , (2) G[A] is 
connected, (3) G[B] is connected, (4) 

∑
v∈S w(v) = W , (5) for ∀v ∈ S , there exist vertices a ∈ A, b ∈ B such that (a, v) ∈

E, (v, b) ∈ E and (6) for sets A, B, Q , there does not exist an edge (u, v) such that u and v are in different sets.

Note that S of (S, A, B, Q ) is an s-t separator due to Definition 4.1 (6). The key to the design of our algorithms is the 
following lemma, which states that connected s-t partitions correspond to minimal s-t separators.

Theorem 4.2. There exists a minimal s-t separator of weight W if and only if there exists a connected s-t partition (S, A, B, Q ) of 
weight W .

To prove Theorem 4.2, we use the following lemma. This lemma appears in many papers and books, for example, as an 
exercise in [15].

Lemma 4.3 ([15]). Let S be a minimal s-t separator and A, B be the connected components of G[V \ S] containing s and t, respectively. 
Then every vertex of S has a neighbor in A and a neighbor in B.

Using this lemma, we can prove Theorem 4.2.
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Fig. 2. Connection between vertex sets.

Theorem 4.2. (⇒) Let S be a minimal s-t separator of weight W . Let A be the subset of vertices of V \ S such that G[A]
is the connected component containing s and B be the subset of vertices such that G[B] is the connected component 
containing t . Moreover, let Q = ((V \ A) \ B) \ S . Note that S , A, B and Q are pairwise disjoint and that there is no edge 
between A, B and Q . By Lemma 4.3, all vertices in S have neighbors in both A and B . Therefore, (S, A, B, Q ) is a connected 
s-t partition of weight W .
(⇐) Suppose that (S, A, B, Q ) is a connected s-t partition of weight W . We claim that S is a minimal s-t separator. To 
show this by contradiction, suppose that S of partition (S, A, B, Q ) is an s-t separator, which is not minimal; there exists 
a vertex v ∈ S such that S \ {v} separates s and t . Due to Definition 4.1 (5), there exist vertices a ∈ A, b ∈ B such that 
(a, v) ∈ E, (v, b) ∈ E . Since G[A] is connected, there exists a path (in G[A]) from s to a. Similarly, there exists a path (in 
G[B]) from b to t . By joining these paths with the edges (a, v) and (v, b), we obtain a path from s to t , which contradicts 
that S \ {v} is a separator. Hence S is a minimal s-t separator, and by definition it is of weight W . �

Using connected s-t partitions, we design a twO (tw)n-time algorithm for Maximum Weight Minimal s-t Separator. First, 
we partition S into S∅ , S A , S B and S AB (see Fig. 2). Set S∅ consists of the vertices in S that have no neighbor in A and B , 
but may have neighbors in S A, S B , S AB or Q . Set S A (resp., S B ) consists of the vertices in S that have at least one neighbor 
in A (resp., B), but no neighbor in B (resp., A). They may have neighbors in S A, S B , S AB , Q . Set S AB consists of the vertices 
in S that have neighbors in A and in B and may have neighbors in S A, S B , S AB , Q .

Since we eventually want the sets A and B to become connected, we need to track their connectivity. We define two 
partitions P A = {P A

1 , P A
2 , . . . , P A

α } of Xi ∩ A and P B = {P B
1 , P B

2 , . . . , P B
β } of Xi ∩ B . We call each element of a partition 

P A
� (resp., P B

� ) a block. They correspond to the intersection of Xi and the vertex sets of connected components of G A
i =

(A ∩ V i, Ei) (resp. G B
i = (B ∩ V i, Ei)). Note that there are at most |Xi|O (|Xi |) partitions for each node Xi . α and β are the 

number of connected components in G A
i = (A ∩ V i, Ei) and G B

i = (B ∩ V i, Ei), respectively. Note that α ≤ |Xi ∩ A| and 
β ≤ |Xi ∩ B|. Intuitively, one block {{v}} is added to P A in each introduce vertex v node; then blocks may be merged in 
introduce edge nodes and join nodes. In a forget node, note that a vertex may not be the last of its block, else, the solution 
is invalid and must be discarded since its component of A is not connected.

Combining these a tree decomposition 〈X , T 〉, we will define a partial solution. For each node i, let Gi = (V i, Ei) be a 
subgraph defined as right after Definition 2.2. The definition of partial solution is as follows.

Definition 4.4. Given a node i of the tree decomposition 〈X , T 〉 of G , a partial solution for node i is a partition 
(S∅, S A, S B , S AB , A, B, Q ) of V i with P A and P B , such that:

• S∅ ∪ S A ∪ S A ∪ S AB ∪ A ∪ B ∪ Q = V i ,
• ∀v ∈ S∅ , N(v) ∩ (A ∪ B) = ∅,
• ∀v ∈ S A , N(v) ∩ B = ∅ and N(v) ∩ A �= ∅,
• ∀v ∈ S B , N(v) ∩ B �= ∅ and N(v) ∩ A = ∅,
• ∀v ∈ S AB , N(v) ∩ B �= ∅ and N(v) ∩ A �= ∅,
• ∀v1, v2 ∈ A, v1, v2 are in the same block in P A ↔ v1, v2 are connected in G A

i ,
• ∀v1, v2 ∈ B , v1, v2 are in the same block in P B ↔ v1, v2 are connected in G B

i ,
• s ∈ V i ⇒ s ∈ A, and
• t ∈ V i ⇒ t ∈ B .

Let � = {s∅, sA, sB , sAB , a, b, q}. Each element of � is called state of vertices (e.g., we say that vertex v ∈ S∅ has state s∅). 
Then, we define the coloring function c : V → �. The coloring function represents which set of the partition a vertex is in, 
for example, if v is in S∅ then c(v) = s∅ . For �′ ⊆ �, we also define c−1(�′) ⊆ V which represents the set of vertices whose 
states are in �′ .

Given two sets V and W , we denote their colorings by cV ∈ �|V | and cW ∈ �|W | , respectively. Suppose that V and 
W are disjoint, cV = (c(v1), . . . , c(v |V |)), and cW = (c(w1), . . . , c(w |W |)), where vi ∈ V and wi ∈ W . We then define the 
concatenation cV ×cW ∈ �|V |+|W | of cV and cW as the coloring (c(v1), . . . , c(v |V |), c(w1), . . . , c(w |W |)). Moreover, if W ⊆ V , 
then we define the separation cV \ cW ∈ �|V |−|W | as the coloring (c(vi1 ), . . . , c(vi|V |−|W |)), where vi1 , . . . , vi|V |−|W | ∈ V \ W .
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In our algorithm, we assume we are given a nice tree decomposition of minimum width. We transform this tree decom-
position by adding {s, t} to all bags; thus we can suppose that the root bag Xr contains exactly two vertices s and t . The 
width of this tree decomposition is at most tw + 2.

We define the function f i(c, P A, P B) to be the possible maximum weight of vertices in S ∩ V i of a partial solution 
(S∅, S A, S B , S AB , A, B, Q ) of V i with PA and PB . If c, P A, P B deviate from the definition of a partial solution, then let 
f i(c, P A, P B) = −∞.

We now give recursive formulas for computing f i in each node i. In the root node, fr({c(s)} × {c(t)}, {{s}}, {{t}}) =
fr({a} × {b}, {{s}}, {{t}}) is the maximum weight of minimal s-t separators because Xr = {s, t}.

In the following, we let i denote a parent node, and let j denote its corresponding child node. For a join node, we write 
j1 and j2 to denote its two children. To emphasize that we are dealing with two different colorings, we denote parent node 
colorings by ci and child node colorings by c j .

Leaf node: In leaf nodes, if c(s) = a and c(t) = b, we define f i({c(s)} × {c(t)}, {{s}}, {{t}}) := 0. Otherwise, f i({c(s)} ×
{c(t)}, P A, P B) := −∞ since there are only two vertices s, t in Xi .

Introduce vertex v node: In introduce vertex nodes, we consider three cases for colorings. If c(v) = s∅ , we add w(v) to 
f j(c, P A, P B) because v is added in S . If c(v) ∈ {a, b, q}, the value of f i does not change since v /∈ S . Moreover, we add a 
block {{v}} to P A or P B depending on whether c(v) = a or c(v) = b, respectively. Finally, if c(v) ∈ {sA, sB , sAB}, a partial 
solution is invalid by the definition because v has no incident edge and hence no neighbor in A or B . Therefore, we define 
f i as follows:

f i(c,P A,P B) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f j(c \ {c(v)},P A,P B) + w(v) if c(v) = s∅
f j(c \ {c(v)},P A \ {{v}},P B) if c(v) = a

f j(c \ {c(v)},P A,P B \ {{v}}) if c(v) = b

f j(c \ {c(v)},P A,P B) if c(v) = q

−∞ otherwise.

Introduce edge (u, v) node: In introduce edge nodes, we define f i for the following cases of c(u), c(v).

• If c(u) = a and c(v) = a, the vertices u, v are in A. If u and v are in the different blocks, we set f i(c, P A, P B) := −∞
because u and v are in the same block of partition P A in node i due to edge (u, v). Then, there are two cases: the 
partitions in A ∩ Xi (parent) and A ∩ X j (child) are same or not. In the former case, u and v are in the same block 
in the partition of A ∩ X j , and we then set f i(c, P A, P B) := f j(c, P A, P B). In the latter case, let P ′ A be a partition of 
A ∩ X j such that P A �=P ′ A but P ′ A changes to P A by merging two blocks of P ′ A including u and v respectively with 
edge (u, v). Therefore, we take a P ′ A that maximizes f i(c, P ′ A, P B). Then, we set f i as follows:

f i(c,P A,P B) := max{ f j(c,P A,P B),max
P ′ A

f j(c,P ′ A,P B)}.

• The case that c(u) = b and c(v) = b is almost the same as the case that c(u) = a and c(v) = a. If u and v are not in the 
same block of partition P B , we then set f i(c, P A, P B) := −∞. Let P ′ B be a partition of B ∩ X j such that P B �=P ′ B but 
P ′ B changes to P B by merging two blocks of P ′ B including u and v respectively with edge (u, v). Then, we define f i

as follows:

f i(c,P A,P B) := max{ f j(c,P A,P B),max
P ′ B

f j(c,P A,P ′ B)}.
• If c(u), c(v) ∈ {s∅, sA, sB , sAB , q}, we define f i as follows:

f i(c,P A,P B) = f j(c,P A,P B).

In this case, (u, v) is irrelevant to the partitions and the value is not changed because only one edge (u, v) is added.
• If (c(u), c(v)) = (sA, a), (a, sA), we consider two cases. One case is that u ∈ S A and v ∈ A in the child node and the 

other case is that u ∈ S∅ and v ∈ A in the child node. In the other case, u is moved from S∅ into S A by adding (u, v), 
because u has a neighbor v in A. Thus, we define f i as follows:

f i(c × {sA} × {a},P A,P B) := max{ f j(c × {sA} × {a},P A,P B), f j(c × {s∅} × {a},P A,P B)}.
• If (c(u), c(v)) = (sB , b), (b, sB), we consider almost the same cases as above; that is, u ∈ S B , v ∈ B and u ∈ S∅ and v ∈ B

in the child node.

f i(c × {sB} × {b},P A,P B) := max{ f j(c × {sB} × {b},P A,P B), f j(c × {s∅} × {b},P A,P B)}.
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Table 1
This table represents combinations of states of two child nodes 
j1, j2 for each vertex in Xi = X j1 = X j2 . The rows and columns 
correspond to states of j1, j2 respectively and inner elements 
correspond to states of x. For example, if ci(v) = sA , there 
are three combinations such that (c j1 (v), c j2 (v)) = (sA , s∅), 
(c j1 (v), c j2 (v)) = (s∅, sA) and (c j1 (v), c j2 (v)) = (sA , sA).

s∅ sA sB sAB a b q
s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

a a
b b
q q

• If (c(u), c(v)) = (sAB , a), (a, sAB), there are two cases: (1) u ∈ S AB and v ∈ A in the child node and (2) u ∈ S B and v ∈ A
in the child node. In the latter case, u is moved from S B to S AB by adding (u, v), because u has a neighbor v in B . 
Therefore, we define f i as follows:

f i(c × {sAB} × {a},P A,P B) := max{ f j(c × {sAB} × {a},P A,P B), f j(c × {sB} × {a},P A,P B)}.
• If (c(u), c(v)) = (sAB , b), (b, sAB), we consider almost the same cases as above; that is, u ∈ S AB , v ∈ B and u ∈ S A and 

v ∈ B in the child node.

f i(c × {sAB} × {b},P A,P B) := max{ f j(c × {sAB} × {b},P A,P B), f j(c × {sA} × {b},P A,P B)}.
• Otherwise, we set f i(c, P A, P B) := −∞ because the rest of the cases are invalid by the definition of states and partial 

solution. There must not exist edge (u, v) for such cases.

Forget v node: In a forget v node, if c j(v) ∈ {s∅, sA, sB}, vertex v will never have neighbors both in A and in B and 
hence this case is invalid because of the definition of the connected s-t partition, which requires that each vertex in S has 
neighbors in both A and B . If c j(v) ∈ {sAB , q}, we need not consider the connectivity of v . In the case that c j(v) = a, we 
only consider partitions such that there exists at least one vertex u in A included in the same block as v . If there is no such 
vertex, the block including v is never merged. Consequently, G[A] would not be connected in the root node. The case that 
c j(v) = b is almost the same. Let P ′ A, P ′ B be a partition satisfying such conditions, then we define f i as follows:

f i(c,P A,P B) := max{ f j(c × {sAB},P A,P B), f j(c × {q},P A,P B),

max
P ′ A

f j(c × {a},P ′ A,P B),max
P ′ B

f j(c × {b},P A,P ′ B)}.

Join node: For a parent node i and two child nodes j1, j2, we denote the corresponding colorings by ci, c j1 , c j2 and 
the corresponding partitions by P A

i , P B
i , P A

j1
, P B

j1
, P A

j2
, P B

j2
. We then define a subset D of tuples of ((c j1 , P A

j1
, P B

j1
),

(c j2 , P A
j2
, P B

j2
)) such that the combinations of colorings for c j1 , c j2 satisfy the following conditions (see Table 1):

• ∀v ∈ c−1
i ({s∅, a, b, q}), (c j1 (v), c j2 (v)) = (ci(v), ci(v)),

• ∀v ∈ c−1
i ({sA}), (c j1 (v), c j2 (v)) = (sA, s∅), (s∅, sA), (sA, sA),

• ∀v ∈ c−1
i ({sB}), (c j1 (v), c j2 (v)) = (sB , s∅), (s∅, sB), (sB , sB), and

• ∀v ∈ c−1
i ({sAB}), (c j1 (v), c j2 (v)) = (sAB , s∅), (sAB , sA), (sAB , sB),

(sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), (sB , sA),

and the partition obtained by merging P A
j1

and P A
j2

equals P A
i and the partition obtained by merging P B

j1
, P B

j2
equals P B

i . 
If D = ∅ for ci, P A

i , P B
i , we set f i(ci, P A

i , P B
i ) := −∞. Otherwise, we set S∗ := c−1

i ({s∅, sA, sB , sAB}). Then we define f i as 
follows:

f i(ci,P A
i ,P B

i ) := max
((c j1 ,P A

j1
,P B

j1
),(c j2 ,P A

j2
,P B

j2
))∈D

{ f j1(c j1 ,P A
j1
,P B

j1
) + f j2(c j2 ,P A

j2
,P B

j2
) − w(S∗)}.

The subtraction in the right hand side of the equation above is because the weight w(S∗) is counted twice; once in each 
child node.

We recursively calculate f i on the decomposition tree. Note that all bags have |Xi | vertices and the number of combi-
nations of colorings and partitions (c, P A, P B) in each node is |Xi |O (|Xi |) = twO (tw) . The running time to compute all f i ’s 
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in Xi is dominated by join nodes and it is roughly (twO (tw))3 = twO (tw) since we scan every coloring and partition in two 
children nodes X j1 and X j2 for each coloring ci and each partition P A, P B and then check all combinations. Therefore, the 
total running time is twO (tw)n and we conclude with the following theorem.

Theorem 4.5. For graphs of treewidth at most tw, there exists an algorithm that solves Maximum Weight Minimal s-t Separator in 
time twO (tw)n.

Maximum Weight Minimal Separator can be solved by applying the above twO (tw)n-time algorithm for all possible 
combinations of s and t , i.e., at most n2 times. We thus obtain the following result:

Theorem 4.6. For graphs of treewidth at most tw, there exists an algorithm that solves Maximum Weight Minimal Separator in 
time twO (tw)n3 .

4.2. An improved algorithm using the Rank-Based approach

The running time of the algorithm presented in the previous section is dominated by the need to keep track of all 
twO (tw) possible partitions (P A, P B). In this section, we show how to modify this algorithm to obtain an O ∗(ctw)-time 
algorithm using the Rank-Based approach where c is a constant. In the following, we assume that the coloring function c is 
fixed, and that we are dealing with fixed, disjoint sets of vertices A, B ⊆ Xi .

The Rank-Based approach, introduced by Bodlaender et al. [4], states that, roughly, we do not need to keep track of 
partial solutions for all possible partitions, but that it suffices to track only a representative subset of them.

In the following, we let �(U ) denote the set of partitions of the set U , and for p, q ∈ �(U ), let p � q denote their 
transitive closure. A weighted set of partitions of U is a subset A ⊆ �(U ) ×N .

Bodlaender et al. [4] say that a weighted set of partitions Q′ ⊆ �(U ) ×N represents another set Q ⊆ �(U ) ×N , if for 
all p ∈ �(U ) it holds that:

min{w | (q, w) ∈ Q : p � q = {U }} = min{w | (q, w) ∈ Q ′ : p � q = {U }}

Theorem 4.7 (Bodlaender et al. [4]). There exists an algorithm reduce that, given a set of weighted partitions Q ⊆ �(U ) × N , 
outputs a set of weighted partitions Q′ that represents Q of size at most 2|U |−1 , and runs in time |Q|2(ω−1)|U ||U |O (1) .

By performing a reduce operation after every update of the dynamic programming tables, the size of the dynamic 
programming tables can be kept bounded by a single-exponential function of tw. Doing so, Bodlaender et al. [4] obtain 
O ∗(ctw)-time algorithms for Steiner Tree, Feedback Vertex Set and Hamiltonian Cycle. However, each of these problems 
deals with a single connectivity constraint, whereas we have two disjoint sets (A and B), for both of which we want to 
enforce connectivity. For this case, we need a different notion of representation:

Definition 4.8. We say that a weighted set of partitions Q′ ⊆ �(A ∪ B) ×N represents another set Q ⊆ �(A ∪ B) ×N , if 
for all p ∈ �(A ∪ B) it holds that:

max{w | (q, w) ∈ Q : p � q = {A, B}} = max{w | (q, w) ∈ Q ′ : p � q = {A, B}}

Note that since we are dealing with a maximization problem rather than a minimization problem, we have used max in 
the definition rather than min. However, this difference is inconsequential.

We now show the equivalent of Theorem 4.7 for this modified notion of representation. We follow the presentation and 
proof of Bodlaender et al. [4] closely. We start by defining the matrix M, analogously to Definition 3.11 of [4]:

Definition 4.9. Define M ∈Z�(A∪B)×�(A∪B)
2 by

M[p,q] =
{

1 p � q = {A, B},
0 else.

To show that matrix M has bounded rank, we write it as the product of two matrices C and Ct .

Definition 4.10 (Cf. Definition 3.12 of [4]). Let cuts = {(V 1, V 2) | V 1∪̇V 2 = A ∪ B ∧ s ∈ V 1, t ∈ V 2}. Define C ∈ Z�(A∪B)×cuts
by

C[p, (V 1, V 2)] =
{

1 (V 1, V 2) � p,

0 else.
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Here (V 1, V 2) � p denotes that p is a refinement of (V 1, V 2), i.e., each element of p is a subset of either V 1 or V 2.

Lemma 4.11 (Cf. Lemma 3.13 of [4]). It holds that M = CCt .

Proof. The matrix entry CCt[p, q] is equal (modulo 2) to the number of elements of cuts that are consistent with both p
and q; this is precisely the number of elements of cuts consistent with p � q (i.e., the transitive closure of p and q). This 
number is 1 if p � q = {A, B}, and a multiple of 2 (i.e., 0 mod 2) otherwise (if s and t are in the same block of p � q, then 
no cuts are consistent with p � q, otherwise, if there is a block not containing p or q, it can go on either side of the cut -
thus giving an even number of consistent cuts). �
Theorem 4.12. Theorem 4.7 holds, even for representation in the sense of Definition 4.8. In fact, there exists an algorithm that, given a 
set of weighted partitions Q ⊆ �(A ∪ B) ×N , outputs a set of weighted partitions Q′ that represents Q of size at most 2|A∪B|−2 , and 
runs in time |Q|2(ω−1)|A∪B||A ∪ B|O (1) .

Proof. The algorithm of Theorem 4.7 does not depend on the definition of representation; it works even if we substitute 
our modified definitions of M and C . Note that the proof of Lemma 3.14 of [4] carries over analogously. The matrix M has 
rank bounded by 2|A∪B|−2, since any cut (V 1, V 2) for which s /∈ V 1 or t /∈ V 2 is not consistent with any partition (and thus 
the number of non-zero rows of C is at most 2|A∪B|−2). �
Theorem 4.13. There exists an algorithm solving Maximum Weight Minimal s-t Separator in deterministic time (38 ·2ω)twtwO (1)n.

Proof. We count the number of entries in the dynamic programming table at any time. There are at most 7tw+1 cases for 
the coloring function c, and for each of these cases - applying the reduce algorithm after each step - we have to track at 
most 2tw+1 partitions. A naive analysis would thus suggest that a join operation could generate (7 · 2)2(tw+1) = 196tw+1

new entries. However, as illustrated in Table 1, we can only join entries that agree in what vertices get colors a, b or q, 
so the number of entries on which the reduce algorithm operates is instead bounded by (19 · 4)tw+1 = 76tw+1: if we fix 
the vertices that get color a, b or q, there are at most 4tw+1 cases for the remaining vertices, and 2tw+1 partitions. Joining 
the partitions (for one pair of colorings) gives 4tw+1 cases, and joining this over the 4tw+1 colorings gives 4tw+1 · (16 +
3)tw+1 cases. Applying the reduce algorithm then takes (76 · 2ω−1)twtwO (1) = (38 · 2ω)twtwO (1) time, and this dominates 
the running time. �
Corollary 4.14. There exists an algorithm solving Maximum Weight Minimal Separator in deterministic time (38 · 2ω)twtwO (1)n3 .

5. Algorithm using Cut & Count

In this section, we give a Monte-Carlo algorithm that solves the decision version of Maximum Weight Minimal s-t
Separator, that is, to decide whether there exists a minimal s-t separator with weight W in time O ∗(9tw · W 2) for graphs 
of treewidth at most tw. This algorithm is based on the Cut & Count technique.

5.1. Isolation Lemma

In this subsection, we explain the Isolation Lemma introduced by Mulmuley et al. [19]. The main idea of the Cut & Count 
technique is to obtain a single solution with high probability; we count modulo 2, and the Isolation Lemma guarantees the 
existence of such a single solution.

Definition 5.1 ([19]). A function w ′: U → Z isolates a set family F ⊆ 2U if there is a unique S ′ ∈ F with w ′(S ′) =
minS∈F w ′(S) where w ′(X) = ∑

u∈X w ′(u).

Lemma 5.2 (Isolation Lemma [19]). Let F ⊆ 2U be a set family over a universe U with |F | > 0. For each u ∈ U , choose a weight 
w ′(u) ∈ {1, 2, . . . N} uniformly and independently at random. Then Pr[w ′ isolates F ] ≥ 1 − |U |/N.

5.2. Cut & Count

The Cut & Count technique was introduced by Cygan et al. for solving connectivity problems [11]. The concept of Cut & 
Count is counting the number of relaxed solutions, that is, we do not consider whether they are connected or disconnected. 
Then we compute the number of relaxed solutions modulo 2 and we determine whether there exists a connected solution 
by cancellation tricks. Now, we define a consistent cut to explain the details of Cut & Count.

Definition 5.3 ([11]). A cut (V 1, V 2) of V ′ ⊆ V such that V 1 ∪ V 2 = V ′ and V 1 ∩ V 2 = ∅ is consistent if v1 ∈ V 1 and v2 ∈ V 2
implies (v1, v2) /∈ E .
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This means that a cut (V 1, V 2) of V ′ is consistent if there are no edges between V 1 and V 2. We fix an arbitrary vertex v
in V 1. Then, if G[V ] has k components, then 2k−1 consistent cuts of V exist. If G[V ] is connected, then there only exists one 
consistent cut, namely (V 1, V 2) = (V , ∅). Therefore, the number of consistent cuts is odd. Otherwise, if V does not induce 
a connected subgraph, the number of consistent cuts is a multiple of two. Therefore, we just need to compute the number 
of consistent cuts modulo 2 and return yes if the number of consistent cuts is odd, and return no otherwise. The Isolation 
Lemma allows us to guarantee (with high probability) that there exists a unique solution (and thus, that we indeed end up 
with an odd number of consistent cuts).

Let S ⊆ 2U be a set of solutions. According to [11,10], the Cut & Count technique is divided into two parts as follows.

• The Cut part: Relax the connectivity requirement by considering the set R ⊇ S of possibly connected or disconnected 
candidate solutions. Moreover, consider the set C of pairs (X; C) where X ∈R and C is a consistent cut of X .

• The Count part: Isolate a single solution by sampling weights of all elements in U by the Isolation Lemma. Then, com-
pute |C| modulo 2 using a sub-procedure. Disconnected candidate solutions X ∈ R \ S cancel since they are consistent 
with an even number of cuts. If the only connected candidate x ∈ S exists, we obtain the odd number of cuts.

Given a set U and a tree decomposition 〈X , T 〉, the general scheme of Cut & Count is as follows:

Step 1. Set the integer weight for every vertex uniformly and independently at random by w ′ : U → {1, . . . , 2|U |}.
Step 2. For each integer weight 0 ≤ W ′ ≤ 2|U |2, compute the number of relaxed solutions of weight W ′ with consistent 

cuts modulo 2 on a decomposition tree. Then return yes if it is odd, otherwise no in the root node.

We use the Cut & Count technique to determine whether there exists a connected s-t partition (S, A, B, Q ) of weight 
W so that A and B are connected. To apply the above scheme, we newly give the following definition of a partial solution. 
Note that we have to consider two consistent cuts of A and B .

Definition 5.4. Given a node i of the tree decomposition of G , a partial solution for that node is a tuple (S∅, S A, S B , S AB , Al,

Ar, Bl, Br, Q , w), such that:

• V i = S∅ ∪ S A ∪ S A ∪ S AB ∪ Al ∪ Ar ∪ Bl ∪ Br ∪ Q ,
• (Al, Ar) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Al and v ∈ Ar ,
• (Bl, Br) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Bl and v ∈ Br ,
• w = �v∈S w(v),
• ∀v ∈ S∅ , N(v) ∩ (Al ∪ Ar ∪ Bl ∪ Br) = ∅,
• ∀v ∈ S A , N(v) ∩ (Bl ∪ Br) = ∅ and N(v) ∩ (Al ∪ Ar) �= ∅,
• ∀v ∈ S B , N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) = ∅,
• ∀v ∈ S AB , N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) �= ∅,
• s ∈ V i ⇒ s ∈ Al , and
• t ∈ V i ⇒ t ∈ Bl .

For each vertex v , we set another weight w ′(v) by choosing from {1, . . . , 2|V |} independently at random. We also 
define the coloring function c : V → {s∅, sA, sB , sAB , al, ar, bl, br, q}. Now, we give a dynamic programming algorithm that 
computes the number of relaxed solutions with consistent cuts modulo 2. To compute that, for each c, w and w ′ , we define 
the counting function hi : {s∅, sA, sB , sAB , al, ar, bl, br, q}|Xi | × N × N → N in each node i on a nice tree decomposition as 
follows.

Leaf node: In a leaf node, we define hi(∅, 0, 0) = 1, if S∅ = S A = S B = S AB = Al = Ar = Bl = Br = ∅ and w, w ′ = 0. Other-
wise, hi(c, w, w ′) = 0.

Introduce vertex v node: The function hi has five cases in introduce vertex nodes. Note that we only add one vertex v
without edges. Thus, if c(v) ∈ {sA, sB , sAB}, the partial solution is invalid by definition because v has no neighbor. If c(v) =
s∅ , vertex v is chosen as a vertex of S , and we hence add each weight w(v), w ′(v) to w , w ′ , respectively. Moreover, v must 
not be s, t because s (resp., t) should be in Al (resp., Bl). If not, it is not a connected s-t partition. Similarly, if c(v) = al

(resp., bl), we check whether v is not t (resp., s). As for c(v) ∈ {ar, br, q}, we also check whether v is neither s nor t . 
Therefore, we define hi in introduce vertex nodes as follows:

hi(c, w, w ′) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[v �= s, t]h j(c \ {c(v)}, w − w(v), w ′ − w ′(v)) if c(v) = s∅
[v �= t]h j(c \ {c(v)}, w, w ′) if c(v) = al

[v �= s]h j(c \ {c(v)}, w, w ′) if c(v) = bl

[v �= s, t]h j(c \ {c(v)}, w, w ′) if c(v) ∈ {ar,br,q}
0 otherwise.
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Introduce edge (u, v) node: In introduce edge nodes, we check each state of the endpoints of the edge (u, v) and define f i

for each case.

• If c(u) = s∅ , vertex u has no neighbor in A and B . Hence, we define the function hi in this case as follows:

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) /∈ {al,ar,bl,br}] · h j(c × {s∅} × {c(v)}, w, w ′).

• If c(u) = sA , vertex u has neighbors in A but no neighbor in B . In this case, we have two cases. The first case is 
that u ∈ S∅ and v ∈ A in the child node, because by adding edge (u, v) in the introduce edge (u, v) node, vertex u
is moved from S∅ to S A . The other case is that u ∈ S A and v /∈ B in the child node. If v ∈ B , vertex u is in S AB

in the parent node. We define hi as follows. Note that only if c(v) ∈ {al, ar}, we sum up two cases. If c(v) ∈ {bl, br}, 
hi(c × {c(u)} × {c(v)}, w, w ′) := 0, and otherwise hi(c × {c(u)} × {c(v)}, w, w ′) := h j(c × {sA} × {c(v)}, w, w ′).

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) ∈ {al,ar}]h j(c × {s∅} × {c(v)}, w, w ′)

+ [c(v) /∈ {bl,br}]h j(c × {sA} × {c(v)}, w, w ′).

• The case that c(u) = sB is almost the same as in the above case, however, we swap the roles of A and B .

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) ∈ {bl,br}]h j(c × {s∅} × {c(v)}, w, w ′)

+ [c(v) /∈ {al,ar}]h j(c × {sB} × {c(v)}, w, w ′).

• If c(u) = sAB , we consider three cases: u ∈ S A and v ∈ B , u ∈ S B and v ∈ A, and u ∈ S AB and v is in an arbitrary set 
in the child node. For first and second case, vertex u is moved from S A (resp., S B ) into S AB by adding edge (u, v). If 
u ∈ S AB , v is allowed to be in any set because a vertex in S AB could connect to all sets. Therefore, we define f i as 
follows:

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) ∈ {bl,br}]h j(c × {sA} × {c(v)}, w, w ′)

+ [c(v) ∈ {al,ar}]h j(c × {sB} × {c(v)}, w, w ′)

+ h j(c × {sAB} × {c(v)}, w, w ′).

• If c(u) ∈ {al, ar}, then c(v) /∈ {bl, br, q} since there is no edge between A, B and Q by the definition of connected s-t
partition. There is also no edge between Al and Ar because (Al, Ar) is a consistent cut. Therefore, if u is in Al or Ar , 
then v is in the same set as u or is in one of S A and S AB . Note that because u is in A, v is not in S∅ , S B .

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) = c(u)]h j(c × {c(u)} × {c(v)}, w, w ′)

+ [c(v) ∈ {sA, sAB}]h j(c × {c(u)} × {c(v)}, w, w ′).

• The case that c(u) ∈ {bl, br} is almost the same as in the above case, however, we replace A by B .

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) = c(u)]h j(c × {c(u)} × {c(v)}, w, w ′)

+ [c(v) ∈ {sB , sAB}]h j(c × {c(u)} × {c(v)}, w, w ′).

• If c(u) = q, vertex u is in Q . Hence, v must be in S∅, S A, S B , S AB , or Q because a vertex in Q has no neighbor in A
and B by the definition of connected s-t partition.

hi(c × {c(u)} × {c(v)}, w, w ′) := [c(v) ∈ {s∅, sA, sB , sAB ,q}] · h j(c × {c(u)} × {c(v)}, w, w ′).

Forget v node: For forget nodes, if c j(v) ∈ {s∅, sA, sB}, a partial solution does not satisfy the condition of connected s-t
partitions because any v ∈ S must have neighbors of both A and B . For this reason, we only sum up for each state c j(v) ∈
{sAB , al, ar, bl, br, q}. The function hi in forget nodes is defined as follows:

hi(c, w, w ′) :=
∑

c j(v)∈{sAB ,al,ar ,bl,br ,q}
h j(c × {c j(v)}, w, w ′).
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Join node: We denote the coloring and weight for each partial solution in i, j1, j2 by ci, c j1 , c j2 and wi , w j1 , w j2 , w ′
i , w ′

j1
, 

w ′
j2

, respectively. For a coloring ci , we also define the subset D of tuples of (c j1 , c j2 ) as the combinations of colorings of 
c j1 , c j2 as in Section 3 such that:

• ∀v ∈ c−1
i ({s∅, al, ar, bl, br, q}), (c j1 (v), c j2 (v)) = (ci(v), ci(v)),

• ∀v ∈ c−1
i ({sA}), (c j1 (v), c j2 (v)) = (sA, s∅), (s∅, sA), (sA, sA),

• ∀v ∈ c−1
i ({sB}), (c j1 (v), c j2 (v)) = (sB , s∅), (s∅, sB), (sB , sB), and

• ∀v ∈ c−1
i ({sAB}), (c j1 (v), c j2 (v)) = (sAB , s∅), (sAB , sA), (sAB , sB), (sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), 

(sB , sA).

Let S∗ be the vertex subset c−1
i ({s∅, sA, sB , sAB}). To sum up all combinations of vertex states and weights for counting, 

we define the function hi . If D = ∅, we define hi(ci, wi, w ′
i) := 0. Otherwise,

hi(ci, wi, w ′
i) :=

∑
w j1 +w j2=wi+w(S∗)

∑
w ′

j1
+w ′

j2
=w ′

i+w ′(S∗)

∑
(c j1 ,c j2 )∈D

h j1(c j1 , w j1 , w ′
j1
)h j2(c j2 , w j2 , w ′

j2
).

From now, we analyze the running time of this algorithm. In leaf, introduce vertex, introduce edge, and forget nodes, 
we can compute f i for each coloring c and weight w, w ′ in O (1)-time because we only use O (1)-operations. Therefore, 
the total running time for them is O ∗(9tw · W · W ′). However, in join nodes, we sum up all weight combinations and 
coloring combinations satisfying some conditions. There are 21 coloring combinations for each vertex and W · W ′ weight 
combinations. Therefore, we compute all f i ’s in a join node in time O ∗(21tw · W 2). Note that by definition, O (W ′ 2) is a 
polynomial factor.

Theorem 5.5. For graphs of treewidth at most tw, there exists a Monte-Carlo algorithm that solves the decision version of Maximum 
Weight Minimal s-t Separator in time O ∗(21tw · W 2). It cannot give false positives and may give false negatives with probability at 
most 1/2.

Using the convolution technique [23], we can obtain a faster Monte-Carlo algorithm. The technique helps to speed up the 
computation for join nodes. First, we set the new coloring ĉ : V → {s Ā B̄ , s Ā, sB̄ , sall, al, ar, bl, br, q}. The state s Ā B̄ represents 
that a vertex v is in S and has no neighbor of A and B . The state s Ā (resp., sB̄ ) represents a vertex v is in S and has no 
neighbor of A (resp., B), respectively. Finally, the state sall represents a vertex v is in S without constraints.

Then, we show the following lemma to transform between c and ĉ.

Lemma 5.6. Let i be a node of a tree decomposition and hi(c, w, w ′) be the counting function that gives for colorings c or ĉ, and 
weights w and w ′ the number of partial solutions of Maximum Weight Minimal s-t Separator that correspond to this coloring and 
weights. Given hi(c, w, w ′) for all colorings c : V → {s∅, sA, sB , sAB , al, ar, bl, br, q}, weights w between 0 and W and all weights 
w ′ between 0 and W ′ , we can compute hi(ĉ, w, w ′) for all colorings ĉ : V → {s Ā B̄ , s Ā, sB̄ , sall, al, ar, bl, br, q}, weights w between 0
and W and all weights w ′ between 0 and W ′ , and vice versa. Both of these transformations do not lose any information, and can be 
executed in O (W · W ′ · 9tw · |Xi |) time.

Proof. This proof scheme follows [23]. We consider the immediate �-th step in the transformation from the original coloring 
c to the new coloring ĉ. (See Tables 2 and 3.) For hi(c ×{c(v)} × ĉ, w, w ′), v is a vertex which turns into the state of another 
coloring in the �-th step, and c is the partial coloring of size � − 1 and ĉ is also the partial coloring of size |Xi | − �. Here, 
for simplicity, we denote hi(c × {c(v)} × ĉ, w, w ′) and hi(c × {ĉ(v)} × ĉ, w, w ′) by hi(c(v)) and hi(ĉ(v)).

Since hi is the number of partial solutions with a consistent cut, the transformation from c to ĉ of hi in �-th step is as 
follows:

– hi(s Ā B̄) = hi(s∅)

– hi(s Ā) = hi(s∅) + hi(sB)

– hi(sB̄) = hi(s∅) + hi(sA)

– hi(sall) = hi(s∅) + hi(sA) + hi(sB) + hi(sAB).

Conversely, we can transform from ĉ to c as follows:

– hi(s∅) = hi(s Ā B̄)

– hi(sA) = hi(sB̄) − hi(s Ā B̄)

– hi(sB) = hi(s Ā) − hi(s Ā B̄)

– hi(sAB) = hi(sall) − hi(s ¯ ) − hi(s ¯ ) + hi(s ¯ ¯ ).
A B AB
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Table 2
Combinations of the original coloring c in a join node.

s∅ sA sB sAB al ar bl br q
s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

ar ar

al al

br br

bl bl

q q

Table 3
Combinations of the new coloring ĉ in a join node.

sall s Ā sB̄ s Ā B̄ al ar bl br q
sall sall

s Ā s Ā
sB̄ sB̄
s Ā B̄ s Ā B̄
ar ar

al al

br br

bl bl

q q

These equations follow from equations of the transformation from c to ĉ.
We need for each transformation O (|Xi |) steps as given above. Thus, the total running time of each transformation is 

O (W · W ′ · 9tw · |Xi |). �
Therefore, we first transform the function with original colorings c to the function with new colorings ĉ in O (W · W ′ ·

9tw · |Xi |)-time. Then we compute the following function hi for the new coloring ĉ in O (9tw · W 2)-time:

hi(ĉ, w,w ′
i) :=

∑
w j1 +w j2 =wi+w( Ŝ∗)

∑
w ′

j1
+w ′

j2
=w ′

i+w ′( Ŝ∗)

h j1(ĉ, w j1 , w ′
j1
)h j2(ĉ, w j2 , w ′

j2
)

where Ŝ∗ = ĉ−1({s∅, sA, sB , sAB}) ⊆ V . Note that ĉi, ̂c j1 , ̂c j2 are the same coloring. Finally, we transform ĉ to c. Thus, the 
total running time of this algorithm is O ∗(9tw · W 2).

Theorem 5.7. For graphs of treewidth at most tw, there exists a Monte-Carlo algorithm that solves the decision version of Maximum 
Weight Minimal Separator and Maximum Weight Minimal s-t Separator in time O ∗(9tw · W 2). It cannot give false positives and 
may give false negatives with probability at most 1/2. If the input graph is unweighted, the running time is O ∗(9tw).

As usual for this type of algorithm, the probability of a false negative can be made arbitrarily small by repeating the 
algorithm.

6. Conclusion

In this paper, we studied Maximum Weight Minimal (s-t) Separator. We first showed Maximum Weight Minimal (s-t) 
Separator is NP-hard even on unweighted bipartite graphs. On the other hand, we designed an O ∗(twO (tw))-time deter-
ministic algorithm. However, this algorithm is not a single exponential time algorithm. Then, we improved the algorithm by 
using the Rank-Based approach. The running time of the rank-based algorithm is O ∗((38 · 2ω)tw). Moreover, we designed an 
O ∗(9tw · W 2)-time randomized algorithm based on Cut & Count. This is better than the rank-based algorithm with respect 
to the base of treewidth. Finally, we mentioned the fixed-parameter tractability. In section 3, we showed Maximum Weight 
Minimal Separator is fixed-parameter tractable with respect to W , but Maximum Weight s-t Minimal Separator remains 
open.
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