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Introduction
The present thesis focuses on the analysis and implementation of exhaled breath 
volatile organic compound (VOC) analysis in clinical settings of gastrointestinal 
diseases in terms of disease diagnosis and prognosis. VOC analysis can be 
performed in various means (e.g. faeces, blood, urine, saliva, bile, breath), although 
breath is the most prominent due to its patient-friendliness in sampling. It is a well-
known and documented fact that dogs can smell cancer [1-4], and in general, animal 
sniffing studies have shown some fascinating results; animal canine olfactory acuity 
is over 100.000 times stronger than human acuity [4]. Another example is the case of 
giant African pouched rats that showed superiority in diagnosing tuberculosis over 
microscopy [4]. A few years ago, the first-ever human sniffing case was also reported, 
whereby a British woman could smell Parkinson’s [5]. This woman’s extraordinary 
smell helped scientists identify ten molecules that could lead to the first diagnostic 
test for the condition [5]. Breath has also been investigated since ancient times when 
clinicians used the smell of breath as a diagnostic tool for various illnesses. For 
example, the Greek physician Hippocrates of Cos noted the importance of breath 
smell in diagnosing liver disease, using the term “foetor hepaticus” to describe the 
characteristic breath odour associated with liver impairment [6]. The aforementioned 
fascinating results, the high costs for training and housing animals, and the genuine 
interest in breath research over the centuries led to significant technological 
developments in sampling, storing, and analysing breath for volatile chemicals. These 
technological developments spiked even more interest in breath research.
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Exhaled breath applications
Exhaled breath VOC analysis holds a lot of potential due to its promising use as a 
non-invasive, cost-effective, and easy-to-use diagnostic and monitoring tool. Despite 
all the interest and technological advances, exhaled breath is yet to find diagnostic 
implementations in the clinics. Many confounding factors can influence exhaled 
breath, such as lifestyle, environment, medication, smoking, or diet [7]. Exhaled 
breath also generates enormous and complex datasets that are difficult to handle; 
for example, how one should analyse their data to separate background noise from 
biological information [8]. Nevertheless, there are good implementation examples 
of exhaled breath tests, such as the alcohol consumption [9], C13 isotope labelled 
substrate [10] monitoring, and the hydrogen [11] breath tests. The alcohol breath 
test measures how much alcohol there is in the blood. In beverage consumption, 
ethanol goes to the stomach and the small intestine, and from there, it is absorbed in 
the blood, carried through the body to the lungs, and then excreted through breath. 
The C13 isotope test monitors in-vivo metabolic activities. A probe containing a C13 
isotope (e.g. C13-labelled methacetin) is administered to a subject, which is then 
metabolised in the body, and ultimately excreted via the breath in the form of C13O2. 
The breath excretion of this isotope is used as an indication of the metabolic activity 
of enzymes in organs such as the liver. An example of such a test is the methacetin 
breath test (MBT), which monitors postoperative liver metabolism and impairment 
in subjects undergoing hepatectomy [10]. C13-labelled methacetin is de-alkylated in 
the liver by the CYP1A2 enzyme, forming paracetamol and C13-formaldehyde, which 
is then converted to C13O2 and excreted in the breath. The production of C13O2 
correlates with general liver function, and it does not say anything regarding the 
stage of liver impairment. The design of a C13 isotope labelled substrate breath test 
should also be based on knowledge of a specific metabolic function or malfunction. 
Established liver metabolic pathways and their associated excreted C13O2 (Chapter 
2) could potentially be used to develop other C13 isotope breath tests. Lastly, the 
hydrogen breath test is fundamentally different from the C13-labelled isotope test 
because it involves using various substrates such as glucose, lactose, lactulose, and 
fructose to diagnose small intestine bowel overgrowth (SIBO), or lactose or fructose 
malabsorption [11]. Such a test measures the amount of hydrogen in breath. Bacteria, 
especially anaerobic, colonizing the large bowel in healthy and the small bowel in 
diseased conditions produce hydrogen by fermentation of unabsorbed carbohydrates. 
Though small amount of hydrogen is produced from limited amounts of unabsorbed 
carbohydrate reaching the colon, large amounts of hydrogen may be produced if 
there is malabsorption of carbohydrates in the small intestine, allowing larger amount 
to reach the colon or if there is excess of bacteria in the small bowel. The hydrogen 
produced by the bacteria is absorbed through the wall of the small or large intestine 
or both. The hydrogen-containing blood travels to the lungs where the hydrogen is 
released and exhaled in the breath. The aforementioned examples indicate that there 
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is information to be found in exhaled breath. Although it seems as if the right way of 
analysing it and capturing it consistently in more advanced settings such as these in 
the clinics remains a challenge.

Exhaled breath data analysis
Breathomics
Measuring the vast amount of volatile chemicals in exhaled breath relates to 
the overall –omics field (including proteomics, metabolomics, genomics, and 
transcriptomics), as large and biologically complex datasets similarly characterise 
it. “Omics” technologies have a broad range of applications, and they are aimed at 
the detection of genes (genomics), mRNA (transcriptomics), proteins (proteomics), 
and metabolites (metabolomics) in biological samples in a non-targeted manner. 
Advances in microarray technology busted genomics and transcriptomics research, 
whereas advances in mass spectrometry boosted proteomics and metabolomics 
research. Similarly, breathomics (or volatilomics) are aimed at detecting volatile 
organic compounds, and they have advanced due to advances in mass spectrometry. 
“Omics” technologies adopt a holistic view of molecules that make up a cell, tissue, 
or organism, and they are considered hypothesis-generating since no hypothesis is 
known and all data are acquired and analysed to define a hypothesis that can be 
tested. Furthermore, “omics” technologies can be applied to understand better healthy 
physiological and diseased processes used for screening, diagnosis, prognosis, or 
understanding disease aetiology. “Omics” are also used in biomarker discovery, and 
multiple molecules are simultaneously investigated.

Difficulties arise when analysing genomics, transcriptomics, proteomics, and meta-
bolomics data concerning how one should properly collect, handle, and analyse the 
data; breathomics data are no different. For example, genomics and transcriptomics 
analysis requires real-time PCR validation regarding microarray changes, whereas 
proteomics analysis requires complex algorithms to match the data to theoretical 
databases to enable protein identification and quantification. Metabolomics analysis 
requires using univariate, multivariate, supervised, or unsupervised statistical methods 
to look for underlying data patterns and uncover biological information that can be 
used for further hypothesis-testing. Multiple studies have paved the way for how such 
complex biological data should be approached based on their type (e.g. genomics 
or metabolomics) [12-17]. Like metabolomics analysis, breathomics analysis requires 
statistical methods to uncover biological information. Data preprocessing is crucial 
when dealing with numerically complex volatilome data (Chapter 3). Pre-processing 
typically comprises noise and baseline removal, correcting peak shifts due to column 
ageing, temperature drift or biochemical interaction, and peak picking. Additionally, 
most of the VOCs in breath samples are not present in all samples. This leads to 
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another preprocessing step: the retention of compounds present in at least 10% of 
the samples. Next, normalisation, transformation, and scaling steps should be applied 
before supervised or unsupervised methods are applied to the breathomics data 
for further analysis (Chapter 3). The steps above should all be considered standard 
practice in breathomics analyses, although this is not always the case [8].

Data quality and challenges when performing exhaled breath 
analysis
Data science has seen tremendous development and implementation in the last 
decades. Artificial intelligence, machine learning, and deep learning algorithms find 
implementation in almost every field, such as scientific [8, 18, 19], economic [20, 21], 
political [22, 23], or geographic [24, 25], to name a few. This is because technology 
has advanced, and the way of life has become digital and involves large amounts of 
data. These algorithms have promoted a healthier and improved way of living through, 
for example, automated cars (e.g. Tesla) or wearables (e.g. smart watches) and have 
ultimately invaded the most challenging and complex research fields and questions 
to be answered to date. A prime example of this is the medical research field and its 
research questions. There have been various successful big data implementations of 
these algorithms in clinics. They have helped in clinical decision support systems (e.g. 
the surgical intelligent knife [26, 27]) or medical imagining (e.g. diabetic retinopathy 
screening [28]). These algorithms can deal with multi-variable and high complexity 
datasets; however, they do require the data to be of high quality (e.g. no background 
noise, no non-biological variation present or instrumental artefacts). Assuming that 
biological information is present in the data, poor data quality is one of the main reasons 
why these algorithms struggle to solve certain medical challenges and questions.

Breathomics data are characterised by high complexity and multi-variable datasets. 
Both aspects can be explained by diving into the origin of the exhaled VOCs. VOCs 
are detected in different body matrices such as breath, faeces, urine, bile, breast milk, 
and blood, resulting from exogenous or endogenous sources (Chapter 2). Exogenous 
VOCs (EVOCs) originate from the gut microbiome or the environment. The latter are 
absorbed through the skin, inhaled, or ingested with food and beverages. Moreover, 
they might be the result of therapeutic interventions. Biochemical processes in body 
cells and tissues produce endogenous VOCs, such as in lung and airway tissues 
or other organ tissues (e.g. liver or kidney); these VOCs can reflect apoptosis, 
inflammation or oxidative stress [29]. VOCs may arise from body chemical reaction 
cascades in diseased individuals due to cellular damage; they are released in the 
bloodstream and spread among the body excretions (Chapter 2). A single breath 
sample contains thousands of VOCs, leading to multi-variable datasets [30]. These 
VOCs also interact, causing non-linearities in the data, which translates to even higher 
data complexity.
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Proper handling and preprocessing of breathomics data (Chapter 3) does not necessarily 
lead to high-quality data or reproducible results. The clinical study design plays a crucial 
role in both aspects. The clinical study design term refers to the formulation of trials and 
experiments, as well as observational studies in research involving humans. Several 
pitfalls and mistakes that occur when one performs a breath VOC analysis lead to low-
quality data and non-reproducible results (Chapter 2 and Chapter 4). A vital pitfall that 
influences data quality and does not allow for reproducible results is the different ways 
of sampling, storing, or analysing the breath samples are used, which most likely has 
introduced bias in the data. Therefore, it is paramount to develop a standardisation 
framework for breath analysis research; currently, attempts toward this are ongoing 
[31-33]. A common mistake that further hampers result reproducibility is that many 
studies do not perform any internal or external validation of their findings, or correction 
of possible confounding factors is also not considered (Chapter 2). Another pitfall is 
that there is no consensus on what should be regarded as a proper way of handling the 
data regarding statistical modelling. There is an abundance of available tools to conduct 
statistical modelling, though it is not always clear what should be chosen or how should 
one approach their data (Chapter 3).

Another critical challenge in achieving high-quality and trustworthy data is getting 
“good” control cohorts to compare the diseased groups and determine whether 
found VOCs are disease-specific or not. It is also challenging to define “healthy” in the 
context of breath since hidden, underlying issues may be present in each participating 
individual (Chapter 4). It has recently been reported that 1488 VOCs have been found 
in the exhaled breath of healthy individuals [34], meaning that it is challenging to say 
whether identified VOCs are indeed disease-specific are not. A solution to this could 
be to perform in vitro and animal studies to identify biomarker VOCs that are exclusive, 
reliably produced, and disease-specific before human studies. This would also require 
identification of VOC origin, chemical structure, and the possibility of VOCs originating 
from human disease. A targeted VOC human study could be conducted as soon as 
these steps are performed.

High-quality breathomics data and reproducible results are hard to generate also 
because they are prone to batch effects [18]. Batch effects are sources of variation 
unrelated to the examined samples or inter- or intra-sample class differences. 
Environmental or methodological differences can cause batch effects during sample 
collection, chemical analysis, and data handling (Chapter 4). Batch effects are a 
common problem; they also occur in the other –omics fields. To eliminate batch 
effects as much as possible, ideally, every sample would have to be measured by 
the same personnel, at the same location, at the same time, and under the same 
conditions, and this is not achievable. Batch effects might still occur even if one 
takes all precautions possible. This is because analytical techniques such as gas 
chromatography-mass spectrometry or nuclear magnetic resonance have become 
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highly sophisticated and sensitive, capturing biological and non-biological variations. 
Scientific literature suggests statistical ways to deal with batch effects in genomics, 
transcriptomics, proteomics, and metabolomics data [18]; no batch-effect correction 
techniques have been reported in the literature yet for breathomics data (Chapter 
4). The batch effect correction techniques are data-specific (e.g. specifically made 
for metabolomics data), and therefore, they could not be applied to breathomics 
data. A way to circumvent batch effects could be using quality controls in regular 
intervals when running a breath VOC analysis. The use of quality controls is a known 
practice in metabolomics studies, with demonstrated successful applications [35]. 
Quality controls can help improve and monitor analysis and data quality, and their use 
should become standard practice when conducting breathomics analysis (Chapter 4). 
Monitoring analysis and data quality can lead to high-quality and reproducible data 
and eventually allow for cross-sectional study comparisons. These, together with a 
standardised framework and a consensus on analytical and statistical analysis, can 
help bring exhaled breath to the clinics.

Statistical modelling in exhaled breath analysis
Exhaled breath analysis strongly relies on statistical modelling when multiple VOCs are 
simultaneously considered, and the development of a successful exhaled breath VOC 
test would require high model classification and prediction accuracy. Numerous options 
exist when it comes to building a predictive model. Scientific literature suggests ensemble 
and linear regression techniques successfully built high-accuracy predictive models 
[36]. The linear regression techniques are the most well-known and applied in biological 
data (e.g. Partial Least Squares Regression Analysis [36]). Ensemble techniques are split 
into three main categories: boosting, bagging, and stacking. The most well-known are 
AdaBoost, Random Forest, and Gradient Boosting [36], and they include a wide range 
of successful applications such as flood hazard, earthquake damage, or sleep pattern 
identification, to name a few [37-44]. Ensemble techniques and mainly Random Forest 
have only recently gained attention in the field of breath analysis research, and they have 
started to be applied (Chapter 5). Breath research should continue shifting its interest 
towards ensemble techniques because they can deal better with multi-variable and 
complex biological data (e.g. breathomics data) than the linear regression techniques 
(Chapter 5). The reason is that linear regression techniques assume only linear relations 
amongst the dataset variables (e.g. VOCs), whereas ensemble techniques assume both 
linear and nonlinear relations. VOCs in breath samples interact with each other, which 
means that nonlinear relations are formed.

Applications in computational science have shown that more than one data source can 
often lead to better classification or prediction results [19]. It is a common belief that 
the more data, the merrier the result since all these statistical approaches can cope 
with large volumes of data. Generally, their success ratio improves when more data 
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are fed into them. Although combining different types of data does not always yield 
higher model performance, considerations have to be taken into account before any 
analysis is conducted based on the type of study and the ultimate analysis aim [19]. 
The idea behind the “the more, the better” principle is that different data sources can 
generate complementary datasets by capturing different entities (Chapter 6). There is 
no gold standard for what can be complementary to what; various data sources can 
be considered complementary depending on the type of analysis and the question 
at hand each time. Important to be considered before performing data fusion would 
be a proper data pre-fusion treatment. Variable scaling is required before any data 
from different sources are concatenated since the magnitude of data coming from 
various sources is most likely different. From a breath VOC research standpoint, it 
would make sense to fuse data from different sources. Different sources would mean 
VOCs produced by, for example, an inflamed organ, which could be released via 
different routes (e.g. faeces, urine, or breath) through the bloodstream. There are three 
main ways of data fusion (i.e., low-level, mid-level, and high-level), which have been 
successfully implemented in biological data; however, there is no available literature 
on fusion of VOCs either coming from different sources or combined with other types 
of data (e.g. metabolomics). The breath community should more deeply examine the 
concept of data fusion. It should also keep in mind that as the complexity and amount 
of data increase, more advanced and sophisticated fusion methods might be needed 
(Chapter 6). Advanced fusion ways have been recently proposed, outperforming 
traditional fusion methods when biological data were used [19, 45].

Breath VOC biomarker discovery also relies on identifying and interpreting VOC 
that help build good predictive models. VOC identification and interpretation could 
become a bottleneck when advanced predictive models (e.g. ensemble techniques) 
are used instead of linear regression techniques due to data complexity. Variable (e.g. 
VOC) transformation is often needed when advanced predictive techniques are used. 
If advanced predictive models are used, advanced ways of tracing and visualization 
of VOCs might be required, too [46].  The pseudo-sample principle has proved to be 
a successful way of doing so [19, 47] by visualizing VOC importance and behaviour in 
biological samples (Chapter 6). The pseudo-sample principle is based on a nonlinear 
plot idea to represent variable importance as a set of artificial samples constructed to 
evaluate each variable independently. The pseudo-sample principle seems promising 
and helpful for future investigations, but it can also prove troublesome due to its 
complexity. Nonetheless, this approach presents a way of dealing with a common 
problem in biomarker discovery research.
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Case study based on acquired knowledge
The present thesis performed a case study that took into account knowledge gained 
here and tried to use the latest strengths and technological developments in the field to 
test and validate the theories and points made thus far. Primary Sclerosing Cholangitis 
was the examined disease; PSC is an orphan liver disease since it roughly affects 
60.000 individuals in the western world. Many VOCs coming from breath have been 
linked to liver impairment (Chapter 2), and the case study used these compounds in a 
targeted way to see whether they could be used to differentiate between PSC diseased 
individuals and Inflammatory Bowel Disease diseased individuals with concurring PSC. 
The choice of IBD was made given the high correlation between IBD/PSC patients with 
PSC patients. As discussed in Chapter 4, the case study also used quality controls to 
monitor data and analysis quality for possible batch effects, and it preprocessed the 
data by following the preprocessing steps mentioned in Chapter 3. Statistical modelling 
of the PSC breathomics data was conducted by implementing unsupervised and 
supervised machine learning approaches, as suggested in Chapter 5.

The case study gave good classification results, confirming that the selected VOCs 
can also potentially be used for PSC detection. The good classification results 
also confirmed the Chapter 5 statement that ensemble methods work better on 
complex biological data than linear regression methods. Linear regression was also 
implemented, but no satisfactory results were obtained. The study results were 
validated by using a test set, and the found VOCs were tested for the significance of 
confounding factors such as smoking or diet (as discussed in Chapter 2 in common 
mistakes and pitfalls in breath research). The case study also aims to use and validate 
the proposed in Chapter 6 data fusion and variable interpretation approaches by 
combing the breath VOCs with faecal VOCs. This is still a work in progress; therefore, 
it is not discussed in the present thesis. Data fusion would be believed to improve 
the case study classification results based on the theory of “leaky-gut” [48]. This 
theorem states that an ongoing inflammatory stimulus, which originates from the gut, 
preserves a bile duct inflammation in PSC patients, leading to molecule excretion 
in breath samples, faecal samples, or blood samples. This would render breath and 
faecal VOCs as complementary data.

Standard practices, alternatives, and future 
perspectives in breath VOC analysis
Breath VOC research has been mainly focused on using Gas Chromatography-Mass 
Spectrometry in biomarker discovery [41, 45, 49-53]; this is also what was used in the 
present thesis case study (Chapter 7). Less commonly used yet successful techniques 
are Proton Transfer Reaction-MS, Selected Ion Flow-Tube-MS, Ion-Molecule 
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Reaction-MS, Field Asymmetric Ion Mobility Spectrometry, and E-nose (Chapter 2). 
In GC-MS, a mixture is split into individual substances with heating, and the heated 
gases are carried through a column with an inert gas (e.g. Helium). As the separated 
substances emerge from the column opening, they flow into the MS, where they are 
identified by the mass of the analyte molecule. In PTR-MS, the organic trace gases 
are ionized by undergoing a proton-transfer reaction with H3O+ ions. The product 
ions are then mass analysed and detected by a quadrupole mass spectrometer, 
yielding information about the neutral precursors. The reaction is exothermic and 
efficient for those compounds with a proton affinity (PA) higher than the proton affinity 
of water. In SIFT-MS, the selected reagent ion is injected into the flow tube, and 
excess energy is removed through collisions with the carrier gas. The sample is then 
introduced at a known flow rate, and the reactive compounds it contains are ionized 
by the reagent ion to form well-characterized product ions. FAIMS is a technique 
based on gas phase separations on a millisecond timescale at atmospheric pressures 
and ambient temperature. It separates ions based on their differential mobility in high 
and low electric fields, a function of mass, charge, size, and shape. E-nose mimics 
human olfaction, whose functions are non-separate mechanisms (i.e. the smell or 
flavour is perceived as a global fingerprint); it consists of a sensor array, pattern 
reorganization modules, and headspace sampling to generate a signal pattern that 
is used for characterizing smells. Compared to GC-MS, PTR-MS seems to provide 
a more complex picture of the compounds, and it can distinguish between different 
disease severity classes, whereas SIFT-MS provides a higher detection sensitivity for 
compound concentrations lower than parts per billion and real-time quantification. 
IMR-MS is more selective and sensitive than GC-MS and does not require any pre-
concentration step before analysis compared to other MS-based technologies. 
FAIMS exceeds other MS-based methods because it can be applied at the point of 
care since it offers an immediate compound response (as long as the compounds 
are known); this establishes it as a cost-effective clinical test. Lastly, E-nose provides 
a rapid profile of detected compounds on a point-of-care base because it can be 
performed instantaneously in an outpatient care setting, whereas MS-based methods 
cannot. The disadvantage of the E-nose technology is that the individual compounds 
are not identifiable compared to MS-based technologies.

It cannot be said whether one of the techniques above is the best for breath VOC 
analysis since each one has its advantages and disadvantages over the others. More 
research would be needed on the less commonly used MS-based techniques, and 
even so, a standardised breath analysis framework based on an MS-based approach 
might not be what could ultimately lead to breath diagnostic test applications in the 
clinics. MS-based technologies are generally not portable (micro-GC-MS has been 
developed [56]) and are expensive, whereas the E-nose technology is inexpensive, 
portable, and rapid. E-nose does not allow for compound identification; however, a 
good starting point for bringing breath tests into clinics would be a reliable screening 
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or monitoring tool, and for such a tool, compound identification does not seem to be a 
necessity. Breath research has focused on untargeted approaches by blindly looking 
into breath samples for VOCs. Analysing breath in such a way provides a holistic 
overview of the breath content, making it difficult to say whether these changes 
are either specific to a particular disease or more general markers of underlying 
mechanisms such as inflammation. As noted in Chapter 2, other approaches (e.g. 
exogenous VOCs; EVOCs) might be more beneficial. Especially in liver breath VOC 
research, such approaches would make sense due to liver metabolic capacity, and they 
should be investigated in more depth in the future. These approaches would require 
exposing or ingesting a cohort to a particular compound concentration (i.e. probe), 
sampling their breath after exposure or ingestion, and measuring the associated 
EVOC metabolite in inhaled air to determine liver function. An EVOC analysis enables 
a tailored, controlled exposure to a compound of interest, providing a better chance 
to identify disease-specific markers. An EVOC analysis would also be more robust 
to background VOCs (e.g. environmental VOCs), which are often one of the major 
confounding factors in the field. However, there are weaknesses to such an approach 
too. Exposure to or ingesting a specific probe that leads to a particular EVOC product 
in the breath may require METC approval, patient preparation, and most importantly, 
it might be a source of a potential allergy (Chapter 2). An EVOC approach would also 
require an extensive understanding of the probe metabolism, and to achieve this, 
more in vitro analyses are needed. 

Focus on technological developments should also be given; developments such 
as the ReCIVA sampling apparatus [54] are guaranteed to help advance the breath 
research field further. However, breath VOC research must first ensure a high-quality 
laboratory practice by establishing a common and consistent framework before 
exploring new ways such as the ones mentioned above. It is of paramount importance 
to have a standardised framework with standard rules of analysis because that way, 
external data influential factors can be eliminated or significantly reduced (Chapter 2 
and Chapter 4).

Final considerations and conclusion
The present thesis aimed to answer whether breath VOC analysis could find 
diagnostic and prognostic clinical applications. The present dissertation is imperfect 
and cannot answer this fully; however, it can speculate on the future of the breath 
field. Breath research has remained stagnant in the last couple of decades regarding 
clinical applications regarding disease diagnosis and prognosis. In the financial and 
banking sector, there is the expression of “path to green” when managing risks that 
the banks are exposed to and how to keep these risks within risk appetite. Risk 
appetite is the level of risk that an organization is prepared to accept to pursue its 
objectives before action is deemed necessary to reduce the risk. In breath research, 

8



196

Chapter 8

such a “path to green” would mean successful diagnostic and prognostic clinical 
day-to-day applications. Research conducted in the present thesis shows a future 
in exhaled breath research, and such a “path to green” would entail identifying and 
dealing with the reasons that led to this stagnation. Three main components have led 
to this stagnation: lack of a standardised framework in terms of clinical design, lack 
of a consensus in data handling and statistical tool availability and use, and wavering 
ideologies on whether targeted or untargeted approaches should be considered. 
The present thesis findings illustrate that exhaled breath could find diagnostic and 
prognostic clinical applications if these three components are resolved. Scientific 
literature and the present thesis case study suggest that there is information to be 
captured in breath, although it cannot be disclosed consistently yet.

In monitoring and screening, breath analysis has already had some successful 
implementations. Currently, many tests are used in the clinics, such as the methacetin 
breath test, which monitors postoperative liver metabolism and impairment in 
subjects undergoing hepatectomy. Available literature suggests that liver research 
could further benefit from shifting more interest towards breath analysis. The present 
thesis also demonstrated the potential applicability of breath analysis as a means of 
diagnosis in liver research since it showed that challenging distinctions (e.g. PSC from 
IBD patients) could be satisfactorily achieved. Nonetheless, screening/monitoring and 
diagnostic tests would still require a deep and extensive understanding of compound 
origin via in-vitro analyses before further implementation in human studies.

Multiple VOC breath analysis strongly relies on statistical modelling. Perhaps, the 
breath community should more closely join forces with the data science community to 
see what other ideas could be used in modelling, data fusion, or variable interpretation 
to help the breath research field flourish. Technological advancements to detect VOCs 
should also be given attention; however, this should go hand-in-hand with the breath 
community’s expanding knowledge on compound origin.




