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General Introduction 

Developing medical imaging methods provide opportunities to assess the 

characteristics of human tissue noninvasively and continuously. Disease 

diagnosis and treatment planning based on medical imaging is common in 

modern medicine.[1][2] However, humans’ unassisted discrimination and 

computation ability and inter- and intra-individual variations reduce the 

reproducibility, reliability, and accuracy of qualitative disease diagnosis, 

especially for subtle lesions.[3] Quantitative medical image analysis (QMIA) 

can overcome the mentioned shortcomings due to computers’ strong 

computation ability, even though humans may still have better interpretation 

ability. [4] QMIA models established directly from medical images have 

poor generalization performance due to the high dimensionality of medical 

imaging and the limited volume of labelled data for model training. 

Therefore, features which represent the information of images with much 

lower dimension are of interest. [5][6]  

Radiomics [7] is a popular QMIA framework and an active research topic 

focusing on extracting a high number of features from medical images for 

multiple clinical applications in oncology, such as tumor phenotype 

decoding, [8] survival prognostic prediction, [9] diagnostic differentiation 

of suspected tissue, [10] etc. Radiomic features are quantitative descriptions 

of the intensity, shape, volume, and texture of the region of interest (ROI). 

Shape and volume related features are calculated based on the mask of the 

ROI, while intensity related features are calculated based on descriptive 

statistics from the intensity histogram, and texture related features are 

calculated based on the non-uniform spatial disposition of pixel intensities. 
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The definition of each feature can be found elsewhere [11]. Radiomics has 

shown the potential for clinical-decision support in a range of cancers (lung 

cancer, [1] head and neck cancer, [12] rectal cancer [13]) and using most 

common clinical imaging modalities such as computed tomography (CT), 

[1][14] magnetic resonance imaging (MRI), [15] and positron emission 

tomography (PET) [16]. 

Compared with conventional radiography, CT scanning can provide images 

of many types of tissue with high resolution in 3 dimensions and even in 4 

dimensions for some applications (e.g., 4D CT film clip of a beating heart 

[17]). Moreover, CT examinations are non-invasive, fast, simple and can be 

used both in outpatient and emergency patient care. Advantages of CT made 

it to be one of major examinations in clinical practices and it the third most 

used medical imaging modality behind plain radiography and ultrasound 

[18]. More specifically, over 1.29 million CT scans were collected in the 

Netherlands in 2012 [19] and 80 million in the United States in 2015 [20].  

Considering the wide implementation of CT in clinical practice, CT based 

radiomics has a big potential in clinical practice for decision support. [21] 

More specifically, CT radiomics can be used for lung cancer screening, [22] 

tumor treatment outcome prediction, [23] tumor metastasis prediction, [24] 

etc. Hundreds CT radiomics related studies have been published during last 

decade. [25][26] In other words, as a hot research topic, CT radiomics has 

attracted much attention from researchers. 

Due to the long-term risk posed by low levels of ionizing radiation exposure, 

low dose CTs have become more popular (As Low As Reasonably 

Achievable (ALARA) principle [27]) in clinical practice, especially for 
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screening and monitoring of populations at risk. In 2013, the US Preventive 

Services Task Force (USPSTF) recommended annual screening for lung 

cancer with low-dose CT in adults aged 55 to 80 years who have a 30–pack-

year smoking history and currently smoke or have quit within the past 15 

years. [28] Low dose CT radiomics and related applications can make 

screening quicker and more reliable. Therefore, researchers have started to 

calculate radiomic features based on low dose CTs. [29][30] 

Although significant progress has been made during recent years in CT 

radiomics, there are still important barriers that prevent the widespread 

implementation of radiomics in clinical settings. For example, the low 

repeatability and reproducibility of CT radiomic features have been shown 

in multiple studies. [31][32] Repeatability mainly refers to features that 

remain unchanged when capturing images multiple times of the same 

subject under the same conditions. The repeatability of radiomic features is 

assessed in test-retest analyses [33] and interobserver variability for tumor 

contouring. [34] Reproducibility of radiomics refers to stability of features 

when at least one condition is changed. Common metrics for measuring 

repeatability and repeatability of features are intraclass correlation 

coefficient (ICC), [35] concordance correlation coefficient (CCC), [36] and 

Spearman correlation coefficient. [37] 

The reproducibility of CT radiomics can be reduced by multiple variations 

during the whole radiomics extraction and application workflow (as shown 

in Figure 1-1). [38] The effect of some factors to reduce the reproducibility 

of radiomic features has been quantitatively studied, such as vendor scanner 

variability, [39] mask inter-observer delineation variability, [40] features 
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extraction variability, [41] radiation dose, [42] CT acquisition parameters 

and reconstruction settings, [43] etc. In low dose CTs, radiation dose is the 

majority factor that decreases radiomics reproducibility.  

Published studies show that improving CT radiomics reproducibility will 

enhance the performance of CT radiomics in various applications [44] and 

increase the chances of CT radiomics' widespread implementation in clinical 

settings, especially for low dose CT images.  

 

Figure 1-1. Radiomics workflow and variations to reduce radiomics 

reproducibility. (Figure reproduced from [38]) 

Different studies have made various efforts to improve CT radiomics 

reproducibility. For examples, Zwanenburg et al. [45] aimed to reduce effect 

of implementation bias to radiomics reproducibility. Therefore, they 

standardized the feature definition, parameter settings and extraction 

implementation, creating the Image Biomarker Standardization Initiative 

(IBSI). Jooae et al. [46] used deep learning methods to convert CT images 

from different reconstruction kernels into one kernel to eliminate 

reconstruction kernel bias for improving CT radiomics reproducibility. 
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Mahon et al. [47] used the ComBat algorithm [48] to harmonize multi-center 

CT radiomics features to eliminate scanner bias. However, very few studies 

have focused on improving CT radiomics reproducibility and performance 

in low dose CTs. 

As a trade-off of low radiation exposure in low dose CT imaging, higher 

noise is present in these images. This noise decreases the image texture and 

the reproducibility of radiomics features. Comparing with radiomics 

features from high dose CTs, improving radiomics reproducibility and 

performance in clinical applications from low dose CTs is therefore a timely 

and potentially impactful research topic, which will be discussed in this 

thesis. 

Improving Radiomics Performance in Low Dose CT 

One potential solution worth exploring for improving the reproducibility and 

performance of radiomics based on low dose CT is denoising the images 

before extracting radiomic features.  

Medical image denoising is a traditional topic in medical image analysis, 

that has attracted recent attention. Hundreds of related articles have been 

published in last decade and multiple reviews have summarized these papers. 

[49][50] Proposed methods can be divided into two categories - traditional 

denoising methods and deep learning based denoising methods. [49] One 

major advantage of deep learning based denoisers compared with traditional 

counterparts is the feature self-representation ability. In other words, domain 

knowledge such as noise distribution estimation, denoising kernel selection 

play a key role in traditional denoising methods. However, domain 
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knowledge as mentioned above is not necessary for deep learning based 

denoising methods. [51] Multiple studies and reviews have supported the 

conclusion that deep features-based methods outperform traditional methods 

in medical image denoising. [49][50]  

According to a series of published articles, [52][53] generative models [54] 

-as a typical deep learning based denoiser- achieved the state-of-the-art 

(SOTA) in low dose CT denoising performance. Briefly, a generative model 

is a model that learns the distribution of the data in target domain and can 

generate new samples that obey the learned distribution based on random 

input or given data. A more in-depth definition of generative models can be 

found in some classic literature such as [55][56]. Typical types of generative 

models are Gaussian mixture models, [57] hidden Markov models, [58] 

encoder-decoder networks, [59] generative adversarial networks (GAN), [54] 

diffusion models, [60] etc. Both encoder-decoder networks and GANs 

belong to deep generative models, and they currently are the main methods 

for image synthesis. [61] The main difference between the two generative 

models is that game theory is introduced into GANs for pushing the model 

network to better learn the distribution of data and output more realistic 

images. [54] 

Generative models have been widely used in medical image analysis for 

various applications such as segmentation, [62] denoising, [63] image 

synthesis, [65] registration [66] and more.  [64][67] In this thesis, generative 

models are used as the denoisers to enhance image quality of low dose CT 

and increase radiomics reproducibility and performance. The rest of the 

dissertation is structured as follows:  
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Outline of the thesis 

In Chapter 2, we investigate the necessity of shortcuts in encoder decoder 

networks for CT denoising. Shortcuts are an important part of generative 

models that connect the encoder and the decoder at different layers. These 

shortcuts in the networks can help communicate the information of semantic 

feature maps from the encoder to the decoder. However, in denoising, some 

semantic transferred by shortcuts from encoder is noise and as such 

undesirable for the decoder. Therefore, some shortcuts may not be always 

beneficial for CT denoising. The results of this chapter may provide some 

guidelines for better generative model design in following chapters. 

In Chapter 3, we investigate the effect of SOTA denoising methods to 

improve radiomics reproducibility from low dose CT. Two generative 

models – Conditional Generative Adversarial Network (CGAN) [69] and 

encoder-decoder networks – are adopted as testing denoisers. Most of 

generative model training – including CGANs and encoder-decoder 

networks– need paired low dose and high dose CT images. However, 

collecting this kind of datasets is expensive and time-consuming, if at all 

possible. Therefore, the selected denoisers are trained based on simulated 

paired low dose-full dose CT images and then tested by assessing the 

improvement of radiomics reproducibility. (Chapter 3) 

In Chapter 4, we test the performance of improved CT radiomics in a new 

application. We train a lung cancer classification model to classify at the 

subject (patient) level from multiple examined nodules, without the need to 

have specific expert findings reported at the level of each individual nodule. 

More specifically, this lung cancer diagnosis problem is regarded as a 
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multiple instance learning (MIL) problem, where lung nodules are regarded 

as instances in MIL and the diagnosis from the doctor at subject level is 

regarded as the label of the bag in MIL. CT radiomics are used as biomarkers 

to extract information from each nodule and deep attention-based MIL [68] 

is used as the classification algorithm at patient level.  

In Chapter 5, we investigated the benefits of generative models for improved 

CT radiomics performance in real applications. We applied models trained 

on simulated data (Chapter 3) to denoise low dose CTs and used radiomic 

features extracted from the denoised CTs for lung cancer diagnosis and 

tumor pre-treatment survival prediction. The objective in survival analysis 

is to establish a connection between covariates and the time of an event or 

the probability of survival at any particular point in time. We used radiomic 

features as covariates in our study. The improvement on radiomics-based 

model performance is measured using multiple metrics in different 

applications.  

In Chapter 6, we investigate the application of cycle-consistent adversarial 

networks (Cycle GAN) to CT denoising. Unlike the previously mentioned 

generative models, paired data is not mandatory for Cycle GAN training. 

[70] We trained a Cycle GAN both on paired simulated data and on unpaired 

real low dose-high dose CT images and applied this to same testing datasets 

and applications as mentioned in Chapter 3 and Chapter 5. The improvement 

of CT radiomics reproducibility and performance are compared with CGAN 

and encoder-decoder network to show if Cycle GAN are an improvement.  

Finally, Chapter 7 consists of a general discussion about the potential of 

generative models for radiomics based on low dose CT, what barriers there 
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may be for their use in real world applications and potential solutions for 

these barriers. Moreover, methods other than medical image denoising to 

improve low dose CT radiomics performance are discussed in this final 

section.  

The outline of the chapters is shown in Figure 1-2. 

  

Figure 1-2. Outline of chapters in this thesis 
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Abstract 

Purpose: Denoising of Computed Tomography (CT) scans has attracted the 

attention of many researchers in the medical image analysis domain during 

the last decades. Encoder-decoder networks are deep learning neural 

networks that have become common for image denoising in recent years. 

Shortcuts (or skip connections) between the encoder and decoder layers are 

crucial for some image-to-image translation tasks, such as segmentation, 

style transfer, etc. However, are all shortcuts still necessary for CT denoising?  

Method: To answer this question, we set up two encoder-decoder networks 

representing two popular architectures, then progressively removed 

shortcuts from the networks from shallow to deep (forwards-removal) and 

from deep to shallow (backwards-removal). We used two unrelated datasets 

with different noise levels to test the denoising performance of these 

networks using two metrics, namely root mean square error (RMSE) and 

content loss.  

Results and Conclusions: The results show that while more than half of the 

shortcuts are still indispensable for CT scan denoising, removing certain 

shortcuts leads to performance improvement for denoising. Both shallow 

and deep shortcuts might be removed thus retaining sparse connections, 

especially when the noise level is high. Backwards removal seems to have a 

better performance than forward removal, which means deep shortcuts have 

priority to be removed. Finally, we propose a hypothesis to explain this 

phenomenon and validate it in the experiments. 

Keywords: Deep Learning; Encoder-decoder Network; Medical Image 

Denoising; Shortcuts; Comparative Analysis  
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Introduction 

Computed Tomography (CT) denoising is a topic which has been much-

investigated in the medical image analysis domain during the last decades. 

Current denoising methods can be divided into two broad types – filter-based 

denoising methods and deep learning based denoising methods [1]. Filter 

methods apply a pre-defined digital image filter to noisy images or try to 

infer the distribution of noise from data. These methods do not achieve a 

good performance in a complex noise situation, such as disparate types of 

noise that manifest as different density distributions introduced by either 

image acquisition, reconstruction, artefact reduction and image post-

processing [2][3]. Deep learning based denoising methods have become 

popular in recent years due to their potential to autonomously define the 

optimal parameters in denoising models. In 2016, an international low dose 

CT denoising contest was held by the American Association of Physicists in 

Medicine (AAPM), returning this problem to the spotlight in the deep 

learning era [4]. In this contest, paired full dose and one-quarter dose CT 

images, including their sinograms, from 10 patients were provided to train a 

low dose CT denoising network. Kim et al. won the contest by introducing 

a spatially encoded non-local penalty to the cost function optimized by a 

neural network [5]. Since then, the associated dataset has been re-used for 

research on CT denoising contributing to multiple improvements in state-of-

art denoising performance [6][7][8][9]. Most of these models have been 

either generative models, such as generative adversarial networks (GANs) 

[10], or encoder-decoder networks (EDNs). 

As a typical generative model, EDNs and their different variants have been 

widely used to denoise not only medical images such as CT, MRI, 
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ultrasound [8][9] [11][12] but also natural images [13][14][15], low light 

raw images [16], speech [17], desert seismic signals [18], RGB-D images 

[19], etc. Moreover, EDNs can be used as the generator in GANs which can 

then used for image denoising [12][20][21]. 

A typical EDN consists of two parts: an encoder side that extracts features 

from the input image, based on convolution kernels. The features in the 

shallow layers become increasingly abstract when progressing towards the 

deep layers. The decoder side converts deep features to shallow features 

using deconvolution kernels. The two networks have symmetrical structures 

that are linked through a bottleneck layer. 

Shortcuts, also called ‘ skip connections’  in the literature, connect the 

encoder and the decoder at different layers and are assumed to be an 

indispensable part of such networks. The shortcuts in the network can help 

communicate the information of semantic feature maps (which is lost during 

the convolution, deconvolution and pooling) from encoder to the decoder 

[22]. The purpose of introducing shortcuts is to improve the acutance of the 

output image, make it clearer and retain more “ low level”  features or high 

frequency content, i.e. pixel values that are rapidly changing in space. These 

shortcuts have been shown to be crucial in certain image-to-image 

translation tasks, such as segmentation [23][24] and style transfer [25]. 

However, in noisy images, the information delivered by shortcuts includes 

not only the content information such as shape boundaries, lines and corners, 

but also the noise. Part of the delivered features from the encoder to decoder 

by the shortcuts might thus have a negative impact on denoising. 
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In this study, we tried to answer the question: are the features from the input 

image, made available through shortcuts, actually helpful for the explicit 

task of CT image denoising? Similar question was proposed by other study 

[26]. Secondly, we consider whether all shortcuts remain equally 

indispensable in EDNs when performing CT image denoising. (Source code 

and supplementary materials of this article are available online at 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/tree/Necessity-of-

Shortcuts). 

Methods 

Data 

We re-used (with permission and legal agreement) the images from Low 

Dose CT Grand Challenge (LDGC) [1] as our first test dataset. This 

consisted of 10 pairs of clinical abdominal CT examinations, each of which 

consisted of one full dose CT image (120 kVp and nominally 200 mAs) and 

one low dose CT image (120 kVp and nominal 50 mAs). We used only the 

1 mm slice thicknesses out of which we extracted 5600 single-image frames. 

In order to make our conclusions more generalizable, we re-used another 

dataset for our experiments, namely the NSCLC-Radiomics (LUNG 1) 

available at The Cancer Imaging Archive (TCIA) [27] under a Creative 

Commons not-for-commercial use license (CC-BY-NC 3.0). This collection 

contains clinical patient data and CT images from 422 non-small cell lung 

cancer (NSCLC) radiotherapy patients and has been cited in several studies 

[28]. The exposure in these CTs ranged from 42 to 400 mAs. We used 50 

CT series (5260 frames in total) that were acquired with 400 mAs as the 

additional dataset. 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/tree/Necessity-of-Shortcuts
https://gitlab.com/UM-CDS/low-dose-ct-denoising/tree/Necessity-of-Shortcuts
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Since LUNG1 has no paired full-dose/low-dose images, we created noisy 

images based on the method proposed by McCollough et al. [4] and Chen et 

al. [9]. In these methods, the authors simulated the CT scanners’  physical 

behavior: they introduced noise into an acquisition sinogram and 

reconstructed the CT image from the sinogram to obtain simulated noisy 

images. Based on this approach, we proposed a closely related method to 

add noise in the original sinogram. The mathematical description of our 

method is as follows: 

 𝑧𝑖 = (1 + 𝑏𝑖)𝑒𝑖 + 𝑟𝑖 , 𝑖 = 1, … , 𝐼, 𝑏𝑖~𝑁(𝜇, 𝜎) (Equation 2-1) 

where 𝑧𝑖 is the measurement along the 𝑖-th ray path, 𝑟𝑖 is the read-out error 

and 𝑒𝑖 represents the original line integral of attenuation coefficients along 

the 𝑖-th ray path, and 𝑏𝑖 is the black scanner factor, which follows a normal 

distribution. The intensity of noise added to the image can be controlled 

using parameter 𝑏𝑖. The main challenge is to pick 𝑏𝑖 parameters to match the 

intensity of noise in low dose CT images compared with their full dose 

counterparts. We estimated the 𝑏𝑖 parameters by comparing RMSE between 

real low dose CT images and simulated noisy images with different 𝑏𝑖 

values. In our case, we set μ=0, so only one parameter (𝜎) needed to be 

estimated. Additionally, the external noise introduced by thr Radon 

transform and inverse Radon transform was removed from the generated 

images. 

In order to mimic CT images scanned with 200 mAs and 50mAs from those 

scanned with 400 mAs, we first measured the noise intensity introduced in 

images with lower doses by scanning a Gammex 467 CT phantom 

(Middleton, WI, USA) using a Philips Brilliance Big Bore CT with different 
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doses (400 mAs, 200mAs, 50 mAs) [29]. We estimated that a σ of 0.0008 

and 0.0035 mimicked best the noise in 200 mAs and 50 mAs CT images 

from 400 mAs image respectively. 

In order to assess the necessity of shortcuts with noise of different intensities, 

we added stronger noise (2.5 times the magnitude of LDGC) to full dose CT 

(200 mAs), setting σ to 0.0062 to mimic CT images with high noise. 

In summary, we used four datasets for our experiments: the original LDGC, 

LDGC with high noise, LUNG 1 with light noise, and LUNG1 with high 

noise.  

Experiments 

To test the necessity of shortcuts, we set up two EDNs with the architecture 

shown in Figure 2-1 to run our experiments. The first architecture is based 

on that of the Residual Encoder-Decoder Convolutional Neural Network 

(RED-CNN) [9], a well-established EDN for CT denoising. It is a 5-layer 

network, with 3×3 sized convolution and deconvolution kernels that uses 

padding to keep the image size after convolution or deconvolution layers. 

Max pooling layers have filters of size 2×2 and a stride of 2. The activation 

function used is leaky rectified linear unit (LReLU) [30]. The second 

architecture takes the U-Net as its backbone [22]. The U-Net is a 

convolutional network architecture that has been used in many image-to-

image translation tasks, especially segmentation. The architecture is similar 

to the RED-CNN (as shown in figure 1 (b)), the main difference being the 

number of kernels in each convolutional layer. 
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Figure 2-1. Architectures of the encoder-decoder networks used in the 

experiments. 

There are five shortcuts in RED-CNN. All shortcuts except the deepest 

shortcut (S5) can be removed to test their necessity for medical image 

denoising. Similarly, in the U-Net all but the deepest shortcut (S9) could be 

removed. To investigate the impact of shallow and deep shortcuts for 

denoising, shortcuts were removed from two directions in our experiments. 
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First, shortcuts were removed from shallow to deep – from S1 to S4 in RED-

CNN, from S1 to S8 in U-Net – referred to as forward removing. Second, 

we removed shortcuts from deep to shallow, referred to as backward 

removing. We refer to networks with all the shortcuts as fully connected 

networks and to networks where at least one shortcut has been removed as 

sparsely connected networks. To assess the impact of shortcuts in the 

denoising of images with different noise levels, we executed comparative 

experiments with CT images containing noise of different intensities. We 

use two metrics, namely the root mean square error (RMSE) and content loss 

[31] to measure the performance of denoising. The main reason to choose 

these two metrics is that the former measures the statistical differences 

between images while the latter measures differences in visual aspect. The 

mathematic description of RMSE based loss function is as follows: 

 ℒ𝑚 = 1 𝑁⁄ ‖𝑦 − 𝑦̂‖2 (Equation 2-2) 

where 𝑦 represents the original image, 𝑦̂ represents the denoised image, 𝑁 

represents the number of pixels in the image and ‖. ‖2 represents the L2-

norm of feature maps. The content loss based metric stems from the VGG-

16 architecture [32]. The mathematical description of the content loss-based 

cost function is as follows: 

 ℒ𝑐 =
1

𝑁
∑ ‖ℱ𝑖 (𝑉(𝑂, 𝑙𝑐𝑜𝑛𝑣2_1)) − ℱ𝑖 (𝑉(𝐷, 𝑙𝑐𝑜𝑛𝑣2_1))‖

2

𝑛
𝑖=1  

 (Equation 2-3) 

where ℱ𝑖 (𝑉(𝑂, 𝑙𝑐𝑜𝑛𝑣2_1))  represents the 𝑖 th feature map of VGG-16 at 

convolution layer 𝑐𝑜𝑛𝑣2_1  for original image and ℱ𝑖 (𝑉(𝐷, 𝑙𝑐𝑜𝑛𝑣2_1)) 
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represents the 𝑖th feature map for the denoised image, and  𝑛 represents the 

numbers of kernels in one convolution layer (𝑛 = 32 in our case).  

In summary, we ran 32 groups of experiments in this study. All our 

experiments were executed in an Amazon EC2 G3 Graphics Accelerated 

Instance with a Tesla M60 GPU, 30.5GB of memory and 4 CPUs. 

For the LDGC datasets, nine images were used to train the network and one 

to test it, following the 10-fold cross validation technique. For LUNG 1 

based datasets, 40 patients’  images were used to train the network and 10 

patients’  images to test it, using 5-fold cross validation. For each 

experiment, we conducted 100 tests, each consisting of sampling 4 test slide 

images from the test set and feeding them to the network. 

For training, network weights were initialized following Xavier 

initialization [33] and the Adam optimizer [34] was used for training with a 

batch size of 4 and a learning rate of 10−5. Finally, we trained all networks 

for 45 epochs. We conducted 100 tests, each consisting of sampling 4 test 

slide images from the test set and feeding them to the network. 

In order to interpret the results, we analyzed the output of the different 

shortcuts in terms of the content and noise transferred by each from the 

encoder to the decoder. Given that disentangling content from noise is not 

straightforward from denoised images, we used an alternative route. We 

considered that the transferred content is best approximated by the output of 

each shortcut when feeding a full dose CT images (i.e. without noise) as 

input to the network. We then added noise to the full dose CT image and fed 

it as input to the model to denoise it. By subtracting the transferred content 

to the output of each shortcut when denoising a noisy image (which contains 
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both transferred content and noise), we get the transferred noise. The process 

is illustrated in Figure 2-2. In order to assess how similar the content (and 

noise) transferred by each shortcut is to other shortcuts’ , we first used a 

perceptual hash algorithm [35] to summarize the tensor into a fingerprint (an 

elementwise comparison is not possible due to the output of different 

shortcuts having different size) and then measured the Hamming distance 

between them. A higher Hamming distance implies lower similarity and vice 

versa. We calculated the pairwise similarity of the output of the eight 

shortcuts (excluding the deepest shortcut) of the U-Net architecture in 400 

full dose CT images from LUNG 1. 

 

Figure 2-2. Demonstration of extracting transferred noise though shortcuts. 

Results 

An example result for forward removal of shortcuts from the LDCG dataset 

by using U-Net is shown in Figure 2-3.(additional examples about backward 

removing and results from RED-CNN are included in Supplementary 

Figures 1-3), where the image denoised by the EDNs with all the shortcuts 

is visually similar to the best performance from sparsely connected networks. 

Therefore, we analysed the performance based on the two metrics mentioned 

in Section II. The results summarised in Table 2-1 show that the best average 
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performance was achieved by sparsely connected networks in 28 groups of 

experiments, while the fully connected network achieved the best average 

performance in the remaining 4 groups of experiments. Boxplots with the 

losses measured across all tests in LUNG 1 based on the two metrics using 

the two removing strategies are shown in Figure 2-4 (corresponding 

boxplots for LGDC can be found in Supplementary Figure 4). As shown in 

the plots, the denoising performance of sparsely connected networks is 

worse than that of fully connected networks when more than 4 or more 

shortcuts were removed in U-Net and 2 or more shortcuts were removed in 

RED-CNN. However, the differences between the best performance of 

sparsely connected networks and fully connected networks cannot be judged 

based on visual examination. We tested whether the differences between the 

performances of the fully connected network and the best performance from 

sparsely connected networks are statistically significant using the Wilcoxon 

signed-rank test. The results of the experiments are shown in Table 2-1 (data 

used in statistical analyses is available at the source code repository). As 

shown in the table, there are significant differences in 17 out of 32 groups 

of experiments, 12 out of 16 groups in highly noisy image experiments. The 

best performing sparsely connected networks outperformed fully connected 

networks (both by forward removal and backward removal), especially for 

highly noisy images. In most cases, sparsely connected networks outperform 

the fully connected network when one shortcut is removed from the RED-

CNN architecture and two shortcuts were removed from the U-Net 

architecture. On the other hand, the backward removing strategy resulted in 

better performance than forward removing. In our experiments, the U-Net 

based architecture outperformed the RED-CNN based architecture. 

The analysis of the similarity between the output of different shortcuts in the 

U-Net resulted in a mean Hamming distance of 22.4 for transferred content 

26.1 for transferred noise. These results show that delivered content features 
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have higher similarity than delivered noise features. We provide a discussion 

for this phenomenon in Section IV. Figure 2-5 shows an example of 

transferred content information and transferred noise through shortcuts S1 

and S2. 

Discussion 

In this study, we have assessed the impact of shortcuts in two types of EDNs 

for CT scan denoising. These shortcuts have previously been shown to be 

beneficial in some fully convolutional networks and some image-to-image 

translation tasks, but their impact on denoising had not yet been studied in 

detail. The results of our experiments show that removing certain shortcuts 

from EDNs either has no detrimental impact or improves the performance 

of CT denoising. These results support our initial intuition that in noisy 

images, shortcuts not only transfer content information (semantic features) 

but also noise from encoder to decoder. 
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Table 2-1. Comparison of the performance between the full network and the best performance from sparse connected networks 

Architecture Dataset Metric Noise 
Full 

network1 

Forward Moving Backward Moving 

Sparse 

connection1 

p-

value2 

Sparse 

connection 

p-

value 

RED-CNN 

Based 

LDGC CL3 Light 0.1076 0.1059(1)4 0.44 0.1026(1)5 0.01 

LDGC CL High 0.2634 0.2515(1) <0.01 0.2305(1) <0.01 

LDGC RMSE Light 0.0220 0.0221(1) 0.87 0.0219(1) 0.90 

LDGC RMSE High 0.0325 0.0316(1) <0.01 0.0308(1) <0.01 

LUNG1 CL Light 0.1479 0.1451(1) 0.19 0.1447(2) 0.11 

LUNG1 CL High 0.2139 0.2170(1) 0.29 0.1878(2) <0.01 

LUNG1 RMSE Light 0.0287 0.0287(1) 0.80 0.0287(2) 0.08 

LUNG1 RMSE High 0.0322 0.0324(1) 0.57 0.0308(1) <0.01 

U-Net 

Based 

LDGC CL Light 0.0887 0.0880(3) 0.98 0.0882(1) 0.89 

LDGC CL High 0.1901 0.1885(1) 0.25 0.1856(2) 0.03 

LDGC RMSE Light 0.0202 0.0202(4) 0.96 0.0202(1) 0.10 

LDGC RMSE High 0.0281 0.0282(1) 0.75 0.0278(3) <0.01 

LUNG1 CL Light 0.1075 0.1005(1) <0.01 0.0981(3) <0.01 

LUNG1 CL High 0.1525 0.1458(1) <0.01 0.1417(2) <0.01 
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1mean loss values; 2 p-value of Wilcoxon signed-rank test; 3mean content loss; 4mean the number of moved shortcuts when sparse 

connection network received the best performance; 5 lower value of loss have a better performance, in this case, 0.1026 better than 

0.1059. 

LUNG1 RMSE Light 0.0267 0.0259(2) <0.01 0.0257(1) <0.01 

LUNG1 RMSE High 0.0293 0.0287(1) <0.01 0.0284(3) <0.01 
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Figure 2-3. Demonstration of the result of denoising an image from LDGC. 

(a) Original full dose CT image and zoomed of Region of Interest; (b) 

Paired low dose CT image and zoomed of Region of Interest; (c) Denoised 

result when all shortcuts are connected in the network and zoomed of 

Region of Interest; (d-l) Denoised image when shortcut S1-S8 is removed 

from the network and zoomed of Region of Interest. 
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Figure 2-4. Boxplots of (a) content loss in RED-CNN denoised images vs 

original images along with forward and backward moving in the LUNG1 

dataset; (b) RMSE in RED-CNN denoised images vs original images along 

with forward and backward moving in the LUNG1 dataset; (c) content loss 

in U-Net denoised images vs original images along with forward and 

backward moving in the LUNG1 dataset; (d) RMSE in U-Net denoised 

images vs original images along with forward and backward moving in the 

LUNG1 dataset. 
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Figure 2-5. A demonstration of transferred information to encoder (based 

on U-Net) though shortcut S1, S2 and corresponding noise. (a) An example 

of transferred information though S1; (b) an example of transferred 

information though S2; (c) corresponding transferred noise for image (a); 

corresponding transferred noise for image (b). 

The results of forward and backward removing show that either shallow or 

deep shortcuts can be removed while maintaining or improving denoising 

performance. Backward removal (deep to shallow) outperformed backward 

removing in our experiments. One potential justification is that the 

information delivered through deep shortcuts contains less “low level” 

features compared with shallow shortcuts while most of the content 

information for reconstruction is carried by the deepest shortcut (which is 
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never removed). Therefore, the content benefit of deep shortcuts is lower 

than shallow shortcuts and deep shortcuts should be first. 

On the other hand, part of the image content information transferred by 

shortcuts seems to be duplicated by different shortcuts. The results of our 

experiments show that the transferred content across different shortcuts have 

higher similarity than the noise transferred. This phenomenon might be 

explained by the fact that characteristics of noise might make its pattern 

harder to learn, and consequently the noise delivered by different shortcuts 

might be more independent. Therefore, having too many shortcuts might be 

counter-productive, by reducing the content benefit per shortcut relative to 

the negative effect of transferred noise. 

We have shown that our results are consistent in two otherwise unrelated 

lung datasets and we believe these results can be broadly generalizable to 

other CT scans. We used two popular EDN architectures in our experiments 

and we think it is likely that the results would be consistent with other EDN 

architectures. We used shallow networks (less than 10 layers) with full 

shortcuts rather than a deeper network (such as the DenseNet-based encoder-

decoder network proposed in [36]) as the experimental network because 

denoising focuses on “low level” features and does not require a deep 

network to extract features. The noise introduced in the images used in our 

experiments to simulate the noise in low dose CT was based on the method 

described in McCollough et al. [4] and Chen et al. [9]. The validity of our 

findings depends to a certain extent on the representativeness of this 

synthetic noise of noise in low dose CTs. For future research designing 

encoder-decoder networks for medical image denoising, we propose that a 

sparse connection between encoder and decoder should be considered. Our 
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results indicate that removal of deep shortcuts should have the higher 

priority when constructing sparse networks. We have no results supporting 

a universal solution, so researchers should adjust their networks based on 

experiments with their own data. 

These insights will help the development of denoising models that have a 

wide range of applications in medical imaging, for example improving the 

performance of automatic segmentation algorithms [37], or improving the 

repeatability of radiomics features [38]. 
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Conclusions 

In this article, we discuss the necessity and desirability of shortcuts in 

encoder-decoder networks for denoising of CT scans. In order to answer this 

question, we adopt two encoder-decoder networks as test architectures, we 

ran several sets of experiments based on two EDNs using different datasets, 

different noise intensity levels, different metrics and different moving 

strategies. The results show that over half of shortcuts are indispensable for 

denoising. However, a sparse connection will provide a positive effect for 

denoising and both shallow and deep shortcuts can be removed to achieve a 

more sparse connection, especially when the noise is high. Backward 

removal seems have a better performance than forward removal which 

means deep shortcuts should be kept when making shortcuts sparse. Finally, 

we believe this conclusion may be suitable not only for medical image 

denoising but also for other image denoising tasks. 

Appendix 

Support materials of this Chapter can be found in this link. 

  

https://gitlab.com/UM-CDS/low-dose-ct-denoising/tree/Necessity-of-Shortcuts
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Abstract 

Purpose: Radiomics is an active area of research in medical image analysis, 

however poor reproducibility of radiomics has hampered its application in 

clinical practice. This issue is especially prominent when radiomic features 

are calculated from noisy images, such as low dose computed tomography 

(CT) scans. In this article, we investigate the possibility of improving the 

reproducibility of radiomic features calculated on noisy CTs by using 

generative models for denoising. 

Method: Our work concerns two types of generative models – encoder-

decoder network (EDN) and conditional generative adversarial network 

(CGAN). We then compared their performance against a more traditional 

“non-local means” denoising algorithm. We added noise to sinograms of full 

dose CTs to mimic low dose CTs with two levels of noise: low-noise CT 

and high-noise CT. Models were trained on high-noise CTs and used to 

denoise low-noise CTs without re-training. We tested the performance of 

our model in real data, using a dataset of same-day repeated low dose CTs 

in order to assess the reproducibility of radiomic features in denoised images. 

Results: EDN and the CGAN achieved similar improvements on the 

concordance correlation coefficients (CCC) of radiomic features for low-

noise images from 0.87 [95%CI, (0.833,0.901)] to 0.92[95%CI, 

(0.909,0.935)] and for high-noise images from 0.68 [95%CI, (0.617,0.745)] 

to 0.92[95%CI, (0.909,0.936)], respectively. The EDN and the CGAN 

improved the test-retest reliability of radiomic features (mean CCC 

increased from 0.89 [95%CI, (0.881,0.914)] to 0.94[95%CI, (0.927,0.951)]) 

based on real low dose CTs. 
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Conclusions: These results show that denoising using EDN and CGANs 

could be used to improve the reproducibility of radiomic features calculated 

from noisy CTs. Moreover, images at different noise levels can be denoised 

to improve the reproducibility using the above models without need for re-

training, provided the noise intensity is not excessively greater that of the 

high-noise CTs. To the authors’ knowledge, this is the first effort to improve 

the reproducibility of radiomic features calculated on low dose CT scans by 

applying generative models. 

Keywords: Radiomics; Reproducibility; Computed Tomography; 

Denoising; Generative Models 
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Introduction 

Radiomics is currently an active area of research in medical image analysis. 

It involves the automated extraction of (either hand-crafted or deep-learning) 

quantitative image metrics known as “features”, in the hope of improving 

the diagnostic, prognostic, or predictive accuracy of clinical models [1].One 

of the major advantages of hand-crafted radiomics features, as opposed to 

deep features, is higher potential for interpretability by human operators. 

Radiomics has shown potential for clinical-decision support in oncology for 

a diverse range of cancer sites such as lung [2], head and neck [3], and rectal 

cancer [4], among others. The most widely used clinical imaging modalities 

for radiomics are computed tomography (CT) [3][5], magnetic resonance 

imaging (MRI) [6], and positron emission tomography (PET) [7]. Radiomics 

has attracted increased attention from researchers following the seminal 

article by Aerts et al. [7] in 2014. In spite of significant progress made during 

recent years, there remain barriers that hamper widespread adoption of 

radiomics in clinical settings. One important issue is the generally poor 

repeatability and reproducibility of radiomic features [8]. Repeatability 

refers to features that remain the same when extracted multiple times in the 

same subject. The repeatability of radiomic features may be assessed by test-

retest imaging [9] and interobserver studies of tumor contouring [10]. 

Radiomics reproducibility is the stability of features when at least one 

processing condition (e.g. equipment, software, acquisition settings) has 

been changed. The reproducibility of radiomics features is key to external 

validity and widespread generalizability with respect to differences in image 

reconstruction [11], radiation dose during CT scanning [12], and other 

variations that inevitably arise across clinics and scanners. 
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An important source of non-reproducibility or limited generalizability in 

radiomics that demands more attention is image noise. Due to the long term 

risk posed by low levels of ionizing radiation exposure, low dose CTs have 

become more popular (e.g. the ALARA principle [17]) especially for 

screening and monitoring of populations at risk. Therefore, researchers have 

interest to use radiomic features based on low dose CTs. As an inevitable 

trade-off for low radiation exposure, higher noise is present in these images. 

This noise decreases the image texture [13]. As reported in [11], changes in 

radiation dose reduce the reproducibility of radiomic features, and features 

from low dose CT images tend to have lower reproducibility [12]. Image 

noise has been shown to adversely impact the reproducibility of radiomic 

features if signal to noise ratio (SNR) falls below 50 dB [5], but the results 

also show that some radiomics features are robust to low-pass filtering. Thus, 

improving the reproducibility of radiomics from low dose CTs is a timely 

and potentially impactful clinical research topic. 

To the best of the authors’ knowledge, there are presently no published 

detailed analysis on how to improve radiomics features robustness in low 

dose CT. A potential solution worth exploring is pre-extraction denoising of 

images [12]. Jiang, et al. [14] described a new semi-supervised generative 

adversarial network (GAN) that reconstructed higher-resolution CT images 

from their low-resolution counterparts with state-of-the-art performance. 

However, they did not investigate the possibility of using similar generative 

models to improve radiomics reproducibility in low dose CT. 

In the topic of medical image denoising, many effective alternative 

procedures have been proposed to improve low dose image quality and 

recover texture information, including building a more sophisticated 
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imaging platform [15], denoising in the CT sinogram domain [16], and 

denoising in the reconstructed CT image domain. The most convenient and 

popular denoising methods for low dose CT images operate in the CT image 

domain because hardware details and sinograms of CTs are hard to access 

for most researchers [23].  Generally speaking, since higher image quality 

should lead to higher reproducibility of radiomics, denoising seems to be a 

useful pre-processing step to consider. 

Many articles describing image denoising techniques have been published 

so far, as shown in reviews [18][19]. They can be divided into two main 

categories: traditional denoising methods and deep learning-based denoising. 

The latter views denoising as a type of restricted image-to-image conversion 

task. Traditional denoising methods [20] have known limitations such as 

loss of detail in images. With the advent of deep learning, a series of 

publications have shown that generative models outperform traditional 

methods in low dose CT denoising [21][22-24]. The most widely-tested 

generative models are autoencoders (AE) [25][26], encoder-decoder 

networks (EDN) [21][22], fully convolutional neural networks (FCN) 

[24][27] and various GANs [23][28]. 

An AE is an unsupervised neural network that learns how to efficiently 

compress (encode) an image by learning how to reconstruct the image from 

a tightly compressed (encoded) representation. EDNs are thus a 

convolutional version of AEs that allow connections across encoder and 

decoder layers. FCNs replace the fully connected layer in traditional 

convolutional neural networks with a deconvolution layer to perform the 

image-to-image translation.  
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GANs were originally proposed by Goodfellow et al. [28], and have been 

applied to diverse image-to-image translation tasks [29][30]. One of the 

major disadvantages of original GANs was the difficulty to control the 

output. However, Mirza et al. [31] proposed conditional GANs (CGANs), 

which introduced conditional restrictions into GANs to make the output 

more controllable and training more stable. Yang et al. [23] then achieved 

state-of-art performance in low dose CT denoising using a CGAN with 

Wasserstein distance penalty and perceptual loss. The general limitation of 

deep learning based methods remains high computational resource 

requirements during training and the need for large datasets. 

In this article, we focus on using generative models to improve the image 

quality of low dose CT images and assess the impact it has on the 

reproducibility of radiomic features. Source code of the whole project with 

detailed instructions, pre-trained models and supplementary materials are 

available (https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/branches). 

We hope our codes and related documents could assist future researchers to 

interpret and re-use our work. 

Methods and Materials 

Institutional Review Board approval was not applicable for this study, since 

the primary source of data was an open access collection on The Cancer 

Imaging Archive (National Institutes of Health) [32] and all patients’ private 

information had been moved from CT scans. This dataset has been used for 

this study in accordance with the Creative Commons Attribution-

NonCommercial 3.0 Unported (CC BY-NC) conditions.   

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/branches
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Model Development 

Though FCNs have shown good performance in image-to-image translation 

tasks, we excluded them from our experiments because they are unfeasibly 

slow, since they generate new images pixel-by-pixel. As convolutional 

versions of AEs, EDNs are expected to have better performance for image-

to-image translation tasks [22]. Therefore, we excluded AEs from our 

experiments in favour of EDNs. CGANs were included in the experiments 

due to proven performance for low dose CT denoising work [23].  

The architecture of our EDN is shown in Figure 3-1. It is a 5-layer network 

consisting of 32 (3×3)-sized convolution and deconvolution kernels with 

padding to keep the image size constant after each convolution or 

deconvolution. Max-pooling layers are used with 2×2 size filters and a stride 

of 2. We used cross entropy as the loss function and leaky rectified linear 

units (LReLUs) as activation functions. An original 512×512×1 CT image 

was fixed as the constant dimension of input and output images when 

training and testing.  
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Figure 3-1. The architecture of the encoder-decoder network 

 

Figure 3-2. The architecture of the CGAN (Pix2Pix) 
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For our CGAN, we used the same architectures and parameter settings as 

proposed elsewhere [31][33]. The architecture of the CGAN is illustrated in 

Figure 3-2. We adjusted the network’s input and output dimensions from the 

original to 512×512×1. Finally, we adjusted the networks to output DICOM 

files directly for archival and radiomics feature calculation. The loss 

function in the CGAN was also set to cross entropy. 

In order to compare the performance of generative models with that of 

traditional denoising methods, we included a type of low-pass filter, non-

local means algorithm [34], as a good representative for traditional 

denoising methods. There are a couple of reasons to choose non-local means 

as our comparison denoising method. First, non-local means had the better 

performance amongst other traditional denoising methods [35]. Second, 

non-local means executed faster than other algorithms such as Block-

Matching and 3D filtering (BM3D) [35][36] but gave similarly denoising 

outcome. For our non-local means algorithm, we set the size of the ‘search 

windows’ to 5 and the filtering parameter ‘h’ to 7. 

Data Acquisition 

We used the high quality NSCLC-Radiomics collection [37] (hereafter 

called LUNG 1), which contains CT scans of 422 non-small cell lung cancer 

(NSCLC) patients, as our experimental dataset. These CT scans included 

annotations drawn by specialist radiation oncologists that delineate a region 

of interest (ROI), the gross tumor volume. ROIs were necessary to be able 

to compute radiomic features. The CT images for which the dose level 

(‘parameter exposure’ in DICOM metadata) was missing (n=200) were 

excluded from further analyses. We considered CT images scanned at 400 

milliampere-seconds (mAs) and above as full dose CT (n=157, the index of 
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LUNG 1 patients included in the experiments can be found in 

Supplementary Table 1, supplementary materials are available: 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/branches). These data 

were be used for training (n=40, 4260 frames) and testing (n=117, 13423 

frames). Conversely, we designated CT images scanned at 50 mAs as low 

dose CT, taking the same definition as a prior Low Dose CT Grand 

Challenge [22][38].  

As mentioned, training of EDNs and CGANs require paired images, in our 

case, pairs of matching low dose and full dose CT scans. However, LUNG 

1 contains no paired images, thus we simulated the noisy degradation present 

in low dose CT images by introducing noise using the method proposed in 

literature [22][38]. In these, the authors had mimicked CT scanners’ 

behavior by adding noise with a normal distribution into a sinogram (by 

Radon transform) and reconstructed the CT image from the modified 

sinogram to obtain simulated noisy images. We used a similar method to add 

noise in the original sinogram as follows: 

 𝑧𝑖 = (1 + 𝑏𝑖)𝑒𝑖 + 𝑟𝑖 , 𝑖 = 1, … , 𝐼, 𝑏𝑖~𝑁(𝜇, 𝜎) Equation 3-1 

where 𝑧𝑖 is the measurement along the 𝑖-th ray path; 𝑟𝑖 is the read-out error; 

𝑒𝑖 represents the original line integral of attenuation coefficients along the 

𝑖-th ray path; and, 𝑏𝑖 is the black scanner factor, which follows a normal 

distribution. The intensity of noise added to the image can be controlled 

through the parameter 𝑏𝑖. 

To simulate low dose CT images (scanned with 50mAs) from full dose CT 

images (scanned with 400 mAs), we first measured the noise intensity 

introduced in images with lower doses by scanning a Gammex 467 CT 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/branches
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phantom (Middleton, WI, USA) using a Philips Brilliance Big Bore  CT at 

two dose levels (400 mAs and 50 mAs) [29]. The signal-to-noise ratio (SNR) 

of the real phantom dataset was 19.7 dB (95%CI [17.8, 21.6]). We thus 

estimated that a σ value of 0.0035 best estimated the noise in 50 mAs CT 

images when generated from 400 mAs images. The SNR in the simulated 

low-noise images was 18.3 (95%CI, [16.9, 20.1]) dB, close to the real value. 

To assess the reproducibility of radiomic features with noise of different 

intensities, we added stronger noise (25 times noise power) by setting σ to 

0.0068 to mimic CT images with stronger noise (referred to as simulated 

high-noise images hereafter). The SNR in the simulated high-noise images 

had thus reduced to 6.0 (95%CI, [5.9,6.1]) dB. Additionally, extraneous 

noise introduced by the Radon transform and inverse Radon transform was 

filtered from the simulated images. A comparison of noise in simulated 

images and in real phantom scans is shown in Figure 3-3, the intensity of 

noise in real phantom is 17.1 dB and average noise power spectra density 

within whole image is 45.8 W/Hz. The intensity of noise in simulated low-

noise images is 19.4 dB and average noise power spectra density within 

whole image is 3.6 W/Hz, intensity of noise in simulated high-noise images 

is 6.1 dB and average noise power spectra density within whole image is 6.0 

W/Hz. 

We used 40 subjects from LUNG 1 (4260 images in total) for training in all 

three denoising models and then 117 subjects from LUNG 1 for testing. 

Training was only based on paired low dose (high-noise) and full dose 

images for all models. Denoising for the low-noise images was performed 

using the trained models without any additional retraining.  
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Figure 3-3. A comparison of noise in simulated images and in a real 

phantom image. (a) real phantom image; (b) simulated low-noise image; 

(c) simulated high-noise image. 

To test the performance of our models in denoising real low dose CTs, we 

used two additional datasets. First, a collection of phantoms CTs were 

scanned at different exposure levels, as in [29]. Second, we used the 

Reference Image Database to Evaluate Therapy Response (RIDER) 

collection, a collection of same-day repeat CT scans collected to assess the 

variability of tumor measurements [40]. This dataset comprised paired CT 

scans for 32 NSCLC patients with corresponding gross tumor volume 

annotations. These CT images had been scanned at low doses (7 to 13 mAs), 

making it suitable tests for our denoising experiment. 

Calculation of Radiomic Features 

Radiomics features from images in DICOM format were extracted using the 

open source O-RAW extension [41] to PyRadiomics [42]. Radiomic features 

can be divided into three classes – shape features, intensity histogram (first-

order) features and textural (Haralick) features. In our experiments, the ROI 

masks for calculating radiomic features were not affected by denoising, 

therefore shape features were excluded from further analysis. Finally, 90 
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radiomic features (listed in Supplementary Table 2, supplementary materials 

are available at https://gitlab. com/UM − CDS/low − dose − ct −

denoising https://gitlab.com/UM-CDS/low-dose-ct-denoising) were 

included for our analyses. We followed the recommendations of the Image 

Biomarker Standardization Initiative (IBSI). The IBSI checklist can be 

found in Supplementary Table 3. 

Experiments 

Experiments were executed in a virtual Amazon Elastic Compute instance 

(G3 Graphics Accelerated Instance with Tesla M60 GPU, 30.5GB of 

memory and 4 CPUs). 

We executed three kinds of comparisons of radiomics feature reproducibility, 

comparing: (i) denoising of CT images using different types of generative 

models (EDN, CGAN) and one traditional denoising algorithm (non-local 

means), (ii) performance for different numbers of training epochs (25, 50, 

75 and 100) and (iii) performance for different noise intensities (low and 

high noise images. We compared feature reproducibility by calculating the 

correlation of each radiomic feature between each full dose CT image with 

its a corresponding noise-added then post-denoised CT. 

To assess the impact of denoising on real low dose CT scans using the 

models trained above on LUNG 1, we ran two additional experiments. First, 

we used the trained models to denoise real low dose CT scans of phantoms 

scanned at 50 mAs and then compared the difference between low and full 

dose CT to the difference between denoised and full dose CT. Second, we 

assessed the impact of denoising on the test-retest reproducibility of 

radiomic features using the aforementioned RIDER dataset. Finally, we 

https://gitlab.com/UM-CDS/low-dose-ct-denoising
https://gitlab.com/UM-CDS/low-dose-ct-denoising
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compared the test-retest reliability of radiomic features in original versus 

denoised CT scans by calculating the correlation between the CT scan pairs 

for each radiomic feature. 

Statistical Analysis  

Correlation was defined as the concordance correlation coefficient (CCC) 

[43]. We measured the difference between the original full dose CT images 

and denoised images using Root Mean Square Error (RMSE) and content 

loss [31]. Content loss was calculated based on a pretrained VGG-16 [32]. 

The definition of RMSE is shown in  

 𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑀
𝑖=1  Equation 3-2 

where 𝑦𝑖 and 𝑦̂𝑖  represent the image value in position 𝑖 for original full dose 

CT and denoised CT, respectively. Image intensities 𝑦  and 𝑦̂  were 

normalized to 0-1 before calculating RMSE. 𝑀 represents the total number 

of pixels in an image and it is 262144 (512 x 512) in our case. 

The flowchart summarizing our study methodology is shown in Figure 3-4. 

Results 

Training took 8 hours for the EDN model and 20 hours for the CGAN model. 

The loss function (cross entropy loss) curves of EDN and CGAN as a 

function of training epochs is shown in Figure 3-5, showing similar 

convergence. The trained models were used to generate denoised CT scans 

of the test set. An example of an original, low-noise and post-denoising CT 

scan is shown in Figure 3-6. A corresponding figure for high-noise level 

images is given in Supplementary Figure 1. 
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Figure 3-4. Flowchart of methods. *Non-local means algorithm applied 

only on The Rest of High-noise CTs and Low-noise CTs datasets. 

Following the classification in [8], the reproducibility of a feature was 

deemed good, medium or poor when CCC≤0.85, 0.65≤CCC<0.85 and 

CCC<0.65, respectively. Table 3-1 shows the RMSE, content loss and ratio 

of poor-, medium-, and highly-reproducibility radiomic features. We 

summarized the reproducibility of radiomic features in low-noise images 

and their denoised counterparts using a heatmap in Figure 3-7 (a 

corresponding figure for high-noise images is shown in Supplementary 

Figure 2, the CCCs for each feature in different models can be found in 

Supplementary Tables 4-5). 
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Figure 3-5. Loss function (cross entropy loss) curves of encoder-decoder 

network and CGAN along with different training epochs 

 

Figure 3-6. Example of low dose CT denoising. (a-1) The original full dose 

CT image; (b-1) Low-noise image; (c-1) Image denoised using non-local 

means; (d-1) Image denoised by encoder-decoder network (Training at 25 

epochs); (e-1) Image denoised by CGAN; (a-2) to (e-2) Zoomed ROIs for 
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(a-1) to (e-1). We regard the higher noise in (d-2) by comparing with (b-2) 

as a coincidence. 

 

Figure 3-7. Heatmap of radiomic features’ reproducibility based on high-

noise/denoised images. *1 represents CCC of radiomic features calculated 

based on high-noise images; 2-5 represent CCC of radiomic features 

calculated based on denoised images by using CGAN when network 

trained at 25, 50, 75,100 epochs; 6-9 represent CCC of radiomic features 

calculated based on denoised images by using encoder-decoder network 

when network trained for 25, 50, 75,100 epochs respectively; 10 represent 

CCC of radiomic features calculated based on denoised images by using 

non-local means algorithm. 
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Table 3-1. Summary of RMSE, content loss and distribution of CCCs of radiomic features 

Distribution 

Models 
RMSE Content loss CCCs<0.65 

0.65≤CCCs<0.

85 
CCCs≥0.85 

Low-noise Images 

Without denoising 0.0225 0.0706 

0/17(0%)* 3/17(18%) 14/17(82%) 

9/73(12%)** 17/73(24%) 47/73(64%) 

9/90(10%)*** 20/90(22%) 61/90(68%) 

Non-Local Means 0.0993 0.3280 

5/17(29%) 8/17(47%) 4/17(24%) 

48/73(66%) 21/73(29%) 4/73(5%) 

53/90(59%) 29/90(32%) 8/90(9%) 

Encoder-decoder 0.0173 0.0427 

0/17(0%) 1/17(6%) 16/17(94%) 

0/73(0%) 16/73(22%) 57/73(78%) 

0/90(0%) 17/90(19%) 73/90(81%) 

CGAN 0.0143 0.0290 

0/17(0%) 0/17(0%) 17/17(100%) 

3/73(4%) 15/73(21%) 55/73(75%) 

3/90(3%) 15/90(17%) 72/90(80%) 

High-noise Images 

Without denoising 0.0237 0.0781 5/17(29%) 1/17(6%) 11/17(65%) 
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 27/73(37%) 20/73(27%) 26/73(36%) 

32/90(36%) 21/90(23%) 37/90(41%) 

Non-Local Means 

 
0.1095 0.3941 

6/17(35%) 7/17(41%) 4/17(24%) 

52/73(71%) 17/73(23%) 4/73(6%) 

58/90(64%) 24/90(27%) 8/90(9%) 

Encoder-decoder 

 
0.0175 0.0443 

0/17(0%) 1/17(6%) 16/17(94%) 

4/73(5%) 13/73(18%) 56/73(77%) 

4/90(4%) 14/90(16%) 72/90(80%) 

CGAN 

 
0.0146 0.0305 

0/17(0%) 1/17(6%) 16/17(94%) 

0/73(0%) 13/73(18%) 60/73(82%) 

0/90(0%) 14/90(16%) 76/90(84%) 

* represents the summary of fist order features; ** represents the summary of textural features; *** represents the summary of all 

features. 
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Effect of Different Models 

As shown in Table 1, the baseline RMSE and content loss of high-noise and 

low-noise images (prior to denoising) were 0.0237(RMSE)/0.0781(content 

loss) and 0.0225/0.0706, respectively. The RMSE and content loss 

decreased to 0.0175/0.0443 for the high-noise images and 0.0173/0.0427 for 

low-noise images, respectively, by using EDN denoising. In comparison, 

RMSE and content loss were decreased even further to 0.0146/0.0305 and 

0.0143/0.0290 using CGAN denoising. 

As shown in Figure 3-8, the baseline mean CCC of radiomics in high-noise 

and low-noise images were 0.681 [95%CI, (0.617,0.745)] and 0.867 [95%CI, 

(0.833,0.901)], respectively. By comparison, the mean CCC for denoised 

images using the EDN and the CGAN (both trained for 100 epochs) were 

significantly improved to about 0.92 [95%CI, (0.909,0.935)] for high-noise 

as well as low-noise images. 

In regards to a traditional denoising method, the RMSE and content loss 

increased to 0.1095/0.3941 and 0.0993/0.3280 when using the non-local 

means algorithm. Likewise, the mean CCC of radiomics in images denoised 

using non-local means were decreased - 0.525 [95%CI, (0.474, 0.576)] and 

0.555 [95%CI, (0.507, 0.604)] - for high-noise and low-noise images, 

respectively. 

A cumulative distribution function of CCCs for different models when 

trained for 100 epochs is shown in Figure 3-8. The EDN and the CGAN both 

improved the overall reproducibility of radiomic features significantly, 

especially in the high-noise images. Non-local means algorithm was able to 

remove noise from images as we can see in Figure 3-6 (c-1), however it also 
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led to detail loss, as shown in Figure 3-6 (c-2). This is a well-known 

compromise of denoising referred to as “smoothing” in literature [5]. In 

other words, smoothing due to a specific low-pass noise filter in the 

traditional method caused a deterioration of radiomics reproducibility when 

measured by its CCC (Wilcoxon signed-rank test, p-value <0.01). 

 

Figure 3-8. Cumulative distribution function of radiomic features’ CCCs 

on images denoised using different models: (a) low-noise images; (b) high-

noise images. The plots show the proportion of radiomic features with a 

CCC higher than x, across all possible values of the CCC (horizontal axis). 
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For example, a point at (0.8, 0.7) implies that 70% of the radiomic features 

have a CCC higher than 0.8. 

Effect of Different Numbers of Training Epochs 

An example of original, noisy and denoised CT scan after different training 

epochs by EDN and CGAN is shown in Figure 3-9. A cumulative 

distribution function of the CCCs of radiomic features on images denoised 

with the CGAN trained for different numbers of epochs is shown in Figure 

3-10. 
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Figure 3-9. An example of an original, noisy and denoised CT scan at 

different training epochs by using the encoder-decoder network and the 

CGAN. As we can see figures (b-4) to (e-4), the RMSE and content loss of 

denoised images is higher in this particular case than the original low-noise 

images. 

 

Figure 3-10. Cumulative distribution function of CCCs for image denoised 

by CGAN trained for different numbers of epochs. (a) Cumulative 

distribution function of CCCs based on denoised low-noise by using 

CGAN trained for different numbers of epochs; (b) Cumulative 
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distribution function of CCCs based on denoised high-noise by using 

CGAN trained for different numbers of epochs. 

This indicated the best results in low-noise images were achieved when the 

CGAN was trained for 25 epochs. However, there was no significant 

difference in high-noise images. This same observation is holds for the EDN 

(Supplementary Figure 3), where the results seemed poorest when trained 

for 50 epochs. We speculate that this dip was an artefact of training and 

model convergence, rather than any meaningful finding. Table 3-2 shows 

the RMSE, content loss and proportion of poor, medium, and good 

reproducibility radiomic features denoised with CGAN, as a function of 

training epochs. (A corresponding table for the EDN is in Supplementary 

Table 6). The RMSE and content loss in the whole dataset for images 

denoised using CGANs trained for different numbers of epochs are also 

shown in Table 3-2. 

Table 3-2. RMSE, content loss and ratio of poor, medium, and good 

reproducibility radiomic features for images denoised by the CGAN 

trained for different numbers of epochs 

Training length 

Noisy images 

25 

Epochs 
50 Epochs 75 Epochs 

100 

Epochs 

Low-noise Images 

RMSE 0.0148 0.0144 0.0142 0.0143 

Content loss 0.0295 0.0290 0.0276 0.0290 

CCCs ≥ 0.85 90% 81% 78% 80% 

0.65≤CCCs<0.85 10% 19% 20% 17% 
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CCCs<0.65 0% 0% 2% 3% 

High-noise Images 

RMSE 0.0150 0.0148 0.0144 0.0146 

Content loss 0.0309 0.0312 0.0291 0.0305 

CCCs > 0.85 80% 79% 83% 84% 

0.65≤CCCs<0.85 20% 20% 17% 16% 

CCCs<0.65 0% 1% 0% 0% 

Effect of Different Noise Intensities 

As mentioned in Methods Section, the models were not retrained for 

denoising low-noise images. Figure 3-11 shows the cumulative distribution 

functions of CCCs of radiomic features extracted from images to which 

different levels of noise intensity had been applied. We compared the CCC 

distributions of radiomic features calculated on images denoised from high-

noise images with those of images denoised from low-noise images using 

the Wilcoxon signed-rank test. The p-value for the CGAN and the EDN were 

0.671 and 0.109, respectively, implying no significant differences. That is, 

our results show CGANs and EDNs trained to denoise high-noise images 

can also be applied to denoise images with variable levels of noise with 

comparable performance. A single well-trained model can be used to 

improve radiomics reproducibility in images with different levels of noise, 

and especially when the imaging dose is lower than 50 mAs. 
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Figure 3-11. Cumulative distribution functions of CCCs for image noised 

with different intensities. (a) Cumulative distribution functions of CCCs 

for image noised with different intensities (Encoder-decoder network); (b) 

Cumulative distribution functions of CCCs for image noised with different 

intensities (CGAN). 

Effect in real low dose CT scans  

The RMSEs of denoised versus full dose CT scans of phantoms using the 

EDN and CGAN were 0.0182 and 0.0140 respectively, which was better 

than 0.0231 in the original low dose CTs. The content loss in CT scans 
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denoised using EDN and CGAN was also improved - 0.0433 and 0.0289, 

respectively - compared to 0.0702 in the original low dose CTs. 

The results in Table 3-3 show that denoising using the EDN and the CGAN 

improved the mean CCCs of radiomic features in the RIDER dataset from 

0.89 [95%CI, (0.881, 0.914)] to around 0.94 [95%CI, (0.927,0.951)], and 

the percentage of features with a CCC higher than 0.85 increased from 80% 

to around 90%. The cumulative distribution of CCCs for radiomic features 

in the RIDER test set is given in Figure 3-12. An example of an original, 

denoised RIDER image using EDN and CGAN is shown in Figure 3-13. 

This scan proved especially troublesome during previous experimentation 

with cycle GANs (not in the scope of this paper), so it was excluded from 

the analysis. 

We may conclude that these generative models can improve the test-retest 

reliability of radiomic features calculated from real low dose CT scans, such 

as the ones in the RIDER dataset. 

Table 3-3. Effect of denoising on test-retest reliability of radiomic features 

Epochs 

CCCs>0.85 

25 Epochs 50 Epochs 75 Epochs 100 Epochs 
Original 

RIDER 

Encoder-

decoder 

78/90(0.92*) 

(0.91,0.94)**  

82/90(0.94) 

(0.92,0.95)   

78/90(0.93) 

(0.91,0.94)   

78/90(0.91) 

(0.88,0.93)   72/90(0.90) 

(0.88,0.91)   

CGAN 

81/90(0.93) 

(0.91,0.95)   

81/90(0.92) 

(0.90,0.93)   

85/90(0.94) 

(0.93,0.95)   

83/90(0.93) 

(0.91,0.94)   
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*Mean CCCs of radiomic features, ** Mean 95% confidence intervals of 

CCCs. 

 

Figure 3-12. Cumulative distribution functions of CCCs for original and 

denoised CT scans in the RIDER dataset (a) using a CGAN trained for 

different numbers of epochs; (b) using an encoder-decoder network trained 

for different numbers of epochs 
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Figure 3-13. Example of denoised image from the RIDER dataset. (a-1) 

Original image; (b-1) Image denoised by EDN (100 epochs); (c-1) Image 

denoised by CGAN (100 epochs); (a-2) to (c-2) Zoomed ROIs for (a-1) to 

(c-1). 

Discussion 

Our objective was to test two different deep learning generative models, 

EDN and CGAN, to improve the SNR in CT images and explore its effect 

after denoising on increasing radiomic features reproducibility. The overall 

results of our experiments show that an equally good performance, in terms 

of reducing RMSE and content loss, as well as increasing the average CCC 

of radiomic features, was obtained by the CGAN and the EDN. However, 

the poor performance of the non-local means algorithm likely stems from 

the reduced ability of the traditional algorithm to keep fine image details 
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during denoising, relative to CGANs and EDNs, which is the point made in 

Figure 3-6. 

We chose the CCC as our metric for reproducibility rather than the intraclass 

correlation coefficient (ICC) [46] because it is well suited to paired before-

and-after values, and it relies on fewer assumptions than the ICC [47]. As a 

sanity check, we also calculated ICCs for a subset of these experiments and 

found that they were equal to their respective CCCs up to the second decimal 

place. Therefore, we considered the additional reporting of ICCs to be of 

limited added value. 

The non-local means algorithm showed poorer relative performance against 

EDN and CGAN in both aspects of noise removal and content loss, as can 

be clearly seen by CCC of radiomics feature subgroups in Table 3-1 and also 

by visual inspection in Figure 3-6. The non-local means method appears to 

have moderate performance in maintaining first order features’ 

reproducibility. We speculate, however, that it is the content loss (i.e. 

aforementioned “smoothing” phenomenon, resulting in loss of fine details 

from the image) that is associated with significantly worse reproducibility 

among the subset of textural features, when using the non-local means 

algorithm. The lack of reproducibility among textural features due to the 

non-local means algorithm is also clearly apparent when comparing column 

10 in the heatmap (Figure 3-7) with the other columns 2-9. 

Among the two generative models, CGAN showed slightly better 

performance than EDN in terms of removing random noise and retaining 

image details, but in terms of radiomics reproducibility both had similar 

outcomes. One of the possible reasons for this might be that radiomics 
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features are no longer sensitive to small differences in noise or detail left 

behind after adequate denoising [5]. 

The improvement in feature reproducibility after denoising of low dose CT 

scans (<=50 mAs) has been demonstrated above. However, it is still worth 

testing if our generative models can perform equally well in a wider range 

of scanners and imaging conditions. The results from the low-noise images 

suggest that the denoising models generalize to images with different noise 

intensity, but greater variation in the scanning and reconstruction setting are 

needed to establish how generalizable this is. If so, our models might 

significantly reduce application barriers for clinicians and radiomics 

researcher. 

The main limitation of this study is that training data were not actually real 

paired low/full dose CT images taken of the same human subjects. There is 

the obvious difficulty of justifying and collecting such paired images in a 

practical clinical setting. Overcoming these practical constraints with 

simulated noise, we were able to show in our experiments that denoising did 

have a beneficial impact on real low dose (RIDER) CT scans in terms of 

radiomics reproducibility. Further, we did not show a direct benefit of 

reproducibility for any clinical application of radiomics, such as improved 

performance of a prediction model. This was beyond the scope of this article, 

but we argue that better reproducibility of radiomic features in itself is likely 

to improve external validity, in general, for any potential application of 

radiomics.  

We expended only limited time on fine-tuning and exhaustive testing of 

hyperparameters of the generative models. We used the same 
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hyperparameters and training strategies for CGAN used in the original 

setting pix2pix [33]. The results shown in our experiments might not be the 

best possible results achievable with these models, especially for the CGAN, 

but nonetheless we demonstrated the concept of improving radiomics 

feature reproducibility. 

The loss functions used to train the generative models might not have been 

the most optimal for radiomics feature reproducibility either, however we 

did try to improve feature reproducibility independently by minimising 

RMSE and content loss. Choice of loss functions can significantly affect the 

convergence of the network, but we did not fully investigate alternative loss 

functions for convergence. Other than training curves, no additional 

measures were implemented here to guarantee the convergence of the 

networks. 

We transformed DICOM images to PNG images to use them as the input to 

the networks. The transformation will result in minimal information loss due 

to numerical rounding errors, but we do not believe this to have had a major 

detrimental effect. All of our training data originated from the same single 

clinic, though the RIDER test images were obtained from a different hospital. 

The robustness and generalizability of our models needs to be extensively 

tested using data from multiple centers.  

Lastly, it may be possible to select other quantitative metrics to evaluate the 

goodness of the generative model-based approaches, however only RMSE, 

content loss and CCC were used for this article. This may admit the 

possibility of apparently worse image quality after denoising when using an 

EDN, as shown in Figure 3-9. 
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Future work might improve the reproducibility of radiomics features even 

further. For example, the mask used to calculate radiomic features was 

drawn by a clinician on full dose CT images. However, the masks might 

have been different if they had been drawn based on noisy images, such as 

low dose CT scans. Therefore, a noise-insensitive tumor segmentation 

algorithm could potentially improve low dose CT radiomic feature 

calculation. Moreover, we inserted Gaussian noise into the sinogram for our 

study, but the noise distribution in real low dose CT images might not 

exactly be Gaussian. This could lead to an overestimation of the 

performance of our models. Therefore, further studies using real data are 

needed. 
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Conclusions 

In this article, we compared two different deep-learning generative models 

for image denoising – an EDN and a CGAN – and evaluated its utility for 

improving radiomics feature reproducibility (assessed by the CCC metric) 

in noisy images such as low dose CT scans. We compared their performance 

to a well-established non-deep learning based denoising method – the non-

local means algorithm. We added noise at two intensities to real full dose 

CT images to simulate different kinds of low-dose CT images. All models 

were trained using high-noise images, then high and low-noise images were 

denoised using these models for validation, without any retraining. The 

results show that a non-local means algorithm for denoising may not be 

suitable for improving reproducibility of radiomic features. EDNs and 

CGANs do indeed improve the reproducibility of radiomics features in post-

denoised CT, and both generative methods were about equivalent in terms 

of noise removal and detail retention. In addition, the results from low-noise 

images were not significantly different to those of high-noise images. These 

results imply that images with varying levels of noise can be denoised using 

our trained models to potentially improve the reproducibility of radiomic 

features. To the authors’ best knowledge, this article is the first to show that 

improvement in the reproducibility of radiomics features is feasible based 

on denoising low-dose CT images. 

Appendix 

Support materials of this Chapter can be found in this link.  

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/supplementary_materials
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Abstract 

Background: Early diagnosis of lung cancer is a key intervention for the 

treatment of lung cancer in which computer aided diagnosis (CAD) can play 

a crucial role. Most published CAD methods perform lung cancer diagnosis 

by classifying each lung nodule in isolation. However, this does not reflect 

clinical practice, where clinicians diagnose a patient based on a set of images 

of nodules, instead of looking at one nodule at a time. Besides, the low 

interpretability of the output provided by these methods presents an 

important barrier for their adoption.  

Method: In this article, we treat lung cancer diagnosis as a multiple instance 

learning (MIL) problem, which better reflects the diagnosis process in the 

clinical setting and provides higher interpretability of the output. We 

selected radiomics as the source of input features and deep attention-based 

MIL as the classification algorithm. The attention mechanism provides 

higher interpretability by estimating the importance of each instance in the 

set for the final diagnosis. In order to improve the model’s performance in a 

small imbalanced dataset, we propose a new bag simulation method for MIL.  

Results and Conclusion: The results show that our method can achieve a 

mean accuracy of 0.807 with a standard error of the mean (SEM) of 0.069, 

a recall of 0.870 (SEM 0.061), a positive predictive value of 0.928 (SEM 

0.078), a negative predictive value of 0.591 (SEM 0.155) and an area under 

the curve (AUC) of 0.842 (SEM 0.074), outperforming other MIL methods. 

Additional experiments show that the proposed oversampling strategy 

significantly improves the model’s performance. In addition, our 

experiments show that our method provides a good indication of the 
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importance of each nodule in determining the diagnosis, which combined 

with the well-defined radiomic features, make the results more interpretable 

and acceptable for doctors and patients.  

Keyword: Lung Cancer diagnosis; Multiple Instance Learning; Attention 

Mechanism; Radiomics 
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Introduction 

According to the statistics from the World Health Organization (WHO), 

lung cancer is the most frequently diagnosed malignant carcinoma and the 

leading cause of cancer death worldwide, accounting for an estimated 2.09 

million deaths in 2018 [1][2]. Early diagnosis and treatment can reduce a 

lung cancer patient’s mortality significantly. A plausible method for early 

lung cancer diagnosis is the routine use of low dose computed tomography 

(CT) scans [3]. To date, radiologists typically need to visually inspect CT 

scans slice by slice, which is costly and time-consuming as well as 

susceptible to human error [4][5]. Computer aided diagnosis (CAD) for 

rapid early lung nodules classification based on low-dose CT imaging has 

therefore attracted much attention from researchers during the last decades 

[6][7].  

The development of CAD for lung nodules classification has reached new 

peaks in last decade mainly due to breakthroughs in deep learning neural 

networks [8] and its application to a wide range of medical image analysis 

tasks. Several deep learning-based lung nodule classification methods have 

been proposed in recent years, with steadily improving state-of-art 

performance. Shen et al. [9] developed a multi-scale convolutional neural 

network (CNN) to extract features (referred to as ‘deep features’ [10] in the 

literature) then applied a supervised random forest classifier to the deep 

features, reporting an accuracy of 86%. Xie et al. [11] combined handcrafted 

features with deep features to classify each nodule as either benign or 

malignant, achieving an AUC of 0.96. Alakwaa et al. [12] combined the 

LUNA16 [13] dataset with a subset of the National Lung Screening Trial 

(NLST) [14], then used a pre-trained U-Net to segment potential nodules 
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from a CT scan automatically. The segmented nodules were passed to a 3D 

CNN to detect early-stage lung cancer, achieving an AUC of 0.83 in a 

randomly-split test cohort from the abovementioned data. Ardila et al. [15] 

developed an end-to-end set of 3D CNN modules to compute the overall risk 

of lung malignancy based on autodetection of nodules, using the full-size 

publicly available NLST dataset. In a retrospective reader study, their model 

outperformed six experienced radiologists with absolute reductions of 11% 

and 5% in false positives and false negatives, respectively. 

The need for transparency, interpretability and explainability in such 

computer-aided diagnostic recommendations will grow to become 

increasingly prominent in the immediate future. A crucial piece of law, the 

General Data Protection Regulation (GDPR), governs the rights of European 

Union (EU) citizens as human data subjects and addresses processing by 

automated means for decision-making anywhere in the world if it concerns 

an EU individual. Specifically, the GDPR enshrines the right of an 

individual to receive “meaningful information about the logic involved” in 

an automated decision concerning them, and on that basis to either legally 

challenge the decision, or exercise conscientious objection to the use of an 

automated means for deriving the decision [16]. 

While definition of “meaningful” is open for debate, it is clearly helpful to 

be able to point at specific regions of interest (ROIs) that were strongly 

triggering for the diagnostic recommendation, along with related features of 

lung cancer and non-lung cancer cases. In this way, a human radiologist can 

review the information in depth, and either confirm or over-rule the 

recommendations of an automated system. Irrespective of a right to an 

explanation, a computerized diagnostic support system with high 
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transparency and high interpretability would be immensely valuable in 

clinical practice. 

For automated diagnosis of lung cancer, a deep learning-based system can 

be applied in two levels: at nodule level, to identify potential malignant 

nodule(s) for further biopsy and performing diagnosis at patient level. 

Generally speaking, nodule classification methods need a label for each 

nodule to be able to train a model [9][11]. However, labelling each nodule 

is more time-consuming and expensive than having a label for each patient, 

which is usually already available in hospital records. In this study we focus 

on deep learning methods for lung cancer diagnosis that can make use of the 

existing data to develop a lung cancer CAD system that classifies patients 

based on multiple suspected nodules in the entire CT series without the need 

to assign a label to each nodule (i.e. each instance), and at the same time 

provide high visibility of the triggering features of its recommendation. 

Multiple instance learning (MIL) with attention mechanism [17][19] fits this 

need well. In MIL, the nodules are grouped into ‘bags of instances’ 

(assuming multiple nodules in one CT examination of the chest area). The 

task is hence to determine the diagnosis for the subject as a whole. Only the 

subject-level diagnoses (i.e. the bag labels) are needed, but not individual 

labels of every nodule found in the subject [20]. This approach is thus more 

amenable to real-world data mining in lung cancer, since the subject level 

diagnosis is much more widely available than annotations on each nodule. 

Research on MIL problems has progressed along instance-level versus 

embedding-level solutions [21], with the latter seeming to perform better at 

subject-level classification [22]. Widely-used embedding approaches 

include MI-SVM [23], mi-Graph [24], miVLAD [25] and MI-Net [25], but 
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the shortcoming of these is the lack of transparency of triggering instance(s). 

An attention-based deep MIL [21][33] has been recently introduced, that 

allows a deep learning model to estimate the contribution of each instance 

to the predicted subject label, using the well-established attention 

mechanism [26]. 

The objective of this work was to develop a lung cancer classification model 

at the subject (patient) level from multiple examined nodules, without the 

need to have specific expert findings reported at the level of each individual 

nodule. An MIL method with an additional deep attention mechanism was 

used to help draw an expert clinician’s eye towards the individual nodules 

that were strongly triggering for the model’s diagnostic recommendation. 

We propose that this will be important by way of offering better 

interpretability and the possibility of human expert verification of the 

internal logic of the algorithm. A selection of commonly-used hand-crafted 

radiomics features was used as a source of image features, and we also 

compared a number of alternative MIL methods. We have re-used an 

existing open access data collection for training and cross-validation. Source 

code will open access for public at https://gitlab.com/UM-CDS/combine-

mil-and-radiomics-for-lung-screening) and additional details of the system 

architecture will be given in Supplementary Materials. 

Methods 

Dataset 

The primary data source of data is an open access collection from the Lung 

Image Database Consortium (LIDC-IDRI) [31], accessed at The Cancer 

Imaging Archive (TCIA) during May 2020 [32] under a Creative Commons 

https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening
https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening
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Attribution Non-Commercial 3.0 Unported (CC BY-NC) license. The 

details of subjects in LIDC-IDRI have been provided elsewhere [31], but 

briefly: the collection comprises 1018 clinical chest CT examinations from 

seven disjoint institutions. Radiologists working independently entered 

7371 annotations, of which there were 2669 consensus nodules. We 

excluded subjects with unreported or unknown diagnosis, and excluded 

nodules below 3mm in diameter according to current diagnosis protocols 

[34][35]. This resulted in 110 unique subjects with a total of 310 nodules 

eligible for consideration. Binary masks for the nodules were provided in 

the data collection as an XML file. Numbers of subjects and nodules 

excluded, along with reason, are provided in Figure 4-1 below. From the 

summary of diagnostic findings in Table 4-1, we note that the majority of 

subjects and lung nodules in the dataset are positive for lung cancer; 75% 

and 77%, respectively. Index of available patients for experiments in LIDC-

IDRI can be found in Supplementary Table 1. 

Table 4-1 summarizes the radiological findings available in the selected 

subset with definitive subject-level diagnosis and nodule-level classification. 
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Figure 4-1. Sample selection flowchart describing the number of subjects 

and the number of nodules selected for this analysis. 

Table 4-1. Number of patients and nodules according to ground truth 

diagnosis in the dataset 

 Lung cancer Not lung 

cancer 

Total 

Numbers of (% of total) 

patients 

82 (75%) 28 (25%) 110 

Numbers of (% of total) 

nodules 

239 (77%) 71 (23%) 310 

Image acquisition settings 

The LIDC-IDRI contains a heterogeneous set of CT of subjects from 

different institutions. We used axial CT images with dimension of 512x512 

pixels. Radiation exposure of selected samples ranged from 3 milliampere-

seconds (mAs) to 534 mAs (median: 147.5 mAs), and reconstructed slice 

thicknesses ranging from 0.6 mm to 5.0 mm (median: 2.0 mm).  

Feature extraction 

Radiomics features were extracted using an open-source Python library 

pyRadiomics (v2.2.0) [36]. Images were resampled to 2 mm isotropic voxels 

prior to feature extraction. A total of 103 features were extracted. These 

consisted of 13 morphology (shape) features, 17 intensity-histogram (first-

order) features and 73 textural (Haralick) features. Binary masks for the 

GTV were generated from the XML file in the LIDC-IDRI collection, using 

an open-access library pylidc [37]. DICOM CT images were converted to 

3D images by using SimpleITK (v1.2.4) [38] for pyRadiomics feature 
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extraction. The mathematical definition of each feature has been given in the 

online documentation. Our pyRadiomics extraction settings (from the 

params.yaml file) have been included in Supplementary Table 2. All features 

included in this analysis have been listed in Supplementary Table 3. 

Classifier 

We used an attention-based MIL for the lung cancer classifier component. 

This consists of two parts that can be trained end-to-end. First, the 

transformation network was implemented as three fully connected neural 

network layers with a dropout rate of 0.5. Additional details about this 

network are in Supplementary Table 4. To fix the dimension of the input 

layer of neurons, the 103 features per nodule were duplicated within the 

same subject until it was the same as the maximum number of nodules per 

subject, which we found to be 12 in this case. More specifically, each nodule 

in the same bag should be duplicated with the same probability. For example, 

if there are 5 nodules in a bag, 3 random nodules need to be duplicates once 

(i.e., appear twice in total) and 2 random nodules need to be duplicated twice 

(appear 3 times in total) in the final fixed feature bags. Therefore, the 

dimension of the input layer should be 103 and one bag consists of 12 

vectors (103 x 12). Feature duplication was performed before model training 

and was also used in model testing. 

Second, the attention-based pooling layer implemented the attention 

mechanism popularized by long short-term memory networks (LSTMs) [39]. 

The attention mechanism is an important strategy that fits encoder input 

sequences into a fixed-length internal representation. The architecture of the 

classifier is illustrated schematically in Figure 4-2. 
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Figure 4-2. Architecture of the Attention-based Deep MIL. Extracted 

radiomics features are used as the input to the transformation network, 

which is then pooled with attention. A fully-connected final layer 

combines the attention-based pooling to give the output probability. 

Addressing class imbalance 

Imbalance in the outcome frequency (i.e. lung cancer versus not lung cancer) 

has been known to affect the classifier, biasing this towards the dominant 

class. Several methods are available to address class imbalance [41] in 

general, and we applied a novel sampling method to address class imbalance 

specifically for MIL. It is assumed that all nodules in non-cancer subjects 

are, by clinical definition, non-cancerous nodules. Synthetic non-cancer 

patients were thus generated by randomly sampling a finite number of 

instances out of all the nodules in an aggregated pool of actual non-cancer 

subjects. On the other hand, synthetic cancer patients could be generated by 

adding a random number of negative instances sampled from the instances 

pool (from both negative and positive bags) to the original positive bags. 

However, we did not simulate cancer patients in our experiments, because 

positive bags were majority in our dataset. This was only done for the 

training set; no class imbalance correction was applied in the testing set. 
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Model development and validation 

All work was executed on a Core i7 8565U CPU with 8GB of RAM. The 

optimizer for network training was stochastic gradient descent (SGD) [42], 

with batch size 1 and the learning rate fixed at 0.0001. The neural network 

was trained for 500 epochs (taking 3-4 minutes) per experiment. 

We performed experiments for the attention-based MIL in comparison with 

other MIL approaches - MI-SVM, mi-graph, miVLAD, MI-Net and a naïve 

MIL algorithm that performs a simple aggregation of the predictions by 

replacing the attention-based MIL pooling with average MIL pooling [20]. 

The optimizer, batch size, learning rate and training epochs were set same 

as attention-based MIL in MI-Net. The setting of hyperparameters in other 

methods were followed as mentioned in original literatures [23][24][25]. 

Same training and testing data were used in every running for all methods. 

Model training was performed on all the available subjects, taking their 

respective diagnosis as the “bag label” and the nodules as the instances. We 

ran 20 repetitions of end-to-end training runs on the hand-crafted features 

with 5-fold cross-validation in each run and there is no oversampling in 

testing dataset. For each repetition of 5-fold cross-validation, samples were 

randomly sorted first and then split into 5 folds, so that each sample was 

used once for testing and 4 times for training in each repetition. We adjusted 

for the lower number of non-cancer diagnoses by generating synthetic non-

cancer patients as described above (section 2.4). Specifically, we 

synthesized 60 additional non-cancer subjects from the initial training 

dataset and added these to the actual 88 training subjects, resulting in a 

training set containing 148 subjects in total. No synthetic re-sampling was 

used for positive lung cancer subjects. We further conducted an additional 
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sensitivity analysis to assess how oversampling to overcome class imbalance 

might have affected the model’s performance by using only the original data 

of 110 subjects. 

The discriminative performance was assessed using the mean and standard 

error of the mean (SEM) of recall, accuracy, positive predictive value (PPV), 

negative predictive value (NPV), respectively. For dichotomization of 

outcome, we used a probability threshold of 0.5 to separate lung cancer from 

non-lung cancer. The area under the receiver operating characteristic curve 

(AUC) was computed for each model, the definition of AUC can be found 

in [43]. Let TP, TN, FP, and FN denote true positive, true negative, false 

positive, and false negative, respectively, then we define recall, accuracy, 

PPV and NPV as: 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
 Equation 4-1 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑅+𝐹𝑁
 Equation 4-2 

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 Equation 4-3 

 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 Equation 4-4 

All statistical analysis was done in Python (version 3.6.1). 

Results 

Figure 4-3 shows the violin plots comparing the results of attention-based 

MIL with (3a) and without (3b) synthetic minority oversampling. The 
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estimated mean (with SEM in the parentheses) for recall, accuracy, PPV, 

NPV and the AUC for the model including the class imbalance correction 

were: 0.870 (SEM 0.061), 0.807 (SEM 0.069), 0.928 (SEM 0.078), 0.591 

(SEM 0.155) and 0.842 (SEM 0.071) respectively. Without the class 

imbalance correction, these values were: 0.889 (SEM 0.061), 0.768 (SEM 

0.059), 0.842 (SEM 0.071), 0.483 (SEM 0.209) and 0.696 (SEM 0.108) 

respectively. The main effect of the minority oversampling was to improve 

accuracy, PPV, NPV and AUC. A representative (from a selected repetition) 

set of AUC curves for the different MIL methods with the same training and 

testing data can be found in Figure 4-4. 

 

Figure 4-3. Violin plot of the experimental results (a) with oversampling 

and (b) without oversampling. 
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Figure 4-4. An example of AUC curves for different methods with same 

training and testing data. An AUC curves for Attention-based MIL, 

Attention-based MIL w/o oversampling, MI-SVM, MI-Net and Naïve 

MIL. 

Table 4-2 summarizes the results of comparing different MIL approaches. 

Attention based MIL without oversampling achieved the best recall, MI-Net 

achieved the best PPV and attention based MIL achieved the best accuracy, 

PPV and AUC. Attention based MIL was better than other methods in PPV 

and AUC significantly (Wilcoxon test, p <0.01), however, attention based 

MIL was worse than best result in recall and NPV (Wilcoxon test, p = 0.02 

and p <0.01 respectively). Moreover, attention based MIL with 

oversampling is better than attention-based MIL without oversampling in all 

metrics significantly except recall (Wilcoxon test, p <0.01 for accuracy, PPV, 

NPV and AUC, p =0.02 for recall). 
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The absence of AUCs for mi-graph and miVLAD is due to our reusing of 

the source code by the LAMDA lab, Nanjing University [44]. Their source 

code for mi-graph and miVLAD outputs only the classification label (not the 

probability) and therefore, the AUCs cannot be calculated. 

In order to determine the level of oversampling, we ran sensitivity analyses. 

We gradually increased the number of included simulated non-cancer 

subjects from 0 to 100 on steps of 20. We ran 20-repeat 5-fold cross-

validation for each experiment. The results of sensitivity analysis are shown 

in Figure 4-5. 

As shown in Figure 4-5, including 60 simulation samples results in good 

performance for all metrics (especially for Recall) with less computation 

compared with other settings with similar performance. 

 

Figure 4-5. Results of sensitivity analysis for different levels of 

oversampling. 
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Given how important batch size is for convolutional neural networks 

training [45], we ran a sensitivity analysis on this parameter. We ran 20-

repeat 5-fold cross-validation analyses with different batch sizes (1, 2, 3 and 

4) for each experiment. The loss curves for model training with different 

batch sizes is shown in Figure 4-6 (a) and the performance of models trained 

with different batch sizes is shown in  Figure 4-6 (b). 

 

Figure 4-6. Results of sensitivity analysis for different batch sizes. (a) Loss 

curves for model training with different batch size; (b) performance of 

models trained with different batch sizes. 

As shown in Figure 4-6, the model trained with a batch size of 1 achieved 

the best performance according to all metrics except AUC (0.842 for batch 

size 1 vs 0.849 for batch size 2) and the loss of all models converged at the 

end of the 500 epochs. Therefore, we set the batch size to 1 in this study. 

Besides model performance, one of the most appealing aspects that we 

selected the attention-based MIL method for, was to indicate the instances 

that might have been strongly influential on the classification. In this case, 

it would be the relative importance of each nodule when predicting the 

subject label as either lung cancer or not lung cancer.  
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A couple of lung cancer examples are shown in Figure 4-7 for two subjects 

in the dataset, LIDC-IDRI-1004 and LIDC-IDRI-1011. Alpha in Figure 4-7 

mean the strength of the attention, value of alpha only meaningful in the 

same patient and it is meaningless by comparing alphas across patients. The 

order of nodules was arranged in random way within same patient. 

The evaluation of the attention mechanism was performed by one of co-

authors -- a radiologist with 3-year experience, who examined some sample 

patients’ weights and agreed with the weighting. In these examples, it is 

clearly discernable from the weights (𝛼2 and 𝛼3 larger than 𝛼0 and 𝛼1) that 

the two rightmost nodules pictured for subject LIDC-IDRI-1004 are much 

more strongly influential in the diagnostic evaluation compared to the two 

leftmost nodules. Similarly, for subject LIDC-IDRI-1011, three of the 

nodules are influential on the subject classification, but the nodule pictured 

rightmost is not influential at all (alpha < 0.01). 

 

Figure 4-7. An example of attention weights for two positive lung cancer 

subjects (LIDC-IDRI-1004 and 1011). 
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Table 4-2. Results of the Attention based Deep MIL approach with class imbalance correction, compared to other MIL methods 

(Attention-based MIL w/o oversampling, MI-SVM, mi-graph, miVLAD and MI-Net) 

Methods 
Attention-

based MIL 

Attention-

based MIL 

w/o 

oversample 

MI-SVM mi-graph miVLAD MI-Net 
Traditional 

MIL 

Recall 0.870±0.061 0.889±0.061 0.756±0.084 0.777±0.048 0.871±0.087 0.835±0.109 0.850±0.099 

Accuracy 0.807±0.069 0.768±0.059 0.703±0.080 0.749±0.055 0.782±0.063 0.727±0.050 0.748±0.065 

PPV 0.928±0.078 0.842±0.071 0.560±0.199 0.772±0.042 0.835±0.059 0.522±0.265 0.835±0.070 

NPV 0.591±0.155 0.483±0.209 0.810±0.080 0.713±0.229 0.675±0.160 0.838±0.069 0.478±0.233 

AUC 0.842±0.071 0.696±0.108 0.625±0.099 -- -- 0.662±0.093 0.681±0.080 
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Discussion 

Our objective was to propose a lung cancer classification at the subject level 

from multiple examined nodules, with an attention mechanism for 

improving the interpretability. The results show that our proposed 

classification achieves good performance compared to other MIL methods 

and that the unique characteristic of the deep attention-based MIL, namely 

attention weights, potentially makes our method more interpretable for 

clinicians. 

To see the effect of minority oversampling to overcome class imbalance, we 

tested the model with and without the oversampling. The results show that 

the oversampling improved the model’s performance significantly in 

accuracy, PPV, NPV and AUC by comparing Attention-based MIL without 

oversampling. However, there are seem some decrease in recall. 

We observed from Figure 4-3 that minority oversampling has a major effect 

on the AUC. In fact, the AUC sinks below 0.5 in some experiments without 

oversampling. This can be explained by the fact that the AUC is more 

sensitive to the classification performance of the model with the minority 

class than either accuracy or recall [40]. 

We proposed a new synthetic subject generation method that can be used to 

overcome class imbalance by oversampling the minority class. We did this 

by sampling from an aggregated pool of nodules from patients with the 

ground truth of “not lung cancer”. To the best of our knowledge, such 

methods have not yet been proposed for MIL. This oversampling technique 

resulted in significant improvements on accuracy, PPV, NPV and AUC. We 
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believe this strategy, which is based on the characteristics of MIL, can be 

used when training any MIL model from a class imbalanced dataset. 

The results show that our method could potentially be applied to automated 

lung cancer diagnosis, subject to further validation and studies in large 

datasets. However, we acknowledge there are some limitations and 

weaknesses in the assumptions we had to make. First, due to the need of a 

mask that delineates the nodules to calculate radiomic features, our method 

would have to be dependent on lung nodule detection and segmentation 

methods such as the ones proposed by Huang et al. [46] and Anirudh et al. 

[47]. This dependence on pre-existing or human expert segmentation is not 

new and is problem that still affects many aspects of medical image analysis 

and supervised machine learning. Related to this is the potential for inter-

observer disagreement about the external outline of the nodule. This 

problem is well known and documented for large and locally advanced lung 

tumors, but with the small nodule volumes involved in this study, we have 

assumed that the inter-observer problem does not strongly affect the 

extracted features. A further question we cannot address in this study is the 

problem of undetected nodules and very small nodules (diameter smaller 

than 3mm) that were omitted, moreover, images were resampled to 2 mm 

isotropic voxels prior to feature extraction, which is possibly also a reason 

why very small nodules are not appropriate. This work has assumed no false 

positives and no false negatives, so we cannot elucidate what happens with 

imperfect nodule detection. 

The performance of our model appears sensitive to sampling effects, in other 

words, the performance of model fluctuates across repeated experiments, as 

shown in Figure 4-3. This is likely a direct consequence of the relatively 
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small sample size of the dataset. Expanding the sample size by including 

small nodules is not immediately helpful because they do not add that many 

subjects and nodules to the sample, whereas hand-crafted features would not 

be stable when taken from very small volumes. The major root of the 

problem appears to be the lack of ground truth and annotated images. 

Related to this fact is that we currently did not find a suitable dataset for 

external, independent validation. Therefore, our results should be interpreted 

as preliminary indication of feasibility, and larger datasets need to be used 

to demonstrate wider generalizability of this work. 

Due to the high fitting ability of neural networks and large epochs during 

training, the model returns 1 or 0 almost all of the time, which means the 

overall model calibration was generally poor [48][49]. Model calibration 

plot is shown in Supplementary Figure 1, and it appears that all MIL 

methods have poor calibration except MI-SVM. 

In addition, we have not explored feature dimensionality reduction and 

applied feature redundancy analysis. This is in part due in part to the 

transformation network that does not require explicit feature selection steps 

prior to MIL pooling. The repeatability and reproducibility of handcrafted 

features are subjects of numerous investigations in radiomics and appears to 

be highly modality specific. This work has not explored the stability of low-

dose CT-derived image features, which tend to have quite a lot of noise 

present [50]. This could affect the performance of our model in an external 

validation, and image harmonization or denoising strategies may be needed 

in future to support general extensibility. 
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Moreover, we were not able to test the performance of the models in an 

external dataset, which would have provided more reliable estimates of the 

models’ potential performance in a different setting. On the other hand, the 

dataset used in this study (LIDC-IDRI), was collected over 10 years ago. 

With new emerging CT technologies and reconstruction methods, it is 

possible that different conclusions would be reached if the proposed method 

is applied to newer images currently being used in clinical practice. Further 

research on this aspect is required. 

Finally, our oversampling strategy is sensitive to the quality of data’s label 

at patient level. More specifically, if labels are incorrect (e.g. if one or two 

of the nodules has been misclassified by error and the subject is hence a false 

negative), the noise will be amplified due to oversampling. 

For future work, an automated nodule detection and segmentation algorithm 

could be attached to this attention-based MIL classifier to fully complete the 

lung cancer diagnosis workflow. Secondly, methods for improving radiomic 

features’ reliability in low dose CT may be necessary for improving model’s 

performance in unseen data. Thirdly, large scale and comprehensive 

evaluation of the attention mechanism is needed in the future to assess its 

reliability and reproducibility. Fourthly, a comparison between the proposed 

method and a traditional deep learning-based image classification algorithm 

would be of special interest. Finally, the proposed model needs to be 

externally validated to assess whether the model suffers from overfitting to 

the training data or whether it is widely generalizable to CT images from 

different scanners. 
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Conclusions 

We treated computer-aided diagnosis of lung cancer as a multiple instance 

learning (MIL) problem, such that the classification as lung cancer or not is 

made at the subject level (i.e. the patient) without relying on classifications 

at the level of individual nodules (i.e. each of suspicious lung nodules). The 

addition of the attention mechanism was used to draw the clinician’s eye 

towards features that were important for triggering the recommended 

diagnosis, with the aim of supporting interpretability and, importantly, 

verification by human experts of the algorithm’s internal logic. We used 

radiomics as a source of interpretable image-derived features, and deep 

attention-based MIL was found to be a superior classifier compared to other 

MIL options with regard to accuracy, NPV and AUC. A novel approach for 

minority oversampling, adapted for MIL problems, has been used to address 

the outcome class imbalance in the LIDC-IDRI dataset. We showed how an 

attention mechanism could be used as an indication of the importance of 

each nodule for triggering the diagnostic recommendation. Cross-validation 

was used to check for model performance, but more data is required to 

provide a robust test of wider generalizability. 

Appendix 

Support materials of this Chapter can be found in this link. 

 

 

  

https://gitlab.com/UM-CDS/combine-mil-and-radiomics-for-lung-screening
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Abstract 

Purpose: Radiomics is an active area of research focusing on high 

throughput feature extraction from medical images with a wide array of 

applications in clinical practice, such as clinical decision support in 

oncology. However, noise in low dose computed tomography (CT) scans 

can impair the accurate extraction of radiomic features. In this article, we 

investigate the possibility of using deep learning generative models to 

improve the performance of radiomics from low dose CTs.  

Methods: We used two datasets of low dose CT scans – NSCLC 

Radiogenomics and LIDC-IDRI – as test datasets for two tasks – pre-

treatment survival prediction and lung cancer diagnosis. We used encoder-

decoder networks and conditional generative adversarial networks (CGANs) 

trained in a previous study as generative models to transform low dose CT 

images into full dose CT images. Radiomic features extracted from the 

original and improved CT scans were used to build two classifiers – a 

support vector machine (SVM) and a deep attention based multiple instance 

learning model – for survival prediction and lung cancer diagnosis 

respectively. Finally, we compared the performance of the models derived 

from the original and improved CT scans. 

Results: Denoising with the encoder-decoder network and the CGAN 

improved the area under the curve (AUC) of survival prediction from 0.52 

to 0.57 (p-value<0.01). On the other hand, the encoder-decoder network and 

the CGAN improved the AUC of lung cancer diagnosis from 0.84 to 0.88 

and 0.89 respectively (p-value<0.01). Finally, there are no statistically 
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significant improvements in AUC using encoder-decoder networks and 

CGAN (p-value=0.34) when networks trained at 75 and 100 epochs.   

Conclusion: Generative models can improve the performance of low dose 

CT-based radiomics in different tasks. Hence, denoising using generative 

models seems to be a necessary pre-processing step for calculating radiomic 

features from low dose CTs.   

Keyword: Radiomics; Generative Models; Image Denoising; Comparative 

Study   
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Introduction 

Recent years have seen a dramatic increase in the applications of artificial 

intelligence in medical imaging [1]. Radiomics, [2] for example, has been 

applied to clinical-decision support in oncology in a range of cancers (lung 

cancers, [3] head and neck cancer, [4] rectal cancer [5]) multiple medical 

imaging modalities (computed tomography (CT), [4] magnetic resonance 

imaging (MRI), [6] and positron emission tomography (PET)), [3] and 

applications, such as deriving prognostic models to measure therapeutic plan 

efficiency [8][9][10]. Radiomics has also garnered attention in the field of 

radiotherapy, where it is known as dosiomics [7]. 

Following the ALARA (As Low As Reasonably Achievable) principle [11], 

low dose CTs has become popular as the preferred imaging method for 

screening and monitoring populations at risk [12]. As a tradeoff of low 

radiation exposure, low dose CTs’ image quality is inferior to that of full 

dose CTs’, due to the higher noise levels present in low dose CTs. Radiomics 

applied to low dose CT has already been shown to improve the accuracy of 

pulmonary nodules analysis for early detection during lung cancer screening 

[13][14]. In addition, different studies have shown the potential of radiomics 

on low dose CT for survival prediction [15][16][17][18]. However, image 

quality and noise impact the repeatability and reproducibility of radiomic 

features [19] as well as their robustness [20]. In other words, radiomic 

features extracted from low dose CTs have lower reliability than the 

counterparts extracted from full dose CTs. Therefore, prediction models or 

computer aided diagnosis systems based on radiomic features from low dose 

CTs will likely be less robust and accurate than those based on radiomic 

features from full dose CT. Improving the performance of radiomics 
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calculated from low dose CT in different tasks and datasets is therefore a 

timely and potentially impactful research topic. 

One approach is to denoise low dose CT scans [21] and to recalculate the 

radiomic features based on the denoised CT. The aim of this article, is to 

answer the question: should we regard denoising as a preprocessing step for 

radiomic feature extraction from low dose CT? Image denoising can be 

regarded as a special case of domain adaptation [22], from low dose CT 

images to full dose style CT images [23]. Many methods have been proposed 

to perform this transformation [24][25], but recently deep learning [26] 

based generative models have garnered special attention and achieved state-

of-art results [27][28] [29]. We will use generative models to denoise low 

dose CT scans and improve the reliability of radiomic features[30][31].  

In addition, we will explore whether more reliable radiomic features result 

in models with better performance using two real applications of radiomics: 

pre-treatment survival prediction [1] and cancer diagnosis [32][33]. The 

cancer diagnosis task will be based on [34], in which lung cancer diagnosis 

was approached as a multiple instance learning (MIL) problem [35] where 

nodules in each CT scan were regarded as instances. The authors used 

radiomic features as the input and deep attention based MIL [36] as the MIL 

problem solver for the sake of interpretability. The authors reported a mean 

precision of 0.807 with a standard error of the mean (SEM) of 0.069, a recall 

of 0.870 (SEM 0.061), and an area under the curve (AUC) of 0.842 (SEM 

0.074) by using this method. 

The most related literature to this article is [37], where the authors trained 

three generative models – encoder-decoder networks [28], conditional 
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generative adversarial networks (GANs) [38] and cycle GANs [39] – using 

full dose CTs and simulated paired high-noise low dose CTs. Finally, they 

showed that radiomic features extracted from low dose CT scans (low-noise 

CT and high-noise CT) denoised by the models had improved 

reproducibility. The main differences between [37] and this article is that: 1) 

we use pre-trained generative models; 2) we use real (not simulated ) low 

dose CTs; and 3) we focus on the improvement in radiomics-based model 

performance instead of feature reproducibility. 

To the authors’ best knowledge, this is the first effort to improve the 

performance of radiomics-based models from features extracted from low 

dose CT scans. Source code, Radiomics features, data for statistical analysis 

and supplementary materials of this article are available online at 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-

/tree/Experimental_Study. 

Methods 

Institutional Review Board approval was not applicable for this study, since 

the primary source of data was an open access collection on The Cancer 

Imaging Archive (National Institutes of Health) [40] and all patients’ 

personal information had been removed from CT scans. This dataset has 

been used for this study in accordance with the Creative Commons 

Attribution-NonCommercial 3.0 Unported (CC BY-NC) conditions. The 

flowchart in Figure 5-1 summarizes our study methodology. 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Experimental_Study
https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Experimental_Study
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Figure 5-1. Flowchart of methods 

Denoising Models’ Development 

Based on [37], we selected two generative models – encoder-decoder 

networks and CGANs – that achieved good performance in improving 

radiomics reproducibility as the experimental models for this study. 

Moreover, we took the same architecture of encoder-decoder network and 

CGANs presented in [37]. 

Training of encoder-decoder networks and CGANs requires paired low dose 

and full dose versions of the same CT scan. Although there is an open access 

dataset containing this kind of scans [41], the exposure of low dose CT scans 

in the dataset is higher - 50 milliampere-seconds (mAs) - than in many low 

dose CT scanning situations. For example, CT scans in the non-small cell 



Generative Models Improve Radiomics: Experimental Study 

Page 130 

 

lung cancer (NSCLC) Radiogenomics dataset were scanned from 1 to 400 

mAs [42] and over half CT images scanned with an exposure lower or equal 

to 5 mAs. Models trained from the dataset described in [41] may have a bad 

performance in much lower CT scans. The noise power of high noise images 

(used to train the models) in [37] is 25 times than that in [41]. For this reason, 

we used trained models from [37] without re-training to denoise low dose 

CT images. The source code and pre-trained models can be found at 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/. 

Data Acquisition 

As mentioned in the Introduction, we will apply pretrained generative 

models to improve the performance of low CT radiomics-based models in 

two tasks: pre-treatment survival prediction and lung cancer diagnosis. For 

this purpose, we chose the NSCLC Radiogenomics dataset [42] for survival 

prediction and the Lung Image Database Consortium image collection 

(LIDC-IDRI) for lung cancer diagnosis [43], because they contain the 

necessary mask of the region of interest (ROI) for calculating the radiomics 

features and the images were scanned with low radiation exposure. 

NSCLC Radiogenomics is a unique radiogenomic dataset from a cohort of 

211 patients with NSCLC [44], from which we used low dose CT images, 

their respective segmentation masks and clinical data for survival prediction. 

The lung image database consortium and image database resource initiative 

(LIDC-IDRI) dataset contains 1018 clinical chest CT scans, along with 157 

patients’ diagnoses. We used the diagnoses and their respective CT scans for 

the lung cancer diagnosis task. Finally, 106 samples of the NSCLC 

Radiogenomics were selected for survival prediction and 110 samples from 

LIDC-IDRI for lung cancer diagnosis. The index of selected samples for 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/
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further investigation can be found in Supplementary Tables 1 and 2. The 

average radiation exposure of selected samples was 38.65 ± 81.97 mAs 

(±=SEM) in NSCLC Radiogenomics and 145.79 ± 174.57 mAs in LIDC-

IDRI. The distributions of radiation exposure for the two datasets are shown 

in Supplementary Figure 1. 

Extraction of Radiomic Features 

Before extracting radiomic features from CT images, Hounsfield Unit (HU) 

value range of CT images were normalized at first. In other words, HU value 

of pixel in CT images larger than 1000 was set as 1000, and then send the 

images to extract features. 

The masks of the ROIs (tumors) are stored in DICOM format in NSCLC 

Radiogenomics whilst the segmentation of each nodule is stored in XML 

file in the LIDC-IDRI dataset. The 3D masks for corresponding ROIs 

(tumors or nodules) were reconstructed from their corresponding files. We 

used pyradiomics [45] (version 2.2.0) to calculate 103 radiomic features for 

further analysis. All features included in the analyses are listed in the 

Supplementary Table 3. 

Radiomics based Models’ Development 

One of the main tasks in the seminal article on radiomics by Aerts et al. [1] 

is survival prediction. For pre-treatment prediction of survival at 4 years, we 

used least squares support vector machines (SVMs) [47] with Radial Basis 

Function (RBF) Kernel as our classifier. SVMs use regularization to prevent 

overfitting when the number of input variables is high [46]. The input 

variables for the classifier were age and the 103 radiomic features extracted 

from the tumor. 
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For lung cancer diagnosis, we used deep attention-based MIL [36] as the 

classifier as shown in paper [34]. The main characteristic of this classifier is 

that it can classify groups of samples (e.g. issue a diagnosis based on a set 

of CT scans from a patient) and reveal the importance of each sample in 

determining the diagnosis. The architecture of the method is shown in 

Supplementary Figure 2. The inputs of the model are the radiomic features 

and the clinical diagnosis (cancer or not) is the output. 

Experiments 

We applied the trained generative models to denoise real low dose CT 

images before extracting the radiomic features. Subsequently, we trained the 

classification models for survival prediction and lung cancer diagnosis using 

radiomic features and we compared their performance with that of models 

trained using radiomic features extracted from low dose CT images. 

All denoising experiments for low dose CT images were executed on a Core 

i7 8565 U CPU with 8GB of RAM based on pre-trained generative models. 

Based on training specifications described in [37], generative models were 

trained 25, 50, 75 and 100 epochs. All four trained models were used for 

denoising. For internal validation, 40 trials of nested cross validation [48] of 

RBF kernel SVM were executed and the number of GroupKFold in each 

trial was set as 5 for survival prediction validation. We adopted the minority 

oversampling strategy described in [49] for lung cancer diagnosis task to 

improve the model’s performance due to our dataset being small and 

imbalanced. 

We assessed the models’ performance calculating their area under the 

receiver-operating characteristics curve (AUC), accuracy and recall (using a 
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probability threshold of 0.5). Finally, we used Student’s t-test, after testing 

the data for normality, to assess the statistical significance of the differences 

in model performance results. 

Results 

An example of an original CT image from the NSCLC Radiogenomics 

dataset and its denoised counterparts are shown in Figure 5-2. 

 

Figure 5-2. Example of low dose CT denoising: (a) original CT Image 

from NSCLC Radiogenomics (R01-003, radiation exposure: 7 mAs); (b) 

image denoised by the CGAN (100 epochs); (c) image denoised by the 

encoder-decoder network (100 epochs); (d) zoomed region of interests 

(ROI) of (a); (e) zoomed ROI of (b); and (f) zoomed ROI of (c) 
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Survival Prediction 

The 4-year survival prediction model based on radiomic features extracted 

from low dose CTs achieved an AUC of 0.524 with a standard error of the 

mean (SEM) of 0.042. On the other hand, the survival prediction models 

based on radiomic features extracted from denoised low dose CTs achieved 

AUC ranging between 0.54 and 0.58. As shown in Table 5-1 and Figure 5-3, 

encoder-decoder networks and CGANs can improve radiomics-based 

models’ performance significantly. The difference between encoder-

decoder network and CGAN was not significant when trained for 75 epochs 

and 100 epochs, similar to what was reported in reference [37]. 

 

Figure 5-3. Experimental results (AUC) of survival prediction task 



 

 

 

P
ag

e 1
3

5
 

 

Table 5-1. Experimental results for 4-year survival prediction 

Training length 

Metrics 

Without 

Denoising 
25 Epochs 50 Epochs 75 Epochs 100 Epochs 

Encoder-decoder network 

AUC 0.525±0.042 0.580±0.049 0.572±0.040 0.554±0.051 0.566±0.044 

p-value * -- <0.01 <0.01 <0.01 <0.01 

CGAN 

AUC -- 0.537±0.045 0.551±0.049 0.538±0.123 0.566±0.053 

p-value -- 0.20 <0.01 0.16 <0.01 

Encoder-decoder network versus CGAN  

p-value ** -- <0.01 0.04 0.15 0.93 

*compared with results from original radiomics; ** comparing encoder-decoder network and CGAN

C
h

ap
ter 5
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Lung Cancer Diagnosis 

As shown in [34], our method can achieve an AUC of 0.842 (SEM 0.074) 

based on radiomic features extracted from the original low dose CT scans 

from the LIDC-IDRI dataset. The AUCs of the classification models based 

on radiomics extracted from denoised images range between 0.84 and 0.89 

as shown in  Table 5-2 and Figure 5-4 (c). Models built using radiomic 

features calculated from denoised images outperformed models developed 

from the original radiomic features in most experiments. Similarly to 

survival prediction, the difference between encoder-decoder network and 

CGAN was not significant when trained for 75 and 100 epochs. 

 

Figure 5-4. Experimental results of lung cancer diagnosis: (a) Accuracy, 

(b) recall and (c) AUC. 

Figure 5-4 (a) and (b) and Table 5-3 show that denoising had a negative 

impact in the accuracy and recall of the lung cancer diagnosis classification 

models, when using a threshold of 0.5. 
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 Table 5-2. The AUCs of different models for lung cancer diagnosis 

Training 

length 

Metrics 

Without 

Denoising 

25 

Epochs 

50 

Epochs 

75 

Epochs 

100 

Epochs 

Encoder-decoder Network 

AUC 0.84±0.07 0.88±0.08 0.84±0.07 0.82±0.07 0.87±0.07 

p-value* -- <0.01 0.86 0.07 0.02 

CGAN 

AUC -- 0.89±0.06 0.86±0.07 0.84±0.09 0.87±0.06 

p-value* -- <0.01 0.06 0.49 0.01 

Differences of results by comparing Encoder-decoder network and 

CGAN 

p-value* -- 0.31 0.07 0.75 0.52 

*compared with results from original radiomics; 

Table 5-3. Accuracy and recall for lung cancer diagnosis 

Training 

length 

Metrics 

0 Epochs 25 Epochs 50 Epochs 75 Epochs 
100 

Epochs 

Encoder-decoder network 

Acc 0.81±0.07 0.82±0.08 0.79±0.06 0.75±0.07 0.80±0.07 

p-value* -- 0.70 0.10 <0.01 0.26 

Recall 0.87±0.06 0.83±0.10 0.83±0.09 0.81±0.10 0.85±0.07 

p-value* -- <0.01 <0.01 <0.01 0.02 
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CGAN 

Acc -- 0.78±0.07 0.78±0.09 0.78±0.07 0.80±0.06 

p-value* -- 0.01 0.01 < 0.01 0.12 

Recall -- 0.80±0.09 0.77±0.10 0.83±0.08 0.81±0.08 

p-value* -- < 0.01 < 0.01 < 0.01 < 0.01 

Encoder-decoder network versus CGAN (p-values) 

Acc -- < 0.01 0.21 0.01 0.67 

Recall -- 0.04 < 0.01 0.18 < 0.01 

*compared with results from original radiomics; 

Discussion 

In this study, we aimed to assess the potential of generative models to 

improve the performance of prediction models based on radiomic features 

extracted from low dose CT scans. The results show that encoder-decoder 

networks and CGANs can improve the AUC of radiomics for survival 

prediction and lung cancer diagnosis based on different low dose CT datasets. 

These findings imply that denoising low dose CT scans using generative 

models is a convenient pre-processing step before calculating radiomic 

features to train a predictive or diagnostic model. 

The results also show that denoising using generative models might lead to 

a decrease in accuracy and recall. This might be caused by a shift in the 

receiver operating characteristic (ROC) curve as a result of the denoising. 

However, a higher AUC implies that there are other thresholds for which the 

accuracy and recall are higher with the denoised images. The threshold will 
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differ for each possible application of these models, and a model with a 

higher AUC will be more likely to have a better accuracy/recall combination. 

Another interesting aspect of the results is the variability of the models’ 

AUCs for different numbers of training epochs. As shown in Figure 5-3 and 

Figure 5-4 (c), the performance of the models improves after the first epochs, 

then deteriorates when training for a higher number of epochs, and finally it 

seems to improve again after a particular number of training epochs. This 

tendency seems more significant in Figure 5-4 (c) than Figure 5-4. This 

might be explained by a phenomenon that has attracted considerable 

attention in the deep learning research domain in last few years -- deep 

double descent [50][51]. Unfortunately, the mechanisms of this 

phenomenon are still unclear, and more research on this topic is needed. 

It is worth delving into the cause for the observed improvement using 

generative models. As mentioned previously, we think this improvement is 

brought on by the denoising effect of generative models to low dose CT. 

However, as shown in Supplementary Figure 1 (b), 40% CT images in the 

LIDC-IDRI dataset were not noisy (since they were scanned with over 200 

mAs). Denoising these images using generative models would decrease 

images’ quality. Therefore, there must be another source of improvement. 

Our hypothesis for this alternative source of improvement is dose 

normalization. In other words, generative models not only improved image 

quality of low dose CT images in dataset but also transfer the imaging 

exposure of the whole dataset from a wide range to a more compact but 

unknown range. 



Generative Models Improve Radiomics: Experimental Study 

Page 140 

 

One potential limitation of our study is the low AUCs achieved by the 

models for pre-treatment survival prediction for lung cancer based on 

radiomic features. However, these are in line with results reported elsewhere. 

For example, Isensee et al. [52] reported an accuracy of 52.6% based on the 

BraTS 2017 dataset [53] for brain tumor by using radiomics; Choi et al. [54] 

reported an integrated AUC (iAUC) of 0.620 [95% CI: 0.501–0.756] in 

TCGA/TCIA dataset using random survival forest to derive a prediction 

model; Finally, Bae et al. [55] reported an iAUC of 0.590 [95% CI: 0.502, 

0.689] for overall survival prediction in Glioblastoma using MRI radiomic 

features. These relatively low AUCs can be partly explained by the difficulty 

of pre-treatment survival prediction, especially over a long term (over 2 

years). In addition to the information available in the medical image, many 

other factors can affect survival. In fact, some researchers claim that any 

AUC over 0.80 is suspect [56][57]. As a system of hand-crafted features 

with higher interpretability but lower information representation ability 

(compared with deep features), it is not surprising that radiomics has a 

relatively poor performance in survival prediction. Some studies have 

proposed techniques to improve the performance of radiomics in survival 

prediction, such as Jia et al. [58], that managed to increase the concordance 

index (C-index) from 0.6 to 0.67 or Wang et al. [59] who combined 

radiomics with deep features to improve the C-index from 0.68 to 0.72. 

However, these improved results are still low compared to those achieved in 

diagnosis, and even further developments might still drive the performance 

up, the performance in survival will remain relatively low due to inherent 

uncertainty. 
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Regarding future work, we believe generative models should be trained to 

keep more information from the original domain. More specific, low level 

domain adaptation such as denoising for medical images should focus on 

keeping content information from original domain in the target domain. For 

example, by adding a content loss term in the cost function, adjusting 

generative models training method as shown in [60]. Second, more 

generative models with different architectures should be considered as the 

test models to find better models for this task. Thirdly, given the important 

fluctuations in performance across different numbers of training epochs, it 

is not possible to provide an optimal number of epochs based on our 

experiments. For consistency, we reported the results from the model trained 

model for 100 epochs as our final results. However, more studies about the 

optimal number of epochs are needed in the future. Finally, since the validity 

of the results of this study are limited to our selected datasets and tasks, 

further application to more datasets and tasks could reinforce or disprove 

our findings. 
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Conclusions 

In this study, we assessed the potential of generative models (CGANs and 

encoder-decoder networks) to improve the performance of low dose CT scan 

radiomics-based models in two tasks – survival prediction and lung cancer 

diagnosis – and two datasets – NSCLC Radiogenomics and LIDC-IDRI. 

SVM and deep attention based MIL were used classifiers in survival 

prediction and lung cancer diagnosis respectively. The results support the 

hypothesis that generative models can improve radiomics performance in 

different tasks and datasets. In conclusion, denoising using generative 

models is an effective pre-processing step for calculating radiomic features 

from low dose CT. 

Appendix 

Support materials of this Chapter can be found in this link.  

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Experimental_Study
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Abstract 

Background: As a means to extract biomarkers from medical imaging, 

radiomics has attracted increased attention from researchers. However, 

reproducibility and performance of radiomics in low dose CT scans are still 

poor, mostly due to noise. Deep learning generative models can be used to 

denoise these images and in turn improve radiomics’ reproducibility and 

performance. However, most generative models are trained on paired data, 

which can be difficult or impossible to collect.  

Purpose: In this article, we investigate the possibility of denoising low dose 

CTs using cycle generative adversarial networks (GANs) to improve 

radiomics reproducibility and performance based on unpaired datasets. 

Methods and Materials: Two cycle GANs were trained: 1) from paired 

data, by simulating low dose CTs (i.e., introducing noise) from high dose 

CTs; and 2) from unpaired real low dose CTs. To accelerate convergence, 

during GAN training, a slice-paired training strategy was introduced. The 

trained GANs were applied to three scenarios: 1) improving radiomics 

reproducibility in simulated low dose CT images and 2) same-day repeat 

low dose CTs (RIDER dataset) and 3) improving radiomics performance in 

survival prediction. Cycle GAN results were compared with a conditional 

GAN (CGAN) and an encoder-decoder network (EDN) trained on simulated 

paired data. 

Results: The cycle GAN trained on simulated data improved concordance 

correlation coefficients (CCC) of radiomic features from 0.87 [95%CI, 

(0.833,0.901)] to 0.93 [95%CI, (0.916,0.949)] on simulated noise CT and 

from 0.89 [95%CI, (0.881,0.914)] to 0.92 [95%CI, (0.908,0.937)] on the 
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RIDER dataset, as well improving the area under the receiver operating 

characteristic curve (AUC) of survival prediction from 0.52 [95%CI, 

(0.511,0.538)] to 0.59 [95%CI, (0.578,0.602)]. The cycle GAN trained on 

real data increased the CCCs of features in RIDER to 0.95 [95%CI, 

(0.933,0.961)] and the AUC of survival prediction to 0.58 [95%CI, 

(0.576,0.596)].  

Conclusion: The results show that cycle GANs trained on both simulated 

and real data can improve radiomics’ reproducibility and performance in low 

dose CT and achieve similar results compared to CGANs and EDNs.  

Keyword: Radiomics, Denoising, Reproducibility, Cycle GAN, Computed 

Tomography 
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Introduction 

Biomarkers from medical imaging can provide a macroscopic view of the 

tissue of interest and can be an effective tool to accurately diagnose disease 

in precision medicine [1]. Radiomics features [7] have shown value as 

potential imaging biomarkers in various tumor and neurodegenerative 

diseases, such as lung cancer [2], head and neck cancer [3], rectal cancer [4], 

breast cancer [6], Alzheimer disease [7], autism spectrum disorder [8]. 

However, in Computed Tomography (CT) the repeatability and 

reproducibility of radiomics has been challenged in multiple published 

studies [9][10][11][12]. The reproducibility of radiomics can be impacted 

by various CT parameters such as radiation dose, slice thicknesses, and 

reconstruction algorithm settings. More specifically, it has been reported 

that only 11.3% (12 of 106) of radiomics features are robust to these 

technical parameters [12]. In fact, slice thickness ranks first on impact on 

radiomics’ reproducibility while signal-to-noise ratio ranks second. Intensity 

and texture radiomic features are especially sensitive to radiation dose and 

the associated signal to noise ratio [12]. Therefore, it is likely that radiomic 

features extracted from low dose CT are less accurate than features from 

high dose CT. In other words, radiomics applied to low dose CT will likely 

have low reliability and thus the established radiomics signature or models 

are likely to have worse performance compared to high dose CT [37]. 

In this study, we aim to use denoising [14] to improve the reliability of 

radiomics in low dose CT. A variety of image denoising methods have been 

proposed in the past several decades, and these methods can be divided into 

two classes -- model based denoisers [15][16] and data driven denoisers 
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[17][18]. Multiple published studies [18][19] have demonstrated that data 

driven denoisers outperform model based denoisers and achieve state-of-art 

denoising quality when suitable training datasets are available. 

Most data driven denoisers are based on deep convolutional neural networks 

(DCNNs) [20] in which this denoising task is posed as an image-to-image 

translation problem. The popular architectures for medical image denoising 

are full convolutional network (FCN) [21], encoder-decoder network (EDN) 

[22] and generative adversarial networks (GAN) [23] which were described 

in detail recently reviews [14][24]. An important characteristic of most data 

driven denoisers is that datasets consisting of paired low-high dose CTs from 

the same subjects are needed to train the deep neural networks. However, 

collecting paired low-high dose CT is time-consuming, expensive, and 

impossible in many cases e.g., in patient studies. 

Therefore, it is the aim of this study to establish a CT denoiser based on 

unpaired datasets to improve radiomics performance. The related literature 

is divided into two topics -- low dose CT denoising and radiomics 

normalization. In this section, we review these two topics briefly. 

a) Low Dose CT Denoising 

As mentioned above, most data-driven denoisers are based on one of three 

backbones – FCN, EDN and GAN – and all of them are used in low dose 

CT denoising tasks. More specifically, Yang et al. [28] used a 3D residual 

network as the denoising network architecture with a loss function based on 

differences between the ground truth residual image and reconstructed 

residual image. Moreover, pool layers were removed from the network to 

generate denoised residual images because there is no size or resolution 
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change between input and output. The results show that the network can 

reduce noise effectively while preserving tissue details. Chen et al [29] 

adapted an EDN as the backbone of their denoiser and two residual shortcuts 

were added into the network to keep details of the image from encoder to 

decoder. Models were trained by using simulation data and the trained 

denoiser achieved a competitive performance in both simulation and clinical 

cases. Yang et al. [23] took conditional GAN (CGAN) [31] as the backbone 

where they replaced Jensen–Shannon divergence [32] with Wasserstein 

distance [33] to measure the differences in the data distribution. Moreover, 

Yang et al. replaced the mean squared error (MSE) loss function with 

Perceptual Loss [34] to keep more texture information from low dose CT to 

high dose CT. They proposed a method to not only reduce the image noise 

level but also tried to keep the critical information at the same time. 

One of the biggest shortcomings of these aforementioned denoisers is that 

paired low-high dose datasets are needed in denoiser training. However, 

collecting this kind of datasets is time-consuming and expensive. As an 

alternative a few simulation paired low-high dose CT datasets are publicly 

available, such as the dataset from 2016 NIH-AAPM-Mayo Clinic Low 

Dose CT Grand Challenge (LDGC) [35]. The low dose CT images in this 

dataset are simulation data with a simulated low radiation dose of 50 

milliampere-seconds (mAs). The characteristics of LDGC dataset decrease 

the value for network training as the generalization of models trained from 

the LDGC to real low dose CT is questionable because the exposure in real 

low dose CT datasets will much lower than the simulation data in LDGC. 

For example, radiation dose in The Reference Image Database to Evaluate 

Therapy Response (RIDER) [36] ranged from 7 to 13 mAs.  
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Therefore, we believe that implementing a denoiser based on unpaired 

datasets could help to relieve the problem of data collection and make 

unsupervised CT denoising for quantitative medical image analysis possible. 

There are a few studies that used this strategy, Kang et al. [37] used cycle 

GAN as the backbone for multiphase coronary CT angiography correction 

where they took routine-dose CT from multiphase coronary CT angiography 

as the target domain data and low-dose CT as the original domain data to 

build a training dataset. The results show that visual grading and quality 

evaluation of low-dose CT are improved, however, they did not investigate 

the effect of Cycle GAN into deeper quantitative metrics such as radiomics.  

However, to the best of our knowledge there are no studies that apply 

unsupervised CT denoising to improve radiomics reliability and 

reproducibility in low dose CT. 

b) Radiomics Normalization 

Berenguer et al. [10] have shown that over half of radiomics features are 

nonreproducible when images scanned from different scanners even when 

using the same CT parameters. The results of radiomics signatures or models 

which based on nonreproducible features are thus unreliable. Li et al. [25] 

used cycle GAN to normalize CT images from multiple centres and multiple 

scanners, and then they extracted features from normalized images and 

established radiomics signatures. They found the average improvement of a 

classifier based on normalized radiomics features in the area under the 

receiver operating characteristic curve (AUC) to be 11%. Yang et al. [38] 

integrated adaptive instance normalization (AdaIN) into cycle GAN for 

continuous CT kernel conversion, introduced AdaIN kept more content 
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information from original domain to target domain. The proposed method is 

promising for radiomics normalization in different CT kernels. The major 

difference between previous studies and our study is that this paper focused 

on using cycle GAN to improve radiomics reproducible and performance in 

low dose CTs. 

In previous work [37], we used EDN and CGAN [39] as testing backbones 

to denoise low-dose CT. Our training datasets consisted of paired simulated 

low-dose CT and high-dose CTs. Radiomics features reproducibility from 

noisy images and denoised images were measured using concordance 

correlation coefficients (CCC) [43]. The results showed that EDN and 

CGAN can improve CCC of noisy images significantly. Moreover, when we 

applied our trained denoisers to real low-dose CT images (RIDER dataset), 

the results showed that this denoiser can improve radiomics reproducibility 

in realistic low-dose CTs.  

In another study [26], we applied the trained denoisers to improve radiomics 

performance in realistic applications. The results showed that generative 

models based denoisers can improve the AUC of a lung cancer survival 

prediction from 0.52 [95%CI, (0.511,0.538)] to 0.58 [95%CI, (0.564,0.596)] 

and a multiple instance learning based lung cancer diagnostic [41] from 0.84 

[95%CI, (0.828,0.856)] to 0.88 [95%CI, (0.866,0.892)]. 

 The major shortcoming of our previous studies is that denoising models 

were exclusively dependent on paired simulation data which may cause the 

trained denoiser to not generalize well to real data. In this paper, we took 

cycle GAN as basic denoising model to train a denoiser using unpaired low-

high dose CT. These low and high dose CT images were collected from 
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different centres and scanners. We evaluated this new denoiser for its ability 

to improve radiomics reproducibility and performance in realistic 

applications.  

In comparison with previous studies, the major contribution of this study is 

that we assess the potential of denoising low dose CTs using cycle GANs 

based on unpaired data to improve radiomics reproducibility and 

performance. The results show that cycle GANs can improve radiomics’ 

reproducibility and performance in low dose CT and achieve similar results 

compared to CGANs and encoder-decoder networks. Source code, 

Radiomics features, data for statistical analysis and supplementary materials 

of this article are available online at https://gitlab.com/UM-CDS/low-dose-

ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics. 

Materials and Methods 

In this section, we describe the architecture and technical details of our cycle 

GAN. Then, we introduce our training strategy to improve the speed of 

convergence. Next, we describe the design of the experiments and datasets 

used for training and testing. Finally, we describe the extraction of the 

radiomics features and the evaluation metrics used. 

Cycle GAN 

We use cycle-consistent GANs, proposed by Zhu et al. [27]. As shown in 

Figure 6-1 (a), the cycle GAN consist of two generators and two 

discriminators. The generator 𝐺𝐿𝐻 maps from low dose CT domain (𝐿) to 

full dose CT domain (𝐻) while 𝐺𝐻𝐿maps from 𝐻 to 𝐿. The loss function of 

the cycle GAN consists of two parts -- adversarial loss and cycle consistency 

loss, represented with 𝐿𝑎𝑑𝑣 and 𝐿𝑐𝑦𝑐 respectively (and each of them can be 

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics
https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics
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broken down into 𝐿𝑎𝑑𝑣1, 𝐿𝑎𝑑𝑣2 and 𝐿𝑐𝑦𝑐1, 𝐿𝑐𝑦𝑐2, one for each generator). The 

adversarial loss for mapping from low dose to full dose CT is defined as 

follows: 

ℒ𝑎𝑑𝑣1(𝐺𝐿𝐻 , 𝐷𝐻 , 𝐿, 𝐻) = 𝔼𝑥ℎ~𝑝𝑑𝑎𝑡𝑎(𝑥ℎ)[𝑙𝑜𝑔𝐷𝐻(𝑥ℎ)] + 𝔼𝑥𝑙~𝑝𝑑𝑎𝑡𝑎(𝑥𝑙)[𝑙𝑜𝑔(1 − 𝐷𝐻(𝐺𝐿𝐻(𝑥𝑙))] 

(Equation 6-1) 

where  𝐺𝐿𝐻 is trained to transform low dose CT image 𝑥𝑙  to into high dose 

CT image 𝑥ℎ  (denoising), while 𝐷𝐻  is trained to discriminate between 

denoised CT images 𝐺𝐿𝐻(𝑥𝑙) (𝑥𝐿𝐻 in  Figure 6-1 (a)) and real high dose CT 

image 𝑥𝐻. During the training, 𝐺 aims to minimize this loss function against 

an adversary 𝐷  that tries to maximize it; therefore, equation (1) can be 

rewritten as follows: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝑎𝑑𝑣1(𝐺𝐿𝐻, 𝐷𝐻 , 𝐿, 𝐻) = 𝔼𝑥ℎ~𝑝𝑑𝑎𝑡𝑎(𝑥ℎ)[𝑙𝑜𝑔𝐷𝐻(𝑥ℎ)] 

 +𝔼𝑥𝑙~𝑝𝑑𝑎𝑡𝑎(𝑥𝑙)[𝑙𝑜𝑔(1 − 𝐷𝐻(𝐺𝐿𝐻(𝑥𝑙))] (Equation 6-2) 

The definition of adversarial loss for mapping from high dose CT to low 

dose CT is defined in similar way and we denote it as 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝑎𝑑𝑣2(𝐺𝐻𝐿 , 𝐷𝐿 , 𝐻, 𝐿). Moreover, we denote the adversarial loss 

for the whole network as  ℒ𝑎𝑑𝑣(𝐺, 𝐷) = 𝐿𝑎𝑑𝑣1 + 𝐿𝑎𝑑𝑣2. 

Regarding the cycle consistency loss of our cycle GAN, we replace the mean 

squared error (MSE) loss function used in the original cycle GAN with a 

perceptual loss-based loss function. The definition of cycle consistency loss 

is as follows:  

 ℒ𝑐𝑦𝑐1 = 𝔼(𝑥𝑙 , 𝑥𝑙ℎ𝑙) [
1

𝑤𝑒𝑑
‖𝑉𝐺𝐺(𝐺𝐻𝐿(𝑥𝑙ℎ)) − 𝑉𝐺𝐺(𝑥𝑙)‖

2
](Equation 6-3) 
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Where 𝑥𝑙  represents low dose CT image and 𝑥𝑙ℎ𝑙 represents reconstructed 

low dose CT image from fake synthetic high dose CT image, w, e, and d 

represent width, height, and depth of the feature map, and 𝑉𝐺𝐺(. ) 

represents feature maps from a pre-trained VGG-16 at a specific 

convolutional layer. VGG-16 is pre-trained on ImageNet [42], a dataset of 

over 14 million images belonging to 1000 classes. In order to feed CT 

images into a model pre-trained on color images, they need to be triplicated 

into RGB channels before cycle consistency loss calculation. In our 

implementation, we select feature maps from 𝑐𝑜𝑛𝑣2_1  to calculate 

perceptual loss. ℒ𝑐𝑦𝑐2 can be defined in similar way with 𝐺𝐿𝐻. We denote 

ℒ𝑐𝑦𝑐1 + ℒ𝑐𝑦𝑐2 as ℒ𝑐𝑦𝑐(𝐺). 

Combining Equation 6-2 and Equation 6-3, the overall loss function is 

expressed as: 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷ℒ𝑎𝑑𝑣(𝐺, 𝐷) + 𝜆ℒ𝑐𝑦𝑐(𝐺) (Equation 6-4) 

where 𝜆 is a parameter to control the trade-off between the adversarial and 

perceptual loss. 

More details about the architecture of generators and discriminators can be 

found in Figure 6-1(b) and (c) respectively.  

Slice-paired Training Strategy 

Randomly chosen samples from two domains are fed to the networks in 

training a cycle GAN. However, as mentioned in the original cycle GAN 

article [27], the training will be more successful and stable when focusing 

on pairs of visually similar images.  
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In the case of CT scans, assuming all scans belong to the same organ (the 

lung in our case), we can expect that images belonging to the same slice 

number will be more similar to each other than images from different slices. 

Hence, the first slice of a low dose CT scan will have higher similarity with 

the first slice of a high dose CT scan. 

Therefore, CT based cycle GAN training should be fed with pairs of the 

same (randomly chosen) slice rather than images of different slices. This 

could be seen as weakly supervised learning. We call this strategy as slice-

paired training strategy hereafter, the similar training strategy can be found 

in paper [43]. 

Data Acquisition 

In order to compare results of cycle GANs with our previous work (CGAN 

and EDN) [37][26], we trained networks on the same data as used in [37][26] 

and applied the trained models to the same applications on the same datasets. 

In total, we used five datasets in this study.  

We used a phantom dataset to test whether our GANs generated artifacts 

when denoising. [44] This phantom dataset is a collection of phantoms CTs 

by scanning a Gammex 467 CT phantom (Middleton, WI, USA) using a 

Philips Brilliance Big Bore CT with different doses (50 mAs, 400 mAs). CT 

images scanned at 50 mAs are referred to as low dose CT and 400 mAs 

referenced as high dose CT. We used 52 paired images from two scans for 

testing. 
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Figure 6-1. Overview of Network, Architecture of Generator and 

Discriminator 

The second is based on the NSCLC-Radiomics dataset (hereafter called 

LUNG 1) [45]. We selected only the high dose CT scans, those scanned at 

400 mAs or more (n=157, indices in Supplementary Table 1) and added 

noise to the sinograms to simulate low dose CTs with two different levels of 

noise: low-noise CT and high-noise CT. The specific methods used to add 

noise are described in [37] section 2.3 and in the Supplementary Method 1. 

We used a subset of these high-noise CTs and their corresponding high dose 
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CTs (40 subjects, 4260 images) to train a cycle GAN and we used the 

remaining images to assess the reproducibility of radiomics features in the 

original high dose CT versus those in the denoised images.  

The third and fourth datasets were used to train the cycle GAN with real low 

dose CT scans. We used low dose CT scans from the Lung Image Database 

Consortium dataset  (LIDC-IDRI) [47], and high dose CT scans from The 

Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) dataset [48]. 

We used two inclusion criteria for CTs in both datasets to increase the visual 

similarity across the two domains: the use of SIEMENS scanner; table height 

ranging from 150 to 160 mm. As low dose CTs we included those with a 

radiation exposure lower than 10 mAs and as high dose CTs those with and 

exposure higher than 100 mAs (list of indices of selected samples is in 

Supplementary Tables 2 and 3 respectively). Examples of selected samples 

from LIDC-IDRI and TCGA-LUAD are shown in Supplementary Figure 1. 

The final two datasets, used for the two radiomics-based applications, are 

RIDER [36] and NSCLC Radiogenomics [42]. RIDER is a collection of 

same day repeat CT scans collected to assess the variability of tumor 

measurements, which makes it particularly useful to assess the 

reproducibility of radiomics across pairs of similar CT scans. We use the 

trained cycle GAN to denoise the images in RIDER to assess the impact of 

denoising on the reproducibility of radiomic features. NSCLC 

Radiogenomics is a radiogenomic dataset from a cohort of 211 patients with 

non-small cell lung cancer [42], from which we selected the low dose CT 

images, their respective segmentation masks and clinical data for survival 

prediction (n=106), the indices of the included samples are included in the 

supplementary Table 4. The average radiation exposure of samples selected 
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from NSCLC Radiogenomics is 38.65±81.97 mAs (±standard error of the 

mean, SEM) (the distribution of radiation exposure for selected samples can 

be found in Supplementary Figure 2). 

A summary of scanning parameters of included datasets is shown in Table 

6-1. 

Experiments  

We trained three cycle GANs to denoise low CT scans: on a paired dataset 

with low dose CT scans simulated from high dose CT scans with and without 

the Slice-paired training strategy (referred to as ablation study hereafter) and 

on unpaired real low and high dose CT scans. Regarding CT normalization, 

the CT HU was set to -1000 when it was lower than -1000 and to 1000 when 

it was higher than 1000, and then normalized to intensity [0,1] for network 

training and image denoising. 

Then, we assessed the performance of the denoising using Root Mean 

Square Error (RMSE) and perceptual loss as evaluation metrics. The 

definition of perceptual loss can be found in equation (3) and definition of 

RMSE is as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑀
𝑖=1  Equation 6-5 

Where 𝑦𝑖  and 𝑦̂𝑖 represent the image value in position 𝑖 for the original high 

dose CT and denoised CT, respectively. Image values were normalized to 0-

1 before calculating RMSE. M represents the number of pixels in one image, 

512*512 in our case. 

We also assessed the impact of denoising on reproducibility of radiomic 

features by calculating the concordance correlation coefficients (CCC) -- a 



Cycle GAN Improve Radiomics Performance 

Page 170 

 

metric that measures the degree of agreement between two variables (e.g., 

to evaluate reproducibility or for inter-rater reliability) as defined in [40]. 

Several arguments support our choice of CCC as the reproducibility metric: 

according to a recent systematic review [52], CCC is the most common 

metric used to measure the reproducibility of radiomics. Moreover, the 

seminal article that introduced the CCC [40] has shown the clear advantages 

of using this metric in testing reproducibility in comparison with other 

methods. On the simulated paired data, we calculated the CCCs of the 

radiomic features extracted in the original high dose CT and the denoised 

CT. In RIDER, we calculated the CCC of the same day denoised CT scans. 

In the ablation study, we assessed the impact of using the position-based 

training strategy comparing the performance in terms of RMSE, perceptual 

loss and CCC on synthetic data. 

Next, we applied the trained cycle GAN to two applications -- radiomics 

reproducibility in same-day repeat CT scans and pre-treatment survival 

prediction – without retraining. Pre-treatment survival prediction of cancer 

patients is a typical application of radiomics since it appeared in the seminal 

article by Aerts et al.[2]. We predicted pre-treatment survival in two 

different ways: as a binary outcome on 4-year survival and as time-to-event 

continuous outcome. For the first, we used least squares support vector 

machines (SVMs) with Radial Basis Function (RBF) Kernel as our classifier. 

For hyperparameter search and internal validation, we used 40-repeat nested 

5-fold cross validation. [54] More details on the survival prediction 

modelling can be found in [26]. The metric used for measuring the 

performance this model is the area under the receiver operating 

characteristic curve (AUC) [49]. For the time-to-event survival analysis we 
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fitted a Cox proportional hazards models, using the radiomics features (103 

features) as predictors. To ensure convergence during parameter fitting, we 

used penalized Cox regression with a penalty coefficient of 0.01. The 

discriminative performance of this model was measured using the 

concordance index (C-index). 

All experiments were implemented in Python 3.6 and TensorFlow 1.13.1. 

The training was run on one Nvidia Tesla V100 GPU 30.5GB of memory 

and 4 CPUs. We set 𝜆 in equation (4) to 10 and the batch size to 1. The 

discriminator and the denoiser both used the Adam optimizer [50] and 

shared the same learning rate. The initial learning rate was set to 0.0002 with 

a decay factor of 0.8 every 10 epochs. Training runs were stopped at 100 

epochs and radiomics features were extracted every 25 epochs (i.e.., at 25, 

50, 75 and 100 epochs). No early stopping was adopted for terminating the 

model training. Table 6-2 offers a concise summary of our experiments. 

Radiomics Extraction 

The masks of the regions of interest (ROIs) are stored in DICOM format in 

3D in the Lung 1, RIDER and NSCLC Radiogenomics datasets. The 

modality of these files is ‘SEG’. DICOM CT images were converted to 3D 

images using the SimpleITK (v1.2.4) software. We resampled the images to 

2 mm isotropic voxels prior to feature extraction. Radiomics features were 

extracted using the pyRadiomics open-source Python library [51] (v2.2.0). 

A total of 103 features were extracted. These consisted of 13 morphology 

(shape) features, 17 intensity-histogram (first-order) features and 73 textural 

(Haralick) features. The full list of features and the settings used for 

pyRadiomics can be found in the supplementary Table 5. 
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Table 6-1. Scanning parameters of included datasets 

Parameters 

Datasets 
Scanner 

Radiation Dose 

(mAs) 

Slice 

Thickness 

(mm) 

Spatial 

Resolution 

(mm) 

Phantom 

Dataset 
Philips(4*) 50(2),400(2) 3(4) [0.77,0.77] 

LUNG 1 Siemens(157) 400(157) 3(157) [0.98,0.98] 

TCGA-LUAD Siemens(14) 110(3),120(8),140(2),210(1) 1(2),5(8),8(4) 
[0.59,0.59]-

[0.74,0.74] 

LIDC-IDRI GE(12) <1(12) 1.25(7),2.5(5) 
[0.53,0.53]-

[0.70,0.70] 

RIDER N/A**(56) 4(4),5(4),6(6),7(13),8(13),9(9),10(7) 1.25(56) 
[0.51,0.51]-

[0.82,0.82] 

NSCLC 

Radiogenomics 

N/A(5), 

Philips(1), 

GE(90), 

Siemens(10) 

38.65±81.97 

 

0.625(7), 

1(11),2(1), 

1.25(75), 

2.5(9),3(2) 

[0.59,0.59]-

[0.98,0.98] 

± standard error of the mean; *number of included scans; ** manufacturer not mentioned in DICOM metadata 

Table 6-2. Summary of Experiment and Corresponding Datasets 

Experiment 
Training 

Strategy 
Training Dataset Testing Dataset 

Simulated data based With slice- Part of paired high-noise The rest of high-noise CTs 



 

 

C
h

ap
ter 6

 

P
ag

e 1
7

3
 

Training pairing and full dose Lung 1 

dataset (n=40, 4260 

Frames) 

(n=117, 13423 Frames), 

low-noise CTs (n=157, 

17683 Frames), phantom 

dataset CTs (n=2, 104 

Frames) 

Ablation Study 
Without slice-

pairing 

Part of paired high-noise 

and full dose Lung 1 

dataset (n=40, 4260 

Frames) 

The rest of high-noise CTs 

(n=117, 13423 Frames), 

low-noise CTs (n=157, 

17683 Frames) 

Applications with 

simulated data 

training-based 

networks 

With slice-

pairing 

Training finished at first 

part of experiment 

without re-training 

RIDER (n=31, 14875 

Frames), NSCLC 

Radiogenomics (n=106, 

28404 Frames) 

Applications with real 

data training-based 

networks 

With slice-

pairing 

Low dose CTs from 

LIDC-IDRI (n=12, 

3144 Frames), Full dose 

CTs from TCGA-LUAD 

(n= 14, 3307 Frames) 

RIDER (n=31, 14875 

Frames), NSCLC 

Radiogenomics (n=106, 

28404 Frames) 
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The shape-related features are not affected by denoising and therefore were 

excluded from feature reproducibility analysis, resulting in 90 included 

features. All 103 features were used to derive the 4-year pre-treatment 

survival prediction model and time-to-event survival analysis. 

Result 

Training the cycle GAN from simulated and real data took 96 and 72 hours 

respectively. The loss of the generator during training is shown in Figure 6-

2. We choose to plot steps rather than epochs in loss curves because, plotting 

epochs would make it harder to observe the turbulence of model training and 

the faster convergence of the slice-paired training strategy. Moreover, the 

size of the training dataset in the simulated dataset is different to the real 

dataset and plotting epochs would be an unfair comparison.  

 

Figure 6-2. Generator loss over time for cycle GAN training runs with and 

without slice-pairing strategy. 

Reproducibility of Radiomic Features on Simulated Paired Data 

In the phantoms’ dataset, the RMSEs of denoised versus high dose CT scans 

using the cycle GAN trained on simulated data and the cycle GAN trained 

on real data were 0.0187 and 0.0226 respectively, compared with 0.0231 in 
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the original low dose CTs. The encoder-decoder network and CGAN trained 

on simulated data achieved RMSEs of 0.0182 and 0.0140 respectively in 

same dataset. Based on visual inspection, we did not detect any image 

artifacts introduced during the cycle GAN based denoising. 

An example of an original, noisy and denoised CT scan is shown in Figure 

6-4. We reuse results of CGAN and EDN from [13] for better comparison 

with the cycle GAN (corresponding Figure for high noise image is 

Supplementary Figure 3). In addition, Table 6-3 shows the RMSE, 

perceptual loss, signal-to-noise ratio (SNR), and ratio of radiomic features 

with poor (CCC<0.65), medium (0.65≤CCC<0.85), and good (CCC ≥0.85) 

reproducibility [8]. The full result of CCC for every feature at different 

training epochs can be found in Supplementary Table 6-7. 

As shown in Table 6-3, the RMSE and perceptual loss of low-noise and 

high-noise images (before denoising) are 0.0225/0.0706 and 0.0237/0.0781 

respectively. The cycle GAN trained on simulated data reduced the RMSE 

and perceptual loss to 0.170/0.216 and 0.0181/0.0245 for low-noise and 

high-noise images; the cycle GAN trained on real data increased RMSE and 

perceptual loss to 0.0229/0.0531 for low-noise images and decreased RMSE 

and perceptual loss to 0.0230/0.0501 for high-noise images. The cycle GAN 

trained on simulated data resulted in higher RMSE than the CGAN but lower 

perceptual loss and outperformed the encoder-encoder network in both 

metrics. The cycle GAN trained on real data has a worse performance in 

denoising simulated noisy images compared to other networks. 

The mean CCCs for cycle GAN trained on simulated data denoised images 

improved from 0.87 [95% CI, (0.833,0.901)] and 0.68 [95% CI, 
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(0.617,0.745)] to 0.93 [95% CI, (0.916, 0.949)] and 0.94 [95% CI, 

(0.928,0.954)] for low-noise images and high-noise images, respectively 

(Wilcoxon rank-sum test for the CCC from noisy images and denoised 

images, p-value<0.01 for both experiments). The mean CCCs of low noise 

images denoised with the cycle GAN trained on real data decreased to 0.81 

[95% CI, (0.788,0.834)] and the mean CCCs of denoised high noise images 

increased to 0.80 [95% CI, (0.779,0.827)] (Wilcoxon rank-sum test 

comparing CCC of noisy images and denoised images: p-value<0.01 for 

both experiments). A heatmap of radiomics improvement from denoised 

low-noise images by comparing with original noisy images is shown in 

Figure 6-3. 

In contrast, EDN and CGANs were able to improve the mean CCC of 

radiomic features to 0.92 [95%CI, (0.909,0.936)] for low and high-noise 

images. The cumulative distribution function (CDF) of CCCs for different 

models when trained for 100 epochs is shown in Figure 6-5 (a-b). The cycle 

GAN trained on real data did not manage to improve radiomics features’ 

reproducibility on simulated noisy images. However, it still achieved a 

significant improvement in the reproducibility of radiomics features of 

simulated high noise images. 
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Figure 6-3. A heatmap of radiomics improvement from denoised low-noise 

images, results on EDN and CGAN are reproduced from [13] 

 

Figure 6-4. Example of low dose CT denoising. (a-1) The original full dose 

CT image; (b-1) Low-noise image; (c-1) Image denoised by EDN 

(*Training at 100 epochs); (d-1) Image denoised by CGAN; (e-1) Image 

denoised by a cycle GAN; (f-1) Image denoised by a cycle GAN (ablation 

study); (g-1) Image denoised by cycle GAN trained on real data; (a-2) to 

(g-2) Zoomed ROIs for (a-1) to (g-1). 

The second investigation of the simulation study was the effect of different 

training epochs to radiomics reproducibility. The CDF of CCCs for cycle 

GAN trained at 25, 50, 75 and 100 epochs are shown in Supplementary 

Figure 4 (a-b). Summary of RMSE, perceptual loss and CCCs of cycle GAN 

trained at different epochs can be found in Supplementary Table 8. We 

compared the CCC distributions of radiomic features calculated on images 

denoised from high-noise images with those of images denoised from low-

noise images using the Wilcoxon rank-sum test resulting in a p-value of 0.94. 

The results show that a cycle GAN trained to denoise high-noise images can 

be applied to denoise images with different levels of noise and achieve 

similar results to a CGAN and EDN based denoiser [13]. 
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Figure 6-5. CDF of CCC of radiomic features denoised with different 

models. (a) low-noise images; (b) high-noise images. 

Moreover, we compared the CCC distributions from cycle GAN with 

CGAN and EDN by using the Wilcoxon rank-sum test which resulted in p-

values of 0.73 and 0.07, respectively. The results show that a cycle GAN 

achieved similar results to CGAN and EDN, and that in some cases, Cycle 

Gan even received better results. 
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Ablation Study for the Training Strategy 

An example of denoised images from cycle GAN ablation study can be 

found in Figure 6-4 (f-1) and Figure 6-4 (f-2). 

Table 6-3 and Supplementary Table 9 shows the RMSE, perceptual loss and 

ratio of poor, medium, and good reproducibility radiomic features about 

ablation study of cycle GAN. The cycle GAN trained without our training 

strategy can also reduce the RMSE and perceptual loss of low-noise and 

high-noise images to 0.0167/0.0258 and 0.0188/0.0256 respectively. 

Moreover, it can increase the average CCC to 0.94 [95%CI, (0.924,0.957)] 

and 0.93 [95%CI, (0.917,0.953)] for low and high-noise images respectively. 

The CDF of CCCs for ablation study when trained for 100 epochs is shown 

in Figure 6-5 (a-b) and the differences among epochs can be found in 

Supplementary Figure 4 (c-d).  

The distribution of CCCs from ablation study trained at 100 epochs was 

compared with results from a network trained with training strategy and we 

found no signification differences (Wilcoxon rank-sum test, p-value=0.13). 

Figure 6-2 shows that training the cycle GAN with the training strategy 

might speed up convergence slightly. On the other hand, without the training 

strategy, the generator’s loss function increases beyond 60000 steps. Finally, 

the cycle GAN trained with our training strategy led to significantly higher 

CCCs when trained for only 25 epochs (Wilcoxon rank-sum test, p-value < 

0.01), as shown comparing Supplementary Figure 4(a) to (c) and Figure 4(b) 

to 4(d).  
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Reproducibility on Real Data 

We now focus on the impact of denoising on the reproducibility of radiomic 

features in same day repeat low dose CT scans (RIDER dataset). An example 

of an original image and its denoised counterparts denoised using a CGAN, 

an EDN and the cycle GANs trained on simulated and real data are shown 

in Figure 6-6. Figure 6-7 shows the CDF of the CCCs for the radiomic 

features extracted from the original and denoised CT images. The cycle 

GAN trained on real data outperforms the rest of generative models 

(Wilcoxon rank-sum test, p-value < 0.01). On the other hand, the 

performance of the cycle GAN trained on simulated data is similar to that of 

the EDN and CGAN ( p-value = 0.87 and 0.40 for respectively).  

 

Figure 6-6. Example of RIDER denoising. (a-1) One original image from 

RIDER; (b-1) Image denoised by EDN (Training at 100 epochs); (c-1) 

Image denoised by CGAN (Training at 100 epochs); (d-1) Image denoised 

by cycle GAN trained on simulated data (100 epochs); (e-1) Image 

denoised by cycle GAN trained on real data (100 epochs); (a-2) to (e-2) 

Zoomed ROIs for (a-1) to (e-1). 
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Figure 6-7. CDF of CCCs and for denoised CT scans in the RIDER 

dataset. 

Survival prediction on Real Data 

An example of an original NSCLC Radiogenomics image, and its denoised 

counterparts based on CGAN, EDN and cycle GANs trained from simulated 

and real data can be found in Supplementary Figure 5.  

Figure 6-8 (a) illustrates the results of the of 4-year pre-treatment survival 

prediction experiment showing the AUC for each generative model across 

different number of epochs. We achieved an AUC for survival prediction 

based on radiomics extracted from the original NSCLC Radiogenomics 

dataset of 0.52 [95%CI, (0.511,0.538)] at 100 epochs. Denoising the CT 

scans using a CGAN or an EDN led to models with an increased AUC of 

0.57 [95%CI, (0.551, 0.580)] (at 100 epochs) as shown in [26].  
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Table 6-3. Summary of RMSE, perceptual loss and distribution of CCCs of radiomic features based on denoising simulated datasets. 

Distribution 

Models 

RMSE 
Perceptual 

loss 

SNR 

(dB) 

CCCs

<0.65 

0.65≤

CCCs<0.85 

CCCs

≥0.85 
95%CI of CCC 

Low-noise Images 

Without denoising 0.0225 0.0706 18.3 10% 22% 68% (0.833, 0.901) 

Encoder-decoder 0.0173 0.0427 19.6 0% 19% 81%  (0.901, 0.935)* 

CGAN 0.0143 0.0290 21.0 3% 17% 80%  (0.905, 0.939)* 

Cycle GAN 0.0170 0.0216 24.6 0% 16% 84%  (0.916, 0.949) 

Cycle GAN (w/o slice 

pairing)  
0.0167 0.0258 20.8 1% 13% 86%  (0.924, 0.957) 

Cycle GAN (real data) 0.0229 0.0531 15.7 6% 52% 42%  (0.788, 0.834) 

High-noise Images 
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Without denoising 0.0237 0.0781 6.1 36% 23% 41% (0.617, 0.745) 

Encoder-decoder 0.0175 0.0443 19.3 4% 16% 80%  (0.901, 0.935)* 

CGAN 0.0146 0.0305 20.8 0% 16% 84%  (0.905, 0.939)* 

Cycle GAN 0.0181 0.0245 20.3 0% 14% 86%  (0.928, 0.954) 

Cycle GAN (w/o slice 

pairing) 
0.0188 0.0256 19.4 3% 12% 84%  (0.917, 0.953) 

Cycle GAN (real data) 0.0230 0.0501 15.4 4% 54% 42%  (0.779, 0.827) 

* results reproduced from [13] 
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The cycle GANs trained on simulated and real data resulted in a higher mean 

AUC of around 0.58 [95%CI, (0.576,0.596)] but the difference between 

models was not statistically significant (Student’s t-test, all p-values > 0.10). 

Figure 6-8 (b) illustrates the results of the time-to-event survival analysis 

experiment showing the C-index for each generative model across different 

numbers of epochs. EDN, CGAN, and the cycle GAN trained on simulated 

data improved C-index of survival analysis from 0.73 to around 0.76 while 

the cycle GAN trained on real data improved the C-index to 0.78. 

 

Figure 6-8. Results of 4-year pre-treatment survival prediction (a) and 

time-to-event survival analysis (b) C-index of survival analysis. 

To interpret the improvement of AUC in 4-year survival prediction tasks, 

we used an RBF kernel based SVM Recursive Feature Elimination 

algorithm [58] to assess the importance of features in the prediction model.  

Table 6-4 shows the top eight most important features in the models trained 

on the radiomic features from the original images and those from denoised 

images (The table with all features can be found in Supplementary Table 10-

12). Six features appeared in all four models (highlighted in green in Figure 
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6-3). These features’ CCC improved by denoisers, most of them improved 

significantly, which might explain how denoising can improve the AUC of 

survival prediction models.  

Shape features, which were previously excluded from denoising analyses, 

were included as candidate predictors for the survival prediction model. 

However, as shown in Table 6-4, there are no shape features among the top 

eight most important predictors. 

Discussion 

The objective of our study was to investigate the potential of cycle GANs 

for denoising low dose CTs to improve the reproducibility of radiomics 

features and the performance of radiomics-based models. For this purpose, 

we trained two cycle GANs, one with simulated paired data and the other 

one with real data, to denoise low dose CT scans. In order to measure the 

performance of our denoising models, we ran experiments and compared the 

results of our method with those of CGANs and EDNs trained on simulated 

paired data. The results show that both cycle GANs trained on simulated and 

on real data can improve radiomics’ reproducibility and performance in low 

dose CT and achieve similar results compared to CGANs and EDNs. 

The main advantage of cycle GANs over CGANs and EDNs is that they do 

not require paired images, which are hard to collect. For CGANs and EDNs 

we overcame this issue by generating simulated low dose CTs by 

introducing noise into high dose CTs [13]. However, simulated noise might 

differ from noise encountered in low dose CTs. Hence, being able to train a 

model on real low dose CT scans is a significant advantage.    
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Table 6-4 Top eight most important features in the survival prediction model trained on noisy images and images denoised using 

different generative models 

Rank Original images Denoised with EDN  Denoised with CGAN  Denoised with cycle GAN  

1 
glszm_LargeArea 

LowGrayLevelEmphasis 

glszm_LargeArea 

LowGrayLevelEmphasis 

glszm_LargeArea 

LowGrayLevelEmphasis 

glrlm_GrayLevel 

NonUniformityNormalized 

2 ngtdm_Coarseness gldm_GrayLevelVariance 
glrlm_GrayLevel 

NonUniformityNormalized 

glszm_LargeArea 

LowGrayLevelEmphasis 

3 gldm_GrayLevelVariance 
glszm_LargeArea 

LowGrayLevelEmphasis 
gldm_GrayLevelVariance gldm_GrayLevelVariance 

4 firstorder_Energy 
gldm_LargeDependence 

HighGrayLevelEmphasis 
firstorder_Energy firstorder_Energy 

5 shape_MinorAxisLength 
gldm_GrayLevel 

NonUniformity 

gldm_GrayLevel 

NonUniformity 
shape_MinorAxisLength 

6 
glrlm_GrayLevel 

NonUniformityNormalized 
firstorder_Energy ngtdm_Coarseness ngtdm_Coarseness 

7 
glszm_LargeArea 

HighGrayLevelEmphasis 
glcm_JointEntropy glcm_JointEntropy glcm_JointEntropy 

8 glcm_JointEntropy ngtdm_Coarseness shape_MinorAxisLength 
glrlm_RunLength 

NonUniformityNormalized 
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However, training cycle GANs is volatile, especially when the target domain 

and the source domain differ, as documented elsewhere [27][55]. Ideally, in 

order to maximize the chances of success for the training process, training 

data would be collected from the same scanner, with the same protocol 

(except radiation exposure), and from the same group of patients for the two 

domains (low and high dose CT). However, such a dataset is not available 

to us. Hence, we defined selection criteria for the training data so that the 

source and target image domains kept certain similarities. We chose scanner 

manufacturer and table height (which determines field of view and the height 

of human body) based on [12]. These inclusion criteria were introduced after 

several failed attempts at training a cycle GAN with the full dataset. 

Examples of failed training runs are shown in Figure 6-9. However, trained 

models retain certain generalizability and can achieve good results across 

different scanners with different parameter settings as shown in the results 

(images in the RIDER and NSCLC Radiogenomics datasets were scanned 

from multiple types of scanners with different protocols). 

As shown in Table 6-1, the Lung 1 dataset differs more in terms of scanning 

parameters from the RIDER and NSCLC Radiogenomics datasets compared 

to the LIDC-IDRI and TCGA-LUAD datasets. It is therefore possible that 

the conditional GAN trained on simulated paired TCGA-LUAD data 

achieved a similar performance as the cycle GAN trained on real data. Future 

studies may confirm this hypothesis. 

Our ablation study results seem different from research reported elsewhere 

[43] which found that a slice-based training strategy can improve denoising 

performance. The slice-paired training strategy we proposed seems to lead 

to slightly faster convergence as hinted by the loss plot and the models’ 

results at 25 epochs. However, this strategy did not lead to significant 
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improvement of the networks’ denoising performance at 100 epochs. One 

possible explanation is that the training strategy cannot make the resulting 

network a better approximator of the mapping from low dose CT domain to 

high dose. Figure 6-2 and the comparisons between Supplementary Figure 

4 (a) to (c) and (b) to (d) seem to support this view. Another possible 

hypothesis for this phenomenon is that reproducibility and performance of 

radiomics may not be so sensitive to the quality of images when the quality 

reaches a certain threshold. We did not report results of the ablation study 

for the slice-paired training strategy when training on real data because the 

training of the cycle GAN failed to converge multiple times without slice 

pairing. The failure to converge was probably due to a higher heterogeneity 

in real data compared to simulated data (simulated data were collected from 

the same scanners while real data were collected from different scanners). 

Thus, the slice-pairing strategy seems to have made the network training 

more stable in our study. 

As mentioned above, cycle GANs achieved a similar performance as CGAN 

and EDN trained on simulated data, slightly outperforming them in some 

experiments. The difference in performance might be explained by the 

differences in the architectures used: the generator in CGAN and the 

encoder-decoder is a 5-layer network while there are 9 ResNet blocks [57] 

(27 convolutional layers) in the cycle GAN’s generators. Related articles 

have hypothesized [22] that neural networks for ‘low level’ domain 

adaptation – such as denoising – should be kept shallow, since texture 

transfer in ‘low level’ domain adaptation is not significant. However, the 

results in our study seem to show that very deep neural network can also 

achieve good performance in some ‘low level’ domain adaptation tasks. 
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Our training cohort population is smaller than the testing cohort population 

for two main reasons. First, we considered the size of our training sets 

(ranging from 3144 frames to 4260 frames) was sufficient based on 2D cycle 

GAN training set examples in the literature, that range between several 

hundreds to a few thousands [27][59]. Secondly, CCC of radiomics is 

sensitive to the number of subjects used. Moving more subjects (images) 

from testing datasets to training datasets would decrease the reliability of 

radiomics features’ CCC calculations. 

As shown in Figure 6-6, the cycle GAN trained on simulated data (Figure 

6-6 (d)) seems to have a better denoising performance in some cases in terms 

of tissue enhancement and intensity smoothing on homogeneous regions 

compared with the model trained on real data (Figure 6-6 (e)). Of course, it 

might just be that among the tens of thousands of CT images in the 

experiment, this is one where the cycle GAN trained on simulated data fared 

better than its counterpart trained on real data. In addition, it might be that 

the data distribution (as well as the noise) in the simulated training data is 

more homogeneous than the real data and this might lead to more appealing 

visual results, but statistical metrics point at a consistently superior 

performance by the model trained on real data. 

One potential limitation of our study is the low AUCs achieved by the 

models for pre-treatment survival prediction for lung cancer based on 

radiomic features. However, these are in line with results reported elsewhere. 

For example, Isensee et al. [60] reported an accuracy of 52.6% based on the 

BraTS 2017 dataset [61] for brain tumors using radiomics; Choi et al. [62] 

reported an integrated AUC (iAUC) of 0.620 [95% CI: 0.501–0.756] using 

the TCGA/TCIA dataset and random survival forest to derive a prediction 
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model; Finally, Bae et al. [63] reported an iAUC of 0.590 [95% CI: 0.502, 

0.689] for overall survival prediction in glioblastoma using MRI radiomic 

features. 

Our study suffered from a few other limitations. First, there were important 

differences between the populations in different training datasets (LIDC-

IDRI and TCGA-LUAD). For example, patients in TCGA-LUAD were 

thinner than patients in LIDC-IDRI, as shown in Supplementary Figure 4. 

Hence, the cycle GAN trained on these datasets learnt to not only denoise 

the images, but make the patients thinner as illustrated in Figure 6-6 (e-1). 

Fortunately, the ROIs of this study are located in the lung and the volume of 

patients’ lung in two domains are similar. Therefore, there was no significant 

size shift in the ROIs. Second, due to the differences of the CT bed in LIDC-

IDRI and TCGA-LUAD, the cycle GAN also transforms bottom part of the 

image as shown in Figure 6-6 (e-1). Third, the cycle GAN trained on real 

data performed relatively poorly on simulated noisy images in terms of 

improving the reproducibility of radiomic features. One of the potential 

reasons is the domain distribution gap between real data and simulated data. 

The variations of scanners, patient cohorts, reconstruction algorithms in real 

training dataset may reduce the network’s denoising performance in the 

simulated dataset. [53] Moreover, we believe that the good performance in 

real data is more important than the performance in simulated data, since it 

is more representative of real applications. Fourth, one of the assumptions 

of our slice-paired training strategy is that the first slice of a low dose CT 

scan will have higher similarity with the first slice of a high dose CT scan, 

is not automatically true. The similarity of the first slice of a CT scan 

depends on a lot of factors such as the patient position, section of the body 
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scanned etc. These factors were ignored in this paper. Fifth, as we mentioned 

in section 2.4, no early stopping of training was adopted in this study. 

However, as shown in Figure 6-2, Figure 6-5 and Supplementary Figure 4 

that we cannot witness the improvements of the model’s performance during 

training. This may mean that the generator of the cycle GAN does not learn 

the real data distribution, since the loss function fluctuated in all training 

steps (50000 steps in our case). Therefore, early stopping techniques and 

AutoML-based hyperparameter selection [64] seem like promising topics 

for further research. Sixth, in this study, the trained models were only tested 

in two applications: improving radiomics reproducibility in same-day repeat 

low dose CTs and radiomics performance survival prediction. More 

experiments to better understand the relationship between denoising and 

radiomics performance are needed. Seventh, radiation dose is not the only 

source of lack of reproducibility of radiomics’ features, and in some cases, 

it might not be the most relevant. [12] Therefore, a denoising model might 

not solve all the reproducibility issues of radiomic features and other 

measures will need to be put in place to address other sources of 

inconsistency (slice thickness, reconstruction parameters, contrast 

enhancement, etc.). Our GANs were trained on datasets collected from 

different scanners with different scanning parameters, and images were 

reconstructed using different software and kernels. This might lead to more 

robust models but at the same time we cannot guarantee that our trained 

GAN does not introduce new inconsistencies to radiomics. Moreover, there 

are some deep learning-based methods for extracting radiomics features, 

usually referred to as ‘deep radiomics’ [65][66][67]. However, there are 

limited studies focusing on extracting features from low dose CT and, to the 

best of our knowledge, no study focused on improving deep radiomics 
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reproducibility or performance in low dose CT. Studies focusing on 

assessing deep radiomics’ reproducibility and performance in low dose CT 

would be of interest. Eighth, we did not compare the performance of the 

cycle GAN with non-AI commercial low dose CT reconstruction algorithms, 

such as model-based iterative reconstruction (MBIR) [68]). Such a 

comparison would be of interest, but we could not perform it in our study 

due to the absence of sinograms (which are required to use reconstruction 

algorithms) in the datasets used. Finally, due to the absence of a structure 

similarity term in our cycle GAN's cost function, some images develop 

distortions in microstructures. Therefore, further adjustments on cost 

function and network architecture should be assessed in the future. 

 

Figure 6-9. Examples of failed cycle GAN training. 

Conclusions 

In this study, we investigate the potential of denoising low dose CT using 

cycle GANs to improve the reproducibility of radiomics features and the 

performance of radiomics based prediction models. We trained two cycle 
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GANs: using paired simulated low dose CTs and unpaired real low and high 

CT images. To accelerate convergence, we introduced a slice-paired training 

strategy. 

The results of our experiments show that a cycle GAN trained to denoise 

low dose CT scans from unpaired low and high dose CT scans can improve 

the reproducibility of radiomic features in simulated low dose CTs and 

same-day repeat low dose CTs. In addition, we showed that radiomics based 

pre-treatment survival prediction models trained on low dose CT scans 

denoised with said cycle GAN can achieve better performance. The 

improvement in reproducibility and prediction model performance are 

comparable to those achieved with CGANs and encoder decoder networks 

trained on simulated paired data. Cycle GANs have better potential because 

they do not need paired data, but they are burdened by the volatility of the 

treatment process, which limits their applicability. More research is needed 

to make cycle GAN training more robust, for them to be able to be trained 

on a more diverse dataset.  

Appendix 

Support materials of this Chapter can be found in this link.  

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics
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In this thesis, we studied the use of generative models to improve the 

reproducibility and performance of radiomics in low dose CTs. More 

specifically, we discussed the benefits of shortcuts in encoder-decoder 

networks for CT denoising, with implications on the design of such 

generative models (Chapter 2). Subsequently, we investigated the 

improvement of low dose CT radiomics reproducibility using generative 

models trained on paired simulated data (Chapter 3). To investigate the 

effect of generative models in improving low dose CTs radiomics 

performance more comprehensively, we applied radiomics into a new 

application – deep attention-based multiple instance learning (MIL) for lung 

cancer diagnosis (Chapter 4). Next, we used pre-trained denoising 

generative models to validate its effect in improving low dose CT radiomics 

performance on multiple applications - pre-treatment survival prediction and 

lung cancer diagnosis (Chapter 5). Finally, we investigated the possibility 

of training a low dose CT denoiser from unpaired real training data to 

improve low dose CT radiomics reproducibility and performance (Chapter 

6).  

In this chapter, we will discuss (1) the remaining challenges and possible 

solutions of using generative models as a pre-processing tool to improve low 

dose CT radiomics performance (2) other possible solutions to improve low 

dose CT radiomics performance (3) overarching conclusions of this body of 

work. 
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Barriers for the application of generative models into low 

dose CTs radiomics 

The challenges and barriers that prevent the widespread application of 

generative models into low dose CTs radiomics can be divided into two 

categories, technical barriers and barriers related to implementation. These 

barriers will be discussed in the following sections. 

Technical barriers  

The mentioned generative models have some common shortcomings 

preventing their widespread adoption in real low dose CTs radiomics and 

related applications. For example, model collapse (an issue arising in GAN 

training where a generator model is only capable of generating a small subset 

of outcomes, see [2] for more details) during generative models training 

will blur outputs [3][4], decrease the performance of CT denoising and 

prevent the improvement of low dose CT radiomics performance. In 

addition, it is difficult to find the best architecture and hyperparameter 

settings for generative models to better enhance image quality, improve 

radiomics performance and more quickly push generative models into real 

low dose CT radiomics practices.  

Besides the common technical barriers for all generative models, there are 

significant differences in major technical barriers and corresponding 

solutions for applying generative models trained on paired and unpaired data, 

which will be discussed separately. 

As we discussed in Chapter 3, one of the big barriers for training most 

generative models is the shortage of open access training datasets, 

especially for generative models based on supervised training. Although 
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some datasets have been made publicly available (such as the dataset from 

The American Association of Physicists in Medicine (AAPM) [1]), there are 

limited datasets for training generative models in a supervised manner. The 

mentioned dataset [1] consisted of simulated data where the simulated low 

dose CTs had a noise level that corresponded to CT exposure at 50 

Milliampere-seconds (mAs). However, radiation exposure of low dose CT 

is generally much lower than 50 mAs in clinical practice (see for example, 

the distribution in the RIDER dataset, as shown in Table 6-1). Moreover, 

simulated data was generated by inserting noise with a certain distribution 

into CT sinograms. [5][6] However, the patterns of noise in real world low 

dose CTs are generally more complex. Therefore, models trained on the 

mentioned simulation dataset might not be able to reach a good performance 

in real low dose CT datasets.  

Compared with paired data trained generative models, major challenges for 

their unsupervised counterparts are selecting the most suitable training 

data from the huge volume of CT data pooling for successful generative 

model training and enhancing models’ image synthesis ability. Typical 

architectures for unsupervised generative models are cycle GAN and style 

GAN. [7] 

As mentioned in the original cycle GAN article [8], the training is more 

likely to be successful and stable when focusing on pairs of visually similar 

images. Multiple variations -- data collection settings, image 

reconstruction kernels and differences across patient cohorts -- will change 

the texture of CT image significantly, some of which are important for 

successful cycle GAN training. Based on the study of this thesis, some 

parameters of CT scans - table height and field of view of CT - have a strong 

impact on cycle GAN training. Differences in table heights can lead to a 
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strong variation for the position of the body in the transversal plane and 

images from this plane are widely used in CT related image-to-image 

translation.[9][10] Hence, image pairs should be considered as having low 

visual similarity when the variance in table height is large. In other words, a 

high variance in the table height in training datasets will lead to failures in 

cycle GAN training. Additionally, the field of view is similar to zooming in 

and out of the region of interest (ROI). [12] Unfortunately, cycle GANs have 

a poor performance in zoom related image translation. [13][14]  

Compared with paired trained generative models, denoising performance 

of cycle GANs is questionable due to their imperfect ability to keep 

semantic information from noisy images to denoised images. The 

original cycle GAN article [8] mentioned the “upper bound” of performance 

should be paired data trained counterpart (Pix2pix, [9]) if the same training 

data is used, which our experiments in Chapter 6 seem to support. Therefore, 

another possible barrier for applying unsupervised generative models into 

real practice is the poor image synthesis ability of existing models. 

The black box nature of deep learning is a well-known topic for debate 

between researchers that has been going on for decades. [16] A black box 

means that we do not know how all the individual neurons work together to 

arrive at the final output of the network. However, interpretability is 

extremely important in medical image analysis [17]. Unfortunately, images 

and related radiomics features from denoised by opaque, black box networks 

may lead to features that are not fully trusted by clinicians and decisions 

based on these features may be unconvincing. Moreover, clinicians might 

be led to make an incorrect decision if denoising networks introduce external 

errors into images.  
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Barriers related to implementation 

Radiomics related applications are mainly used by medical physicists and 

clinical researchers, [18][19][20] whose computer coding ability is limited. 

However, as a new technology within artificial intelligence, such software 

engineering skills are needed for building, training, testing, and applying 

generative models into clinical practice. The high coding effort necessary 

for implementing generative models prevent researchers from applying them 

in low dose CTs radiomics widely. [21] 

On the other hand, massive GPU computational resources are needed for 

training, validating, and testing of generative models. However, these 

resources are hard for medical physicists and clinical researchers to 

access due to their high cost. [22] 

Potential solutions for the technical barriers 

As mentioned above, model collapse is a typical problem encountered when 

training generative models, as reported multiple times in the literature. 

[23][24] Early stopping, an optimization technique used to stop training 

before overfitting happens without compromising on model accuracy, seems 

an effective method to avoid model collapse. Moreover, early stopping can 

save computational resource during training. [25][26] Replacing cost 

function of networks from L2 loss to Wasserstein loss seems to be another 

possible solution to alleviate model collapse as reported in recent studies. 

[27][28] 

Neural architecture search and automatic hyperparameter setting is a 

hot research topic in machine learning and is referred to as AutoML. [29][30] 

Some studies have focused on using AutoML methods to automatically 
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build network and set hyperparameter in generative models designing. 

[31][32] We think AutoML has potential to find the best settings of the 

network for denoising low dose CT and improving radiomics performance. 

However, no studies have been published on this topic, which makes it a 

promising topic for further research.  

The major shortcoming preventing supervised trained generative models 

(encoder-decoder network and CGAN) into low dose CTs radiomics is the 

absence of suitable training datasets. One of solutions for this issue is 

training networks based on simulated data as shown in Chapter 3. 

However, this kind of model may not be able to achieve good performance 

in real datasets due to the multiple variations (such as vendor scanners, 

reconstruction kernels) and the difference between simulated noise and real 

noise. Another potential solution for the absence of training datasets is 

collecting the paired dataset, which might be costly or even unfeasible. 

Variation of table height is an important parameter for successful cycle 

GAN training, because it is a significant source of variation in a sinogram. 

Three possible methods may decrease the impact of this variation. First, 

using the sinogram of CT images to let the network adjust for the effect of 

table height on the images. Second, limiting the spread of table height in 

the training data by data selection. In our study (Chapter 6), we limited 

the table height of CT scans to be between 160mm and 170mm. Third, taking 

CT table as marker to register CT scans and moving the CT table into the 

same position for all scans. [33] This CT table moving based method seems 

a more suitable method to normalize table height of CT scans. Field of view 

is another parameter introducing variation that affects training of cycle 

GANs; we believe that one of effective methods to decrease the impact of 
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this variation is data selection before model training. In general, variance 

of mentioned factors should be limited in training datasets by selecting or 

image pre-processing to prevent the training of cycle GANs being affected. 

Improving cycle GAN image synthesis performance in the whole CT 

slide is a difficult task. As mentioned earlier, the upper bound of the 

performance cycle GANs are expected to achieve is that of the supervised 

learning counterparts. However, in radiomics, only the part of the image 

inside the mask (ROI) is relevant. Therefore, generative models for 

radiomics related studies focus on the ROI. Masks should be regarded as 

part of inputs for model training and mask-related terms should be added 

into the cost function when training the networks in order to push models to 

focus on the ROI. This kind of studies are called segmentation guided 

image synthesis, [34][35] which belong to a more general topic - task driven 

image synthesis. [36] Segmentation guided image synthesis may can be 

included into generative models for improving radiomics performance in the 

future. 

Explainable artificial intelligence (XAI) is artificial intelligence (AI) whose 

decisions or predictions can be understood by humans. [37] XAI is a hot 

research topic in recently years that has focused on how to decode the black 

box of AI for humans. Multiple techniques have been introduced to increase 

the interpretability of results from discriminative models. For example, class 

activation mapping (CAM) has been proposed to show a heatmap the 

relevance of each pixel on the model’s decision making during image 

classification, [38] More details about the state-of-the-art XAI for 

discriminative models can be found in [39]. On the other hand, some studies 
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are beginning to make image synthesis of generative models more 

controllable and make the results more explainable for humans. For 

examples, StyleGAN introduced controllable factors into generative models 

at different scale during image synthesis; [40] Disentangled Representation 

Learning (DRL) aims to establish the mapping between image attributes and 

latent feature space to make image semantic edition in latent space more 

controllable. [41] However, studies of controllable edition in medical image 

analysis are limited. Generative models still are black boxes for medical 

imaging and networks cannot provide a confidence for the output. More 

studies about increasing the interpretability of generative models in medical 

imaging are needed in the future. 

Potential solutions for implementation barriers 

Regarding the limited coding ability of medical physicists and clinical 

related researchers, open science is a good tendency to remove the coding 

barriers and alleviate this question. [42] More and more top-tier computer 

science conferences and journals have recommended authors to publish their 

source code when submitting their manuscripts. Therefore, most of the 

source code for the famous networks are publicly available in code share 

sharing platforms such as GitHub [43] and Gitlab. [44] Contributions of 

computer science researchers are thus removing part of the barrier. To 

contribute tho this approach, all software codes of this thesis have been made 

public. The links to the source code repositories codes can be found in the 

corresponding chapters. 

In addition to the source code of generative models, pre-trained generative 

models are hard for non-experts to access. This poses another barrier to 

implement generative networks into clinical practice. Training generative 
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models is computationally expensive and time-consuming, and it is 

generally difficult for care professionals to access high-performance 

computational resources. Compared with source code, there are fewer 

researchers that make their pre-trained models publicly available. Potential 

reasons for this phenomenon are the limited space of code sharing platform 

for each project and the volume of pre-trained models, which is much larger 

than that of the source code. Researchers need to upload their models into 

cloud platforms (such as Google Drive) if they want to share their models 

with others. The additional effort and fees will decrease the willingness of 

researchers to share their models. Code sharing platforms such as GitHub 

should lift the volume limitation of each project while journals and 

conferences should recommend researchers to publish their models. 

This may alleviate the difficulty of accessing pre-trained models. Important 

pre-trained models of this thesis have been uploaded to cloud platforms 

(Google Drive) and links to the models are published in the source code 

repositories of the corresponding projects. 

More solutions to improve low dose CT Radiomics 

This thesis only considered CT denoising in image post-processing. 

However, low dose CT images quality can be enhanced not only in post-

processing domain but also in the sinogram domain. Some commercial 

low dose CT reconstruction solutions, such as Model-based iterative 

reconstruction (MBIR) algorithm, enhance low dose CT image quality by 

removing noise from sinogram data. [45] Moreover, some deep learning 

methods focused on improving low dose CT based on sinogram data, 

[46][47] or deep neural networks were used to perform CT image 
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reconstruction and denoising at the same time. [48] Although sinogram data 

is difficult to access for most researchers, investigating the possibility of 

improving low dose CT radiomics performance based on sinogram data is 

an interesting research topic for future studies.  

As shown in Figure 1-1 and Chapter 1, we think radiation dose is the 

biggest source of variation that decreases radiomics reproducibility in 

low dose CT. However, it is not the only source of variation that 

decreases the reproducibility and performance of radiomics. Different 

scanner vendors, different reconstruction kernels, and different contrast 

enhancement techniques can result in significant changes in the texture and 

decrease the reproducibility of features in low dose CT. As mentioned in 

Chapter 1, the effect of some of these variations on the repeatability of 

features in normal dose CT has been reported in literature. However, these 

studies did not specifically focus on the effect of these variations in low dose 

CTs. Denoising networks trained as part of this thesis will not solve the 

reproducibility issues of radiomic features caused by these variations. A 

comprehensive image normalization method for low dose CTs may be useful 

to improve radiomics performance. [49][50] In some published articles, this 

is called radiomics harmonization. [52][53] Cycle GANs are a suitable basic 

architecture for this task. 

Reproducibility is not the only characteristic that has been challenged 

in low dose CT radiomics, information representation ability has also 

been challenged. [53][54] In the deep learning era, [55] deep features have 

achieved impressive performance in natural image analysis and shown its 

strong information representation ability. [56][57] In light of the good 

results of deep features in natural image analysis, some studies have 
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combined deep features with radiomics features to enhance radiomics 

signature performance. These kinds of methods are referred to as deep 

radiomics. [58][59] Although deep radiomics has been reported to achieve 

a good performance, few studies focused on low dose CTs. Moreover, 

interpretability of included deep features is lower than radiomics features 

and the generalizability of pure deep features-based signatures’ performance 

remains unclear. Therefore, more research on the performance of deep 

radiomics on low dose CT compared with classical radiomics is still needed. 

The radiomics features mentioned so far have been extracted from single 

modality data – CT scans. However, multi-modality medical examinations 

are being used increasingly in clinical practice. For example, PET/CT scans 

are regarded as a powerful tool for tumor staging; [60] CT combined with 

gene data are used to decode tumor phenotypes and may provide clinical-

decision support for doctors (known as radiogenomics);  [61] and both CT 

and MRI are used for radiotherapy planning. [62] Low dose CTs are widely 

used in these examinations and combining low dose CT radiomics 

features with features (radiomics features and/or deep features) from 

other modalities can improve signature performance.   
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Conclusions 

This thesis focused on using generative models to improve radiomics 

performance in low dose CTs.  

We first investigated the benefits of shortcuts in encoder-decoder network 

for low dose CT denoising. Conclusions of this chapter provided some 

guidelines for generative models designing. (Chapter 2) Then we tested the 

effect of paired simulated data trained CGAN and encoder-decoder network 

to improve radiomics reproducibility in low dose CT. Results of this chapter 

showed paired simulated data trained generative models have a good 

performance in improving low dose CT radiomics reproducibility. (Chapter 

3) Thirdly, radiomics was applied into a new application -radiomics and 

deep attention multiple instance learning based lung cancer diagnosis - for 

evaluating the improvement of generative models for radiomics 

performance. Results of this chapter shown that our proposed method 

achieved a better performance in lung cancer diagnosis with higher 

interpretability. (Chapter 4) Fourthly, paired simulation data trained 

generative models were applied to multiple datasets and radiomics based 

applications for evaluating these models’ effect to improved radiomics 

performance in low dose CT. Results of this chapter showed tha pre-trained 

models can improve low dose CT radiomics performance. (Chapter 5) 

Finally, an unpaired real low-high dose CT data trained generative model - 

Cycle GAN - was adopted to investigate the possibility of achieving a 

similar performance from paired simulated data trained counterparts. 

Results of this chapter showed that unpaired data trained generative models 

can improve radiomics reproducibility and performance. (Chapter 6)  

Results from different chapters showed that generative models can improve 

radiomics reproducibility and performance in low dose CT.     
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Appendix I Summary 

English summary 

Along with the increasing demand of low dose CT in clinical practices, low 

dose CT radiomics has shown its potential to provide clinical decision 

support in oncology. As a trade-off of low radiation exposure in low dose 

CT imaging, higher noise is present in these images. Noise in low dose CT 

decreases the texture information of image, and the reproducibility and 

performance of CT radiomics. One potential solution worth exploring for 

improving the reproducibility and performance of radiomics based on low 

dose CT is denoising the images before extracting radiomic features. As the 

state of art method for low dose CT denoising, generative models have been 

widely used in denoising practices. This thesis investigated the possibility 

of using generative models to enhance the image quality of low dose CTs 

and improve radiomics reproducibility and performance. 

In the first research chapter (Chapter 2) of this thesis, we investigate the 

benefits of shortcuts in encoder-decoder network for CT denoising. An 

encoder-decoder network (EDN) is an important architecture for the 

generator in generative models and this chapter provides some guidelines to 

help us design generative models. Results showed that over half of the 

shortcuts are necessary for CT denoising. However, the network should keep 

sparse connection between the encoder and decoder. Moreover, deeper 

shortcuts have a higher priority to be removed in favor of keeping sparse 

connections. 
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Paired training datasets are needed for training most generative models. 

However, collecting these kinds of datasets is difficult and time-consuming. 

To investigate the effect of generative models in improving low dose CT 

radiomics reproducibility, (Chapter 3) two included generative models – 

Conditional Generative Adversarial Network (CGAN) and END - were 

trained on paired simulation low-high dose CT images. The trained models 

are applied to simulated noisy CT images and real low dose CT images. 

Results showed that denoising using EDN and CGANs can improve the 

reproducibility of radiomic features from noisy CTs (including simulated 

data and real low dose CTs). 

To test the improvement of enhanced low dose CT radiomics in real 

applications more comprehensively, low dose CT radiomics was applied for 

a new application. (Chapter 4) The objective of this application is to 

develop a lung cancer classification model at the subject (patient) level from 

multiple examined nodules, without the need to have specific expert findings 

reported at the level of each individual nodule. Lung cancer classification 

was regarded as a multiple instances learning problem, CT radiomics were 

used as biomarkers to extract information from each nodule and deep 

attention-based MIL is used as the classification algorithm at the patient 

level. Results showed that the proposed method can achieve the best 

performance in lung cancer classification compared with other MIL methods 

and that the introduced attention mechanism can increase the interpretability 

of results. 

To comprehensively investigate the improvements of generative models for 

CT radiomics performance in real applications, pre-trained generative 

models are applied into multiple real low dose CT datasets without fine-
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tuning. (Chapter 5) Improved radiomics features were applied into multiple 

radiomics related applications – tumor pre-treatment survival prediction and 

deep attention-based MIL based lung cancer diagnosis. The results showed 

that generative models can improve low dose CT radiomics performance. 

To investigate the possibility of using unpaired real low-high dose CT image 

to establish a denoiser and using thus trained denoiser to enhance radiomics 

reproducibility and performance, a Cycle GAN was adopted as the testing 

model in this chapter. (Chapter 6) The Cycle GAN was trained based on 

paired simulated datasets (for comparison study with EDN and CGAN) and 

unpaired real datasets. The trained models were applied to simulated noisy 

CT images and real low dose CT images to test the improvement of 

radiomics reproducibility and performance. The results showed that Cycle 

GANs trained on both simulated and real data can improve radiomics 

reproducibility and performance in low dose CT and achieve similar results 

compared to CGANs and EDNs 

Finally, the discussion section of this thesis (Chapter 7) summarized the 

barriers that prevent generative models to be applied apply for real low dose 

CT radiomics and propose the possible solutions for these barriers. 

Moreover, this discussion section mentioned other possible methods to 

improve low dose CT radiomics performance. 
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Nederlandse samenvatting 

Samen met de toenemende vraag naar lage dosis CT in de klinische praktijk, 

hebben radiomics gebaseerd op lage dosis CT potentieel om klinische 

besluitvormingsondersteuning te bieden in de oncologie. De lage 

blootstelling aan straling bij CT-beeldvorming met lage dosis betekent wel 

dat er meer ruis aanwezig is in deze afbeeldingen. Ruis in lage dosis CT 

vermindert de textuurinformatie van het beeld en de reproduceerbaarheid en 

prestaties van CT-radiomics. Een mogelijke oplossing die het onderzoeken 

waard is voor het verbeteren van de reproduceerbaarheid en prestaties van 

radiomics op basis van een CT met een lage dosis, is het verwijderen van 

ruis voordat de radiomic-kenmerken worden geëxtraheerd. De meest 

geavanceerde methode voor ruisverwijdering in CTs met een lage dosis, zijn 

generatieve modellen die op grote schaal gebruikt worden. Dit proefschrift 

onderzocht de mogelijkheid om generatieve modellen te gebruiken om de 

beeldkwaliteit van lage dosis CT’s te verbeteren en de reproduceerbaarheid 

en prestaties van radiomics in lage dosis CT’s te verbeteren. 

In het eerste hoofdstuk (Hoofdstuk 2) van dit proefschrift onderzoeken we 

de voordelen van snelkoppelingen in het encoder-decodernetwerk voor CT-

ruisonderdrukking. Een encoder-decoder netwerk (EDN) is een belangrijke 

architectuur voor het generator deel van generatieve modellen. Dit 

hoofdstuk kan enkele richtlijnen geven om ons te helpen bij het ontwerpen 

van generatieve modellen. Resultaten toonden aan dat meer dan de helft van 

de snelkoppelingen nodig zijn voor CT-ruisonderdrukking, maar het 

netwerk moet de schaarsere verbindingen tussen encoder en decoder 

behouden.  
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Gepaarde datasets zijn nodig voor het trainen van de meeste generatieve 

modellen, maar het verzamelen van dit soort datasets is duur en tijdrovend. 

Om het effect van generatieve modellen op het verbeteren van de 

reproduceerbaarheid van lage dosis CT radiomics te onderzoeken, 

(Hoofdstuk 3) zijn twee generatieve modellen - Conditional Generative 

Adversarial Network (CGAN) en END - getraind op gesimuleerde lage-

hoge dosis CT beelden. Getrainde modellen worden toegepast op 

gesimuleerde CT-beelden met ruis en CT-beelden gemaakt met een 

daadwerkelijk lage dosis. De resultaten toonden aan dat ruisonderdrukking 

met behulp van EDN en CGAN's kan worden gebruikt om de 

reproduceerbaarheid van radiomische kenmerken van CT's met ruis 

(inclusief gesimuleerde gegevens en CT’s gemaakt met een lage dosis) te 

verbeteren. 

Om de verbetering van ruis-onderdrukte lage dosis CT-radiomics in echte 

toepassingen te testen, werd meer uitgebreide, lage dosis CT-radiomics 

toegepast in een nieuwe toepassing. (Hoofdstuk 4) Het doel van deze 

toepassing is het ontwikkelen van een classificatiemodel voor longkanker 

op het niveau van de patiënt uit meerdere onderzochte nodules, zonder dat 

specifieke bevindingen van deskundigen op het niveau van elke afzonderlijk 

nodule moeten worden gerapporteerd. Classificatie van longkanker wordt 

beschouwd als een ”multi-instance learning (MIL)”, CT-radiomics kan 

worden gebruikt als biomarkers om informatie uit elke nodule te extraheren 

en diepgaande op aandacht gebaseerde MIL wordt gebruikt als het 

classificatie-algoritme op patiëntniveau. Resultaten toonden aan dat de 

voorgestelde methode de beste prestaties kan leveren bij de classificatie van 

longkanker in vergelijking met andere MIL-methoden en dat het 
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geïntroduceerde aandachtsmechanisme de interpreteerbaarheid van de 

resultaten kan vergroten. 

Om de verbeteringen van generatieve modellen voor CT-radiomics 

prestaties in echte toepassingen uitgebreid te onderzoeken, werden vooraf 

getrainde generatieve modellen toegepast in meerdere lage dosis CT-

datasets zonder fine-tuning. (Hoofdstuk 5) Verbeterde radiomic-functies 

werd toegepast in meerdere radiomic-gerelateerde toepassingen - 

overlevingsvoorspelling voor de behandeling van tumoren en diepgaande, 

op aandacht gebaseerde en op MIL gebaseerde longkankerdiagnoses. De 

resultaten toonden aan dat generatieve modellen de prestaties van lage dosis 

CT-radiomics kunnen verbeteren. 

Om de mogelijkheid te onderzoeken van het gebruik van ongepaarde lage-

hoge dosis CT-beelden om ruisonderdrukking vast te stellen en het gebruik 

van getrainde ruisonderdrukking om de reproduceerbaarheid en prestaties 

van radiomics te verbeteren, werd Cycle GAN in dit hoofdstuk als testmodel 

onderzocht. (Hoofdstuk 6) Het Cycle GAN model werd getraind op basis 

van gepaarde gesimuleerde datasets (voor vergelijkingsonderzoek met EDN 

en CGAN) en ongepaarde echte datasets. De getrainde modellen werden 

toegepast op gesimuleerde CT-beelden met ruis en CT-beelden met een lage 

dosis om de verbetering van de reproduceerbaarheid en prestaties van 

radiomics te testen. De resultaten toonden aan dat Cycle GANs die zijn 

getraind op zowel gesimuleerde als echte gegevens de reproduceerbaarheid 

en prestaties van radiomics in lage dosis CT kunnen verbeteren en 

vergelijkbare resultaten kunnen bereiken als CGAN’s en EDN's. 
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Tot slot, geeft de discussiesectie van dit proefschrift (Hoofdstuk 7) een 

samenvatting van de belemmeringen die bij generatieve modellen kunnen 

worden tegengekomen als zij worden toegepast in lage dosis CT-radiomics 

en stelt de mogelijke oplossingen voor deze belemmeringen voor. 

Bovendien geeft de discussiesectie de andere mogelijke methoden om de 

prestaties van lage dosis CT-radiomics te verbeteren. 
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Appendix II Impact Paragraph 

CT radiomics has the potential to provide clinical decision support in 

oncology due to the wide us of CT scanning in clinical practive. [1] Due to 

the long-term risk posed by ionizing radiation exposure, low dose CTs have 

become more popular (according to the As Low As Reasonably Achievable 

(ALARA) principle [2]) in clinical practice, especially for screening and 

monitoring of populations at risk. Radiomics from low dose CT might be an 

effective tool for quicker and more reliable screening. [3] However, as a 

consequence of the low radiation exposure in low dose CT imaging, noise 

in such images is more pronounced and this noise decreases the reliability 

and performance of radiomics. Improving the reproducibility of radiomics 

and its performance in clinical applications from low dose CTs is therefore 

a timely and potentially impactful research topic. 

One potential solution worth exploring for improving the reproducibility and 

performance of radiomics based on low dose CT is denoising the images 

before extracting radiomic features. As the state of art low dose CT 

denoising method, generative models are used as denoisers in this thesis to 

improve low dose CT radiomics reproducibility and performance. These 

studies may bring certain scientific and social impacts. 

Scientific impacts 

1. All our studies are published in international peer-reviewed journals (such 

as: Computer Methods in Biomechanics and Biomedical Engineering: 

Imaging & Visualization, Physics in Medicine & Biology, Medical Physics, 

Medica Physica, Journal of Applied Clinical Medical Physics). 
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2. All our studies are available as open access publications. 

3. Chapter 2 investigates the beneficials of shortcuts in encoder-decoder 

network for CT denoising, results provided guidelines for network designing 

in denoising task. 

4. Chapter 3 is the first effort to improve the reproducibility of radiomic 

features calculated on low dose CT scans by applying generative models. 

5. Chapter 4 introduces a new lung cancer diagnosis method; this method 

achieves a good performance in classification with a higher interpretability. 

6. Chapter 5 is the first effort to improve the performance of radiomics-

based models from features extracted from low dose CT scans. 

7. Chapter 6 assess the potential of using cycle GAN to denoise low dose 

CTs and improve radiomics reproducibility and performance. 

Social impacts 

1. Codes and important pre-trained generative models of this thesis are 

available for public use as open source; we hope that these can help medical 

physicists and other care professionals to remove barriers for applying 

generative models for low dose CT radiomics. 

2. Our proposed lung cancer diagnosis solution can improve the detection 

and management of early lung cancer, and we hope our method can reduce 

the mortality of lung cancer for patients. 
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3. Improving low dose CT radiomics performance may reduce ionizing 

radiation exposure for patients and therefore reduce the number of cancers 

and other diseases caused by this exposure. 
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