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Abstract

When warehouses are operated according to a scattered storage policy, each Stock

Keeping Unit(SKU) is stored at multiple locations inside the warehouse. Such a con-

figuration allows for improved picking efficiency, as now an SKU can be picked from

the location that is most compatible with the other SKU’s in the picking batch.

Seizing these benefits, however, comes at the cost of additional decisions to be made

while planning the picking operations. Next to determining the sequence in which

SKU’s will be retrieved from the warehouse, the location at which each SKU needs

to be extracted has to be chosen by the planner. In this paper, we model the order

picking problem under a scattered storage policy as a Generalized Travelling Sales-

person Problem (GTSP). In this problem, the vertices of the underlying graph are

partitioned into clusters from which exactly one vertex should be visited in each clus-

ter. In our order picking application, each cluster contains all product locations of a

single SKU on the order list. The aim is to design a pick tour that visits all product

locations of the SKU’s on the pick list (i.e., visit each cluster exactly once) and min-

imizes the total travel distance. We present an ILP formulation of the problem and

a variable neighbourhood heuristic, embedded in a guided local search framework.

The performance of both methods is tested extensively by means of computational

experiments on benchmark instances from the literature.

Keywords: Generalized Travelling Salesperson Problem, Order Picking, Variable Neigh-

bourhood Search, Guided Local Search
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1 Introduction and research context

Warehouses are crucial to the effectiveness of physical product supply chains. Even despite

real-time data availability and exchange in today’s supply chains — which could facilitate

a just-in-time paradigm — warehouses play a key role in assuring high customer service

levels by balancing supply and demand, and providing a buffer to absorb disruptions and

uncertainty. [28]. In the last few years, the steep growth in e-commerce led to a significant

increase in warehouse capacity [24, 15, 52]. The performance of these warehouses depends

on the efficiency at which all warehouse operations are organized. Out of all warehouse

operations, order picking — defined as the process of retrieving a given set of products (in

the remainder of the paper referred to as SKUs) from storage locations or buffer areas in

response to incoming customer orders [22, 85] — is the most time and labour consuming

[86, 67, 58, 91]. Order picking activities include the setup of the pick tours for the individual

pickers (either manual pickers or automated systems), travelling across the warehouse to

visit all corresponding SKU locations, searching for the correct SKUs at these locations,

and extract the correct amount of the requested SKUs.

The travelling between SKU locations — essentially not a value-adding process — ac-

counts for around 50% of all the time spent in the order picking process [83]. Consequently,

the reduction of this travel time (eventually in combination with an optimal warehouse lay-

out and SKU allocation) has been the main focus of many research contributions (see e.g.,

Kapou et al. [40], Lee, Chung, and Yoon [49], De Koster, Le-Duc, and Roodbergen [22],

and Accorsi, Manzini, and Bortolini [1]).

The problem of finding the optimal pick tour (i.e., a minimum cost / length tour that

starts and ends at the depot and visits all SKU locations from the current pick list) is

closely related to a variant of the Travelling Salesperson Problem (TSP). Often, a Steiner

TSP formulation is used, in which aisle intersections are added as intermediary nodes that

could (but should not) be part of the tour.

In this paper, we study the order picking problem in combination with a scattered stor-

age policy [35]. As nowadays warehouse operations are commonly supported by warehouse

management software, there is no real need to group all SKUs of a certain type at the same

storage location. Incoming SKUs can be put away at any available storage location from

which they can be retrieved once ordered. Consequently, SKUs are scattered around the

different storage locations and each SKU becomes available at different locations within

the warehouse.

Under such scattered storage policy, the construction of the pick tours combines the

2



decision on the storage location from which the required SKUs will be picked with the

generation of optimal pick tours in which these selected locations are visited. As out of all

available storage locations for each SKU the decision maker can select the location that

is most compatible with that of all other SKUs to be picked within the same tour, more

efficient pick tours can be constructed.

This paper contributes to the academic literature on warehouse operations in the fol-

lowing ways:

• Denoting all storage locations from which an SKU can be picked as a cluster from

which exactly one location should be visited to pick the corresponding SKU, we

formulate the order picking problem under a scattered storage policy as a Generalized

Travelling Salesperson Problem (GTSP).

• We present an improved ILP formulation for the GTSP and prove its performance

against state-of-the-art formulations by means of extensive computational experi-

ments.

• To allow for scalability and solve larger problem instances fast, we present a guided

local search heuristic for which we obtain very competitive results.

The remainder of the paper is organized as follows: we discuss the relevant literature

in section 2. In section 3 we formally define the generalized traveling salesman problem for

the order picking problem under a scattered storage policy. Section 4 details our Guided

Local Search algorithm for solving the problem after which we test the performance of our

formulations and benchmark our heuristic solution approach against the current state-of-

the-art in Section 5. Finally, we summarize our main conclusions in Section 6.

2 Literature Review

2.1 The order picking problem

Due to its importance in the domain of warehouse operations, the order picking problem has

received significant attention in the past decades [58, 66, 2, 87]. The main body of research

on the modelling of order picking problems relies on the mathematical formulation of the

Travelling Salesperson Problem (TSP) or the or the capacitated vehicle routing problem.

We divide the existing literature in contributions that focus on exact models and those

that present heuristics.
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Almost all of the exact algorithms addressed in the literature for the order picker routing

problem, are applied in single-block warehouses. Ratliff and Rosenthal [69] is one of the

primitive studies on the optimal order picker routing problem. In this study, the authors

introduce a dynamic programming approach for a warehouse layout with only one block

(i.e., no cross aisle), which is polynomial in the number of items and aisles. This approach is

extended for a two-block warehouse (i.e., one cross aisle) in Roodbergen and De Koster [70]

and to a multi-block warehouse (i.e., more than one cross aisle) in Cambazard and Catusse

[12]. There exist several extensions to the algorithm proposed by [69], each accounting for

slight variations in the problem definition. One of these extensions is the study by Žulj

et al. [95]. Here, the authors account for precedence constraint with respect to the picking

sequence of the SKUs, based on, e.g., their weight, category, etc. Celik and Süral [16] add

additional turn penalties to model that account for the loss of time (speed reduction) each

time a picker changes direction within a picking aisle.

The studies by Letchford, Nasiri, and Theis [50], Scholz et al. [74], and Pansart, Catusse,

and Cambazard [67] rely on the definition of the Steiner TSP to model the order picker

routing problem. In these models, the warehouse is represented by a graph in which the

nodes are the union of all SKU storage locations, the depot and all aisle intersections (as

these are the main decision points on the route of the picker).

Chabot et al. [17], Irnich, Toth, and Vigo [39], Scholz et al. [74], and Glock and Grosse

[27] model the order picking problem as a vehicle routing problem which they solve using

branch-and-cut.

For the online order picking problem (i.e., new customer orders arrive over time) Lu

et al. [57], Cambazard and Catusse [12], Matusiak et al. [61], and Masae, Glock, and

Vichitkunakorn [59] present a dynamic programming formulation.

Apart from these exact methods — which quickly become intractable for increasing

instance sizes — a wide range of heuristics and metaheuristics have been developed to solve

the order picking problem. According to Masae, Glock, and Grosse [58], (meta)heuristic

algorithms account for around 85% of all contributions on the order picker problem.

The best known heuristic algorithms are the S-shape heuristic, the largest gap heuristic

and the midpoint routing method [31, 14]. Hybrid extensions of these algorithms have been

suggested by Chabot et al. [17], Menéndez et al. [62], Matusiak, De Koster, and Saarinen

[60], and Chen, Xu, and Wei [18].

Scholz and Wäscher [73], Theys et al. [82], and Hsieh and Tsai [37] rely on a TSP formu-

lation of the order picking problem which they solve using the well-known Lin-Kernighan
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(LKH) heuristic [56, 32].

Pferschy and Schauer [68] consider different starting and ending points for eacch pick

tour and proposed three heuristics based on different insertion methods combined with a

3-opt local search.

In the majority of the cases, (meta)heuristics have been employed to solve combined

problems that integrate order picking with order batching (i.e., group multiple orders

together to be picked in a single pick tour, especially useful in e-commerce environments

where order sizes are rather small) and batch sequencing (i.e., in which order should the

constructed batches be picked such that average or worst response times are minimized).

Examples include particle swarm optimization [54, 5], memetic algorithms [10, 10], ant

colony optimization [20, 51, 23, 19, 18], genetic algorithms [94, 4] and tabu search [21].

2.2 The Generalized Travelling Salesperson Problem

The Generalized Travelling Salesperson Problem (GTSP) is defined as an extension of the

Travelling Salesperson Problem in which the nodes are partitioned into clusters. To serve

a cluster it is sufficient that exactly one node is the cluster is visited. The aim is to find a

minimum cost / length tour that visits each cluster exactly once.

The GTSP is first introduced by [34]. Since then, the problem has been used to model

a wide range of real-life problems [44], such as scheduling problems [7], vehicle routing

problems [90], manufacturing problems [80, 36, 45] and telecommunication network design

[8].

To solve the GTSP exactly, the problem can be converted into a TSP using dynamic

programming, after which it can be solved using dedicated TSP solvers [65]. In the trans-

formed graph, each arc represents the shortest path between each pair of product locations

from the original graph, changing the problem into a clustered TSP with a fully connected

directed graph, which is afterwards altered into a standard TSP. Such a transformation,

however, drastically increases the problem’s dimension (in some cases by a factor three or

more) [48, 53].

Baniasadi et al. [6] develop a transformation method that is able to convert the Clus-

tered GTSP to a TSP. A Clustered GTSP is defined as a GTSP where in each cluster is

further subdivided in multiple sub-clusters that have to be visited consecutively. As the

Clustered GTSP reduces to the GTSP with only one sub-cluster per cluster, the transfor-

mation method can be applied to turn the GTSP into a TSP instance.

[47, 46] propose a branch-and-bound algorithm to solve the GTSP. In [47] the authors
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present a first integer programming formulation for the symmetrical GTSP. In Laporte,

Mercure, and Nobert [46], the model is extended to the asymmetrical GTSP. In Salman,

Ekstedt, and Damaschke [72] a branch-and-bound algorithm is combined with dynamic

programming to solve the GTSP with precedence constraints (i.e., some locations have to

visited before others) after which they present a comparison between different bounding

methods for this problem.

A branch-and-cut strategy is applied by Fischetti, Salazar González, and Toth [26]

for the symmetric GTSP. The authors solve a series of LP relaxations while adding valid

inequalities to tighten the lower bound using a heuristic algorithm.

[64] develop a Lagrangian based approach to transfer the asymmetric GTSP into an

asymmetric TSP. Relying on the principles of the Lagrangian relaxation — which removes

the flow balancing constraints and adds the corresponding terms to the objective function,

making sure that the optimality conditions of the original problem remains — a lower

bound to the problem is computed. To find an upper bound, a heuristic algorithm is

employed that removes arcs and nodes. This is done by computing the optimal dual

solution, the reduced arc costs and their effect on the objective value.

A broad range of heuristic algorithms have been proposed for the GTSP. Similar to

what we see for the exact methods, a first group of heuristics relies on a transformation

of the GTSP into an asymmetric TSP, e.g. by means of a Noon-Bean transformation [9].

Amongst others, the Noon-Bean transformation is used in Helsgaun [33] after which the

obtained TSP is solved using the Lin–Kernighan heuristic [56].

Karapetyan and Gutin [42] propose an adaptation of the Lin–Kernighan heuristic for

solving the GTSP with non-overlapping clusters directly, by rearranging the path, breaking

the path and improving the tour.

Multiple researchers rely on a local-search based algorithm for solving the GTSP by

applying the 2-Opt, 3-Opt, and k-Opt operators [55, 11, 92, 43, 30].

Hu and Raidl [38] present a variable neighbourhood search including a generalized 2-

opt neighborhood to speed up the search and node exchanges based on the Lin-Kernighan

heuristic.

[78] propose a large neighbourhood search based on repeated worst removal and the

cheapest insertion of the vertices from and into the tour. In each iteration, one would look

for the removal operation (i.e., take out one node in the tour) that reduces the tour length

the most. The node is then inserted at the position where it increases the tour length the

least.
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Other heuristics that have been developed for the GTSP include genetic algorithms [93,

79, 77], memetic algorithms [29, 11], Particle Swarm Optimization [76] and Ant Colony

Optimization [92].

Existing models and algorithms developed for the GTSP mainly rely on the implicit

assumption that clusters are defined geographically, i.e., clusters do not overlap in the

geographical space [25]. Consequently, inter-cluster distances (defined as the distance

between two sets of points) can be used as a proxy for the distance between two arbitrary

vertices from different clusters and a tour can be constructed first at the cluster level.

Grouping different SKU locations within a warehouse in the same cluster, however,

violates this principle and will give rise to an overlapping graph. El Krari et al. [25] define

overlapping clusters as those that share a geographical space (i.e., when drawing their

borders, they find themselves intertwined). To the best of knowledge, only Nalivajevs and

Karapetyan [63] consider the order picking problem within a scattered storage policy. The

authors developed an instance generator and propose a conditional Markov chain search

that combines different algorithmic algorithms to solve the problem at hand. However,

the scope of this algorithm is still limited with only limited operators that are presented

mainly as a black box. Also, the instances are limited to single-block warehouse layouts

making them not very representative for today’s warehouses.

3 A Generalized TSP formulation for order picking

under a scattered storage policy

In this section, we formally define the order picking problem under a scattered storage

policy. We first introduce the mathematical notation associated with the warehouse lay-

out. Then, we model the problem as a generalized TSP. Finally, we present an improved

mathematical formulation for the GTSP.

3.1 Representation of the warehouse layout

We assume a traditional multi-parallel aisle (rack and shelf) warehouse that contains a

predefined number of pick aisles where SKUs are stored. Additionally, the warehouse

contains a given number of intersecting cross aisles that do not contain any SKUs but

can be used by the picker to travel efficiently between different pick aisles. As such, the

warehouse is divided in a number of blocks, defined as a row of pick aisles between two
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cross aisles. Moreover, there is a depot located in the front of the warehouse where the

picker starts and ends each pick tour (the depot could be seen as the packing area where

all picked items are collected and prepared for shipment).

Adopting the common assumptions proposed by Pansart, Catusse, and Cambazard [67],

all aisles have equal lengths and are sufficiently narrow such that pickers can pick from

both sides while traversing the aisle (i.e., there is no additional delay for changing the pick

side). Additionally, pickers can travel through the aisles in any direction and are able to

change direction within the aisles if preferred.

Let G = (V ,E) be the graph representation of the warehouse, in which V denotes

the set of all vertices (SKU locations and the depot) and E is the set of all edges. The

depot, included in the set V is denoted by ”0”. For all (i, j) ∈ E, dij denotes the distance

between storage locations i and j.

Let K be the set of unique SKUs in the warehouse. To represent the storage locations

that contain the same SKU, V is partitioned into |K| + 1 disjoint subsets (one for each

SKU and another one that contains solely the depot). These subsets are referred to as

clusters and denoted by Ck with k = {0, 1, . . . , |K|}) — such that V =
⋃

k Ck and

Cl ∩Ck = ∅ | l, k ∈ {0, 1, . . . , |K|}, l ̸= k. Also, given that each SKU can be picked from

at least one storage location, |Ck| ≥ 1.

Based on the pick list containing all the SKUs that should be picked in the current

tour, the warehouse representation is reduced by eliminating all SKU locations and the

corresponding clusters that should not be visited by the picker. Let Ḡ = (V̄ , Ē) be the

reduced graph in which V̄ is the set of all storage locations of the SKUs that should be

picked (including the depot) and Ē the set of all edges connecting the vertices in V̄ .

Figure 1 contains a visual representation of a typical warehouse layout next to its graph

representation. Each colour represents an SKU that should be picked from the warehouse.

3.2 Definition of the path between two SKU locations

Let (xi, yi) be the coordinates of SKU location i, (i = 1, . . . , |V̄ |). Without loss of generality

and to simplify notation we assume the direction of x and y align with the cross aisle and

pick aisle, respectively. To travel between two SKU locations i and j, the picker will always

prefer the shortest path. We distinguish the following two scenarios:

1. If i and j are located in a different block, the shortest distance equals the Manhattan

distance between both coordinates.
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Figure 1: Warehouse layout and graph representation (adapted from Roodbergen [71]). Each
colour represents an SKU that should be picked from the warehouse. As multiple locations have
the same colour, it is sufficient to visit one location for each colour.

dij =| xi − xj | + | yi − yj |

2. If i and j are located in the same block, the shortest path goes via the cross aisle

adjacent to the block. The distance is then computed as follows:

dij =| xi − xj | +min{c+i + c+j , c
−
i + c−j }

where c+i and c−i refer to the distance between SKU location i and its upper or lower

corner point (i.e., intersection with the cross aisle), respectively. The notation is

visualized in Figure 2

As we assume a picker will pick each SKU only from a single storage location (i.e.,

there is always sufficient inventory at each SKU location to satisfy the demand), all dij for

which i and j contain the same SKU could be ignored.
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Figure 2: Distance of vertices in the same block, but different aisles

3.3 Existing mathematical model formulations

3.3.1 DFJ formulation of the GTSP

The first integer linear programming formulation of the GTSP was proposed by [47] using

the Dantzig–Fulkerson–Johnson (DFJ) model. They consider the case where at least one

node from each cluster must be visited. They proved that for the Euclidean distances case

exactly one node from each cluster is visited, using the fact that the distances satisfy the

triangle inequality. This inequality also holds in our case, thus we can conclude that also

in our case exactly one of the locations of each cluster is visited. The Dantzig–Fulkerson–

Johnson (DFJ) formulation of [47] is presented below.

In the order picking problem, the nodes refer to the product locations in the warehouse

and the edges refer to the shortest path between two nodes. The order picker starts his

cycle from the depot and after visiting each cluster exactly once and collecting the products

present in the order list, by selecting the shortest route, he returns to the depot.

Given the warehouse representation and a list of storage locations to be visited by

the picker, let xij be a binary decision variable denoting whether the edge (i, j) ∈ Ē is

traversed by the picker. Moreover, we will use yi to model whether vertex i ∈ V̄ is visited

by the picker. To ensure that all required SKUs are picked, exactly one yi variable should

be set to 1 in each cluster.

The set of variables and parameters used in mathematical formulations for the GTSP

using integer linear programming is described as follow:
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Table 1: Mathematical notation for the DFJ and MTZ model.

Sets and indices

V Set of all the nodes (all storage locations of SKUs) in the graph, V = {0, 1, 2, ..., n}.
The depot node is denoted by 0.

V̄ ⊆ V The set of all storage locations of SKUs on the picking list, including the depot.
K The set of all SKUs in the warehouse.
K̄ ⊆K The set of all SKUs on the picking list.

T ⊆ V̄ Non-empty subset of nodes in which not all SKUs are represented, i.e., there is a k ∈
{0, . . . , K̄} | T ∩ Ck |= 0.

CT Set of the SKUs with at least one element in T in which 1 ≤ |CT | < |K̄|.
Ck Set of all nodes in the cluster k.

Parameters

dij Length of edge (i, j).

Decision variables

xij Binary variable that equals 1 if edge (i, j) is traversed from i to j; 0 otherwise.
yi Binary variable that equals 1 if vertex i is visited and 0 otherwise.
up order of visiting cluster p in the tour for MTZ subtour elimination constraint
wpq Binary variable 1, if the order-picker visits a node of SKU q immediately after visiting

a node from SKU p and 0 otherwise

min
∑

(i,j)∈Ē

dijxij (1)

∑
i∈Ck

yi = 1 ∀k ∈ K̄ (2)

∑
i∈V̄ |i ̸=j

xij = yj ∀j ∈ V̄ (3)

∑
j∈V̄ |j ̸=i

xij = yi ∀i ∈ V̄ (4)

∑
i∈CT |i̸=j

∑
j∈CT |j ̸=i

xij ≤ |CT | − 1 ∀CT (5)

The objective function (1) minimizes the total distance travelled by the pickers. Con-

straints (2) ensure that every SKU must be visited exactly once. The flow constraints are

indicated by constraints (3) and (4). These constraints ensure that if an item is picked in

a given tour, one incoming and one outgoing edge to this node from other nodes should

exist. Constraints (5) are the subtour elimination constraints.
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3.3.2 MTZ formulation of GTSP

The second ILP formulation considered in this study is the GTSP formulation proposed

by [41] and improved by [13] using Miller–Tucker–Zemlin (MTZ) subtour elimination con-

straints. The mathematical formulation is the following:

min
∑

(i,j)∈Ē

dijxij (6)

wpq =
∑
i∈Cp

∑
j∈Cq

xij ∀ ∈ K̄ | p ̸= q (7)

∑
p|p ̸=q

wpq = 1 ∀q ∈ K̄ (8)

∑
q|q ̸=p

wpq = 1 ∀p ∈ K̄ (9)

∑
j∈V̄ \{i}

xji −
∑

j∈V̄ \{i}

xij = 0 ∀i ∈ V̄ (10)

up − uq + |K̄|wpq ≤ |K̄| − 1 ∀p, q ∈ K̄ | p ̸= q (11)

2 ≤ up ≤ |K̄|+ 1 ∀p ∈ K̄ | p ̸= 1;u1 = 1 (12)

xij ∈ {0, 1} ∀i, j ∈ V̄ (13)

The objective function (6) is minimizing total distance traveled by the order picker.

Constraints(7) are the definition of the auxiliary variables, wpq, in terms of the defined

decision variables xij. Constraints (8) and (9) ensure that every SKU must be visited

exactly once. This is done by ensuring that the degree of the incoming and outgoing arcs

from each SKU is equal to 1, respectively. Constraints (10) state that entering flow to

every node should be equal to exiting flow (flow balance constraints). Constraints (11) are

the subtour elimination constraints, which represent the visiting order for all SKUs.

3.4 Reflection on existing formulations

In the DFJ formulation, the computational time goes up easily as the number of constraints

grows exponentially in the number of nodes in the graph. More specifically, the number

of subtour elimination constraints equals (2K̄ − K̄ − 1), where K̄ is the number of SKUs.

This implies that solving this model must be done with a separation routine on the subtour

elimination constraints, which is time-consuming.
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[41] show that the MTZ formulation contains O(n2) binary variables and O(n2) con-

straints. As such, the number of variables and constraints are polynomial in the size of the

problem. This formulation, however, makes use of three types of variables: one based on

the nodes (all SKU locations), one based on the clusters (subsets of SKU locations that

contain the same SKU), and one based on the arcs.

3.5 A new mathematical formulation for the GTSP

In this section, we present a new mathematical formulation for the generalized travelling

salesman problem that combines the beneficial characteristics of the above-mentioned DFJ

and MTZ formulations. This new formulation is based only on decision variables at the

SKU level. For the subtour elimination constraints, we rely on the MTZ approach.

Table 2: Summary of all mathematical notation.

Sets

V The set of all the vertices in the graph (complete warehouse).
V̄ ⊆ V The set of all storage locations of SKUs on the picking list, including the depot.
Ck The set of all vertices in cluster k.
K The set of all SKUs in the warehouse.
K̄ ⊆K The set of all SKUs on the picking list.

Parameters

dij Length of edge (i, j).

Decision variables

xij Binary variable that equals 1 if edge (i, j) is traversed from i to j; 0 otherwise.
yi Binary variable that equals 1 if vertex i is visited and 0 otherwise.
ui The position of vertex i in the tour.
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min
∑

(i,j)∈Ē

dijxij (14)

∑
i∈Ck

yi = 1 ∀k ∈ K̄ (15)

∑
i∈V̄ |i ̸=j

xij = yj ∀j ∈ V̄ (16)

∑
j∈V̄ |j ̸=i

xij = yi ∀i ∈ V̄ (17)

u0 = 1 (18)

ui − uj + |K̄|xij ≤ |K̄| − 1 ∀i, j ∈ V̄ \{0} | i ̸= j (19)

2 ≤ ui ≤ |K̄|+ 1 ∀i ∈ V̄ \{0} (20)

ui ∈ N ∀i ∈ V̄ (21)

xij , yj ∈ {0, 1} ∀i, j ∈ V̄ (22)

The objective function (14) minimizes the total distance travelled by the picker. Con-

straints (15) ensure that each SKU on the pick list is picked exactly once. Constraints (16)

and (17) set the incoming and outgoing edges for each visited cluster. In constraints (18)

the depot is set as the first vertex in the pick tour. The positions of all other vertices in

the tour are set via constraints (19), after which the domain of these positions is bounded

by the number of clusters that will be visited in the complete pick tour in constraints (20).

Finally, the domains of the decision variables are managed by constraints (21) and (22).

4 Guided Local Search algorithm

To solve the order picking problem under a scattered storage policy, we present a Guided

Local Search (GLS) algorithm. In this variant of local search, problem-specific features of

the solution are considered directly in the objective function, thereby ‘guiding’ the search

to solutions that possess most features of high quality solutions.

4.1 Overview of our GLS procedure

In section we provide a brief overview of the different components within our GLS algo-

rithm. In the following sections, we will elaborate on each of these in more details. The

pseudo-code of our GLS algorithm and a flow diagram are provided in Algorithm 1 and

Figure 3, respectively. In figure 3, r is the set of shaking phase operators, for r = 1, ..., rmax,
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and l is the set of local search moves, for l = 1, ..., lmax.

Algorithm 1 Pseudo-code for our Guided Local Search algorithm.

1: k ← 0; ▷ iteration counter
2: x← initial solution made by a Construction Method;
3: { set all penalties to 0}
4: for i← 1 until M do
5: pi ← 0;
6: end for
7: {define the augmented objective function }
8: update the augmented objective value and set h(x)← g(x) + λi

∑
i∈M piIici

9: while Stopping Criterion do
10: xk+1 ← VNS (xk, h);
11: {compute the utility of features }
12: {penalize features with maximum utility}
13: for All i such that utili is maximum do
14: pi ← pi + 1;
15: end for
16: k ← k + 1;
17: end while
18: x∗ ← best solution found with respect to objective function g;
19: return x∗

First, an initial solution is generated by means of a constructive heuristic. As we only

accept feasible solutions, this initial solution will be a tour that starts and ends at the

depot and visits exactly one storage location for each required SKU.

Then, we evaluate the initial solution based on its augmented objective function. The

augmented objective function is a combination of the actual objective function (in our case

the minimization of the total distance travelled) with a series of penalty terms. These

penalty terms focus on problem-specific features that are likely not appearing in the opti-

mal solution (e.g., very long travel distance between two consecutive picks). By penalizing

these undesirable solution features, we help the algorithm to converge towards the more

promising regions of the solution space faster. Moreover, the penalties are updated dynam-

ically to help the local search heuristic to escape local optima (e.g., by suddenly allowing

solutions that score less high on the included criteria) or to focus on high quality regions

(e.g., by punishing certain criteria more) [88].

In the actual local search phase, we improve the current solution by exploring a series

of local search neighbourhoods sequentially. As such, we make use of the principles of

Variable Neighbourhood Search. If no improvements can be found (i.e., the algorithm is

stuck in a local optimum), a shaking phase – often referred to as a perturbation – helps to

reach different regions of the solution space, after which the algorithm continues its search.
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Figure 3: Overview of the Guided Local Search algorithm.
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4.2 Step 1: Generate an initial solution

The aim of this step is to generate a feasible solution to the order picking problem under

a scattered storage policy. To achieve this, we propose the following two approaches: a

greedy nearest neighbour heuristic and a farthest insertion algorithm. The performance of

both methods on the final solution is assessed (see Section 5) but no significant difference in

final results (i.e., after the local search) could be found. Thus, since both of the constructive

algorithms find the solution in less than one second, we run both algorithms, we select the

best generated solution among them and use it as the initial solution for our GLS heuristic.

The first method, a greedy nearest neighbour heuristic is an adaptation of the nearest

neighbour heuristic for the TSP. The picker starts at the depot after which the storage

location that contains an SKU on the pick list and is closest to the current location is

visited. Each time a storage location is added to the pick tour, all storage locations from

the same cluster are removed from the graph. This procedure is repeated iteratively until

all required SKUs have been picked. Then the picker moves from its current location back

to the depot. As all distances in the graph are known, the procedure is very fast. However,

due to the myopic decisions (i.e., we only consider a decision on the next location to visit),

inefficient connections towards the end of the route are likely.

Second, we propose a farthest insertion algorithm, which works as follows: in the first

step, we find for each SKU on the pick list the storage location that is closest to the depot.

Then, among these locations we add the one that is farthest away from the depot to the

pick tour. Knowing that we have to pick each SKU on the pick list, we know that for sure

we need to travel up to this point into the warehouse (i.e., the nearest storage location of

the SKU that is furthest away from the depot). For each next SKU, we perform a cheapest

insertion (i.e., the storage location that increases the length of the pick tour the least is

included into the partial tour. We continue until all required SKUs have been visited by

the picker.

Figures 4a and 4b illustrate an example of the greedy and farthest insertion construc-

tive solution respectively for the case where 3 clusters of products with 3 items (nodes)

each exist.
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(a) Greedy nearest neighbour heuristic. (b) Farthest insertion algorithm.

Figure 4: Constructive algorithms to generate an initial solution.

4.3 Step 2: Define the augmented objective function

Following the definitions from Alsheddy et al. [3], let F be set of solution features by which

the quality of a solution can be assessed. For each feature i ∈ F , let Ii be a binary variable

indicating whether the feature is present in the current solution or not (also denoted a the

indicator function). Let pi record the number of times that feature i has been penalised

(appeared in the local minima) and initially it is set to zero. Finally, we define λi as an

overall weight factor for penalty dedicated to the feature i in the objective function. As

such, λi balances the importance of the penalty factors over the main objective function

(i.e., the minimization of the total distance travelled) and, thereby, controls the degree

of guidance within the GLS. The value of λi is defined with parameter tuning (the value

of λ depends on another parameter (α which will be explained later). Furthermore, let

c = {c1, c2, . . . , c|F |} be a cost vector, in which ci denotes the cost of feature i.

Denoting the main objective function (i.e., minimizing the total distance travelled by

the order picker) by g(s), the augmented cost function is given by

h(s) = g(s) +
∑
i∈F

λipiIi(s)ci (23)

The objective within the GLS algorithm is to minimize the augmented cost function

h(s).

Each time a local minimum is found by the algorithm (and thus the augemented cost

function cannot be optimised further), we will evaluate the current solution based on its

solution features. This evaluation is done based on a so-called utility function util(s∗, fi)
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that scores the solution s∗ on each feature i as follows:

util(s∗, i) = Ii(s
∗)

ci
(1 + pi)

(24)

If a feature is not present in s∗ (denoted by the indicator function Ii(s
∗) = 0), then the

utility of penalizing it equals to 0. For a feature that is present (Ii(s
∗) = 1), its cost ci will

be computed (i.e., to what extend is the feature present in the solution). If a feature is

penalized multiple iterations in a row, its penalty parameter pi (which works as a counter)

increases which will dampen the importance of the feature’s utility which, at its turn,

inserts more diversification on the search (i.e., other features will become more important

in the augmented cost function).

The guide our local search to the more promising solutions, we define the following

features:

1. The maximum number of times that each picker-aisle is visited.

This feature tries to force the algorithm to pick all the items needed in the same aisle

in one visit and avoids visiting an aisle more than twice (we know that in optimal

solution, each aisle should be visited at most once in each direction). Let T a be the

number of times that aisle a ∈ A is visited (A is the set of aisles) in our current

solution s∗, then the utility of this aisle is given by:

util(s∗, 1) = max
a

[
Ia1 (s

∗)
T a

pa1 + 1

]
(25)

As part of our augmented objective function, we will punish the aisle with the largest

utility. pa1 is the penalty counter for aisle a. Moreover, λ1 is the penalty dedicated

to this feature.

2. The maximum number of times that each cross-aisle is visited.

Similar to feature one, here we try to penalize the number of times that each cross-

aisle is visited, so that we reduce the extra movements of an order picker in the

warehouse. Let T c be the number of times that cross-aisle c ∈ C is visited (C is

the set of cross-aisles) in our current solution s∗, then the utility of this cross-aisle is

given by:

util(s∗, 2) = max
c

[
Ic2(s

∗)
T c

pc2 + 1

]
(26)

As part of our augmented objective function, we will punish the cross-aisle with the
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largest utility. pc2 is the penalty counter for cross-aisle c. Moreover, λ2 is the penalty

dedicated to this feature.

3. The maximum number of SKUs picked from each aisle.

The idea is that we would like to pick all items, while having to visit as few aisles

as possible. Unlike the first two penalties, the cost associated with this feature is

not as clear. To visit the least amount of aisles, we want to visit those that contain

items from a large variety of clusters. Hence, the aim is to traverse those aisles which

contain a large set of items from different clusters. Therefore, we wish to penalize

the aisles which have low utilization. Considering that in the optimal case, we expect

that in an aisle visit, an order-picker collects as many products as possible, in order

to reduce the number of times other aisles are visited. To guide the search mechanism

based on this feature, let Na be the number of SKUs picked in aisle a in our current

solution s∗, then the cost of this feature is defined as
(

1
Na

)
. As a result, the utility

of this feature is given by:

util(s∗, 3) = max
a

[
Ia3 (s

∗)
1

Na(pa3 + 1)

]
(27)

As part of our augmented objective function, we will punish the aisle with the largest

utility. pa3 is the penalty counter for aisle a. Moreover, λ3 is the penalty dedicated

to this feature.

4. The longest edges. Our last important feature to be penalized is the longest

edge travelled in the warehouse. If the length of an edge ij which is the shortest

path connecting node i to node j in our solution is too high, it can be a sign of

non-optimality since it may be the case that the order-picker has visited some aisles

without picking any item on his way, or maybe the destination node of the edge could

be visited by another closer node. Intuitively, we do not want long edges but cannot

exclude them at the beginning of the search procedure, as they may be part of the

optimal solution. Thus, we penalize them during the search if they appear in local

optima instead of disregarding them.

The utility function of this feature is as follows:

util(s∗, 4) = max
ij

[
I ij4 (s

∗)
dijxij

pij4 + 1

]
(28)
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where xij is a binary variable taking value 1 if order picker visits node j immediately

after visiting node i and dij denotes the length of the edge. A natural choice for

the cost associated with these solution features is the length of the analogous edge.

Moreover, λ4 is the penalty dedicated to this feature.

4.4 Step 3: Improvement by means of local search

4.4.1 Variable Neighbourhood Search

To improve the quality of the initial solution, we make use of variable neighbourhood search.

Having defined multiple local search operators, the algorithm changes the operator as soon

as no further improvement can be found in the current neighbourhood (i.e., the search is

stuck in a local optimum). The following neighbourhoods are checked consecutively within

our algorithm:

• 2-opt. For a given set of two arcs in a single route that construct a crisscross, this

move substitutes them with two new arcs by reversing the sequence of the nodes

visited in between.

• 3-opt. Remove three arcs and interchange their position in the itinerary.

• intra-swap. This move selects two random nodes (clusters) in our current solution

(route) and swaps the nodes of these positions in the current route.

• insert. This move selects two random positions of nodes in our current solution

(route) and inserts a randomly chosen element in front of another randomly chosen

element.

• reverse. This move selects two random positions of nodes in our current solution

(route) and reverses the direction between randomly chosen elements.

4.4.2 Shaking phase

Once a local optimum has been reached, the algorithm makes use of a shaking procedure

to escape from it. The shaking procedure, inspired by the work of Sengupta, Mariescu-

Istodor, and Fränti [75] and Tuononen [84], executes random moves from either of the two

following operators.
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• inter-swap. This move selects one random node (cluster) in our current solution

(route) and replaces another node of the same cluster which currently is not part of

the solution with the existing node of that cluster. (see Figure 5)

• double-bridge. This move consists of a sequence of two disconnected 2-exchange

moves. In the first exchange, the algorithm removes two random edges from the

current tour and links their endpoints by adding new edges, resulting in two sub-

tours. The second exchange removes two other edges, one from each sub-tour and

reconnects the two parts by creating a bridge and making a feasible tour. (see

Figure 6)

Figure 5: Visualisation of the inter-swap move.

Figure 6: Visualisation of the double-bridge move.

4.5 Stopping criterion

The algorithm stops as soon as a maximum number of iterations of the VNS without

improvement has been performed (which we fix to 1000) or if the running time exceeds 60

minutes.
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5 Model implementation and numerical results

5.1 The instances

We perform computational experiments by generating a set of random instances, based on

the instance generation procedure described in Theys et al. [81]. 1

The benchmark used in our study is the one from [67] and [81] consisting of 9 different

scenarios: three different number of aisles (5,15,60), three different number of cross aisles

(3,6,11) and three different number of products in the order (15,60,240). As previously

mentioned, there are no papers in the literature considering the GTSP in multi parallel

aisle warehouses and the order picking problem.

5.2 Some details on implementation

All algorithms presented in this paper are implemented in Java, and the ILP formulations

are solved with IBM CPLEX 22.1.0 with default parameters. The time limit for the exact

algorithms has been set to 3600 seconds. Testing has been carried out on a Macbook

Air with an Apple Silicon M1 chip and 16GB of RAM. It will be shown that high-quality

solutions can be generated for real size instances of the order picker routing problem within

a reasonable time. Please note that our instances are not exactly the same than those solved

by [73] but were generated with the same parameters. It is worth mentioning that for each

instance, we run the algorithms (all MILP, VNS and GLS) 10 times and report the mean

values in the tables.

5.3 Parameter tuning

Another important part of our sensitivity analysis is the parameter tuning in order to find

the best values for the penalty coefficients (λ) in our GLS algorithm. Recall that the λ

parameters control the degree to which the respective penalties influence the search pro-

cedure. As it has been previously stated, these parameters present a trade-off between

exploration and exploitation of the search space. Hence, the choice of the values associ-

ated with these parameters will impact the efficiency of the search procedure. Since the

effectiveness of exploration and exploitation is highly dependent on the landscape of the

search space, the choice of the λ parameters will, in general, be instance specific. Based on

1More information about the instances and instance generator can be found via https://homepages.

dcc.ufmg.br/~arbex/orderpicking.html.
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computational experiments for several problems, [89] observed that the basis of obtaining

good values for these parameters can be found by dividing the objective value within a

local optimum by the number of solution features present in this solution which makes sure

that these parameters are instance independent. In another words, λ is computed dynam-

ically after finding the first local optimum and before penalizing the features for first time.

Having an α parameter which is calculated by sensitivity analysis, λ is calculated by

λ =
αg(s∗)

|Fs∗|
(29)

in which s∗ and Fs∗ denote the local optimum and the features present in the solution.

The value of the α parameter should be between 0 and 1, using the information from [88]

since we are using the same 2-opt and 3-opt operators in our VNS heusristic. To optimize

performance on a built model, parameter tuning is necessary for any algorithm. To do

so, we add each penalising feature to the objective function separately and then solve the

model for several values of α and find the best point where our total cost is minimized.

Figure 7 illustrates the optimal value for our α parameter.

Figure 7: Sensitivity analysis of GLS algorithm for optimal tuning of penalty confidentα

5.4 Comparison between state-of-the-art formulations on tradi-

tional problem

We first assume that in our GTSP, each cluster consists of only one node, changing the

problem to normal TSP, and then we solved our exact and heuristic algorithms to have a
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better comparison and to examine the efficiency of our proposed algorithm. In figure 8, we

solve the instances on the multi-block warehouse and each cluster containing only one item

(TSP). As shown in this figure, for all the instances of different size, our exact model has

the optimal solution in less than one minute. The calculation times are based on CPLEX

solver time.

It is illustrated in this figure that our proposed MILP(MILP proposed) gives better so-

lutions in comparison with the MILP in the literature using MTZ formulation (given in

column ’MILP old’) in a shorter running time. In this table ’O’ means Optimal solution,

’F’ is used to show Feasible solution and NS means no solution. In this table, MILP

best cost refers to the the best objective value among the first two columns. Both of our

constructive algorithms (greedy and Farthest-Insertion) give us the initial solution in less

than one second. Furthermore, their solution quality is not comparable since non of them

is outperforming the other one in the solution quality. For some instances, the greedy

algorithm gives better solutions and for the other ones, the Farthest-Insertion. No pattern

for their solution quality based on different instance sizes has been found. Thus we run

both algorithm and since they are both very fast, we select the best generated solution

among them and use it as the initial solution for our GLS heuristic. To have an analysis

over the efficiency of the GLS and how much it improves the VNS without penalties, we

separate these two parts and solve the instances with both of them (VNS and VNS+GLS).

Since in this table, we consider only one item inside each cluster (TSP), the instance sizes

are smaller than the other sets and our MILP model is giving optimal solution for most

of the instances. Therefore, the improvements of the exact model by VNS is on average

6.5%. Also the average improvement of VNS by GLS is 2%. This number gets higher if

the instance sizes (items in each cluster) increase. It is worth mentioning, that our GLS

heuristic is capable of finding the optimal solutions for most of the instances along with our

proposed MILP, but in a much shorter run time (less than 3.5 seconds for all instances).

The other non-optimal instances, are having a huge negative gap with our exact solution,

which shows the improvement in our heuristic solution. For bigger instances, the heuristic

stops by the termination criteria regarding no improvements for 1000 iterations.

5.5 Performance for increasing nodes per cluster

In this section, we examine the performance of our exact and heuristic models on 4 differ-

ent cluster sizes (2,5,10,20) and solve our instances based on these cluster sizes. In figures

9-12, the numerical results for the cluster sizes 2,5,10 and 20 are reported respectively. As
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Figure 8: Result for problem instances in case of each cluster containing only one product
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it is shown in these tables, with the increase in cluster sizes and accordingly the instance

sizes, our proposed MILP is not able to give us a feasible solution within the time limit of

one hour. However, our heuristic algorithm is able to solve the problem and give us a good

solution in a very short time (for our biggest instance with 4800 nodes, the run time is

52.5 seconds which makes it remarkably fast). For the cluster size 1,2 and 5, our proposed

MILP can provide optimal or feasible solutions, but for the larger instances, the model is

not able to give any solutions within 60 minutes. The other notable point in these tables

is the comparison between our proposed MILP and the existing MILP in the literature.

On average, the run time of our proposed MILP is 20% less than the other MILP in the

literature, and the quality of the solutions generated by our MILP is on average 15% better

than the existing MILP.

Comparing the solutions of GLS with VNS, we can see that implementing GLS and pe-

nalizing the features of the solutions has an improvement of 15% on average; and this

percentage is higher for bigger instances than for small instances with 2 products in each

cluster, for which the average improvement is 4%.

Furthermore, the percentage of improvements of GLS implemented on a VNS algorithm

for cluster sizes 2,10 and 20 is illustrated in figures 13-15. For the smaller cluster size (2),

the average improvement achieved by GLS is 4% which is much lower than the percentage

of improvements in larger instances (cluster size 20) for which this value is 15%. The reason

for this is that in the smaller instances, our VNS algorithm is also able to find optimal or

close to optimal solutions. Therefore, a GLS algorithm does not add to much to the VNS

algorithm. However, in bigger instances, the solutions found by GLS have much better

quality and the running times of the GLS is much lower than the VNS or MILP.
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Figure 9: Result for problem instances in case of each cluster containing 2 products

28



Figure 10: Result for problem instances in case of each cluster containing 5 products
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Figure 11: Result for problem instances in case of each cluster containing 10 products
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Figure 12: Result for problem instances in case of each cluster containing 20 products
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Figure 13: %improvement of VNS by applying GLS in case of cluster size=2

Figure 14: %improvement of VNS by applying GLS in case of cluster size=10

Figure 15: %improvement of VNS by applying GLS in case of cluster size=20
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5.5.1 Warehouse Layout Comparison

In this section, we examine the effects of different warehouse sizes on the proposed algo-

rithm. The computational run times for all problem instances are plotted in figure 16.

The figure is separated into sub-figures for the instances related to the different cluster

sizes. Furthermore, the nine different warehouse configurations are sorted along the x-axis

according to the increasing number of total aisles contained in the warehouse. For example,

the label k5h3 refers to the configuration with five aisles and three cross aisles, which is

the smallest configuration considered in this paper. In this graph, n is considered as the

number of products in the instance.

Figure 16: Sensitivity analysis of Warehouse Layout

In this figure, it is shown that the computational performance across all configura-

tions with twenty items is very stable. A slightly increasing trend, especially for twenty

clusters, can be identified when moving to sixty items. This implies that the computa-

tional performance worsens as the size of the warehouse grows. This trend becomes more

evident when considering the instances containing one hundred items. However, it can

also be seen that the warehouse configuration is not the driving factor affecting the run
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times, but rather the number of items and clusters. This also conforms to the design of

the algorithm since the number of iterations performed is solely based on these two factors.

6 Conclusion

in this paper, we proposed a novel exact model and a guided local search heuristic for

the Generalized Travelling Salesman Problem (GTSP) with geographical overlap between

clusters for order picking in a warehouse with scattered storage policy. This MILP model

and proposed GLS algorithm can be applied for any warehouse layout (general graph),

making it more practical. To the best of our knowledge, no exact models exist in the

literature for warehouses with more than two blocks for this problem. Our exact model

can be implemented in warehouses with many more blocks. This study is motivated by

the possible warehouse efficiency gains and the fact that scattered storage policies where

clusters overlap has received little attention.

The proposed algorithm uses problem-specific information to guide local search operators

to promising search spaces. The algorithm performs very well based on its computational

results. For cases with small clusters, the algorithm performs marginally better (although

the computation time is still much lower than the exact model). In the majority of in-

stances, when a greater number of clusters are considered, the algorithm discovers the

optimal solution, as guaranteed by exact methods. The algorithm often outperforms the

best known in the remaining cases. Although larger warehouses affected the algorithm’s

computational performance. Hence, the proposed GLS performs with many warehouse

layouts and generates high solutions in seconds or minutes. Our efficient GLS heuristic

solves large scale instances with up to 4800 nodes (with computation time less than one

minute). Medium-to-large situations have superior solutions than our MILP. Our algo-

rithm can solve all instances and provide a very good solution in a very brief amount of

time.

Implementation of the two exact methods used to acquire the results for the instances

used to evaluate the quality of the proposed heuristic algorithm is a significant limitation of

this paper. The restriction is a direct result of the implementation of subtour elimination

constraints, which ensure that solutions do not contain illegal subtours. The number of sub-

tour elimination constraints increases exponentially as the cluster size increases. Thus, the

computational performance of the commercial solver depends on how these constraints are
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implemented. Resultantly, many instances with 15–20 clusters were not optimally solved

with the exact model and retained a large GAP after 3600 seconds. This not only limited

the ability to analyze the solution quality and computational performance of heuristic and

exact methods, but also the size of the instances that could be considered. Due to the

inability to assess solution quality, performance analysis across warehouse layouts was also

affected.

Future research could examine order list due dates, dynamic customer orders, zoning, and

multiple pickers joint problems, integration of batching/order picking decisions and inclu-

sion of uncertain expected orders . Future research could also examine graph reduction

(pre-processing) in scattered storage policies where clusters overlap.
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Montoya. “An evaluation of picking routing policies to improve warehouse efficiency”.

In: International Journal of Industrial Engineering and Management 8.4 (2017),

p. 229.

[15] Angelo Castelda. Understanding The Impacts of eCommerce On Warehouse Oper-

ations. https://www.floship.com/blog/_ecommerce-warehouse-operations/.

Accessed: 2020-05-27.
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[74] André Scholz et al. “A new mathematical programming formulation for the single-

picker routing problem”. In: European Journal of Operational Research 253.1 (2016),

pp. 68–84.

[75] Lahari Sengupta, Radu Mariescu-Istodor, and Pasi Fränti. “Which local search op-
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