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Chapter 1  

Volatile organic compound analysis
Volatile organic compound (VOC) analysis has gained a lot of attention the last few 
decades due to its promising application as a non-invasive, patient-friendly, inexpensive, 
and easy to use diagnostic or monitoring tool [1]. The first report on VOC analysis dates 
back in the early seventies [2, 3]; although, technological advances in the decades to 
follow pioneered modern VOC analysis. VOCs are carbon-containing low molecular 
weight (i.e. < 1 kDa) compounds that exhibit high-vapour pressure at room temperature, 
and they can be clustered into several chemical classes such as alcohols, esters, 
hydrocarbons, aldehydes, to name a few. VOC concentration changes or appearance 
are seen as a response to human health issues (e.g. inflammation), and therefore, VOCs 
can be potentially used as biomarkers of human health. To date, thousands of VOCs 
have been identified and have been linked to several ailments such as liver impairment 
diseases [4], gastrointestinal tract diseases [5, 6], or pulmonary diseases [7-9]. However, 
the origin of the VOCs in breath can vary. They can originate from endogenous sources, 
and then, they are released into the human bloodstream; eventually, they are emitted 
in the air through a variety of bodily excretion sources. At the same time, VOCs from 
exogenous sources can be taken up and excreted again. The most common source 
of emitted VOCs, and the most widely studied, is exhaled breath; other VOC emission 
sources include faeces, blood, urine, skin, saliva, sweat, and the bile [1, 4].

Endogenous VOCs
VOCs are characterised as endogenous when they originate within the body; they can 
be produced biochemically by bodily cells and tissues or commensal and pathogenic 
microorganisms residing in the body. Endogenous VOCs are also considered 
VOCs that are already present in the body, but due to metabolic processes, their 
concentrations may change. Generally, a compound is considered endogenous when 
its concentration in a subject/patient is higher than in ambient air. It is hypothesised 
that these VOCs are by-products of normal cellular processes; these processes are 
altered when a disease occurs, and thus, they lead to the production of these VOCs, 
which are then diffused, due to their high volatility, from their point of origination to 
the bloodstream [10]. The point of origination for most of the endogenous VOCs 
that have been reported in the literature is largely unknown because there are many 
contributing factors to the VOC production. For instance, it has been hypothesized 
that hydrocarbons and aldehydes have resulted from the oxidative stress and lipid 
peroxidation processes [11]. However, there have also been instances where the point 
of origination has been pin-pointed. Such instances are the dimethyl-sulphide, which 
is known to be a late-stage liver failure indication [4], and acetone, which is produced 
in sepsis [12] or in uncontrolled diabetes [1]. It should be noted that microbiome is a 
big contributor to the endogenous VOC production [1]; however, there is no consensus 
whether VOCs originating from the microbiome should be purely considered as 
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endogenous due to the foreign nature of some of the pathogens that reside in it. 
Endogenous VOCs are also known as the human volatilome.

Exogenous VOCs
VOCs are characterised as exogenous when they originate from external factors 
such as the environment, lifestyle, diet, or therapeutic interventions. For example, 
environmental and lifestyle-related compounds can be absorbed by the skin or 
inhaled, whereas dietary or therapeutic compounds are ingested. On the one hand, 
the point of origination for most of the environmental and lifestyle-related VOCs can 
be found either in nature-related sources (e.g. terpenoid is emitted by plants to protect 
them against the ozone) or pollution-related sources (e.g. methane is emitted as a 
result of CO2) [13]. On the other hand, the point of origination for most of the dietary 
compounds is food and beverages. Other examples of known exogenous VOCs are 
the acetonitrile, which is found in the exhaled breath of smokers [14], and ethanol, 
which is found in the exhaled breath of alcohol drinkers. Exogenous VOCs are also 
known as the human exposome.

Exhaled breath: composition, sampling, and analysis
In the literature, VOC analysis has been almost exclusively performed on exhaled 
breath data [4], and this is because exhaled breath meets most of the criteria of the 
ideal diagnostic/monitoring tool: non-invasive, fast and cheap to perform, patient-
friendly, it can be performed at the point-of-care, and it can be applied to every age 
group. It is also believed to, generally, be equally disease-information potent alongside 
faeces when it comes to VOCs contained in their respective samples [15]; although, 
sampling stools does not meet the patient-friendly criterion, thus, making exhaled 
breath the preferred VOC analysis means.

Exhaled breath consists of a mixture of gases: nitrogen, oxygen, carbon dioxide, noble 
gases, and VOCs that are present in concentrations ranging from nmol/L to pmol/L 
[16]. An exhaled breath sample can also be distinguished into the following fractions: 
the dead-space air, the alveolar air, and a mixture of dead-space and alveolar air. 
Different fractions are needed for different research questions or purposes; however, 
in a VOC analysis, the most informative fraction is the alveolar air (i.e. air in the alveoli) 
because this is where the pulmonary exchange of gases between air and blood 
happens [15]. Dead-space air fraction consists of CO2, and it is also exhaled first in 
an exhalation; therefore, proper sampling of the alveolar air requires monitoring of the 
CO2 exhalation levels. VOCs are already present in very small concentrations in the 
alveolar air, and sampling the alveolar air mixed with the dead-space air would further 
dilute the VOC concentrations, thus, making it even more difficult to detect them and 
properly quantify them.

1
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Sampling of exhaled breath can be achieved with a variety of ways, with the most 
commonly used being: Tedlar bag, ReCIVA breath-sampler, and eNose sensor [1]. 
Tedlar (polymer) bag is the simplest and cheapest to use, especially in a large-
scaling sampling of exhaled breath; however, it samples both the dead-space air and 
the alveolar air, which is not preferred in a VOC analysis, and it might contaminate 
the sample as well. ReCIVA [17] deals with this problem since it was especially 
designed to sample the alveolar air by monitoring the CO2 exhalation levels; it is also 
contamination-proof since it filters the air that the subject inhales before sampling. 
Although, the use of ReCIVA comes at a high cost since it is a lot more expensive to 
acquire the equipment, and it is also not easily portable. As far as the eNose sensor is 
concerned, it is considerably less expensive than ReCIVA, and it is portable, which is 
suitable for clinical use; however, they do not permit for individual VOC identification, 
whereas Tedlar bag and ReCIVA do when connected to analytical instrumentation 
such as, for instance, gas chromatography-mass spectrometry (GC-MS), and this is 
why they are less suitable for research purposes.

As far as analysis of the samples coming from these three sampling ways is concerned, 
Tedlar bag and ReCIVA samples, first, require use of adsorption tubes to store the 
samples. This is advantageous because the VOC traces are already present in very 
low concentrations in the samples, and these tubes extract the volatiles from the 
samples to pre-concentrate/enrich them onto the sorbent material. The most widely 
technique to analyse these tubes is gas chromatography-mass spectrometry (GC-
MS); others are used too, such as proton transfer reaction-mass spectrometry (PTR-
MS), ion mobility spectrometry (IMS), and selected-ion flow tube-mass spectrometry 
(SIFT-MS) [1]. This is why (i.e. the use of MS approaches) Tedlar bag and ReCIVA 
samples permit for VOC identification. The eNose sensor samples do not require 
any further analysis steps; immediately after sampling, a VOC profile is given. As a 
final note, MS approaches require large machines and a lot of equipment, they are 
expensive, and they require experienced personnel too.

The design of the clinical trial is one of the most critical components to discover 
reliable and reproducible biomarkers for specific medical conditions. The selection 
of subjects and patients to be enrolled is vital to the success of identifying breath 
biomarkers specific to a particular disease. Breath collection and measurements 
should be standardized to eliminate the possibility of errors in different centres around 
the world. Several attempts are made internationally to come up with guidelines to 
tackle this problem within both the International Association of Breath Research 
[18, 19] and the European Respiratory Society [20]. Once diagnostic biomarkers 
are selected in initial studies, these markers should then be thoroughly validated in 
independent retrospective studies in patients from different centres to demonstrate 
their robustness in identifying diseased individuals (susceptibility and specificity).
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Volatilomics
Volatilome research is defined as quantitative and qualitative ways to find changes in 
VOCs present in bodily excretion means, and it aims to discover patterns of VOCs 
that are linked to deviant metabolic processes (e.g. inflammation) that take place in the 
human body [21]. The continued development of the analytical platforms (e.g. GC-MS) 
that are used for VOC analysis has resulted in large and complex biological datasets, 
which require extensive and advanced data processing and preprocessing. The biggest 
challenge in volatilome analysis is to separate biological signal/variance from noise or 
redundant information. It is for a fact that these analytical platforms introduce non-
biological signal in the data due to their high sensitivity, and that most of the VOCs 
present in the samples contain redundant information [21]. Importantly, these non-
biological signals are referred to as batch effects [22], and they are addressed in chapter 
4. Machine learning algorithms have been developed to cope with such issues, and 
statistical modelling should lie at the core of a proper volatilome analysis.

Multivariate statistics
In statistical modelling, multivariate statistics is defined as the modelling process 
where more than one variables/parameters are examined or taken into account 
simultaneously to build a model, whereas univariate statistics is defined as the 
modelling process where only one variable is examined each time to build a 
model. A univariate statistics approach is the so-called student’s t-test distribution 
test, which is used to determine whether two means of two different populations 
are statistically significant [23]. An example of a multivariate approach is the so-
called principal component analysis (PCA) [24], where multiple variables are linearly 
combined to generate new variables (i.e. principal components) that capture most 
of the variation (i.e. information) present in the data. Multivariate statistics is the 
way to go in VOC analysis since volatilomics datasets consist of hundreds, if not 
thousands, of variables; put differently, there are hundreds of VOCs present in each 
sample. Multivariate statistics are divided into two main categories: unsupervised 
and supervised multivariate approaches. Unsupervised approaches are those that 
do not use any apriori information of the dataset, whereas supervised approaches do 
use apriori information of the dataset. For instance, such information can be class-
related information. Furthermore, both unsupervised and supervised approaches can 
be used either for exploratory, predictive, or classificatory purposes. PCA is one of the 
most known unsupervised exploratory algorithms, whereas random forest [25] is one 
of the most known supervised predictive and classificatory algorithms. PCA, random 
forest, as well as other multivariate statistical approaches are discussed later in the 
present thesis.

1
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Data preprocessing
Data preprocessing is, perhaps, the most important part of the VOC data analysis 
because, as highlighted already at the beginning of this section, the biggest challenge 
in volatilome analysis is to separate biological signal from noise. Noise can be 
introduced in the data either from instrumental artefacts or they can be caused by 
the personnel that conducted the analysis. Other reasons such as environmental 
contamination are also prone to introducing noise in the data [21]. A proper VOC data 
preprocessing strategy typically consists of the following steps: baseline removal, 
correcting for peak shifts, and peak picking. An extensive documentation of all the 
steps that a proper strategy consists of as well as several algorithms that have been 
developed to deal with these issues are addressed later in this thesis in chapter 3.

Batch effects
As stated already at the beginning of this section, batch effects are non-biological 
signals introduced in the data. Most of the times, proper data preprocessing prevents 
batch effects from happening; oftentimes, however, these non-biological signals are 
not possible to be prevented. Inevitable batch effects have been known to other fields 
such as transcriptomics or genomics, and specific algorithms have been developed 
to cope with them [22]. Volatilomics field is also prone to batch effects even after 
a proper data preprocessing strategy has been followed. No algorithms have been 
specifically designed to correct for these effects in volatilomics data, and it seems 
that even if such an algorithm were to be developed, it would come at the cost of 
losing important information due to the complexity of the volatilomics data. It has 
been proved that the existing algorithms do not properly work in volatilomics data, 
therefore, an additional preprocessing step maybe needed to account for these 
batch effects in VOC data—implementation of quality controls. This idea and detailed 
documentation on batch effects in volatilomics data is discussed in chapter 4.

Ensemble techniques
Ensemble techniques represent a particular category of multivariate supervised 
approaches that have become an integral part of statistical modelling, and especially 
of statistical prediction and classification modelling due to their high performance 
on complex datasets [26]. Ensemble techniques can be divided into three main 
categories: boosting, bagging (or aggregative bootstrapping), and stacking. Random 
forest is, perhaps, the most renowned one and it belongs to the bagging category. 
It is worth digging and properly understanding these techniques and how to validate 
them when working in the volatilomics field because they have proved to outperform 
other supervised techniques (e.g. partial least square analysis [27, 28]) that are very 
popular in various fields (e.g. metabolomics, proteomics) [26]. Ensemble methods are 
addressed in depth in chapter 5.
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Variable interpretation
The use of advanced machine learning algorithms is not always enough in itself 
to provide proper, if at all, VOC identification or sample classification due to the 
complexity of the volatilomics data. Oftentimes, data transformation is needed, and 
the biggest challenge to be dealt with in such a case is to trace back the original 
variables/VOCs that led to the eventual study outcome [29, 30]. For instance, such 
transformation could be a kernel transformation of variables into samples [31]. The 
pseudo-sample principle that was initially proposed by Krooshof et al. [32] and further 
explored by Smolinska et al. [31] has proved to help trace back the original variables 
and demonstrate their behaviour in the dataset samples as well as their importance 
in the model in volatilomics data. It does so by providing a so-called trajectory plot 
and a bar plot [30]. An in-depth documentation on how the pseudo-sample principle 
is applied is discussed in chapter 6.

Data fusion
Data fusion is another integral part of statistical modelling that has gained a lot of 
attention in life sciences because analysis of biological data, such as the volatilomics 
data, might require multiple platform datasets to be combined to express the samples 
fully. The principle behind data fusion lies in the idea that different data platforms (e.g. 
GC-MS, nuclear magnetic resonance) detect different biological entities, which when 
combined can provide a comprehensive profiling of the research question in hand 
[30]. There are three main data fusion categories: low-level, mid-level, and high-level 
fusion approaches. In 2012, Smolinska et al. [31] introduced an advanced kernel fusion 
approach; they stacked kernels of their different data platforms to build their final 
model. In 2021, Stavropoulos et al. [30] stacked random forest weighted proximities 
of their different data platforms (volatilomics and metabolomics data) to build their final 
model. It is believed that data fusion would be of interest in VOC analysis, and it should 
be explored more in the volatilomics world. Therefore, data fusion as a whole as well as 
these two specific aforementioned cases are thoroughly discussed in chapter 7.

Thesis outline
The general aim of the present thesis is two-fold. First, the thesis aims to introduce 
VOC analysis by reviewing available literature on VOC analysis studies, what has 
been the main focus in all these VOC analyses thus far, and where the field, perhaps, 
should be headed to eventually make VOC analysis applicable in the clinics. Second, 
it aims to extensively discuss several technical aspects that should be considered and 
implemented before a proper VOC analysis is performed. In the end, it also presents 
a VOC case study that has considered and implemented all the aspects addressed 
here, and it concludes with a general discussion and summary.

1
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The first aim of the thesis is addressed in chapter 2, where an extensive review of 
VOC studies in the liver is accomplished. More specifically, all the available literature 
on VOCs in liver diseases has been addressed, compounds of interest have been 
identified and summarized, limitations and flaws of the studies that were conducted 
are pointed out, and future suggestions are given based on the review findings.

The second aim of the thesis is addressed over the chapters 3 to 7. In particular, 
chapter 3 discusses in-depth why and how volatilomics data preprocessing should 
be performed, what steps need to be followed, and what algorithms have been 
developed for these purposes. Chapter 4 addresses one major problem that occurs 
if proper data preprocessing is not achieved, which is the batch effects. Although, 
batch effects may still appear even if proper data preprocessing has been done 
because of various reasons. Why existing algorithms fail to correct for batch effects 
in volatilomics data and what further preprocessing steps can be done to prevent or 
at least diminish even further inevitable batch effects are also covered in chapter 4. 
Chapter 5 presents ensemble techniques, advanced statistical modelling algorithms 
that can be applied to complex biological datasets, such as the volatilomics datasets, 
for predictive or classification purposes. Chapter 5 also describes how they can 
be properly run, optimized, and validated. Nevertheless, the application of these 
algorithms in itself is not always enough because of the complexity of the volatilomics 
data; therefore, data transformations might be needed to achieve proper classification 
or prediction. Chapter 6 emphasizes on the fact that, sometimes, data from one data 
platform are not always enough to cover the topic of interest fully. This is why data 
fusion should be considered. The major data fusion approaches are discussed and 
compared to another, more sophisticated fusion approach that is proposed here too. 
Chapter 7 presents a VOC case study, where exhaled breath VOC data from primary 
sclerosing cholangitis and inflammatory bowel disease patients were used to build a 
classification model and to find which VOCs are important in classifying the patients.

Finally, chapter 8 critically discusses what was achieved in the present work, whether 
the results of the present work met the thesis aims, and it provides suggestions as to 
where the field should be headed and future work that should be done to follow up on 
what was addressed here. Chapter 8 finishes with a concluding summary.
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Chapter 2

Abstract
Background: Liver diseases are currently diagnosed through liver biopsy. Its 
invasiveness, costs, and relatively low diagnostic accuracy require new techniques 
to be sought. Analysis of volatile organic compounds (VOCs) in human bio-matrices 
has received a lot of attention. It is known that a musty odour characterises liver 
impairment, resulting in the elucidation of volatile chemicals in breath, and other body 
fluids such as urine and stool, that may serve as biomarkers of a disease.

Aims: To review all the studies found in the literature regarding VOCs in liver diseases, 
and to summarise all the identified compounds that could be used as diagnostic or 
prognostic biomarkers.

Methods: The literature search was conducted on ScienceDirect and PubMed, and 
each eligible publication was qualitatively assessed by two independent evaluators 
using the SANRA critical appraisal tool.

Results: 58 publications were found, 28 were kept for inclusion—23 were about 
VOCs in the breath, one in the bile, three in urine, and one in faeces. Each publication 
was graded from zero to 10.

Conclusion: A graphical summary of the metabolic pathways showcasing the known 
liver disease-related VOCs and suggestions on how VOC analysis on liver impairment 
could be applied in clinical practice are given.

Keywords: VOCs, liver diseases, breath, faeces, bile, urine, non-invasive
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Introduction
Fetor hepaticus, a musty breath aroma, has been among the most prominent liver 
insufficiency signs available to clinicians, and it was in the seventies when Chen et 
al. [1] identified the first responsible compounds. The authors reported that several 
mercaptans and aliphatic acids (i.e., predominantly acetic and propionic acid) were 
elevated in the exhaled breath of individuals with liver cirrhosis [2]. However, it was not 
until the nineties that Tangerman et al. [3] pinpointed dimethyl-sulphide as the primary 
source of fetor hepaticus. These studies [1-3] were the first liver-related volatile organic 
compound (VOC) analyses in the breath and paved the way for further research in the 
field. Many pathophysiological conditions in the liver alter various hepatic metabolic 
pathways, modifying the abundance of specific exhaled VOCs. Derivatives of cell 
membrane peroxidation can generate different VOCs as a result of oxidative stress in 
hepatic inflammation. Metabolic pathway alterations can lead to increased amounts of 
several compounds such as sulphur derivatives through the incomplete transamination 
of sulphur-containing amino acids [1] or ammonia through the altered urea cycle [4]. 
Elevated ketones can result from a combination of impaired hepatic gluconeogenesis, 
increased insulin resistance, and glycogen exhaustion [5], whereas exhaled acetic and 
propionic acid increase due to reduced hepatic clearance of short-chain fatty acids 
from the gut microbiome as a result of increased sinusoidal pressure and portosystemic 
shunts [1]. Many liver diseases that ensue in the sequence of hepatitis, fibrosis, cirrhosis, 
and end-stage liver failure still pose diagnostic and monitoring challenges; non-alcoholic 
fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), autoimmune hepatitis 
(AH), chronic cholestatic diseases including primary sclerosing cholangitis (PSC) and 
primary biliary cirrhosis are such examples. All these conditions require an invasive liver 
biopsy for diagnosis, which frequently does not confirm but rather suggest a specific 
diagnosis. Metabolically, the liver is the main active organ; therefore, VOC analysis in 
the breath and other body fluids or faeces could hold great noninvasive, patient-friendly 
potential for diagnostic purposes and for gauging functional reserve of liver impairment.

Liver pathophysiology and liver function tests
A wide variety of viral, immune-mediated, cholestatic, and toxic conditions may cause 
chronic liver tissue inflammation. In response to this, the liver accumulates extracellular 
matrix components, leading to fibrous tissue and scarring [6, 7]. In prolonged and 
severe liver damage, fibrosis might turn into cirrhosis and end-stage liver disease. 
Substantial liver damage leads to impaired liver function, causing health issues such 
as disturbed coagulation and hepatic encephalopathy. Moreover, increased hepatic 
flow resistance leads to portal hypertension that causes hemodynamic insufficiency, 
which subsequently leads to ascites, varices, and several other critical conditions 
[8]. Finally, liver cirrhosis is a premalignant condition with an increased risk for 
hepatocellular carcinoma [9]. Diagnosis and monitoring of liver disease progression 
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are essential to establish an optimal treatment strategy and evaluate therapeutic 
effects [10]. However, only a handful of biomarkers demonstrate sufficient specificity 
and sensitivity to develop a reliable diagnosis and monitoring of chronic liver injury. 
For example, anti-mitochondrial antibodies are used to diagnose primary biliary 
cholangitis, whereas polymerase chain reaction is used for viral hepatitis. Although, 
both examples fail to tell something about the severity of liver injury. Liver biopsy is 
considered the reference method for diagnosis and evaluation of liver impairment; 
although its invasiveness and cost make it less suitable for frequent sampling. 
Additionally, in some liver diseases such as cholestatic liver diseases, liver fibrosis 
is patchy and not homogenous, which decreases the representability, and thus, 
accuracy of the biopsy.

In the past few decades, several noninvasive biomarkers have entered the liver 
research field, some of which have already been used in clinical trials, and the most 
widely used are the enhanced liver fibrosis score (ELF) [11], the FibroTest [12], and 
the Pro-C3 [13]. All these biomarkers measure molecules involved in fibrogenesis or 
fibrinolysis; however, they are influenced by confounding factors (e.g. fibrous tissue 
elsewhere), leading to suboptimal sensitivity and specificity [14]. Moreover, liver 
fibrosis can be detected through imaging techniques such as ultrasound elastography, 
which measures liver stiffness (liver fibrosis has been associated with liver stiffness) 
and is currently widely used in clinical trials and daily clinical practices. Other imaging 
techniques include magnetic resonance imaging (MRI), computed tomography (CT), 
or magnetic resonance elastography. However, other pathophysiological processes 
that increase liver stiffness, such as cholestasis, decrease elastography reliability in 
its capability to measure fibrosis [14]. Concerning the liver functional reserve, which is 
vital to determine the moment patients qualify for liver transplantation, the end-stage 
liver disease model (MELD) is widely applied [15]. This model uses serum bilirubin, 
the international normalised ratio (INR) for prothrombin time (i.e. a measure of clotting 
factors), and serum creatinine; these parameters combined to constitute a model as a 
proxy for the liver function that predicts mortality within 90 days. Mortality and disease 
severity should be considered; however, the combination of such parameters makes the 
model dependent on a kidney function read-out, which is not an optimal solution either 
[16]. Despite the different invasive and noninvasive methods to assess liver diseases, 
more than 50% of the cases are detected at advanced stages when decompensation 
episodes occur [8, 17]. As a result, the need for new, reliable, and effective biomarkers 
in the context of liver function or disease diagnosis for example, remains.

Breath tests are already used in clinical setups; an example is identifying Helicobacter 
pylori infection via the C13 urea breath test [18]. Here, labelled C13 urea is administered 
to patients, and then their exhaled breath is collected, where the isotope-labelled 
carbon dioxide is measured. Other C13 breath tests, such as the C13 aminopyrine 
breath test, have also been used to examine liver diseases [19, 20]; however, C13 
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implementations are outside the scope of the present review since they are not based 
on VOC analysis. The current review focuses on endogenously formed compounds 
that have been connected with liver impairment, among which are nitrogen derivates 
[4], ketones [21], alkanes [21], sulphur derivates [1], and alcohols [22].

VOC analysis
In human research, VOCs arise from different body matrices such as breath, faeces, 
urine, bile, breast milk, and blood, resulting from exogenous or endogenous sources 
[23-25]. Exogenous VOCs originate from the gut microbiome or the environment. The 
latter are absorbed through the skin, inhaled, or ingested with food and beverages. 
Moreover, they might be the result of therapeutic interventions [26]. A compound is 
considered endogenous when its concentration in a subject/patient sample is higher 
than in ambient air [27, 28]. Endogenous VOCs are produced biochemically by body 
cells and tissues, such as lung and airway tissues, or from other organ tissues (e.g. 
liver or kidney) [29]; these VOCs are a reflection of the biochemical reactions such 
as apoptosis, inflammation or oxidative stress [30-32]. These VOCs arise from body 
chemical reaction cascades in diseased individuals due to cellular damage [33]; they 
are released in the bloodstream and spread among the body excretions. In particular, 
liver diseases alter VOC abundances in the blood [34, 35], leading to different amounts 
of VOCs present in body excretions.

Many studies explored different approaches to quantifiably detect VOCs in liver 
disease patients [22, 34-36]. The vast majority of these studies examined breath as 
the means of discovering discriminatory VOCs, whereas only a handful of studies 
used body excretions other than breath [24, 37, 38]. Thus far, examining liver diseases 
via VOC analysis has mainly focused on cirrhosis and NAFLD, and currently, no 
VOC detection test has been implemented in the clinics yet, despite the diagnostic 
potential of VOC analysis, in general [39-41]. This review aims to discuss the available 
VOCs literature on liver diseases examined through, primarily, breath, and secondarily, 
through faeces, urine, and the bile. Finally, conclusions on possible causes for the 
lack of clinical VOC tests for liver diseases are drawn, and possible future directions 
are suggested.
 

Materials & methods
Literature search
The scientific literature search focused on liver disease diagnosis, prognosis, and 
monitoring via VOCs in the breath or faeces. For breath related VOCs, PubMed and 
ScienceDirect were interrogated with the following search terms:
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(((((liver disease) OR “Liver Diseases”[Mesh]) OR ((Diagnosis/Broad[filter]) AND 
(“Liver Diseases”[Mesh])))) AND ((volatile organic compounds) OR “Volatile Organic 
Compounds”[Mesh])) AND ((breath analysis) OR “Breath Tests” [Mesh]).

The search terms for faeces were:
(((((“Liver Diseases”[Mesh]) OR liver disease) OR ((Diagnosis/Broad[filter]) AND 
(“Liver Diseases”[Mesh])))) AND ((volatile organic compounds) OR “Volatile Organic 
Compounds”[Mesh])) AND (((fecal analysis) OR faecal analysis) OR “Feces” [Mesh]).

Replacing the word “Diagnosis” with “Prognosis” or “Monitoring” yielded the same 
results for both biological matrices. Additional studies cited by the initially identified 
research papers were also included and discussed in this review. These additional 
studies examined liver diseases related to VOCs in the breath and faeces and other 
body fluids such as urine, blood, and bile. The number of the latter was minimal; 
therefore, it was decided to discuss these as well. Only articles published in English, 
reporting original research in humans, and focused on different VOC patterns 
between healthy and diseased liver subjects were included. Engineering or technical 
studies were excluded since they fall outside the scope of this review. Finally, no year 
of publication criterion was imposed as an exclusion criterion. An overview of the 
literature search and the exact numbers of the publications found and used herein can 
be seen in the Results section in Figure 1.

Quality assessment
Two independent evaluators assessed the eligible studies using the Scale for the 
Assessment of Narrative Review Articles (SANRA) [42]. SANRA is a brief critical 
appraisal tool used to assess the quality of narrative reviews and research articles, and 
it consists of a six-question questionnaire. Each question is evaluated on a scale from 
zero to two (i.e., 0, 1, and 2), resulting in a maximum cumulative score of 12 for the 
paper at hand. However, in the present review, question number three (“Description 
of literature search”) was excluded from the evaluation of the papers because it is 
not applicable for scientific research papers. The whole SANRA questionnaire can be 
found elsewhere [42]. As a result, the SANRA assessment score was on a scale from 
zero to 10. Papers with a maximum aggregate score of five (i.e. (0-5]) were considered 
as low-quality, those with a total score from five to seven (i.e. (5-7]) were regarded as a 
medium-quality, and those with an aggregate score from seven to ten (i.e. (7-10]) were 
considered as high-quality. However, the SANRA quality assessment tool was deemed 
not strict enough when the assessment was finalised (i.e. almost all the papers were 
scored with eight or more; the scores are illustrated in the Results section, in Table 
1). This is because the questions are made to assess general scientific guidelines; 
thus, five additional assessment questions were included in the overall assessment. 
The two assessors construed these questions following the present review purposes; 
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these questions can be seen in the Supporting information in Table S1. The new 
questions were also graded on a scale from zero to two (the same as the SANRA 
questions), and the new scores (i.e. from the five SANRA questions and the added five 
summed up) are also illustrated in Table 1.

Results
The literature search performed in both PubMed and ScienceDirect resulted in 58 hits in 
total, of which one was not accessible, 16 were either engineering or technical, and 13 
were reviews. Thus, the final number of papers to be discussed here was 28. From these 
28 articles, 23 found VOCs in the breath, one in the bile, three in urine, and one in faeces.

FIGURE 1: SCHEMATIC REPRESENTATION OF THE LITERATURE SEARCH PERFORMED IN THE PRESENT 
REVIEW. THE TOTAL NUMBER OF PAPERS FOUND IS 58, AND THE NUMBER OF PUBLICATIONS ELIGIBLE 
TO BE REVIEWED IS 28.

Figure 1 represents a scheme of the literature search that was performed here. Table 
1 shows the average over the two independent evaluators’ scores per publication and 
the publication categorisation into low, medium, and high-quality paper.
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TABLE 1: EVALUATION OF THE PAPERS THAT WERE INCLUDED IN THE PRESENT REVIEW. BOTH SCORE 
COLUMNS (I.E. SANRA SCORES AND SANRA & ADDED QUESTIONS SCORES) ARE AVERAGED OVER THE 
TWO INDEPENDENT EVALUATORS. THE QUALITY OF THE PAPERS IS CHARACTERISED AS LOW (I.E. [0-
5]), MEDIUM (I.E. (5-7]), OR HIGH (I.E. (7-10]).

Publication Means of 
analysis

SANRA 
scores 

(averaged)

SANRA & added 
questions scores 

(averaged)

Quality

Friedman et al. 1994 [1] Breath 6.5 6.25 Medium

Hiroshi et al. 1978 [2] Breath 7 5 Low

Letteron et al. 1993 [3] Breath 9 6.5 Medium

Van den Velde et al. 2008 [4] Breath 9.5 9.25 High

Dadamio et al. 2012 [5] Breath 10 8.25 High

Pijls et al. 2016 [6] Breath 10 8 High

Morisco et al. 2013 [7] Breath 9 8.25 High

Del Rio et al. 2015 [8] Breath 9 8 High

Eng et al. 2015 [9] Breath 9.5 7.25 High

Alkhouri et al. 2015 [10] Breath 10 7.25 High

De Vincentis et al. 2016 [11] Breath 9 5.75 Medium

Khalid et al. 2013 [12] Breath 9 6.75 Medium

O’Hara et al. 2016 [13] Breath 10 8.5 High

Arasaradnam et al. 2015 [14] Breath 9 5.5 Medium

Solga et al. 2006 [15] Breath 9 6.75 Medium

Verdam et al. 2013 [16] Breath 9 6.25 Medium

Alkhouri et al. 2013 [17] Breath 9.5 6.75 Medium

Millonig et al. 2010 [18] Breath 7.5 7.5 High

Hanouneh et al. 2014 [19] Breath 9 7.75 High

Qin et al. 2010 [20] Breath 7.5 6 Medium

Sinha et al. 2019 [21] Breath 10 7 Medium

Ferrandino et al. 2020 [22] Breath 10 7 Medium

Miller-Atkins et al. [23] Breath 10 8.75 High

Raman et al. 2013 [24] Faeces 9 6.75 Medium

Navaneethan et al. 2015 [25] Bile 9 6.75 Medium

Navaneethan et al. 2015 [26] Urine 9 6.75 Medium

Arasaradnam et al. 2012 [27] Urine 8.5 6 Medium

Bannaga et al. 2021 [28] Urine 9.5 7 Medium
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Table 2 summarises all the compounds that were found as significant in more than one 
of the examined research papers analysed in the present review. Table 2 also describes 
what is believed to be the biological origin of each of the present compounds.

TABLE 2: A SUMMARY OF THE COMPOUNDS THAT WERE FOUND AS SIGNIFICANT IN MORE THAN 
ONE OF THE EXAMINED RESEARCH PAPERS IN THE PRESENT REVIEW. WHAT IS BELIEVED TO BE THE 
BIOLOGICAL ORIGIN OF EACH COMPOUND IS DESCRIBED HERE TOO.

Compound Number of 
times

Biological origin

Dimethyl-sulphide 11 Incomplete metabolism of sulphur-containing amino acids in the 
transamination pathway – Cytochrome C oxidase deficiency

Limonene 7 Limonene is not produced in the human body – metabolised by 
the P450 enzymes CYP2C9 and CYP2C19 – accumulates in the 
fat of patients

Acetone 7 Due to hepatic insulin resistance that leads to an increase in 
triglycerides, free fatty acids and ketones

Ethanol 7 Due to increased shunting volumes through portocaval shunts

Isoprene 6 A by-product of cholesterol biosynthesis – the intestinal 
microbiota may generate isoprene too

Acetaldehyde 6 Oxidation product in ethanol metabolism – CYP2E1 is induced

2-Pentanone 5 Due to hepatic insulin resistance – inhibition of CYP2E1

Carbon-disulphide 4 The oxidative metabolism of carbon disulphide – also due to 
incomplete metabolism of sulphur-containing essential systems

2-Butanone 4 Due to hepatic insulin resistance, formed during lipolysis – 
inhibition of CYP2E1

Benzene 4 Environmental pollutant 

Pentane 3 Lipid peroxidation – a by-product of the cytochrome P450 
metabolism

Hydrogen-sulphide 3 Incomplete metabolism of sulphur-containing amino acids in the 
transamination pathway – cytochrome C oxidase deficiency (less 
stable than dimethyl-sulphide)

Ethane 3 Lipid peroxidation of polyunsaturated fatty acids – a by-product 
of the cytochrome P450 metabolism

Trimethyl-amine 
(TMA)

3 The intestinal microflora degrades dietary phosphatidylcholine 
to form trimethylamine – trimethylamine is metabolised by the 
hepatic flavin monooxygenase family of enzymes

2-Nonene 3 It is yet to be discovered – it has been linked to oxidative stress

2-Propanol 2 It is yet to be discovered – it is speculated to be related to 
inflammatory processes and/or lipid peroxidation

Indole 2 Derived from the catabolism tryptophan

Dimethyl-selenide 2 Excretion product of the essential micronutrient selenium

Methanol 2 Metabolised mainly by alcohol dehydrogenase – pectin 
degradation – an imbalance of microflora composition in cirrhotic 
patients
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Compound Number of 
times

Biological origin

2-Octanone 2 Due to hepatic insulin resistance, formed during lipolysis – 
inhibition of CYP2E1

Octane 2 Metabolised by the cytochrome P450 enzymes

Alpha-pinene 2 Metabolised by the cytochrome P450 enzymes

Tridecane 2 It is yet to be discovered – it is speculated that it is related to 
inflammatory processes and/or lipid peroxidation

Styrene 2 Exogenous sources such as industrial materials – it is oxidised 
by cytochrome P450

Discussion
Differentiation among general cirrhotic CLD, non-cirrhotic 
CLD, and healthy individuals
Pauling et al. pioneered breath testing with their unprecedented study published in 
1971 [43]. Since then, the 500+ discovered VOCs provided insights into the human 
body metabolic processes. Lipid peroxidation has been associated with alkanes such 
as pentane and ethane, whereas cholesterol metabolism has been linked to isoprene 
and other unsaturated compounds [28, 29, 44, 45]. Dextrose metabolism has been 
correlated with ketones such as acetone, while the sulphur-containing compounds 
dimethyl-sulphide, methyl-mercaptans, and ethyl-mercaptans, have been associated 
with renal failure or liver disease and deemed the cause of fetor hepaticus of cirrhotic 
patients [28, 29, 44, 45]. Initial studies mainly focused on finding biomarkers related 
to liver cirrhosis. Hiroshi et al. [46], Tangerman et al. [47], and Friedman et al. [48] 
paved the way for modern liver breath analysis by comparing cirrhotic patients to 
healthy controls aiming to identify compounds that differ between the two cohorts 
by exploiting advances of the gas chromatography-mass spectrometry (GC-MS) 
technology. All three studies found significantly higher levels of dimethyl-sulphide 
in the breath of cirrhotic patients. However, Friedman et al. [48] also reported that 
hydrogen-sulphide was substantially higher in patients with less severe forms of 
cirrhosis than healthy controls. More interestingly, they also found elevated levels of 
limonene in half of the cirrhotic patients. The additionally reported compounds in the 
[48] study might have resulted from the fact that the GC detector used was different 
than the one used in the [46, 47] studies.

Van den Velde et al. [34] and Dadamio et al. [49] also analysed liver cirrhosis patients’ 
and healthy controls’ breath to identify VOCs related to liver cirrhosis by using GC-
MS. Van den Velde et al. found that acetone, dimethyl-sulphide, 2-butanone, and 
2-pentanone were elevated, while indole and dimethyl-selenide were reduced in the 
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patients compared to controls. The discriminative model based on these compounds 
showed a sensitivity and specificity of 100% and 70%, respectively. Dadamio et al. 
found more than 20 compounds elevated in the breath of cirrhotic patients. The resulting 
classification models provided an overall average sensitivity and specificity of 83% 
and 100%, respectively. Morisco et al. [22] also stratified cirrhotic patients and healthy 
volunteers to evaluate the capability of breath testing in distinguishing among different 
levels of disease severity in addition to liver cirrhosis diagnosis employing proton transfer 
reaction-MS (PTR-MS). Twelve compounds (i.e. heptadienol, methanol, 2-butanone, 
3-pentone, 2-octanone, C8-ketone, 2-nonanone, C9-ketone, monoterpene, p-cymene, 
sulphoxide compounds, an S-compound, an NS-compound, and an N-compound) had 
significantly higher concentrations, except for the S-compound, which had significantly 
lower concentration, in liver cirrhosis patients compared to controls. Morisco et al. [22] 
further stratified their patients into two groups (i.e. mild cases and severe cases) to 
assess the different VOC concentrations according to disease severity. They found 
that five VOCs (i.e. heptadienol, C8-ketone, monoterpene (tentatively identified as 
limonene), 2-butanone, and an NS-compound) had higher concentrations in the severe 
cases, while the S-compound and the N-compound had lower concentrations in the 
severe cases. Limonene had the highest diagnostic performance with a sensitivity and 
specificity of 83% and 86%, respectively. Mild cases were discriminated from controls 
with a sensitivity and specificity of 83% and 86%, respectively, and with a sensitivity and 
specificity of 100% from the severe cases. Interestingly, the monoterpene, tentatively 
identified as limonene, had the highest diagnostic performance again with a sensitivity 
and specificity of 100% when discriminating mild from severe cases. In general, the 
[22] study found different compounds than the [34, 49] studies (Table 3); however, the 
chemical classes of the discovered VOCs were the same (i.e. sulphur compounds and 
ketones). PTR-MS seems to provide a more complex picture of the breath compounds 
in liver cirrhosis patients and it seems to be able to distinguish between different 
disease severity classes, which may explain the identification of different compounds in 
the [22] study. Noteworthy, the [34, 49] studies did not enforce a fasting state for their 
volunteers, whilst the [22] study did, and fasting could explain the appearance of ketone 
bodies in the breath.

In 2015, Del Rio et al. [50] also compared cirrhotic patients against healthy cohorts 
and aimed to identify breath biomarkers of liver diseases by employing PTR-MS. 
Cirrhotic patients who had undergone a liver transplant were compared to their pre-
transplant samples, effectively becoming their controls and allowing liver metabolism-
related compounds isolation. It was found that methanol, 2-butanone, carbon 
disulphide, 2-pentanone, and limonene presented significantly higher concentrations 
in liver cirrhosis patients than in controls (Table 3). Limonene levels were monitored 
in post-liver transplant patients, and they were steadily decreasing in the following 
days. Results generated by this study design support Del Rio et al. claim that all 
previous studies were only hypothesis-generating since there was a lack of follow-up 
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to confirm the found biomarkers. These findings also highlight limonene potential as 
a liver function biomarker in liver transplant patients by monitoring its wash-out [50]. 
It should be noted, however, that post-liver transplantation, other factors could have 
influenced the limonene levels such as reduced food intake in the first days after the 
operation.

Pijls et al. [51] stratified CLD patients with or without cirrhosis and aimed to identify 
a VOC profile to separate the classes using GC-MS. They identified 11 VOCs (i.e. 
dimethyl-sulphide, terpene (limonene), 2-methybutanal, propanoic acid, octane, 
terpenoid, 3-carene, 1-hexadecanol, an unknown compound, as well as a branched 
C16H34) that discriminate between non-cirrhotic CLD and cirrhotic CLD patients with 
an accuracy of 84.1% (Table 3).

De Vincentis et al. [52] also compared cirrhotic against non-cirrhotic patients and 
healthy controls using the emerging e-nose technology, which provides rapid breath-
prints (BPs). This technique offers a VOC profile on a point-of-care base because 
it can be performed instantaneously in an outpatient care setting. De Vincentis et 
al. identified BPs that discriminate different liver disease severity stages among liver 
cirrhosis patients with a sensitivity and specificity of 87.5% and 64.7%, respectively. 
Differences among patients with infectious and non-infectious liver diseases were 
also achieved with a sensitivity and specificity of 29% and 88%, respectively (Table 
3). It is worth mentioning that in a follow-up study, De Vincentis et al. [53]  showed that 
e-nose could significantly identify cirrhotic patients with a high risk of hospitalisation 
and mortality, thus, making it a substantial alternative to the Child-Pugh and MELD 
scores in clinical practices, which are considered as the reference method. Successful 
e-nose discriminatory capabilities have been reported already [54, 55].

In 2015, Eng et al. [56] conducted the first reported paediatric study to differentiate 
cirrhotic children from healthy children by using the newly developed selected ion flow-
tube-MS (SIFT-MS). They identified 1-decene, 1-heptene, 1-octene, and 3-methyl-
hexane as significantly higher in cirrhotic children than in controls. These VOCs were 
also increased in children with advanced liver fibrosis compared to children suffering 
from no to mild fibrosis. Additionally, 1-nonene, (E)-2-nonene, and dimethyl-sulphide 
were lower in cirrhotic children than controls and inversely proportional to the degree 
of liver fibrosis. This finding is unexpected and contradicts previous studies conducted 
in adults [22, 34, 49, 50], where dimethyl-sulphide was elevated in adult liver disease 
patients. However, this inconsistency may be explained by differences in hepatic 
metabolism between children and adults [57]. Eng et al. also generated a predictive 
model by combining five VOCs (i.e. 1-octene, triethyl-amine, ethane, E2-nonene, and 
1-decene) that showed prediction accuracy of cirrhosis with an AUC of 0.97 (Table 3).
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Origin of the VOCs reported in general cirrhotic CLD against 
healthy individuals
The most significant compounds, and the ones that the aforementioned literature 
(section 4.1) seems to be more certain about their origin, are limonene and dimethyl-
sulphide. Limonene is suggested to originate from foods and drinks. Limonene is 
broken down in the liver by CYP2C19 and CYP2C9 enzymes into other compounds 
such as perillyl alcohol, trans-isopiperitenol, and trans-carveol [58]. In liver impairment, 
the CYP2C19 and CYP2C9 enzymes are proportionally reduced and thus, leading to 
increased limonene levels in the body [22, 48, 50]. Increased dimethyl-sulphide, along 
with other sulphur-containing compounds, points toward incomplete metabolism of 
sulphur-containing amino acids in the transamination pathway due to liver impairment. 
As far as other groups of compounds are concerned, the aforementioned literature 
also discusses possible metabolic pathways that might be involved in their origin, and 
they can be summarised as follows. It is suggested that free fatty acids, triglycerides, 
and ketones such as 2-butanone, 2-pentanone, and acetone may increase due to 
hepatic insulin resistance [22, 34], which favours lipolysis and free fatty acid beta-
oxidation. As for reduced indole and phenol levels, they may have resulted from the 
impaired ability of the liver to degrade aromatic amino acids such as tryptophan 
[22, 34], whereas the reduced dimethyl-selenide is explained by lower levels of this 
micronutrient observed in the blood of patients with cirrhosis [59]. Increased levels 
of hydrocarbons, such as ethane and pentane, were attributed to the impaired 
conversion of saturated hydrocarbons into alcohols due to deficient cytochrome 
P450 activity [34, 49]. Cirrhotic liver inability to metabolise methanol by efficiently 
using alcohol dehydrogenase [50] or an imbalance in the bacterial flora composition 
[22] explain the increased methanol levels in liver disease patients, which alters the 
colon fermentation processes. Finally, high levels of other alkanes such as 3-methyl-
trexane, 1-decene, 1-heptene, and 1-octene are thought to be related to oxidative 
stress [56]. Figure 2 illustrates these suggested pathways.
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TABLE 3: SUMMARY OF THE PAPERS THAT EXAMINED CIRRHOSIS/CLD PATIENTS AGAINST HEALTHY 
COHORTS. THE ARROWS SHOW THE VOC ABUNDANCE IN THE CLD GROUP COMPARED TO THE 
HEALTHY GROUP IN THE STUDY DESIGN.

Author/Year Study design Analytical 
method

VOCs identified as 
significant 

Discriminatory 
performance

Friedman et 
al.1994

24 cirrhotic CLD vs 
24 healthy

GC-MS Hydrogen-sulphide ↑
Limonene ↑

Not reported

Van den Velde 
et al.
2008

52 cirrhotic CLD vs 
50 healthy

GC-MS Acetone ↑
Dimethyl-sulphide ↑
2-butanone ↑
2-pentanone ↑
Indole ↓
Dimethyl-selenide ↓

100% sensitivity
70% specificity

Dadamio et al.
2012

35 cirrhotic CLD vs 
49 healthy

GC-MS Dimethyl-sulphide ↑
Acetone ↑
2-butanone ↑
2-pentanone ↑
Indole ↓
Phenol ↓
Dimethyl-selenide ↓
Isoprene ↑
Ethane ↑
Pentane ↑

83% sensitivity
100% specificity

Morisco et al.
2013

12 cirrhotic CLD vs 
14 healthy

PTR-MS Heptadienol ↑
Methanol ↑
2-butanone ↑
3-pentone ↑
2-octanone ↑
2-nonanone ↑
Monoterpene ↑
P-cymene ↑

83% sensitivity
86% specificity

Del Rio et al.
2015

31 cirrhotic CLD vs 
30 healthy

PTR-MS Methanol ↑
2-butanone ↑
Carbon-sulphide ↑
2-pentanone ↑
Limonene ↑

97% sensitivity
70% specificity

Pijls et al.
2016

34 cirrhotic CLD vs 
87 non-cirrhotic CLD

GC-MS Dimethyl-sulphide ↑
Terpene (limonene) ↑
2-methyl-butanal ↓
Propanoic acid ↑
Octane ↑
Terpenoid ↑
3-carene ↑
1-hexadecanol ↓
C16H34 ↓

83% sensitivity
87% specificity

De Vincentis et al.
2016

65 cirrhotic CLD vs 
39 non-cirrhotic CLD

E-nose Not available 86.2% sensitivity
98.2% specificity

Eng et al.
2015

49 cirrhotic CLD 
children vs 55 
healthy children

SIFT-MS 1-decene ↑
1-heptene ↑
1-octene ↑
3-methyl-hexane ↑
1-nonene ↓
(E)-2-nonene ↓
Dimethyl-sulphide ↓

0.97 AUC
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Differentiation among specific cirrhotic CLD, non-cirrhotic 
CLD, and pre-cirrhotic CLD
VOCs in advanced versus mild fibrosis patients
In 2013, Alkhouri et al. [60] assessed the utility of breath VOC measurements to diagnose 
advanced fibrosis in CLD patients by employing SIFT-MS. They found reduced acetone, 
benzene, carbon disulphide, isoprene, pentane, and ethane in the breath of patients 
with advanced fibrosis compared to those with minimal fibrosis (Table 4). Isoprene had 
the highest AUC for advanced fibrosis (i.e. AUC = 0.855), and 75% of the patients were 
correctly classified as advanced fibrosis using certain cut-off levels for isoprene.

VOCs in cirrhotic patients with hepatic encephalopathy or hepatocellular 
cancer
Hepatic encephalopathy (HE) was investigated by Khalid et al. [61]. They sampled 
alcoholic cirrhotic patients, of which some had HE and some others did not have 
HE, along with a few non-alcoholic cirrhotic patients, harmful drinkers, and healthy 
volunteers; ultimately, they aimed to differentiate cirrhotic HE patients from cirrhotic 
patients without HE or harmful drinkers by using GC-MS. They reported that methyl-
vinyl ketone and, likely, isothiocyanato-cyclohexane contributed to the group 
separation of alcoholic cirrhotic patients with HE and without HE. The model yielded 
a 90% sensitivity and 87% specificity. Undecane and an unknown compound 
contributed to the separation of alcoholic and non-alcoholic cirrhotic patients without 
HE, and the model yielded 78% sensitivity and 69% specificity. 1-methyl-4-(1-methyl-
ethenyl)-benzene (p-cymenene) and two unknown compounds contributed to the 
group separation of alcoholic cirrhotic patients and harmful drinkers without cirrhosis, 
and the model yielded 88% sensitivity and 85% specificity. Octanal, a compound 
tentatively identified as 2,6-dimethyl-7-octen-2-ol, and an unknown compound 
contributed to distinguishing harmful drinkers from healthy volunteers, and the model 
yielded 71% sensitivity and 93% specificity. Methyl-vinyl ketone and an unknown 
compound allowed for the discrimination of non-alcoholic cirrhotic patients from 
healthy controls, and the model yielded 92% sensitivity and 100% specificity. Finally, 
heptane, 1-methyl-2-(1-methyl-ethyl)-benzene, phellandrene, and 2-methyl-hexane 
contributed to discriminating the alcoholic cirrhotic group from the healthy volunteers, 
and the model yielded 97% sensitivity and 93% specificity.

In 2016, O’Hara et al. [45], a follow-up of the [50] study, stratified the population of 
cirrhosis patients based on the presence of HE and investigated variations in limonene, 
methanol, and 2-pentane by using PTR-MS measurements.  They found that limonene 
was higher in the breath of patients with HE and was the only compound able to 
discriminate from non-HE patients. In contrast, 2-penatanone could not discriminate 
against cirrhotic patients stratified by the presence/absence of HE complication. 
However, they did not provide sensitivity and specificity results.
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Qin et al. [62] compared healthy volunteers, cirrhotic patients without hepatocellular 
cancer (HCC), and non-cirrhotic patients with HCC to find breath biomarkers that 
could be used to diagnose HCC patients—they ran a GC-MS/solid-phase micro-
extraction analysis (SPME). 3-hydroxy-2-butanone, styrene, and decane appeared 
the most promising breath biomarkers for HCC patients. 3-hydroxy-2-butanone 
was the only one that was significantly different among all three groups, and it could 
discriminate between healthy volunteers and HCC groups with a sensitivity and 
specificity of 83.3% and 91.7%, respectively. In contrast, the diagnostic accuracy 
between HCC and cirrhosis groups was lower, with a sensitivity and specificity of 
70% and 70.4%, respectively (Table 4). Styrene was not significantly different between 
the healthy volunteers and HCC groups, while decane was not significantly different 
between the cirrhosis and HCC groups. These compounds were significantly higher in 
HCC patients than in healthy volunteers, which suggests that these VOCs result from 
cancer metabolism, and thus, they may serve as breath biomarkers of HCC. The [45] 
study also examined VOCs in  HCC patients; however, its results are different from 
those in [62]. The former study only found that HCC patients had significantly lower 
limonene levels than patients without HCC. These differences might be because the 
[45] study used PTR-MS instead of GC-MS/SPME that the [62] study used.

Ferrandino et al. [63] followed up on the limonene-related hypothesis and by sampling 
cirrhotic patients, cirrhotic patients with HCC, and healthy controls, they focused on 
comparing the exhaled limonene levels of their groups and see how they relate with 
each other by performing a GS-MS analysis. They reported that limonene concentration 
was significantly higher in cirrhotic and cirrhotic patients with HCC when compared to 
healthy individuals. However, no significant differences in limonene levels were found 
between the two diseased groups. They also reported that limonene levels correlate 
with serum bilirubin but not with alanine transferase. Consequently, Ferrandino et al. 
confirmed that breath limonene levels do not change among patients with HCC over 
underlying cirrhosis from patients with matching cirrhosis severity.

In 2020, another broader scale HCC study was reported by Miller-Atkins et al. [64]. They 
sampled healthy volunteers, cirrhotic without HCC, non-cirrhotic with HCC, pulmonary 
hypertension (PA), and colorectal cancer liver disease (CRLD) patients, and they 
examined specific VOCs reported in the literature to see whether they could achieve 
separation of their classes and which VOCs are more or less abundant in which group. 
They ran a SIFT-MS analysis, and they published that pairwise disease comparisons 
demonstrated that most of the VOCs were present in significantly different relative 
abundances. Each pairwise disease comparison had several compounds as significant; 
therefore, only the most significant metabolite associations for each disease are 
mentioned here. Comparing HCC against healthy volunteers revealed that (E)-2-nonene, 
ethane, and benzene increased in HCC patients, whereas hydrogen sulphide decreased. 
Comparing cirrhotic against healthy controls showed that trimethyl-amine and propanol 
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significantly increased in cirrhotic individuals. Furthermore, (E)-2-nonene, acetaldehyde, 
and ethane significantly increased in PA individuals than healthy volunteers, whereas 
hydrogen sulphide decreased in that pairwise disease comparison. When CRLD 
patients were compared against healthy controls, (E)-2-nonene, acetaldehyde, and 
triethyl-amine significantly increased in CRLD individuals, whereas hydrogen sulphide, 
acetone, and trimethyl-amine decreased. Lastly, Miller-Atkins et al. found that acetone, 
acetaldehyde, and dimethyl-sulphide were increased in cirrhotic without HCC patients 
than in non-cirrhotic with HCC patients, while ethanol was increased in the non-cirrhotic 
HCC patients than the cirrhotic without HCC patients. The authors’ classification results 
can be seen in Table 4.

Arasaradnam et al. [65] investigated breath VOCs in non-cirrhotic HE patients compared 
to healthy individuals; however, they used the e-nose technology. They found that the 
resulting BP could distinguish the two groups with a sensitivity and specificity of 88% 
and 68%, respectively. The BP could also differentiate between overt and covert HE, 
however, with a moderate sensitivity and specificity of 79% and 50% (Table 4). E-nose 
technology does not quantify individual compounds that form the BP; nevertheless, this 
might not be a considerable bottleneck depending on the application.

VOCs in non-alcoholic fatty liver disease versus non-alcoholic 
steatohepatitis patients
Breath analysis has also been implemented to examine obesity-related liver diseases. 
Solga et al. [5] compared NAFLD patients, of which some had NASH, to explore 
the diagnostic capability of breath biomarkers against a standard blood serum test; 
they performed a GC analysis. Acetone concentrations in breath were found to be 
significantly increased in patients with severe steatosis (grade 2 or 3), steatohepatitis, 
and NASH compared to patients with mild forms of steatosis, or steatohepatitis, and 
NASH. Breath ethanol was also positively associated with hepatic steatosis severity, 
as it was higher in the breath of patients with severe steatosis (grade 2 and 3).

In 2013, Verdam et al. [66] investigated NASH. They sampled NASH and non-NASH 
patients, and they aimed to separate the classes—they performed a GC-MS analysis. 
They reported that NASH and non-NASH patients could be discriminated by using 
three compounds: N-tridecane, 3-methyl-butanotrile, and 1-proponol with a sensitivity 
and specificity of 90% and 69%, respectively [66] (Table 4). Their results, however, are 
very different from the research conducted in the [5] study. The lack of control and 
validation in the [5] study might have been a reason for this difference.

Alkhouri et al. [67] examined the usage of exhaled breath analysis as a diagnostic tool 
in children. They aimed to separate obese children with NAFLD from obese children 
without NAFLD by performing a SIFT-MS breath analysis. They discovered that various 
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VOCs (i.e. isoprene, acetone, trimethylamine, acetaldehyde, and pentane) could 
distinguish NAFLD children from those without NAFLD with an AUC of 0.71 (Table 4). 
The [67] study findings, though, might be questionable since NAFLD was not diagnosed 
by liver biopsy; it was diagnosed by assessing the presence of fatty infiltration.

VOCs in alcoholic and non-alcoholic fatty liver disease patients versus 
cirrhotic patients
Millonig et al. [36] demonstrated the usage of exhaled breath VOCs for differentiating 
among non-cirrhotic alcoholic fatty liver disease (AFLD), non-cirrhotic NAFLD, 
cirrhotic patients, and healthy cohorts. They aimed to separate these groups of 
patients by using ion-molecule reaction-MS (IMR-MS) analysis. Millonig et al. 
reported that 19 compounds showed significantly different exhalation patterns (not 
compound identification was achieved per class) among the different liver disease 
types. The most promising compound was acetaldehyde, which was significantly 
higher in NAFLD and AFLD when compared to healthy controls and cirrhotic patients, 
and ethanol, which was only increased in cirrhotic patients and not in patients with 
NAFLD, AFLD, or healthy controls (Table 4).

In 2020, Sinha et al. [68] were the latest to investigate the ability to diagnose NAFLD 
using exhaled breath. They found that styrene, acetone, isoprene, terpinene, dimethyl-
sulphide, acetophenone, and limonene significantly differed among cirrhotic and non-
cirrhotic NAFLD patients. More specifically, isoprene, acetophenone, and terpinene 
were significantly lower in non-cirrhotic NAFLD patients than healthy controls; 
terpinene had the highest predictive capability, achieving an AUC value of 0.84. 
Styrene, isoprene, acetophenonene, and terpinene were significantly lower in cirrhotic 
NAFLD patients than healthy controls, whereas dimethyl-sulphide and limonene were 
significantly higher in cirrhotic NAFLD patients than in healthy controls—limonene and 
dimethyl-sulphide combined yielded the highest predictive capability with an AUC 
value of 0.98. Furthermore, dimethyl-sulphide and limonene were significantly higher 
in cirrhotic NAFLD patients than non-cirrhotic NAFLD; combined, they achieved an 
AUC of 0.91 (Table 4).

Letteron et al. [69] conducted a large scale study in which they stratified various liver 
disease patients. They sampled non-alcoholic liver disease patients categorised 
into acute hepatitis, chronic hepatitis, viral cirrhosis patients, polyadenomatosis of 
the liver patients, non-alcoholic HCC, liver metastasis, sclerosing cholangitis, biliary 
cirrhosis, extrahepatic bile duct obstruction patients, alcohol abusers, as well as 
healthy individuals. They measured the exhaled ethane levels by using a GC-flame 
ionisation detector (FID). Their results showed that alcohol abusers had significantly 
higher ethane levels than other non-alcoholic groups.
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VOCs in alcoholic hepatitis patients versus cirrhotic patients
Hanouneh et al. [21] published a study where they investigated alcoholic hepatitis 
(AH). More specifically, they gathered two groups that consisted of AH patients with 
liver cirrhosis, patients with acute decompensation (AD) with aetiologies other than 
alcohol and liver cirrhosis, and a healthy cohort. They aimed to find concentrations 
of VOCs that correlate with AH diagnosis and the severity of liver disease in AH 
patients—patient samples were analysed utilising SIFT-MS. Six compounds were 
identified to be significantly higher in the exhaled breath of liver disease patients 
compared to controls: acetaldehyde, 2-propanol, ethanol, acetone, pentane, and 
trimethyl-amine (TMA). Moreover, four compounds (i.e. acetaldehyde, acetone, TMA, 
and pentane) stood out in patients with cirrhotic AH compared to patients with AD. 
Finally, Hanouneh et al. also demonstrated that cirrhotic AH patients have a distinct 
breath VOC pattern characterised by high levels of acetone, pentane, and TMA when 
compared against patients with liver disease of aetiologies other than alcohol. Their 
model created using these three compounds gave an excellent diagnostic accuracy 
for AH with a 97% sensitivity and a 72% specificity (Table 4).

Origin of the VOCs reported in cirrhotic, non-cirrhotic,  
and pre-cirrhotic stage individuals
The key compounds and their metabolic pathways discussed in the aforementioned 
literature (sections 4.2.1 – 4.2.5) can be summarised as follows. Increased isoprene 
levels were found in AFLD and advanced fibrosis stage patients [36, 60, 67], and it 
is suggested that they are the result of impairment in the cholesterol biosynthesis 
pathway or that they might be the result of disturbed colon flora. However, other 
literature suggests that subjects should be at rest before testing because isoprene 
absence/deficiency maybe the result of exercise and that generally, it should not be 
attributed to pathophysiological effects onto mevalonate/cholesterol pathways [70, 
71]. Increased acetone levels were found in stage 1 or 2 fibrosis patients, as well 
as NAFLD and AH patients [5, 21, 67]; acetone is believed to be associated with 
lipolysis and carbohydrate metabolism, where increased expression of the CYP450 
enzyme would result in fatty acid beta-oxidation, which then would lead to excess 
of acetyl-CoA. Another possible explanation could be that reduced NADH levels 
(Nicotinamide Adenine Dinucleotide) in hepatocellular mitochondria could decrease 
d-3-hydroxybutyrate and dehydrogenase activity, which also would increase acetone 
levels. Alkanes such as pentane, heptane, 2-methyl-hexane, and ethane that were 
found in NAFLD, HE, AH, and alcohol abusers were linked to lipid peroxidation of 
polyunsaturated fatty acids due to oxidative stress [21, 61, 67, 69]; terpinene, 
found in NAFLD individuals, was also linked to oxidative stress [68]. Furthermore, 
isothiocyanato-cyclohexane was characterised as a common environmental pollutant 
and its increase in HE patients was attributed to impaired liver catabolism, whereas 
increased 1-methyl-4-(1-methylethenyl)-benzene levels again in HE patients may 
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have originated from an enhanced aromatase activity due to extensive alcohol abuse 
that could have been responsible for changes in metabolism. HE patients were also 
characterised by increased octanal, and a compound tentatively identified as 2, 
6-dimethyl-7-octen-2-ol levels, which might have resulted from the P450 induction 
and catabolism of fatty acids [61]. Compounds such as limonene, dimethyl-sulphide, 
as well as ketones that were also found in the section 4.1 studies, were given the 
same possible origin explanations as those discussed in the section 4.1.1. Higher 
ethanol levels observed in cirrhotic patients are probably caused by increased 
shunting volumes through portocaval shunts in the liver, preventing the metabolism 
of endogenous ethanol [36], whereas diminished acetaldehyde levels that were 
observed in NAFLD, AFLD, and cirrhotic patients were explained by diminished 
ethanol oxidation [36]. Interestingly, acetaldehyde levels were increased in NAFLD 
children; however, they were also attributed to the fact that acetaldehyde is a product 
of liver ethanol metabolism [67]. Finally, TMA either derives from an impaired liver 
damaged capacity to transform TMA to TMAO (i.e. physiological oxidation of TMA), or 
it derives from the degradation of dietary phosphatidylcholine and dietary free choline 
by the intestinal microflora [21, 67]. Figure 2 visualizes all these suggested pathways.
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TABLE 4: SUMMARY OF THE PAPERS THAT EXAMINED CIRRHOTIC, NON-CIRRHOTIC AND VARIOUS PRE-
CIRRHOTIC STAGE OCCASION PATIENTS AGAINST EACH OTHER. THE ARROWS SHOW (IF APPLICABLE) 
WHETHER A VOC LEVEL INCREASED OR DECREASED IN THE FIRST GROUP COMPARED TO THE SECOND 
GROUP IN THE STUDY DESIGN.

Author/Year Study design Analytical 
method

VOCs identified as 
significant

Discriminatory 
performance

Alkhouri et al.
2015

20 advanced fibrosis vs 
41 mild fibrosis

SIFT-MS Acetone ↓
Benzene ↓
Carbon disulphide ↓
Isoprene ↓
Pentane ↓
Ethane ↓

0.85 AUC
(Isoprene model)

Khalid et al.
2013

11 alcoholic cirrhotic 
with HE vs 23 alcoholic 
cirrhotic without HE 

34 alcoholic cirrhotic 
vs 13 non-alcoholic 
cirrhotic

34 alcoholic cirrhotic vs 
7 harmful drinkers

7 harmful drinkers vs 15 
healthy

13 non-alcoholic 
cirrhotic vs 15 healthy

34 alcoholic cirrhotic vs 
15 healthy

GC-MS Methyl-vinyl ketone ↓
Isothiocyanato-
cyclohexane ↑

Undecane ↑
Unknown ↓

1-methyl-4-(1-methyl-
ethenyl)-benzene ↑
Unknown ↓
Unknown ↓

Octanal 
2,6-dimethyl-7-octen-2-ol
Unknown

Methyl-vinyl ketone
1-methyl-2-(1-methyl-
ethyl)-benzene (o-cymene)
Unknown

Heptane
1-methyl-2-(1-methyl-
ethyl)-benzene
Phellandrene
2-methyl-hexane

90% sensitivity
87% specificity

78.3% sensitivity
69.2% specificity

88% sensitivity
85% specificity

71% sensitivity
93% specificity

92% sensitivity
100% specificity

97% sensitivity
93% specificity

O’Hara et al.
2016

11 cirrhotic HE vs 11 
cirrhotic without HE vs 
7 history of HE vs 30 
healthy

10 without HCC vs 21 
HCC vs 30 healthy

PTR-MS Limonene ↑

Limonene ↑

Not reported

Not reported

Qin et al.
2010

30 HCC vs 36 healthy

30 HCC vs 27 cirrhotic 
without HCC

GC-MS-
SPME

3-hydroxy-2-butanone ↑
Styrene ↑
Decane ↑

3-hydroxy-2-butanone ↑
Styrene ↑

83.3% sensitivity
91.7% specificity

70% sensitivity
70.4% specificity

Ferrandino et al.
2020

32 cirrhotic without HCC 
vs 12 cirrhotic with HCC 
vs 40 healthy controls

GC-MS Limonene ↑ 73% sensitivity
77% specificity
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Author/Year Study design Analytical 
method

VOCs identified as 
significant

Discriminatory 
performance

Miller-Atkins 
et al.
2020

†only the three 
most significant 
metabolite 
associations for 
each disease 
comparison 
are shown in 
the column 
of significant 
compounds

112 non-cirrhotic HCC 
vs 54 healthy

30 cirrhotic without HCC 
vs 54 healthy

49 PH vs 54 healthy

51 CRLM vs 54 healthy

112 non-cirrhotic HCC 
vs 30 cirrhotic

SIFT-MS (E)-2-nonene ↑
Ethane ↑
Benzene ↑
Hydrogen sulphide ↓

Trimethyl-amine ↓
Propanol ↓

(E)-2-nonene ↑
Acetaldehyde ↑
Ethane ↑
Hydrogen sulphide ↓ 

(E)-2-nonene ↑
Acetaldehyde ↑
Triethyl-amine ↑
Acetone ↓

Acetone ↓
Acetaldehyde ↓
Dimethyl-sulphide ↓
Ethanol ↑

Healthy vs all the 
rest
76% sensitivity
97% specificity

Cirrhotic vs all 
the rest
40% sensitivity
96% specificity

HCC vs all the 
rest
73% sensitivity
71% specificity

CRLM vs all the 
rest
51% sensitivity
94% specificity

PH vs all the rest
58% sensitivity
93% specificity

Arasaradnam 
et al.
2016

22 non-cirrhotic HE vs 
20 healthy

13 covert non-cirrhotic 
HE vs 9 overt non-
cirrhotic HE

E-nose Not available

Not available

88% sensitivity
68% specificity

79% sensitivity
50% specificity

Solga et al.
2008

16 moderate to severe 
steatosis vs 11 less 
steatosis

24 NASH vs 24 without 
NASH

GC Ethanol ↑
Acetone ↑

Acetone ↑

Not reported

Not reported

Verdam et al.
2013

39 NASH vs 26 without 
NASH

GC-MS n-tridecane ↑
3-methyl-butanonitrile ↑
1-propanol ↑

90% sensitivity
69% specificity

Alkhouri et al.
2013

37 obese NAFLD vs 23 
obese without NAFLD

SIFT-MS Isoprene ↑
Acetone ↑
Trimethylamine ↑
Acetaldehyde ↑
Pentane ↑

0.76 AUC
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Author/Year Study design Analytical 
method

VOCs identified as 
significant

Discriminatory 
performance

Millonig et al.
2010

37 cirrhotic vs 35 
healthy

91 liver diseased vs 
healthy

34 NAFLD vs healthy 
controls

20 AFLD vs 35 healthy

20 AFLD vs 34 NAFLD

IMR-MS Ethanol ↑

Acetaldehyde ↑
Ethanol ↑
Isoprene ↑

Acetaldehyde ↑

Acetaldehyde ↑
Isoprene ↑

Isoprene ↑

0.88 AUC

0.94 AUC

0.96 AUC

0.97 AUC

0.95 AUC

Letteron et al.
1993

89 alcohol abusers vs 
52 liver diseased vs 42 
healthy

GC-FID Ethane ↑ Not reported

Hanouneh et al.
2014

80 liver diseased vs 43 
healthy

40 cirrhotic AH vs 40 
cirrhotic AD

SIFT-MS 2-propanol ↑
Acetaldehyde ↑
Acetone ↑
Ethanol ↑
Pentane ↑
Trimethylamine ↑

Acetaldehyde ↑
Acetone ↑
Pentane ↑
Trimethylamine ↑

Not reported

97% sensitivity
72% specificity
(Acetone-
pentane-
trimethylamine)

Liver diseases examined by VOC measured in faeces, bile 
and urine
VOCs in faeces
Raman et al. [72] sampled obese NAFLD presence patients and healthy controls to 
analyse and compare VOCs patterns in the headspace of faecal matter by running 
a GC-MS analysis. They found a core group of ester VOCs that was more abundant 
in obese NAFLD patients than healthy controls (normal liver and lean). This suggests 
that obese NAFLD patients have altered microbiome composition. Using binary data, 
they found 12 compounds that were significantly less common and 18 compounds 
that were more common in the faecal headspace of NAFLD patients than in healthy 
controls. Ester compounds composed most of the identified VOCs (i.e. aliphatic esters 
of ethanoic, butanoic, propanoic, and pentanoic acids). Most of these compounds 
were short-chain aliphatic alcohols and carboxylic acids derivatives. The origin 
of volatile esters coming from the gut microbiota [72] is still elusive. However, it is 
believed that bacterial enzymes such as esterases could catalyse reactions by using 
organic acids and alcohols; thus, leading to the formation of ester VOCs such as 
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those found in their study [72]. Ethanol was seen as a ubiquitous compound since 
it was present in both NAFLD and healthy individuals; nevertheless, these findings 
do not allow conclusions to be drawn as they are only qualitative findings. Many 
confounding factors were present as the researchers did not account for different 
diets, environment, or smoking. The study population did not include non-NAFLD 
obese patients; therefore, it is unknown if VOC characteristics are due to NALFD 
or obesity. The VOCs detected in the [72] study in the faecal headspace (esters of 
ethanoic, butanoic, propanoic, and pentanoic acids) belonged to the same classes 
as the compounds found by papers analysing breath (2-butanone, 2-pentanone, 
ethane). This suggests that breath VOCs could be derivatives of VOCs created by 
gastrointestinal bacteria, as argued in [72].

VOCs in bile
In 2015, Navaneethan et al. [38] published a pilot study in patients with primary 
sclerosis cholangitis (PSC), a risk factor for cholangiocarcinoma (CCA). Bile samples 
from the endoscopic bile repository were selected for analysis, of which some were 
PSC only patients, and some were PSC with CCA patients. Their objective was to 
identify potential VOCs in the bile headspace to discriminate CCA progression in PSC 
patients. They ran a SIFT-MS analysis, and they reported the following significantly 
different compounds: ethanol, acetonitrile, acrylonitrile, 3-methyl-trexane, benzene, 
carbon disulphide, acetaldehyde, dimethyl-sulphide, and 2-propanol. Combining 
3-methyl-hexane, acrylonitrile, and benzene, they built a predictive model to 
diagnose PSC patients with CCA with a sensitivity and specificity of 90.5% and 
72.7%, respectively. Benzene, an environmental pollutant originating from tobacco 
smoke and vehicle exhaust [38], was found alongside acrylonitrile and acetonitrile 
to be significantly less abundant in patients with CCA than PSC only patients. Also, 
dimethyl-sulphide, carbon disulphide, and mercaptopurines, which are products of 
incomplete metabolism in the liver of sulphur-containing amino acids [38], are less 
prominent in PSC patients with CCA. However, it should be noted that all of the 
compounds found in the [72] study, except for acetonitrile and acrylonitrile, have also 
been associated with liver disease by multiple papers analysing breath VOCs [34, 47, 
50, 56, 67]. The [38] study illustrates that bile VOC analysis has potential for clinical 
applications. However, bile collection requires invasive procedures, and thus, it may 
not be the best path towards alternative VOC diagnosis of liver disease.

VOCs in urine
Navaneethan et al. [73] published another pilot study conducted on urinary samples 
consisting of patients with CCA, patients with pancreatic cancer, and patients with 
benign biliary strictures (PSC, chronic pancreatitis, and papillary steatosis). They 
aimed to diagnose biliary strictures in urinary VOCs by running a SIFT-MS analysis. 
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They found that ethane levels were significantly higher in PSC strictures compared 
to CCA patients. They also found that 2-propanol and carbon disulphide levels were 
lower in malignant strictures, which is in line with their previous study in the bile 
[38]. They generated a model using ethane and octane, which predicted CCA and 
malignancy with sensitivity and specificity of 80% and 100%, respectively.

Arasaradnam et al. [74] published a proof-of-principle study also focused on 
urinal VOC analysis. The patients recruited were NASH cirrhotic (NASH-C), NASH 
non-cirrhotic, and NAFLD; healthy controls (normal liver) were recruited, too. Their 
objective was to determine whether different stages of NAFLD and NASH had specific 
urinary VOC patterns and to pursue this, they ran a field asymmetric ion mobility 
spectrometry (FAIMS) analysis. The [74] study revealed that a urinary VOC breath-
print could discriminate between all liver disease patients and healthy controls with 
low sensitivity of 58% and high specificity of 93%, and an AUC of 0.73. Arasaradnam 
et al. argued that these results suggest that different liver disease conditions create 
other chemicals [74]. The analysis also showed that urinary VOCs could distinguish 
between NASH and NAFLD with a sensitivity and specificity of 73% and 79%, 
respectively. Their urinary VOC patterns also distinguished well NASH-C and NASH 
without cirrhosis [74]. Their study suggests that urinary VOCs could be a potential 
noninvasive diagnostic tool for diagnosing NAFLD and the different NASH stages.

Finally, Bannaga et al. [75] published another pilot urinal VOC analysis examining HCC. 
They sampled HCC and non-HCC patients, and they tried to find biomarkers to separate 
the two classes—the non-HCC cases consisted of healthy and various NAFLD stage 
individuals, including those with or without fibrosis. They ran a GC-IMS analysis to 
separate their classes and a GC-MS analysis to identify HCC-related biomarkers. More 
specifically, the GC-IMS data separated the HCC patients from the fibrotic patients 
with an AUC of 0.97 (sensitivity 43% and specificity 95%), the HCC patients from the 
non-fibrotic patients with an AUC of 0.62 (sensitivity 60% and specificity 74%), and the 
fibrotic from the non-fibrotic patients with an AUC of 0.63 (sensitivity 29% and specificity 
90%). Five compounds were identified as significantly different between the HCC and 
non-HCC patients (i.e. 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (2TMS derivative), 
2-butanone, 2-hexanone, 1-ethyl-2-methyl-benzene, and 3-butene-1,2-diol,1-(2-
furanyl)-) from the GC-MS dataset. All compounds but 2-butanone were significantly 
lower in HCC patients. Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1a,3ß,6a)]- and 
sulpiride were also significantly lower in HCC patients than in fibrotic patients. Bannaga 
et al. neither verified nor quantified their compounds; however, they gave plausible 
explanations as to why they may have found these compounds based on existing 
literature. For instance, they stated that 2-butanone has been reported in breath-related 
VOCs in liver diseases (this is in agreement with [22, 34, 49, 50]), 1-ethyl-2-methyl-
benzene has been identified as a blood biomarker of HCC, whereas 3-butene-1,2-
diol,1-(2-furanyl)- has been associated with lung cancer [75].
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Summary
Figure 2 summarises the VOCs reported in the reviewed studies related to chronic 
liver diseases and their proposed metabolic pathways.

FIGURE 2: THE COMPLEX NETWORK OF ESTABLISHED AND PROPOSED METABOLIC PATHWAYS 
FROM WHICH VOCS STEM AND THEIR ALTERATIONS IN CHRONIC LIVER DISEASES. COMPOUNDS 
FOUND ELEVATED IN THE BREATH OF PATIENTS WITH CIRRHOSIS ARE INDICATED IN BLUE, THOSE 
DOWNREGULATED IN GREEN. RED ARROWS INDICATE CHANGES IN THE METABOLIC PATHWAYS. FROM 
THE BOTTOM LEFT: INSULIN RESISTANCE INCREASES FATTY ACID (FA) SHUTTLING FROM THE ADIPOSE 
TISSUE TO THE LIVER. THE RESULTING EXCESS OF ACETYL-COA IS METABOLISED IN THE MEVALONATE 
PATHWAY (MVA) TO KETONES AND ISOPRENE, THE LATTER ALSO GENERATES FROM GUT MICROBIOTA. 
DIETARY LIMONENE IS CONVERTED TO PERILLYL ALCOHOL (PA) AND TRANS-CARVEOL (TC) MAINLY BY 
CYP2C9 AND CYP2C19. PA AND TC ARE MORE SOLUBLE IN THE AQUEOUS ENVIRONMENT AND CAN 
BE EXCRETED IN THE URINES. IN THE CIRRHOTIC LIVER, REDUCED ACTIVITY OF CYP ENZYMES LEADS 
TO THE ACCUMULATION OF LIMONENE IN THE ADIPOSE TISSUE AND INCREASES ITS PERMANENCE IN 
THE BODY, RESULTING IN ELEVATED LEVELS IN THE BREATH. INCOMPLETE METABOLISM OF SULPHUR-
CONTAINING AMINO ACIDS IN THE TRANSAMINATION PATHWAY, COUPLED WITH CYTOCHROME 
C OXIDASE DEFICIENCY IN THE CIRRHOTIC LIVER, LEAD TO ELEVATED LEVELS OF DIMETHYL-
SULPHIDE (DMS) IN THE BREATH OF PATIENTS WITH CIRRHOSIS. DIETARY 2-BUTANOL, A FLAVOURING 
AGENT, AND A COMPOUND CONTAINED IN FRUIT IS CONVERTED TO 2-BUTANONE BY ΑΑ-ADH. A 
SIMILAR PATHWAY MAY ALSO INVOLVE 2-PENTANOL, A SIMILAR COMPOUND. BOTH 2-BUTANONE 
AND 2-PENTANONE HAVE BEEN FOUND ELEVATED IN THE BREATH OF PATIENTS WITH CIRRHOSIS. 
LIPID PEROXIDATION, A PROCESS TRIGGERED BY INCREASED INFLAMMATION OF THE CIRRHOTIC 
LIVER, HAS BEEN PROPOSED TO GENERATE ALKANES, SUCH AS OCTANE, PENTANE AND ETHANE, 
AND MEDIUM, LONG-CHAIN ALDEHYDES. THESE ALKANES HAVE BEEN FOUND ELEVATED, WHILE 
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DETECTED ALDEHYDES ARE REDUCED. BOTH CLASSES OF COMPOUNDS CAN BE CONVERTED TO 
CORRESPONDING ALCOHOLS BY RESPECTIVELY CYPS OR ALDO-KETO REDUCTASES (AKR). MEDIUM-
CHAIN PRIMARY ALCOHOLS CAN BE FURTHER METABOLISED BY ALCOHOL DEHYDROGENASES (ADH) 
BACK TO ALDEHYDES, WHICH CAN BE CONVERTED TO CORRESPONDING FATTY ACIDS AND FEED 
BETA-OXIDATION. SECONDARY ALCOHOLS SUCH AS 2-BUTANOL AND 2-BUTANONE MAY ALSO BE 
GENERATED AND CONTRIBUTE TO INCREASING THE CORRESPONDING KETONES. ETHANOL (ETOH), 
WHICH ORIGINATES FROM THE DIET, SUGAR FERMENTATION FROM GUT MICROBIOTA, AND OXIDATION 
OF ETHANE, INCREASES IN THE BREATH OF PATIENTS WITH CIRRHOSIS BECAUSE OF SHUNTING AND 
DOWNREGULATION OF THE MAIN METABOLISING PATHWAY. HOWEVER, ACETALDEHYDE, THE MAIN 
BIO-PRODUCT OF ETOH METABOLISM, HAS ALSO BEEN ELEVATED DUE TO DOWNREGULATION OF 
THE DOWNSTREAM ENZYME ALDEHYDE DEHYDROGENASE (ALDH). DIMETHYL SELENIDE (DMSE) IS 
ONE OF THE EXCRETION PRODUCTS OF SELENIDE METABOLISM. SELENIDE BLOOD LEVELS WERE 
REDUCED IN PATIENTS WITH CIRRHOSIS, TO AN EXTENT RELATED TO DISEASE SEVERITY. THEREFORE, 
REDUCED DMSE IN BREATH MAY RESULT FROM A LACK OF SUBSTRATE AND IMPAIRED SELENIDE 
METABOLIC PATHWAY. BENZENE IS A POLLUTANT GENERATED MAINLY BY PETROL PRODUCTS AND 
READILY ADSORBED BY THE BODY BY INHALATION. BENZENE IS OXIDISED TO PHENOL BY THE CYP 
SYSTEM. REDUCED CYP ACTIVITY IN CIRRHOSIS MAY EXPLAIN REDUCED BREATH LEVELS OF PHENOL. 
EXPOSURE TO STYRENE TAKES PLACE MAINLY BY ADSORPTION OF VAPOURS THROUGH THE LUNGS. 
ITS REDUCED OXIDATION BY THE CYP SYSTEM EXPLAINS ITS INCREASE IN THE BREATH OF PATIENTS 
WITH CIRRHOSIS. TRIMETHYLAMINE (TMA) IS DERIVED FROM THE DIET BY MICROBIAL DEGRADATION 
OF PRECURSORS SUCH AS CHOLINE. TMA IS READILY ABSORBED AND METABOLISED BY FLAVIN-
CONTAINING MONOOXYGENASES (FMO) IN TRIMETHYLAMINE N-OXIDE (TMAO) FOR URINE EXCRETION. 
REDUCED FMO ACTIVITY IN CIRRHOSIS MAY LEAD TO INCREASED TMA IN THE BREATH. INDOLE IS A 
CATABOLIC PRODUCT OF TRYPTOPHANE (TRP) METABOLISM BY TRYPTOPHANASE (TNA) ACTIVITY OF 
GUT MICROBIOTA, WHICH ALTERATIONS IN CIRRHOSIS MAY LEAD TO REDUCED INDOLE EXHALATION 
IN THE BREATH.

VOC analysis might greatly benefit liver disease diagnosis and prognosis; however, it is 
apparent from the literature findings that implementation of the VOC analysis in clinical 
liver practices is not ready yet for routine applications since much more research is 
needed. All conducted studies are either proof-of-concept studies or of a small sample 
size. Furthermore, many of the presented here studies, did not perform any internal 
or external validation of their findings. The correction of possible confounding factors 
was also not considered, and this might have affected their results. Nevertheless, 
some key concept can be kept from the present review that may point towards the 
eventual implementation of the VOC analysis in clinical liver practices. Several VOCs 
have been found in several studies, and as indicated in Figure 2, they have a solid 
biological explanation. All the compounds reported here are endogenous compounds 
except for limonene, which is an exogenous compound. This is probably the most 
striking observation of the present review because it illustrates the possibilities of 
a different study approach: exogenous VOC exposure. More specifically, one could 
expose a cohort at a particular limonene concentration with ingestion, sample their 
breath or maybe urine after exposure, and measure the difference between the inhaled 
and exhaled limonene concentration to determine liver function. The same principle 
could be applied to any other exogenous VOC metabolised by the liver. An exogenous 
VOC analysis enables for a tailored, controlled exposure to a compound of interest, 
thus providing a better chance in identifying disease-specific markers. Moreover, 
an exogenous VOC analysis would also be more robust to background VOCs (e.g. 
environmental VOCs), which are often one of the major confounding factors in the 
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field. It should be noted, however, that there are weaknesses of such an approach too. 
An exposure to a specific VOC may require patient preparation, but most importantly, 
it might be source of a potential allergy. Nonetheless, this approach could potentially 
help with liver disease diagnosis and prognosis since the exhaled concentration 
could indicate the level of liver impairment. The authors believe that this could push 
VOC analysis a step forward towards its clinical implementation in the liver research 
domain and other clinical settings.
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Supplementary materials

TABLE S1: ADDED QUESTIONS TO FURTHER AND MORE STRICTLY EVALUATE THE PAPERS INCLUDED 
IN THE PRESENT REVIEW.

Added questions
1.	Did the authors correct or control for confounding factors such as diet, smoking, alcohol, medication, 

and place/time of sample collection?
2.	Was the sample size sufficient?
3.	Did the authors perform any statistical analysis? If so, did they correct for multiple testing? Also, did the 

authors validate their results? If so, did they perform internal (within the same cohort) or even external 
(new independent cohort) validation or both?

4.	Where the study classes balanced?
5.	Did the authors give the biological or non-biological origin of the compounds they found significant in 

their study?

TABLE S2: ADDED QUESTION COMMENTS AS TO WHY EACH PUBLICATION WAS GIVEN ITS RESPECTIVE 
QUALITY VALUE. IF NO EXPLANATION IS GIVEN, IT MEANS THAT ALL ISSUES RAISED IN THE ADDED 
QUESTIONS WERE ADDRESSED BY THAT PARTICULAR STUDY.

Publication Quality Explanation
Friedman et al. 1994 [1] Medium They did not mitigate for confounding factors; small 

sample size; they did not establish the origin of the found 
compounds; no statistical modelling was performed

Hiroshi et al. 1978 [2] Low They did not mitigate for confounding factors; small 
sample size; they did not establish the origin of the found 
compounds; no statistical modelling was performed

Letteron et al. 1993 [3] Medium They did not validate their results in terms of statistical 
modelling; imbalanced study classes; they did not 
establish the origin of the found compounds

Van den Velde et al. 2008 [4] High -

Dadamio et al. 2012 [5] High -

Pijls et al. 2016 [6] High -

Morisco et al. 2013 [7] High They did not validate their results in terms of statistical 
modelling

Del Rio et al. 2015 [8] High They did not validate their results in terms of statistical 
modelling

Eng et al. 2015 [9] High They did not validate their results in terms of statistical 
modelling

Alkhouri et al. 2015 [10] High They did not mitigate for confounding factors; 
imbalanced study classes

De Vincentis et al. 2016 [11] Medium They did not validate their results in terms of statistical 
modelling; no compounds were identified (due to the 
e-nose technology itself)

Khalid et al. 2013 [12] Medium They did not mitigate for confounding factors; 
imbalanced study classes
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Publication Quality Explanation
O’Hara et al. 2016 [13] High They did not validate their results in terms of statistical 

modelling

Arasaradnam et al. 2015 [14] Medium Small sample size; imbalanced study classes; they did 
not establish the origin of the found compounds

Solga et al. 2006 [15] Medium They did not mitigate for confounding factors; they did 
not validate their results in terms of statistical modelling

Verdam et al. 2013 [16] Medium They did not mitigate for confounding factors; they did 
not validate their results in terms of statistical modelling

Alkhouri et al. 2013 [17] Medium They did not mitigate for confounding factors

Millonig et al. 2010 [18] High -

Hanouneh et al. 2014 [19] High -

Qin et al. 2010 [20] Medium They did not validate their results in terms of statistical 
modelling; imbalanced study classes

Sinha et al. 2019 [21] Medium Small sample size

Ferrandino et al. 2020 [22] Medium They did not mitigate for confounding factors

Miller-Atkins et al. [23] High -

Raman et al. 2013 [24] Medium They did not mitigate for confounding factors; they did 
not validate their results in terms of statistical modelling

Navaneethan et al. 2015 [25] Medium Small sample size; they did not validate their results in 
terms of statistical modelling

Navaneethan et al. 2015 [26] Medium They did not validate their results in terms of statistical 
modelling

Arasaradnam et al. 2012 [27] Medium They did not mitigate for confounding factors; small 
sample size; no compounds were identified (due to the 
e-nose technology itself)

Bannaga et al. 2021 [28] Medium They did not mitigate for confounding factors; small 
sample size
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Abstract
Biomarker discovery, i.e., finding disease or condition-specific markers, is a crucial 
aspect of biomedical research. Volatile organic compounds (VOCs) are excreted by 
various biofluids, cells and tissues, and bacteria, and these have been investigated 
extensively for their potential as markers of malfunctioning status in human. The 
number of VOCs excreted by those media and detected using sophisticated analytical 
instrumentations are numerically large and biologically complex. Therefore, data 
pre-processing and analysis are crucial for successful identification of valid VOC 
markers for their application in clinic practice. This chapter provides an overview of 
various pre-processing approaches suitable for volatilome data of diverse nature. The 
importance of normalization and scaling, often neglected in the field, is discussed. 
The most common and promising machine learning techniques are presented and 
discussed, including unsupervised and supervised approaches, followed by a rarely 
used strategy in volatilome field, data fusion. The chapter aims to equip the reader 
with a basic overview of suitable techniques for treating and successfully exploiting 
volatilome data.

Keywords: multivariate analysis, volatile organic compounds (VOCs), machine learning, 
supervised, unsupervised, data fusion
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Overview
Volatilome research is a strongly emerging field that represents a new frontier in 
metabolomics.  Research explores qualitative and/or quantitative changes in volatile 
organic compounds (VOCs) present within various biofluids, such as breath, blood, 
urine, saliva, feces, or excreted by cells or bacteria, and attempts to link these changes 
to health status. Consequently, the main objective in volatilome research is to discover 
patterns of VOCs that relate to deviant metabolic processes (for instance, inflammation) 
occurring in the human body. The emergence and continued development of high-
throughput, high-resolution analytical platforms for VOC analysis has resulted in 
numerically large and biologically complex datasets for which sophisticated tools are 
required for their comprehensive processing and successful exploitation. 

Volatilome data typically contain a mixture of endogenous compounds related to 
physiological, biochemical and metabolic processes, and exogenous compounds 
derived from environmental exposure, bacteria and viruses, amongst others (see 
chapter 1). This leads to data with different sources of variance, i.e., variance of interest 
as well as biologically irrelevant information or noise. The challenge in volatilome 
analysis is to separate those two sources of variation, by focusing on the compounds 
related to the studied problem and neglecting the redundant and irrelevant information 
in volatilome datasets. An array of sophisticated machine learning methods can be 
utilized to find the relevant set of VOCs. VOCs in volatilome data frequently correlate 
with one another, often because various metabolic pathways are involved that connect 
the measured VOCs. Since machine learning techniques are based solely on finding 
sets of important compounds, rather than single compounds, their usage should be 
at the core of statistical analysis of volatilome data.  

This chapter presents and discusses the most common and promising machine learning 
techniques applicable for volatilome datasets, with the aim of providing a broad picture 
of the different methods as well as an overview of their pros and cons. Many different 
data processing techniques exist, but a comprehensive overview of these is beyond 
the scope of this chapter. Moreover, there is no golden rule or clear instructions in 
machine learning as to which techniques should be applied to which datasets. As such, 
only the most important aspects of data pre-processing and analysis are described 
herein. The chapter commences with an illustration of different data preprocessing 
approaches that are suitable for a broad range of volatilome analytical instrumentation, 
followed by the relevant (occasionally abandoned) aspects of scaling, normalization, 
and transformation. Unsupervised (also known as explorative or descriptive) [29] and 
supervised approaches are presented, together with the importance of model validation 
[30]. The chapter concludes with an introduction and discussion on data fusion 
strategies, which are a relatively new but unmet area in volatilomics.
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Data pre-processing
Data pre-processing is a crucial step in every data mining approach since it helps 
to eliminate possible instrumental artifacts that may occur during the analysis, and 
most importantly, it improves and simplifies the data analysis. Note that diverse pre-
processing procedures exist as either commercially or freely available packages, yet 
they all share very similar structure. The nature of pre-processing steps depend on 
the source of data, i.e., the instrumentation used in sample analyses, although many 
computations are common to all datasets. Pre-processing of analytical data typically 
comprises noise and baseline removal, correcting peak shift due to column ageing 
(relevant to gas chromatography-mass spectrometry; GC-MS), temperature drift or 
biochemical interaction, and peak picking. The first step of noise removal can be done 
by wavelet transformations [31] followed by baseline correction via P-splines [32]. 
Noise removal and baseline correction are essential because, nowadays, analytical 
techniques such as GC-MS (see chapter 15) or high-resolution MS (see chapter 16) 
have become highly sensitive; consequently, they capture non-biological information 
that ideally should be removed from datasets. The correction of peaks shift can be 
achieved via various techniques, as is reviewed in depth in the literature [33]. Peak 
picking, or binning, is the next step in pre-processing, which is a means of preliminary 
dimensionality reduction (i.e., reduction of the number of data points within each 
sample) by combining data points that relate to the same compound. The simplest 
method of peak picking is to sum up or average consecutive data points (e.g., 5-10) 
over the whole range of points in the samples. More advanced approaches, such as 
peak picking via peak correlation [33], are implemented when coupled techniques 
are used (e.g. GC-MS). In such cases, local minima, maxima, and peak areas are 
calculated for every peak in each sample, and these are assigned as originating from 
the same compound based on their signal-to-noise ratio (S/N) and retention time. 
Ultimately, these peaks are represented as a single value.

Recently, Alkhalifah at al. has suggested a procedure, named VOCCluster [34], for peak 
picking solely for GC-MS data. This procedure groups the peaks, i.e., creates clusters, 
in GC-MS data arising from the same VOC using similarity measures based on cosine 
angular separation. The important aspect of the VOCCluster technique is that each 
VOC could change cluster membership as the algorithm progresses and could be re-
clustered into a different cluster, depending on the cosine similarity measurement of 
each VOC to the other VOCs. This re-clustering enhances the accuracy of the clusters 
and does not depend on the order of samples. In addition, the VOCCluster approach 
calculates the similarity threshold (epsilon) that is used as an input parameter for the 
clustering process. This is helpful for untargeted volatilome studies as it allows such 
process to be data driven rather than operator dependent. 
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Another important aspect of the VOCCluster procedure is its ability to take into 
account both retention index (RI) and mass spectrometric variations. For RI variation, 
the technique divides the data into different segments and calculates the RI variation 
for each segment. This leads to a RI range for each VOC within a sample, which is 
used to cluster VOCs into similar groups within that RI range. In the case of mass 
spectra variations, the technique takes into account the chemical nature of the VOC, 
signal intensity, and the number and/or order of extracted ions. The mass spectra 
variations are especially relevant for co-eluting VOCs.

A widely applied software in metabolomics but not yet extensively used in volatilomics, 
is XCMS, which is a freely available software for data pre-processing as a means of 
untargeted metabolite profiling between two sample groups [35]. The software was 
originally developed to pre-process liquid chromatography-mass spectrometry (LC-
MS) data, but the developers state that it is equally applicable to GC-MS data. XCMS is 
an acronym for various (X) forms of chromatography-mass spectrometry techniques. 
The software has gained much attention in metabolomic analyses due to its simplicity 
and flexibility, as it allows for peak detection, peak matching (i.e., peak picking), 
misalignment correction, and metabolite identification in a semi-automated way and 
with minimal user interference. Baseline correction, or background subtraction, is not 
performed in XCMS due to the danger of this potentially adding more noise to the 
data and since overall the background typically remains constant from one run to the 
next, thus its impact is assumed minimal. Peak detection is carried out by employing 
second-order derivatives and S/N. Importantly, XCMS deals with a common problem 
for most of the peak detection algorithms (i.e., to miss out peaks even though they are 
present) due to the inherent uncertainty close to the S/N cut-off value. In particular, 
XCMS fills in intensity values for every peak that is not detected by the peak detection 
algorithm by using information gathered from the raw data. Peak matching follows 
once all the peaks have been identified, and it is performed based on mass drifts 
(i.e., m/z values) rather than retention time. Peaks that are not matched in at least 
half of the samples are discarded, although different tie-breaking criteria can be 
chosen depending on the application. If it is known, for example, that the samples 
were obtained from two different groups (i.e., healthy and disease), then peaks that 
are not present in at least half of the samples of one of the groups are removed from 
that particular group. Finally, retention time alignment is performed. The algorithm 
does not use a reference signal to align the rest of the data, but rather works purely 
with peak data. In fact, ‘well-behaved’ peak regions are identified; these regions are 
areas in the chromatograms where very few samples have no peaks, and very few 
samples have more than one peak present. These ‘well-behaved’ regions are more 
likely to be adequately matched and are therefore used as temporary standards (i.e., 
alignment references). XCMS permits for the identification of important metabolites by 
employing a univariate t-test, and ranks the metabolites based on their p-values once 
all the pre-processing steps are finished. At the same time, it also allows for metabolite 
profiling based on exact masses, since it is linked to a metabolite database.
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Regardless of the data pre-processing approach, the volatilome data can be 
described as a data matrix consisting of each measured observation in the row and 
detected VOCs in columns. In the volatilome, the majority of compounds (i.e., VOCs) 
are not present in all samples; therefore, only compounds that are present at a certain 
percentage (e.g., 10-30%) of the samples are retained for further analysis.

Data normalization, transformation, and scaling 
Data normalization, transformation, and scaling are often considered as data pre-
processing steps; nonetheless, they are treated here as an additional step due to 
their significant influence in the outcome of the analysis. The issue of lognormality in 
biological datasets is treated in the previous chapter (chapter 37). Normalization is 
typically performed to remove effect size, i.e., unwanted variations between measured 
samples, and generates volatilome data with samples presented in an adequate and 
consistent way. Note that incorrect normalization might jeopardize putative differences 
between investigated cases. Data normalization can be implemented in a variety of 
ways. It is often performed before or after peak picking, and it is usually done by 
calculating a normalization factor per sample. Probabilistic quotient normalization and 
total area normalization (TAN) have been used in volatilome data [36, 37]. TAN uses 
the assumption that the total profile that is measured is directly proportional to the 
total concentration of the sample and that total area is constant between samples. 
This is rarely the case, however, therefore TAN might lead to spurious correlations 
between VOCs [38]. 

Data transformation follows the exclusion of zeros, and it accounts for correcting for 
data heteroscedasticity and skewness; both logarithmic and power transformation 
are the most broadly used [39]. As far as data scaling is concerned, many techniques 
exist, each of which exploits different aspects of the data at hand [39]. Scaling 
accounts for giving all the variables the same importance in the model; autoscaling 
and pareto scaling are the most common approaches. Moreover, it is essential to 
note that most of the multivariate approaches require the data to be scaled before 
running the algorithm. A few examples of powerful multivariate techniques which 
require prior data scaling are principal component analysis (PCA) [40], the robust 
principal component analysis (R-PCA) [41], clustering, the partial least squares (PLS) 
analysis [42, 43], as well as the support vector machines analysis (SVM) [44]. Some 
multivariate approaches do not require prior scaling, including random forest (RF) [45], 
unsupervised random forest (URF) [46], and adaptive boosting  analyses [47].
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Machine learning approaches
Unsupervised approaches
The human volatilome is characterized as a rather complicated, high-dimensionality 
data matrix. Often, conventional univariate statistical approaches such as t-test do 
not suffice when it comes to biomarker identification; therefore, multivariate statistical 
approaches are preferred. Multivariate approaches can be divided into two categories: 
unsupervised and supervised approaches. Unsupervised approaches are used for 
exploratory purposes, whereas supervised approaches are used for classification 
and regression purposes. The most common unsupervised approach is principal 
component analysis (PCA) [40]. PCA captures most of the variation in the data by 
creating new variables, the principal components (PCs), which represent the original 
variables of the data linearly. This means that the PCs are linear combinations of the 
original variables, and by definition, they are orthogonal to each other. The first PC (PC 
1) captures the largest possible variation in the data, and each subsequent PC (PC 
2, PC 3, etc.) captures most of the remaining orthogonal variation. PCA returns two 
matrices, the score and the loading matrix. The scores are simply the coordinates of 
the samples in the PCA space, whereas loadings show the importance/contribution 
of every single original variable in making each PC. Consequently, both score and 
loading figures can be generated to identify clusters in the data and to explore 
which of the original variables play an essential role in getting these clusters, and 
to what extent. These two figures can be also combined to generate what is called 
a bi-plot (figure 38.1), which offers a more comprehensive picture – and thereby a 
better understanding – of the data. In a bi-plot, each sample is represented as a 
circle and each VOC as an arrow. In the PCA bi-plot it is possible to visually appraise 
the relationship between VOCs by looking at the angle between them. A small angel 
between VOCs indicates high positive correlation (e.g., isoprene and benzene in 
figure 38.1) whereas obtuse angles close to 180° (e.g., phenol and p-benzoquinone 
in figure 38.1) indicate an anti-correlation. The two compounds are uncorrelated if the 
angle is close to 90° (e.g., acetic acid and p-benzoquinone in figure 38.1). Additional 
useful information delivered from a bi-plot is the possibility of defining the quantitative 
change in VOCs due to different class membership. The relative VOC concentration 
is elevated if the sign of the PCs for samples and compound is the same (i.e., either 
both negative or positive). Obviously, if the sign of the PCs for samples and VOC is 
opposite (i.e., positive and negative) the concentration is reduced in these samples.
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FIGURE 38.3 EXAMPLE OF A PCA BI-PLOT ILLUSTRATING TWO RANDOM CLASSES AND COMPOUNDS. 
THE DOTS ARE THE SCORES, WHICH REPRESENT THE SAMPLES, AND THE ARROWS ARE THE 
LOADINGS, WHICH REPRESENT THE COMPOUNDS PRESENT IN THE SAMPLES. THE COMPOUNDS THAT 
POINT TOWARDS A PARTICULAR GROUP ARE MORE IMPORTANT FOR THAT PARTICULAR GROUP. PC1 
EXPLAINS 35% OF THE ORIGINAL INFORMATION, WHEREAS PC2 EXPLAINS 13% OF THE REMAINING 
ORIGINAL INFORMATION.

PCA is also useful in helping to detect outliers that are observable in the PCA space 
but are far away from the cloud of the sample observations. This type of outliers are 
called good leverage outliers. Frequently, however, the data also have what is called 
orthogonal outliers, which cannot be detected by PCA, and can therefore profoundly 
influence the analysis results and lead to false conclusions. These orthogonal outliers 
have orthogonal distances from the PCA space and it is mostly impossible to detect 
them by projecting them onto the PCA space. To overcome this issue, robust-PCA 
(R-PCA) was developed [41]. PCA maximizes variance by decomposing covariance 
in the data. R-PCA does the same, but replaces the covariance matrix with a robust 
covariance estimator. PCA creates one PC at the time to capture most of the variation 
in the data, whereas R-PCA creates consecutive possible ‘interesting’ PCs and then 
selects the one that best describes the data. 
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Unsupervised random forest (URF) [46] was introduced as a powerful unsupervised 
approach. URF is robust to any outliers as it examines variables, rather than the 
samples, as is done in PCA, R-PCA, and clustering. URF hypothesizes that if there is any 
hidden structure in the data, it should be possible to separate the data from a randomly 
generated version of themselves. Superiority of URF over other techniques is that it 
does not require any scaling, it provides variable importance, and most importantly, it 
returns a proximity matrix of the original data. Proximity matrices are excellent tools for 
visualization purposes and for direct comparison of the samples at hand. 

Another unsupervised approach that is widely used is clustering [48], which consists 
of determining similarity measures such as correlation or distance of the whole 
volatilome dataset. Several different approaches exist, including hierarchical cluster 
analysis (HCA), k-means and c-means. HCA is based on iterative calculation of 
distance and combining the closes samples into one cluster. The procedure continues 
until all samples belong to the same cluster. The most important aspect of HCA is the 
selection of similarity measure (e.g., Euclidean, Manhattan, Mahalanobis, Minkowski 
distance or correlation) and the way the clusters are created, i.e., average linkage 
(average distance), single (minimum distance), complete linkage (maximum distance), 
and Ward’s method [49]. The similarity/dissimilarity of samples is then represented 
as a dendrogram. An example of a dendogram is shown in Figure 2. As can be seen 
for a selected specific threshold on the distance measure (indicated as horizontal 
line on value 1000 on y-axis) two main groups are present.  In addition,  few samples 
are clearly included as separate clusters, suggesting that they are outliers (marked 
in the circles). HCA is the most suitable if a clear hierarchical structure is present in 
the data. An entirely different approach is taken by k-means [50], which selects a 
number of centroids (i.e., clusters), defined by a user, in such a way that the overall 
distance of all samples to the centroids is minimized. Each sample is assigned to the 
closest centroid. The centroids are updated each time a new sample is assigned. The 
assignment of the samples to the centroids stops when convergence (i.e., no more 
changes in cluster content) is reached. An adaptation of k-means is c-means, which 
does not give a definitive assignment of each sample to a cluster but provides a 
probability of belonging to each cluster. 
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FIGURE 38.2. AN EXAMPLE OF DENDROGRAM ILLUSTRATING TWO MAIN CLUSTERS OF SAMPLES. 
SAMPLES INCLUDED IN THE CIRCLES ARE ALLOCATED AS OUTLIERS. A DRAWBACK OF CLUSTERING 
TECHNIQUES IS THAT THEY DO NOT DELIVER INFORMATION ABOUT COMPOUNDS THAT ARE 
RESPONSIBLE FOR THE RESULTING CLUSTERS. MOREOVER, THEY ARE VERY SENSITIVE TO OUTLIERS 
AND PROCESSING BECOME VERY TIME-CONSUMING FOR LARGE DATASETS.

Supervised approaches
The most common supervised approach is partial least squares (PLS) analysis [42, 
43]. PLS was initially developed to deal with regression problems, but later it was 
extended to deal with classification problems, too. Similar to PCA, PLS creates new 
variables, the latent variables (LVs), that try to capture most of the information in the 
data with respect to a response/class vector Y in a linear way. Consequently, these 
LVs are linear combinations of the original variables, which have incorporated the 
response/class information of every sample, too. As with every supervised approach, 
PLS models must first be optimized (i.e., the optimal number of LVs to be used)
then validated before any final predictions/classifications are made. An overview of 
validation methods that can be used is given in the next section. PLS can be applied 
not only on binary but also on multiple class problems, although the latter show inferior 
prediction accuracy when compared to results from 2-class or even multiple binary 
PLS models (i.e., one class against all the rest) [33]. PLS exhibits high accuracy results 
when applied to collinear data but has tendency for overfitting. Human volatilome 
data, however, often demonstrate rather nonlinear relationships among variables and 
therefore it may be preferable to implement supervised approaches that consider 
both linear and nonlinear relationships in the data; ensemble techniques are such 
approaches [51]. The most renowned and broadly used ensemble techniques are 
random forest [45], adaptive boosting (AdaBoost) [47] and gradient boosting, all of 
which are tree-based methods. 
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Random forest is a so-called bagging or aggregative bootstrapping, algorithm that 
builds fully-grown independent trees. Furthermore, each tree is built on a different 
subset of observations of the training dataset and a different subset of variables 
of these selected observations; therefore, different information is seen by different 
trees, thereby forcing the correlation among different outcomes to decrease. The 
observations that are not used to build a tree (i.e., out-of-bag observations) are used 
to assess this tree performance. The overall performance of the forest is assessed 
by the out-of-bag error (i.e., wrongly predicted/classified out-of-bag observations) 
of all the trees present in the forest, and in the end the forest is evaluated by using a 
validation set. Finally, it is worth mentioning that the more trees that are added to the 
forest, the merrier. 

AdaBoost is representative of a boosting algorithm, which creates stumps (i.e., a tree 
with two leaves) instead of fully-grown trees. Most importantly, the stumps are built 
sequentially, so the mistakes a stump makes influence the way the next stump is built; 
thus, all stumps are dependent on each other. Each stump is built on a different subset 
of observations of the training dataset and a different subset of variables of these 
selected observations. Although the different subsets of observations are sampled 
without replacement, in RF they are sampled with replacement. This means that the 
same sample may be used in building more than one stump. The overall performance 
of the forest of stumps is evaluated with a validation set, and it should be mentioned 
that the more stumps that are added to the forest, the higher the chances to over-fit. A 
method between random RF and AdaBoost is gradient boosting, which makes use of 
decision trees as its weak classifiers that are constructed in a greedy manner [52]. In 
comparison to AdaBoost and RF that use stumps and fully-grown trees, respectively, 
gradient boosting builds trees of four to eight levels (i.e., splits). 

As a final note on the supervised approaches, they can all provide importance/
contribution of the variables in the models, allowing for potential biomarker discovery 
[33]. An overview of various aspects of the multivariate methods, unsupervised and 
supervised, described here is presented in table 38.1. The ensemble of techniques 
presented here are capable of finding linear and non-linear relationships between 
compounds in volatilome data.
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TABLE 38.1. THE MAIN CHARACTERISTICS OF THE MOST COMMON MULTIVARIATE METHODS. 

Characteristics
Method linear; 

non-linear
sensitive to compounds 

importanceoutliers scaling normal distribution
Unsupervised

PCA linear Yes Yes No Yes

R-PCA linear No Yes No Yes

URF Non-linear No No No Yes#

HCA linear No No No No

k-means; 
c-means

linear Yes No No No

Supervised Overfitting 

PLS/PLS-DA linear Yes Yes No Yes Yes

AdaBoost non-linear No No No Yes Yes

RF non-linear No No No Yes No

Gradient 
boosting

non-linear No No No Yes No

SVM non-linear Yes* No No Yes# No

K-PLS/K-PLS-DA non-linear Yes Yes No Yes# Yes

ANN/deep 
learning

non-linear No No No No No

#POSSIBLE AFTER APPLYING PSEUDO-SAMPLES PRINCIPLES [53]. 
PCA: PRINCIPAL COMPONENT ANALYSIS
R-PCA: ROBUST PRINCIPAL COMPONENT ANALYSIS
URF: UNSUPERVISED RANDOM FOREST
HCA: HIERARCHICAL CLUSTERING
PLS/DA: PARTIAL LEAST SQUARE/DISCRIMINANT ANALYSIS
ADABOOST: ADAPTING BOOSTING
RF: RANDOM FOREST
SVM: SUPPORT VECTOR MACHINES

Another group of techniques capable of capturing non-linear information in volatilome 
data are kernel-based techniques. The most common methods are support vector 
machines (SVM) and kernel-PLS-and kernel-PLS-discriminant analysis (DA). The 
crucial step of kernel-based methods is transformation of the data via specific functions 
called kernel. This step allows mapping the non-linear problem in the original data 
into a higher-dimensional feature space, in a way that the problem becomes linear 
and thereby easily solvable. SVM was originally developed for two class classification 
problems. The performance of the technique depends highly on kernel function used 
to transform the data. Kernel-PLS-DA and SVM have comparable prediction ability 
[54] and both techniques have their disadvantage of losing compound information, 
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since after kernel transformation the obtained data have dimension of samples. 
Despite this, both techniques have been applied in various human volatilome data 
treatment endeavors [55, 56]. Note, that every supervised technique presented so far 
can be used for regression as well as classification problems.  

The growing importance of artificial neural networks (ANN) and consequently deep 
learning in medical diagnostics has become evident from various applications and 
publications. Both techniques are very powerful to model complex, non-linear 
problems but require large sample size (in case of deep learning, tens of thousands) 
and the interpretation of the results is difficult. ANN has been applied to human 
volatilome data [57], but deep learning has not, to date.

Data fusion
Data fusion, or data concatenation, refers to the process of combining data coming 
from different data platforms (e.g., GC-MS, nuclear magnetic resonance, 16S 
ribosomal RNA sequencing, etc.). The principle behind data fusion is that different 
types of samples (e.g., breath, blood, feces) are complementary to each other when 
a particular cohort is examined. The same holds when different techniques measure 
the same samples (e.g., breath samples measured by GC-MS and multi-capillary-
column-ion mobility spectrometry; MCC-IMS) because the different strengths 
and weaknesses of each technique with respect to their detection of compounds 
are exploited. Consequently, a better profile or increased prediction accuracy can 
be achieved for the cohort at hand by combining the data of these complementary 
samples and/or techniques. Data fusion is widely used in many research fields, and 
holds promise for human volatilome research, too. 

Data fusion can be performed at three different levels: low-level, mid-level, and high-
level fusion [58]. Low-level fusion is the simplest of all since it concatenates the data 
by placing them next to each other as they are from different platforms without any 
prior analysis. This means that the fused matrix to be used for further analysis will 
consist of as many rows as the number of samples measured, and as many columns 
as the number of all the compounds measured by all different data platforms. Low-
level fusion is not usually employed because concatenating all these hundreds or 
even thousands of variables in a single matrix increases the dimensionality of the data 
too much, thus making it difficult to analyze them. 

Mid-level fusion fuses either variables or features; therefore, it requires prior analysis on 
each data platform separately. On the one hand, important variables per platform can 
be found, for example, via random forest [45] or significance multivariate correlation 
[59] and then, all the important variables from the platforms are placed next to each 
other to create the fused matrix to be used for further analysis. On the other hand, 

3



68

Chapter 3

important features per platform can be found, for example, by implementing PCA [40] 
(and make use of the PCs) or PLS [42, 43] (and make use of the LVs). Then, all the 
features from all the platforms are placed side by side to create the fused matrix. Mid-
level fusion is the level of fusion that is most widely applied. 

High-level fusion requires prior separate analysis on each data platform, and it is quite 
different from both low-level and mid-level because it combines outcomes rather than 
actual data (i.e., variables or features) of the platforms. The most common approach 
for combining outcomes is majority voting [60]. For instance, if a sample of interest is 
classified as class 1 from the majority of the models (i.e., those built on the individual 
platforms), and as class 2 from the minority of the models, then the high-level fusion 
outcome will be class 1 for this sample of interest. High-level fusion can demonstrate 
excellent prediction results, which is to be expected because of the nature of this 
kind of fusion. Nonetheless, the possibility to discover potential biomarkers and to 
relate compound outputs from different platforms to each other is lost when high-level 
fusion is employed. This is result is to be expected because high-level fusion does 
not work with actual data but with outcomes. Recently, a new and more advanced 
way of data fusion that uses kernels was proposed [53]. The authors named their 
approach multiple kernel learning data fusion because each platform is mapped onto 
kernel space once variable selection is performed individually on every platform. 
Next, all different kernels are combined in a linear way by using a weighted sum 
to obtain the fused matrix for use in further analysis. Using kernels is synonymous 
with using samples; thus, theoretically, investigation of the original variables (e.g., 
how they behave in the samples or how important they are) might be challenging. In 
practice this problem can be overcome by using the pseudo-sample principle [53]. 
To conclude, data fusion can positively affect the outcome of a study, yet there is not 
a direct answer to identify which data fusion approach is the best, since this highly 
depends on the aim of each study.

Validation of supervised techniques
A crucial part of supervised methods is validation, which is a step that ensures the 
certainty of the findings. There are various ways of assessing the predictive ability of 
the constructed supervised model [61-63], as outlined below. 

If a studied problem consists of a sufficient number of samples, the data are divided 
into a training set to train the supervised model, a validation set to optimize the 
supervised model, and a test set to assess the prediction power of the model. The 
most straightforward approach consists of randomly assigning samples into those 
three sets. Another approach allows selecting representative training and/or test sets 
[33]. The most commonly applied strategy is cross-validation (CV). This approach is 
based on retaining a predefined number of samples and building supervised model 
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on the remaining samples. The simplest CV procedure is leave-one-out (LOO), where 
one sample is excluded and used as a test set, and n-1 samples are used to create 
a training set (where ‘n’ is the total number of samples). In LOO CV, each sample 
becomes a test sample once, and therefore there are ‘n’ rounds of testing. LOO CV is 
suitable when the number of available samples is relatively low, e.g., 20-30 samples.  
If more samples are available, k-fold CV can be used, where k is defined as a number, 
e.g., 5 or 10, or percentage of total samples, e.g., 10%. In case of k-fold CV, k number 
of samples is removed from the data and used as test set. The important aspect of 
CV is its overestimation of the predictive power of the supervised model. Hence, for 
data with rather small number of samples it is recommended to apply double CV 
(called nested CV) or bootstrapping [61]. The final prediction ability of the supervised 
model can be assessed by a permutation test, which checks whether division into 
defined classes is significantly better than any random division [62]. The permutation 
test consist of random rearrangement of the class labels in the training set and the 
construction of a classification model using these randomly permuted classes. In the 
subsequent step, the prediction for real test set samples is obtained and the number 
of misclassifications is obtained. The entire procedure is repeated many times, for 
instance 1000 iterations. The assumption of the permutation test is that the test set 
should be wrongly predicted for randomly permuted classes in the training set.  

A very important aspect of supervised techniques is the scaling of the data after 
division into the training, validation, and test sets. It is of great importance that 
samples used for validating the performance of the machine learning model should be 
always scaled (e.g., by autoscaling or pareto scaling) using parameters obtained from 
the training samples. Although there exist various approaches to test quality of the 
predictive model, the ultimate manner of assessing prediction ability of a statistical 
model is to use an independent test set consisting of completely new samples from 
an independently sampled population.

Summary
The main steps involved in data pre-processing and multivariate analysis of volatilome 
data is reviewed in this chapter. Data pre-processing is a crucial step when dealing 
with numerically complex volatilome data. This procedure can be carried out via 
various approaches, such as VOCCluster or XCMS (used for data pre-processing of 
GC-MS related data), and additionally involves the use of techniques for noise and 
baseline reduction that can be applied to different MS-based volatilome datasets. 
The importance of normalization and scaling of volatilome data has been emphasized 
in this chapter. The machine learning techniques covered in this chapter are limited 
to the most commonly applied approaches that have the highest potential for the 
future applications. Moreover, the techniques presented here are reasonably easy to 
apply and potentially insightful. Strategies for data fusion are currently underused but 
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should become more common in volatolomics in future. Because of the increased 
complexity of the studied problems, it is favourable to combine multiple sources of 
information to gain a better understanding of the underlining problem. Therefore, 
combining multiple types of measurements, e.g., VOCs in breath as well as feces, 
in a single statistical analysis, might not only increase the prediction accuracy but 
also interpretability and comprehensiveness of the results. Appropriate utilization 
of machine learning techniques in the field of human volatilome research offer the 
potential for more robust discoveries of relevant VOC biomarkers.
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Abstract
Introduction: Exhaled breath analysis has become a promising monitoring tool for 
various ailments by identifying volatile organic compounds (VOCs) as indicative 
biomarkers excreted in the human body. Throughout the process of sampling, 
measuring, and data processing, non-biological variations are introduced in the data 
leading to batch effects. Algorithmic approaches have been developed to cope with 
within-study batch effects. Batch differences, however, may occur among different 
studies too, and up-to-date, ways to correct for cross-study batch effects are lacking; 
ultimately, cross-study comparisons to verify the uniqueness of found VOC profiles for 
a specific disease may be challenging. This study applies within-study batch-effect-
correction approaches to correct for cross-study batch effects; suggestions are made 
that may help prevent the introduction of cross-study variations.

Methods: Three batch-effect-correction algorithms were investigated: zero-centering, 
combat, and the analysis of covariance framework. The breath samples were collected 
from inflammatory bowel disease (n=213), chronic liver disease (n=189), and irritable 
bowel syndrome (n=261) patients at different periods, and they were analysed via 
gas chromatography-mass spectrometry. Multivariate statistics were used to visualise 
and verify the results.

Results: The visualisation of the data before any batch-effect-correction technique 
was applied showed a clear distinction due to probable batch effects among the 
datasets of the three cohorts. The visualisation of the three datasets after implementing 
all three correction techniques showed that the batch effects were still present in the 
data. Predictions made using partial least squares discriminant analysis and random 
forest confirmed this observation.

Conclusion: The within-study batch-effect-correction approaches fail to correct 
for cross-study batch effects present in the data. The present study proposes a 
framework for systematically standardising future breathomics data by using internal 
standards or quality control samples at regular analysis intervals. Further knowledge 
regarding the nature of the unsolicited variations among cross-study batches must be 
obtained to move the field further.

Keywords: exhaled breath, volatile organic compounds, VOCs, data analysis, batch 
effects, IBD, IBS, liver cirrhosis
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Introduction
Breath analysis has recently emerged as a promising, non-invasive diagnostic 
and monitoring tool for a diversity of diseases [36, 37, 56, 64-69]. Volatile organic 
compounds (VOCs) have been identified in exhaled breath as indicative biomarkers 
among ailments. The rationale behind breath analysis is driven by the fact that 
disease-affected organs produce and therefore, release different VOCs in the human 
bloodstream. Eventually, those VOCs, due to their volatility, are then excreted through 
the body’s air pathways [70]. Identified VOCs in human breath are not necessarily 
unique and specific for one particular illness; in some studies, similar VOCs have 
been assigned to different types of diseases [36, 37]. Thus, the distinction among 
those diseases becomes difficult or even impossible based on these single VOCs. 
Nonetheless, discriminatory power increases when searching for sets of compounds 
(i.e. VOC profiles) instead, and researchers have managed to find VOC profiles 
that aim to delineate different diseases based on a plethora of volatile metabolites 
found in exhaled breath [36, 37, 56, 64-69]. To prove that a set of compounds is 
indeed disease-specific, ideally, one would have to analyse the performance of a 
disease-specific VOC profile among other disease-related populations. A possibility 
to check for specificity and sensitivity of putative disease-specific VOC profiles is 
to use datasets from studies that have been generated over the years.  However, 
these studies have been performed under different clinical settings, sampling periods, 
and sessional or instrumental conditions and as a result, caution is warranted when, 
retrospectively, datasets coming from multiple cohorts are used as input to validate 
biomarker performance since cross-study batch effects can be expected [71]. By 
definition, batch effects are sources of variation unrelated to the examined samples, 
or inter- or intra-sample class differences [71]. Environmental or methodological 
differences can cause batch effects during sample collection, chemical analysis, and 
data handling. To eliminate batch effects as much as possible, ideally, every sample 
would have to be measured by the same personnel, at the same location, at the same 
time, and under the same conditions, and this is not achievable.  Batch effects might 
still occur even if one takes all precautions possible, and this is because analytical 
techniques such as gas chromatography-mass spectrometry or nuclear magnetic 
resonance have become highly sophisticated and sensitive resulting in capturing 
both biological and non-biological variations [72]. Therefore, the reusability of existing 
exhaled breath datasets of VOCs for future biomarker-discovery and validation of 
studies might be challenging.

When combining data coming from multiple cohorts, it is crucial to detect and correct 
for any non-biological variations to prevent a compromised or even jeopardised 
analysis [71]. As such, in chemometrics, several within-study batch-effect-correction 
techniques are available to detect and correct for batch-induced variations, while 
retaining the biological information [73]. To the best of the authors’ knowledge, no 
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cross-study batch-effect-correction algorithms have been reported in the literature. 
These algorithms have been successfully applied to different kinds of biological data, 
including metabolomics and predominantly gene microarray data [74-76]. The batch-
effect-correction techniques can be divided into two major categories: the variable-
wise correction and the sample-wise correction techniques. Zero-centering (i.e. 
mean-centering), and the analysis of covariance (ANCOVA) framework are variable-
wise correction techniques that subtract predefined values from each variable [73, 
76]. Combat and surrogate variables analysis (SVA) represent sample-wise correction 
techniques since they pool information across variables with similar expression 
characteristics in every batch [74, 75]. Finally, apart from the aforementioned 
techniques, a few more exist, but they are not examined in this study due to their less 
common implementation on biological data [77, 78].

To summarise, the dominance of batch effects in the data may hamper the discovery 
and subsequent validation of VOC profiles as disease-specific biomarkers. The 
present study aims to demonstrate the performance of currently available within-
study batch-effect-correction algorithms to correct for cross-study batch effects. For 
that purpose, datasets of inflammatory bowel disease (IBD), irritable bowel syndrome 
(IBS), and liver cirrhosis (CIR) patients’ samples were examined [37, 56, 64, 66]. 
These datasets were collected during different periods and used previously to identify 
discriminative VOCs for each of the diseases. As the final step of the current study, 
recommendations for future cross-study comparisons are provided to help overcome 
these cross-study challenges.

Materials and Methods
Data used
Three different datasets of exhaled breath samples were used, and they were 
obtained from patients suffering from gut and liver diseases. The content of exhaled 
breath in each dataset was chemically analysed utilising thermal desorption gas 
chromatography time-of-flight mass spectrometry (GC-tof-MS), at the same location 
(Maastricht University Medical Centre +, Maastricht, The Netherlands). The first dataset 
was collected and measured between 2009 and 2014, while the second dataset 
was sampled and measured between 2009 and 2012. The third one was measured 
between 2010 and 2012. The first dataset that was used was exhaled breath samples 
of IBS patients; detailed information on the IBS cohort can be found in Baranska et 
al. [64]. The second dataset consisted of exhaled breath samples of ulcerative colitis 
(UC) [56], and Crohn’s disease (CD) patients [66], which both represent IBD cases. 
Finally, the third dataset was used for the identification of potential volatile biomarkers 
in human breath for liver cirrhosis [37]. To eliminate within-study batch effects as 
much as possible, all three datasets had the same volume, were measured with the 
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same instrument and with the same method; however, the analyst who conducted 
the experiment differed. Moreover, all three dataset samples were sampled by using 
sorbent tubes.

In the present study, 213 IBD (86 UC and 127 CD), 189 chronic liver disease (CLD), 
and 261 IBS exhaled breath samples were investigated. All patient studies were 
performed according to the revised version of the declaration of Helsinki, and they 
were approved by the local medical ethics committee. A detailed description of each 
dataset can be found elsewhere [37, 56, 64, 66], as well as the definition of the active 
and in remission states of the diseases are reported in the literature [56].

Data pre-processing
Initially, all the raw chromatograms were pre-processed before the actual analysis took 
place. Data pre-processing diminishes the effect of possible instrumental artefacts 
that can occur during the analysis. Data pre-processing, firstly, consisted of removing 
of the beginning and end of each chromatogram (i.e. retention time: < 1.3 and > 23 
min) due to noisy mass spectra and column bleeding. Secondly, it was followed by 
noise removal via wavelets [31], baseline correction via P-splines [32], peak picking 
by combining the corresponding compounds based on their retention times and their 
mass spectra, and normalisation through probabilistic quotient normalisation [79]. A 
detailed description of the data pre-processing scheme is described in Smolinska et 
al. [80]. The majority of VOCs usually occurs only in a few samples [36]; consequently, 
only compounds that were detected in at least 10% of the samples were kept for 
further analysis. This led to a reduction in the total number of VOCs, from 7781 data 
points to 200 individual VOCs [33]. As a final pre-processing step, the data were 
logarithmically transformed [81]. The log transformation accounts for high skewness 
in the data. Pareto scaling [82] was also performed after every batch-effect correction 
attempt. Scaling accounts for giving all variables the same importance in the models.

Batch-effect-correction techniques
In the current study, three different within-study batch-effect-correction algorithms 
were examined: zero-centering [73], combat [74], and ANCOVA [76]. The selection of 
these three techniques was two-fold: it was based on their universal applicability in 
various fields of research, as well as on the way they correct for batch effects. Zero-
centering was chosen as it is accepted as the first method of choice for correcting for 
batch effects [73]. Combat has been developed to process biological data, and it has 
proved that it maintains biological information in the data [74]. It is also considered 
the most commonly applied one due to its perceived high performance [83]. ANCOVA 
has been successfully utilised to correct for batch effects in metabolomics data while 
maintaining biological variability too [76]. 
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In more detail, zero-centering removes unwanted variance within different batches 
by subtracting the mean of each measured parameter/variable from each measured 
parameter; thus, shifting the data of each batch to the origin (i.e. zero). Combat 
has been originally developed to deal with non-biological variation within different 
microarray experiments [74]. Based on either parametric or non-parametric empirical 
Bayes (EB) framework [84-86], combat finds EB estimates that robustly adjust the 
data. Parametric EB framework considers that a finite number of parameters defines 
the data distribution, whereas non-parametric EB framework considers that an infinite 
number of parameters defines the data distribution. Moreover, these EB estimates 
represent both the additive and multiplicative batch effect in the data assuming that 
these effects satisfy specific distributional forms. Combat was designed to remove 
unwanted variation in the data when the corresponding sources of variation are known 
in advance (e.g. different periods of measuring) [74]. The last correction technique 
investigated here was the ANCOVA framework [76], which consists of two main 
steps. In the first step, each parameter (i.e. VOC) of a dataset was transformed by 
subtracting the predicted value of that parameter in a given sample from its observed 
value. The predicted value of each particular parameter was obtained by using 
linear regression analysis [87]; the remaining parameters of the dataset are used as 
independent variables (i.e. predictors) in the regression analysis to get the predictions. 
In the second step, the mean value of the parameter across all samples was added to 
the predicted value. Note that those two steps are repeated for every single parameter 
in the data separately. The ANCOVA framework can be expressed as follows: 
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.
Also, all three aforementioned techniques and, in general, all correction techniques 
available are based on linear programming; only batch information that is represented 
in linear relation among parameters is removed from the data.

Inspection techniques
Three different methods were used to inspect and visualise the result of the batch-
effect-correction techniques, namely, principal component analysis (PCA) [40], robust-
PCA [41], and unsupervised random forest (URF) [46]. PCA and R-PCA discover 
eventual patterns and trends in the data by taking linear combinations of the original 
data. They both are used to explain the variance-covariance structure of the data; 
although the difference between them is that R-PCA is robust to outliers, while PCA 
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is highly affected by them. This is because PCA creates only one new dimension/
direction at a time to capture most of the information in the original data. R-PCA, 
though, obtains consecutive possible “interesting” directions on which the original 
data are projected, and then, it selects the one that characterises the data the best. 
URF is based on the assumption that if there is any hidden linear or nonlinear structure 
in the data, it should be possible to distinguish them from a randomly generated 
version of themselves. It is worth mentioning that when one talks about linearities in 
the data, they refer to quantities, or variables in this case, which are proportional to 
each other. For example, if a variable increases, then another one either increases 
or decreases at a constant rate. Whatever falls outside this linearity definition is 
considered as a nonlinear relation [88].

Next to the visualisation techniques, the so-called Bhattacharyya distance [89], and 
surrogate variables analysis (SVA) method [75] were used to verify and compare the 
performance of the three batch correction techniques. Bhattacharyya distance is a 
quantitative way of assessing how similar (i.e. a measure of similarity) the examined 
datasets are by measuring the average distance between two normally distributed 
datasets: 
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 are the means of the two datasets. 
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the determinants of the covariance matrices of those two datasets, whereas 

 
 

𝐷𝐷! =
"
#
× (𝜇𝜇" −	𝜇𝜇$)% × 𝛴𝛴&" × (𝜇𝜇" −	𝜇𝜇$) +	

"
$
× ( '()*

+,-.*!×,()*"
)  

 
𝜇𝜇" and 𝜇𝜇$  

 det	(𝛴𝛴")  and  det	(𝛴𝛴$)  

 det	(𝛴𝛴) = 	det	(*!0	*"
$

) 

 𝐷𝐷!  

 𝐷𝐷!  

 

 

 

 234(	5678)89(7
:;<-	=>?@.@A-?0BCD?-	=>?@.@A-?

)  

 

 

 234(	5678)89(7
:;<-	=>?@.@A-?0BCD?-	E-FC.@A-?

) 

. The 

 
 

𝐷𝐷! =
"
#
× (𝜇𝜇" −	𝜇𝜇$)% × 𝛴𝛴&" × (𝜇𝜇" −	𝜇𝜇$) +	

"
$
× ( '()*

+,-.*!×,()*"
)  

 
𝜇𝜇" and 𝜇𝜇$  

 det	(𝛴𝛴")  and  det	(𝛴𝛴$)  

 det	(𝛴𝛴) = 	det	(*!0	*"
$

) 

 𝐷𝐷!  

 𝐷𝐷!  

 

 

 

 234(	5678)89(7
:;<-	=>?@.@A-?0BCD?-	=>?@.@A-?

)  

 

 

 234(	5678)89(7
:;<-	=>?@.@A-?0BCD?-	E-FC.@A-?

) 

 is an extension of the Mahalanobis distance [90] and it 
is considered more reliable because the Mahalanobis distance checks the similarity 
of the two classes when their standard deviation is the same, whereas 
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 assumes 
that their standard deviations are different. The closer to zero the distance value is, the 
more similar the two datasets are.

SVA was particularly developed to solve heterogeneity problems in gene expression 
data, and the principle behind it is that it captures underlying information in the data. 
SVA assumes that some parameters (i.e. primary parameters) dominate over others 
during statistical modelling; therefore, valuable underlying information from the non-
dominant/secondary parameters is lost (i.e. not captured). In short, SVA removes the 
signal from the primary variables to obtain a residuals matrix, and then it decomposes 
it. By doing so, SVA identifies subsets of parameters that significantly represent more 
variation than expected by chance and, for each subset of parameters, it creates 
a surrogate variable (SV). These SVs capture this so-called underlying information 
in the data, allowing for full parameters expression when put alongside the original 
parameters. In the present study, SVA was implemented as a means to confirm 
whether batch effects were only embedded in the dominant variables.

4
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Validation
The last step of the batch-effect-correction techniques comparison and inspection 
section was to build prediction models by using supervised approaches such as 
random forest (RF) analysis [45], and partial least squares discriminant analysis (PLS-
DA) [91]. The selection of those two techniques was two-fold: it was based on their 
successful implementation on biological studies [37, 56, 69, 80, 92], and on the way 
they consider the parameters of the data to be related to each other. RF considers both 
linear and nonlinear combinations of the data, while PLS-DA assumes only linearities 
in the data. For the PLS-DA and RF analyses, the three datasets were split into training 
and validation sets (one for each dataset) by using the Kennard-Stone algorithm [93]. In 
the present study, 80% of the samples of each dataset was used as a training set, while 
the remaining 20% was used as an internal independent validation set. Classification 
models via PLS-DA technique were performed on 2-class problem since the performance 
of such a model is better than a 3-class model [94]. The model optimisation (i.e. the 
optimal number of compounds and latent variables (LVs)) was achieved by the leave-
out-cross-validation procedure [95]. More specifically, the optimal number of LVs was 
found by keeping out 10% of the training set at each cross-validation iteration, and the 
process was repeated 30 times. Moreover, when RF models were built, a significant 
feature extraction process was performed. RF provides the ability to identify significant 
variables for data classification/prediction. Based on this RF asset, several consecutive 
RF models were built, and for each one of them, the significant variables responsible for 
the data classification were identified. The first one would determine the most significant 
variables that discriminated the classes. Then, these variables were excluded, and 
predictions with the rest of the variables were made. Next, the second model would do 
the same, would identify the most important variables of the remaining, and it would 
give predictions. This procedure was repeated until only a few variables (e.g. 5-10) were 
left. The visualisation of all the models performance was achieved by using the so-
called precision-recall (PR) curve [96]. The PR curve was used instead of the receiver 
operating characteristic (ROC) curve because the number of samples in the validation 
set is unbalanced. Both PLS and RF provide, as outcomes, probabilities of a sample 
being either IBD or CLD or IBS. Then, by using different thresholds (e.g. 0.1, 0.3, 0.7 etc.),  
a confusion matrix was calculated [97]. For every threshold, different sensitivities, 
specificities, and precisions are found. A PR curve plots, for every threshold, the pair of 
precision of the model (i.e. 
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) against the recall (i.e. sensitivity) of 
the model (i.e. 
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)  . The key characteristic of the PR curve is that 
it does not make use of the true negatives and therefore, it is only concerned about 
the correct prediction of the minority class. The minority class (i.e. negatives) differs in 
every model since it depends on which datasets (e.g. IBD vs. IBS) are used in the PLS 
case, and which datasets are compared against which class (e.g. IBD vs. CLD + IBS) 
in the RF case. A common feature between the PR and the ROC curves is that they 
both show a baseline threshold (i.e. 50% accuracy) above of which the performance of 
the model is considered better than random, whereas below this threshold the model 
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performance is random. In a PR curve, the baseline is determined as the number of 
positive samples over the total number of the training samples (i.e. the proportion of 
the positive samples in the dataset). All the analyses were performed in MatLab2016a 
except for the ANCOVA framework, which was performed in RStudio v1.1.453.

Results
Visualisation of the uncorrected data
The raw GC-tof-MS data of the 663 samples consisted of a total number of 7781 data 
points, which corresponds to more than a few hundreds of individual VOCs. After data 
pre-processing and data reduction steps, 200 VOCs were further examined. Three 
different batch-effect-correction methods were then applied to the pre-processed data 
and inspected. First, the uncorrected data were evaluated using visualisation techniques. 
Figure 1 illustrates the scores plots obtained from PCA, R-PCA, and URF. In all three 
cases, there were clear differences between the IBD and IBS patient cohorts indicated 
by dots and triangles, respectively, and the IBS cohort partially overlapped with the 
CLD cohort indicated by the squares. Furthermore, the groups were better separated 
in the R-PCA (Figure 1B) scores plot compared to the PCA scores plot (Figure 1A). The 
first three components in Figure 1 explained between 20% and 80% of the variance, 
indicating that the differences seen corresponded to the main variance in the data.
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FIGURE 1: SCORES PLOTS OF THE THREE DATASETS OBTAINED BY (A) PCA, (B) R-PCA, AND (C) URF 
BEFORE ANY BATCH CORRECTION. THE PERCENTAGES INDICATE THE EXPLAINED INFORMATION BY 
EACH PC/PCO. THE DOTS REPRESENT IBD PATIENTS; THE SQUARES REPRESENT CLD PATIENTS; THE 
TRIANGLES REPRESENT IBS PATIENTS.
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Implementation of the correction approaches and evaluation 
of their performance
For each one of the correction techniques, PCA, R-PCA, as well as URF were utilised 
to visualise the results. Figure 2 shows the corresponding scores plots after correcting 
for batch effects by employing the ANCOVA framework. The correction with ANCOVA 
led to a uniform cloud of data points with no visible classes in the cases of PCA and 
R-PCA (Figures 2A and 2B). The opposite trend was observed in the URF scores plot 
(Figure 2C). The average Bhattacharyya distances for the ANCOVA corrected data 
matrix of the classes were 6.89, 12.45, and 19.33, respectively; for the uncorrected 
data matrix of the classes, they were 1.75, 9.32, and 7.58, respectively, indicating that 
the batch effect had not been removed. Instead, loss of biological information had 
possibly happened since the data point clouds had shrunk, and the distance values 
had increased. Correcting the data by employing zero-centering and combat led to a 
similar outcome (Figure 1S and Figure 2S).
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Figure 3 illustrates the SVA implementation of the ANCOVA corrected data. Figures 
3A and 3B show the scores of the SVs of each class obtained by PCA and R-PCA, 
respectively. Both figures lack groupings, suggesting that the batch effect had been 
removed. Similar to the previous case, the URF scores plot (Figure 3C) illustrates 
clear clusters, indicating that the batch effect was still present. The zero-centering 
and combat results can be found in the supplementary material (Figure 3S and Figure 
4S). To further support the conclusion that the batch effect remained and it might be 
embedded in the data in nonlinear ways after applying several correction techniques, 
supervised approaches (i.e. PLS-DA and RF) were used to determine prediction 
accuracy of these three classes.
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Implementation of supervised approaches to determine the 
prediction accuracy of the classes
As a training set, 152 samples of each class were used. The remaining samples of each 
class were used as a validation set. Therefore, the complete training set consisted of 
456 samples, while the validation set consisted of 207 samples: 61 IBD, 37 CLD, and 
109 IBS.

For PLS-DA, three different 2-class models were built (i.e. IBD vs IBS, IBD vs CLD, 
and CLD vs IBS). For clarity, only the PLS-DA results of the three 2-class models after 
implementing ANCOVA are illustrated in the form of PR curves (Figure 4). The results of 
PLS-DA after applying zero-centering and combat can be found in the supplementary 
materials (Figure 5S and Figure 6S).
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Figure 4 shows that all three 2-class PLS-DA models, IBD vs IBS, IBD vs CLD, and 
CLD vs IBS, performed poorly with average precision (AP) values of 0.49, 0.24, 
and 0.63, respectively. Also, 2-class PLS-DA prediction models were made on the 
SVs adjusted data. The PR curves on the SVs adjusted data for all three-correction 
attempts and all three 2-class models looked similar to those obtained from the 
corrected data and therefore, they are not shown. For comparison purposes, 2-class 
PLS-DA models were also constructed for the uncorrected data. The corresponding 
PR curves obtained for the validation sets are seen in Figure 5.
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FIGURE 6: PR CURVES OF THE VALIDATION SET GIVEN BY PLS-DA OF THE (A) IBD VS IBS MODEL WITH 
IBS BEING THE MAJORITY CLASS, (B) IBD VS CLD MODEL WITH IBD BEING THE MAJORITY CLASS, 
AND (C) CLD VS IBS MODEL WITH IBS BEING THE MAJORITY CLASS WITHOUT ANY BATCH EFFECT 
CORRECTION. THE HORIZONTAL LINE IS THE BASELINE; THE AREA ABOVE THE BASELINE IS THE GOOD 
PERFORMANCE AREA, WHEREAS THE AREA BELOW THE BASELINE IS THE POOR PERFORMANCE AREA.

Achieving 0.98, 0.95, and 0.94 AP values for the IBD vs IBS, IBD vs CLD, and CLD vs 
IBS models, respectively, indicated that the batch effect was nonlinearly embedded 
in the data. RF was implemented by using 1000 trees, and it resulted in 100% 
accuracy (i.e. perfect classifier) for all three classes after applying all three-correction 
techniques. Furthermore, RF was also implemented on the SVs of each class and 
once more, 100% accuracy was achieved for all three classes.
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Discussion
The present study demonstrated the occurrence of batch effects in breathomics 
data obtained across independently performed studies by using untargeted GC-
tof-MS analysis. The effect of various within-study batch correction techniques was 
evaluated, and their outcomes were presented by using case studies of IBD, IBS, and 
CLD. In particular, three different correction techniques were applied: zero-centering, 
combat, and ANCOVA. When applying the correction algorithms, visualisation by 
PCA and R-PCA showed removal of batch effects, whereas when the results were 
visualised by URF, they displayed otherwise. Bhattacharyya distance values and SVA 
confirmed that batch effects still remained after correction.

To comprehend and interpret the results of this study, the pathology of the diseases 
that were examined has to be taken into account. IBD is a gastrointestinal (GI) tract 
disease that causes inflammation of the colon in the UC case and of any part of the GI 
tract in the CD case [98]. IBS is a disorder of the gut-brain interaction without clinically 
relevant organic pathology of the GI tract [99]. Clinically, ileo-colonoscopy and 
histology are the gold standards that can distinguish these two conditions [100]. Liver 
cirrhosis is the end-stage of CLD characterised by abnormal structure and function 
of the liver, and many liver disease patients also suffer from either IBD or IBS [101]. 
Hence, these three disorders share various symptoms and some pathophysiological 
mechanisms, and as a result, an explorative analysis should reveal some overlap or 
at least, not such apparent distinction among samples obtained from those three 
diseases in a score plot space.  However, the first results demonstrated indicated 
an apparent separation along the first two PCs, suggesting that variation unrelated 
to the biological class differences is, probably, present in the data. Another reason 
that supports the presence of non-biological information in the data is the fact that, 
reportedly, several endogenous compounds such as aldehydes, short fatty acids, and 
branched-chain alkenes have been linked to all three diseases [102, 103]. Therefore, 
such an apparent distinction among the samples would not be realistic. This non-
biological variation could be caused by several factors such as environmental, 
instrumental or differences at the periods at which the samples were measured or by 
the person that conducted the clinical sampling or chemical analysis. In this study, the 
three datasets were measured at different periods and at a different location, which 
probably led to the differences among the batches, and explains why these three 
datasets created distinct data point clouds (Figure 1).

Initially, PCA and R-PCA were used to visualise the results obtained after trying to 
correct for the batch effects; their scores plots (Figures 2A and 2B) demonstrated that 
the batch effects were diminished since the data point clouds overlapped. However, 
the Bhattacharyya distance values for the classes have increased compared to the 
uncorrected data distance values of the classes, meaning that the datasets have not 
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become more similar as expected. This is because to calculate the Bhattacharyya 
distance values all the PCA/R-PCA scores were used, whereas, in the score plots, 
only the first three scores are used to visualise the samples. When a more powerful 
tool was applied (i.e. URF), not only the Bhattacharyya distance values increased 
but also the visualisation of the first three scores showed that the three classes were 
differentiated (Figure 2C). The Bhattacharyya distance, in the URF case, has increased 
and the data point clouds have shrunk, confirming that there is a probable loss of 
biological information instead of elimination of batch effects. In particular, the IBD and 
CLD data point clouds shrunk (Figures 2C and 3C), and the fact that the data points 
came so close to each other illustrates that, most likely, there is no biological variation 
left among these particular samples. The reason why PCA and R-PCA failed to show 
the batch effect in the corrected data is that they search for linear combinations 
among the measured parameters of every sample [40, 41], whereas URF searches 
for both linear and nonlinear combinations among the measured parameters of every 
sample [46]. This indicates that the batch effect might be nonlinearly embedded in 
the data. Apart from the distance measure, SVA was also applied to the corrected 
data. Visualisation of the SVs confirmed that the batch effect is still present even 
though the primary information in the data was deducted, and the secondary or 
underlying information was brought to the surface (Figure 3). In practice, SVA is used 
to create the SVs that are meant to be put next to the original variables to express the 
samples fully. However, in this case, the batch effect was embedded in the original 
variables, and it dominated the primary information of the data. Therefore, the SVs 
were plotted alone (Figure 3) to visualise the samples rather than putting the SVs next 
to the original variables. To further confirm this conclusion, classification models were 
built to predict the three classes using PLS-DA and RF. PLS-DA performed on the 
corrected data demonstrated that discrimination of the classes failed (Figure 4), while 
it gave almost perfect prediction when applied to the uncorrected data (Figure 5). This 
means that the batch effect is not embedded in the data in linear ways, and that loss 
of biological information happens instead because achieving almost 100% accuracy 
is not realistic. The RF classification models revealed an overall accuracy of 100% 
when all the sample variables were used. Moreover, in this RF implementation, the 
significant feature extraction process was tried. Once again, 100% accuracy for the 
three classes was achieved throughout this backwards variable elimination process 
(results are not shown). In general, it is possible to achieve very good prediction 
accuracy models even with a small number of variables (e.g. 5-10); although, if it were 
not for the batch effect, the accuracy percentage would fluctuate.

Recently, Nakhleh et al. [104] conducted a large study aiming to classify patients of 17 
different diseases by identifying VOCs in exhaled breath. By using discriminant factor 
analysis, they reported an average classification accuracy for all diseases of 86%, 
including IBD and IBS patients. For the IBD and IBS classification, in particular, they 
documented an approximately 80% accuracy while for some of the other diseases, 
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they reported 100% accuracy. The data used in their study were collected at different 
periods, different laboratories or even different countries, and they were generated 
via NanoArray and GC-MS technologies; however, nothing was reported regarding 
possible cross-study or even within-study batch effects that may have influenced their 
study results. Fijten et al. [80] established that it is difficult to achieve the same model 
accuracy even for the same disease when external validation sets are used. More 
specifically, Fijten et al. [80] identified a set of VOCs that differentiated sarcoidosis 
patients from healthy cohorts with an accuracy of almost 80%. Although, several 
years later, new sarcoidosis patients were recruited to validate the existing model, 
and an accuracy of 53% was achieved. The authors attributed this large decrease in 
their model accuracy to probable batch effects. Bearing that in mind, it is understood 
that batch effects affect the classification of different diseases and thus, confirming 
the results of the present study.

All three batch-effect-correction techniques demonstrated here failed because they 
look for linearities in the data and, as URF results suggested (Figure 2C and 3C), 
the batch effect may be nonlinearly embedded in the data. Furthermore, in the IBS 
uncorrected dataset, two small subgroups were also observed. When PCA, R-PCA, 
and URF were implemented after every correction technique, only the URF score plot 
showed that these small subgroups are still present. As a result, it may be assumed 
that within-study batch effects in breathomics data may be nonlinearly related to 
biological variations. To the best of the authors’ knowledge, sufficient nonlinear ways 
of correcting for batch effects have not been reported in the literature yet. Recently, 
Shaham et al. [105] reported a nonlinear way of correcting for batch effects based on 
the residuals of neural networks, which outperformed zero-centering and combat. 
Their approach was developed for and applied to replicate samples of the same 
object (e.g. patient). This means that their approach is only suitable for data containing 
samples whose multivariate distributions are close to each other. This is, however, not 
the case here, where multiple batches with multiple samples (i.e. numerous instead 
of a single individual) are present, and therefore, the technique was not applied. 
Shaham et al. [105] indicated that a nonlinear approach which could be applied on 
multiple batches with multiple samples each needs to be developed. Such a nonlinear 
development may be challenging, though, because of the trade-off between biological 
information of samples and non-biological variation due to external influences. Even 
if a more advanced, nonlinear correction technique were developed, which would 
remove external influences accurately, it may come at the cost of eliminating relevant 
biological information. Another reason, which makes such a development challenging, 
is the complexity of tracing back nonlinearly transformed variables. Supposedly, a 
complex nonlinear batch-effect-correction model is developed. Then, the batch effect 
corrected data are used for further analysis and biomarkers discovery. At the end 
of this biomarkers-discovery process, a few variables are found as being important 
in classifying individuals into different groups (e.g. healthy against diseased). It may 
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then be challenging to trace back these important variables to the original ones due 
to the nonlinear transformation they have gone through and therefore, to identify 
which compounds were responsible for the classification. Additionally, little is known 
about effective batch effect mitigation. Another cause for the failure of these particular 
correction techniques may be the existence of subpopulations within the classes. It 
has been reported that subpopulations within a dataset may affect batch corrections 
[71]. In this study, IBD consisted of UC and CD samples, while CLD consisted of 
patients with and without cirrhosis and different underlying aetiologies of liver disease. 
More importantly, the most probable cause of failure of these particular correction 
techniques is that they are developed to deal with within-study batch effects, not 
with across studies external variations. Such a technique seems rather challenging to 
be developed since it should take into account many factors in correcting the data; 
nevertheless, it is believed that this problem may be overcome.

Currently, a standardisation framework for breath analysis research is lacking, and to 
achieve standardised protocols for sampling and measuring, several initiatives are 
ongoing within both the International Association of Breath Research (IABR) [106, 107] 
and the European Respiratory Society [108]. More specifically, the development and 
dissemination of a method for evaluating breath sampling and analysis techniques, 
with accompanying benchmark data, was prioritised by the IABR joint task force 
in 2016; as a result, the multi-centre study, the so-called “Peppermint” study, was 
created [109]. In this study, an oral administration of capsules with peppermint is 
used to monitor the perturbation in human breath over time. In the “Peppermint” 
consortium, benchmark data will be created by various breath sampling as well as 
analytical approaches, giving scientists in the breath community the possibility to 
monitor their analytical pipeline. To help develop such a standardisation framework, 
in future breathomic studies, the injection of internal standards in the breath samples 
and/or the inclusion of quality control (QC) samples at regular intervals throughout the 
measuring process is highly recommended. Such a standardisation process would 
make use of both QC information as well as batch labels and injection sequence 
information. Metabolomic studies have indicated that the use of QCs can help eliminate 
within-study batch effects, and ultimately, make the data suitable for cross-study 
comparisons too [110, 111]. In the metabolomics world, scientists can make use of 
pooled samples of, for example, urine or blood to use as their QC samples; however, 
pooling breath samples is not feasible. To overcome this issue, breath research QC 
mixtures should reflect the content of the measured breath samples, and preliminary 
ongoing QC applications point that QCs can indeed help correct for non-biological 
variations. An ideal QC mixture should contain compounds such as alkanes, alkenes, 
aldehydes, ketones, alcohols, and acids since these are stable and always present in 
breath samples [112]. For example, when putative markers are known due to a priori 
knowledge, such as dimethyl sulphide and limonene in liver disease [1, 37], these 
compounds can be used in the QC mixture. It should also be noted that a QC mixture 
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should contain established amounts of these known compounds at concentrations 
close to those that are known to be present in the subject samples. Nonetheless, 
several aspects have to be carefully considered when QCs are implemented: possible 
interaction of the internal standard with the analysis samples, and the optimal number 
of QC samples to be used, to name a few. This is because there is not a straightforward 
process as to what is optimal each time; it depends on different aspects, such as the 
stability of the compounds or the stability of the analytical system [76]. To the best 
of the authors’ knowledge, a similar study that investigates within-study and cross-
study batch effects in the breath-omics field has not been previously performed. The 
need for developing more advanced, nonlinear ways for batch effect removal, as well 
as the fact that dealing with batch effects is neither a straightforward nor an easy task 
to control, support the novelty of this study.

Conclusion
In conclusion, the present study revealed that batch effect challenges arise in 
untargeted VOC analysis with GC-tof-MS, and the current ways of correcting 
them with algorithmic techniques do not suffice. Attention should be paid on 
developing more advanced, nonlinear batch-effect-correction algorithmic methods. 
Most urgently, however, the need for a standardisation framework is of paramount 
importance; therefore, the use of QCs in future breath analyses should become a 
common practice since correcting for confounding influences afterwards seems to be 
challenging at the moment
.
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FIGURE 1S:  SCORES PLOTS OF THE THREE DATASETS OBTAINED BY (A) PCA, (B) R-PCA, AND (C) 
URF AFTER IMPLEMENTING ZERO-CENTERING. THE BHATTACHARYYA DISTANCE FOR THE ZERO-
CENTERING CASE IS 8.92, 13.60, AND 22.52, RESPECTIVELY. THE PERCENTAGES INDICATE THE 
EXPLAINED INFORMATION BY EACH PC/PCO. THE DOTS REPRESENT IBD; THE SQUARES REPRESENT 
CLD; THE TRIANGLES REPRESENT IBS. THE GROUPING OBSERVED IN THE IBS CASES IS ALONG PCO3 
WHICH ONLY CAPTURES 4% OF THE EXPLAINED INFORMATION, AND THEREFORE, IT CAN BE IGNORED 
OR CONSIDERED IRRELEVANT.
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FIGURE 2S: SCORES PLOTS OF THE THREE DATASETS OBTAINED BY (A) PCA, (B) R-PCA, AND (C) URF 
AFTER IMPLEMENTING COMBAT. THE BHATTACHARYYA DISTANCE FOR THE COMBAT CASE IS 9.42, 
13.68, AND 23.09, RESPECTIVELY. THE PERCENTAGES INDICATE THE EXPLAINED INFORMATION BY EACH 
PC/PCO. THE DOTS REPRESENT IBD; THE SQUARES REPRESENT CLD; THE TRIANGLES REPRESENT 
IBS. THE GROUPING OBSERVED IN THE IBS CASES IS ALONG PCO3 WHICH ONLY CAPTURES 4% OF 
THE EXPLAINED INFORMATION, AND THEREFORE, IT CAN BE IGNORED OR CONSIDERED IRRELEVANT.
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MatLab codes for Combat and zero-centering:

%% combat
 
% mod matrix
mod = [];
 
[gamma_star,delta_star,nnn] = combat(X_toBeUsed’,classes,mod);
X_toBeUsed_corr = nnn’;
X_toBeUsed_corr_final = pareto(X_toBeUsed_corr);

%% zero-centering
 
[m, ~] = size(X_toBeUsed(IBD_idx,:));
MC = mean(X_toBeUsed(IBD_idx,:));
MCX = X_toBeUsed(IBD_idx,:) - ones(m,1)*MC;
 
[n, ~] = size(X_toBeUsed(liver_idx,:));
MC2 = mean(X_toBeUsed(liver_idx,:));
MCX2 = X_toBeUsed(liver_idx,:) - ones(n,1)*MC2;
 
[k, ~] = size(X_toBeUsed(IBS_idx,:));
MC3 = mean(X_toBeUsed(IBS_idx,:));
MCX3 = X_toBeUsed(IBS_idx,:) - ones(k,1)*MC3;
 
X_toBeUsed_corr = [MCX; MCX2; MCX3];
X_toBeUsed_corr_final = pareto(X_toBeUsed_corr);

The combat function can be downloaded from here:
https://github.com/Jfortin1/ComBatHarmonization/tree/master/Matlab

R code for ANCOVA:
X_toBeUsed <- read.csv(“~/R/X_toBeUsed”, header=FALSE)
batch.idx <- matrix(0, nrow = 663, ncol = 1)
batch.idx[214:402] <- 1
batch.idx[403:nrow(batch.idx)] <- 2
seq.idx <- sample(1:663, 663, replace = FALSE, NULL)
ref.idx <- seq.idx

results <- matrix(, nrow = 663, ncol = 200)
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for (i in 1:200){
  results[1:663,i] <- doBC(X_toBeUsed[1:nrow(X_toBeUsed),i], ref.idx, batch.idx, seq.
idx,
                           result = c(“correctedX”), method = c(“lm”), correctionFormula = 
formula(“X ~ S * B”),
                           minBsamp = NULL, imputeVal = NULL)
} 
results
The ANCOVA function can be downloaded from here:
https://github.com/rwehrens/BatchCorrMetabolomics 
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Visualisation of the three individual datasets without any 
correction and with combat correction:
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Abstract
Recent expansions of technology led to growth and availability of different types of 
data. This, thus gave various opportunities for the machine learning, data mining, 
chemometrics and data science fields.  Both fields have been consequently developing 
new approaches and algorithms in a wide range of applications in biomedical, medical, 
-omics but also from daily-life to national security areas. Ensemble techniques 
become the backbone of the machine learning field. The phrase refers to an approach 
in which multiple, independent, aka uncorrelated, predictive models are combined. 
Those multiple models can be combined for instance by simple averaging or voting. 
The advantage of ensemble techniques is their ability to yield very high performance 
model. The use of ensemble techniques is present in our daily lives. We tend to ask or 
check the opinion of several specialists before making the final decision for instance 
before purchasing an item or before hiring a new employee we search for judgment of 
several referees. In this book chapter, the theoretical and practical demonstration of 
three ensembles techniques, adaptive boosting, random forest and gradient boosting 
are shown. Each technique is discussed from its theoretical perspective followed by 
presentation of pro and cons of each method. The last part of the chapter is focused 
on the comparison between the techniques using two simulated data sets.
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Introduction 
Ensemble techniques have gained a lot of attention in machine learning the past 
decade [56, 64, 65, 113-115]. When predicting a target value in any machine-learning 
domain, the main causes of the difference between the actual and predicted values 
are variance, bias, and noise [116]. Except for noise, which is an irreducible error, 
ensemble techniques help reduce bias and variance. An ensemble of classifiers 
(i.e. strong learner) consists of a collection of classifiers (i.e. weak learners), and the 
principle behind an ensemble is that if many classifiers try to predict the same target, 
they will perform better than any single classifier alone [117]. A weak learner is an 
algorithm with predicting probability of error slightly better than random guessing. A 
strong learner is an algorithm which, given enough training data, can yield classifiers 
with arbitrarily small error probability. The concepts of weak and strong learners 
derive from the theory of probably approximately correct (PAC) learning, and they can 
be found elsewhere [118]. By correctly combining weak learners, the strong learner 
tends to be more flexible (i.e. less bias), and less data-sensitive (i.e. less variance) 
[117]. The ensemble idea originates back in the late seventies when two linear models 
were combined. The first linear model was fitted to the original data, and the second 
was fitted to the residuals of the first model [117]. However, it was only until the 
late nineties that the ensemble idea was revolutionised. Hansen et al. [119] proposed 
an ensemble of neural networks to achieve a better prediction accuracy than a 
single neural network. At the same time, Schapire [120] proved the strength of weak 
learnability, and as such, paved the way for the development of the adaptive boosting 
(AdaBoost) algorithm, the first strong classifier in the PAC sense [47]. AdaBoost led 
ideas such as bootstrapping [121] and stacking (or stacked generalisation) [122] 
to advance in the ensemble techniques domain as well, and thus, organising the 
ensemble techniques, as known up-to-date, into three main categories: boosting [47], 
bagging (or aggregative bootstrapping) [123], and stacking [122].

A strong classifier requires a proper selection of which weak classifiers (i.e. decision 
trees [124], regressors [125], neural networks [126], support vector machines [127]) 
will be used, and a proper way of how these weak classifiers will be combined (i.e. 
sequential or parallel). Weak classifiers can be either homogeneous or heterogeneous, 
and therefore, they result in homogeneous or heterogeneous ensembles since the way 
of which the weak classifiers are combined has to be, preferably, coherent. Boosting 
and bagging consider homogeneous weak classifiers (e.g. decision trees, regressors), 
whereas stacking considers, mostly, heterogeneous weak classifiers (e.g. different 
ensemble models). Furthermore, stacking may also be seen as a means of building 
a meta-model to improve prediction accuracy of various weak models predictions. 
The present chapter focuses on boosting and bagging ensemble models; therefore, 
readers interested in stacking are referred to [122, 128-130].

5
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Boosting and bagging are fundamentally different even though they share the idea 
of combining homogeneous weak classifiers to create a strong classifier, and they 
both can be used for classification and regression purposes. On one hand, boosting 
is a sequential ensemble approach because the weak classifiers are built one after 
the other. The mistakes one classifier makes influences the way the next classifier 
is built; thus, making all classifiers  dependent on each other [47]. The key point of 
every boosting ensemble is that each new classifier is built on new subset containing 
the components that were misclassified by the preceding models. [131]. As a result, 
boosting ensembles are meant to decrease bias. On the other hand, bagging is a 
parallel ensemble approach because the weak classifiers are built independently from 
each other. The key point of every bagging ensemble is that each classifier is built on 
a subset of training samples sampled with replacement [131]. Consequently, bagging 
ensembles are meant to decrease variance. Boosting and bagging ensembles also 
differ on what is known as training loss (or objective function). For example, some 
boosting ensembles try to minimise particular loss functions, such as L1norm, L2norm, 
Huber loss, logarithmic loss [52, 132], and assign weights to misclassified training 
samples [47], whereas some bagging ensembles try to either minimise the binary 
cross-entropy [133] or use the Gini impurity index [45]. Boosting ensembles also 
differ on the criterion for updating the weights of their training samples. Furthermore, 
another important aspect that makes boosting and bagging differ is the way they 
get to their conclusion of the sample of interest (i.e. the sample that needs to be 
predicted). Boosting ensembles use weighted sums, whereas bagging ensembles 
use either majority voting or averaging [117]. All this plurality of options in different 
aspects of boosting and bagging ensembles has led to the dominance of these 
techniques in the machine-learning domain. However, this dominance is owed, 
primarily, to AdaBoost [47], random forest [45], and gradient boosting [52]. AdaBoost 
represents the boosting ensembles, while random forest represents the bagging 
ensembles. As far as gradient boosting is concerned, it may as well be seen as a 
hybrid technique since it exploits aspects of both types of ensembles even though, in 
principle, it belongs to the boosting category. The chapter provides a brief encounter 
and summary on the ensemble techniques by discussing the basics and putting them 
in the perspective of their pro and cons.
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Ensembles techniques
Adaptive boosting (AdaBoost)
AdaBoost is the most applied sequential ensemble [134-137]; it has found application 
in various scientific domains, from weather forecast to ailments prediction and 
monitoring, or even to daily human activities behaviour. AdaBoost, mostly, uses 
decision trees as weak classifiers, and in particular, it uses stumps (i.e. decision trees 
with only one split node); however, AdaBoost implementations that use regressors 
or pruned decision trees have also been documented [138-140]. AdaBoost is the 
only boosting algorithm that tries to minimise the exponential loss function, and at 
every iteration, it assigns weights to every training sample. In particular, misclassified 
samples are higher weighted in order the next classifier (i.e. stump) to focus more 
on correctly classifying the misclassified ones. Assigning weights changes the 
training sample distribution, thus, forcing the algorithm to emphasize more on the 
misclassified samples. The AdaBoost procedure can be seen in Figure 1. Initially, 
all training samples are given the same weight, and the first classifier is fitted to the 
training data by minimising the loss function.

Input: 

Training samples {𝑥𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛}, 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛, and responses 𝑡𝑡𝑛𝑛 	∈ {−1, 1} 

WeakLearn: learning procedure that produces classifier 𝑦𝑦𝑚𝑚(𝑥𝑥𝑥 

Initial sample weights: 𝑤𝑤𝑛𝑛
𝑚𝑚(𝑥𝑥) =1 /𝑁𝑁 

Do: 

For 𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚 

1. 𝑦𝑦𝑚𝑚 (𝑥𝑥) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊{𝑥𝑥}, 𝑡𝑡𝑡 𝑤𝑤𝑤, by minimising the cost function 𝐽𝐽𝑚𝑚 =

∑ 𝑤𝑤𝑛𝑛
𝑚𝑚[𝑦𝑦𝑚𝑚(𝑥𝑥𝑛𝑛) ≠ 𝑡𝑡𝑛𝑛]𝑁𝑁

𝑛𝑛𝑛𝑛

2. 𝜀𝜀𝑚𝑚 = 	∑ 𝑤𝑤𝑛𝑛
𝑚𝑚[𝑦𝑦𝑚𝑚(𝑥𝑥𝑛𝑛) ≠ 𝑡𝑡𝑛𝑛]𝑁𝑁

𝑛𝑛𝑛𝑛 /∑ 𝑤𝑤𝑛𝑛
𝑚𝑚𝑁𝑁

𝑛𝑛𝑛𝑛  

3. 𝛼𝛼𝑚𝑚 =	 log(1 − 𝜀𝜀𝑚𝑚 𝜀𝜀𝑚𝑚⁄ )

4. 𝑤𝑤𝑛𝑛
𝑚𝑚𝑚𝑚 =	𝑤𝑤𝑛𝑛

𝑚𝑚 × exp{𝛼𝛼𝑚𝑚 [𝑦𝑦𝑚𝑚 (𝑥𝑥𝑛𝑛 ) ≠ 𝑡𝑡𝑛𝑛 ]}
End 

Final model: 

𝑌𝑌𝑀𝑀(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∑ 𝛼𝛼𝑚𝑚 × 𝑦𝑦𝑚𝑚(𝑥𝑥)𝑀𝑀
𝑚𝑚𝑚𝑚 ) 

FIGURE 7 THE ADAPTIVE BOOSTING ALGORITHM (ADABOOST).
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In the consequent step, the classification error 𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 is calculated, and the classifier 
coefficient 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 is evaluated. The classifier coefficient is an evaluation metric that 
shows how much this weak classifier should be taken into account in the ensemble 
model; the higher the 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

, the more this weak classifier contributes to the outcome. 
Consequently, the ensemble is updated by adding this new classifier multiplied by its 
updated coefficient. The final step of the loop includes the computation of the new 
observation weights that express which samples the next classifier should focus on. 
For wrongly classified samples, their weights increase, while for correctly classified 
samples their weights decrease. At the end of the 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 iterations, the ensemble 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 
consists of 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

, sequentially built, weak classifiers (called here stump), which are then 
aggregated into a linear combination weighted by the coefficients 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

. A graphical 
illustration of AdaBoost is shown in Figure 2, where each stump (representing a weak 
classifier) is built in a sequential manner till M different classifiers are obtained.

Stump 1

Stump 2

Stump 3

Stump M
…

FIGURE 2 THE SEQUENTIAL BUILDING OF STUMPS IN ADABOOST. THE BIGGER THE SIZE OF THE 
STUMP, THE MORE IMPORTANT THIS STUMP IS IN THE ENSEMBLE MODEL.

Random forest
The most successful representative of bagging ensembles is random forest since its 
conception [45] with numerous implementations on every kind of scientific domain 
[37, 141-145]. Random forest uses fully-grown decision trees (i.e. trees that in their 
terminal/leaf nodes contain only one class); although, random forests with pruned 
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decision trees have also been documented [146, 147]. In random forest, every tree is 
built independently and on a different subset of training data (i.e. bootstrapped training 
datasets), and it uses a random subset of variables to be split in its nodes too. This 
means that every tree is built on different observations, and seeing different variables 
of the chosen observations; therefore, different information is seen by each tree in an 
attempt to obtain uncorrelated trees. Notably, from the total training observations, 
these that were not included in the bootstrapped training datasets are used to evaluate 
the performance of the forest, and they are called the out-of-bag observations. The 
lower the out-of-bag error is (i.e. misclassification of the out-of-bag samples), the 
better the performance of the forest is. In classification problems, random forest uses 
the Gini impurity index to select the optimal variable (from a randomly made subset 
of variables) to split at every node. In regression problems, it uses the mean squared 
error (MSE). The random forest procedure is described, briefly, in Figure 3. Initially, a 
bootstrapped training dataset is made, and for every variable randomly selected to 
be examined at the root node, the Gini index or the MSE is calculated. Then, the root 
node is split into two child nodes (also called internal nodes). The splitting continues 
until there are only terminal child nodes in the tree. At the end of the 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 iterations, 
the ensemble  𝑌𝑌!(𝑥𝑥)  

 
 consists of 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

, built in parallel, weak classifiers (i.e. trees). 
Noteworthy, depending on the problem at hand (i.e. classification or regression), the 
way the outcome is found varies.

Input: 

Training samples {𝑥𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛}, 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛, and responses 𝑡𝑡𝑛𝑛 	∈ {−1, 1} 

WeakLearn: learning procedure that produces decision tree 𝑦𝑦𝑚𝑚(𝑥𝑥𝑥 

Training subset size 𝜇𝜇 𝜇 𝜇𝜇 

Number of variables randomly selected at every node 𝑃𝑃 𝑃𝑃𝑃  

Do: 

For 𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚 

1. Draw a bootstrap sample {𝑥𝑥𝜇𝜇 , 𝑡𝑡𝑃𝑃} from training samples {𝑥𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛}

1.1 For 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗 

1.2 𝑦𝑦𝑚𝑚(𝑥𝑥) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊{𝑥𝑥}, 𝑡𝑡𝑗𝑗 )

1.3 Split the internal node into two child nodes

              End 

End 

Final model: 

𝑌𝑌𝑀𝑀(𝑥𝑥) = 	 1
𝑁𝑁
× ∑ 𝑦𝑦𝑚𝑚(𝑥𝑥𝑥𝑁𝑁

𝑚𝑚𝑚𝑚  for regression, and 𝑌𝑌𝑀𝑀(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥max[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚|𝑦𝑦𝑚𝑚 (𝑥𝑥) = 𝑗𝑗)] for 

classification 

FIGURE 3 THE RANDOM FOREST ALGORITHM.
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In regression problems, the outcome is the average value over all tree results for the 
sample of interest. In classification problems, the outcome can be found by either 
taking the majority of the votes that the sample of interest received (this is also called 
hard-voting) or by considering the probabilities for both classes that the sample of 
interest received and average them (this is also called soft-voting). Finally, averages 
or majority votes can either be simple or weighted in case any relevant weights can 
be used [148, 149]. A graphical representation of a random forest is shown in Figure 4.

Tree 1 Tree 2

Tree 3

….

Tree M

FIGURE 4 THE PARALLEL BUILDING OF FULLY-GROWN TREES IN RANDOM FOREST. THE GREY BLOCKS 
INDICATE TERMINAL/LEAF NODES.

Gradient boosting
Gradient boosting is the third on the line of succession, and as the two algorithms 
mentioned above (i.e. AdaBoost and random forest), it has found application in every 
kind of scientific domain [113, 150-153]. Gradient boosting is also known as gradient 
boosting trees or gradient boosted trees or even boosted trees since it makes use 
of decision trees as its weak classifiers, which are constructed in a greedy manner 
[52]. In opposition to AdaBoost and random forest that use stumps and fully-grown 
trees, respectively, gradient boosting makes use of trees of four to eight levels (i.e. 
splits). Gradient boosting can be called a generic algorithm since it is agnostic of 
the type of loss function. Rather than trying to minimise a single loss function (e.g. 
AdaBoost minimises the exponential loss function, and random forest, in regression 
cases, minimises the MSE), gradient boosting can use and therefore, minimise any 
differentiable loss function. Many standard loss functions (e.g. L1norm, L2norm, Huber 
loss, cross entropy loss) can be used, but the user can define their loss function too. 
The only requirement is that it must be a convex function (i.e. bowl-shaped) [154], 
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which is due to the way gradient boosting minimises the loss functions. Gradient 
boosting uses partial derivatives (i.e. gradients), and in particular, it uses the steepest 
gradient descent optimisation method [155]. This is why gradient boosting is called 
“gradient”. More importantly, gradient boosting calculates the gradients of the loss 
function at every iteration with respect to the predictions of the current model instead 
of the variables, which is the case in AdaBoost and random forest. In mathematical 
terms, it can be written:  𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 

 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

, where 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

 is an iterative 
boost of the ensemble, 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

 is the previous iteration of the ensemble, and 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

  
is a decision tree trained on the residuals (also known as pseudo-residuals) of the 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

 (i.e. 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  ). One may also state that gradient boosting, 

repetitively, takes advantage of patterns in residuals, and tries to strengthen a model 
with weak predictions. The modelling of the residuals stops when a stage, where 
residuals do not have any patterns to be modelled, has been reached. The gradient 
boosting procedure is illustrated in Figure 5. Initially, for a given loss function, the 
pseudo-residuals are set equal to the observation values. In the first iteration, the best 
possible weak classifier is fitted to the pseudo-residuals.

FIGURE 5 THE GRADIENT BOOSTING ALGORITHM. 

The value of the optimal step size that defines by how much the ensemble model 
needs to be updated is calculated, and then, the ensemble is updated by adding the 
new weak classifier multiplied by the step size. Then again, new pseudo-residuals are 
calculated, and the whole process is repeated 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 times. At the end of the 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

 iterations, 
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the ensemble 

 𝐹𝐹!(𝑥𝑥) = 𝐹𝐹!"#(𝑥𝑥) + ℎ!(𝑥𝑥) 
 
𝐹𝐹!(𝑥𝑥)  
 
 𝐹𝐹!"#(𝑥𝑥)  
 
 ℎ!(𝑥𝑥)  
 
 
 𝐹𝐹!"#(𝑥𝑥)  
 
ℎ!(𝑥𝑥) = 𝑦𝑦 − 𝐹𝐹!"#(𝑥𝑥)  

  consists of 

𝜀𝜀  
 
𝛼𝛼 
 
𝑌𝑌!(𝑥𝑥)  
 
𝑀𝑀  
 

, sequentially built, weak classifiers. Furthermore, 
it is to be mentioned that a lot of research and development has been done on the 
gradient boosting algorithm since its conception, and therefore, gradient boosting 
can be divided into the following algorithms: gradient boosting [52], extreme gradient 
boosting (XGBoost) [132], light gradient boosting (LightGBM) [156], and CatBoost 
[157]. XGBoost, LightGBM, and CatBoost show modifications that, in their way, help 
get better, faster and generalizable results. A graphical representation of gradient 
boosting is shown in Figure 6.

Tree 1

Tree 2

…Tree M

FIGURE 6 THE SEQUENTIAL BUILDING OF PRUNED TREES IN GRADIENT BOOSTING. EACH TREE CONSISTS 
OF FOUR TO EIGHT SPLIT. THE BIGGER THE SIZE (NOT THE DEPTH) OF THE PRUNED TREE, THE MORE 
THIS TREE WILL BE TAKEN INTO ACCOUNT IN THE ENSEMBLE. THE GREY BLOCKS INDICATE TERMINAL/
LEAF NODES. NOTE: FOR VISUALISATION COHERENCE, THREE-LEVEL PRUNED TREES ARE SHOWN.

Comparison of ensembles techniques
AdaBoost, random forest and gradient boosting have been successfully applied 
in almost every scientific field, and consequently, there is not a clear guideline for 
saying which ensemble outperforms the others. The choice of the ensemble one 
should use for their analysis, purely, depends on the problem at hand and possible 
analysis characteristics (e.g. analysis time or type of data). The two major advantages 
of AdaBoost are its complexity and its parameters tuning. AdaBoost only requires the 
number of stumps to be tuned and since stumps are the least complex classifiers, 
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it shows the lowest model complexity of all three ensembles [47].  The major 
disadvantage of AdaBoost is that it is prone to overfitting. The more stumps are 
added to the ensemble, the higher the chance of overfitting exist. Nevertheless, this 
can be controlled via proper optimization and validation of the model by for instance 
cross-validation. At the same time, AdaBoost builds its classifiers sequentially, and 
it also examines all variables to split at every node [47]; AdaBoost per definition is 
computationally not extensive, since stumps are very small trees. However, since it 
always use all variables to find the best split, for high-dimensional data with many 
variables it may be time-consuming.

Random forest presents two major advantages over AdaBoost and gradient boosting: 
it does not overfit, and it provides a proximity matrix of the training samples [45]. 
Random forest grows full trees, which inevitably will overfit, although, every tree overfits 
a different part of the training data and in a different way. In the end, via majority voting 
or averaging, this overfitting is cancelled out. In random forest, the more trees that are 
added, the merrier, whereas in AdaBoost and gradient boosting, the more stumps/trees 
are added, the higher the chances to overfit. This will increase the running time of the 
algorithm; nonetheless, it is not seen as a drawback because random forest builds its 
classifiers in parallel, which by definition makes random forest faster than AdaBoost 
and gradient boosting. As far as the proximity matrix is concerned, the random forest 
algorithm calculates a proximity matrix of the training samples once the forest is built. 
The term proximity means “closeness” or “nearness” between pairs [158]. In general, 
proximity matrices are square distance matrices that show how similar or dissimilar the 
data are. Proximity matrices are calculated by using traditional distance measures such 
as Euclidean distance; in random forest, however, the proximity matrix is not calculated 
by using a distance measure [45]. More specifically, for every pair of samples, the 
proximity indicates the percentage of the times these two samples ended up in the 
same terminal node. For instance, if the random forest consists of 1000 trees and the 
pair of samples ended up in the same terminal node in 100 of the 1000 trees, then the 
proximity for this pair of samples is 100/1000 = 0.1. A toy example of how the random 
forest proximity is obtained is shown in Figure 7.

Tree 1 Tree 2 Tree 3

FIGURE 7 IN A RANDOM FOREST CONSISTING OF THREE TREES, ALL TRAINING SAMPLES ARE RUN 
THROUGH ALL THE TREES ONCE THE FOREST IS BUILT. THEN, IT IS CHECKED HOW MANY TIMES EVERY 
POSSIBLE PAIR OF SAMPLES ENDED UP IN THE SAME TERMINAL NODE, AND IN THE END, THIS NUMBER 
IS DIVIDED BY THE TOTAL NUMBER OF TREES IN THE FOREST TO GET THE PROXIMITIES.

5
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Consequently, the higher the proximity, the more similar the samples are. This kind 
of proximity matrix is particularly useful when datasets of non-numeric variables are 
used, for instance. Conventional distance measures (e.g. Euclidean distance) are 
designed for numeric variables only; therefore, finding a distance measure for other 
kinds of data (e.g. categorical, ranks) may be challenging. Furthermore, proximities 
can also be used for identifying outliers, replacing missing values or visualising the 
data [45]. The major disadvantage of random forest is its complexity. Random forest 
is a rather complex ensemble since it grows full trees, which also means that it is 
computationally expensive. At the same time, the prediction process using random 
forest is more time-consuming than AdaBoost and gradient boosting.

The major advantage of gradient boosting over AdaBoost and random forest is 
its immense flexibility. Every differentiable and convex loss function can be used; 
moreover, the user can define their loss function too. In theory, this means that gradient 
boosting can solve almost every classification or regression problem, something that 
is proved by the big success of gradient boosting in Kaggle competitions. Additionally, 
the fact that the user can tune several hyper-parameters (e.g. number of observation 
per node, tree depth, learning rate), it is considered more as an advantage rather than 
as a drawback. Constraining the trees in all these different ways ensures that the 
trees remain weak; therefore, the model complexity does not increase too much as in 
random forest. When it comes to gradient boosting disadvantages, the biggest one 
is that it is prone to overfitting. Although, this can be controlled via cross-validation. 
Gradient boosting is also time-consuming because it builds the trees sequentially and 
it requires a large grid search during tuning. Table 1 shows an overview of the pros and 
cons of the three ensembles.
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TABLE 5 OVERVIEW OF THE PROS AND CONS OF THE THREE ENSEMBLES.

  AdaBoost Random forest Gradient boosting
Affected by noisy data + - +

Affected by outliers + - +

Analysis time Classifiers are built 
sequentially

Classifiers are built in 
parallel

Classifiers are built 
sequentially

Can be applied to multi-
class problems

+ + +

Data preparation (e.g. 
scaling, transformation)

- - -

Deals with missing 
values

+ + +

Loss function Exponential loss MSE for regression, Gini 
index for classification

Multiple loss functions

Parameters tuning Number of stumps Number of trees, and 
number variables to be 
examined at every split

Number of trees, depth of 
the trees, number of nodes 

or leaves or number of 
observations per split

Prone to overfitting + - +

Proximities - + -

Requires large datasets + - +

Variables importance + + +

Works with continuous 
and categorical variables

+ + +

A common tool that has received a lot of attention in –omics related fields and 
industry, and it has been very successful in multivariate data analysis is partial least 
squares (PLS) analysis [42, 91]. PLS originates back at the beginning of the 20th 
century, several years before AdaBoost, random forest, and gradient boosting were 
developed. PLS was initially designed to deal with regression problems [42], but later 
on, a variant of PLS able to deal with classification problems was proposed too [91]; 
thus, making PLS suitable for both data analysis cases. A comparison of PLS with 
the three ensembles techniques is worth making due to its popularity even though 
PLS is not an ensemble technique. The profound difference between PLS and the 
three ensembles shown here is that original version of PLS considers linear relations 
between variables in the data only, whereas the ensembles consider both linear and 
nonlinear relations in the data [42, 45, 47, 52, 91]. Nowadays, most of the data that are 
generated are very complex, and therefore, they often show nonlinearities amongst 
them; thus, making the ensembles, most of the times, the first choice of use. PLS 
requires the data to be scaled, while the tree-based ensemble techniques, though, do 
not require any data preparation. Moreover, generally PLS can be applied to numerical 

5
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and continuous data, while the ensembles can be applied to any data. Nevertheless, 
PLS has a major advantage over the three ensembles, and this is that PLS is notably 
faster and less complex than the three ensembles since it creates a single model. It 
is also easier to interpret the model itself and its results compared to the ensembles 
since they, in general, are still regarded as black boxes. This is why the number of PLS-
related publications keeps increasing [159-162]. To conclude, ensemble techniques 
are powerful, and they can deal with various problems with very little parameters 
tuning; however, the complexity they show and the understanding they require to from 
the user, they might not always be the first choice.

Practical demonstration of the ensemble 
techniques 
PLS models remained extremely popular in various fields thanks to the simplicity of 
their interpretation [43, 163-165]. Ensemble techniques are not typically employed, 
although they are now increasingly common [166-171]. Indeed, PLS discriminant 
analysis (PLS-DA) is the most well-known and common tool to implement 
classification and regression in metabolomics as suggested by Gromski at al. [43]. 
The predominance of PLS-DA in data analysis is so extensive that researchers often 
forget about other techniques. To demonstrate the power and the advantages of 
ensemble techniques, some examples based on simulated data are presented here to 
provide the reader with a sense of when exactly the choice for ensemble techniques 
can be beneficial. For sake of simplicity, the focus is on classification tasks. Yet, the 
choice of when a specific algorithm is left to the readers own creativity, as this is 
always dependent on a multitude of factors, such as type of data, complexity of the 
problem, time available, education, experience and experimental design. 

This part of the chapter focuses on a simplified demonstration of ensemble-based 
techniques taking into account their ability to deal will non-linear data, Followed by 
variable selection and the general performance of the three ensemble techniques.

Methods and simulated data
In order to demonstrate the performance of the different techniques, specific 
architectures were used. In random forest the training set was iteratively split into 
an internal validation and training set to find the important variables in a traditional 
validation procedure. The description of the different variable importance measures 
and their performance can be found elsewhere [172]. The variable selection is an 
embedded process in random forest and thus often seems a rigid and objective. 
However, on applying cross validation on variable selection, one obtains measures 
which are tuneable to be stricter on variable inclusion. 
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Variable importance can be expressed as the frequency at which the variable was 
chosen within AdaBoost, random forest or gradient boosting technique. It is possible 
to put a threshold α on this measure, to select the most important ones per iteration 
within a k-fold validation loop. Following over the numerous iterations (i.e. within k-fold 
validation loop), the frequency can be measured at which a variable was selected as 
important over the different models. The final number of variables can be selected by 
using β threshold, i.e. the frequency of variables being selected over various models. 
This translates to including those variables that were found to be important in at least 
β% of all models. Finally, the most important selected variables were used to build 
a model with the entire training set. The resulting model was tested on the external 
independent test set. 

Training

Test set

Training

Internal 
training

Validation

Data

I. Split data II. Split training data

III. Find number of learning cycles and/or important variables

IV. Build final model 

V. Test model using the external test set

FIGURE 8 TRAINING AND TESTING ARCHITECTURE USED FOR THE RANDOM FOREST, ADABOOST AND 
GRADIENT BOOSTING. THE VARIABLE SELECTION WAS PERFORMED FOR EACH TECHNIQUE, WHILE THE 
SELECTION OF NUMBER OF LEARNING CYCLE WAS DONE IN ADABOOST AND GRADIENT BOOSTING.

In case of PLS-DA, a very similar set-up was used, where the internal training and 
validation set were applied to find the optimal number of variables and model 
complexity. Here Significance Multivariate Correlation were applied as variable selection 
and importance measures [173]. Next, using the most important variables a model 
was created using the entire training set and subsequently tested using the external 
independent test set. 

The modelling approaches described for random forest, AdaBoost, gradient boosting 
and PLS-DA can be seen in in Figures 8-9, respectively. Note that the training and 
independent test sets were identical among the four different classification methods.

5
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FIGURE 9 TRAINING AND TESTING THE PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS MODEL. 
HERE VARIABLE SELECTION WAS CALCULATED USING SELECTIVITY RATIO AND SIGNIFICANCE 
MULTIVARIATE CORRELATION ON AN ITERATIVE INTERNAL TRAINING AND TEST SET.  

The performance of each classification model by means of random forest, AdaBoost, 
gradient boosting and PLS-DA was assessed using the Geometric mean (G-mean), 
which is calculated by taking the square of multiplication of  sensitivity and specificity 
[174, 175].  

The performance of the classification techniques has been tested using two sets of 
simulated data, using an approached presented by Wojciechowski et al. [176].  The 
first data set consisted of two groups, class 1 and class 2 both consisted of 300 
samples and only five variables of which all were informative.  This examples was 
a simplified type of data, since no uninformative variables were present. The aim of 
this example was to demonstrate that all 3 ensembles techniques shown here can 
deal with complex data exhibiting high non-linearities. The simulated data is shown in 
Figure 10, using the first three variables. 
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FIGURE 10 AN EXAMPLE OF SIMULATED DATA CONSISTING OF TOTAL OF FIVE VARIABLES. A 
3-DIMENSIONAL SPHERE REPRESENTING A NON-LINEAR DISTRIBUTION OF TWO CLASSES IS SHOWN 
USING THE FIRST THREE VARIABLES. 

 
This situation is obviously not realistic, as analytical challenges often involve far more 
than five variables, including informative and non-informative or redundant variables. 
Therefore, to mimic untargeted ‘omics’ datasets, 1149 uninformative random variables 
with different level of noise as normally distributed pseudorandom numbers were 
added to the set containing five informative variables.  For both simulated data sets, 
50 samples were randomly drawn to represent an independent test set for each group, 
leading to the training set consisting of 500 samples and the test set of 100 samples. 

Based on the two simulated data the different ensemble based techniques and 
PLS-DA were examined. The performance of each optimized classification model 
was verified using an independent test set. The overview of the results by mean of 
G-means is shown in Table 2. 

5
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TABLE 2 THE PERFORMANCE FOR INDEPENDENT TEST SET FOR THE THREE 
ENSEMBLES TECHNIQUES AND PLS USING TWO SIMULATED DATA SETS EXPRESSED AS 
 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = '(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑥𝑥	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆))	 
 

.

Classification technique Data set 1 Data set 2
G-mean

AdaBoost 94.0 65.52

Random forest 96.99 85.91

Gradient boosting 94.87 80.94

PLS-DA 50.91 48.54

The results presented in Table 2 clearly demonstrated that the ensemble techniques 
were able to cope with the non-linear structure of the data sets. The values of G-means 
were comparable between gradient boosting and random forest, while AdaBoost 
underperformed the two ensembles techniques. The performance of PLS was close 
to random classifier. When comparing which informative variables were selected in 
data set 2 by three ensembles technique, again random forest and gradient boosting 
selected all 5 informative variables, while AdaBoost missed one variable. Interestingly, 
for data set 2 each ensemble technique selected noisy variables. The number of 
uninformative variables included in the final model was depended on the threshold 
selected for the variable importance measure. Obviously, the stricter threshold led to 
exclusion majority of the uninformative variables but at the same time 1 informative 
variable was excluded as well. This might obscure or complicate biological 
interpretation of the selected variables later on, as the uninformative variables might 
cloud metabolic pathway analysis.

Discussion
The goal of the current chapter was to demonstrate the theoretical and practical 
application of ensembles techniques, more specifically, adaptive boosting, random 
forest and gradient boosting. Historically speaking, the first work on ensemble 
technique was shown in 1979 by Dasarathy and Sheela [177]. In their paper they 
suggested the use of an ensemble technique for partitioning the feature space using 
two or more classifier. The next occurrence of an ensemble technique has been shown 
by Hansen and Salamon [178], who demonstrated the variance reduction property of 
an ensemble system. However, it took some years before Schapire [120] introduced 
ensemble technique as a center of machine learning field. He has proven that strong 
classifier in probably approximately correct sense can be generated by combining 
weak classifiers through a procedure he called  boosting, which has become the 
precursor of AdaBoost techniques. As the results the expansion of ensemble 
techniques in the literature has become very rapid [120, 122, 179, 180] with diverse 
strategies used for the classification and the way the individual models are combined.  
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The AdaBoost was for a long time as the very good example of the black box technique, 
which could be used by a practitioner without any need for parameters optimization. 
The idea behind AdaBoost was compared by its authors, Freund and Shapire, to 
group of friends betting on the horses going to race track. One of the person decided 
to develop a method of betting a part of his money taking into account his friend 
decision and adjusting the fractions based on the results. In that way, his performance 
over time reached the performance of most winning friend. Similarly with the boosting, 
the main goal is to improve the prediction performance. AdaBoost was the most 
commonly used version of the boosting, called by Leo Brieman in 1996 “the “best 
off-the-shelf classifier in the world” [181] and over the years it outperformed various 
classification techniques due its margins and boosting as the way of optimizing an 
exponential likelihood function.

Although, all those algorithms differ substantially the main idea behind them is to 
minimize variance and bias of the prediction model. With the introduction of Random 
Forests (RF) in 2001 by Leo Brieman [182] the popularity of ensemble techniques 
boosted even more. Although, RF is characterized with similar accuracy then 
AdaBoost, yet it is more robust to outliers and experimental error [183]. RF has 
become a method of choice for Kaggle competitions and nowadays it has exceeded 
the popularity of AdaBoost. 

Till now various modification of AdaBoost [184-187] and RF exist [188-191]. Yet, they 
all share the same principle and reasons of the utilization of ensembles techniques 
[192, 193]. The most obvious reasons is that the performance of the best classifier 
might or might not be outperformed by averaging, yet it diminishes the danger of 
making a poor overall decision. Obviously, good performance on the training samples 
does not correspond to good generalization of the classification model on the test 
set. Therefore, combing the output of several classifier may reduce this risk. A second 
advantage is to make possible the analysis of large volume of data. Particularly, in 
some fields available data can be too large to be effectively used by one classifier, 
therefore portioning the data and using each of this part in a classification model and 
subsequently combining using intelligent rules, proves to be more efficient. Similarly, 
small number of data might jeopardize the robustness and application of the final 
classifier. Therefore, resampling techniques can be used to train different classifier. 
The last mentioned reason for usage of ensembles techniques is their capability of 
defining complex boundaries, which cannot often be found by a single classifier.

The techniques presented here exhibited the inherently good performance in 
predicting the classes in the independent test sets for both simulated data sets. 
Moreover, a strong asset of ensemble techniques is their embedded variable selection. 
The different mechanisms of each of ensemble techniques resulted in selection 
of different set of the informative variables. When the different prediction models 
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were tested on all 1154 variables, similar performances were obtained as the ones 
described above. The slight differences between the different methods can mainly 
be attributed to (1) diversity of the model due to the number of trees and/or learning 
cycles and (2) to the weight of outlying samples that might strongly influencing the 
model. Although performances were almost identical, the correctly selected important 
variables did differ among the different models. The simulations shown here exhibited 
typical non-linear properties. Therefore, it is not surprising that ensemble methods 
outperformed PLS-DA. Nevertheless, PLS-DA remains a method of choice when the 
linear combination of variables leads to the discrimination between groups of interest. 
If non-linarites are expected, PLS-DA has to be transferred to its nonlinear version by 
for instance a kernel mapping [56, 194].
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Abstract
Data fusion has gained much attention in the field of life sciences, and this is because 
analysis of biological samples may require the use of data coming from multiple 
complementary sources to express the samples fully. Data fusion lies in the idea 
that different data platforms detect different biological entities. Therefore, if these 
different biological compounds are then combined, they can provide comprehensive 
profiling and understanding of the research question in hand. Data fusion can be 
performed in three different traditional ways: low-level, mid-level, and high-level data 
fusion. However, the increasing complexity and amount of generated data require the 
development of more sophisticated fusion approaches. In that regard, the current 
study presents an advanced data fusion approach (i.e. proximities stacking) based on 
random forest proximities coupled with the pseudo-sample principle. Four different 
data platforms of 130 samples each (faecal microbiome, blood, blood headspace, 
and exhaled breath samples of patients who have Crohn’s disease) were used to 
demonstrate the classification performance of this new approach. More specifically, 
104 samples were used to train and validate the models, whereas the remaining 26 
samples were used to validate the models externally. Mid-level, high-level, as well as 
individual platform classification predictions, were made and compared against the 
proximities stacking approach. The performance of each approach was assessed by 
calculating the sensitivity and specificity of each model for the external test set, and 
visualised by performing principal component analysis on the proximity matrices of 
the training samples to then, subsequently, project the test samples onto that space. 
The implementation of pseudo-samples allowed for the identification of the most 
important variables per platform, finding relations among variables of the different 
data platforms, and the examination of how variables behave in the samples. The 
proximities stacking approach outperforms both mid-level and high-level fusion 
approaches, as well as all individual platform predictions. Concurrently, it tackles 
significant bottlenecks of the traditional ways of fusion and of another advanced 
fusion way discussed in the paper, and finally, it contradicts the general belief that the 
more data, the merrier the result, and therefore, considerations have to be taken into 
account before any data fusion analysis is conducted.

Keywords: Data fusion; proximities; stacking; variable behaviour; Crohn’s disease; 
classification
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Introduction
Data fusion has gained much attention in the field of, among others, life sciences 
[1-10], and this is because analysis of biological samples may require the use of 
data coming from multiple complementary sources to express the samples fully. The 
principle behind data fusion lies in the idea that different data platforms, such as 
gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance 
(NMR) detect different biological entities. Therefore, if these different biological 
compounds are then combined, they can provide comprehensive profiling and 
understanding of the research question in hand [2]. Theoretically, one would imagine 
that the more data generated per biological sample, the merrier since different data 
platforms demonstrate different strengths. Practically, this is not always the case; 
considerations have to be made regarding the research question, and the nature 
of the samples before any data fusion analysis is conducted. Data fusion can be 
performed in three different ways: low-level, mid-level, and high-level data fusion [5]. 
At the low-level, the various data platforms are fused at a data level, whereas in the 
mid-level, the platforms are fused at a data level of selected variables or features 
of the original data. At the high-level, the platforms are fused at a prediction level, 
meaning that each platform gives predictions individually and then, these individual 
predictions are combined to get the final prediction.

Recently, a more sophisticated way of data fusion was introduced that can also 
be seen as a modified version of mid-level fusion [1]. Smolinska et al. introduced 
the fusion of kernels of the individual platforms rather than the important variables, 
features or latent variables of the platforms. More specifically, they mapped each 
platform to a higher-dimensional feature space with the use of a kernel function, and 
they then fused all the individual kernels by using a weighted sum. Kernel functions 
transform the data in such a way that they result in non-negative square matrices, 
and these matrices can be seen as measures of similarity/dissimilarity of samples; 
therefore, when one works with kernels, they work with samples rather than variables. 
This approach holds great potential when it comes to unravelling trends in data or 
getting predictions of data since it considers both linear and nonlinear relations 
amongst data, and most of the biological systems reveal nonlinear characteristics 
[1]. Another advantage of working with kernels, and therefore samples, rather than 
variables/features is that scaling issues are overcome. For example, in a mid-level 
fusion approach, scaling of the original variables is required before any data from 
different sources are concatenated since the magnitude of the data coming from 
different sources is most likely different. To find the optimal scaling parameter that 
would suit all the data might be not an easy task to perform, and on top of that, if the 
data being concatenated are of different type (i.e. quantitative or discrete), then this 
issue gets even more challenging. The major disadvantage of working with kernels 
is that information about the importance/contribution of variables of the dataset in 
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the model performance is lost due to the transformation of variables to distance or 
similarity measures among samples, and it can be challenging to trace back these 
variables. Nonlinear bi-plots introduced by Gower at al. have been further modified 
and developed the idea of pseudo-samples by Krooshof et al. [11,12] and Smolinska 
et al. [13], to overcome this bottleneck. The pseudo-sample principle uses the 
transformed data (i.e. the square matrices) to illustrate not only the importance of 
the original variables but also the original variable trajectory (i.e. how the variables 
behave amount-wise) in the samples of interest, which are both essential assets when 
it comes to drawing safe conclusions on the study results.

Proximity matrices are actual measures of similarity/dissimilarity of samples, and 
they are non-negative square matrices [14]. Originally, the term proximity means 
“closeness” or “nearness” between pairs, and it is calculated by using traditional 
distance measures such as Euclidean distance or Gaussian distance. The closer 
to zero the proximity of two samples is, the more similar these two samples are; 
this is why the diagonal of a proximity matrix always consists of zeros. The square 
matrix has a size of 𝑛𝑛 × 𝑛𝑛  (where 𝑛𝑛 × 𝑛𝑛  is the number of samples in the original dataset) 
since proximities imply similarities amongst samples. Moreover, proximities do not 
consist of transformed data, which is the case with kernels (e.g. the original dataset 
is transformed using the radial basis function), but instead of newly generated data 
(i.e. distances in space among samples). Random forest (RF) also returns a proximity 
matrix of the data that it is run on; although, the proximity matrix here is calculated 
differently [15]. The RF proximity matrix is indicative of the number of times that 
samples ended up in the same terminal node rather than a demonstration of the 
actual distance in the space of samples. More details on how the proximity via RF is 
calculated are shown in the materials and methods section. Recently, Blanchet et al. 
[16] published a tutorial where they illustrate the successful implementation of the RF 
proximities along with the pseudo-sample principle to visualize variable importance. 
However, to the best of the authors’ knowledge, proximity matrices, and mainly RF 
proximity matrices, have not been examined before in terms of data fusion to check 
their performance on predicting and investigating complex biological samples.

In this research, Crohn’s disease (CD) serves as a case study to demonstrate the utility 
of data fusion using proximities. CD is a complex biological metabolic disorder. CD is 
a chronic inflammatory process with no known cause (idiopathic) that can affect any 
part of the gastrointestinal tract, from the mouth to the anus [17]. More specifically, 
CD causes muscle hypertrophy, it changes the colon to a cobblestone appearance, 
it creates fissures in the colon, and it also covers the colon with fat. Colonoscopy 
has been the gold standard to diagnose and monitor the disease activity; therefore, 
alternative ways (e.g. biological biomarkers) to diagnose and monitor the disease 
activity are needed since colonoscopy is a considerably invasive and costly technique. 
Previous research focused on identifying CD biomarkers in either human blood (i.e. 
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metabolites) or faeces (i.e. bacterial species) [18-21] to diagnose and monitor the 
disease activity. All studies demonstrated promising results as far as prediction 
accuracy is concerned; although, each of these studies examined one data platform 
only to draw their conclusions. Consequently, the aim of the present study is to 
propose a new, advanced fusion approach based on RF proximities, as well as to see 
whether prediction accuracy of CD can be increased if more data are concatenated 
along with potential biomarker behaviour examination using pseudo-sample principle. 
To illustrate that this new fusion approach performs well, it is advantageous over the 
currently existing fusion approaches, and that it can be implemented in biomedical 
data, it is compared against the current ways of data fusion and the individual 
platforms used in the present study.

Materials and Methods
Data used and data preprocessing
Four different data platforms were used: faecal microbiome, blood, blood headspace, 
and exhaled breath samples from patients suffering from CD. The CD patients were 
categorized into two classes based on the disease activity: remission and active 
cases of CD. The criteria used to classify the patients as being in either remission 
or active stage can be found elsewhere [19]. In the present study, 130 CD patients 
were sampled, of which 66 were patients in the remission stage of the disease, and 
the remaining 64 were patients in the active stage of the disease. Initially, all the raw 
data were preprocessed before the actual analysis took place. Data preprocessing 
diminishes the effect of possible instrumental artefacts that can occur during the 
analysis. Each data platform followed a different preprocessing strategy.

The faecal microbiome samples were treated and sampled as described elsewhere 
[18], and they were analysed by employing 16S ribosomal RNA pyrosequencing. The 
faecal microbiome was analysed in terms of operational taxonomic units (OTUs). The 
raw microbiome pyrosequencing reads were, first, preprocessed by means of quality 
filters to reduce the error rate, and de-multiplexed and clustered into OTUs based on 
a 97% similarity—the entire prepossessing procedure that was followed is described 
elsewhere [18]. Then, they were transformed into continuous data. This is because 
preprocessing of the pyrosequencing reads results in data counts (i.e. OTUs per 
sample) which cannot be used for multivariate analysis purposes; the transformation 
was done by employing the inverse hyperbolic sine [22]. Next, the exclusion of zeros 
followed. The majority of bacterial species (OTUs) is not present in all the samples; 
consequently, only those that are present in a specified per cent of the samples are 
kept. Here, species that were found in at least 35% [18] of the samples were retained. 
As a final preprocessing step, microbiome data were logarithmically transformed 
since the log transformation accounts for high skewness in the data.

6



142

Chapter 6

The blood was treated and sampled as described elsewhere [23], and the blood sample 
metabolites were analysed by using NMR Bruker 600 MHz with a cryoprobe. In the 
blood NMR data, first, the water peak was removed, and then, baseline correction 
via P-splines [24], misalignment correction via correlation optimized warping [25], and 
peak picking in the form of binning via adaptive intelligent binning [26] were performed. 
Moreover, normalization via a reference peak (i.e. trimethylsilyl-propanoic acid–TSP) 
as well as via probabilistic quotient normalization [27] followed. Normalization via the 
TSP peak is done to enhance the signal comparison among the samples, whereas 
probabilistic quotient normalization accounts for dilution effects, effect size, among the 
samples. Finally, the blood data were logarithmically transformed.

The blood headspace was treated and sampled as described elsewhere [28]; in short, 
the blood headspace samples were measured by utilizing gas chromatography/gas 
chromatography-time-of-flight-mass spectrometry (GC×GC-tof-MS; Pegasus 4D, 
LECO Corporation, St Joseph, MI, USA). Blood headspace was analysed in terms 
of volatile organic compounds (VOCs). The blood headspace data were initially 
preprocessed as discussed elsewhere [28], and in the end, the exclusion of zeros 
followed. As with the microbiome data, the majority of VOCs does not occur in all 
the samples; therefore, only those found present in at least 20% [29] of the samples 
coming from the same class were kept for further analysis. In the end, a logarithmic 
transformation was performed.

Finally, the exhaled breath was captured as described elsewhere [19], and the exhaled 
breath samples were analysed by using GC-tof-MS. Breath was analysed in terms of 
VOCs as well. The exhaled breath data were preprocessed as described elsewhere 
[19], and as an extra preprocessing step, these data underwent exclusion of zeros 
(compounds found in at least 20% of each class [29] of the samples were retained) 
and logarithmic transformation.

Data fusion approaches
Data platforms can traditionally be fused at three different levels: low-level, mid-level, 
and high-level data fusion [5]. Low-level data fusion refers to concatenation of the 
whole data platforms, sample-wise, into a single matrix that consists of as many rows 
as the number of samples, and as many columns as the total number of variables from 
all different data platforms. Low-level fusion attempts were not tried here because this 
would affect the degrees of freedom of the data, and thus, making the concatenated 
matrix challenging to deal with and the analysis results untrustworthy; readers 
interested in low-level fusion applications are referred to [5].



143

Random forest proximities and pseudo-sample principle towards increased prediction accuracy  
and variable interpretation

Mid-level fusion
Mid-level data fusion can be divided into two categories: the concatenation of either 
important/significant variables or features of the different platforms. A variety of ways 
exists to find important variables or features. For example, variables can be found by 
using, among others, RF [15], partial least squares based variable selection [30], or even 
significance multivariate correlation [31], whereas features (or latent variable space) can 
be found by implementing principal component analysis (PCA) (and use the principal 
components) [32], recursive feature elimination [33], or partial least squares analysis (and 
use the latent variables) [34, 35]. Then, all these variables or features are concatenated, 
sample-wise, to create the single fused matrix to be used for further analysis. In the 
present study, RF was used to find the most important variables per platform. A schematic 
representation of the mid-level fusion approach is given in Figure 1.

FIGURE 1: SCHEMATIC REPRESENTATION OF THE MID-LEVEL FUSION APPROACH OF THREE DATASETS. 
RF IS RUN ON EACH OF THE DATASETS TO GET THEIR MOST IMPORTANT VARIABLES. THEN, ALL THE 
IMPORTANT VARIABLES OF ALL THREE DATASETS ARE FUSED SAMPLE-WISE TO GET THE FINAL FUSED 
MATRIX.

High-level fusion
High-level data fusion refers to a combination of the outcome of the individual platforms; 
this is why it is also called as decision-level fusion. Specifically, a classification or 
regression model is built for each one of the available data platforms, and the results from 
each model are combined to obtain the final decision for every sample of interest. The 
outcome of each model is given as either a class label or a set of probabilities; therefore, 
one can choose to either use majority voting [36] or adjusted probabilities to get the 
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final decision for the samples of interest. In the current study, adjusted probabilities via 
the Bayes’ theorem [37] were used to get the final decisions, and the optimal decision 
threshold was found from a loop of 100 cross-validation iterations; in every iteration, the 
data were randomly split into training and validation sets, and therefore, each iteration 
used different training and validation samples. Bayes’ theorem is also called Bayesian 
integration because it provides the ability to define probability models for disparate or 
independent types of data. More specifically, RF was used on every single platform to 
get the sets of initial likelihood probabilities (i.e. prior probabilities) for every sample of 
interest, and then, these probabilities were transformed into posterior probabilities. A 
detailed description of the implementation of the Bayes’ theorem in biological data can 
be found elsewhere [38]. A schematic representation of the high-level fusion approach 
is shown in Figure 2.

FIGURE 2: SCHEMATIC REPRESENTATION OF THE HIGH-LEVEL FUSION APPROACH OF THREE 
DATASETS. RF IS RUN ON EACH OF THE DATASETS TO GET THEIR PREDICTIONS (I.E. CLASSIFICATION 
PROBABILITIES HERE), WHICH ARE THEN ADJUSTED VIA THE BAYES’ THEOREM TO GET THE OUTCOME. 
THE BAYES’ THEOREM FORMULA IS DEPICTED AT THE BOTTOM RIGHT CORNER OF THE FIGURE, 
WHERE P(A) AND P(B) ARE THE PROBABILITIES OF OBSERVING THE EVENTS A AND B RESPECTIVELY, 
P(B|A) IS THE PROBABILITY OF EVENT B OCCURRING GIVEN THAT EVENT A IS TRUE, AND P(A|B) IS THE 
PROBABILITY OF EVENT A OCCURRING GIVEN THAT EVENT B IS TRUE.
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matrices of each used data platforms, and the discovery of an optimal set of weights 
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 that is used for further analysis.
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𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 matrices of the present study were combined in a weighted 
linear parameterized combination to create the new single proximity matrix 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  

 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 that 
was used for further analysis. This linear combination can be expressed as follows:

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

where 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 is the total number of 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 matrices (here, 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 equals four), and 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 is the 
weight or importance of the 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  

 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 matrix in the new 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 matrix. The set of weights 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 
can be found by applying regularisation methods such as L1 or L2 norm. Regularisation 
methods are processes that introduce additional information to prevent over-fitting.  
L2 norm is applied when the data platforms are complementary to each other because 
it avoids the possibility of shrinking the importance of any of the platforms; L2  norm 
[1] was used here, and it is expressed as follows:

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
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where 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 is the total number of 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 matrices, and 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 is the weight of the 𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 

 
 

𝑲𝑲 =	-𝑤𝑤! × 𝑷𝑷"#$%&,!

+

!,(

										(2) 

 
 
 𝑚𝑚    𝑤𝑤!    𝑤𝑤  
 

‖𝑤𝑤‖ = 3-𝑤𝑤!)
+

!,(

= 1										(3) 

 
 𝑤𝑤-."!+$/    𝑨𝑨 = (𝑛𝑛 × 𝑝𝑝)    𝑛𝑛   𝑝𝑝  
 
 𝑨𝑨    𝑩𝑩 = (𝑘𝑘 × 𝑝𝑝)    𝑘𝑘    𝑩𝑩   𝑝𝑝  
 

 
matrix. The optimal set of weights was selected in two steps approach. In the first 
step, ten sets of numbers that fulfilled the equation (3) were generated via grid search. 
Then, the weight values of every 

𝑷𝑷!   𝑲𝑲  𝑷𝑷"#$%&,!  
 
  

𝑷𝑷"#$%&,! = 1 − 𝑷𝑷! 	= 1 − '
1 𝑥𝑥(,) 𝑥𝑥(,*
𝑥𝑥),( 1 𝑥𝑥),*
𝑥𝑥*,( 𝑥𝑥*,) 1

) = '
0 1 − 𝑥𝑥(,) 1 − 𝑥𝑥(,*

1 − 𝑥𝑥),( 0 1 − 𝑥𝑥),*
1 − 𝑥𝑥*,( 1 − 𝑥𝑥*,) 0

)										(1) 
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 that maximizes classification accuracy of the model was found 
from a loop of 100 cross-validation iterations. A schematic representation of the 
proximities stacking fusion is pictured in Figure 3.

FIGURE 3: SCHEMATIC REPRESENTATION OF THE PROXIMITIES STACKING FUSION APPROACH OF 
THREE DATASETS. RF IS RUN ON EACH OF THE DATASETS TO GET THEIR PROXIMITY MATRIX. THEN, ALL 
THREE PROXIMITY MATRICES ARE STACKED ONE ON TOP OF EACH OTHER, AND VIA A WEIGHTED SUM, 
THEY CREATE THE FINAL SINGLE PROXIMITY MATRIX K. *THE PROXIMITY/DISSIMILARITY MATRICES 
CAN ALSO BE CREATED VIA UNSUPERVISED RANDOM FOREST, AND THESE PROXIMITIES WERE USED 
IN THE PRESENT STUDY. MORE DETAILS ON THE MATTER CAN BE FOUND IN THE SECTION 2.4.3.

Pseudo-sample principle
The pseudo-sample principle was employed to explore the behaviour and importance 
of the original variables (i.e. bacterial species, metabolites, and VOCs) in the final 
classification model in the proximities stacking fusion approach [11]. A pseudo-
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sample is a matrix that has the values of one particular variable from an entire dataset 
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 usually ranges from 20 to 
40, to properly represent the range of the values of each variable—the present study 
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 matrix is predicted using RF, which results in obtaining 
its corresponding pseudo-sample proximity matrix. In the end, one gets as many 
pseudo-sample proximity matrices as the total number of the original variables (i.e. 
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 pseudo-sample proximity matrices to be analysed, in total). A graphical illustration 
of how a single pseudo-sample proximity matrix is created is shown in Figure 4. As 
a final step, principal coordinate analysis (PCoA) is run on the proximity matrix of 
the original dataset, and subsequently, all the pseudo-sample proximity matrices are 
projected onto the PCoA space of the proximity of the original dataset since they can 
be treated as any other subject/patient sample.

FIGURE 4: GRAPHICAL REPRESENTATION OF HOW THE PSEUDO-SAMPLE PROXIMITY MATRIX OF THE 
VERY FIRST ORIGINAL VARIABLE IS CREATED. A) FIRST, ALL THE VALUES OF VARIABLE ONE ARE SORTED 
OUT AND PLACED IN COLUMN ONE OF THE PSEUDO-SAMPLE MATRIX, WHEREAS THE REMAINING OF 
THE COLUMNS ARE FILLED IN WITH ZEROS. B) THEN, RF IS RUN ON THE PSEUDO-SAMPLE MATRIX TO 
OBTAIN THE PSEUDO-SAMPLE PROXIMITY MATRIX, WHICH ULTIMATELY HOLDS INFORMATION OF THE 
VERY FIRST VARIABLE ONLY. N IS THE NUMBER OF SAMPLES, P IS THE NUMBER OF THE ORIGINAL 
VARIABLES, AND K IS THE NUMBER OF POINTS THAT THE USER CHOOSES TO SPREAD THE RANGE OF 
THE VALUES OF VARIABLE ONE ON.

6
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Chapter 6

Conceptual flowchart and fusion approach optimization
Variable selection and RF model optimization
Each data platform underwent preprocessing, and then, its samples were divided into 
the training and validation samples (i.e. 104 samples, of which 57 were remission and 
47 were active), and independent internal test set samples (i.e. 26 samples, of which 11 
were remission and 15 were active). The division between the training and validation, 
and the independent internal test samples was achieved by employing the Duplex 
algorithm [39] since Duplex algorithm aims to maintain a comparable diversity between 
the sets. The URF/RF model parameters (i.e. number of trees, predictors, and samples 
per tree terminal leaf per RF model), as well as to the number of variables to be kept 
per platform were optimized within a 1000-iteration loop—the number of samples per 
tree terminal leaf accounts for overfitting minimization and model complexity reduction.

For each iteration, the training and validation set samples were randomly split (80% 
of the 104 samples were used as training samples, and the remaining 20% of the 104 
samples were used as validation samples), an RF model was built, and the importance 
of every variable was found. By default, a variable is considered important if its 
importance value is positive; however, here, a variable was considered as important if 
its importance value was equal or higher than 30% of the amount of the highest variable 
importance value found in the RF model. Next, the number of times that every single 
variable had been found as important in all the 1000 RF models was calculated (i.e. 
counts per variables), and in the end, the variables that had the most counts were kept. 
The threshold which determined the optimal number of variable counts to be kept for 
further analysis differed per platform since the data platforms contained different types 
of data. For each of the 1000 iterations, a one-by-one backwards variable elimination 
procedure was performed, and every time a variable was eliminated, the root-mean-
square-error-prediction (RMSEP) value was calculated. The number of variables that 
gave the lowest RMSEP value was considered as optimal. Each of the 1000 iterations 
gave its own optimal number of variables, and by averaging them out, the optimal 
number of variables per platform (i.e. counts per variable) was found. The RF model 
parameters were optimized with a similar way too. The RF model optimization, i.e. 
number of trees and the number of samples to be kept per tree terminal leaf, was 
done using the out-of-bag error of the model. As far as the number of predictors to 
be used in the bootstrapping procedure goes, the square root of the total number of 
predictors present in the data was used. Finally, a 1000-iteration permutation test was 
run to confirm that the selection of the RF parameters was indeed optimized.  In the 
present study, 4000 trees per model were used, and at the same time, the minimum 
number of samples per tree leaf for every tree in each model was set to eight. Ultimately, 
a new optimized RF model was built by using the 104 training and validation samples 
to predict the independent internal test set samples. Its performance was assessed by 
calculating the sensitivity and specificity for the independent internal test set.
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Mid-level and high-level fusion
In the mid-level fusion case (Figure 1), the variables with the most counts (found as 
described in section 2.4.1) from all the platforms were fused, sample-wise, and then, a 
single optimized RF model was built by using all the 104 samples. Its performance was 
assessed by calculating the sensitivity and specificity for the independent internal test 
set and visualized by subsequently performing PCA on the RF proximity matrix of the 
training samples, where then the independent internal test samples were also projected.

In the high-level fusion case (Figure 2), optimization of the classification probability 
threshold within a 100-iteration loop followed the optimization of the variable selection 
and the RF model parameters (section 2.4.1). For each of the 100 iterations, the 104 
samples were randomly split into training and validation sets, and individual platform 
predictions were made. Then, the individual platform classification probabilities were 
adjusted via the Bayes’ theorem, and the receiver operating characteristic (ROC) 
curve was plotted to find the classification probability threshold that maximized both 
sensitivity and specificity of the model. The average of all the optimal thresholds of all 
the 100 models was calculated, and this threshold was then considered optimal. In 
the end, all 104 samples were used once again to build the final optimized RF model, 
whose performance was then assessed by predicting the independent internal test 
set, in terms of sensitivity and specificity.

Proximities stacking fusion
As mentioned already in the data fusion approaches paragraph (paragraph 2.2), first, 
ten sets of numbers that fulfilled the equation (3) were found. Then, these sets were 
shuffled to give 40 different possible combinations of sets. A table with all the sets of 
weights 
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 can be found in the supplementary materials.

For each of the 100 iterations, the 104 samples were randomly split into training and 
validation sets, and the proximity matrices of these sets and for all the data platforms 
were obtained by unsupervised random forest (URF) (i.e. four training and four validation 
proximity matrices) [40]. URF is the unsupervised version of RF that assumes that if 
there is any structure hidden in the data, it should be possible to distinguish them from 
a randomly generated version of themselves. URF was employed to get the proximity 
matrices instead of RF to limit possible overfitting when a small number of samples 
is used (Figure 3). The use of RF proximities may result in possible overfitting even 
though an optimization of the RF model has been performed due to the supervised 
nature of RF. The sample classes of the training data are embedded in the RF model 
by definition, and when the number of samples is small, it can lead to overfitting and 
to unnecessarily complex or nonflexible models. The use of URF proximities should 
suffice for improving classification accuracy; however, if the user does not achieve 
a fair classification accuracy by using the URF proximities, RF proximities may also 
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be used. In each iteration and for every set of weights (i.e. 
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, found via equation (3)), 
the training proximities were stacked as well as the validation proximities (Figure 3). 
This resulted in 40 training proximities with their corresponding validation proximities. 
PCA was applied to every training proximity, and its related validation proximity was 
projected onto its training proximity PCA space, and based on how well the validation 
samples were projected on the training sample PCA space, the best set of weights  
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 for this particular set of training and validation samples was found.  The number 
of times that every set of weights 
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 was found as the optimal one out of all the 100 
iterations was calculated. In brief, an AUC was calculated for every set of weights  
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 to find the optimal one per iteration; the PCo1 scores of each iteration validation 
set were used to calculate these AUCs. The set of weights 
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 that gave the highest 
AUC was considered as the optimal. The final classification model was assessed by 
calculating the sensitivity and specificity for the independent internal test set.

All data analyses were performed by using MatLab R2016b version—the Statistics 
and Machine Learning Toolbox. For the RF models, the TreeBagger function was 
used, whereas for the URF models, the code was found elsewhere [40].

Results
The raw microbiome data consisted of 6629 variables, whereas the raw blood 
data consisted of 32768 variables. The raw blood headspace data consisted of 
2549 variables, while the raw exhaled breath data consisted of 545 variables. After 
data preprocessing and data reduction steps, microbiome matrix was left with 734 
variables, blood matrix with 423, blood headspace matrix with 531, and exhaled 
breath matrix with 256. The optimal number of variables per platform (found via 
the platform optimization process described in section 2.5.1) to be used for both 
individual and fused matrices predictions were 58 for the microbiome (the threshold 
was 50%, meaning that the variables that found as important in more than 50% of 
the total number of iterations were kept), 19 for blood (with a threshold of 35%), 14 
for blood headspace (with a threshold of 40%), and 16 for exhaled breath (with a 
threshold of 40%). At the same time, all four data platforms consisted of 130 samples, 
of which 66 were remission cases, and the remaining 64 were active cases of the 
disease. Notably, 104 samples were used to build and validate the models, whereas 
the remaining 26 were used to validate the models independently.

Mid-level, high-level, proximities stacking data fusion, as well as individual platform RF 
models were built, and their performance was assessed by calculating the sensitivity 
and specificity for the independent internal test set. Furthermore, for the individual 
platform cases, the mid-level, and the proximities stacking fusion cases, PCA was 
performed on the training sample proximity matrices, where the independent internal 
test samples were projected for visualization purposes. The mid-level case gave a 
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sensitivity of 67% and a specificity of 91% (Table 1) and its corresponding score 
plot can be seen in Figure 5, while the high-level case gave a sensitivity of 27% 
and a specificity of 100% (Table 1). In the proximities stacking attempt, the optimal 
set of weights 
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4=0.3872], which shows the 
contribution of the microbiome, blood, blood headspace, and exhaled breath in the final 
RF model, respectively; the final RF model gave a sensitivity of 93% and a specificity 
of 100% (Table 1). The proximities stacking corresponding score plot is illustrated in 
Figure 6. The sensitivities and specificities of the individual platforms are summarised 
in Table 1, and their corresponding score plots can be found in the supplementary 
materials. The proximities stacking approach outperformed both the mid-level and 
high-level fusion approaches, as well as all the individual platform results in terms of 
sensitivity and specificity except for the microbiome, which performed equally well.

TABLE 1: SENSITIVITIES AND SPECIFICITIES OF ALL THE FUSION AND ALL THE INDIVIDUAL PLATFORM 
CASES FOR THE EXTERNAL TEST SET. THE NUMBERS IN THE PARENTHESES SHOW THE ACTUAL 
NUMBER OF THE CORRECTLY CLASSIFIED PATIENTS; THE NUMBER OF PATIENTS IN EACH INDIVIDUAL 
PLATFORM DIFFERED FROM EITHER OTHER AND FROM THE NUMBER OF SAMPLES PRESENT IN THE 
EXTERNAL TEST SET IN THE FUSED CASES. THIS IS BECAUSE SOME PATIENTS PROVIDED ALL THREE 
SAMPLES (I.E. FAECES, BLOOD, BREATH), WHEREAS SOME OTHERS ONLY PROVIDED ONE (MEANING 
EITHER ONLY BREATH, OR FAECES, OR BLOOD) OR TWO SAMPLES (MEANING EITHER BLOOD AND 
FAECES, OR FAECES AND BREATH, OR BREATH AND BLOOD).

Sensitivity Specificity
Mid-level fusion 67% (10/15) 91% (10/11)

High-level fusion 27% (4/15) 100% (11/11)

Proximities stacking fusion 93% (14/15) 100% (11/11)

Microbiome 95% (19/20) 94% (15/16)

Blood 21% (3/14) 93% (13/14)

Blood headspace 35% (6/17) 47% (8/17)

Exhaled breath 85% (17/20) 50% (8/16)

6
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FIGURE 5: SCORE PLOT OF THE TRAINING (I.E. 
104) AND VALIDATION (I.E. 26) SAMPLES OF THE 
RF MODEL IN THE MID-LEVEL FUSION CASE. 
THE BLUE DOTS REPRESENT THE REMISSION 
TRAINING SAMPLES, WHEREAS THE BLACK 
DOTS REPRESENT THE REMISSION VALIDATION 
SAMPLES. THE RED CROSSES REPRESENT THE 
ACTIVE TRAINING SAMPLES, WHILE THE GREENS 
CROSSES REPRESENT THE ACTIVE VALIDATION 
SAMPLES.
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FIGURE 8: SCORE PLOT OF THE TRAINING (I.E. 
104) AND VALIDATION (I.E. 26) SAMPLES OF 
THE RF MODEL IN THE PROXIMITIES STACKING 
FUSION CASE. THE BLUE DOTS REPRESENT 
THE REMISSION TRAINING SAMPLES, WHEREAS 
THE BLACK DOTS REPRESENT THE REMISSION 
VALIDATION SAMPLES. THE RED CROSSES 
REPRESENT THE ACTIVE TRAINING SAMPLES, 
WHILE THE GREENS CROSSES REPRESENT THE 
ACTIVE VALIDATION SAMPLES. 
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FIGURE 9: BAR PLOT DEPICTING THE IMPORTANCE OF THE TWO MOST IMPORTANT VARIABLES PER 
PLATFORM (IN TOTAL, THERE WERE 107 FUSED VARIABLES). THE VARIABLES 17 AND 58 COME FROM 
THE MICROBIOME, THE VARIABLES 59 AND 72 COME FROM BLOOD, THE VARIABLES 80 AND 89 FROM 
BLOOD HEADSPACE, AND THE VARIABLES 93 AND 94 COME FROM EXHALED BREATH. THE VARIABLE 
INDICES COME FROM THE RF MODEL, AND THEY REPRESENT THE POSITION OF EACH VARIABLE IN 
THE DATASET. THE DIFFERENT COLOURS ARE USED FOR ILLUSTRATIVE PURPOSES ONLY.
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The results of the pseudo-sample principle applied in the proximities stacking case are 
shown in Figure 7 and Figure 8. In particular, Figure 7 shows the importance of the two most 
important variables per platform: the first two variables (i.e., variables number 17 and 58 
out of all the 107 that were fused) come from the microbiome, the next two variables (i.e., 
variables number 59 and 72) come from blood, the following two (i.e., 80 and 89) variables 
come from blood headspace, and the last two (i.e., 93 and 94) variables come from exhaled 
breath. It should be mentioned here that the variable numbers represent the position of 
each variable in the original variable concatenated dataset, and that the importance of 
each variable was found via the pseudo-samples projected onto the PCoA space, and it 
is calculated by using the maximum absolute value of the loadings of the original variables 
trajectories. Figure 8 represents the trajectory plot of two selected variables (i.e. those 
with the highest importance) per data platform. The variables are colour-coded with the 
same colours in both figures to provide better illustrative comparisons. More specifically, 
Figure 8 shows the relation between the top two variables per platform and their relative 
amount change in the active and remission groups. One can see that the relative amounts 
of variables 59 and 72 exhibit downregulation in the remission group in comparison to the 
active group. The other way around holds for the other six variables (i.e., 17, 58, 80, 89, 
93, and 94) coming from the microbiome, blood headspace, and exhaled breath. These 
particular variables are present in very low relative abundance amounts in active cases of 
the disease, but when these cases become remission, these variables show their highest 
relative abundance amount.
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FIGURE 10: TRAJECTORY PLOT OF THE TWO MOST IMPORTANT VARIABLES PER PLATFORM. MORE 
SPECIFICALLY, VARIABLES 17 AND 58 COME FROM MICROBIOME AND IN ACTIVE GROUPS, THEY ARE 
PRESENT IN VERY LOW RELATIVE ABUNDANCES, WHILE IN REMISSION CASES, THEY SHOW THEIR 
HIGHEST RELATIVE ABUNDANCES. VARIABLES 80 AND 89 COME FROM BLOOD HEADSPACE, AND 
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THEY SHOW THE SAME TREND AS THE ONES COMING FROM MICROBIOME. THE SAME HOLDS FOR 
VARIABLES 93 AND 94 THAT COME FROM EXHALED BREATH, WHEREAS VARIABLES 59 AND 72 THAT 
COME FROM BLOOD, THEY ARE PRESENT IN VERY LOW RELATIVE CONCENTRATIONS IN REMISSION 
GROUPS; WHEN THESE GROUPS BECOME ACTIVE, THESE VARIABLES SHOW THEIR HIGHEST RELATIVE 
ABUNDANCES. THE DIFFERENT COLOURS ARE USED FOR ILLUSTRATIVE PURPOSES ONLY.

Discussion
The current study investigated the potential of fusing RF proximities of various 
datasets (i.e. proximities stacking) to ultimately increase the prediction accuracy of 
disease activity in CD cases, and compared its performance against traditional ways 
of data fusion in terms of sensitivity and specificity of an external test set. Proximities 
stacking demonstrated an excellent classification of the independent internal test 
samples (Figure 6), whereas mid-level fusion (Figure 5) gave a fair classification 
accuracy of the independent internal test samples. Proximities stacking significantly 
outperformed all individual platform results as well except for the microbiome case, 
which performed equally well (Table 1 and supplementary materials). Concurrently, 
this study also applied the pseudo-sample principle that helped discover and examine 
possible biomarker behaviour in CD patients in the proximities stacking fusion case 
(Figure 7 and Figure 8).

Data fusion has proved to be a valuable asset not only in computer science domains 
but also in life science fields (e.g. metabolomics) too [1-10] as a result of the vast 
amount of data that are generated nowadays. High-level fusion is rightfully considered 
as, perhaps, the most potent traditional way of data fusion when it comes to high 
prediction accuracy due to the way it is defined: many models are combined to get the 
final predictions instead of one model. The various model outcomes can be combined 
by using either class labels (i.e. majority voting [36]) or adjusted probabilities. The 
substantial advantage of choosing adjusted probabilities over majority voting is that 
one can find how sure the individual models are about their decisions on the samples 
of interest. Another advantage of high-level fusion is that if a new dataset for the 
problem in hand becomes available, it can be used to improve the versatility of the 
decision process too. The major disadvantage, however, of high-level fusion is that 
it does not give any information about variables/compounds that are important in 
classifying/predicting samples since it only works with outcomes and not variables. 
However, in the present study, the high-level fusion results (via the Bayes’ theorem) 
did not demonstrate the best performance with a sensitivity and specificity of 27% 
and 100%, respectively, which may be due to the limited number of platforms and 
therefore models that were combined to get the fused outcome. Mid-level fusion 
can, possibly, increase prediction accuracy when compared to individual platform 
predictions, as well as it gives the ability to biomarker discovery since it works with 
either variables or features. In life science fields, and the metabolomic world more 
specifically, an at least fair prediction accuracy along with biomarker identification are 
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sought; this is why mid-level fusion has become the most broadly implemented fusion 
approach. Here, the mid-level fusion results (Figure 5) were inferior to the proximities 
stacking results (Figure 6), and superior to both the high-level fusion and the individual 
platform results (Figures S1-S4) except for the microbiome case, achieving a 
sensitivity and specificity of 67% and 91%, respectively. Further variable importance 
in the mid-level fusion results (e.g. compound behaviour in the CD samples) was 
not conducted. Low-level fusion is the least applied approach in the metabolomic 
world, and as it was mentioned in the 2.3 section already, the degrees of freedom 
of the data play a crucial role in this. In low-level fusion approach, the error degrees 
of freedom is negative since the number of variables is almost always a lot bigger 
than the number of samples; leading to challenges in proper model optimization and 
development. Metabolomic data are high-dimensionality data on their own (i.e. the 
number of variables far exceeds the number of samples); therefore, fusing already 
high-dimensionality data creates matrices of hundreds or thousands of variables 
which are challenging to be dealt with. This is why low-level fusion was not applied 
in the present study. Furthermore, all individual platform results (Figures S1-S4) were 
inferior to the proximities stacking fusion results (Figure 6), except for the microbiome 
case and superior to the high-level fusion results. The sensitivities and specificities 
of the individual platforms are summarised in Table 1—the microbiome was the only 
platform that outperformed the mid-level fusion results.

The fusion of RF/URF proximities by using a weighted sum (i.e. proximities stacking) 
has not been performed before to the best of the authors’ knowledge, and the current 
study results showed that they could be successfully implemented in complex biological 
samples, such as CD cases. In particular, proximities stacking demonstrated excellent 
performance in classifying the external CD cases (Figure 6). The optimal set of weights 
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4=0.3872], which shows the contribution 
of every platform in the final model. On the one hand, the microbiome contributed 
the most, and then breath and blood followed. On the other hand, blood headspace 
contribution was the least. The low contribution of blood headspace contradicts the 
general belief that the more data, the merrier the result, and as it has been stated already 
in the introduction, considerations have to be taken before any data fusion analysis is 
conducted. For example, if the aim of a study is to explore the biology of a system, 
then the more data gathered would be beneficial; however, if the aim is biomarker 
discovery, the more data gathered is not always beneficial. The contribution of each 
platform provided by the set of weights 
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 was to be expected given the individual 
platform performances. The pseudo-sample principle results illustrated the importance 
of the original variables in classifying the CD cases (Figure 7), as well as the original 
variable behaviour in the samples for two selected variables per platform (Figure 8). 
Figure 7 supports the optimal set of weights  
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 since one can see in the figure that 
the most high-importance variables are the microbiome variables. In Figure 8, one can 
see that the blood selected variables are present in very low relative abundances in 
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the remission cases of CD, and they reach their highest relative abundances in the 
active CD cases—the other way around holds for the microbiome, blood, and exhaled 
breath selected variables. Most importantly, Figure 8 helps demonstrate changes 
that occur in the variable relative abundances. For example, the breath variables (i.e. 
variable numbers 93 and 94) exhibit an instant increase in their relative abundance when 
going from active to remission. The same holds for the blood headspace variables (i.e. 
variable numbers 80 and 89) as well; however, the blood headspace variables exhibit 
a slower pace increase right before they reach their highest relative abundances. This 
similar behaviour amongst the blood headspace and exhaled breath variables indicates 
a connection of these four compounds coming from different sources, and therefore, it 
can also help dive deeper into the CD pathophysiology.

URF/RF proximities, in terms of fusion, would be of added value in the field of 
metabolomics and data science, in general. This is because the URF/RF proximities 
stacking, combined with the pseudo-sample principle approach, has several 
strengths to show over the other traditional ways of fusion. First of all, it proved 
that it significantly outperforms the other traditional fusion ways in terms of sample 
classification, and when compared against the mid-level fusion, it also solves the 
variable scaling problem since proximities make use of samples rather than variables 
[5]. Moreover, when compared against the high-level fusion, it solves the variable 
examination problem that occurs since high-level only uses model outcomes rather 
than variables [5]. Most importantly, URF/RF proximities stacking, via the weighted 
sum, also demonstrates the contribution of every platform in the final model, 
something that no other traditional fusion approach does. The proximities stacking 
approach also permits the fusion of any type of data (i.e. continuous or discrete), 
which has proved to be an issue when different data sources are used for a question 
in hand. It should also be noted here that the URF/RF proximities stacking approach 
illustrates an essential advantage over the approach reported by Smolinska et al. 
[1] as well. Smolinska et al. [1] fused kernels instead of proximities. Their approach 
was successfully applied in metabolomics data, however, finding the optimal kernel 
for the analysis in hand might be a challenging task to conduct because it requires 
variable scaling beforehand, and a rather extensive optimisation process. In a fused 
kernel approach, the user has to select and optimize the type of the kernel and the 
corresponding parameters, such as the polynomial order if the kernel used is the 
polynomial or the distribution width if the kernel used is the radial basis function. 
Finally, it has to be mentioned that in the proximities stacking approach, the final 
fused matrix (i.e. all the individual proximities combined via the weighted sum) can 
be used for visualisation purposes of the data as well by directly applying PCA, for 
instance. In the present study, this fused matrix was used for classification purposes 
of the independent internal test set samples instead (Figure 6). Linear supervised 
approaches such as partial-least-squares (PLS) [35] analysis may also be used for 
either classification or visualisation purposes.
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The present study validated its results by using an independent internal test set, thus 
strengthening its validity even more; nonetheless, the present study also demonstrates 
some limitations that have to be addressed. The current study did not perform the low-
level fusion. Although, it is considered highly unlikely that low-level fusion would have 
been of any added value to the study since the dimensionally of the data was high, 
and low-level fusion cannot cope with high dimensionality data. One can also argue 
that the present analysis lacks variable/compound identification since the pseudo-
sample principle permits for compound identification. This was not performed due to 
the nature of the paper, which is to present the proximities stacking approach rather 
than identify biomarkers for the disease activity. Lastly, the authors acknowledge the 
fact that the study results might be seen as accidental since the proposed fusion 
approach was applied only on one disease data; to prove that the presented approach 
works on other datasets as well, a simulation analysis was also performed, and it can 
be found in the supplementary materials. Briefly, four data platforms consisting of 250 
samples and 50 variables each were generated. Proximities stacking achieved the 
best classification results, and the contribution of each simulated platform provided 
by the set of weights 
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 was to be expected given the individual simulated platform 
performances. Nevertheless, the proposed fusion approach should be tried on other 
real data fusion occasions as well to further confirm its strength over the currently 
available fusion ways.

Conclusion
In conclusion, URF/RF proximities stacking fusion coupled with the pseudo-sample 
principle approach proved to outperform the traditional ways of fusion significantly, 
overcame essential drawbacks of the current fusion methods, and helped examine 
variable behaviour and relations; therefore, establishing itself as a new, powerful 
data fusion tool that can be implemented in any scientific domain. Data fusion keeps 
gaining a lot of attention in various scientific fields since combining different types 
of data can yield higher model performance. However, this is not always the case, 
and considerations have to be taken into account before any analysis is conducted 
based on the type of study and the ultimate analysis aim. For example, the data have 
to be complementary for data fusion to work successfully, and as the present study 
demonstrates, the more data used or fused does not necessarily mean the merrier 
the result. The traditional ways of fusion (i.e., low-level, mid-level, and high-level) 
have been successfully implemented [1-10] so far, but as complexity and amount of 
data increase along with the complexity of the question in hand, more advanced and 
sophisticated fusion ways are needed.
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Supplementary materials

TABLE S1: ALL DIFFERENT SETS OF WEIGHTS USED IN THE PROXIMITIES STACKING FUSION ATTEMPT 
[MICROBIOME BLOOD BLOOD-HEADSPACE BREATH]. THE OPTIMAL SET OF WEIGHTS FOUND THROUGH 
THE 100-CROSS-VALIDATION PROCESS IS HIGHLIGHTED.

[1,0000 0,0000 0,0000 
0,0000]

[0,0000 1,0000 0,0000 
0,0000]

[0,0000 0,0000 1,0000 
0,0000]

[0,0000 0,0000 0,0000 
1,0000]

[0,5000 0,4000 0,300 
0,7071]

[0,4000 0,5000 0,7071 
0,3000]

[0,3000 0,7071 0,5000 
0,4000]

[0,7071 0,3000 0,4000 
0,5000]

[0,7681 0,1000 0,4000 
0,4899]

[0,1000 0,7681 0,4899 
0,4000]

[0,4000 0,4899 0,7681 
0,1000]

[0,4899 0,4000 0,1000 
0,7681]

[0,3872 0,0100 0,2000 
0,9000]

[0,0100 0,3872 0,9000 
0,2000]

[0,2000 0,9000 0,3872 
0,0100]

[0,9000 0,2000 0,0100 
0,3872]

[0,4000 0,7000 0,0100 
0,5916]

[0,7000 0,4000 0,5916 
0,0100]

[0,0100 0,5916 0,4000 
0,7000]

[0,5916 0,0100 0,7000 
0,4000]

[0,5000 0,5000 0,5000 
0,5000]

[0,5000 0,5000 0,5000 
0,5000]

[0,5000 0,5000 0,5000 
0,5000]

[0,5000 0,5000 0,5000 
0,5000]

[0,6000 0,1000 0,7000 
0,3742]

[0,1000 0,6000 0,3742 
0,7000]

[0,7000 0,3742 0,6000 
0,1000]

[0,3742 0,7000 0,1000 
0,6000]

[0,8000 0,0500 0,5000 
0,3279]

[0,0500 0,8000 0,3279 
0,5000]

[0,5000 0,3279 0,8000 
0,0500]

[0,3279 0,5000 0,0500 
0,8000]

[0,2000 0,9000 0,3000 
0,2449]

[0,9000 0,2000 0,2449 
0,3000]

[0,3000 0,2449 0,2000 
0,9000]

[0,2449 0,3000 0,9000 
0,2000]

[0,2400 0,8900 0,3877 
0,0000]

[0,8900 0,2400 0,0000 
0,3877]

[0,3877 0,0000 0,2400 
0,8900]

[0,0000 0,3877 0,8900 
0,2400]
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FIGURE S1: SCORE PLOT OF THE TRAINING 
(I.E. 104) AND VALIDATION (I.E. 26) SAMPLES 
OF THE RF MODEL IN THE MICROBIOME CASE. 
THE BLUE DOTS REPRESENT THE REMISSION 
TRAINING SAMPLES, WHEREAS THE BLACK 
DOTS REPRESENT THE REMISSION VALIDATION 
SAMPLES. THE RED CROSSES REPRESENT THE 
ACTIVE TRAINING SAMPLES, WHILE THE GREENS 
CROSSES REPRESENT THE ACTIVE VALIDATION 
SAMPLES.
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FIGURE S2: SCORE PLOT OF THE TRAINING (I.E. 
104) AND VALIDATION (I.E. 26) SAMPLES OF THE 
RF MODEL IN THE BLOOD CASE. THE BLUE DOTS 
REPRESENT THE REMISSION TRAINING SAMPLES, 
WHEREAS THE BLACK DOTS REPRESENT THE 
REMISSION VALIDATION SAMPLES. THE RED 
CROSSES REPRESENT THE ACTIVE TRAINING 
SAMPLES, WHILE THE GREENS CROSSES 
REPRESENT THE ACTIVE VALIDATION SAMPLES.
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FIGURE S3: SCORE PLOT OF THE TRAINING (I.E. 
104) AND VALIDATION (I.E. 26) SAMPLES OF THE 
RF MODEL IN THE BLOOD HEADSPACE CASE. 
THE BLUE DOTS REPRESENT THE REMISSION 
TRAINING SAMPLES, WHEREAS THE BLACK 
DOTS REPRESENT THE REMISSION VALIDATION 
SAMPLES. THE RED CROSSES REPRESENT THE 
ACTIVE TRAINING SAMPLES, WHILE THE GREENS 
CROSSES REPRESENT THE ACTIVE VALIDATION 
SAMPLES.

-2 -1 0 1

PCo1 24%

-1

-0.5

0

0.5

1

P
C

o2
 1

3%

training remission

training active

validation remission

validation active

FIGURE S4: SCORE PLOT OF THE TRAINING (I.E. 
104) AND VALIDATION (I.E. 26) SAMPLES OF THE 
RF MODEL IN THE EXHALED BREATH CASE. 
THE BLUE DOTS REPRESENT THE REMISSION 
TRAINING SAMPLES, WHEREAS THE BLACK 
DOTS REPRESENT THE REMISSION VALIDATION 
SAMPLES. THE RED CROSSES REPRESENT THE 
ACTIVE TRAINING SAMPLES, WHILE THE GREENS 
CROSSES REPRESENT THE ACTIVE VALIDATION 
SAMPLES.
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Simulated data
1. Generation, visualization, and optimization of the simulated data
Four data platforms were generated for the simulation analysis; each platform 
consisted of 250 samples (i.e. 125 samples per class) and 50 variables, and it was 
generated as follows. Initially, scores data were generated from normally distributed 
data, given centroid coordinates and specified dispersion (i.e. sigma) values for each 
class. Then, loadings data were generated from a given range (i.e. [-0.5 0.5] for the 
first data platform, [-0.2 0.2] for the second data platform, [-0.1 0.1] for the third data 
platform, and [-0.05 0.05] for the forth data platform), which were then multiplied with 
the scores data to generate the data platform. Random homoscedastic noise per 
data platform was also introduced by multiplying each data platform with a random 
number and then adding this “new” platform to the original one to get the final data 
platform to be used for the simulation analysis. Finally, five original variables were 
added at each data platform, which were randomly selected from the four real data 
platform (i.e. microbiome, breath, blood, blood headspace). Figure S5 A-D illustrates 
the score plots obtained for all the platforms from principal component analysis (PCA).
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Each platform was split into training and validation samples (i.e. 200 samples, of which 
100 were class one and the other 100 were class two), and independent internal test set 
samples (i.e. 50 samples, of which 26 were class one and the remaining 24 were class 
two). The division between the training and validation, and the independent internal 
test set samples was achieved by employing the Duplex algorithm. The random forest 
(RF) model parameters (RF proximities were used in the simulation analysis) and the 
number of variables kept per platform were optimised as described in section 2.4.1. 
The statistical methodology applied to the simulated data was exactly the same as 
the one used for the real world data (sections 2.4.2 and 2.4.3).

2. Results
The optimal number of variables per platform to be used for both individual and fused 
matrices predictions were 24 for simulated platform one, eight for simulated platform 
two, 15 for simulated platform three, and nine for simulated platform four. In all four 
cases, the threshold was set to 50%. Table S2 summarises the classification results 
of all the RF models built.

TABLE S2: SENSITIVITIES AND SPECIFICITIES OF ALL THE FUSION AND ALL THE INDIVIDUAL PLATFORM 
CASES FOR THE INDEPENDENT INTERNAL TEST SET. THE NUMBERS IN THE PARENTHESES SHOW THE 
ACTUAL NUMBER OF THE CORRECTLY CLASSIFIED SAMPLES.

Sensitivity Specificity
Simulated platform 1 79% (19/24) 80% (21/26)

Simulated platform 2 70% (17/24) 65% (17/26)

Simulated platform 3 67% (14/24) 58% (15/26)

Simulated platform 4 54% (13/24) 50% (13/26)

Mid-level fusion 83% (20/24) 80% (21/26)

High-level fusion 75% (18/24) 85% (22/26)

Proximities stacking fusion 88% (21/24) 85% (22/26)

Figure S6 illustrates the score plots of the training (i.e. 200) and validation (i.e. 50) 
samples of the RF models in the individual as well as the fused cases. As it can be 
seen from both Table S2 and Figure S6, individual platforms performed poorly except 
for platform 1 that demonstrated a good classification accuracy, whereas all three 
fusion cases performed well. In particular, the proximities stacking fusion approach 
performed the best with a sensitivity and specificity of 88% and 85%, respectively. 
Mid-level fusion performed slightly worse with a sensitivity and specificity of 83% 
and 80%, respectively, and then, high-level fusion followed with a sensitivity and 
specificity of 75% and 85%, respectively.
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FIGURE S6: A) SCORE PLOT OF THE TRAINING (I.E. 200) AND VALIDATION (I.E. 50) SAMPLES OF THE SIMULATED 
DATASET 1 RF MODEL; B) SCORE PLOT OF THE TRAINING (I.E. 200) AND VALIDATION (I.E. 50) SAMPLES OF 
THE SIMULATED DATASET 2 RF MODEL; C) SCORE PLOT OF THE TRAINING (I.E. 200) AND VALIDATION (I.E. 
50) SAMPLES OF THE SIMULATED DATASET 3 RF MODEL; D) SCORE PLOT OF THE TRAINING (I.E. 200) AND 
VALIDATION (I.E. 50) SAMPLES OF THE SIMULATED DATASET 4 RF MODEL; E) SCORE PLOT OF THE TRAINING 
(I.E. 200) AND VALIDATION (I.E. 50) SAMPLES OF THE MID-LEVEL FUSION CASE RF MODEL; AND F) SCORE 
PLOT OF THE TRAINING (I.E. 200) AND VALIDATION (I.E. 50) SAMPLES OF THE PROXIMITIES STACKING FUSION 
CASE RF MODEL. THE BLUE DOTS REPRESENT THE CLASS 1 TRAINING SAMPLES, WHEREAS THE BLACK 
DOTS REPRESENT THE CLASS 1 VALIDATION SAMPLES. THE RED CROSSES REPRESENT THE CLASS 2 
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Abstract
Introduction: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver 
disease with multiple stenosis and segmental dilatations of the bile ducts. PSC is 
a complex phenotype disease with a largely unknown aetiology. It is also an orphan 
disease, and the only available treatment is liver transplantation. Furthermore, a 
strong association among PSC and inflammatory bowel disease (IBD) patients has 
been established. Exhaled breath analysis has gained a lot of attention the last couple 
of decades, and volatile organic compounds (VOCs) have been identified in exhaled 
breath as biomarkers for a variety of diseases. Since early detection of PSC is critical 
to the patient’s clinical prospect, non-invasive diagnostic tools are urgently needed. 
As a first step for such a diagnostic tool, the present study aims to discover VOC 
biomarkers in exhaled breath that can help distinguish PSC cases from IBD cases.

Methods: In total, 16 PSC, 47 PSC with IBD, and 53 IBD patients were included in 
the study, and breath and blood samples were acquired at every outpatient clinic 
visit. The breath samples were analysed for VOCs by using thermal desorption gas 
chromatography-time of flight-mass spectrometry, whereas the blood samples 
were used to measure blood parameters (i.e. alkaline phosphatase, aspartate 
aminotransferase, and alanine aminotransferase) that are clinically monitored in PSC 
patients as liver function indicators. Multivariate statistics were used to conduct the 
analyses, and model performance was assessed by calculating the sensitivity and 
specificity for a test set.

Results: Twenty VOCs were used to build a predictive model, which demonstrated a 
good classification performance by achieving a sensitivity of 77%, and a specificity of 
83% for the test set. Combing the 20 VOCs and the three serum parameters yielded 
a sensitivity of 77% and a specificity of 86%. The 20 VOCs were categorised into four 
main categories: alkanes, alkenes, ketones, and aldehydes.

Conclusion: The present study demonstrates that exhaled breath can distinguish 
PSC cases from IBD cases, with a reasonable accuracy and has potential as a 
non-invasive diagnostic approach. The needs for new advances in the field of PSC 
alongside the present study results and the latest developments in the field of exhaled 
breath analysis could stimulate further analyses in the research field of PSC that could 
potentially lead to a clinical breath test for PSC.
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Introduction
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease with multiple 
stenosis and segmental dilatations of the bile ducts. It is characterized by inflammation 
and fibrosis of both the intrahepatic and extrahepatic bile ducts that lead to formation 
of multifocal bile duct strictures. Ultimately, PSC can lead to cirrhosis, liver failure, 
malignancy, and death [1]. Moreover, PSC is a complex phenotype disease caused by 
an interplay between genetics and the environment, and its aetiology remains largely 
unknown. It is also an orphan disease affecting roughly 60.000 individuals in the 
western world, and it is rather underdiagnosed. Currently, the only available treatment 
is liver transplantation; oftentimes, side effects occur and a second liver transplantation 
maybe needed. Furthermore, a strong association among PSC and inflammatory 
bowel disease (IBD) patients has been established—particularly ulcerative colitis (UC) 
patients that demonstrate a clinically distinct phenotype [2]. Approximately 80% of 
PSC patients suffer from IBD as well; however, the opposite does not necessarily hold 
true since only 5% of IBD patients can develop PSC. On the one hand, this makes 
the IBD diagnosis easier since the IBD occurrence, most of the times, proceeds the 
PSC occurrence. On the other hand, this does not help with the PSC diagnosis, 
also because PSC with IBD cases, typically, show mild to no IBD symptoms, thus 
leading to PSC under-diagnosis [3,4]. The high prevalence of IBD in PSC patients 
calls for speculation that IBD present in PSC patients might be a different disease 
than UC and/or Crohn’s disease (CD) that together, they constitute IBD [2]. Loftus et 
al. [5] suggested that PSC-IBD maybe a distinct IBD phenotype. More specifically, 
they reported that PSC-IBD is characterised by a high prevalence of pancolitis with 
rectal sparing and backwash ileitis, and that PSC-IBD patients are at higher risk for 
colorectal neoplasia. In their analysis, where they adjusted for age, calendar year, and 
duration of IBD, they found that the presence of PSC was a significant independent 
risk factor for the development of cancer alone, and that it was also suggestive for 
the development of colorectal neoplasia. Furthermore, in the same analysis, Loftus 
et al. also reported that PSC-IBD patients showed a reduced survival rate compared 
to IBD patients since the presence of PSC was found as a significant independent 
risk factor for death after adjusting for several potential confounders. Additionally, 
it is known that gut microorganisms can positively reflect on the development of 
UC or CD; although it cannot be excluded the fact that these bacterial products or 
gut-derived bacteria in general, play a direct role in the aetiology of PSC. The high 
prevalence of IBD in confirmed PSC cases makes it easier to detect IBD, but the 
very limited prevalence of PSC in confirmed IBD cases makes it more difficult to 
detect PSC. This results in late treatment for the PSC patients; late diagnosis and start 
of medication treatment can result in the need for liver transplantation, or eventual 
death. PSC diagnosis is achieved via a showing of elevated serum parameters 
(especially alkaline phosphatase) in combination with imaging findings (magnetic 
resonance cholangiography (MRCP)), where characteristic strictures and/or beading 
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of either intra- and/or extrahepatic bile ducts are illustrated [3, 6]. The disadvantage 
of using MRCP is that the bile duct lesions must have progressed to macroscopic 
morphological abnormalities to become detectable via MRCP, and as a result, MRCP 
cannot be used to detect early stage of PSC. This makes apparent the need for new, 
ideally non-invasive and cost-effective, diagnostic tools, where early PSC can be 
detected and the role of the microbiome present in the GI track can be examined.

Exhaled breath analysis has gained a lot of attention the last couple of decades in 
various fields of research, and especially, in the research field of medicine, due to its 
highly promising use as a non-invasive, cost-effective, and easy-to-use diagnostic 
and monitoring tool [7-10]. More specifically, volatile organic compounds (VOCs) have 
been identified in exhaled breath as biomarkers for a variety of diseases [10, 11]. It is 
believed that disease-affected organs (e.g. via inflammation) produce VOCs, which 
then, due to their volatility, are released into the bloodstream, thus leading to their 
excretion through the air pathways in breath. The release of these VOCs in other 
bodily excretions such as urine, blood, or faeces is also possible [11]. These VOCs are 
called endogenous since they originate from inside the body. Exogenous VOCs, they 
originate from outside the body, can also be detected. A known example is limonene, 
which originates from foods, and it has been frequently reported in the literature as a 
found VOC in breath [12]. Exhaled breath VOC analysis is still in its infancy since no 
actual VOC breath tests have been implemented in the clinics yet; only the so-called 
C13 breath tests have been implemented, where C13 isotopes are administered to 
patients, and then, their breath is captured to measure the emission of the isotope-
labelled carbon dioxide [10]. The lack of clinical implementation is, among others, 
because of standardisation issues that arise when it comes to sampling and analysing 
breath that can cause batch effects in the data [7] or due to the fact that almost all 
breath VOC analyses that have been conducted were of small sample size or proof 
of concept studies. Moreover, an exhaled breath profile can be influenced by many 
cofounding factors such as smoking, diet or the environment, thus making it even 
more challenging to generate reproducible and trustworthy results. Technological 
developments, however, have fuelled the hype for further research in the exhaled 
breath field since they have allowed for a better sampling (e.g. ReCIVA [13]), storing 
(e.g. Tenax tubes [13]), and analysing (e.g. gas chromatography-mass spectrometry) 
of breath samples [11].

Liver diseases have been investigated by means of breath VOC analysis, and 
various biomarkers have been reported [10]. PSC, however, has not been one of the 
investigated diseases; it has only been examined by means of VOC analysis in the 
bile [14] and urine [15], where it showed promising results. Therefore, exhaled breath 
might be a possibility when it comes to diagnosing early stages of PSC cases and 
differentiating them from IBD cases. It is hypothesized that on-going inflammation, 
probably originating in the colon (i.e. the “leaky-gut” theory [16]), supports bile duct 
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inflammation in every PSC case (e.g. from no or minor symptoms to severe cholestasis 
and/or portal hypertension). Consequently, particular molecules may appear in breath 
samples, faeces samples, as well as blood samples. In parallel, gut microbiome 
changes may occur too and thus, system approaches implemented on these 
samples might prove themselves useful in obtaining scientific insight of the disease 
at first, and developing screening tools for early detection of the disease at second. 
Such detectable compounds may be either sulphur-based compounds in breath 
and faeces or metabolites in faecal microbiome and blood. Possible identification 
of these compounds may lead to the development of such a tool for PSC disease. 
Consequently, the present study aims to identify VOC biomarkers in exhaled breath 
that can help distinguish PSC cases (i.e. either PSC or PSC with IBD cases) from IBD 
cases, and to compare these VOCs performance to blood parameters that are also 
currently used in the diagnosis of PSC, such as alkaline phosphatase. Confounding 
factors that can influence the breath profile of the subjects such as age, smoking, diet, 
supplements, medication, and gender are also examined.

Materials and methods
Patient inclusion
The present study recruited individuals that suffer from PSC, PSC and IBD, and IBD 
during a one-year period at the Amsterdam Medical Centre (AMC) in Amsterdam, the 
Netherlands. The PSC and PSC with IBD groups were recruited at the PSC expertise 
centrum at the AMC, whereas the IBD group was recruited at the outpatient clinic 
at the AMC. The IBD group was consisted of both UC and CD cases, and it was 
used as the control group since the aim was to discriminate any PSC case from 
IBD cases. In total, 16 PSC, 47 PSC with IBD, and 53 IBD patients were included 
in the study. Inclusion criteria for the PSC, PSC with IBD, and IBD patients were an 
established PSC diagnosis based on the EASL criteria [17] for the PSC and PSC with 
IBD groups, an established UC diagnosis based on ECCO [18] guidelines for the IBD 
group, an age range from 18 to 65 years old, and a BMI range from 19 to 30. Exclusion 
criteria for all three groups were: unable to provide informed consent, the presence 
of any disease that compromises the immune system such as HIV positive or organ 
transplantation, the presence of any other liver disease, the presence of active or 
untreated tuberculosis, the presence of ileo-anal pouch, and the use of chemotherapy 
agents. For the IBD group, an extra exclusion criterion was applied, which was 
abnormality in liver tests such as elevated alkaline phosphatase or transaminases. 
The study was approved by the Institutional Review Board (IRB) of the Amsterdam 
University Medical Centre (AUMC).
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Sampling and data acquisition
Breath and blood samples were acquired at every outpatient clinic visit. For the 
breath sampling, the ReCIVA (Owlstone Medical, Cambridge, UK) breath sampler 
connected to a CASPER air pump (Owlstone Medical, Cambridge, UK) was used [13]. 
Briefly, the CASPER pump takes ambient air and passes it through an air filter unit 
before supplying it via a plastic tube to the ReCIVA; the subject breathes in filtered 
air. That way the level of background VOCs from the surroundings that are present 
in the collected sample are significantly reduced. ReCIVA is able to sample breath 
fractions (e.g. alveolar air) based on the subject’s breathing profile. Each subject had 
to breathe for approximately five minutes in the device, and two samples per subject 
were collected into airtight-capped stainless steel carbon-filled sorption tubes Tenax/
Carbograph-5TD TD tubes (Markes International Ltd, Llantrisant, UK) [13]. Two hours 
before sampling, the subjects were overnight fasted. All patients were sampled in 
duplicates at the same location to prevent background bias, and all samples were 
stored at 5oC until the analysis took place. The breath samples were analysed in 
terms of VOCs, and the analysis was conducted by using thermal desorption gas 
chromatography-time of flight-mass spectrometry (TD-GC-tof-MS). In short, VOCs 
are separated via GC, and then, they are identified via tof-MS. The experimental 
settings of the GC-tof-MS are described elsewhere [19], and the VOC identification 
was achieved by using the NIST Mass Spectral Search Program v2.3. Moreover, it 
should be noted that an internal standard (i.e. Bromobenzene-D5) was injected in 
every sample before measuring and quality controls (SUPELCO Analytical; reference 
number 44589) were also run in between the breath samples throughout the GC-tof-
MS runs to ensure and monitor a good analysis quality [17].

Participants donated blood as part of their regular blood testing procedure. These 
blood samples were used to measure blood parameters such as alkaline phosphatase, 
aspartate aminotransferase, and alanine aminotransferase; these parameters 
are clinically monitored in PSC patients because they are used as liver function 
indicators. Bilirubin was also measured in the IBD group. Lastly, patients also filled 
in a questionnaire regarding BMI, smoking, diet, supplements, medication, disease 
activity for PSC (Amsterdam cholestatic complains score), UC (simple clinical colitis 
activity index), and CD (Harvey Bradshaw index). The demographic data were used 
to check their influence, if any, on the subjects’ breath composition and on the found 
VOCs—all patient characteristics are summarised in Table 1.
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TABLE 6: PATIENT CHARACTERISTICS INCLUDED IN THE PRESENT STUDY. THE PSC AND PSC/IBD PATIENT 
WERE CONSIDERED AS ONE CLASS AND THE IBD AS THE OTHER. FOR ALP, AST, AND ALT, THE MEDIAN 
VALUES ARE SHOWN. NO SIGNIFICANCE WAS FOUND REGARDING PATIENTS CHARACTERISTICS AND 
COHORTS.

PSC (N = 16) PSC/IBD (N = 47) IBD (N = 53)
Age (mean) 50 47 46.6

Gender 8/8 (F/M) 14/33 (F/M) 25/28 (F/M)

Smoking 10/0/6 (no/yes/quit  
< 2 years ago)

35/1/11 (no/yes/quit  
< 2 years ago)

44/4/5 (no/yes/quit  
< 2 years ago)

Diet 12/4 (no/yes) 42/5 (no/yes) 44/9 (no/yes)

Medication
Ursodiol
Corticosteroids
Thiopurines
Biologicals

2/14 (no/yes)
1/13/2 (no/yes/NA)
14/0/2 (no/yes/NA)
14/0/2 (no/yes/NA)
14/0/2 (no/yes/NA)

2/45 (no/yes)
12/32/3 (no/yes/NA)
40/3/4 (no/yes/NA)
40/3/4 (no/yes/NA)
37/6/4 (no/yes/NA)

5/48 (no/yes)
46/0/7 (no/yes/NA)
44/4/5 (no/yes/NA)
44/4/5 (no/yes/NA)

30/18/5 (no/yes/NA)

Supplements 9/7 (no/yes) 33/14 (no/yes) 32/21 (no/yes)

Alkane phosphatase (ALP) 128 (65 – 539) 151 (60 – 1104) 78 (32 – 109)

Aspartate aminotransferase (AST) 39 (17 – 91) 29 (18 – 266) 24 (16 – 72)

Alanine aminotransferase (ALT) 58 (12 – 141) 36 (16 – 455) 25 (11 – 75)

Data handling and statistical modelling
The present study followed a so-called semi-targeted approach rather than an 
untargeted, which is the approach of choice when it comes to VOC analysis. Untargeted 
approach means that one uses the whole chromatograph and blindly tries to find 
VOCs that might be of interest for the question at hand, whereas targeted means 
that one targets specific compounds in the chromatographs that are known already 
to be of interest. Semi-targeted is defined in the present study and considered the 
approach where one targets specific compounds that, based on a priori knowledge or 
hypothesis, might be of interest for the question at hand. The present study focused 
on the compounds that have been reported in the literature to be related to liver 
impairment—Table 2 shows all the VOCs that were selected for examination. Recently, 
Stavropoulos et al. [10] reviewed all the available literature on liver diseases examined 
by means of VOC analysis, and they reported all the compounds that have been found 
to be significantly related to liver impairment. More specifically, they published a table 
that reports all the VOCs that have been found in more than one studies (e.g. dimethyl-
sulphide); the present study based its compound selection on the Stavropoulos et al. 
results. Moreover, the present study examined some aldehydes (mentioned in Table 2)  
that were not reported by Stavropoulos et al. [10]. These aldehydes are products of 
lipid peroxidation due to reactive oxygen species production and inflammation, and 
they been previously related to liver impairment [10].
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The selected compound peaks were integrated through Xcalibur v2.2 SP1.48 once all 
the chromatographs were generated. An integration method was created by manually 
going through all the chromatograms and locating the peaks, and then, pinpointing 
where the compounds of interests were (i.e. within a thirty-second time range). Peak 
areas of each compound of interest was then obtained using characteristic mass 
fractions. The integration method was then used to preprocess the raw chromatographs 
and generate an Excel spreadsheet that contained the peak values of each VOC for 
every sample. Next, the data were normalised with the internal standard peak, and 
then, the internal standard peak was removed from the dataset and a logarithmic 
transformation of the data followed before the statistical modelling process begun. 
Logarithmic transformation accounts for data heteroscedasticity and skewness [20].

TABLE 7: COMPOUNDS SELECTED AS POSSIBLE TARGETS TO DISTINGUISH PSC AND PSC/IBD FROM 
IBD PATIENTS.

Acetaldehyde 2-Butanone 2-Nonene Undecane

Ethanol Hexane 2-Octanone Nonanal

Acetone Benzene Heptanal Dodecane

Pentane Pentanal Beta-pinene Decanal

Isoprene 2-Pentanone Alpha-pinene Tridecane

2-Propanol Hexanal Benzaldehyde Indole

Dimethyl-sulphide Octane Decane Undecanal

Carbon-disulphide Nonane Octanal

Butanal Styrene Limonene

The statistical modelling process included, first, data exploration via unsupervised 
random forest (URF) [21] to see whether any groups existed within the data, and 
second, sample classification via random forest (RF) [22] to find compounds enabling 
differentiating PSC cases from IBD cases. The data were split into training (i.e. 80% 
of the data) and test (i.e. the remaining 20% of the data) sets before any supervised 
analysis was conducted—the kenstone algorithm [23] was used to split the data since 
it selects objects to model sets such that they are uniformly scattered over the whole 
experimental space. The test set was only used in the end when the final RF model was 
built to validate it. The RF model parameters (i.e. number of trees, predictors, number 
of splits per tree and samples per tree terminal leaf per RF model), as well as to the 
number of variables/VOCs to be kept for the final classification model were optimized 
within a 1000-iteration loop. A detailed description of how this 1000-iteration loop is 
performed is described elsewhere [24]. In the present study, 1000 trees per model 
were used, the minimum number of samples per tree leaf for every tree in each model 
was set to six, and the maximum number of splits was set to five. The variables that 
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appeared as important in at least 10 from the 1000 iterations were kept for further 
analysis. The kept variables were also checked for possible significance between the 
two classes (i.e. PSC and PSC/IBD vs IBD) by using the Wilcoxon signed rank test; 
it tests the null hypothesis that data in the two populations are samples coming from 
continuous distributions with equal medians. Ultimately, the final and optimized RF 
model was built by using the training samples to predict the test set samples. Its 
performance was assessed by calculating the sensitivity and specificity for the test 
set; a receiver operating characteristic (ROC) curve was also plotted to calculate the 
area under the curve (AUC) and to visualise the model performance.

Additionally, for comparison purposes, a classification RF model was also built by 
using the three serum parameters (alkaline phosphatase, aspartate aminotransferase, 
and alanine aminotransferase) only, as well as a RF model that used both the serum 
parameters and the selected VOCs that were found as described above. No further 
optimisation was done for these two extra models; the settings used for these two 
models were the same as the ones found above, and their performance was assessed 
by calculating the sensitivity and specificity for the test set. It should be mentioned, 
however, that for some of the patients, the serum parameter values were missing. 
These missing values were dealt with by using surrogate splits, where the algorithm 
sends the sample to the left or right child node of the missing variable using the 
best surrogate predictor. Furthermore, regularised multivariate analysis of variance 
(rMANOVA) [236] was implemented to test for significance of confounding factors (i.e. 
smoking, diet, medication, age, supplements, and gender) considering the two classes 
(i.e. PSC and PSC/IBD vs. IBD). All data analyses were performed by using MatLab 
R2016b version—the Statistics and Machine Learning Toolbox. For the RF models, 
the TreeBagger function was used, whereas for the URF model and rMANOVA, the 
codes were found elsewhere [21, 25].

Results
VOC analysis
In total, 16 PSC, 47 PSC with IBD, and 53 IBD patients were sampled and included 
in the study analysis. The PSC and PSC/IBD patient samples were considered as 
one class and the IBD as the other. Each patient was sampled in duplicates, and 
therefore, the total number of measurements to be used in the analysis was 234—a 
couple of samples were accidently measured twice in the GC-tof-MS. From these 234 
measurements, 173 measurements (93 PSC and PSC/IBD and 80 IBD) were used as 
the training set, and the remaining 61 (35 PSC and PSC/IBD and 26 IBD) were used 
as the test set—measurements coming from the same patient were kept in either the 
training or the test set to avoid overestimation of the model. The number of variables/
VOCs in the dataset was 34 (Table 2). The optimal number of variables (see section 2.3)  
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to be used for building the final classification RF model was 20 (Table 3). These 20 
compounds were also checked for possible significance between the two classes by 
using the Wilcoxon signed rank test (Table 3); Bonferroni correction for multiple testing 
was also performed by dividing the given from the test p-values for each compound by 
the number of samples in the training set. Eight compounds were significantly different: 
acetone, hexanal, octane, 2-octanone, decane, undecane, dodecane, and decanal. 
The concentration of acetone and hexanal decreased in the IBD class, whereas the 
concentration of the other six compounds increased in the IBD class.

TABLE 8: OVERVIEW OF THE VOCS FOUND AS IMPORTANT IN THE 1000-ITERATION PROCEDURE TO BE 
USED FOR BUILDING THE FINAL RF CLASSIFICATION MODEL. THE ASTERISK NEXT TO A COMPOUND 
INDICATES WHETHER THE COMPOUND IS SIGNIFICANTLY DIFFERENT BETWEEN THE TWO CLASSES; 
BONFERRONI CORRECTION FOR MULTIPLE TESTING WAS PERFORMED. FOR THE SIGNIFICANT 
COMPOUNDS, IT IS ALSO INDICATED WHETHER THEIR RELATIVE ABUNDANCE INCREASED OR 
DECREASED WHEN COMPARED TO ITS PSC AND PSC/IBD GROUP ABUNDANCE.

Ethanol ↓ 2-Octanone*

↑ Acetone* Alpha-pinene

Pentane Benzaldehyde

Isoprene ↓ Decane*

Carbon-disulphide Limonene

Pentanal ↓ Undecane*

2-Pentanone ↓ Dodecane*

↑ Hexanal* ↓ Decanal*

↓ Octane* Tridecane

Nonane Undecanal

Exploratory analysis of the dataset via URF did not show any underlying groupings 
in the data (results not shown), whereas the final RF predictive model demonstrated 
a good classification performance by achieving a sensitivity of 77%, a specificity of 
83%, and an AUC of 0.8352 for the test set. Figure 1 shows the ROC curve of the 
model for the test set, and Figure 2 shows the score plot based on the proximities of 
the samples.
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VOC, serum, and cofounding factor analysis
Furthermore, an RF classification model using the three serum parameters (using the 
same training and test samples) yielded a sensitivity of 38% and a specificity of 63%, 
respectively for the test set samples. Finally, an RF model that used both the 20 
VOCs and the three serum parameters yielded a sensitivity of 77% and a specificity 
of 86%. Since the serum samples were not in duplicates, and therefore, the breath 
measurements had to be averaged out per patients to match the number of the serum 
samples before the data fusion. A further investigation on the PSC and PSC/IBD test 
set samples with respect to their alkaline phosphatase serum parameter value was 
also performed, and as it can be seen in Figure 3, the VOC profile correctly predicted 
samples that had alkaline phosphatase value either below or above 120 U/L.

Possible significance of the confounding factors that might have interfered with 
the study results was examined. No significant differences were found for any of 
the confounding factors with respect to the two classes except for the ursodiol 
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medication. However, this result was attributed to the classes (i.e. PSC and PSC/
IBD vs IBD)—to statistically confirm this, rMANOVA was run considering only the two 
classes, and then again, the result was significant.

Discussion
The present study investigated the potential clinical application of the exhaled breath 
in identifying PSC cases amongst IBD cases. A breath VOC profile was able to identify 
PSC cases amongst IBD cases; it also outperformed the predictive performance of 
three serum parameters that are currently used in the clinics to diagnose the presence 
of PSC. Possible statistical significance of confounding factors that may influence the 
breath VOC profile of the PSC cases was also checked.

A breath profile of 20 VOCs (Table 3) was able to identify PSC cases amongst IBD 
cases with a sensitivity of 77% and a specificity of 83% for an independent test set 
(Figure 1 and Figure 2). A predictive model that used only the three serum parameters 
achieved a sensitivity of 38% and a specificity of 63% for the same independent 
test set. At the same time, when both the VOCs and the serum parameters were 
combined/fused to build another predictive model, they yielded a sensitivity of 
77% and a specificity of 86% for the same independent test set. As it has been 
highlighted in the literature already, separating PSC cases from IBD cases is of crucial 
importance because, oftentimes, the PSC cases remain under-diagnosed [3, 4]. The 
high prevalence of IBD in confirmed PSC cases makes it easier to detect IBD, but 
the very limited prevalence of PSC in confirmed IBD cases makes it more difficult to 
detect PSC. This results in late treatment for the PSC patients; late diagnosis and start 
of medication treatment can result in the need for liver transplantation, or eventual 
death. The found breath VOC profile could be used in clinical settings to detect PSC 
when confirmed IBD cases come to the outpatient clinic as a first screening tool, 
and thus, leading to an earlier PSC detection. A further investigation on the PSC and 
PSC/IBD test set samples with respect to their alkaline phosphatase value was also 
performed since its value is clinically connected to the presence of PSC. A common 
practice in clinical settings [26] is the use of a threshold of 120 units per litre (U/L) 
to indicate PSC presence—below 120 U/L indicates no PSC presence (normal liver 
function), whereas above 120 U/L indicates PSC presence (abnormal liver function). 
However, oftentimes, the alkaline phosphatase is below 120 U/L even though the 
individual suffers from PSC [16]. Figure 3 shows that PSC and PSC/IBD samples 
with lower than 120 U/L alkaline phosphatase value were also correctly predicted by 
the VOC model, proving that the found breath VOC profile could potentially serve as 
a better screening tool than alkaline phosphatase. Additionally, sampling breath is 
more patient-friendly and non-invasive, whereas sampling blood might cause patient 
discomfort since it is invasive.



179

Exploring the potential of exhaled breath implementation as a means to diagnose primary 
sclerosing cholangitis

The 20 VOCs identified in the present study can be categorised into four main 
categories: alkanes, alkenes, ketones, and aldehydes. No striking findings were seen 
here since all the VOCs used in the present study are known to be connected to liver 
impairment [10]; however, the absence of dimethyl-sulphide can be characterised as 
a striking one since it has been repeatedly reported in VOC analyses that examined 
liver diseases as a result of incomplete metabolism of sulphur-containing amino acids 
in the transamination pathway. The presence of limonene can be characterised as 
something to be expected since it originates from foods and drinks. More specifically, 
limonene is metabolised by the P450 enzymes CYP2C9 and CYP2C19 into other 
compounds such as perillyl alcohol, trans-isoperitenol, and trans-carveol [10]; in liver 
impairment, these enzymes are reduced, leading to increased amounts of limonene in 
the body. Finally, another compound that deserves to be named separately is isoprene, 
and this is because literature is conflicted when it comes to the isoprene origin; it can 
either originate from impairment in the cholesterol biosynthesis pathway or it can be 
the result of disturbed colon flora or it can be the result of exercise [10]. The present 
study participants were deprived from exercising two hours before sampling; however, 
this does not necessarily exclude the fact that isoprene might have originated from 
exercising since it can still be stored in muscle compartments and get released later 
[27]. As far as the remaining of the VOCs identified here is concerned, it has generally 
been proposed that lipid peroxidation, a process triggered by increased inflammation 
in diseased liver, generates alkanes and long-chain aldehydes, and both groups can be 
converted into alcohols or ketones by CYPs or aldo-keto reductases, respectively [10]. 
Additionally, these 20 compounds were also tested for possible significant differences 
between the two classes in a univariate way by using the Wilcoxon signed rank test. It 
was found that acetone and hexanal had significantly increased abundance in the PSC 
class, whereas octane, 2-octanone, decane, undecane, dodecane, and decanal had 
significantly decreased abundance in the PSC class. Hexanal is considered a stable 
breakdown product of lipid peroxidation, which is formed because of oxygen free 
radical (OFR) activity. OFRs are considered responsible for liver damage, and hexanal 
has also been confirmed as cytotoxic to most cells [28]. Acetone is one that has been 
repeatedly reported in the literature. The increased acetone abundance found in the 
present study coincides with what has been reported in almost all cases where acetone 
was identified as related to liver impairment [10]; hepatic insulin resistance is believed 
to lead to increased triglycerides, free fatty acids, and ketones such as acetone. VOC 
by-products of lipid peroxidation such as alkanes and aldehydes have also been linked, 
in increased abundances, to IBD patient classification [8]. The fact that six VOCs were 
significantly increased in the IBD group could suggest that it is a VOC pattern or profile 
rather than a single VOC that could represent metabolic changes.

Exhaled breath profile can be influenced by a variety of factors, and therefore, these 
factors should be accounted or corrected for to ensure an unbiased VOC profile. Such 
confounding factors are age, gender, smoking, diet, medication, and supplements. 
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Additionally, environmental or instrumental artefacts can influence the breath profiles 
as well. The present study controlled as much as possible for environmental artefacts 
by sampling all the participants at the same location, using the same equipment, and 
by the same personnel. The instrumental artefacts were controlled by using the same 
equipment to measure the samples, the analyses were run by the same personnel, 
and by using quality controls in regular intervals throughout the measuring process of 
the samples in the GC-tof-MS runs. The use of quality controls shows whether there 
is non-biological variation introduced in the data due to temperature shift or column 
aging that may have caused peak shifting [7]. As far as age, gender, smoking, diet, 
medication, and supplements are concerned, rMANOVA was used to check whether 
there is a significant difference in the study population. No significant differences were 
found for any of the aforementioned possible confounding factors (Table S1) except 
for the ursodiol medication. This result was to be expected since the vast majority of 
the IBD patients do not take this medication, and the vast majority of the PSC and 
PSC/IBD patients do take this medication. To statistically confirm this, an rMANOVA 
was also run considering only the two classes. The result was significant, and thus, 
it confirmed that the ursodiol medication significant result was indeed due to the 
classes, and not due to the medication itself. Therefore, no significance for any of the 
confounding factors was found.

The present study demonstrates that exhaled breath can be potentially implemented 
in the clinics as a means of diagnosing PSC cases from IBD cases, something that, 
to date, remains a challenge in clinical settings, and this supports the novelty of 
the study since, to the best of the authors’ knowledge, such a study has not been 
performed before. Another strength of the present study is the fact that care was 
taken to prevent all possible non-biological variations to bias the study data, and the 
fact that the study results were validated by an independent test set. To date, most 
of the exhaled breath VOC analyses that have been conducted in liver diseases were 
not independently validated due to their small sample size or they did not account 
for various confounding factors that could have influenced their results [10]. All these 
alongside the positive study results can stimulate further research to be conducted on 
PSC examined via breath VOC, which may, eventually, lead to a clinically applicable 
breath test for PSC patients. The present study, however, also demonstrates some 
limitations that have to be addressed here too. The study population should have 
been larger even though the population used cannot be considered small. Moreover, 
further test of the model and the found VOC profile with an external independent test 
set that would have been measured at a later stage after the study samples were 
taken could have been performed too. Ideally, the present study should have also 
examined PSC cases (without IBD) against IBD cases and PSC cases against PSC/
IBD cases. However, these comparisons were not possible to perform due to the 
limited number of PSC samples. These comparisons along with a further test of the 
found VOC profile should be considered for further research in the topic.



181

Exploring the potential of exhaled breath implementation as a means to diagnose primary 
sclerosing cholangitis

In conclusion, the present study demonstrates the possibility of using exhaled breath 
to diagnose PSC patients from IBD patients, something that has been challenging 
clinicians to date. This has led to under-diagnosis of PSC, and therefore, mistreatment 
of the PSC patients. Breath analysis is still in its infancy and far from being implemented 
in the clinics yet. However, the apparent needs for new advances in the field of PSC 
alongside the present study results and the latest developments in the field of exhaled 
breath analysis could be the catalyst to stimulate further analyses in the research field 
of PSC that could potentially lead to a clinical breath test for PSC.
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Introduction
The present thesis focuses on the analysis and implementation of exhaled breath 
volatile organic compound (VOC) analysis in clinical settings of gastrointestinal 
diseases in terms of disease diagnosis and prognosis. VOC analysis can be 
performed in various means (e.g. faeces, blood, urine, saliva, bile, breath), although 
breath is the most prominent due to its patient-friendliness in sampling. It is a well-
known and documented fact that dogs can smell cancer [1-4], and in general, animal 
sniffing studies have shown some fascinating results; animal canine olfactory acuity 
is over 100.000 times stronger than human acuity [4]. Another example is the case of 
giant African pouched rats that showed superiority in diagnosing tuberculosis over 
microscopy [4]. A few years ago, the first-ever human sniffing case was also reported, 
whereby a British woman could smell Parkinson’s [5]. This woman’s extraordinary 
smell helped scientists identify ten molecules that could lead to the first diagnostic 
test for the condition [5]. Breath has also been investigated since ancient times when 
clinicians used the smell of breath as a diagnostic tool for various illnesses. For 
example, the Greek physician Hippocrates of Cos noted the importance of breath 
smell in diagnosing liver disease, using the term “foetor hepaticus” to describe the 
characteristic breath odour associated with liver impairment [6]. The aforementioned 
fascinating results, the high costs for training and housing animals, and the genuine 
interest in breath research over the centuries led to significant technological 
developments in sampling, storing, and analysing breath for volatile chemicals. These 
technological developments spiked even more interest in breath research.
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Exhaled breath applications
Exhaled breath VOC analysis holds a lot of potential due to its promising use as a 
non-invasive, cost-effective, and easy-to-use diagnostic and monitoring tool. Despite 
all the interest and technological advances, exhaled breath is yet to find diagnostic 
implementations in the clinics. Many confounding factors can influence exhaled 
breath, such as lifestyle, environment, medication, smoking, or diet [7]. Exhaled 
breath also generates enormous and complex datasets that are difficult to handle; 
for example, how one should analyse their data to separate background noise from 
biological information [8]. Nevertheless, there are good implementation examples 
of exhaled breath tests, such as the alcohol consumption [9], C13 isotope labelled 
substrate [10] monitoring, and the hydrogen [11] breath tests. The alcohol breath 
test measures how much alcohol there is in the blood. In beverage consumption, 
ethanol goes to the stomach and the small intestine, and from there, it is absorbed in 
the blood, carried through the body to the lungs, and then excreted through breath. 
The C13 isotope test monitors in-vivo metabolic activities. A probe containing a C13 
isotope (e.g. C13-labelled methacetin) is administered to a subject, which is then 
metabolised in the body, and ultimately excreted via the breath in the form of C13O2. 
The breath excretion of this isotope is used as an indication of the metabolic activity 
of enzymes in organs such as the liver. An example of such a test is the methacetin 
breath test (MBT), which monitors postoperative liver metabolism and impairment 
in subjects undergoing hepatectomy [10]. C13-labelled methacetin is de-alkylated in 
the liver by the CYP1A2 enzyme, forming paracetamol and C13-formaldehyde, which 
is then converted to C13O2 and excreted in the breath. The production of C13O2 
correlates with general liver function, and it does not say anything regarding the 
stage of liver impairment. The design of a C13 isotope labelled substrate breath test 
should also be based on knowledge of a specific metabolic function or malfunction. 
Established liver metabolic pathways and their associated excreted C13O2 (Chapter 
2) could potentially be used to develop other C13 isotope breath tests. Lastly, the 
hydrogen breath test is fundamentally different from the C13-labelled isotope test 
because it involves using various substrates such as glucose, lactose, lactulose, and 
fructose to diagnose small intestine bowel overgrowth (SIBO), or lactose or fructose 
malabsorption [11]. Such a test measures the amount of hydrogen in breath. Bacteria, 
especially anaerobic, colonizing the large bowel in healthy and the small bowel in 
diseased conditions produce hydrogen by fermentation of unabsorbed carbohydrates. 
Though small amount of hydrogen is produced from limited amounts of unabsorbed 
carbohydrate reaching the colon, large amounts of hydrogen may be produced if 
there is malabsorption of carbohydrates in the small intestine, allowing larger amount 
to reach the colon or if there is excess of bacteria in the small bowel. The hydrogen 
produced by the bacteria is absorbed through the wall of the small or large intestine 
or both. The hydrogen-containing blood travels to the lungs where the hydrogen is 
released and exhaled in the breath. The aforementioned examples indicate that there 
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is information to be found in exhaled breath. Although it seems as if the right way of 
analysing it and capturing it consistently in more advanced settings such as these in 
the clinics remains a challenge.

Exhaled breath data analysis
Breathomics
Measuring the vast amount of volatile chemicals in exhaled breath relates to 
the overall –omics field (including proteomics, metabolomics, genomics, and 
transcriptomics), as large and biologically complex datasets similarly characterise 
it. “Omics” technologies have a broad range of applications, and they are aimed at 
the detection of genes (genomics), mRNA (transcriptomics), proteins (proteomics), 
and metabolites (metabolomics) in biological samples in a non-targeted manner. 
Advances in microarray technology busted genomics and transcriptomics research, 
whereas advances in mass spectrometry boosted proteomics and metabolomics 
research. Similarly, breathomics (or volatilomics) are aimed at detecting volatile 
organic compounds, and they have advanced due to advances in mass spectrometry. 
“Omics” technologies adopt a holistic view of molecules that make up a cell, tissue, 
or organism, and they are considered hypothesis-generating since no hypothesis is 
known and all data are acquired and analysed to define a hypothesis that can be 
tested. Furthermore, “omics” technologies can be applied to understand better healthy 
physiological and diseased processes used for screening, diagnosis, prognosis, or 
understanding disease aetiology. “Omics” are also used in biomarker discovery, and 
multiple molecules are simultaneously investigated.

Difficulties arise when analysing genomics, transcriptomics, proteomics, and meta-
bolomics data concerning how one should properly collect, handle, and analyse the 
data; breathomics data are no different. For example, genomics and transcriptomics 
analysis requires real-time PCR validation regarding microarray changes, whereas 
proteomics analysis requires complex algorithms to match the data to theoretical 
databases to enable protein identification and quantification. Metabolomics analysis 
requires using univariate, multivariate, supervised, or unsupervised statistical methods 
to look for underlying data patterns and uncover biological information that can be 
used for further hypothesis-testing. Multiple studies have paved the way for how such 
complex biological data should be approached based on their type (e.g. genomics 
or metabolomics) [12-17]. Like metabolomics analysis, breathomics analysis requires 
statistical methods to uncover biological information. Data preprocessing is crucial 
when dealing with numerically complex volatilome data (Chapter 3). Pre-processing 
typically comprises noise and baseline removal, correcting peak shifts due to column 
ageing, temperature drift or biochemical interaction, and peak picking. Additionally, 
most of the VOCs in breath samples are not present in all samples. This leads to 
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another preprocessing step: the retention of compounds present in at least 10% of 
the samples. Next, normalisation, transformation, and scaling steps should be applied 
before supervised or unsupervised methods are applied to the breathomics data 
for further analysis (Chapter 3). The steps above should all be considered standard 
practice in breathomics analyses, although this is not always the case [8].

Data quality and challenges when performing exhaled breath 
analysis
Data science has seen tremendous development and implementation in the last 
decades. Artificial intelligence, machine learning, and deep learning algorithms find 
implementation in almost every field, such as scientific [8, 18, 19], economic [20, 21], 
political [22, 23], or geographic [24, 25], to name a few. This is because technology 
has advanced, and the way of life has become digital and involves large amounts of 
data. These algorithms have promoted a healthier and improved way of living through, 
for example, automated cars (e.g. Tesla) or wearables (e.g. smart watches) and have 
ultimately invaded the most challenging and complex research fields and questions 
to be answered to date. A prime example of this is the medical research field and its 
research questions. There have been various successful big data implementations of 
these algorithms in clinics. They have helped in clinical decision support systems (e.g. 
the surgical intelligent knife [26, 27]) or medical imagining (e.g. diabetic retinopathy 
screening [28]). These algorithms can deal with multi-variable and high complexity 
datasets; however, they do require the data to be of high quality (e.g. no background 
noise, no non-biological variation present or instrumental artefacts). Assuming that 
biological information is present in the data, poor data quality is one of the main reasons 
why these algorithms struggle to solve certain medical challenges and questions.

Breathomics data are characterised by high complexity and multi-variable datasets. 
Both aspects can be explained by diving into the origin of the exhaled VOCs. VOCs 
are detected in different body matrices such as breath, faeces, urine, bile, breast milk, 
and blood, resulting from exogenous or endogenous sources (Chapter 2). Exogenous 
VOCs (EVOCs) originate from the gut microbiome or the environment. The latter are 
absorbed through the skin, inhaled, or ingested with food and beverages. Moreover, 
they might be the result of therapeutic interventions. Biochemical processes in body 
cells and tissues produce endogenous VOCs, such as in lung and airway tissues 
or other organ tissues (e.g. liver or kidney); these VOCs can reflect apoptosis, 
inflammation or oxidative stress [29]. VOCs may arise from body chemical reaction 
cascades in diseased individuals due to cellular damage; they are released in the 
bloodstream and spread among the body excretions (Chapter 2). A single breath 
sample contains thousands of VOCs, leading to multi-variable datasets [30]. These 
VOCs also interact, causing non-linearities in the data, which translates to even higher 
data complexity.
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Proper handling and preprocessing of breathomics data (Chapter 3) does not necessarily 
lead to high-quality data or reproducible results. The clinical study design plays a crucial 
role in both aspects. The clinical study design term refers to the formulation of trials and 
experiments, as well as observational studies in research involving humans. Several 
pitfalls and mistakes that occur when one performs a breath VOC analysis lead to low-
quality data and non-reproducible results (Chapter 2 and Chapter 4). A vital pitfall that 
influences data quality and does not allow for reproducible results is the different ways 
of sampling, storing, or analysing the breath samples are used, which most likely has 
introduced bias in the data. Therefore, it is paramount to develop a standardisation 
framework for breath analysis research; currently, attempts toward this are ongoing 
[31-33]. A common mistake that further hampers result reproducibility is that many 
studies do not perform any internal or external validation of their findings, or correction 
of possible confounding factors is also not considered (Chapter 2). Another pitfall is 
that there is no consensus on what should be regarded as a proper way of handling the 
data regarding statistical modelling. There is an abundance of available tools to conduct 
statistical modelling, though it is not always clear what should be chosen or how should 
one approach their data (Chapter 3).

Another critical challenge in achieving high-quality and trustworthy data is getting 
“good” control cohorts to compare the diseased groups and determine whether 
found VOCs are disease-specific or not. It is also challenging to define “healthy” in the 
context of breath since hidden, underlying issues may be present in each participating 
individual (Chapter 4). It has recently been reported that 1488 VOCs have been found 
in the exhaled breath of healthy individuals [34], meaning that it is challenging to say 
whether identified VOCs are indeed disease-specific are not. A solution to this could 
be to perform in vitro and animal studies to identify biomarker VOCs that are exclusive, 
reliably produced, and disease-specific before human studies. This would also require 
identification of VOC origin, chemical structure, and the possibility of VOCs originating 
from human disease. A targeted VOC human study could be conducted as soon as 
these steps are performed.

High-quality breathomics data and reproducible results are hard to generate also 
because they are prone to batch effects [18]. Batch effects are sources of variation 
unrelated to the examined samples or inter- or intra-sample class differences. 
Environmental or methodological differences can cause batch effects during sample 
collection, chemical analysis, and data handling (Chapter 4). Batch effects are a 
common problem; they also occur in the other –omics fields. To eliminate batch 
effects as much as possible, ideally, every sample would have to be measured by 
the same personnel, at the same location, at the same time, and under the same 
conditions, and this is not achievable. Batch effects might still occur even if one 
takes all precautions possible. This is because analytical techniques such as gas 
chromatography-mass spectrometry or nuclear magnetic resonance have become 
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highly sophisticated and sensitive, capturing biological and non-biological variations. 
Scientific literature suggests statistical ways to deal with batch effects in genomics, 
transcriptomics, proteomics, and metabolomics data [18]; no batch-effect correction 
techniques have been reported in the literature yet for breathomics data (Chapter 
4). The batch effect correction techniques are data-specific (e.g. specifically made 
for metabolomics data), and therefore, they could not be applied to breathomics 
data. A way to circumvent batch effects could be using quality controls in regular 
intervals when running a breath VOC analysis. The use of quality controls is a known 
practice in metabolomics studies, with demonstrated successful applications [35]. 
Quality controls can help improve and monitor analysis and data quality, and their use 
should become standard practice when conducting breathomics analysis (Chapter 4). 
Monitoring analysis and data quality can lead to high-quality and reproducible data 
and eventually allow for cross-sectional study comparisons. These, together with a 
standardised framework and a consensus on analytical and statistical analysis, can 
help bring exhaled breath to the clinics.

Statistical modelling in exhaled breath analysis
Exhaled breath analysis strongly relies on statistical modelling when multiple VOCs are 
simultaneously considered, and the development of a successful exhaled breath VOC 
test would require high model classification and prediction accuracy. Numerous options 
exist when it comes to building a predictive model. Scientific literature suggests ensemble 
and linear regression techniques successfully built high-accuracy predictive models 
[36]. The linear regression techniques are the most well-known and applied in biological 
data (e.g. Partial Least Squares Regression Analysis [36]). Ensemble techniques are split 
into three main categories: boosting, bagging, and stacking. The most well-known are 
AdaBoost, Random Forest, and Gradient Boosting [36], and they include a wide range 
of successful applications such as flood hazard, earthquake damage, or sleep pattern 
identification, to name a few [37-44]. Ensemble techniques and mainly Random Forest 
have only recently gained attention in the field of breath analysis research, and they have 
started to be applied (Chapter 5). Breath research should continue shifting its interest 
towards ensemble techniques because they can deal better with multi-variable and 
complex biological data (e.g. breathomics data) than the linear regression techniques 
(Chapter 5). The reason is that linear regression techniques assume only linear relations 
amongst the dataset variables (e.g. VOCs), whereas ensemble techniques assume both 
linear and nonlinear relations. VOCs in breath samples interact with each other, which 
means that nonlinear relations are formed.

Applications in computational science have shown that more than one data source can 
often lead to better classification or prediction results [19]. It is a common belief that 
the more data, the merrier the result since all these statistical approaches can cope 
with large volumes of data. Generally, their success ratio improves when more data 
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are fed into them. Although combining different types of data does not always yield 
higher model performance, considerations have to be taken into account before any 
analysis is conducted based on the type of study and the ultimate analysis aim [19]. 
The idea behind the “the more, the better” principle is that different data sources can 
generate complementary datasets by capturing different entities (Chapter 6). There is 
no gold standard for what can be complementary to what; various data sources can 
be considered complementary depending on the type of analysis and the question 
at hand each time. Important to be considered before performing data fusion would 
be a proper data pre-fusion treatment. Variable scaling is required before any data 
from different sources are concatenated since the magnitude of data coming from 
various sources is most likely different. From a breath VOC research standpoint, it 
would make sense to fuse data from different sources. Different sources would mean 
VOCs produced by, for example, an inflamed organ, which could be released via 
different routes (e.g. faeces, urine, or breath) through the bloodstream. There are three 
main ways of data fusion (i.e., low-level, mid-level, and high-level), which have been 
successfully implemented in biological data; however, there is no available literature 
on fusion of VOCs either coming from different sources or combined with other types 
of data (e.g. metabolomics). The breath community should more deeply examine the 
concept of data fusion. It should also keep in mind that as the complexity and amount 
of data increase, more advanced and sophisticated fusion methods might be needed 
(Chapter 6). Advanced fusion ways have been recently proposed, outperforming 
traditional fusion methods when biological data were used [19, 45].

Breath VOC biomarker discovery also relies on identifying and interpreting VOC 
that help build good predictive models. VOC identification and interpretation could 
become a bottleneck when advanced predictive models (e.g. ensemble techniques) 
are used instead of linear regression techniques due to data complexity. Variable (e.g. 
VOC) transformation is often needed when advanced predictive techniques are used. 
If advanced predictive models are used, advanced ways of tracing and visualization 
of VOCs might be required, too [46].  The pseudo-sample principle has proved to be 
a successful way of doing so [19, 47] by visualizing VOC importance and behaviour in 
biological samples (Chapter 6). The pseudo-sample principle is based on a nonlinear 
plot idea to represent variable importance as a set of artificial samples constructed to 
evaluate each variable independently. The pseudo-sample principle seems promising 
and helpful for future investigations, but it can also prove troublesome due to its 
complexity. Nonetheless, this approach presents a way of dealing with a common 
problem in biomarker discovery research.
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Case study based on acquired knowledge
The present thesis performed a case study that took into account knowledge gained 
here and tried to use the latest strengths and technological developments in the field to 
test and validate the theories and points made thus far. Primary Sclerosing Cholangitis 
was the examined disease; PSC is an orphan liver disease since it roughly affects 
60.000 individuals in the western world. Many VOCs coming from breath have been 
linked to liver impairment (Chapter 2), and the case study used these compounds in a 
targeted way to see whether they could be used to differentiate between PSC diseased 
individuals and Inflammatory Bowel Disease diseased individuals with concurring PSC. 
The choice of IBD was made given the high correlation between IBD/PSC patients with 
PSC patients. As discussed in Chapter 4, the case study also used quality controls to 
monitor data and analysis quality for possible batch effects, and it preprocessed the 
data by following the preprocessing steps mentioned in Chapter 3. Statistical modelling 
of the PSC breathomics data was conducted by implementing unsupervised and 
supervised machine learning approaches, as suggested in Chapter 5.

The case study gave good classification results, confirming that the selected VOCs 
can also potentially be used for PSC detection. The good classification results 
also confirmed the Chapter 5 statement that ensemble methods work better on 
complex biological data than linear regression methods. Linear regression was also 
implemented, but no satisfactory results were obtained. The study results were 
validated by using a test set, and the found VOCs were tested for the significance of 
confounding factors such as smoking or diet (as discussed in Chapter 2 in common 
mistakes and pitfalls in breath research). The case study also aims to use and validate 
the proposed in Chapter 6 data fusion and variable interpretation approaches by 
combing the breath VOCs with faecal VOCs. This is still a work in progress; therefore, 
it is not discussed in the present thesis. Data fusion would be believed to improve 
the case study classification results based on the theory of “leaky-gut” [48]. This 
theorem states that an ongoing inflammatory stimulus, which originates from the gut, 
preserves a bile duct inflammation in PSC patients, leading to molecule excretion 
in breath samples, faecal samples, or blood samples. This would render breath and 
faecal VOCs as complementary data.

Standard practices, alternatives, and future 
perspectives in breath VOC analysis
Breath VOC research has been mainly focused on using Gas Chromatography-Mass 
Spectrometry in biomarker discovery [41, 45, 49-53]; this is also what was used in the 
present thesis case study (Chapter 7). Less commonly used yet successful techniques 
are Proton Transfer Reaction-MS, Selected Ion Flow-Tube-MS, Ion-Molecule 
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Reaction-MS, Field Asymmetric Ion Mobility Spectrometry, and E-nose (Chapter 2). 
In GC-MS, a mixture is split into individual substances with heating, and the heated 
gases are carried through a column with an inert gas (e.g. Helium). As the separated 
substances emerge from the column opening, they flow into the MS, where they are 
identified by the mass of the analyte molecule. In PTR-MS, the organic trace gases 
are ionized by undergoing a proton-transfer reaction with H3O+ ions. The product 
ions are then mass analysed and detected by a quadrupole mass spectrometer, 
yielding information about the neutral precursors. The reaction is exothermic and 
efficient for those compounds with a proton affinity (PA) higher than the proton affinity 
of water. In SIFT-MS, the selected reagent ion is injected into the flow tube, and 
excess energy is removed through collisions with the carrier gas. The sample is then 
introduced at a known flow rate, and the reactive compounds it contains are ionized 
by the reagent ion to form well-characterized product ions. FAIMS is a technique 
based on gas phase separations on a millisecond timescale at atmospheric pressures 
and ambient temperature. It separates ions based on their differential mobility in high 
and low electric fields, a function of mass, charge, size, and shape. E-nose mimics 
human olfaction, whose functions are non-separate mechanisms (i.e. the smell or 
flavour is perceived as a global fingerprint); it consists of a sensor array, pattern 
reorganization modules, and headspace sampling to generate a signal pattern that 
is used for characterizing smells. Compared to GC-MS, PTR-MS seems to provide 
a more complex picture of the compounds, and it can distinguish between different 
disease severity classes, whereas SIFT-MS provides a higher detection sensitivity for 
compound concentrations lower than parts per billion and real-time quantification. 
IMR-MS is more selective and sensitive than GC-MS and does not require any pre-
concentration step before analysis compared to other MS-based technologies. 
FAIMS exceeds other MS-based methods because it can be applied at the point of 
care since it offers an immediate compound response (as long as the compounds 
are known); this establishes it as a cost-effective clinical test. Lastly, E-nose provides 
a rapid profile of detected compounds on a point-of-care base because it can be 
performed instantaneously in an outpatient care setting, whereas MS-based methods 
cannot. The disadvantage of the E-nose technology is that the individual compounds 
are not identifiable compared to MS-based technologies.

It cannot be said whether one of the techniques above is the best for breath VOC 
analysis since each one has its advantages and disadvantages over the others. More 
research would be needed on the less commonly used MS-based techniques, and 
even so, a standardised breath analysis framework based on an MS-based approach 
might not be what could ultimately lead to breath diagnostic test applications in the 
clinics. MS-based technologies are generally not portable (micro-GC-MS has been 
developed [56]) and are expensive, whereas the E-nose technology is inexpensive, 
portable, and rapid. E-nose does not allow for compound identification; however, a 
good starting point for bringing breath tests into clinics would be a reliable screening 
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or monitoring tool, and for such a tool, compound identification does not seem to be a 
necessity. Breath research has focused on untargeted approaches by blindly looking 
into breath samples for VOCs. Analysing breath in such a way provides a holistic 
overview of the breath content, making it difficult to say whether these changes 
are either specific to a particular disease or more general markers of underlying 
mechanisms such as inflammation. As noted in Chapter 2, other approaches (e.g. 
exogenous VOCs; EVOCs) might be more beneficial. Especially in liver breath VOC 
research, such approaches would make sense due to liver metabolic capacity, and they 
should be investigated in more depth in the future. These approaches would require 
exposing or ingesting a cohort to a particular compound concentration (i.e. probe), 
sampling their breath after exposure or ingestion, and measuring the associated 
EVOC metabolite in inhaled air to determine liver function. An EVOC analysis enables 
a tailored, controlled exposure to a compound of interest, providing a better chance 
to identify disease-specific markers. An EVOC analysis would also be more robust 
to background VOCs (e.g. environmental VOCs), which are often one of the major 
confounding factors in the field. However, there are weaknesses to such an approach 
too. Exposure to or ingesting a specific probe that leads to a particular EVOC product 
in the breath may require METC approval, patient preparation, and most importantly, 
it might be a source of a potential allergy (Chapter 2). An EVOC approach would also 
require an extensive understanding of the probe metabolism, and to achieve this, 
more in vitro analyses are needed. 

Focus on technological developments should also be given; developments such 
as the ReCIVA sampling apparatus [54] are guaranteed to help advance the breath 
research field further. However, breath VOC research must first ensure a high-quality 
laboratory practice by establishing a common and consistent framework before 
exploring new ways such as the ones mentioned above. It is of paramount importance 
to have a standardised framework with standard rules of analysis because that way, 
external data influential factors can be eliminated or significantly reduced (Chapter 2 
and Chapter 4).

Final considerations and conclusion
The present thesis aimed to answer whether breath VOC analysis could find 
diagnostic and prognostic clinical applications. The present dissertation is imperfect 
and cannot answer this fully; however, it can speculate on the future of the breath 
field. Breath research has remained stagnant in the last couple of decades regarding 
clinical applications regarding disease diagnosis and prognosis. In the financial and 
banking sector, there is the expression of “path to green” when managing risks that 
the banks are exposed to and how to keep these risks within risk appetite. Risk 
appetite is the level of risk that an organization is prepared to accept to pursue its 
objectives before action is deemed necessary to reduce the risk. In breath research, 
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such a “path to green” would mean successful diagnostic and prognostic clinical 
day-to-day applications. Research conducted in the present thesis shows a future 
in exhaled breath research, and such a “path to green” would entail identifying and 
dealing with the reasons that led to this stagnation. Three main components have led 
to this stagnation: lack of a standardised framework in terms of clinical design, lack 
of a consensus in data handling and statistical tool availability and use, and wavering 
ideologies on whether targeted or untargeted approaches should be considered. 
The present thesis findings illustrate that exhaled breath could find diagnostic and 
prognostic clinical applications if these three components are resolved. Scientific 
literature and the present thesis case study suggest that there is information to be 
captured in breath, although it cannot be disclosed consistently yet.

In monitoring and screening, breath analysis has already had some successful 
implementations. Currently, many tests are used in the clinics, such as the methacetin 
breath test, which monitors postoperative liver metabolism and impairment in 
subjects undergoing hepatectomy. Available literature suggests that liver research 
could further benefit from shifting more interest towards breath analysis. The present 
thesis also demonstrated the potential applicability of breath analysis as a means of 
diagnosis in liver research since it showed that challenging distinctions (e.g. PSC from 
IBD patients) could be satisfactorily achieved. Nonetheless, screening/monitoring and 
diagnostic tests would still require a deep and extensive understanding of compound 
origin via in-vitro analyses before further implementation in human studies.

Multiple VOC breath analysis strongly relies on statistical modelling. Perhaps, the 
breath community should more closely join forces with the data science community to 
see what other ideas could be used in modelling, data fusion, or variable interpretation 
to help the breath research field flourish. Technological advancements to detect VOCs 
should also be given attention; however, this should go hand-in-hand with the breath 
community’s expanding knowledge on compound origin.
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The present thesis analysed exhaled breath volatile organic compounds (VOCs) and 
their implementation in clinical settings regarding the diagnosis and prognosis of 
gastrointestinal diseases. Liver diseases, such as primary sclerosing cholangitis (PSC), 
are life threatening since no proper early diagnostic tools exist. Lack of early diagnostic 
tools leads to late treatment, which often results in a liver transplantation. In 2017, 
an estimated of 1,5 billion cases of chronic liver diseased individuals were reported 
worldwide [1]. Cirrhosis, the end-stage of liver impairment, accounted for approximately 
1,32 million deaths in 2017. In the United States alone, estimated healthcare expenditures 
regarding hospitalizations reach $81,1 billions [2]. Moreover, the global liver disease 
treatment market size was valued at $20,673.70 millions in 2020, and it is estimated to 
reach $36,455.70 millions by 2030, growing at a compound annual groth of 5,7% from 
2021 to 2030 [3]. PSC is a rare liver condition with unclear etiopathogenesis; it affects 
roughly 70.000 individuals in the western world. Nevertheless, it still remains the fifth 
most common indication for liver transplantation in the United States, and it remains 
a leading indication in several other countries as well [4]. Liver diseases are currently 
diagnosed through liver biopsy. Its invasiveness, costs, and relatively low diagnostic 
accuracy require new techniques to be sought. Colon diseases, such as inflammatory 
bowel disease (IBD), have dramatically increased over the years. In 2018, there were 
more than 36,8 million ambulatory visits for gastrointestinal symptoms and 43,4 million 
ambulatory visits with a primary gastrointestinal diagnosis in the United States [5]. IBD 
alone affects as many as 1,6 million Americans; 70.000 new cases are reported each 
year. In 2018, gastrointestinal disease healthcare expenditure totalled $119,6 billions; 
the estimated financial burden of IBD in the United States is more than $31 billions [6-8]. 
Colon diseases are presently diagnosed through colonoscopy, which has been the gold 
standard for diagnosing and monitoring disease activity. Alternative ways to diagnose 
and monitor disease activity are needed since colonoscopy is a considerably invasive 
and costly technique.

In human research, VOCs arise from different body matrices such as breath, faeces, 
urine, bile, breast milk, and blood. Based on research conducted in the present 
thesis, VOC analysis might greatly benefit gastrointestinal disease diagnosis and 
prognosis due to its promising use as a non-invasive, cost-effective, and easy-to-use 
diagnostic and monitoring tool. Exhaled breath VOC technology aims at replacing the 
current costly and invasive diagnostics with a noninvasive approach, using powerful 
algorithms, which can identify VOCs for accurate monitoring and diagnosis. Achieving 
this would reduce diagnosis and monitoring costs since exhaled breath analysis is cost-
effective. At the same time, it would drastically improve patient treatment because it 
is patient-friendly due to its non-invasiveness. Moreover, it would also be convenient 
for clinicians since it can be applied directly at the point of care due to its potential 
portability. As discussed in the present thesis, bringing exhaled breath analysis into 
daily clinical settings would highly benefit research and treatment of gastrointestinal 
diseases since they require highly invasive, expensive, and often not very accurate 
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tools (e.g. biopsy or colonoscopy). Exhaled breath clinical implementation will have 
an immense impact on health insurance companies and hospitals because it will 
substantially decrease healthcare costs. Early diagnosis and proper monitoring 
will reduce, for example, the need for liver transplantations or the need for costly 
endoscopic equipment. In both cases, clinicians could also save up time to devote it 
into performing other medical care duties that might be lagging behind. Furthermore, 
it is believed that exhaled breath clinical implementation will allow patients to control 
the disease more efficiently; they will have to go to the hospital less often, which will 
save them energy and time. In return, this will make them more productive and more 
active members of the society; it will allow them to improve socially and financially, 
and make life more enjoyable for them and their families too.

However, implementation of the VOC analysis in gastrointestinal clinical practices 
is not ready yet for routine applications since more research is required in various 
aspects. Chapter 2 demonstrated that most VOC studies are either proof-of-concept 
studies or of a small sample size. Many studies did not perform any internal or external 
validation of their findings. The correction of possible confounding factors was also 
not considered, which might have affected the study results. Furthermore, most breath 
research has focused on endogenous VOC untargeted analysis; Chapter 2 showed 
that scientific interest should also shift towards exogenous VOC targeted analysis. 
Chapter 4 raised awareness regarding batch effects in exhaled breath VOC studies that 
do not allow for across-study comparisons. Chapters 2 and 4 showed that lack of a 
standardised framework in terms of clinical design, lack of a consensus in data handling 
and statistical tool availability and use, and wavering ideologies on whether targeted 
or untargeted approaches should be considered have hampered the exhaled breath 
clinical implementation. Therefore, Chapters 3 and 5 aimed to provide an overview 
of various pre-processing approaches suitable for volatilome data of diverse nature 
and to equip the reader with a basic overview of suitable techniques for treating and 
successfully exploiting volatilome data. Furthermore, from a VOC analysis standpoint, 
a diseased organ could release VOCs via the bloodstream in breath and other body 
excretion means (e.g. faeces, urine). Chapter 6 showed that fusing this complementary 
information could result in higher accuracy breath diagnostic tests. Given the complexity 
and size of volatilome data, more advanced fusion methods might be needed; Chapter 
6 proposes such a method. Chapter 7 performed a case study that took into account 
knowledge gained in the present thesis (i.e. Chapters 2-6) and tested the assumption 
of using exhaled breath to differentiate primary sclerosing cholangitis patients from 
inflammatory bowel disease patients. The study results confirmed that assumption.

The findings of the present thesis might contribute to scientific advancement in 
several ways. Chapters 2 and 4 summarise and raise awareness regarding the lack 
of a standardised framework in terms of clinical design, lack of a consensus in data 
handling and statistical tool availability and use, and wavering ideologies on whether 
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targeted or untargeted approaches should be considered. Chapters 3 and 5 follow 
up on the lack of consensus in data handling and statistical tool availability and use 
by thoroughly discussing and proposing how volatilome data might be approached 
and analysed regarding VOC biomarker discovery. Chapter 6 provides insight on the 
concept of data fusion and why and how this concept can be applied to volatilome 
data. Data fusion is a known concept in computer sciences; however, little seems to 
be known and published regarding applications of data fusion in the field of exhaled 
breath research and VOC analysis as a whole. Chapter 7 shows that exhaled breath 
can be used to diagnose and monitor primary sclerosing cholangitis patients, which 
has been challenging clinicians to date. Additionally, the present thesis results and 
previous and future study results might help bring exhaled human breath research into 
daily clinical setups. Implementing exhaled breath analysis in the clinics would benefit 
not only gastrointestinal research but other medical fields since the same principle can 
be applied in any medical field when it comes to using VOC analysis. Therefore, the 
present thesis can interest scientific researchers in various fields aside from breath, 
and the presented statistical tools and ideas can be considered general guidelines for 
researchers who perform statistical modelling with complex biomedical data.

Finally, the work and results in the present thesis have been shared with other 
researchers since they have been presented at several international scientific 
conferences through poster and oral presentations. The work in Chapter 4 regarding 
the implementation of quality controls to prevent batch effects in breathomics data 
and allow for cross-study comparisons was awarded the Best Poster Prize by the 
Journal of Breath Research during the Breath Summit 2018 (June 17–20, 2018, 
Maastricht, The Netherlands). The work in Chapter 6 regarding advanced data fusion 
by using random forest proximities and the pseudo-sample principle was awarded the 
Best Presentation Prize at the 42nd Chromatographic Symposium (June 4-7, 2019, 
Szczyrk, Poland). All of the results have been or will be documented through scientific 
publications: Chapters 2-6 have been published, whereas Chapter 7 is in preparation.
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