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In his novel East of Eden, John Steinbeck writes, “Maybe the knowledge is too great and maybe 
men are growing too small... Maybe kneeling down to atoms, they’re becoming atom-sized in 
their souls. Maybe a specialist is only a coward, afraid to look out of his little cage. And think 
what any specialist misses—the whole world over his fence.” Albeit probably unintended, 
Steinbeck makes an excellent argument for research that crosses the borders of a single 
discipline. The ideas against the fragmentation of science into discrete disciplines can be 
traced to philosophers as early as the sixteenth century. By the late twentieth century, the 
realization that specialist research misses relevant parallels and developments outside its 
own scope, fueled the use of interdisciplinary approaches to tackle the key problems facing 
society (Ledford, 2015). The key to mobilizing collaboration across the table has been 
to develop a shared sense of research goals and take practical steps towards bridging the 
cross-disciplinary gaps (Brown et al., 2015). In biology, these efforts have translated into 
research that links phenomenological observations obtained via experimental methods to 
physiological mechanisms; modeled together through computational and mathematical 
tools [referred to as systems biology, (Kitano, 2002)].

The need for research beyond a discipline holds especially true for brain research. The 
human brain is the most complex biological system in the universe. In order to understand 
it, we must study it from the cellular (micro) level to the behavioral (macro) level (Figure 
1). Neuroscience has therefore evolved as a multidisciplinary “science”, encompassing 
among others molecular biology, psychology, physiology, medicine, mathematics, and 
computer science (Grant, 2003). Neuroscientists face the vital challenge of relating 
insights from these different subfields of neuroscience to each other. Within neuroscience, 
research on the sensory systems and the neural processing of sensory information is of 
primary interest as it is essential to understand how the brain generates representations 
of objects and events in the environment, and thereby makes sense of the external world. 
The present thesis focuses on audition. The ability to hear and interpret the sounds 
around us is not only necessary for survival but also enriches our life with interpersonal 
communication. However, how our brain makes sense of the auditory information remains 
unknown. Modern systems neuroscience of audition attempts to unify the understanding 
of hearing by linking different scales of research on auditory processing, ranging from 
cellular (micro) recordings in animal models to neuroimaging and behavioral (macro) 
observations in humans. However, it remains a challenge to meaningfully integrate the 
observations and results obtained in different species, with different methods and at 
different resolutions (spatial and temporal). A possible solution to tackle the lack of 
integration across subdivisions of neuroscience is the use of computational modeling. 
Depending on specific modeling goals and available computational resources, these 
models range from single neuron models (micro) to models of population-level responses 
(meso), and large-scale networks across brain regions or behavior (macro).
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This thesis tackles the challenge of creating a unified view of auditory processing in 
the auditory cortex (AC) using computational tools and empirical data originating 
from diverse techniques across different spatial and temporal scales. To that effect, we 
developed a computational model of sound processing in the AC, which integrates 
existing knowledge from electrophysiological and psychophysical observations. The 
model was then employed to investigate the neuronal underpinnings of the neuroimaging 
data. Furthermore, the thesis explores the multisensory (i.e., visual) influences on the 
information processing in the AC. Collected multisensory data may be integrated into the 
proposed AC model, thereby inching towards a holistic view of information processing in 
the AC. With this approach, we merged results from the small spatial scale of neuronal 
firing (as observed in animal models) to the large scale of human behavior.

The current chapter introduces the fundamentals of auditory information processing; 
it describes the hierarchical auditory pathway, focusing on the distinct neuronal and 
functional characteristics of sound processing streams at the level of the cortex. This 
chapter also introduces multisensory processing in the AC, as recent evidence from 
anatomical and functional studies suggests a possible role of the early auditory regions in 
multisensory processing (Falchier et al., 2002, 2010; Kayser et al., 2008, 2010; Schroeder 

Figure 1: Spatial and time scales of neuroscience. Relevant brain processes occur at different spatial and 
temporal scales. While specialized methodology exists to study each of these different scales, the challenge 
lies in integrating available information and create a holistic view of brain functioning. Reproduced with 
permission from (Frackowiak and Markram, 2015).
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and Lakatos, 2009; Atilgan et al., 2018; Gau et al., 2020). These findings drive the 
experimental studies reported in the second part of the thesis.

1 The Auditory Cortex

After sounds reach the ear, processing of incoming sound signals in the auditory periphery, 
subcortical auditory structures, the AC, and subsequent higher-order cortical regions 
allows us to perceive, recognize, and respond to sound sources in our environment. At the 
periphery, the information processing begins at the level of the outer ear. The vibrations 
in the air are converted to mechanical reverberations in the middle ear and are then 
transduced to electrical signals in the inner ear where the cochlea maps the frequencies 
of the vibrations onto a spatial axis. That is, different spatial locations along the spiral of 
the cochlea preferentially respond to specific frequencies of the sound waveform (with 
low to high frequencies being coded from the apex to the base of the cochlea). This 
spatial representation of sound frequency is referred to as tonotopy. The tonotopically 
transformed information is passed on to the eighth cranial nerve and processed by a series 
of subcortical nuclei [including the cochlear nucleus, superior olivary complex, inferior 
colliculus, and medial geniculate body (MGB) of the thalamus] before it reaches the AC.

Over the past five decades, advances in research techniques have enabled researchers 
to collect and analyze a tremendous amount of data on the anatomy and function of 
the AC. These techniques vary from cyto- and myeloarchitectural and tract-tracing 
studies, to intracranial recordings of a single cell and small neuronal populations in 
animal models, to investigations in humans using both non-invasive techniques [such as 
magnetoencephalography (MEG), electroencephalography (EEG), functional Magnetic 
Resonance Imaging (fMRI), and positron emission tomography (PET)] and invasive 
techniques [such as electrocorticography (ECoG) recordings from epilepsy patients]. 
These data act as resources to understand the anatomical architecture of the AC, the 
processing hierarchy, and the connectivity amongst subcortical-to-cortical and cortico-
cortical auditory processing stages.

The AC is located on the superior temporal plane, and - in the human brain - is largely 
hidden within the lateral sulcus (Hackett et al. 2011; Hackett et al., 1998; Sweet, Dorph-
Petersen, and Lewis 2005; Kaas and Hackett 2000). The information arrives at the AC 
through three distinct types of projections originating from MGB, namely lemniscal, 
non-lemniscal, and multisensory pathways (Rouiller et al., 1991; de la Mothe, 2016). 
These projections originate from different divisions of the MGB [ventral: lemniscal, 
dorsal: non-lemniscal, medial: multisensory (Aitkin et al., 1972; Calford and Aitkin, 
1983)]. While the connectivity between the lemniscal ventral MGB and the AC is well 
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described, the thalamocortical non-lemniscal and multisensory pathways remain less 
understood (de la Mothe, 2016).

The hierarchical organization of the human AC into three regions (core – belt – parabelt) 
is rooted in non-human primate models (Kaas and Hackett, 2000; Hackett et al., 2011; 
Hackett et al., 1998; Rauschecker et al., 1995). A homologous organization has been 
replicated in humans (Sweet et al., 2005). The core regions are the first stage of auditory 
cortical processing. The core receives the majority of input from the ventral division of 
the MGB (Andersen et al., 1980; Calford and Aitkin, 1983). There is evidence of two 
subdivisions of the core areas in humans; primary auditory cortex (A1) and a rostral (R) 
core area (Galaburda and Sanides, 1980; Rivier and Clarke, 1997; Wallace et al., 2002). 
The core regions project to surrounding belt regions [six subdivisions reported in humans 
(Wallace et al., 2002)], which in turn project to the parabelt regions [two subdivisions 
(Hackett et al., 2011)].

Through its lemniscal input from the ventral subdivision of the MGB, the auditory core 
areas receive tonotopically-organized input (Andersen et al., 1980; Calford and Aitkin, 
1983). This tonotopic organization seems, at least in part, to be preserved throughout 
the AC hierarchy, resulting in multiple topographic maps of frequency preference as 
established using a variety of stimuli and imaging methods in humans (Formisano et al., 
2003; Moerel et al., 2012; Su et al., 2014) and non-human primates (Bendor and Wang, 
2008; Merzenich and Brugge, 1973; Kuśmierek and Rauschecker, 2009). Frequency 
preference shows a columnar organization [i.e., it is preserved throughout the cortical 
depth of the AC (Abeles and Goldstein, 1970; Shamma et al., 1993; De Martino et al., 
2015; Tischbirek et al., 2019)].

1.1 Information Processing Pathways
The core – belt – parabelt hierarchy processes auditory information sequentially. That is, 
the belt regions receive their input from the core and project heavily to parabelt, while 
the parabelt does not receive major input from the core regions (Hackett et al., 1998; 
Rauschecker et al., 1997). This connectivity-based hierarchy is reflected in the neuronal 
responses to sounds, which grow increasingly complex when moving through the auditory 
cortical stages. Neurons in the core regions show sharper frequency tuning and faster 
temporal dynamics in comparison with the belt regions (which display broader tuning 
and slower temporal dynamics) (Rauschecker et al., 1997; Recanzone et al., 2000). The 
parabelt shows even slower temporal dynamics (Camalier et al., 2012).

Apart from serial processing, the information in the AC is also processed in parallel 
by two anatomically distinct streams. The rostral or ventral stream originates in areas 
located rostrally to the primary auditory core and projects via the anterior temporal 
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lobe to the ventral regions of the frontal cortex. The caudal or dorsal stream originates 
in areas located caudally to the primary core and projects via the parietal cortex to 
dorsal frontal regions (Scott et al., 2017). These two processing streams show distinct 
neuronal properties (Jasmin et al., 2019; Zulfiqar et al., 2020). Compared to primary and 
surrounding auditory areas, neurons in the rostral field exhibit longer response latencies 
and narrower frequency tuning (Recanzone et al., 2000; Tian et al., 2001; Bendor and 
Wang, 2008; Camalier et al., 2012). Instead, neurons in the caudal fields respond with 
shorter latencies, comparable to or even shorter than those in A1, and have broader 
frequency tuning (Recanzone et al., 2000; Kuśmierek et al., 2014). These streams are 
hypothesized to process the incoming sound in parallel, with each stream representing 
the sound at a different spectro-temporal resolution (Schönwiesner and Zatorre, 2009; 
Santoro et al., 2014).

This parallel information processing along the rostral-caudal axis is hypothesized to 
underlie auditory cognition. The rostral and caudal stream have been hypothesized to 
reflect specialized mechanisms of sound analysis for deriving semantic information (“what” 
processing) and processing sound location and sound movement (“where” processing), 
respectively (Kaas et al., 1999; Romanski et al., 1999b; Belin et al., 2000; Kaas and 
Hackett, 2000; Rauschecker and Tian, 2000; Tian et al., 2001; Arnott et al., 2004; 
Jasmin et al., 2019). Recent human neuroimaging studies reported evidence in support 
of the existence of parallel processing streams in the human AC. Along the rostral-caudal 
axis of the human AC, a spectro-temporal trade-off has been observed. That is, the fine-
grained spectral properties of sounds were shown to be analyzed optimally in rostral 
auditory regions, whereas the fine-grained temporal properties were analyzed optimally 
in caudal regions (Schönwiesner and Zatorre, 2009; Santoro et al., 2014). However, 
the hemodynamic blood oxygenation level-dependent (BOLD) signals measured with 
fMRI are an indirect measure of neuronal activity. BOLD signals originate from vascular 
changes (i.e., changes in blood oxygenation, blood flow, and blood volume) in response 
to neuronal activity. While the resulting fMRI signal is correlated to the underlying 
neuronal activity (Logothetis et al. 2001; Logothetis et al. 1999; Rees et al., 2000), 
it does not directly measure the neuronal activity. Thus, it remains to be determined 
how the observed spectro-temporal preferences along the rostral-caudal streams relate to 
neuronal mechanisms.

1.2 Multisensory Processing in the Auditory Cortex
Considering sounds independently of the other sensory signals only provides a limited 
view of information processing in the AC. Our environment is bursting with multisensory 
information that forms our percept of the world around us. Traditional models of late 
cortical integration suggest that multisensory integration is a function of higher-order 
association cortices which combine the information processed by early sensory sites. 
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However, the early sensory areas have also been shown to play a role in multisensory 
processing (Hackett et al., 2007; Driver and Noesselt, 2008; Koelewijn et al., 2010). 
The multisensory responses in the AC can be driven by thalamic (feed-forward) and/or 
lateral cortico-cortical (feedback) connectivity. The multisensory thalamocortical inputs 
originate from the medial division of the MGB and target all regions of the AC (Aitkin 
et al., 1972; Calford and Aitkin, 1983).

The lateral cortico-cortical connections targeting the AC can be originating from early 
sensory cortices and/or higher association cortices (Cappe et al., 2009; Lewis and van 
Essen, 2000). There is ample functional evidence showing visual influences on responses 
in the human non-primary auditory cortex (Calvert et al., 2000; Calvert and Campbell, 
2003; van Atteveldt et al., 2004; Noesselt et al., 2007; Stevenson et al., 2010; Laing et al., 
2015) and even at the level of primary auditory cortex as shown in animals models (Kayser 
et al., 2007, 2008, 2010; Bizley and King, 2009) and human studies [electrophysiology: 
(Besle et al., 2008), neuroimaging (Werner and Noppeney, 2010; Gau et al., 2020)]. At 
the level of single units, the multisensory influences are reflected in changes in the phase 
of auditory local field potential (Kayser et al., 2008, 2010). These changes in local field 
potentials have been shown to amplify sensory inputs (Schroeder and Lakatos, 2009) 
and, more recently, to provide cross-modal cues in auditory scene analysis (Atilgan et al., 
2018). The early onset of observed multisensory effects supports the role of early sensory 
cortical connectivity in multisensory interactions (Wang et al. 2008; Besle et al. 2008).

Figure 2: Parallel information processing in the AC. AC information processing is characterized by distinct 
neuronal and functional responses along the rostral-caudal axis. These streams are hypothesized to underlie 
the specialized processing of “where” (caudal) and “what” (rostral) pathways. Adapted with permission from 
(Jasmin et al., 2019).
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Through the use of anterograde and retrograde tracers, Falchier et al. (2002) showed 
direct projections from primary and secondary auditory areas to the early visual areas in 
rhesus monkeys as well as reciprocal connections from the secondary visual area (V2) and 
pro-striata to the auditory cortex (Falchier et al., 2010). Multisensory effects in the AC 
can also be driven by higher-order association areas implicated in multisensory processing 
such as the posterior superior temporal sulcus and the middle temporal gyrus (Beauchamp 
et al., 2004; Starke et al., 2017; van Atteveldt et al., 2004; von Kriegstein et al., 2005; 
Perrodin et al., 2014; Tanabe, 2005), the intraparietal sulcus (Lewis and van Essen, 2000; 
Cate et al., 2009) and the frontal areas (Gaffan and Harrison, 1991; Romanski et al., 
1999a). Overall, the functional implications of the early connections, top-down influence 
from higher regions, and the role of thalamic input in the multisensory processing in the 
AC remain to be explored.

1.3 Computational Modeling of  the AC
Driven by empirical observations, the mathematical formulations of the neural dynamics 
have been around for decades and vary from action potentials in single neurons [e.g., 
(Hodgkin and Huxley, 1952)], to average firing-rate in neuronal populations [mesoscale, 
e.g., (Wilson and Cowan, 1973)] to large-scale cortical networks [e.g., (Kuramoto, 1984)]. 
Recent technological advances in computing have made it possible to realize the potential 
role of these models as an integrative tool. Computational models in general have been 
shown to provide clear advantages over experimental approaches in understanding 
biological systems by their ability to test an arbitrary number of simulations, make 
inferences without disturbing the system and manipulate parameters in a controlled way 
(Brodland, 2015). In particular for the AC, models have been used to computationally 
characterize auditory cortical receptive fields (Lindeberg and Friberg, 2015; Chambers et 
al., 2019), plasticity in the frequency representation in primary auditory areas (de Pinho 
et al., 2006), the role of inhibition in encoding of temporal information in an auditory 
cortical neuron (Bendor, 2015), homeostatic plasticity as a compensatory mechanism of 
hearing loss-induced abnormal activities in A1 (Chrostowski et al., 2011), and stimulus-
specific adaptation (Yarden and Nelken, 2017). The choice of the model is dependent on 
specific modeling goals, data available for validation, and previous applications. Generally, 
the best modeling endeavors follow the “minimal model approach” as simpler models 
allow for more constraints, making it easier to estimate parameters from the data and 
generate inferences about parameter space. Overall, these computational techniques 
can integrate existing knowledge about the AC, test hypotheses, and generate not only 
new insights into experimental observations but propositions for new and improved 
experiments as well. However, one has to remain cautious of the limitations of the 
models, as they represent a simplification of a complex system and their link to empirical 
observations must be maintained.
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In this thesis, we examine if and how characteristics in neuronal response properties, 
as resulting from animal electrophysiology, are compatible with findings in human 
neuroimaging, and psychophysics. For example, perceptual modulation detection 
thresholds have characteristic dependence on carriers (Bacon and Viemeister, 1985; 
Kohlrausch et al., 2000; Simpson et al., 2013) but how these are driven by general 
principles of information processing in the AC, remains unknown. Are the mechanisms 
underlying spectro-temporal tradeoff in the auditory belt measured using neuroimaging 
techniques reflective of underlying neuronal dynamics? How does multisensory input 
influence the sound processing at various stages of information processing in the AC? 
To study these research questions that range across the levels of neuronal dynamics, 
human neuroimaging, and psychophysical observations, a computational model that 
incorporates the serial processing along the AC hierarchy and differences in neuronal 
response properties underlying parallel information processing streams is required. As 
we are interested in general mechanisms of sound processing, the modeling approach 
should be designed to reflect topographic processing (i.e., model neuronal units that vary 
in frequency preference), and capture the temporal dynamics that are a key element of 
sound structure. Given that the human observations largely come from neuroimaging 
(mesoscale) and behavior (macroscale), the model needs to be at a level of abstraction 
that can successfully link these observations to neuronal dynamics. Thus, a model that 
captures the population level neuronal dynamics, such as the Wilson Cowan Cortical 
Model (Wilson and Cowan, 1972, 1973) as employed in this thesis, can be used to 
produce predictions of meso- and macroscopic observations.

2 Thesis Outline

The current chapter acts as a backdrop for this thesis and reviews the fundamentals of 
information processing along the auditory cortical hierarchy. Chapter 2 presents a recurrent 
neuronal model built on simple and established assumptions on general mechanisms of 
auditory cortical hierarchy and neuronal processing (rostral-caudal differences). Despite 
its simplicity, the model mimics results from (animal) electrophysiology and links these 
results to those of psychophysics and neuroimaging studies in humans. Additionally, 
the model shows a “division of labor” between the simulated rostral-caudal processing 
streams, providing predictions regarding cortical speech processing mechanisms. The 
model is valuable for generating hypotheses on how the different cortical areas/streams 
may contribute towards behaviorally relevant aspects of acoustic signals. In Chapter 3, 
the proposed neuronal model is used along with a model of the hemodynamic coupling 
and response (Havlicek et al., 2015) to estimate the neuronal underpinnings of the rostral 
(caudal) preferences for fine spectral (temporal) features of the sounds, as measured in 
existing fMRI datasets (Santoro et al., 2014, 2017). Chapter 4 describes a psychophysics 
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study designed to investigate the multisensory interactions between audiovisual stimuli 
in the far periphery. The results show visual-to-auditory effects only for specific phase-
differences between the modulated audiovisual stimuli. In Chapter 5, the neural correlates 
of the behavioral observations of the psychophysics study (Chapter 4) are investigated 
in an fMRI study. Using high-resolution fMRI and peripheral audiovisual stimuli, we 
present evidence for multisensory processing across the auditory cortical hierarchy, with 
attentional modulation of multisensory responses in the deep layers of the belt regions. 
The data reported in Chapters 4 and 5 can be used to inform the existing model, thus 
completing the necessary loop across methodologies. Finally, Chapter 6 provides an 
integrative outlook for our findings along with the prospects of systems neuroscience of 
audition.
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Chapter 2
Spectro-temporal Processing in a 

Two-Stream Computational Model of  
Auditory Cortex

Zulfiqar, I., Moerel, M., and Formisano, E. (2020). Spectro-Temporal Processing 
in a Two-Stream Computational Model of  Auditory Cortex. Front. Comput. 

Neurosci. 13, 95. doi: 10.3389/fncom.2019.00095



Abstract

Neural processing of sounds in the dorsal and ventral streams of the (human) auditory 
cortex is optimized for analyzing fine-grained temporal and spectral information, 
respectively. Here we use a Wilson and Cowan firing-rate modeling framework to simulate 
spectro-temporal processing of sounds in these auditory streams and to investigate 
the link between neural population activity and behavioral results of psychoacoustic 
experiments. The proposed model consisted of two core (A1 and R, representing primary 
areas) and two belt (Slow and Fast, representing rostral and caudal processing respectively) 
areas, differing in terms of their spectral and temporal response properties. First, we 
simulated the responses to amplitude modulated (AM) noise and tones. In agreement 
with electrophysiological results, we observed an area-dependent transition from a 
temporal (synchronization) to a rate code when moving from low to high modulation 
rates. Simulated neural responses in a task of amplitude modulation detection suggested 
that thresholds derived from population responses in core areas closely resembled those 
of psychoacoustic experiments in human listeners. For tones, simulated modulation 
threshold functions were found to be dependent on the carrier frequency. Second, 
we simulated the responses to complex tones with missing fundamental stimuli and 
found that synchronization of responses in the Fast area accurately encoded pitch, 
with the strength of synchronization depending on the number and order of harmonic 
components. Finally, using speech stimuli, we showed that the spectral and temporal 
structure of the speech was reflected in parallel by the modeled areas. The analyses 
highlighted that the Slow stream coded with high spectral precision the aspects of the 
speech signal characterized by slow temporal changes (e.g., prosody), while the Fast 
stream encoded primarily the faster changes (e.g., phonemes, consonants, temporal pitch). 
Interestingly, the pitch of a speaker was encoded both spatially (i.e., tonotopically) in 
the Slow area and temporally in the Fast area. Overall, performed simulations showed 
that the model is valuable for generating hypotheses on how the different cortical areas/
streams may contribute towards behaviorally relevant aspects of auditory processing. The 
model can be used in combination with physiological models of neurovascular coupling 
to generate predictions for human functional MRI experiments.
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1 Introduction

The processing of sounds in primate auditory cortex (AC) is organized in two anatomically 
distinct streams: a ventral stream originating in areas located rostrally to the primary 
auditory core and projecting to the ventral regions of the frontal cortex, and a dorsal 
stream originating in areas located caudally to the primary core and projecting to dorsal 
frontal regions. Processing in these separate streams is hypothesized to underlie auditory 
cognition and has been linked respectively to specialized mechanisms of sound analysis 
for deriving semantic information (“what” processing) or processing sound location and 
sound movement (“where” processing) (Arnott et al., 2004; Belin and Zatorre, 2000; 
Kaas and Hackett, 2000; Kaas et al., 1999; Rauschecker and Tian, 2000; Romanski et 
al., 1999b; Tian et al., 2001). Interestingly, the basic response properties (e.g., frequency 
tuning, latencies, temporal locking to the stimulus) of neurons in areas of dorsal and 
ventral auditory streams show marked differences (Bendor and Wang, 2008; Nourski et 
al., 2013, 2014; Oshurkova et al., 2008; Rauschecker et al., 1997), and differences have 
been reported even for neurons from areas within the same (dorsal) stream (Kuśmierek 
and Rauschecker, 2014). A consistent observation is that neurons in the rostral field, 
in comparison to primary and surrounding auditory areas, exhibit longer response 
latencies and narrower frequency tuning (Bendor and Wang, 2008; Camalier et al., 
2012; Recanzone et al., 2000; Tian et al., 2001), whereas neurons in the caudal fields 
respond with shorter latencies, comparable to or even shorter than those in A1, and have 
broader frequency tuning (Kuśmierek and Rauschecker, 2014; Recanzone et al., 2000). 
How this organization of neuronal properties within AC contributes to the processing 
of spectro-temporally complex sounds remains unclear and poses an interesting question 
for computational endeavors (Jasmin et al., 2019).

Recent results of neuroimaging studies in humans have put forward the hypothesis that 
fine-grained spectral properties of sounds are analyzed optimally in ventral auditory 
regions, whereas fine-grained temporal properties are analyzed optimally in dorsal regions 
(Santoro et al., 2014; Schönwiesner and Zatorre, 2009). It is, however, unlikely that the 
neural processing of spectral and temporal properties of sounds is carried out through 
completely independent mechanisms. Several psychophysical phenomena such as pitch 
perception based on temporal cues (Bendor et al., 2012; Houtsma and Smurzynski, 
1990) or the frequency dependence of amplitude modulation (AM) detection thresholds 
(Kohlrausch et al., 2000; Sek and Moore, 1995) suggest an interdependence between 
neural processing mechanisms for spectral and temporal properties.

Therefore, in this study, we aim to introduce a simple, stimulus-driven computational 
framework for modeling the spectral and temporal processing of sounds in AC and 
examine the role of the different processing streams. We use the firing rate model of 
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Wilson and Cowan (Wilson Cowan Cortical Model, WCCM; Wilson and Cowan 1972, 
1973; Cowan et al., 2016) which simulates complex cortical computations through 
the modeling of dynamic interactions between excitatory and inhibitory neuronal 
populations. Over the years, WCCM has been successfully implemented for simulating 
neuronal computations in the visual cortex (Wilson and Kim 1994; Wilson 1997; 
Ermentrout and Cowan, 1979). More recently, WCCM has been applied to the AC 
as well to describe the propagation of activity in the interconnected network of cortical 
columns and to generate predictions about the role of spontaneous activity in the primary 
AC (Loebel et al., 2007), the role of homeostatic plasticity in generating traveling waves 
of activity in the AC (Chrostowski et al., 2011). Furthermore, WCCM has been proposed 
for modeling stimulus-specific adaptation in the AC (May et al., 2015; Yarden and 
Nelken, 2017) and to generate experimentally verifiable predictions on pitch processing 
(Tabas et al., 2019), etc. While WCCMs are less detailed than models of interconnected 
neurons, they may provide the right level of abstraction to investigate functionally relevant 
neural computations, probe their link with psychophysical observations, and generate 
predictions that are testable using invasive electrocorticography (ECoG) as well as non-
invasive electro- and magnetoencephalography (EEG, MEG) and functional MRI (fMRI) 
in humans.

Here, we used the WCCM to simulate the dynamic cortical responses (population 
firing rates) in the AC to both synthetic and natural (speech) sounds. After filtering 
from the periphery, the proposed model processes the spatiotemporally structured (i.e., 
tonotopic) input in two primary auditory core areas. The output of the core areas is 
then fed forward to two secondary auditory belt areas, which differ in terms of their 
processing of spectral and temporal information and thereby represent the dorsal and 
ventral auditory processing streams. In a number of simulations, we used this model to 
examine the coding of amplitude modulated (AM) broadband noise and tones using 
metrics derived from the electrophysiology (firing rate and temporal synchronization with 
the stimulus). We also simulated three psychoacoustic experiments to study the role of 
the multiple information streams that may underlie behavioral AM detection thresholds 
observed for noise (Bacon and Viemeister, 1985) and tones (Kohlrausch et al., 2000), as 
well as pitch perception with missing fundamental stimuli (Houtsma and Smurzynski, 
1990). Lastly, we investigated the processing of speech stimuli in the model to generate 
predictions on how this cortical spectro-temporal specialization (represented by the four 
areas) may encode the hierarchical structure of speech.
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Figure 1: Model design and architecture. (A) Anatomical schematic of the modeled areas shown on top view 
of the left supratemporal plane (with the parietal cortex removed). Heschl’s sulcus (HS) and first transverse 
sulcus (FTS) are marked to provide anatomical references while Heschl’s Gyrus is highlighted in blue. (B) The 
sound waveform is filtered with a Gammatone filterbank and passed through a Lateral Inhibitory Network 
(LIN) in the peripheral processing stage, which serves as input to the cortical stage. The neural responses of 
the simulated core areas (A1, R) are fed forward as input to two simulated belt areas (Slow and Fast), which 
differ from each other in their spectral and temporal properties. (B) Connections between model stages are 
shown. The output of Lateral Inhibitory Network (LIN) projects to excitatory units of A1 and R, which in 
turn project to excitatory units of Fast and Slow, respectively. While the convergence through A1 to the Fast 
area is high (i.e., many excitatory units of A1 provide input to a single unit of the Fast area), convergence 
through R to the Slow area is low (i.e., the units in areas R and Slow receive input from only one unit). (C) 
Model output for a sample speech sound is shown at different stages of processing as a spectrogram. The 
panels at the right and bottom of the output of cortical processing stage show mean firing rates across time 
and tonotopic axis respectively.
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2 Methods

2.1 Model Design and Architecture
Figure 1A provides an anatomical schematic of the modeled cortical areas with 
approximate locations shown on the left supratemporal plane. Figure 1B illustrates 
the overall architecture of the model, consisting of a peripheral processing stage and a 
cortical processing stage. The peripheral processing stage simulates the peripheral auditory 
processing in two steps. First, the tonotopic response of the cochlea is estimated using a 
set of band-pass filters (Gammatone filterbank, N = 100) (Patterson, 1986; Patterson et 
al., 1992). The gains of the filters represent the transfer function of the outer and middle 
ear (4th order Gammatone filterbank implementation by Ma et al., 2007). Following the 
results from psychoacoustics, the center frequencies of the filters are equally spaced on an 
ERBN number scale and their bandwidth increases with center frequency, so as to have a 
constant auditory filter bandwidth (Glasberg and Moore, 1990). Thus, the bandwidth of 
the 100 rectangular filters is set as 1 ERB [Equivalent Rectangular Bandwidth, based on 
psychoacoustic measures; for a review of critical bandwidth as a function of frequency see 
(Moore, 2003)]. The filter frequencies are centered from 50 to 8000 Hz, equally spaced 
with a distance of 0.3 Cams (on the ERBN number scale, ERBN is the ERB of the auditory 
filters estimated for young people with normal hearing; Glasberg and Moore, 1990).

Second, the basilar response of the Gammatone filterbank is spectrally sharpened using 
a Lateral Inhibitory Network (LIN) implemented in three steps by taking a spatial 
(tonotopic) derivative, half-wave rectification, and temporal integration (Chi et al., 2005). 
The output of extreme filters (i.e., first and last filter) is removed to avoid any boundary 
effects of filtering, thus reducing the output of the peripheral processing stage to 98 units 
(60 – 7723 Hz).

For the cortical processing stage, the filtered tonotopic cochlear input is processed in 
two primary auditory core areas (A1 and R) and then fed forward to two secondary 
auditory belt areas (Slow and Fast; Figure 1). These four areas approximate the known 
architecture of human (Galaburda and Sanides, 1980; Rivier and Clarke, 1997; Wallace 
et al., 2002) and non-human primates (Hackett et al., 1998; Kaas and Hackett, 2000; 
Read et al., 2002) AC. Simulated areas primarily differ in their temporal and spectral 
(spatial) response properties. Specifically, neuronal units in the Fast area (approximating 
caudomedial-caudolateral areas) are characterized by fast temporal dynamics and coarse 
spectral tuning, whereas units in the Slow area (approximating middle lateral-anterolateral 
areas) are characterized by slow temporal dynamics and fine spectral tuning. It is important 
to note that these units represent an abstraction at the level of neural population behavior 
and are not always indicative of single-neuron properties.
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In addition, we introduce an interdependence between temporal and spatial (tonotopic) 
processing within the two belt areas, as the variable that determines the temporal dynamics 
of the responses varies with frequency. Consequently, the units corresponding to lower 
frequencies in the tonotopic axis respond more slowly than those corresponding to higher 
frequencies (see Heil and Irvine, 2017; Scott et al., 2011; Simpson et al., 2013). Each 
simulated area comprises 98 units, which are modeled by excitatory and inhibitory unit 
pairs. Each of the excitatory core units receives tonotopic input from the corresponding 
frequency-matched peripheral stage. This input only targets the excitatory units of A1 
and R. Excitatory responses of A1 and R act as tonotopic input for Fast and Slow areas, 
respectively (Figure 1C). The output (excitatory responses) at different stages of the model 
is shown in Figure 1D.

2.2 The WCCM
Neuronal units of the cortical areas were simulated using the WCCM in MATLAB (The 
MathWorks, Inc.). The WCCM is a recurrent firing rate model where neural population 
processes are modeled by the interaction of excitatory and inhibitory responses. The 
model dynamics are described by Wilson (1999):

 (1)

 (2)

where En and In are the mean excitatory and inhibitory firing rates at time t at tonotopic 
position n, respectively. Pn is the external input to the network and τ is the time constant. 
The sigmoidal function S, which describes the neural activity (Sclar et al., 1990), is 
defined by the following Naka-Rushton function:

 (3)

θ is the semi-saturation constant and M is the maximum spike rate for high-intensity 
stimulus P. The excitatory and inhibitory units are connected in all possible combinations 
(E – E, E – I, I – E, I – I). The spatial spread of synaptic connectivity between the  
units m and n is given by the decaying exponential wij (i,j = E, I) function:

 (4)

In equation 4, Bij is the maximum synaptic strength and σij is a space constant controlling 
the spread of activity. The equations were solved using Euler’s method with a time step 
of 0.0625 ms.
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 =  −𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛(t)  +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸  �∑ 𝑤𝑤𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛(t) 𝑚𝑚𝑚𝑚 − ∑ 𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛(t) 𝑚𝑚𝑚𝑚 + 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡)�  (1) 

τ d𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛(t)
dt

 =  −𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛(t)  +  𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 �∑ 𝑤𝑤𝑤𝑤𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛(t) 𝑚𝑚𝑚𝑚 − ∑ 𝑤𝑤𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛(t) 𝑚𝑚𝑚𝑚 �  (2) 

where 𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛 and 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 are the mean excitatory and inhibitory firing rates at time 𝑡𝑡𝑡𝑡 at tonotopic 

position 𝑛𝑛𝑛𝑛, respectively. 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛 is the external input to the network and τ is the time constant. The 

sigmoidal function 𝑆𝑆𝑆𝑆, which describes the neural activity (Sclar et al., 1990), is defined by the 

following Naka-Rushton function:  

𝑆𝑆𝑆𝑆(𝑃𝑃𝑃𝑃) =  𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃2

𝜃𝜃𝜃𝜃2+ 𝑃𝑃𝑃𝑃2
   (3) 

𝜃𝜃𝜃𝜃 is the semi-saturation constant and 𝑀𝑀𝑀𝑀 is the maximum spike rate for high-intensity stimulus 

𝑃𝑃𝑃𝑃. The excitatory and inhibitory units are connected in all possible combinations (E – E, E – I, I 

– E, I – I). The spatial spread of synaptic connectivity between the units 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛 is given by 

the decaying exponential 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = E, I) function: 

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 =  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 �−|𝑚𝑚𝑚𝑚−𝑛𝑛𝑛𝑛|
σ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

� (4) 

In equation 4, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the maximum synaptic strength and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is a space constant controlling the 

spread of activity. The equations were solved using Euler’s method with a time step of 0.0625 

ms. 
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2.3 Parameter Selection and Optimization
Model parameters were selected and optimized based on the following procedure. First, 
the stability constraints of the model, as derived and implemented by Wilson (1999), 
were applied. Second, parameters range was chosen so that the model operates in active 
transient mode, which is appropriate to simulate activity in sensory areas (Wilson and 
Cowan, 1973). In active transient mode, recurrent excitation triggers the inhibitory 
response, which in turn reduces the network activity. The balance of excitation and 
inhibition was achieved by fixing the parameters as described in Table 1 (for the derivation 
of these parameters see Wilson, 1999). As shown in previous modeling endeavors (Loebel 
et al., 2007; May et al., 2015), it is crucial to understand the behavior generated through 
the interaction of various model properties rather than the exact values of the parameters. 
In our case, we are interested in the interaction of spectral selectivity and temporal 
dynamics in neural populations constrained by known physiological response properties 
of the AC. Thus, while most of the parameters were fixed, further tuning was performed to 
find the combination of spatial spread (σ), connectivity between areas and time constant 
(τ),such that the areas reflected the general spectral and temporal constraints, as derived 
from the electrophysiology literature (see following subsections).

2.3.1 Spatial Resolution of  the Model
Model parameters: spatial spread (σ), and connectivity between areas, were determined 
by matching the sharpness of the model’s resulting frequency tuning curves (FTCs) with 
values reported in the literature. FTCs represent the best frequency of auditory cortical 
neurons as well as their frequency selectivity (i.e., the sharpness of frequency tuning; 
Schreiner et al., 2000). In primate AC, the sharpness of neuronal FTCs varies from 
sharp to broad. Quality factor (Q) has been used to express the sharpness of the FTCs: 

 

The Q values for sharply and broadly tuned auditory cortical neurons have been reported 
to be around 12 and 3.7, respectively (Bartlett et al., 2011). Also, the core areas have 
been described as having narrower tuning bandwidths than belt regions (Recanzone et 
al., 2000). In order to generate narrow FTCs of A1, R and Slow areas and broad FTCs 
for Fast area, we iteratively changed the spread of activity within the simulated area (final 
values are listed in Table 2). When changing the spread of activity (σ) within an area did 
not affect the Q of the area, the connectivity across the areas was manipulated. It should 
be noted that the projections act as a filter, which is then convolved with the spatial input 
per unit time. To avoid any boundary effects, symmetric kernel filters (odd number of 
elements) were used and the central part of the convolution was taken as a result. Final 
connectivity across regions (i.e., distribution of input units projecting from one area to 
another) is shown in Figure 1B.

=
 

ℎ
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The narrower tuning in the Slow area results from the smaller spread of excitation (σEE, 
see Table 2), and from the one-to-one projection from R units (Figure 1C). The broader 
tuning in the Fast area is simulated by a many-to-one projection from the Gammatone 
filterbank to a single unit of A1 (three to one) and from A1 to the Fast areas (nine to 
one). The strength of these connections is shown in Figure 1C. The FTCs across areas 
are quantified using Q  at half-maximum bandwidth. The units tuning in the simulated 
A1 and R areas have mean Q  = 6.32, (std = 1.43), units in the Fast area have mean Q  
= 4, (std = 0.87), while units in the Slow have Q = 8.35, (std = 2.1). In line with the 
experimental observations (Kuśmierek and Rauschecker, 2009), the Q  values increased 
with increasing center frequencies, while maintaining the general trend of broad tuning 
in Fast and narrow tuning in Slow area. Figure 2 shows FTCs across the four simulated 
areas for a single unit with best frequency at 4.3 kHz.

2.3.2 Temporal Resolution of  the Model
Temporal structure represents an important aspect of natural acoustic signals, conveying 
information about the fine structure and the envelope of the sounds (Giraud and Poeppel, 
2012). In several species, a gradient of temporal responses has been observed in AC, 

Table 1: Fixed parameters of  the model. M is the maximum spike rate, θ the is semi-saturation con-
stant. Parameters bEE , bII, bEI and bIE represent the maximum synaptic strength between excitatory 
units, between inhibitory units, from excitatory to inhibitory units, and vice versa, respectively. All 
the listed parameter values are the same across the four simulated areas.

Parameters Values

M 100

θ Inhibition 80

θ Excitation 60

bEE 1.5

bEI = bIE 1.3

bII 1.5

σII 10

Table 2: Model parameters across the four simulated areas. For the four simulated areas, the values 
for varying parameters, time constant τ (reported over the tonotopic axis from low to high best 
frequencies of  the units), spatial spread parameter σ (EE, EI/IE) are listed.

Parameters Values

A1 R Slow Fast

τ (ms) 10 20 300 – 200 3 – 1

σEE 40 40 20 200

σEI  = σIE 160 160 80 300
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with higher stimulus-induced phase locking (synchrony) and lower latencies in area 
AI compared to adjacent areas (AI vs AII in cats: Eggermont 1998; Bieser and Müller-
Preuss 1996, AI vs R and RT in monkeys: Bendor and Wang 2008). Correspondingly, 
model parameters determining the temporal properties of population responses in the 
simulated areas were adjusted to match such electrophysiological evidence. Table 2 shows 
the resulting time constant τ for the simulated areas. Note that the values of parameter τ 
do not represent the latency of the first spike measured for single neurons but affect the 
response latencies and dynamics at a population level.

2.3.2.1 Temporal Latencies
As neurons in core area R have longer latencies than A1 (Bendor and Wang, 2008), 
we selected a higher value of τ for simulated R than A1. Based on the evidence of the 
caudomedial field showing similar latencies to A1 (Kuśmierek and Rauschecker, 2014; 
Recanzone et al., 2000), we adjusted τ of the Fast area so that the area is as fast as A1. 
In contrast, we set τ of the Slow area such that this region generates a more integrated 
temporal response, with the firing rate taking longer to reach the semi-saturation point. 
These τ  values, in combination with the spatial connectivity constraints, cause the 
simulated belt area to display a spectro-temporal tradeoff. Additionally, in both Slow 
and Fast areas τ decreases linearly along the spatial axis (maximum and minimum values 
are reported in Table 2) with increasing best frequency, following electrophysiological 
evidence of interaction of the temporal and frequency axis where shorter latencies have 
been found to be correlated with high best frequencies in macaques (Scott et al., 2011).

Figure 2: Frequency tuning curves (FTCs) of the unit with best frequency at 4.3 kHz across simulated 
areas. Areas A1 (blue line) and R (red line) are sharply tuned, with Q of 7.3 and 7.7, respectively. The Slow 
area (yellow line) has the sharpest tuning curves with Q of 10.3, while Fast (purple line) has the broadest tuning 
with Q  of 4.9. Q  is measured as the ratio of the best frequency and the half-maximum bandwidth in Hz.
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2.3.2.2 Temporal Synchrony
To further refine parameter τ, next we examined stimulus-driven phase locking of the 
simulated neural activity. Electrophysiological measurements report synchronization in 
the neural response to the sound carrier and envelope for a limited range of frequencies, 
and the upper limit of this phase locking has been found to decrease along the auditory 
pathway (Joris et al., 2004). At the level of cortex, while the strongest synchronization 
is reported for modulation rates up to 50 Hz (AM stimuli: Liang et al., 2002, Clicks: 
Nourski et al., 2013), weaker synchronization to even higher rates (up to 200 Hz) has 
been observed for a subset of units (Steinschneider et al., 1980; Bieser and Müller-Preuss 
1996; Lu et al., 2001; Nourski et al., 2013). In light of the evidence above, we adjusted τ  
to mimic this behavior and have the strongest temporal synchronization for the low range 
of modulation rates (up to 50 Hz), with some residual synchronization to higher rates.

2.4 Model Evaluation
The model performance was evaluated in three stages. First, we simulated the 
electrophysiological coding of AM (for both noise and tone carriers). Second, we 
evaluated the model’s ability to predict results of human psycho-acoustical tasks, including 
the determination of amplitude modulation detection threshold functions, tMTFs, and 
perception of missing fundamental. Lastly, we used speech stimuli to investigate the 
representation of pitch and AM features of a complex sound across the simulated areas. 
All artificial stimuli (AM noise, AM tones and missing fundamental complex tones) were 
generated using MATLAB with a sampling rate of 16 kHz and 1 s duration). Speech 
stimuli were taken from the LDC TIMIT database (Garofolo et al., 1993). In all cases, 
the key readouts of the model were synchronization to stimulus features and firing rates. 
The pitch estimates matched against model output, where relevant, were computed using 
the YIN algorithm (de Cheveigné and Kawahara, 2002).

2.4.1 Coding of  AM Stimuli: Evidence from Electrophysiology
To evaluate the model’s coding of AM, sinusoidally amplitude modulated (sAM) stimuli 
were used. AM sounds were defined by

where m is the modulation depth, g is the modulation rate and t is time. The modulation 
rates were chosen to be 2 to 9 Hz (linearly spaced), and 10 to 1000 Hz (logarithmically 
spaced). Broadband noise was used as carrier to study the response of all units working 
together while pure tones (500 Hz, 3 kHz, and 5 kHz) were employed to evaluate carrier-
specific effects on amplitude modulation coding.

used. AM sounds were defined by (1 + sin 2 ) ∗ , where  is the modula�on 

depth,  is the modula�on rate and  is �me. The modula�on rates were chosen to be 2 to 9 

Hz (linearly spaced), and 10 to 1000 Hz (logarithmically spaced). Broadband noise was used as 

carrier to study the response of all units working together while pure tones (500 Hz, 3 kHz, 

and 5 kHz) were employed to evaluate carrier-specific effects on amplitude modula�on 

coding.  

To quan�fy synchroniza�on of responses to the temporal structure of AM sounds, we 

employed two measures from the electrophysiology literature (Joris et al., 2004; Eggermont 

1991; Bendor and Wang 2008): vector strength  
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To quantify synchronization of responses to the temporal structure of AM sounds, 
we employed two measures from the electrophysiology literature (Joris et al., 2004; 
Eggermont 1991; Bendor and Wang 2008): vector strength VS where:

(Goldberg and Brown, 1969), and rate modulation transfer function (rMTF), which 
is the average firing rate as a function of the modulation rate. VS was computed for all 
modulation rates (and three harmonics), for both tone and noise carriers, across the four 
simulated areas. We considered a simulated area as being synchronized to a modulation 
rate when VS was greater than 0.1 (this is an arbitrary threshold chosen to compare 
phase-locking across conditions and areas).

rMTFs were calculated from the average firing rates (i.e., the Fourier component at 0 
Hz) and normalized for all areas. For the computation of rMTFs, the modulation depth 
is fixed at 100% across all AM stimuli. For noise carriers, the computation of the VS and 
rMTF is based on the mean across all 98 excitatory channels. For the tone carriers, only 
the channel maximally tuned to the carrier frequency is considered.

2.4.2 Simulating Psychoacoustical Observations
The model was tested using three paradigms approximating human psychoacoustic 
studies. The first two experiments simulated temporal modulation transfer functions 
(tMTFs: quantifying the modulation depth required to detect different modulation rates) 
for broadband noise (Bacon and Viemeister, 1985) and tones (Kohlrausch et al., 2000). 
The third experiment simulated pitch identification with missing fundamental stimuli 
(Houtsma and Smurzynski, 1990).

For the simulated tMTFs, AM sounds with incremental modulation depths (from 1 
to 100%) were presented to the model and the oscillations in the model’s output were 
measured. In the psychoacoustic measurements, the lowest modulation depth at which 
subjects can detect the modulation is considered the detection threshold. In the model, 
using synchronization as output measure, the lowest value of modulation depth at which 
the output is synchronized to the modulation rate (i.e., the strongest Fourier component 
was at the modulation rate) is considered as the detection threshold for that AM rate. This 
procedure was repeated for all the modulation rates and, for all simulated areas. For noise 
carriers, the mean across the excitatory units across each area is analyzed and compared 
to data collected by Bacon and Viemeister (1985). The model response was simulated 
for modulation rates at 2 to 9 Hz (linearly spaced), and 10 to 1000 Hz (logarithmically 
spaced).

         

coding.  

To quan�fy synchroniza�on of responses to the temporal structure of AM so

employed two measures from the electrophysiology literature (Joris et al., 2004; E

1991; Bendor and Wang 2008): vector strength  
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For AM tones, the analysis of the waveform shows spectral energy at the carrier 
frequency, and the carrier frequency ± modulation rate. These accompanying frequency 
components are called “spectral sidebands” of the carrier frequency. If the modulation 
rate is high enough, these sidebands activate distinctively different auditory channels 
than the carrier frequency and can be detected audibly apart from the carrier frequency. 
Thus, for the tone carriers (1k and 5k) the active part of the population (comprising 
the best frequency channel and spectral sidebands) was used to compute tMTFs based 
on temporal synchronization to the modulation rate (temporal code) and detection of 
sidebands (spatial code). As before, for the temporal code, the lowest value of modulation 
depth at which the output is synchronized to the modulation rate (i.e., the strongest 
Fourier component was at the modulation rate) is considered as the detection threshold 
for that AM rate. For the spatial code, the modulation depth at which the side-band 
amplitude (mean firing rate over time) is at least 5%, 10%, 15% or 20% of the peak 
firing rate (firing rate of the channel with CF closest to carrier frequency) are calculated. 
The best (lowest) value of modulation depth is chosen from both coding mechanisms. 
The combination of these coding mechanisms is then compared to tMTFs (at 30 dB 
loudness) reported by Kohlrausch et al. (2000). The modulation rates tested were 10 to 
1600 Hz (logarithmically spaced).

Pitch of missing fundamental complex tones has been shown to be coded by temporal and 
spatial codes, depending on the order of harmonics and frequency of missing fundamental 
(Bendor et al., 2012). Here we replicated this finding by simulating the model response 
to complex tones with low order (2 – 10) and high order harmonics (11 – 20) and 
varying missing fundamental frequency from 50 to 800 Hz. The synchronization to the 
missing F0, measured in VS, is computed from the mean responses over time in each of 
the four simulated areas. Furthermore, to evaluate the role of synchronization in pitch 
perception, we simulated model responses to complex tones with unresolved harmonics 
of a missing fundamental frequency by approximating a pitch identification experiment 
by Houtsma and Smurzynski (1990). The missing fundamental tone complexes vary 
in two aspects: the number of harmonic components (2-11) and the lowest harmonic 
component (10 and 16) while the fundamental frequency (F0) is fixed at 200 Hz. For 
each combination of the lowest harmonic component and the number of components 
in the harmonic complex, we computed the synchronization to the F0 (in VS) and mean 
firing rates for all four regions.

2.4.3 Model Responses to Speech
Model responses to the speech stimuli were analyzed in two stages. The speech stimuli 
(630 sentences, all spoken by different speakers; mean duration 3.4s) were randomly 
selected from LDC TIMIT database (Garofolo et al., 1993). To study how key temporal 
features of speech waveforms are represented in the modeled areas, we compared 
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the temporal modulations in the output of all four simulated areas to the temporal 
modulations of the input signals. To this end, we computed the input-output magnitude 
spectrum coherence (mscohere in MATLAB with a 2048 point symmetric hamming 
window and overlap of 1500 samples) between the input speech signal (after LIN) and 
the output of all four areas. The coherence values are then scaled across the four areas 
using the mean spatial activity along the tonotopic axis (i.e., the mean firing rate over 
time for all sounds). To highlight the difference in spectrum coherence between the 
spectro-temporal processing streams in the model, the difference between the scaled 
input-output coherence is computed to compare the two core (R – A1) regions to each 
other and the two belt areas (Slow – Fast).

3 Results

3.1 Coding of  AM Stimuli
We investigated the model’s AM coding using both broadband noise and tone carriers. 
By using broadband noise as carrier, we simulated general responses for each of the four 
areas, and then use pure tone carriers to study the dependence of the synchronization 
and rate coding on the tonotopic location (i.e., the best frequency of the units).

3.1.1 Sinusoidal AM Noise
Figure 3 shows the response of the four simulated cortical areas (A1, R, Fast, and Slow) 
as a function of the modulation rate of sinusoidally amplitude modulated (sAM) noise. 
We analyzed the mean response of all units for each area. Across regions, the response 
synchronization (measured as VS) decreases with increasing modulation rate (solid lines 
in Figure 3 A, B, C, and D for A1, R, Fast, and Slow areas respectively). The decrease 
in synchronization is observed to be rapid above an area-specific modulation rate (8 Hz 
for A1, R, and Fast areas; 2 Hz for Slow). Taking the lower limit for synchronization as 
VS = 0.1, the highest AM rate to which the areas synchronize is 54 Hz in A1, 33 Hz in 
R, 4 Hz in Slow and 54 Hz in Fast. Overall, the observed responses to modulation rates 
show a low-pass filter profile.

Instead, the firing rate (rate Modulation Transfer Functions (rMTFs), dash-dotted lines) 
shows different behavior across the four areas in response to AM noise. For A1, R and Fast 
areas (Figure 3 A-C respectively), the firing rate does not change for lower modulation 
rates (until 10 Hz for A1 and Fast, until 6 Hz for R) and then rapidly increases until a 
maximum limit (54 Hz for A1, R, and Fast) and does not further change in response to 
higher modulation rates. In contrast, the firing rate in the Slow area (Figure 3D) shows 
a band-pass profile between 6 and 100 Hz, peaking at ~ 20 Hz.
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3.1.2 Sinusoidal AM Tones
Next, we explored the frequency dependence of AM processing. As the use of broadband 
noise as a carrier provides no information about the temporal properties of different 
frequency channels along the tonotopic axis, we simulated model responses to AM pure 
tone carriers. Figure 4 shows response synchronization (VS, left column) and firing 
rate (rMTFs, right column) across cortical areas as a function of AM rate, separately 
for units best responding to a low (solid lines), middle (dashed lines), and high (dash-
dotted lines) frequency pure tone carriers (500, 1k and 3k Hz respectively). For each 
area, the responses in the model’s frequency channel matching the tone carrier are shown. 
The synchronization shows a low-pass filter profile consistently for all three carriers. 
With increasing carrier frequency, the A1, R, and Slow areas (Figure 4A, C, and E) 
are synchronized (VS cut-off at 0.1) to higher modulation rates (A1: 33 Hz for 500 
Hz, 54 Hz for 1 kHz and 3 kHz, R: 26 Hz for 500 Hz, 33 Hz for 1 kHz and 3 kHz, 
Slow: 3 Hz for 500 Hz, 4 Hz for 1 kHz and 3 kHz). This behavior is a consequence of 
the relationship between the temporal and spatial axis (a property of the model), with 

Figure 3: Model responses to sAM noise across simulated areas. A dual coding mechanism for modulation 
rates, i.e., temporal (measured as Vector Strength, VS, solid lines) and rate codes (quantified as the rate 
Modulation Transfer Functions, rMTFs, dash-dotted lines), are shown for A1, R, Fast and Slow areas in panels 
A, B, C, and D respectively. In A1, R and Fast areas, the synchronization decreases for higher modulation 
rates and is complimented by increasing firing rate. While very little synchronization is observed in the Slow 
area, the respective rMTF shows an interesting band-pass profile.
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temporal latencies reducing with increasing center frequencies of the units allowing 
phase-locking to higher modulation. The Fast area (Figure 4G) shows a similar cutoff 
for all carriers at 54 Hz. The rMTFs (Figure 4B, D, F and H for areas A1, R, Slow and 
Fast respectively), however, show more complex and varied behavior for different carriers 
(including monotonically increasing, band-pass, and band-stop behavior). This behavior 
is in line with rMTFs from electrophysiological studies, where instead of singular behavior 
(like low-pass filter profile reported for tMTFs), rMTFs show a variety of response profiles 

Figure 4: Model responses to sAM tones across simulated areas. A dual coding mechanism for modulation 
rates, i.e., temporal (measured as Vector Strength, VS, left panels) and rate codes (quantified as the rate 
Modulation Transfer Functions, rMTFs, right panels), are shown for A1, R, Fast and Slow areas in respective 
panels (A1: A-B, R: C-D, Slow: E-F, Fast: G-H). For the three different carriers, synchronization to higher 
modulation rates is observed with increasing carrier frequencies across areas (panels A, C, E, and G). Rate 
coding, however, shows more varied profiles with different carriers (panels B, D, F, and H).

Chapter 2

36



(Bendor and Wang, 2008; Bieser and Müller-Preuss, 1996; Liang et al., 2002; Schreiner 
and Urbas, 1988).

3.2 Simulating Psychoacoustic Observations
Next, the model was tested using three experimental paradigms similar to those employed 
in human behavioral studies. The first two experiments tested the temporal modulation 
transfer functions (tMTFs characterizing the modulation depth required to detect 
different modulation rates) for broadband noise (Bacon and Viemeister, 1985) and tones 
(Kohlrausch et al., 2000). The third experiment examined the effects of the number 
of harmonics in pitch identification with missing fundamental stimuli (Houtsma and 
Smurzynski, 1990).

3.2.1 Temporal Modulation Transfer Functions for Broadband White Noise
Similar to the behavioral task of Bacon and Viemeister (1985), we measured responses 
of the model to AM sounds with variable modulation depth and record the minimum 
modulation depth where the output signal was synchronized to the modulation rate (i.e., 
the strongest Fourier component was at the modulation rate) of the AM noise. Figure 5 
illustrates the simulation results (solid colored lines), along with human psychoacoustic 
data (dash-dotted black lines with circles, adapted from Bacon and Viemeister, 1985). 
Lower values depict higher sensitivity to the modulation rates. A1 and R show lower 
thresholds for slower than faster modulation rates. In the Fast area, the detection profile is 
similar to A1 and R, but the minimum detection depth is higher than in the other areas. 
The broad tuning of the Fast area reduces the precision of the temporal structure of the 
input signal. Thus, the Fast area performs worse than the other areas across modulation 
rates. In the Slow area, modulation detection is observed to be limited to rates below 
10 Hz. Thus, the core areas outperformed the belt areas in the detection of amplitude 
modulations. The modulation depth detection profile of the core areas resembles the 
results from human psychophysics suggesting that primary auditory cortical processing 
may underlie tMTFs reported in psychophysics. In comparison with synchronization, rate 
coding is difficult to quantify as observed before with varying response profiles for rMTFs 
along the frequency axis (Figure 4F and H). The difference between our simulations and 
psychophysical findings at faster rates may be explained by the fact that our simulations 
only considered coding through response synchronization and ignored the contribution 
of rate coding contributing to the detection of higher modulation rates.

3.2.2 Temporal Modulation Transfer Functions of  Sinusoidal Carriers
We then investigated the model’s detection threshold function of sAM tones. 
Psychoacoustic studies have shown that human performance does not change across 
the lower modulation rates, becomes worse for a small range and then improves after 
the sidebands introduced by the modulation become detectable (Kohlrausch et al., 
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2000; Moore and Glasberg, 2001; Sek and Moore, 1995; Simpson et al., 2013). We 
obtained model responses to sAM tones as a combination of temporal and spatial codes. 
To characterize an area’s modulation detection threshold represented by temporal code, 
the lowest modulation depth at which the best frequency unit or the spectral sideband 
synchronized to the modulation rate was chosen. Additionally, the spatial code was 
quantified by detection of spectral sideband. Figure 6 shows the lowest modulation depth 
for which A1 (solid lines in panel A, C) and R (solid lines panel B, D) code modulation 
rates of sAM tones and the psychoacoustic data for 1 kHz and 5 kHz sinusoidal carriers 
at 30 dB (dash-dotted lines with circles, Kohlrausch et al., 2000). The initial increase in 
depth values indicates the contribution of temporal coding of the modulation rates that 
gets worse with higher modulation rates. With increasing modulation rates, however, the 
spectral sidebands dissociate from the carrier channel and the contribution of spectral 
coding is observed. The modulation depths at which the sideband amplitude (mean 
firing rate over time) is detectable (multiple threshold cut-offs are shown where sideband 
activity is 5%, 10%, 15%, and 20% of the firing rate of the channel with CF closest 
to carrier frequency) are also shown in Figure 6. No synchronization is observed in 
the Slow and Fast areas. Overall, model results show a clear frequency dependence as 
detection of higher rates was observed for the higher carrier (maximum for A1: 500 Hz 
for 1 kHz carrier, 1.2 kHz for 5 kHz carrier; R: 1.2 kHz for 1 kHz carrier, 1.6 kHz for 5 
kHz carrier). The modulation detection by the model slightly worsened with increasing 
modulation rate but improved (lower m values) as the sidebands introduced by the 
modulation became detectable (after 100 Hz for the 1 kHz carrier in A1 and R, after 400 
Hz for 5 kHz carrier in A1). This improvement of AM detection threshold for high AM 

Figure 5: Modulation detection with sAM noise. The temporal Modulation Transfer Functions (tMTFs), 
illustrating the minimum depth required to detect the amplitude modulation in sAM noise, are shown for 
the four model areas (in colored lines) and for a psychoacoustic study (black line and circles; adapted from 
Bacon and Viemeister, 1985). Lower values depict higher sensitivity to modulation rate. Modulation depth, 
m (dB) of the signal is plotted on the y-axis.
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rates is in accordance with human psychophysics, where observations show a decrease 
in performance with increasing modulation rates is followed by a performance increase 
accompanied with side-band detection (Kohlrausch et al., 2000; Moore and Glasberg, 
2001; Sek and Moore, 1995; Simpson et al., 2013). Additionally, matching the model 
results, human psychophysics show improved performance (i.e., detection of higher rates) 
with increasing carrier frequencies.

3.2.3 Pitch of  Missing Fundamental Sounds
Missing fundamental sounds are harmonic complexes that, despite lacking energy at the 
fundamental frequency (F0), induce the percept of a pitch corresponding to F0 (Oxenham, 
2012; Yost, 2010). If the harmonic components in the missing fundamental sound are 
resolved (i.e., each component produces a response on the basilar membrane that is 
distinct from that of neighboring harmonic components), the pitch information can be 
extracted through a spectral (spatial) mechanism, or a temporal mechanism if harmonics 
are unresolved, or a combination of the two (Yost, 2009). Bendor et al. (2012) have shown 
that low F0 sounds with higher-order harmonics are primarily represented by temporal 
mechanisms. Thus, we tested the effect of harmonic order on the detection of missing 
F0 through temporal synchrony across simulated areas. Figure 7 shows synchronization 
(temporal code, measured as VS) to missing F0 of complex tones with lower-order 

Figure 6: Modulation detection with sAM tones. The solid lines show the temporal Modulation Transfer 
Functions (tMTFs), illustrating the minimum depth required to detect the amplitude modulation in sAM 
tones (1 kHz in top panels, 5 kHz in bottom panels), are shown for the two core areas (A1 in panels A and 
C, R in panels B and D). The model output is a combination of temporal and spatial codes for modulation 
detection. Variation in the spatial code is shown at four different cut-off values, represented by the solid lines 
in different gray-scales. Data from a psychoacoustic study are shown in dash-dotted lines with circles (adapted 
from Kohlrausch et al., 2000). Lower values depict higher sensitivity to modulation rate. Modulation depth, 
m (dB) of the signal is plotted on the y-axis.
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and higher-order harmonics in panels A and B respectively. Stronger synchronization 
is observed for higher-order harmonics compared to lower-order harmonics for lower 
missing F0 complex tones in A1, R, and Fast areas. The effect is most pronounced in the 
Fast area. However, the synchronization drops with increasing missing F0, and very little 
to none synchronization is observed after 400 Hz irrespective of the order of harmonics 
in the complex tone.

For low pitch missing fundamental sounds, psychophysics experiments employing sounds 
with unresolved harmonics have shown that humans are better at identifying a missing 
fundamental pitch when the sound consisted of lower (lowest harmonic = 10) compared 
to higher unresolved harmonics (lowest harmonic = 16), yet the performance reaches a 
plateau as more harmonic components are included for the sound consisting of lower 
but not higher-order harmonics (Houtsma and Smurzynski, 1990). To evaluate whether 
temporal mechanisms play a role in these findings we simulated a pitch identification 
experiment (Houtsma and Smurzynski, 1990) and explored the effects of the number of 
harmonic components and lowest order harmonic in the missing fundamental complex 
tone on the model’s behavior. As already established, simulated populations could only 
successfully synchronize to lower missing F0 (Figure 7), thus the task employed complex 
tones with low missing F0 (200 Hz). Figure 8 shows the model’s synchronization (VS) to 
the missing F0 (200 Hz and the first three harmonics) across the simulated regions (in 
blue lines), along with the results from the psychophysics experiment (in red lines, data 
adapted from Houtsma and Smurzynski, 1990).

Figure 7: Synchronization to missing fundamental frequency across harmonic order. The model 
performance in detecting missing fundamental of complex tones (measured as vector strength) with (A) 
low-order harmonics, and (B) high-order harmonics. Simulated responses in the four areas are shown in 
different colors.
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While we did not observe any differences due to harmonic order in VS measured in A1, R, 
and Slow areas (Figure 8A, B, and D), the Fast area (Figure 8C) showed clear dissociation 
in synchronization code when the lowest order harmonic changed from 10 to 16. That 
is, the synchronization to the missing F0 in the Fast area was stronger when the lowest 
order harmonic was 10. Additionally, for both complex tones, the performance of the 
Fast area improved with an increasing number of components. The improvement in 
synchronization was rapid when the number of components changed from 2 to 4 for the 
lowest order harmonic at 10. These observations are in line with the pitch identification 
data shown in the red lines. Thus, neural response properties similar to those of the Fast 
area are optimized to temporally detect the F0 from missing fundamental sounds, and 
responses in the Fast area follow human behavior.

Unlike synchronization, the simulated firing rate (Supplementary Figure 1) did not 
show a pattern that matched the behavioral data. Specifically, the simulated firing rate 
increased monotonically as a function of the number of components in the complex tone, 
irrespective of the lowest order harmonic.

Figure 8: Model performance on a missing fundamental task. The model performance in detecting missing 
fundamental of complex tones (synchronization to missing fundamental frequency at 200 Hz, measured as 
Vector Strength) is shown for areas A1, R, Fast and Slow (blue lines in panels A, B, C, and D respectively). 
Human behavioral data on pitch identification (%) task (Houtsma and Smurzynski, 1990) is plotted in 
orange lines. Solid lines show complex tones with the lowest harmonic at 10 while the dash-dotted lines 
show the lowest harmonic component at 16.
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3.3 Model Responses to Speech
Speech signals encode information about intonation, syllables, and phonemes through 
different modulation rates. We explored the processing of speech sounds across simulated 
cortical areas to study the importance of simple spectro-temporal cortical properties, as 
reported by electrophysiology and represented by the model, in coding these temporal 
features of speech. To this end, we analyzed model output in response to 630 speech 
stimuli by computing the magnitude spectrum coherence between these sounds (the 
output of the LIN stage) and the simulated model responses for each of the four areas. 
Figure 9 shows the normalized coherence plots (scaled by the normalized time-averaged 
activity). In all regions, we observed model synchronization to slow changes in the stimuli 
(<20 Hz).

Next, in order to highlight differences in the temporal response properties between 
regions, we computed difference plots for the simulated core and belt areas. While we 
observed no differences in coding of temporal features between A1 and R, Figure 10 shows 
that differences are present in the belt stream (comparing the coding of temporal features 
in the Fast to those in the Slow area). The difference between the coherence (Slow – Fast) 

Figure 9: Mean magnitude spectrum coherence between speech sounds and model output. The coherence 
values in A1, R, Fast and Slow areas are shown in panels A, B, C, and D respectively (scaled by the normalized 
mean spatial response of the model to 630 speech sounds). All areas show high coherence with the slow 
oscillations present in the input signal (indicated by red and yellow colors).
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across 630 stimuli (mean: -0.0332, SEM: 0.0041) was used to compute data distribution 
in four percentiles (65, 75, 85, and 95%). These percentiles are shown along the color 
bar in Figure 10 (with the distribution) to provide a threshold for the significance to 
the difference between input-output coherence of the Slow and Fast area. Shades of blue 
show stronger input-output coherence in the Slow area, while the warmer colors indicate 
stronger input-output coherence in the Fast stream. The Slow area represents the slower 
changes (4 – 8 Hz) in the speech envelope better than the Fast area. The Fast area, on the 
other hand, highlights faster changes in the temporal structure of speech in two frequency 
ranges (30 – 70 Hz, and around 100 – 200 Hz).

We hypothesized that the higher of these two frequency ranges (100 – 200 Hz) may 
reflect the presence of temporal pitch information in the Fast area. The temporal code for 
pitch in the simulated areas was estimated by computing short-time Fourier Transform 
(window length: 300 ms, overlap: 200 ms) over the length of the signal. The resulting 
power spectral density estimates showed temporal synchronization to the frequencies 
approximating the pitch in A1, R and Fast areas over time. For the purpose of comparison 
across simulated areas, the pitch estimates and contour obtained for voiced portions of 
the sounds (using the YIN algorithm) were correlated with the oscillatory activity of 
individual simulated areas for all 630 speech stimuli. Mean correlation values were A1: 
0.46 (SEM: 0.02), R: 0.47 (SEM: 0.02), Slow: -0.14 (SEM 0.01), Fast: 0.59 (SEM 0.01) 

Figure 10: Mean difference in magnitude spectrum coherence between belt regions. The Slow area showed 
higher coherence with slow oscillations in speech (4 – 8 Hz, indicated by blue colors). Instead, the Fast area 
showed greater coherence to faster oscillations of speech (30 – 70 Hz, around 100 Hz, and 150 – 200 Hz, 
indicated by the warmer colors). The distribution of the difference in magnitude spectrum coherence between 
the Slow and Fast area for all 630 sounds is shown in gray, adjacent to the color bar, with percentiles marked 
to indicate the statistical significance.
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showed that the Fast area best represented the pitch information through synchronization 
to instantaneous F0.

Figure 11 highlights the presence of a dual mechanism for coding pitch, as pitch 
information is present in both spectral (i.e., spatially, by different units) and temporal 
(by different oscillatory activity) model responses for a sample sound (male speaker, 
sentence duration 3.26 s; selected from LDC TIMIT database, Garofolo et al. (1993)). In 
Figure 11A, the time-averaged response to the speech sentence across the tonotopically-
organized channels in the four simulated areas is shown. In all the areas, a peak in the 
response profile can be observed in those frequency channels that matched the F0 of 
the speaker (best estimate computed using YIN algorithm: 109 Hz). This spectral (i.e., 
spatial) representation of the speech signal’s pitch is strongest in the Slow area and weakest 
in the Fast area. A1 and R show similar profiles with respect to each other. Contour 
tracking of pitch in the Fast area with the sample sound (correlation 0.74) is shown in 
Figure 11B (pitch contour of the speech signal measured by YIN algorithm is shown as 
the white boxes). The simulated belt regions show functional specialization to represent 
pitch spectrally (in the Slow area) and temporally (in the Fast area) in parallel streams.

Overall, the model responses to speech sounds highlight the presence of a distributed code 
for representing different temporal features of speech signals at the level of belt regions, 
but not for the core regions. Each belt area showed a functionally relevant specialization, 
as the temporal features highlighted by Slow and Fast areas are key structures of speech 
signals.

Figure 11: A dual code for pitch estimation. For a sample sound, (A) Mean firing rate of all units in the four 
simulated areas (A1, R, Slow and Fast, colored lines) is shown. Sound frequency profile (scaled) is plotted in a 
black dashed line for reference. The gray highlighted portion of the plot indicates estimates of pitch by YIN 
algorithm (distribution over time, with the best estimate of F0 plotted with a dash-dotted line, de Cheveigné 
and Kawahara (2002)). A spectral code is observed in model outputs with firing rate peaks overlapping with 
YIN estimates. (B) Temporal code for pitch is observed as weak synchronization to pitch contour in oscillatory 
activity (measured as Vector Strength) of the Fast area unit corresponding to spectral peak corresponding to 
best pitch estimate by YIN algorithm. The pitch contour estimates over time computed by YIN algorithm 
are depicted by white boxes. The correlation between YIN estimates the temporal profile of Fast area is 0.74.
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4 Discussion

In this study, we presented a computational model of the AC that consists of information 
processing streams optimized for processing either fine-grained temporal or spectral 
information. The model is employed to investigate the contribution of the different 
cortical streams in the representation and processing of basic acoustic features (i.e., 
temporal modulation, pitch) in the context of artificial and natural (speech) stimuli.

We started by simulating responses to artificial AM sounds. Electrophysiological studies 
have characterized AM coding by a dual mechanism of temporal (synchronization) and 
rate coding (Joris et al., 2004). In comparison with the phase-locking in the auditory nerve 
[reported up to 1.5 – 8kHz in humans, Verschooten et al. (2019)], the synchronization 
code has been measured to be comparatively diminished at the level of the cortex for 
human and non-human primates. The preferred AM rates have been reported as ranging 
from 1-50 Hz in monkeys (Steinschneider et al., 1980; Bieser and Müller-Preuss 1996; 
Lu et al., 2001), despite neurons have been shown to synchronize as high as 200 Hz in 
monkeys (Steinschneider et al., 1980) and similar weak synchronization could be detected 
in humans with electrocorticography (Nourski et al., 2013). In agreement with these 
electrophysiology studies, our model exhibited a dual coding mechanism. While the 
contribution of a temporal code (synchronization) was strong up to a maximum of 50 
Hz, synchronizations became weaker for higher modulation rates and were complemented 
with a rate code mechanism.

Furthermore, in electrophysiology, the maximum AM rate for which a temporal code is 
present has been reported to differ across fields of the AC (Liang et al., 2002). Caudal 
fields (i.e., regions belonging to the dorsal processing stream) are reported to be as fast 
as or even faster than the primary AC and synchronize with the stimulus envelope up to 
high AM rates. Instead, the rostral field (i.e., part of the ventral processing stream) does 
not show a temporal code for AM sounds but codes AM with changes in firing rate (i.e., 
a rate code) (Bieser and Müller-Preuss, 1996). In the simulated responses, the relative 
contribution of the temporal and rate coding mechanisms also varied across the simulated 
cortical areas, depending upon the areas’ temporal and spectral processing properties. 
While the temporal code displayed a low-pass filter profile, the shape of the rate code 
varied from low-pass to band-pass and band-stop patterns. Evidence for such variation 
in rate coding pattern has been reported in electrophysiological studies as well with sAM 
stimuli (Bendor and Wang, 2008; Bieser and Müller-Preuss, 1996; Liang et al., 2002; 
Schreiner and Urbas, 1988). In our model, this observation was highlighted when the 
firing rate was examined within carrier-matched frequency channels. The interaction of 
spectral and temporal response properties underlies these observations.
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In order to assess the relationship between neural population activity (i.e., synchronization 
and firing rate) with human behavior, we next used the model to simulate psychoacoustic 
experiments. We were able to successfully predict psychoacoustically-determined 
modulation detection thresholds (i.e., modulation detection transfer functions, tMTFs) 
for AM noise and tones (Bacon and Viemeister, 1985; Kohlrausch et al., 2000). The 
model suggested a role for auditory core areas, rather than belt areas, in coding modulation 
detection with simple AM stimuli. The tMTF for AM noise was replicated by computing 
temporal synchronization. However, for AM tones, we observed the best prediction of the 
psychoacoustical tMTF by using a combination of synchronization and spatial (sideband 
detection) code. Additionally, we observed that compared to low-frequency carriers, high 
carriers allowed modulation detection up to faster rates. This replicated psychoacoustic 
observations of detection up to faster modulation rates with a higher carrier frequency 
(Kohlrausch et al., 2000; Moore and Glasberg, 2001; Sek and Moore, 1995; Simpson et 
al., 2013). Our simulations indicate that these frequency-specific responses, which arise 
at the periphery, are inherited by the cortex, especially in the core areas.

We further evaluated the contribution of temporal coding mechanisms to psycho-
acoustical phenomena. While current views on pitch perception suggest that the role of 
synchronization is limited to the auditory periphery and cortex might use information 
from individual harmonics (Plack et al., 2014), there is evidence of temporal cues being 
used especially for unresolved harmonics for low pitch sounds (Bendor et al., 2012). The 
model successfully decoded the low frequency missing fundamentals of complex tones 
and showed a dependence of the strength of synchronization on the order of harmonics. 
By simulating a psychoacoustic task employing missing fundamental complex tones 
with varying unresolved harmonics, we further investigated the role of synchronization 
and its dependence on the number and order of harmonics. The model output matched 
the previously reported human behavior performance through synchronization in the 
simulated neural responses, but not by a rate coding mechanism. That is, we could 
successfully replicate three key findings from Houtsma and Smurzynski (1990). First, the 
synchronization to the missing F0 was stronger for the lower compared to higher-order 
harmonic sounds and second, it improved with an increasing number of components 
of complex tone. Third, only for the lower order harmonic sounds, the improvement 
in model performance was sharp when the number of components was increased from 
two to four and displayed a plateau when further components were added. Interestingly, 
the match between psychoacoustics and the model output was limited to the Fast area, 
suggesting a role for this fine-grained temporal processing stream in the extraction of the 
pitch using temporal cues. Additionally, using speech sounds, we further observed a strong 
spatial (spectral) pitch correlate (observed in all areas, strongest in Slow area) along with 
weaker oscillations tracking pitch contour (only in Fast area). However, the spatial code 
is not observable in model output for pitch with missing fundamental complex tones 
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and suggests the need for a more complex network to effectively detect pitch just from 
harmonic information in space. Moreover, the temporal code for pitch can benefit from 
feedback connectivity (Balaguer-Ballester et al., 2009) while precise interspike intervals 
can shed light on phase sensitivity of pitch perception (Huang and Rinzel, 2016). Thus, 
future model modifications can move from general (current) to more specific hypotheses 
of auditory processing.

Coding of pitch in the AC has been extensively investigated with fMRI, resulting in 
somewhat conflicting findings. While some studies pointed to lateral Heschl’s Gyrus (HG) 
as a pitch center (De Angelis et al., 2018; Griffiths and Hall, 2012; Norman-Haignere 
et al., 2013), other studies showed that pitch-evoking sounds produced the strongest 
response in human planum temporale (PT) (Garcia et al., 2010; Hall and Plack, 2009). 
This disagreement may be due to differences between studies in experimental methods 
and stimuli. Our computational model provides an opportunity to merge these fMRI-
based findings, as it allows for the efficient and extensive testing of model responses to a 
broad range of sounds. Based on the sounds we tested, observations of a pitch center in 
PT, part of the Fast stream, may be dominated by temporal pitch. Instead, human fMRI 
studies reporting a pitch area in lateral HG (De Angelis et al., 2018; Griffiths and Hall, 
2012; Norman-Haignere et al., 2013), which is part of the Slow stream), maybe reflecting 
the spectral rather than the temporal processing of pitch. Our simulations suggest a 
functional relevance for temporal representations albeit through weak synchronization. 
These predictions are in line with evidence of synchronization in the AC contributing 
to the percept of pitch (up to 100 Hz) observed with MEG (Coffey et al., 2016) and 
require future studies with both high spectral and temporal precision data from the AC.

The distributed coding pattern shown by the different regions (i.e., coding of modulation 
detection thresholds by the core regions, coding of temporal pitch by the Fast area and 
spectral acuity by the Slow area of the belt stream) reflected a hierarchical processing 
scheme based on varying spectro-temporal properties of the neural populations. We then 
applied this modeling framework to the analysis of (continuous) speech with the aim of 
exploring the influence of basic neural processing properties on the representation and 
coding of speech. All modeled areas represented the slow oscillations present in speech 
(<20 Hz). In the belt areas, an additional distributed coding of temporal information 
was observed. That is, the optimization for coding slow temporal changes with high 
spectral precision in the Slow stream resulted in the coding of temporal oscillations in the 
lower 4–8 Hz frequency range. Processing properties similar to those of the Slow stream 
may thus be suited for coding spectral pitch and prosody in speech signals. Instead, 
optimization for processing fast temporal changes with low spectral precision in the 
Fast stream resulted in the coding of temporal oscillations in the higher 30 – 70 Hz and 
100 – 200 Hz frequency ranges. Processing properties similar to those of the Fast stream 
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may therefore instead be optimal for coding phonemes (consonants), and temporal pitch. 
In sum, we showed that the hierarchical temporal structure of speech may be reflected 
in parallel and through distributed mechanisms by the modeled areas, especially by 
simulated belt areas. This is in line with the idea that the temporal response properties 
of auditory fields contribute to distinct functional pathways (Jasmin et al., 2019).

The “division of labor” observed between the simulated processing streams provides 
predictions regarding cortical speech processing mechanisms. Specifically, the slowest 
oscillations, representing the speech envelope, were coded in parallel across regions 
with different processing properties and may serve to time stamp the traces of different 
speech aspects belonging to the same speech utterance across streams. This may serve as 
a distributed clock: A binding mechanism that ensures the unified processing of different 
components of speech (Giraud and Poeppel, 2012; Yi et al., 2019) that are instead coded 
in a distributed fashion. Such a temporal code can also underlie the binding of auditory 
sources in stream segregation (Elhilali et al., 2009). While in the current implementation 
of the model the responses are driven by stimuli, the model could be extended to include 
stimulus-independent oscillatory cortical activity. As the oscillations inherent to AC 
processing that occur on multiple timescales are known to decode complimentary 
informational structures in speech processing (Overath et al., 2015) and auditory scene 
analysis, such a model extension may in the future be used to study the effects on these 
‘inherent’ oscillations on responses to speech and other structured inputs.

To summarize, we have presented a recurrent neural model built on simple and established 
assumptions on general mechanisms of neuronal processing and the auditory cortical 
hierarchy. Despite its simplicity, the model was able to mimic results from (animal) 
electrophysiology and was useful to link these results to those of psychophysics and 
neuroimaging studies in humans. As the response properties of the AC (tonotopic 
organization, phase-locking, etc.) are inherited from the periphery, it remains possible 
that the model in actuality depicts earlier stages in the auditory pathway rather than 
AC. In future implementations of the model, the distinction between peripheral and 
cortical stages can benefit from a more detailed peripheral model (Meddis et al., 2013, 
Zilany et al., 2014). Ultimately, establishing a clear distinction between peripheral and 
cortical contribution would require simultaneous high-resolution (spatial and temporal) 
recordings across multiple locations of the auditory pathway and cortex. Furthermore, 
how the model dynamics shape up in presence of intrinsic noise in the system can also 
provide interesting insights into sound processing.

Nonetheless, the model is valuable for generating hypotheses on how the different cortical 
areas/streams may contribute towards behaviorally relevant aspects of acoustic signals. 
The presented model may be extended to include a physiological model of neurovascular 
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coupling (Havlicek et al., 2017) and thus generate predictions that can be directly verified 
using functional MRI. Such a combination of modeling and imaging approaches is 
relevant for linking the spatially resolved but temporally slow hemodynamic signals to 
dynamic mechanisms of neuronal processing and interaction.
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Supplementary Materials

Supplementary Figure 1: Model performance on a missing fundamental task. The model performance 
in detecting missing fundamental of complex tones (average firing rate, normalized across all tones) is shown 
for areas A1, R, Fast and Slow (blue lines in panels A, B, C, and D respectively). Human behavioral data on 
pitch identification (%) task (Houtsma and Smurzynski, 1990) is plotted in orange lines. Solid lines show 
complex tones with lowest harmonic at 10 while the dash-dotted lines show lowest harmonic component at 16.
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Abstract

Recent functional MRI (fMRI) studies have highlighted differences in responses to natural 
sounds along the rostral-caudal axis of the human superior temporal gyrus. However, due 
to the indirect nature of the fMRI signal, it has been challenging to relate these fMRI 
observations to actual neuronal response properties. To bridge this gap, we present a 
forward model of the fMRI responses to natural sounds combining a neuronal model of 
the auditory cortex with physiological modeling of the hemodynamic BOLD response. 
Neuronal responses are modeled with a dynamic recurrent firing rate model, reflecting the 
tonotopic, hierarchical processing in the auditory cortex and the spectro-temporal tradeoff 
in the rostral-caudal axis of its belt areas. To link rostral-caudal differences in neuronal 
response properties with human fMRI data in the auditory belt regions, we generated 
a space of neuronal models, which differed parametrically in spectral and temporal 
specificity of neuronal responses. Then, we obtained predictions of fMRI responses 
through a biophysical model of the hemodynamic BOLD response (P-DCM). Using 
Bayesian model comparison, results showed that the hemodynamic BOLD responses of 
the caudal belt regions in the human auditory cortex were best explained by modeling 
faster temporal dynamics and broader spectral tuning of neuronal populations, while 
rostral belt regions were best explained through fine spectral tuning combined with 
slower temporal dynamics. These results support the hypotheses of complementary neural 
information processing along the rostral-caudal axis of the human superior temporal 
gyrus.
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1 Introduction

Auditory information in the primate auditory cortex (AC) is processed hierarchically from 
core to belt and then to the parabelt region (Kaas and Hackett, 2000). The hierarchical 
organization allows for efficient sequential information processing, stemming from 
the dense connectivity between core and belt areas, and then belt and parabelt areas. 
Already at the early stages of information processing, at the level of belt areas, neuronal 
populations along the rostral-caudal axis show distinct response property profiles (Scott 
et al., 2017). In comparison with core and other surrounding areas of the AC, neurons 
in the rostral stream show longer latencies and narrow frequency tuning (Recanzone et 
al., 2000; Bendor and Wang, 2008; Tian et al., 2001; Camalier et al., 2012). On the 
other hand, neurons in the caudal areas show broader frequency tuning and latencies 
that are comparable or shorter to the primary AC (Recanzone et al., 2000; Kuśmierek 
and Rauschecker, 2014). These differences in neuronal properties are thought to support 
the specialized functions of ‘what’ and ‘where’ (or ‘how’) processing in the rostral and 
caudal streams, respectively (Jasmin et al., 2019; Kaas et al., 1999; Belin et al., 2000; 
Rauschecker and Tian, 2000).

Apart from different neuronal properties measured with electrophysiology in non-
human primates, differences in responses across the rostral-caudal pathway have also 
been measured using functional MRI (fMRI) in humans. Recent neuroimaging studies 
have reported a spectro-temporal trade-off of responses, with a preference for fine spectral 
structures of sounds in rostral regions, in comparison with preference to fine temporal 
features of sounds in the caudal regions (Schönwiesner and Zatorre, 2009; Santoro et al., 
2014). However, the hemodynamic blood oxygenation level-dependent (BOLD) signals 
measured with fMRI originate from (nonlinear) vascular changes (i.e., changes in blood 
oxygenation, blood flow, and blood volume) in response to neuronal activity. While 
the resulting fMRI signal is correlated to the underlying neuronal activity (Logothetis 
et al., 2001; Logothetis et al., 1999; Rees et al., 2000), it does not directly measure 
the neuronal activity. Thus, it remains to be determined whether the spectro-temporal 
preferences along the rostral-caudal streams inferred from the modeling of fMRI data 
(Santoro et al., 2014) are a direct result of fundamental neuronal mechanisms and 
response properties as observed in electrophysiology. The relationship between neuronal 
and hemodynamic responses is commonly (but less accurately) approximated with a 
simple linear convolution model. Nonlinear biophysical generative models provide an 
improvement over linear convolution approaches by more accurately capturing the 
nonlinear neuronal dynamics and have been shown to describe the causal relation between 
neuronal activity and the data measured from different modalities (Friston et al., 2003). 
Within the dynamic causal modeling (DCM) framework, forward models have been 
used to generate predictions about observed responses using a combination of neuronal 
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models (for a review of different neuronal models, see Moran et al., 2013) and modality-
specific measurement models [e.g., hemodynamic model for fMRI: Havlicek et al., 2015; 
Stephan et al., 2008, lead field model for E/MEG: Kiebel et al., 2006)].

In this article, we adopt a DCM framework to study the causal link between the 
properties of neuronal populations in auditory belt regions and fMRI responses to natural 
sounds. We hypothesize that, just as evidenced in electrophysiology, the rostral-caudal 
axis of the human superior temporal plane will cluster into two distinct populations; a 
caudal region that is spectrally less specific (i.e., broader frequency tuning) with faster 
temporal responses, and a rostral region with narrow frequency tuning but longer 
temporal responses. In the forward model, we use a dynamic recurrent neuronal model 
of the AC (Zulfiqar et al., 2020), which incorporates the hierarchical organization of the 
AC where information flows from the primary core to secondary belt auditory regions 
(Kaas and Hackett, 2000), as well as a rostral-caudal organizational axis along which 
neuronal units differ in their spectro-temporal properties (i.e., their frequency tuning 
width and response latency) as reported in animal electrophysiology (Scott et al., 2017; 
Bendor and Wang, 2008; Camalier et al., 2012; Recanzone et al., 2000; Tian et al., 
2001; Kuśmierek and Rauschecker, 2014). To simulate the BOLD responses, we use 
a generative hemodynamic model of the BOLD signal presented in a recent DCM 
extension (physiological DCM [P-DCM], Havlicek et al., 2015) which provides several 
advances over standard approaches (Buxton et al., 2004; Friston, Mechelli et al., 2000; 
Sotero and Trujillo-Barreto, 2007). P-DCM uses feedforward neurovascular coupling 
in the measurement model, which allows the dynamic changes in neuronal activity to 
be better reflected in the BOLD response, whereas standard DCM uses feedback-based 
neurovascular coupling, which due to its oscillatory behavior can diminish some dynamics 
of neuronal response. Furthermore, passive vascular uncoupling between cerebral blood 
flow and cerebral blood volume allows us to explain hemodynamic transients that are 
not explainable by changes in neuronal activity, i.e., it accounts for the vascular source 
of variability in the hemodynamic BOLD response (Havlicek et al., 2015).

To test our hypotheses at the voxel level, we first generate a space of neuronal models, 
which differ parametrically in spectral and temporal specificity of neuronal responses. 
We then simulate the BOLD responses and perform a voxel-wise model comparison 
using Bayesian Model Selection (BMS). Results showed that the hemodynamic BOLD 
responses of the caudal belt regions in the human auditory cortex were best explained by 
modeling faster temporal dynamics and broader spectral tuning of neuronal populations, 
while rostral belt regions were best explained through fine spectral tuning combined with 
slower temporal dynamics.
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2 Methods

An overview of the implemented methodology is shown in Figure 1. In the workflow 
of P-DCM (Havlicek et al., 2015), we substitute an adaptive two-state neuronal model 
with a dynamic recurrent firing rate model, specifically tailored to sound processing in 
the AC (Zulfiqar et al., 2020). The model space is populated with the AC models that 
simulate multiple spectro-temporal response properties for the belt region (with spectral 
specificity varying from broad to narrow, and temporal latencies ranging from very fast 
i.e., few milliseconds, to slow i.e., hundreds of milliseconds). The simulated responses are 
fitted to the BOLD responses from the measured fMRI dataset (from the belt regions) 

Figure 1: Procedural workflow for predicting the neuronal response properties from the BOLD signals. 
Sounds are passed through a hierarchical, tonotopic neuronal model of the AC. In different iterations of the 
cortical processing stage, the belt area is modeled with a distinctive spectro-temporal response profile. The 
output of each of the belt simulations is processed through the three remaining stages of P-DCM to generate 
simulated BOLD responses. To retain maximum model-specific information, the output of the P-DCM 
is reduced to three principal components using Principal Component Analysis (PCA). These principal 
components of the predicted timecourses from all models are fitted to the measured fMRI responses (in the 
auditory belt regions) for each voxel using VB-GLM. By model comparison, the best model prediction for 
each voxel is generated. This prediction is linked to the neuronal model properties, resulting in characteristic 
temporal response and spectral specificity of the neuronal population underlying the voxel activation measured 
using fMRI.
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using a Variational Bayesian optimization for General Linear Model (VB-GLM, Penny, 
2012). By model comparison using the Free Energy metric (Friston and Stephan, 2007), 
we predict the best neuronal model (with a specific spectral and temporal preference) 
for each voxel, thereby assigning neuronal response properties to each voxel based on its 
hemodynamic responses. These stages are discussed in detail in the following sections.

2.1 Measured fMRI Dataset
The measured fMRI responses are from an existing 7 Tesla fMRI dataset (Santoro et al., 
2017), where responses to 288 natural sound stimuli were measured in 5 subjects. These 
sounds included samples of human vocalizations (including speech), animals, musical 
instruments, tool sounds, and sounds of nature, and were of 1 s duration. Responses 
to these sounds were measured in a fast event-related design (TR = 2.6 s, average inter-
stimulus interval = 7.8 s) with 1.5 mm isotropic voxel size (1.5 mm isotropic; Santoro et 
al., 2017) in 12 runs. For this study, the measured fMRI responses for each voxel were 
averaged across sounds irrespective of sound categories.

The neuronal model described below is used to generate responses to the 288 natural 
sounds, which were processed in the same order by the model as they were presented 
to the participants in the aforementioned study. The simulations were performed for all 
12 runs and then they were concatenated. Some parameters used in P-DCM were also 
updated based on the specifics of the current dataset and are described below.

2.2 Neuronal Model of  the Auditory Cortex
The auditory processing pathway is modeled by modifying an existing hierarchical two-
stream computational model of the AC (Zulfiqar et al., 2020). The model consists of two 
stages; a peripheral processing stage and a cortical processing stage, and approximates neural 
sound processing using recurrent excitatory and inhibitory populations.

2.2.1 Peripheral Processing Stage
In the peripheral processing stage (Figure 1), the sounds are filtered using a set of band-pass 
filters that simulate the tonotopic cochlear filtering (100 filters, 4th order Gammatone 
filterbank implementation by Ma et al., 2007). The filter bandwidths are fixed at 1 ERB 
(Equivalent Rectangular Bandwidth, Glasberg and Moore, 1990). The center frequencies 
of the filters are equally spaced on the ERBN number scale (between 50 – 8000 Hz) with a 
distance of 0.3 Cams (ERBN is the ERB of the auditory filters estimated for young people 
with normal hearing). After cochlear filtering, the response of the filters is tonotopically 
sharpened by the Lateral Inhibition Network, LIN (Chi et al., 2005) (Figure 2). The 
LIN is implemented by taking a spectral derivative followed by half-wave rectification 
and temporal integration of the output. To remove any boundary effects of filtering, 
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the output of the first and the last filters is removed, resulting in 98 units (with center 
frequencies between 60 – 7723 Hz).

2.2.2 Cortical Processing Stage
The cortical processing stage consists of two auditory areas. The first area approximates 
a primary core region while the second area represents a secondary belt region of the 
auditory cortex. These areas are simulated using an adaptation of the Wilson-Cowan 
excitatory and inhibitory units (Wilson and Cowan, 1973; 1972) as reported in Zulfiqar 
et al. (2020). The key response properties of the simulated core and belt regions are 
frequency tuning curves (FTCs) and temporal dynamics. The FTC defines the spatial 
resolution of a simulated area and is quantified using the Quality factor (Q) where: 

                                                  , 

while the temporal latencies of the population regulate the temporal dynamics of the 
model. The response properties of the simulated core area are set to model the primary 
auditory cortex (A1) while the belt region is varied systematically to generate the model 
space.

2.2.3 Model Space
As the basic response properties in the belt region have been found to change along 
its rostral-caudal axis, we generate 28 models of the belt approximating the variety 
of spectro-temporal responses. That is, the model space ranges from broad to narrow 
spectral specificity, and from fast to slow temporal responses (Figure 2). The spectral 
specificity (measured as Q) is modified (in 4 steps, from narrow to broad) by varying 
spatial spread (modeled by parameter σ, see (Zulfiqar et al., 2020)) within belt models 
(smaller spread of excitation and larger inhibition leads to narrow frequency tuning). 
When a change in the spatial spread of activity did not further affect spectral resolution 
Q ), the connectivity kernel (see (Zulfiqar et al., 2020) for further details) between core 
and belt units was iteratively increased in space (many units projecting to single unit 
results in broad frequency tuning). The connectivity kernels that are convolved with the 
spatial input, are reported in Supplementary Table 1. As the spatial and temporal axes 
are not independent of each other, the procedure of selecting σ and connectivity kernel 
was iteratively repeated for all separate values of time constant [modeled by parameter 
τ, see (Zulfiqar et al., 2020)]. The resulting Q values are reported (mean and standard 
deviation) for the whole tonotopic axis for each model, along with Q for a unit with 
the best frequency 1 kHz to provide reference across models. For simplification, the Q  
values are discretized to 3, 6, 9, and 12 (smaller values indicate broader responses) to 
simplify the model space.

 (𝑄𝑄𝑄𝑄 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ

 ) 
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Figure 2 shows the final model space (each model in the model space is generated by 
parameters reported in Supplementary Table 1) and the hypothesized response properties 
of rostral-caudal regions in reference to the model space. The temporal latencies, 
controlled by parameter τ, are varied in 7 steps (3, 10, 50, 100, 200, 300, and 400 ms). 
Additionally, based on electrophysiological evidence (Scott et al., 2011), the values of 
τ decrease linearly with increasing best frequency along the tonotopic axis in all of the 
individual belt models (extreme values are reported in Supplementary Table 1). Neuronal 
responses from all the models of the model space were generated in response to sounds, 
as presented in the measured fMRI dataset.

2.3 Measurement Model for fMRI
To reduce the number of computations, for each of the neuronal models, the output is 
downsampled in space to 10 tonotopic units (mean over channels) and in time to 10 
Hz. This downsampled output acts as input to the measurement model comprising of a 
feed-forward neurovascular coupling (NVC) model along with a hemodynamic model 
including viscoelastic properties of venous vessels and a physical BOLD signal model 
[as reported by Havlicek et al. (Havlicek et al., 2015)]. The current neuronal model, in 
contrast with the neuronal model proposed by Havlicek et al. (2015), simulates faster 
temporal dynamics but no neuronal contributions to post-stimulus undershoot. Thus, 
the model parameters of NVC and hemodynamic models differed slightly from the 
default parameterization.

Figure 2: The model space showing 28 neuronal models of varying temporal and spectral resolution 
for the simulated belt region. Spectral specificity is quantified by the Quality Factor (Q). Higher values 
of Q indicate narrow frequency tuning and vice versa. The characteristic temporal dynamics of each model 
are indicated by the time constant (τ). Higher values of τ indicate slower temporal dynamics. The blue (red) 
region highlights the hypothesis that neuronal models with broad (narrow) tuning curves and faster (slower) 
responses will be the best fit model for caudal (rostral) belt AC.
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The NVC is modeled as reported by Havlicek et al. (2015) with few changes in 
parameter values (see Supplementary Table 2). The output of the neuronal model i.e., 
the excitatory activity modulated by inhibitory activity, is transformed to blood flow in 
a strict feedforward fashion, via vasoactive signal. The feedforward NVC ensures that 
neuronal dynamics are conveyed to blood flow response, albeit in a smooth version. Decay 
and delay of the cerebral blood flow response with respect to the neuronal response are 
regulated with fixed constants reported in Supplementary Table 2.

The hemodynamic model is represented by the balloon model (Buxton et al., 1998). It 
models the mass balance of normalized changes in blood volume and deoxyhemoglobin 
content as they pass through the venous compartment. Their changes are driven by 
changes in blood inflow and oxygen metabolism respectively. It is assumed that blood 
inflow and oxygen metabolism are linearly coupled, with n-ratio equals 3 (Buxton et al., 
2004). The steady-state relationship between blood outflow and volume is given by the 
power-law relationship (Grubb et al., 1974). During transient periods, the viscoelastic 
time constant venous controls uncoupling between blood inflow and volume. Given the 
short stimulus duration used in the measured fMRI dataset (1 s), we assume only very 
small uncoupling during the response inflation phase but larger uncoupling during the 
deflation phase. This larger uncoupling is responsible for modeling post-stimulus BOLD 
response undershoot. The updated parameter values are reported in Supplementary 
Table 3.

The BOLD signal is implemented as a function of deoxyhemoglobin content and blood 
volume, which comprise a volume-weighted sum of extra- and intra-vascular signal 
components (Havlicek et al., 2015; Havlicek and Uludağ, 2020). The parameters of the 
BOLD signal model adjusted for the magnetic field strength (7 T) of the measured fMRI 
dataset are reported in Supplementary Table 4.

2.4 Channel Reduction, Bayesian Model Fitting and Model Selection
As the values selected for parameter Q, and those for τ, are quite close to each other across 
the model space, spatial spread of activity within simulated region and connectivity 
between simulated regions resulted in correlated activity in neighboring tonotopic 
channels. Similarly, as τ and Q values between adjacent models did not vary drastically, 
model responses were correlated across the model space as well. This was further 
exacerbated by the low temporal resolution of the BOLD signal. Thus, to capture 
maximum variation in BOLD responses, the PCA analysis was used to reduce 10 
tonotopic channels (for each of the models) into three principal components capturing 
>95% of simulated data variance. Linear combination of three principal components 
(PCs) and set of independent intercepts for each functional run were fitted to the single 
voxel timecourse using VB-GLM. This VB-GLM approach optimizes the weights of the 
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linear model by maximizing the log-model evidence that is approximated by the free 
energy, F. By fitting all 28 neuronal models to each voxel, the free energy can be used to 
perform to Bayesian model selection (BMS) of the most favored model given the data 
(Penny, 2012). In particular, models were compared by taking the log-evidence difference 
with respect to the model with the lowest log-evidence, which equals the log Bayes factor 
ln Bi = Fi – min(F) and can be also expressed in terms of posterior model probability 
                          (Kass and Raftery, 1995).

2.5 Model Validation
Using fMRI encoding, Santoro et al. (2014) reported regions most sensitive to fast 
temporal changes and broader spectral features, and fine spectral features and slower 
temporal changes in the stimuli, respectively. However, due to the limitations of fMRI, we 
cannot conclude that these functional differences are due to specific underlying neuronal 
properties. With a dataset similar to Santoro et al. (2014), the aforementioned modeling 
approach can help us test the hypothesis that the activity in the caudal regions would 
best be described by models with low spectral specificity (lower Q) and high temporal 
precision (smaller τ ) in their neuronal responses and vice versa for rostral regions (higher 
Q and larger τ).

To test the aforementioned hypothesis, we first replicated these findings in the fMRI 
dataset (Santoro et al., 2017) following the same procedures as in Santoro et al. (2014). 
Three maps were generated per participant, per hemisphere (see Figure 3A, B, and C for 
maps for a representative participant, right hemisphere) detailing the frequency preference 
(tonotopic map), temporal-feature preference (temporal modulations, shown in rate 
map), and spectral-feature preference (spectral modulations, shown in scale map) across 
the AC. Tonotopy and anatomical markers were used to identify Heschl’s gyrus to indicate 
the location of the core regions. Next, we identified a Caudal and Rostral region posterior 
to the Heschl’s gyrus, as a region most sensitive to fast temporal changes and broader 
spectral features, and fine spectral features and slower temporal changes in the stimuli, 
respectively (Figure 3D).

The timecourses of the voxels in the two labeled streams, irrespective of their label, were 
used for model fitting. Through model comparison, we selected a single best neuronal 
model from the model space for each voxel. As each of the models was characterized by 
different neuronal response properties, this resulted in a prediction of the optimal Q and 
τ across the voxel space. These predicted properties were then compared across the labeled 
Caudal and Rostral region using a non-parametric statistical test.

 𝑝𝑝𝑝𝑝j = 𝐵𝐵𝐵𝐵j ∑ 𝐵𝐵𝐵𝐵j𝑗𝑗𝑗𝑗⁄   
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2.6 Predicting the Best Frequency per Voxel
In order to evaluate the frequency channel contributing most to the voxel timecourse, 
given the earlier selected best neuronal model, we constructed a feature vector,  
wj (j = 1 ... 10), by projecting each channel (simulated BOLD signal) timecourse, xj, 
into subspace spanned by three PCs (i.e., features are weights of a linear combination 
of the PCs contributing to specific channels). Similarly, we created a feature vector, w*, 
representing the contribution of the PCs into model prediction given by VB-GLM 
estimate, ŷ, described above. The similarity between the feature vector based on voxel 
timecourse prediction and the feature vector of a specific frequency channel was evaluated 
by fitting a linear model using the VB-GLM approach. Bayesian Model Selection 
(BMS) based on free energy, previously evaluated for 10 channels, was then used to 
select the best channel per voxel. Note that a simpler approach to evaluate the similarity 
between two vectors, e.g., based on Euclidean distance, would yield comparable results. 
Tonotopic channels of the model present a range of 60 to 7723 Hz range. This procedure 
(summarized in Figure 4) predicted the best frequency for each voxel in the labeled 
regions.

Figure 3: Labeled regions of interest. The Caudal and Rostral areas were labeled based on their responses to 
spectro-temporal changes in the sounds as reported by Santoro et al. (2014). The regions are displayed for 
a single subject (right hemisphere) along the superior temporal plane. The Heschl’s Gyrus (HG) is marked 
in white.
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3 Results

3.1 Simulated Neuronal and Hemodynamic Responses
We investigated the characteristics of the model space by comparing the simulated 
neuronal responses and the simulated BOLD responses across models. Figure 5 indicates 
the results of the simulations for four models along the diagonal of the model space. The 
neuronal responses (Figure 5A and C) are shown normalized by the mean firing rate at 
1 s (duration of each sound stimulus) and the two adjacent time points (before and after 
1 s mark). The BOLD responses (Figure 5B, D, and E) are plotted normalized by peak 
response at the time point at 5 s. The displayed BOLD responses are average responses 
obtained with linear deconvolution from simulated time-courses.

Figures 5A and C show that the models across the diagonal of the model space depict a 
variety of neuronal behaviors. The effects of temporal integration are visible in the time 
course profile of the neuronal model with the largest τ in the model space (indicated 
by red lines in Figure 5A and C). Figures 5A and C also show that the differences in 
responses are maintained within the tonotopic channels, however; the responses vary 
between tonotopic channels (as sound stimuli used do not have equally distributed energy 
across the spectrum). The respective BOLD estimations, however, have more comparable 

Figure 4: Predicting the best frequency per voxel. The simulated BOLD timecourses (for all 10 tonotopic 
channels), their principal components, and best model prediction were used to generate feature vectors. 
Similarity analysis between the feature vector of all timecourses and feature vector of the best prediction 
(using VB-GLM) was used to compare the 10 tonotopic channels (as 10 models) using Bayesian Model 
Selection and select the best channel providing the best frequency per voxel.
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profiles for different models; except for the model with the largest τ, which generates a 
delayed peak response (indicated by a shift in slope between 5s and 10s time points) in 
comparison with the other three models. This trend holds across the tonotopic channels.

Figure 5E shows, for a single representative voxel, the weighted combination of the 
three PCs (combining information across tonotopic channels) of the simulated BOLD 
response for the four models. These responses show that moving across the model space 
diagonally, the BOLD responses are characterized by a shift in the time taken to reach 
peak amplitude (indicated by a shift in slope between 5 s and 10 s time points). Overall, 
the model space captures diverse hemodynamic responses (through modeling of varying 
neuronal dynamics).

3.2 Model Predictions
After confirming that the variation in neuronal responses (Figure 5A and C) across the 
model space can be, to some extent, reflected in hemodynamic BOLD response (Figure 
5E), we next examined the results of BMS in terms of estimated posterior probability 
across the model space. Figures 6A and B, show posterior probabilities of the models 

Figure 5: Simulated neuronal responses and consequent BOLD responses. (A-D) The simulated responses 
are shown for four models chosen across the diagonal of the model space. (E) To highlight the differences 
between model responses across the model space, the BOLD response for the four models of the model 
space is reconstructed individually based on the weighted sum of the three PCs of the tonotopic channels. 
The responses are shown for a single representative voxel. With increasing τ and Q, the peak amplitude of 
the BOLD is seen to shift forward in time. The neuronal responses are shown normalized by the mean firing 
rate at 1 s (duration of each sound stimulus) and the two adjacent time points (before and after the 1s mark). 
The BOLD responses (Figure 5B, D, and E) are plotted normalized by peak response at the time point at 5 s.
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for two example voxels respectively. For voxel 1 (Figure 6A), the highest probability is 
attributed to the model with τ = 50 ms and Q = 6 while the competing models are adjacent 
to the best model (i.e., model with the highest probability) in the model space (ranging 
between Q of 3 – 9 and τ of 20 – 100 ms). On the other hand, for voxel 2 (Figure 6B), 
the best model is characterized by τ = 300 ms and Q = 9 surrounded by competing models 
of the model space (ranging between Q of 6 – 12 and τ of 200 – 400 ms). This shows 
that models closer to each other in the model space behave alike, and different from the 
rest of the model space.

Figure 6C shows an example of the measured and predicted BOLD responses for the 
same two voxels as in Figure 6A and B, along with the underlying neuronal responses of 
the voxel’s best models (Figure 6D). The displayed BOLD responses are average responses 

Figure 6: Model Predictions. (A, B) Model fit across the model space for two sample voxels. (A) For voxel 
1, the best model predictions are grouped in neuronal models of broad spectral specificity and fast temporal 
dynamics. (B) For voxel 2, the best model predictions cluster on the opposite (to voxel 1) spectrum of the 
model space (narrow frequency tuning and slow temporal responses). (C) A comparison of the best model 
predicted BOLD responses and measured BOLD responses. The BOLD responses are plotted normalized 
by peak response at the time point at 5 s. (D) The simulated neuronal responses underlying the best models’ 
prediction of the BOLD responses for both voxels are indicated in the model space. The neuronal responses 
are plotted normalized by the mean firing rate at 1 s and the two adjacent time points (before and after the 
1s mark).
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obtained with linear deconvolution from measured and simulated time courses and are 
normalized by peak response at the time point at 5 s (Figure 6C). The neuronal responses 
(Figure 6D) are shown normalized by the mean firing rate at 1 s (duration of each sound 
stimulus) and the two adjacent time points (before and after the 1s mark). Interestingly, 
within the measured BOLD responses, differences can be observed with a delayed peak 
shown for voxel 2 (solid line in red) compared to the peak in the BOLD response for voxel 
1 (solid line in blue). The neuronal model with longer τ and narrower frequency tuning 
(red circle on the model space) successfully captures the delayed peak. On the other hand, 
the model with faster τ and broader tuning (blue circle on the model space) effectively 
models the BOLD response with an earlier peak. This shift in BOLD responses for the 
two voxels suggests that neuronal response properties might indeed be a contributing 
factor to the differences in measured BOLD responses. The differences between the 
predicted and measured BOLD responses increase after 10 s mark. As we apply the same 
deconvolution to both measured and simulated BOLD responses, these differences might 
reflect variability in the voxel responses that we are not capturing with model dynamics. 
Also, as we are not optimizing hemodynamic parameters in the measurement model, it 
is expected that we would not be able to explain post-stimulus undershoot in all voxels.

3.3 Predicting Neuronal Response Properties across the Belt Regions

3.3.1 Individual Responses
Computing the best model prediction per voxel in the labeled regions allowed assigning 
underlying neuronal response properties to each voxel. Figure 7 shows the maps of the 
temporal parameter τ (panels A, B) and the spectral specificity parameter Q (panels C and 
D) of the best-fitting neuronal models for all voxels in labeled Caudal and Rostral regions, 
for a representative participant (see Supplementary Figure 1 for all other individual 
participant maps).

In Figure 7A and B, a gradient of characteristic temporal constants can be observed, 
moving from fast to slow along the caudal to the rostral axis. In terms of spectral specificity 
(panels C and D), the model predicts that spectrally broad response properties underlie 
the measured BOLD responses in the Caudal region, while fine-grained frequency tuning 
properties best explain activity in the Rostral region of the lateral belt.

Moreover, using the PCA-based back-projection methodology (Figure 4), we also 
predicted the voxels’ frequency preference (panels E and F). The best tonotopic channel 
(from a total of 10 tonotopic channels) for the best model is computed to predict 
frequency preference (on a low [red] to high [blue] scale). The models indicate a higher 
frequency region in the Caudal area while lower frequencies dominate the Rostral area.
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3.3.2 Group Responses
In order to test if the results observed in individual maps were stable across the subjects 
of the fMRI study, we compared the accuracy of the predicted frequency per voxel, 
the mean temporal constant (τ), and the mean spectral specificity (Q) values for all 
subjects in the labeled Caudal and Rostral areas. The predicted tonotopy (frequency 
per voxel) was compared with the measured tonotopy for all subjects. The measured 
frequencies were first binned (between 60 and 7723 Hz, frequency bins based on 
Gammatone filterbank) to correspond to the 10 tonotopic channels. For the Rostral 
area, best frequencies of approximately 28% (std: 6, mean and std values reported over 
five subjects) voxels were predicted accurately while 41% (std: 3) were predicted with one 
channel difference from; and 16% (std: 4) with two channel difference. For the Caudal 
region, 14% (std: 6) best frequencies were predicted accurately; 28.9% (std: 3) predicted 
with one channel difference and; 26.4% (std: 6) with two channel difference. Overall, 
for the Caudal and Rostral areas, the best frequencies of 69.3% and 85% voxels were 
predicted proximally (less than or equal to difference of 2 frequency bins) of the measured 
tonotopic preferences. The lower percentage of prediction for the Caudal compared to the 
Rostral area might stem from the overall distribution of best models that best represent 

Figure 7: Predicted neuronal response properties along the rostral-caudal axis on belt regions for a 
single subject. Panels A and B show the temporal response characterized by parameter τ of the neuronal 
model while spectral specificity (characterized by Q of the FTCs) is indicated in panels C and D. Panels E 
and F show estimation of the best frequency channel. The Rostral and Caudal regions are labeled in solid 
black lines based on their BOLD responses to characteristic spectro-temporal features of the sounds. Heschl’s 
Gyrus (HG) is marked by the white solid line to provide a reference for the estimated location of core areas.
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Caudal areas. These models are concentrated in the bottom left corner of the model 
space, indicating broad spectral and fast temporal dynamics. To simulate broad spectral 
responses, the connectivity with-in the simulated belt region, and connectivity between 
A1 and the simulated belt was widened (see Supplementary Table 1). This widening might 
have resulted in tonotopic reorganization (i.e., shifted center frequencies) of the belt units, 
thus rendering the frequency bin labels dissimilar to the ones from the Gammatone 
filterbank (used for the 10 tonotopic channels).

A non-parametric Wilcoxon signed-rank test is used to test the differences between the 
two areas for τ and Q (Figure 8). The median spectral specificity (Q) was significantly 
higher (Figure 8A, p = 0.007) in the Rostral (10.11) compared to the Caudal area (7.8); 
the median τ was significantly longer (Figure 8B, p = 0.05) in the Rostral (171 ms) 
compared to the Caudal area (100).

We further elucidated these differences between Rostral and Caudal areas by counting the 
number of voxels whose dynamics were best described by each of the models in the model 
space (normalized by the size of the labeled region) for all subjects (both hemispheres). 
Figure 9A shows that, across the labeled regions, the majority of voxels cluster in different 
regions of the model space.

Taking the difference between the normalized number of voxels per model further 
highlighted our results. The hemodynamics of the majority of voxels in the Caudal area 
were best explained by models with faster temporal dynamics (short τ) and broad spectral 

Figure 8: Mean temporal response and spectral specificity in the belt regions. Across the subjects, the 
hemodynamic activity of the labeled belt regions is best represented by neuronal models with fast temporal 
and broad spectral responses in the Caudal area, and slow temporal dynamics and fine spectral tuning in the 
Rostral area. The dots of different colors indicate the five participants.
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properties (low Q; blue region in Figure 9B). For the majority of voxels in the Rostral 
area, the dynamics were best predicted by models with fine spectral tuning (high Q) and 
slower temporal dynamics (red region in Figure 9B).

4 Discussion

In this article, we investigated the role of neuronal dynamics in the functional observations 
from the rostral and the caudal streams of the AC. Recent fMRI studies suggested a 
spectro-temporal tradeoff within the auditory belt: regions caudal to primary areas were 
found to be most sensitive to fast temporal changes and broader spectral features; rostral 
regions, however, preferred fine spectral features and slower temporal changes in the 
stimuli (Santoro et al., 2014). A similar dichotomy in rostral-caudal belt processing 
has been observed in neuronal response properties using invasive electrophysiological 
studies, which reported shorter neuronal latencies (i.e., similar to those of the primary 
auditory cortex) and broader frequency tuning in caudal areas (Recanzone et al., 2000; 
Kuśmierek and Rauschecker, 2014) and longer latencies accompanied by sharp frequency 
tuning in the rostral areas (Recanzone et al., 2000; Tian et al., 2001; Bendor and Wang, 
2008; Camalier et al., 2012). To link the spectro-temporal tradeoff observations from 
neuroimaging studies to neuronal response properties reported in electrophysiology, we 
presented a forward model combining neuronal model specifically catered to model sound 
processing in the AC with a physiological model of the hemodynamic BOLD response. 
The neuronal dynamics were generated by a dynamic recurrent firing rate model of the 
auditory cortex that reflected the tonotopic, hierarchical processing in the auditory cortex 

Figure 9: Distribution of voxels best represented by each of the models in the model space. (A) For the 
two labeled regions Rostral and Caudal, the distribution of all voxels across subjects is shown on the model 
space. (B) Difference between predicted neuronal response properties of the labeled Caudal and Rostral 
areas. The hemodynamics of the majority of voxels in the Caudal area (shown in blue) were best explained 
by models with faster temporal dynamics (short τ) and broad spectral properties (low Q). For the majority 
of voxels in the Rostral area, the dynamics were best predicted by models with fine spectral tuning (high Q) 
and slower temporal dynamics (longer τ).
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and focused on the spectro-temporal tradeoff in the rostral-caudal axis of its belt areas. 
The fMRI signals were computed using a nonlinear physiological model to simulate the 
BOLD responses [P-DCM]. In contrast with simple convolutional models, the nonlinear 
physiological model captures the non-linear transformation between neuronal responses 
and the fMRI signals. After confirming that the model captured a diverse set of BOLD 
responses to sounds, we fitted the simulated BOLD responses to a previously acquired 
dataset of fMRI BOLD responses to natural sounds. The current approach did not 
involve model inversion.

We observed that the hemodynamics of a Caudal belt region in the human auditory 
cortex were best explained by models with faster temporal dynamics and broader 
spectral properties, while that of a Rostral belt region were best explained through fine 
spectral tuning combined with slower temporal dynamics. As we modeled and fitted 
average responses to all sounds, the assignment of neuronal response properties to a 
voxel was based on the overall shape of its hemodynamic response function. These voxel 
properties are thus based on fundamentally different characteristics of the BOLD fMRI 
data than those used to study spectro-temporal tuning in previous studies (Santoro et 
al., 2014; Schönwiesner and Zatorre, 2009). The tonotopic-specific responses of the 
model space suggest that the faster responses are correlated with comparatively higher 
best frequency regions and the slower responses with the lower best frequency units. 
This interaction of temporal response properties with the tonotopic axis has been shown 
through electrophysiological experiments as well (Scott et al., 2011). All in all, our results 
along with the existing evidence suggest that the response properties of the neuronal 
populations along the rostral-caudal axis in the belt areas of the human AC are optimized 
to simultaneously process complementary sound features in parallel streams (Jasmin et 
al., 2019; Kaas et al., 1999; Belin et al., 2000; Rauschecker and Tian, 2000).

The neuronal model presented here streamlines sound processing in the AC as it employs 
simplistic models of peripheral and cortical processing. Currently, the model is limited 
by a small number of simulated regions, by its exclusively feed-forward nature, and 
by tonotopic-specific connectivity. Future endeavors can improve the sound processing 
model with better models of the periphery, feedback connectivity, and the addition of 
non-tonotopic and multisensory projections in the simulated cortical areas. Additionally, 
in the BOLD model of P-DCM, we have not optimized hemodynamic parameters to the 
current dataset to capture the variability of vascular properties across voxels. Additionally, 
we used a simple GLM approach where the tonotopic channels were reduced to only 
three PCs at the level of BOLD response. Overall, we are accounting only for neuronal 
but not vascular variability in the hemodynamic response across voxels. For example, 
the BOLD response originating from larger pial veins often exhibits slower dynamics, 
characterized by a longer time to peak. It could be that to some extent we are explaining 
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it with neuronal variability. Therefore, in the future, one could try to apply the full 
nonlinear model inversion where both neuronal and hemodynamic parameters are 
optimized simultaneously. However, to do this effectively, it requires data acquired with 
an experimental design that makes disentangling of neuronal and vascular parameters 
possible, e.g. using mixed design with blocks of faster events to explore neuronal 
variability interleaved with longer resting periods to fully observe hemodynamic transients 
reflecting passive vascular properties or using multimodal fMRI data such as arterial spin 
labeling (ASL), where both blood flow and BOLD responses are acquired simultaneously 
(Havlicek et al., 2017; Gardumi et al., 2017).

In the future, it will be interesting to study neuronal response properties underlying 
BOLD responses across the AC to highlight their contribution to functional streams 
of information processing. Such modeling frameworks may then be used to study the 
neuronal underpinnings of other fMRI-based observations. The standard DCM generally 
focuses on region-level (few) dynamics while our approach models voxel-level (many) 
responses, which makes model inversion computationally infeasible. Thus, modified 
approaches, such as regression DCM (Frässle et al., 2017), which provide efficient model 
inversion solutions can be used to model effective connectivity in individual voxels. 
Furthermore, apart from fMRI, the neuronal models can also be used in conjunction 
with models of other non-invasive measures of neural activity (electro- and magneto-
encephalography) in a multimodal DCM framework to constrain model inversion and 
improve the quality of model predictions (Wei et al., 2020). In such efforts, the overall 
modeling framework acts as an integrative tool, combining the existing knowledge while 
also generating predictions for future modeling undertakings.
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Supplementary Materials

1 Supplementary Figures

Supplementary Figure 1: The simulated maps of neuronal response properties. The maps are shown for 
four individual subjects in Panels A, B, C, and D. For each subject, predicted temporal responses, spectral 
specificity, and the best frequency maps are shown. Responses for the fifth participant are shown in Figure 7.
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2 Supplementary Tables

Supplementary Table 1: Modified parameter values used in the modeling of  the neuronal model space 
for simulating the auditory belt area. For each model, the time constant (τ) is reported in ms. Spec-
tral specificity measured as Q is shown for a single tonotopic unit (best frequency at 1 kHz), along 
with mean across tonotopic space (Qmean). The within area spatial spread between excitatory-exci-
tatory and excitatory-inhibitory units is shown by σEE  and σEI  respectively. The connectivity from 
the simulated core to belt units is controlled by the connectivity kernels that are convolved with 
input across tonotopic space. The parameters not listed in the table are fixed as described in the 
original implementation (Zulfiqar et al., 2020).

τ (ms) Q1k Qmean σEE σEI Connectivity kernel

1 3 – 1 14 12.8 ± 3.8 20 260 One-to-one

2 8.7 7.9 ± 1.8 50 150 One-to-one

3 6 5.7 ± 1.5 200 300 0.25 – 0.5 – 1 – 0.5 – 0.25

4 3.2 3.17 ± 0.8 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

5 20 – 18 13.4 11 ± 3.1 25 200 One-to-one

6 8.7 7.7 ± 2.1 50 150 One-to-one

7 6 5.7 ± 1.5 200 300 0.25 – 0.5 – 1 – 0.5 – 0.25

8 3.2 3.1 ± 0.85 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

9 50 – 48 12.3 10.8 ± 3.1 25 200 One-to-one

10 8.7 7.5 ± 2 50 150 One-to-one

11 6 5.6 ± 1.5 200 300 0.25 – 0.5 – 1 – 0.5 – 0.25 

12 3.2 3.1 ± 0.8 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

13 100 – 98 13.4 11 ± 3.1 20 80 One-to-one

14 8.7 7.5 ± 2.1 50 150 One-to-one

15 6.4 5.8 ± 1.6 200 300 0.5 – 1 –0.5

16 3.2 3.2 ± 0.8 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

17 200 – 170 12.3 10.1 ± 3.1 20 100 One-to-one

18 8.7 7.5 ± 2.1 50 150 One-to-one

19 6.1 5.5 ± 1.5 200 300 0.25 – 1 –0.25 

20 3.2 2.9 ± 0.8 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

21 300 – 270 12.3 10.1 ± 2.8 15 200 One-to-one

22 9 8.1 ± 2.4 20 60 One-to-one

23 6.2 5.5 ± 1.5 200 300 One-to-one

24 3.2 2.9 ± 0.7 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5

25 400 – 370 11.3 10.1 ± 2.7 15 200 One-to-one

26 9.2 7.4 ± 2 20 60 One-to-one

27 6.1 5.6 ± 1.5 150 300 One-to-one

28 3 2.8 ± 0.7 200 300 0.5 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 0.5
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Supplementary Table 2: Modified parameter values used in the modeling of  Neurovascular Coupling. 
The parameters not listed in the table are fixed as described in the original implementation (Havli-
cek et al., 2015).

Parameter Value

Scaling constant for input, c 1
16

Regulatory constant, φ 1

Regulatory constant, χ 1

Regulatory constant, ϕ 1.5

Supplementary Table 3: Modified parameter values used in the modeling of  Hemodynamics States. 
The parameters not listed in the table are fixed as described in the original implementation (Havli-
cek et al., 2015).

Parameter Value

Power law constant, α 0.35

Viscoelastic time constant venous, τv
During response inflation phase = 2 s

During response deflation phase = 10 s

Mean transit time, t0 2 s

Supplementary Table 4: Modified parameter values used in the BOLD signal model. The parameters 
not listed in the table are fixed as described in the original implementation (Havlicek et al., 2015) 
and (Havlicek and Uludağ, 2020).

Parameter Value

Resting blood volume, V0 0.03

Oxygen extraction fraction, E0 0.4

Echo-time, TE 28 ms

Frequency offset at the surface of a blood vessel, ϑ0 188 s-1 (at 7T)

Sensitivity of changes in intravascular signal relaxation rate, r0 125 s-1 (at 7T)

Ratio of intra- to extra-vascular fMRI signal contribution, ε 0.25
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Abstract

Recent studies have highlighted the possible contributions of direct connectivity between 
early sensory cortices to audiovisual integration. Anatomical connections between 
the early auditory and visual cortices are concentrated in visual sites representing the 
peripheral field of view. Here, we aimed to engage early sensory interactive pathways with 
simple, far-peripheral audiovisual stimuli (auditory noise and visual gratings). Using a 
modulation detection task in one modality, we investigated the multisensory interactions 
by simultaneously presenting a barely-detectable stimulus (at 55% and 65% detection 
threshold, modulated or static) in the unattended modality. Furthermore, we manipulated 
the temporal congruence between the cross-sensory streams. We found evidence for an 
influence of barely-detectable visual stimuli on the response times for auditory stimuli, 
but not for the reverse effect. These visual-to-auditory influences only occurred for specific 
phase-differences (at onset) between the modulated audiovisual stimuli. We discuss our 
findings in light of a possible role of direct interactions between early visual and auditory 
areas, along with contributions from the higher-order association cortex. In sum, our 
results extend the behavioral evidence of audio-visual processing to the periphery, and 
suggest – within this specific experimental setting – an asymmetry between the auditory 
influence on visual processing and the visual influence on auditory processing.
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1 Introduction

Multisensory information is ubiquitous in our environment. Our brain is adept at pooling 
information from multiple modalities to form a unified view of our surroundings, thus 
guiding perception and behavior. The relationship between sensory stimuli (e.g., spatial, 
temporal, contextual, attentional, etc.) and the task at hand (Spence, 2013; Odegaard 
and Shams, 2016) helps unify or disassociate binding between senses, leading to changes 
in behavior [as indexed by discriminability, response times, accuracy, etc. (Bizley et al., 
2016; Chen and Vroomen, 2013; Odegaard et al., 2015, 2016)]. These cross-modal 
interactions can also affect subsequent unisensory processing (Wozny and Shams, 2011; 
Barakat et al., 2015).

Traditionally, multisensory anatomical and functional processing pathways in human and 
non-human primates have been credited to converging inputs in higher-order association 
cortex (Ghazanfar and Schroeder, 2006; Cappe et al., 2009). More specifically, evidence 
shows that audiovisual (AV) integration regions include posterior superior temporal sulcus 
and middle temporal gyrus (Beauchamp et al. 2004; Starke et al. 2017; van Atteveldt et al. 
2004; von Kriegstein et al. 2005; Perrodin et al., 2014; Tanabe, 2005). The intraparietal 
sulcus (Lewis and van Essen, 2000; Cate et al., 2009) and frontal areas (Gaffan and 
Harrison, 1991; Romanski et al., 1999b) have also been implicated in AV integration.

More recently, however, early sensory areas have also been shown to play a role in 
multisensory processing (Hackett et al., 2007; Driver and Noesselt, 2008; Koelewijn et 
al., 2010). Through the use of anterograde and retrograde tracers, Falchier et al. (2002) 
showed direct projections from primary and secondary auditory areas to the early visual 
areas in rhesus monkeys as well as reciprocal connections from secondary visual area (V2) 
and prostriata to the auditory cortex (Falchier et al., 2010). Evidence for a role of these 
early cortico-cortical connections in multisensory effects has been functionally established 
as well. Auditory influences on primary visual areas (V1) have been shown across species 
(Wang et al., 2008; Ibrahim et al., 2016). The responses in the auditory areas are also 
directly influenced by the visual cortex (Besle et al. 2008, 2009), for example through 
changes in the phase of auditory local field potential and single unit activity (Kayser et al., 
2008, 2010). These changes in local field potentials have been shown to amplify sensory 
inputs (Schroeder and Lakatos, 2009) and, more recently, to provide cross-modal cues in 
auditory scene analysis (Atilgan et al., 2018). The early onset of observed multisensory 
effects supports the role of early sensory cortical connectivity in multisensory interactions 
(Wang et al., 2008; Besle et al., 2008).

Interestingly, the direct connections between early visual and auditory cortices are 
not uniform. Instead, neurons with peripheral visual fields (> 30o visual angle) receive 
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and project the majority of these connections (Falchier et al., 2002, 2010; Rockland 
and Ojima, 2003; Eckert et al., 2008). In accordance, recent human neuroimaging 
and behavioral studies showed that AV integration is different between centrally and 
peripherally located stimuli (Charbonneau et al., 2013) and that this difference is 
influenced by stimulus modality (i.e., auditory-to-visual vs. visual-to-auditory influences). 
For example, the double flash illusion (induced by sound) was found to be stronger in the 
peripheral visual cortex compared to the foveal regions using fMRI (Zhang and Chen, 
2006) and similar results were observed behaviorally (Shams et al., 2002; Chen et al. 
2017). In addition to the influence of spatial location, AV integration also depends on the 
temporal characteristics (Chen and Vroomen, 2013) and salience of the stimuli (Meredith 
and Stein, 1983; Stein and Stanford, 2008; Stein et al., 2009). To understand how the 
brain uses temporal features in integrating information from multiple sources, one key 
approach has been to manipulate the temporal congruency between both naturalistic 
(McGurk and MacDonald, 1976) and artificial oscillating stimuli (Laing et al., 2015). 
The temporal characteristics of the stimuli and their salience have also been observed 
to interact and collectively affect AV integration. In a recent study, the lowest contrast 
detection thresholds for oscillating visual stimuli were observed when accompanied by in-
phase auditory stimuli of weak salience (Chow et al., 2020). While the effects of different 
stimulus features on audiovisual integration have been extensively studied for centrally 
presented stimuli (Chen and Vroomen, 2013; Kayser et al., 2008; Spence and Squire, 
2003; ten Oever et al. 2014; Denison et al., 2013; Shams et al., 2000; Soto-Faraco et 
al., 2004; Frassinetti et al., 2002), the influence of these audiovisual stimulus features on 
multisensory integration at peripheral locations [beyond 10o degrees visual angle (Chen 
et al., 2017; Chow et al., 2020)] is largely unknown.

Therefore, in this study, we aimed to characterize AV interactions in the far periphery 
(at 28.5° eccentricity) by using simple AV stimuli. Specifically, we aimed to study the 
temporal criteria for successful AV interactions at far-peripheral locations. The temporal 
features of the AV stimuli were varied in a two-fold structure. First, to study the relevant 
contribution of the temporal structure of the stimuli in the process of integration in far 
periphery, the presented AV stimuli were either modulated or static. Second, keeping 
the stimulus onset time the same for AV stimuli, we manipulated the onset phases of the 
modulated stimuli to analyze the role of temporal structure in AV integration. During 
the modulation detection task (either auditory or visual), the stimulus of the unattended 
modality was presented at a barely-detectable intensity (at 55% and 65% detection 
threshold) in either modulated or static state. We hypothesized that by manipulating the 
phase of the modulated signal of either modality (the attended or unattended stream), 
the temporal synchrony conditions would be optimized for auditory-to-visual and visual-
to-auditory interactions.
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2 Methods

The key features of the experimental design are shown in Figure 1. The participants were 
divided into three groups. Each of these groups took part in one of three conditions (N = 
9 per condition) that differed from each other in the onset phase (f) of the modulations 
in the auditory and visual stimuli (Figure 1A). There was no difference in stimulus onset 
times. For each participant, the experiment consisted of six sessions of two-hour duration 
each, divided over six days (Figure 1B). We used a staircase experimental design to 
measure the modulation detection thresholds for the visual and auditory stimuli in either 
a unisensory or a multisensory setting. Within each session, we used a two-alternative 
forced choice task where participants had to indicate by a button press if a visual or 
auditory stimulus was modulated or static (Figure 1C). In the multisensory condition, 
the stimuli were presented in congruent (both modulated or both static) and incongruent 
(one modulated while other is static) manner. Apart from detection thresholds, response 
times of the participants were also recorded during the staircases.

In Group 1 (9 participants), the auditory and visual stimuli were modulated sinusoidally 
(both starting with the default onset phase of a sinusoid being 0). This condition will 
be referred to as the fA=V condition. In Group 2 (9 participants), the auditory stimulus 
modulation started with an advanced phase of     (83.3 ms) while the visual stimulus 
modulation started at the default onset phase of 0 (fA>V condition). In Group 3 (9 
participants), the modulated visual stimulus was phase-advanced by 1.2    (100 ms), 
hence leading in phase compared to the modulated auditory stimulus with no phase-
shift at the onset. This condition will be referred to as the fV>A condition. All static 
stimuli remained the same across the three phase conditions. Throughout this manuscript, 
the term “threshold” refers to the modulation detection threshold (i.e., the stimulus 
intensity at which participants can discriminate modulated from static stimuli). The 
term “modulation” always refers to the oscillatory feature of the stimuli rather than to a 
cross-sensory influence.

2.1 Participants
All twenty-seven participants (mean age 22.8 ± 3.2, including 8 males) had normal or 
corrected-to-normal vision. A pure-tone audiogram was obtained before the first session 
to exclude participants with hearing loss (using 25 dB hearing level as a threshold). Prior 
to the first session, each participant was informed about the procedures, and verbal and 
written consent was obtained. Participants were compensated with either monetary reward 
alone or a combination of monetary reward and credit for their course requirements. 
Following the last session, all participants were debriefed about the purpose of the 
experiment, and they filled out a questionnaire about their impression of low-intensity 
stimuli of the unattended modality presented during the tasks. The experiment was 
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approved by the Ethics Review Committee of the Faculty of Psychology and Neuroscience 
at Maastricht University.

2.2 Apparatus
Participants sat in a soundproof, dimly lit room with their heads supported by a chin 
and head rest affixed 42 cm in front of an LCD monitor (24” Iiyama Prolite B2481HS 
LED monitor, Iiyama Corporation, Tokyo, Japan; 60 Hz refresh rate, 1920 x 1080 
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resolution). Fixation during the task was checked using ViewPoint Eyetracker (MIU03 
Monocular, Arrington Research, Inc., Scottsdale, Arizona, USA; 220 Hz) which was 
mounted towards the left side of the chin and head rest. All stimuli were generated at 
runtime in MATLAB (The MathWorks, Inc.) using Psychophysics Toolbox (Brainard, 
1997; Pelli, 1997; Kleiner et al., 2007). The stimulus PC interfaced with the Eyetracker 
PC via an Ethernet connection using the ViewPoint Client App and ViewPoint MATLAB 
toolbox (v2.8.5), providing runtime access to the Eyetracker data.

2.3 Stimuli
The static visual stimulus consisted of a circular sinusoidal grating (vertical orientation, 
1.6 grating cycles/degree at a screen resolution of 1920 x 1080 pixels, diameter = 6.2°) 
that was presented at 28.5° eccentricity to the right on the azimuthal plane. A lower 
modulation rate (3 Hz, prevalent in speech (Overath et al., 2015)) was chosen, in line 

< Figure 1. Experimental design. (A) The phase of sinusoidally modulated stimuli across the three phase 
conditions for the three participant groups. For phase condition fA=V (Group 1), the modulated stimuli 
have no phase-shift. For phase condition fA>V (Group 2), the phase of the modulated auditory stimulus 
was phase-advanced by 83.3 ms. For phase condition fV>A (Group 3), the modulated visual stimulus was 
phase-advanced by 100 ms. The onset time of all stimuli is the same (vertical dotted lines). (B) Experimental 
design of the study. Over six sessions (each session conducted on a separate day), participants performed a 
modulation detection task in a staircase design. Each executed staircase is represented by a numbered box. The 
number indicates the staircase number, and the box size corresponds to the staircase duration. Each staircase 
measurement results in a modulation detection threshold. Depending on the staircase settings, either a 50% 
or 84% modulation detection threshold is measured (‘Threshold level’). White outlined and black filled boxes 
represent unisensory and multisensory conditions, respectively. In session 1, three repetitions (indicated by 
numbers 1-2-3) of single 84% detection threshold staircases are performed on unisensory auditory and visual 
stimuli. In session 2, participants execute 2-interleaved 84% detection threshold staircases, whose longer 
duration is indicated by larger boxes, twice each for unisensory auditory and visual stimuli. We then used 
two types of sessions to collect the multisensory data and associated unisensory control data. In the first type 
(repeated twice, designated Session 3, 4), three unisensory 50% correct staircases for the auditory task were 
administered followed by three 2-interleaved 84% correct visual staircases. Auditory stimuli were presented 
in two of these 2-interleaved 84% correct visual staircases (i.e., they were multisensory), and these staircases 
were used to measure the influence of auditory stimuli on performance in the visual task. In the second 
session type (repeated twice, designated Session 5, 6), three unisensory 50% correct staircases for the visual 
task were administered followed by three 2-interleaved 84% correct auditory staircases. Visual stimuli were 
presented in two of these 2-interleaved 84% correct auditory staircases (i.e., they were multisensory), and 
these staircases were used to measure the influence of visual stimuli on performance in the auditory task. Note 
that the order of the days for sessions 3-6 was randomized over participants. In addition, for sessions 3-6, the 
order of the 2-interleaved staircases (two multisensory and one unisensory) was varied over participants, but 
kept the same for an individual participant. (C) Experimental design of a single trial. Participants fixated on 
the fixation cross at the center of the screen. The stimulus was only presented if the participant maintained 
fixation (fixation error < 2.5°) during the 250 ms gaze check prior to the stimulus presentation. The stimulus 
was auditory (white noise burst), visual (vertical grating, 6° in diameter) or audiovisual, and was presented 
at 28.5° azimuth in the participants’ right hemifield. The task of the participants was to indicate whether 
the attended stimulus was modulated or static. Feedback was given by a change in the color of the fixation 
cross (green = correct, red = incorrect).
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with previous research where modulated stimuli have been used to study AV interactions 
in the brain (Laing et al., 2015). To create the modulated visual stimulus, the Michelson 
contrast of the static grating was sinusoidally modulated over time at 3 Hz with a 
modulation depth of 80%. The contrast of the static stimulus was set at the peak contrast 
of the corresponding modulated stimulus.

The static sound was created as a normally distributed white noise stimulus (generated 
using randn in MATLAB with mean = 0, std = 0.5, sampling rate 44.1 kHz). To create 
the modulated sound, the sound pressure level (SPL) of the static sound (central SPL fixed 
at ~32.2 dB) was varied sinusoidally at 3 Hz with a modulation depth of 80%. Sounds 
were presented using a headphone set (AKG K72). Sound location was matched to the 
visual stimulus location by adjusting the sounds’ interaural level difference (ILD). ILD 
was set based on subjective measurements from authors IZ and PDW, and confirmed by 
each participant at the beginning of the experiment. The resulting ILD of 3 dB is slightly 
smaller than expected (Shaw, 1974). This difference between our subjective measurements 
and values reported in the literature may be explained by the overall low intensity of the 
employed sounds. The intensity of the static stimulus was set at the peak intensity of the 
corresponding modulated stimulus.

2.4 Experimental Design
The following sections detail the staircase design along with specifics of measurements 
taken during each session for all three phase conditions. The task, along with the stimuli 
specifications is also described.

2.4.1 Staircase Design
We used separate staircases to measure the detection thresholds for modulations in the 
visual and auditory stimuli. In each staircase, the presentation order of modulated and 
static stimuli was randomized while ensuring an equal number of modulated and static 
stimuli for each block of 10 trials.

Three different staircase designs were used during the experiment. The 50% auditory 
(visual) detection thresholds were measured by a staircase where for each wrong/correct 
response, the auditory intensity (visual contrast) increased/decreased by the respective 
step size. To measure 84% detection thresholds, the intensity/contrast decreased for every 
four consecutive correct answers and increased for every wrong response (Wetherill and 
Levitt, 1965). For staircases with the auditory task, the sound amplitude was varied by 
20% for each step. To compute the contrast steps for the visual staircase, the Michelson 
contrast was measured. By fitting a polynomial to the measured contrast values, the 
luminance values of the screen were converted to corresponding contrast values. The 
highest contrast value of the grating was capped at 30% Michelson contrast and reduced 
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by a step size of 20%. Each staircase finished either after 14 reversal points were acquired, 
or upon completion of 120 trials. Supplementary Figure 1 shows an example of the 
staircase procedure used to measure the 84% (Supplementary Figure 1A) and 50% 
(Supplementary Figure 1B) correct thresholds for a single subject.

We also created interleaved staircases by merging two independent staircases (84% 
detection threshold), such that trial blocks of two independent staircases were presented 
in an interleaved fashion. In blocks of 10 trials, the staircase switched pseudo-randomly 
(to ensure that long stretches of the same staircase did not occur) between the congruent 
(i.e., auditory and visual stimulus are either static, or both modulated) and incongruent 
(i.e., one of the multisensory stimuli is static, and the other is modulated) conditions. In 
order to compare these multisensory conditions to unisensory thresholds, participants 
also performed unisensory interleaved staircases. Note that the staircases remained 
independent: responses to trials in one staircase did not affect stimulus presentation in 
the other staircase. Interleaved staircases finished when both staircases completed either 
14 reversal points or 120 trials.

2.4.2 Sessions
The six sessions were spread over a period of two weeks, with every session at the same 
time of the day for each participant. Session 1 was designed to familiarize participants 
with the task, the chin and head rest, and the Eyetracker setup. During session 1, the 
participants performed three auditory and three visual unisensory staircases in order to 
determine their 84% modulation detection thresholds. Each staircase took approximately 
8 minutes, and participants were given a break of approximately 5-10 minutes between 
staircases (Figure 1B).

In Session 2, the participants completed two interleaved 84% staircases of the unisensory 
auditory and visual conditions. The duration of an interleaved staircase was approximately 
20 minutes, and participants were given 5-10 minute breaks between staircases. The 
purpose of this session was to provide a baseline behavior for unisensory thresholds in 
interleaved staircases, as these staircases were then repeated in the next four sessions as 
discussed below.

Session 3 to 6 started with the estimation of unisensory 50% detection thresholds in 
three staircases. Next, participants performed two multisensory interleaved staircases. 
Per session, they performed either the auditory or the visual task, while the stimulus of 
the other modality was presented at a barely detectable intensity/contrast (an estimated 
55% or 65% modulation detection threshold). The barely detectable intensities were 
selected as they allow above chance identification of the modulated stimuli yet should 
not act as a distractor during task execution on the other stimulus modality. The order 
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of these four measurement days ((multisensory auditory or visual task) x (55% or 65%)) 
was randomized across participants. The 55% and 65% modulation detection thresholds 
were estimated by z-scoring the contrast steps between 84% (from session 2) and 50% 
measurements and then linearly interpolating the intermediate steps (from 50% to 84%). 
Supplementary Figure 1C shows an example of how the 65% and 55% correct thresholds 
were estimated using the two measured thresholds (84% and 50% correct). The resulting 
psychometric curve is not a straight line because of the conversion from screen luminance 
to Michelson contrast.

Per session (sessions 3 to 6), two multisensory staircases were conducted. The two 
interleaved staircases were used to test the effects of (in)congruence of the auditory 
and visual stimulus on detection thresholds and response times. Participants also 
performed an interleaved staircase for the unisensory task condition. The order in which 
participants performed unisensory and multisensory interleaved staircases was balanced 
across participants to minimize fatigue effects but was kept the same for an individual 
participant across sessions. Each session took two hours to complete and participants 
were actively encouraged to take breaks during sessions.

2.4.3 Task
Participants performed a two-alternative forced choice task on the visual or auditory 
stimuli. That is, they pressed either the right or left arrow key indicating a modulated 
or static stimulus, respectively (Figure 1C). Each trial began with a gray screen for 100 
ms, followed by a black fixation cross that was presented in the center of the screen for 
750 ms. For the next 250 ms, the fixation cross remained on the screen while a steady 
fixation check was performed (with 2.5° freedom from the fixation point). In case of a 
failed fixation, the trial was aborted, and a new trial began. If the participant passed the 
gaze check, a stimulus was presented (1 s) while the fixation cross remained on the screen. 
The response window began at the onset of stimulus presentation and extended 500 ms 
after stimulus offset (indicated by a light gray fixation cross). Feedback was provided as 
soon as the participant responded, by a change in the color of the fixation cross to red 
or green for incorrect and correct responses, respectively. In case the participant did not 
respond within the response window, the trial condition was appended to the trial list and 
the next trial was initiated. The inter-trial interval was 500 ms (gray screen). Following 
every tenth trial, the center for the gaze check was readjusted to correct for drifts of 
the Eyetracker setup and/or subject motion. The apparatus-induced propagation delay 
between auditory and visual stimuli was estimated to be ~20ms.

In the 250 ms time window before stimulus onset, trials were aborted if the gaze 
position was more than 2.5o away from fixation. Due to a programming error, the eye 
movements were only recorded in a 5 ms time window before the stimulus presentation 
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(that is if the fixation was maintained in the previous 245 ms), and at the moment of 
the response. As saccade execution requires ~200 ms (Şentürk et al., 2016), it is highly 
likely that participants fixated during the initial part of the stimulus. While we only 
have eye position recordings at the instance of response, the large number of trials with 
widely varying response latencies allowed us to sample eye position from ~250 ms after 
stimulus presentation until the end of stimulus presentation (1s). Figure 2 shows the 
distribution of the absolute distance of eye gaze from the fixation point recorded across 
trials (at the instance of response) during both multisensory tasks (panels A and B show 
a representative participant; panels C and D show combined data of all participants). 
Irrespective of the latency of the response (and hence the time since stimulus onset) eye 
position was within 10o of fixation in 98% of the ~100,000 samples, within 5o of fixation 

Figure 2: Distance of eye gaze location from the fixation point at the instance of response across trials. 
Panels A and B show the data for a single representative participant while Panels C and D show data for 
all 27 participants, for both multisensory tasks. Each blue dot in panels A and C represents the eye gaze 
distance from fixation for a single trial while the black line shows the mean eye gaze distance from fixation 
over trials. The red line indicates the percentage of trials, at the response time, where the eye gaze location 
was within 2.5o distance from the fixation point. Panels C and D show the distribution of eye gaze distance 
from fixation and confirm that eye gaze position was within a few degrees from the fixation point for a high 
percentage of trials.
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in 96% of the trials, within 2.5o of fixation in 92% of the trials in 27 participants (Figure 
2C and D). Supplementary Figure 2 shows that, across the three participant groups, 
the eye locations away from fixation did not specifically target the stimulus location. 
In addition, the data suggest similar fixation performance in the two tasks across the 
three participant groups. This is supported by a two-way ANOVA over fixation accuracy 
(the percentage of trials with eye position within 2.5o of the fixation) with between-
subject factor “Phase condition” (3 levels: Group 1 – Group 2 – Group 3) and within-
subject factor “Task” (2 levels: Auditory Task – Visual Task) showing neither a significant 
interaction (F(2,24) = 2.43, p = 0.1) nor any significant main effects (Phase Condition: 
F(2,24) = 0.03 , p = 0.9; Task: F(1,24) = 0.1, p = 0.7). Altogether, this evidence supports 
consistent fixation in our participants and suggests that large fixation errors were present 
only in a very small minority of trials.

2.5 Statistical Analysis
Modulation detection thresholds for congruent, incongruent, and unisensory stimuli were 
computed as the average intensity/contrast of the last 10 reversal points and were averaged 
over repeated staircases. The response times were computed based on all trials spanning 
the last 10 reversal points and were averaged over repeated staircases as well. Mixed 
ANOVA analyses (Caplette, 2017), conducted in MATLAB, were used to test for changes 
in response time and modulation detection thresholds across the three phase conditions, 
with auditory and visual stimulation, and as driven by the congruency and intensity of 
multisensory stimulation. After observing significant interactions, we performed follow-
up analyses per level of one of the interacting factors while correcting the F-ratio of these 
follow-up analyses by using error term and degree of freedom of significant interaction 
error term (indicated as Fα-corrected) (Hedayat and Kirk, 2006). Bonferroni-corrected 
pairwise comparison testing was used to further evaluate significant main effects.

3 Results

In the following section, results from the experiment are shown in order to analyze the 
effects of (a) temporal (in)congruence between coincident static and modulated AV 
streams and (b) the phase relation between modulated stimuli in cross-sensory facilitation. 
While the participants performed the modulation detection task in the visual or auditory 
task (in 84% correct staircase), a barely-detectable stimulus (modulated and static) of the 
other modality was presented at an estimated 55% and 65% detection threshold intensity. 
During the task, detection thresholds and response times were obtained for AV congruent 
(both static or both modulated) and AV incongruent (one static and the other modulated) 
conditions, as well as in the unisensory conditions. Additionally, in both the auditory 
and visual modulation detection task, the modulated AV streams were presented in three 
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relative phase conditions (fA=V, fA>V, fV>A; see Figure 1A), each of which was tested in a 
different participant group. No significant effect of the experimental conditions was found 
on the modulation detection thresholds (see Supplementary Data 1.1 and Supplementary 
Figure 3). The effects on response times are explored below.

At the end of the experiment, participants reported on their perception of the barely-
detectable stimulus of the other modality during the auditory and the visual task 
performed on AV stimuli. Overall, 10 out of 27 participants reported they were unaware 
of the low-intensity stimulus in the other modality in both tasks. Others reported being 
moderately (12 out of 27 participants) to largely aware (5 out of 27 participants) of the 
low-intensity stimulus. From these 17 participants, eight further highlighted that they 
primarily noticed the presence of the low-intensity visual stimulus (only at the estimated 
65% detection threshold intensity) during the auditory task but not vice versa. None of 
the participants reported being aware of (in)congruence between the AV streams.

3.1 Faster Unisensory Response Times for Modulated than Static Stimuli
The 84% unisensory measurements were made during three sessions, i.e. on Day 2, 
and then twice during the multisensory sessions. We studied the effects on unisensory 
response times using only the data collected during the multisensory sessions. Figure 
3 shows unisensory response times measured during auditory (A-B) and visual (C-D) 
tasks. In the context of unisensory stimuli, the labels refer to the assignment of the three 
participant groups to the phase-related manipulation of the unimodal modulated visual 
(Group 1 and Group 2 have no phase-shift, Group 3 is phase advanced and indicated by 
red outline) or unimodal modulated auditory (Group 1 and Group 3 have no phase-shift, 
Group 2 is phase advanced and indicated by blue outline) stimuli. Static stimuli are the 
same across groups. Overall, in both tasks, modulated stimuli (gray bars) yielded faster 
response times than static stimuli, and phase advancing the modulated stimulus (bars 
with colored outlines) provided an extra response time advantage.

Figure 3A and B show the response times (averaged across the two sessions) during 
the unisensory auditory task for the two main stimulus dynamics conditions (static vs 
modulated) split over the three participant groups. Figure 3A shows an overall trend 
for modulated auditory stimuli to yield faster response times (gray bars) compared to 
static stimulus (dark bars). Additionally, when the modulated stimulus was also phase-
advanced (red-outlined gray bar), the response time was the fastest. Figure 3B1 visually 
illustrates that a phase-advanced auditory stimulus provided a response time advantage. 
Figure 3B2 visually illustrates a sizeable response time advantage for modulated auditory 
stimuli over static stimuli.
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In the task on visual unisensory stimuli (Figure 3C and D), analogous to findings 
with the auditory unisensory task, the overall trend towards a response time advantage 
for modulated stimuli appeared to be strengthened when phase advancing the visual 
modulated stimulus (Figure 3D, blue-outlined bar). Again, there was no physical 
difference between the stimuli shown in the three groups of participants, except that 
the modulated visual stimulus was phase-advanced in the fV>A group compared to the 
modulated stimuli in the two other groups. There was no clear difference in response 
time among the different groups (Figure 3D1), but as with the auditory task, response 
times were faster for modulated than static auditory stimuli (Figure 3D2).

Figure 3. Effect of modulating unisensory stimuli on response times in modulation detection tasks 
across the three participant groups, averaged over two sessions. Light gray and dark gray bars indicate 
response times for modulated and static stimuli respectively. Red and blue borders indicate the modulation 
conditions with phase shifts. A) In the auditory task, participants in Group 2 and 3, but not Group 1, were 
significantly faster to identify modulated than static sounds. Response times to auditory stimuli not only 
varied between the three groups (B1) but also for stimulus dynamics (B2). C) In the visual task, participants 
in Group 1 and 3, but not Group 2, were significantly faster to identify modulated than static sounds. D1) 
Group had no overall effect on response times. Only stimulus dynamics (D2) significantly affected the 
response times for visual stimuli. Error bars indicate ± 1 SEM.
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The above description is supported by the following statistical analyses. To analyze the 
unisensory auditory response times, a three-way ANOVA was performed in which 
participants were assigned to the same conditions as used for the multisensory part of 
the experiments. Hence, the unisensory data were analyzed to test effects of the “Phase 
conditions” (3 levels: Group 1 – Group 2 – Group 3), as well as the “Stimulus dynamics” 
(2 levels: modulated – static) and “Session” (2 levels: unisensory measurements from 
multisensory conditions with non-task stimulus at an estimated 55% intensity, and 
65% intensity). The three-way interaction was not significant. There were, however, two 
significant two-way interactions between the factors “Stimulus dynamics” and “Session” 
(F(1,24) = 5.45, p = 0.02), and “Phase condition” and “Stimulus dynamics” (F(2,24) = 
4.79, p = 0.01). The significant two-way interaction between “Stimulus dynamics” and 
“Session” was further explored with a pairwise comparison between modulated and static 
sounds per session. These analyses showed that responses to modulated stimuli were faster 
than to static sounds in both sessions (55%: t(8) = -8.06, p[corrected] < 0.001; 65%: t(8) 
= -6.49, p[corrected] < 0.001).

The interaction between “Phase condition” and “Stimulus Dynamics” was further 
explored for each phase condition (Figure 3A). Pairwise comparisons showed that the 
response times for modulated stimuli were statistically faster than static stimuli in two 
of three cases (for Group 2: t(8) = -5.94, p[corrected] = 0.001 and Group 3: t(8) = 
-16.45, p[corrected] < 0.001, but not Group 1: t(8) = -2.07, p[corrected] = 0.2). Because 
Group 3 and Group 1, in the context of the unisensory task, have physically identical 
stimuli, the presence of a statistical difference between static and modulated conditions 
for Group 3 and not for Group 1 could reflect an influence of the multisensory context 
in which the unisensory task was embedded, or a group difference. As the order in which 
unisensory measurements were taken was randomized across subjects (measured before 
any multisensory exposure in one-third of participants), our data is limited in the ability 
to shed light on this observed difference.

For unisensory visual response times, a three-way ANOVA with between-subject factor 
“Phase condition” (3 levels: Group 1 – Group 2 – Group 3) and within-subject factors 
“Stimulus dynamics” (2 levels: modulated – static) and “Session” (2 levels: unisensory 
measurements from multisensory conditions with non-task stimulus at 55% intensity, and 
65% intensity) showed only a significant two-way interaction between “Phase condition” 
and “Stimulus Dynamics” (F(2,24) = 4.94, p = 0.015). The three-way interaction and all 
other two-way interactions were insignificant. The significant interaction was explored for 
each phase condition (Figure 3C). The response times for modulated stimuli were faster 
than static stimuli for Group 1 (t(8) = -3.52, p[corrected] = 0.02) and Group 3 (t(8) = 
-3.85, p[corrected] = 0.01) but not for Group 2 (t(8) = -0.74, p[corrected] > 0.99). Here, 
again the physical conditions for the unisensory task were identical in Group 1 and Group 
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2 but led to different outcomes of statistical testing. This shows that also for the visual 
unisensory task, the main finding is an overall response time advantage for the modulated 
stimulus, which is strengthened by phase advancing the visual modulated stimulus.

3.2 Phase-dependent Response Time Reduction in Auditory Rask due to 
Visual Influences
Next, we evaluated the multisensory influence of weak (static or modulated) stimuli in 
one modality on the response time for stimuli in the other modality. We focused first on 
the influence of visual stimuli on responses to auditory stimuli. We were interested in 
the effect of the different onset phases for the modulated auditory and modulated visual 
stimuli, and also in the inter-sensory interactions between modulated and static stimuli 
of the auditory and visual modalities.

Figure 4 shows all the effects observed for auditory response times. The different factors 
contributing to the observations are shown in different panels. In panel A, the response 
times are grouped by the auditory stimulus (modulated and static) for the three phase 
conditions. Panel B shows the same response time data as in panel A, but categorized 
by the different multisensory visual influences (modulated, static or no visual stimulus) 
during the auditory task. In panels C, D, and E, the different effects of visual influence 
(modulated, static or no visual stimulus) on modulated and static auditory stimuli due 
to the three phase conditions are shown individually. Overall, we found that modulated 
auditory stimuli (irrespective of the visual influence) show a shorter response time than 
the static auditory stimuli. In addition, compared to the absence of visual influence (i.e., 
unisensory auditory stimuli), response times were shorter when the visual influence was 
phase advanced (fV>A). On the other hand, the static visual influence increased response 
times compared to the unisensory condition (as if the static visual stimulus acted as a 
distracter). These effects are discussed below in detail along with the statistical analysis 
of the data.

A mixed four-way ANOVA of between-subject factor “Phase condition” (3 levels: fA=V – 
fA>V – fV>A) and the three within-subject factors “Auditory stimulus” (2 levels: modulated 
– static), “Visual influence” (3 levels: modulated – static – none) and “Intensity” of the 
visual influence (2 levels: 55% – 65%) showed a significant four-way interaction (F(4,48) 
= 2.957, p = 0.029). The level ‘none’ indicates the absence of a visual stimulus and thus 
refers to unisensory auditory response time measurements from the two multisensory 
sessions. Further analysis of the interaction showed that the effect of “Intensity” of the 
visual influence was insignificant (see Supplementary Data 1.2 and Supplementary Figure 
4 for details). Thus, to simplify the interpretation of the effects, we averaged over the 
data for the two intensities before exploring a mixed ANOVA with the between-subject 
factor “Phase condition” and two within-subject factors: “Auditory stimulus” and “Visual 
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Figure 4. Response times during the auditory task with visual influences. In panels B-E, light and dark gray 
bars represent the presence of barely-detectable modulated and static visual influences respectively, while white 
bars show the unisensory condition. Red and blue lines indicate phase-advanced auditory and visual conditions 
respectively. Error bars represent ± 1 SEM. Panel A and B show the main effects of “Auditory stimulus” (2 
levels: modulated – static) and “Visual influence” (3 levels: none – modulated – static) respectively. Panels 
C-E the interaction of “Auditory stimulus” and “Visual influence” plotted separately for phase conditions fA=V, 
fA>V, and fV>A, respectively. While no effect of the visual influence on the auditory stimulus was observed in 
phase condition fA=V (C), responses to sounds were significantly faster when a modulated compared to static 
visual influence was present in phase conditions fA>V and fV>A (D-E). (C) For phase condition fA=V, when the 
auditory stimulus and visual influence were in-phase (no phase shift for modulated stimuli), no significant 
interaction between the auditory stimulus and visual influence was observed. (D) For phase condition fA>V 
(modulation phase of the auditory stimulus was leading with respect to that of the visual influence), we 
observed an overall distraction effect of the static visual influence and no advantageous effect of the visual 
influence for modulated auditory stimuli. Response times for the static auditory stimuli became faster due to 
the modulated visual influence. (E) For phase condition fV>A (the modulation phase of the visual influence 
was leading with respect to that of the auditory stimulus), an advantage of the modulated visual influence, 
as well as a disadvantage in case of a static visual influence, were observed compared to unisensory sounds.
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influence”. Results showed a significant three-way interaction (Figure 4, F(4,48) = 3.11, 
p = 0.023), which we further explored by analyzing the data per “Phase condition” using 
a repeated measures ANOVA (with factors “Auditory stimulus” and “Visual influence”). 
The main effects of “Auditory stimulus” and “Visual influence” on response time for the 
auditory stimulus are shown separately in Figure 4A and 4B respectively, for the three 
phase conditions (fA=V, fA>V, fV>A). The interaction effect is broken down into effects of 
visual influence on modulated and static auditory stimuli for the three phase conditions 
in Figure 4C, D, and E respectively.

In the fA=V condition (Group 1), Figure 4A, B, shows that there were no main effects, 
neither of the factors “Auditory stimulus” (Figure 4A, F(1,8) = 6.16, p[corrected] = 0.11) 
nor of “Visual influence” (Figure 4B, F(2,16) = 0.03, p[corrected] > 0.999), and the two 
factors also did not interact (Figure 4C, F0.016(2,48) = 0.83, p = 0.44).

In the fA>V condition (Group 2), the main effects of “Auditory stimulus” (Figure 4A, 
F(1,8) = 28.54, p[corrected] < 0.001) and “Visual influence” (Figure 4B, F(2,16) = 18.28, 
p[corrected] < 0.001), and their interaction (Figure 4D, F0.016(2,48) = 6.11, p = 0.004) 
were significant. The interaction was further explored with a separate one-way ANOVA 
for modulated and static auditory stimuli. For modulated auditory stimuli (Figure 4D, 
left), there was a significant effect of the “Visual influence” (F0.008(2,48) = 19.67, p < 
0.001). Pairwise comparisons showed that the presence of a modulated visual influence 
significantly sped up response times in comparison with a static visual stimulus (compare 
gray to dark bar, t(8) = -4.31, p[corrected] = 0.007), but a modulated visual influence did 
not give a significant advantage in comparison with the unisensory condition (compare 
gray to white bar, t(8) = -1.78, p[corrected] = 0.33). However, the presence of a static 
visual influence significantly slowed down response times as compared with a unisensory 
auditory stimulus (compare white to dark bar, t(8) = 3.55, p[corrected] = 0.02). For static 
auditory stimuli (Figure 4D, right), there was a significant effect of the visual influence 
as well (F0.008(2,48) = 47.69, p < 0.001). Responses to static auditory stimuli were faster 
when accompanied by a modulated, non-phase-advanced visual influence. This was true 
when comparing to a visual static influence (compare gray to dark bars, t(8) = -5.44, 
p[corrected] = 0.001) and when comparing to a situation in which there was no visual 
influence at all (compare gray with white bar, t(8) = -6.34, p[corrected] < 0.001). The 
response times for the static auditory stimulus were the same irrespective of whether it 
was paired with a visual static influence or with no visual stimulus at all (compare dark 
and white bars, (t(8) = 1.89, p[corrected] = 0.28).

In the fV>A condition (Group 3), the main effects of “Auditory stimulus” (Figure 4A, 
F(1,8) = 87.50, p[corrected] < 0.001) and “Visual influence” (Figure 4B, F(2,16) = 27.19, 
p[corrected] < 0.001) were significant. There was also a significant interaction between 
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factors “Auditory stimulus” and “Visual influence” (F0.016(2,48) = 5.94, p = 0.005; Figure 
4F). Further investigation of the interaction (Figure 4E) showed that the presence of 
a visual influence significantly changed response times for both modulated and static 
auditory stimuli (modulated: F0.025(2,48) = 62.98, p < 0.001; static: F0.025(2,48) = 87.98, 
p < 0.001). For modulated auditory stimuli (Figure 4E left), there was a response time 
advantage when there was a modulated rather than a static visual influence (compare 
gray to dark bars, t(8) = -7.7, p[corrected] <0.001), and also when there was a modulated 
rather than no visual influence (compare gray to white bars, t(8) = -8.55, p[corrected] 
< 0.001). Response times for the modulated auditory stimulus were slower when there 
was a visual static influence when compared to absence of visual influence (compare dark 
and white bars, t(8) = 5.77, p[corrected] = 0.001). A similar data pattern was present for 
response times for static auditory stimuli (Figure 4E right, visual modulated vs visual 
static influences: t(8) = -3.41, p[corrected] = 0.02; visual modulated influences vs no visual 
influence at all: t(8) = -7.45, p[corrected] < 0.001; visual static vs no visual influence at 
all: t(8) = -0.15, p[corrected] > 0.999).

Overall, in the auditory task, we found no effect of visual influences for the phase-aligned 
(fA=V) condition. We observed that the visual phase-advanced modulatory stimuli (fV>A) 
sped up the detection of static and modulated (not phase-advanced) auditory stimuli 
(Figure 4E). For a modulated auditory stimulus in phase condition fA>V, the presence of 
a modulated (not phase-advanced) visual influence did not provide an advantage over 
the unisensory condition (Figure 4D). The static visual stimuli had a distracting effect 
on modulated auditory stimuli in phase conditions fA>V and fV>A (Figure 4D and E).

3.3 Response Times in Visual Task do not Benefit from Auditory Influences
We then explored the reciprocal effect of weak auditory stimuli on response times for 
visual stimuli (Figure 5). In panels A and B, the response times are grouped by the visual 
stimulus (modulated and static) and multisensory auditory influence (modulated, static, 
or no visual stimulus) during the visual task, respectively. Panels C-E show the individual 
effects of auditory influence on modulated and static visual stimuli in the three phase 
conditions. Overall, we observed that modulated visual stimuli show a shorter response 
time than the static visual stimuli, but no multisensory auditory influence on the response 
time for the visual stimuli. These findings are supported by the statistical analysis of the 
data, as reported below.

A mixed four-way ANOVA of between-subject factor “Phase condition” (3 levels: fA=V – 
fA>V – fV>A), and the three within-subject factors “Visual stimulus” (2 levels: modulated 
– static), “Auditory influence” (3 levels: modulated – static – none) and “Intensity” 
of the auditory influence (2 levels: 55% – 65%) did not show a significant four-way 
interaction (F(4,48) = 2.44, p = 0.059, see Supplementary Figure 5). However, the three-
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way interaction between “Phase condition”, “Visual stimulus” and “Auditory influence” 
was significant (F(4,48) = 2.687, p = 0.042), and we therefore further analyzed the data 
per phase condition.

The effect of “Visual stimulus” (Figure 5A) was significant for the fA=V condition (Group 
1,F(1,16) = 14.08, p[corrected] = 0.015) and the fV>A condition (Group 3, F(1,8) = 
18.44, p = 0.006) but not for the fA>V condition (Group 2, F(1,16) = 0.45, p[corrected] 

Figure 5. Response times during the multisensory visual task. In panels B-E, light and dark gray bars 
show the presence of barely-delectable modulated and static auditory influences, respectively, while white bars 
show the unisensory condition. Red and blue lines indicate phase-advanced auditory and visual conditions 
respectively. (A)There was a significant main effect of “Visual stimulus” (2 levels: modulated – static) where 
responses for modulated stimuli were faster than static stimuli for phase conditions fA=V and fV>A. There 
was no main effect of “Auditory influence” (3 levels: none – modulated – static) (B) nor any significant 
interaction between the auditory stimulus and visual influence for any phase conditions (C–E). Error bars 
represent ± 1 SEM.
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> 0.999). The effect of “Auditory influence” (Figure 5B) failed to reach significance for all 
phase conditions. There was no significant interaction between factors “Visual stimulus” 
and “Auditory influence” for fA=V (Figure 5C), fA>V (Figure 4D), and fV>A (Figure 5E).

To summarize, we observed no effect of low-intensity auditory influences on the response 
times for visual stimuli. The responses to modulated visual stimuli were faster than 
to static visual stimuli for fA=V and fV>A, as was observed already in the unisensory 
measurements as well. This further confirms the lack of effective auditory influences 
while performing the visual task.

4 Discussion

In the present work, we detailed the effect of auditory-to-visual and visual-to-auditory 
interactions in the far periphery using simple stimuli (gratings and noise bursts). For 
both an auditory and a visual task, we studied the influence of multisensory temporal 
(in)congruence on modulation detection threshold and response time by using static 
and modulated stimuli and also by manipulating the relative phase of the modulated 
AV stimuli.

We report three main sets of findings. First, in the unisensory conditions, we found that 
the response times were generally faster for modulated stimuli compared to static stimuli 
for both auditory and visual modalities. This finding is in line with the advantage of 
having a temporal modulation in a peripheral visual stimulus (Hartmann et al., 1979) 
and with the human sensitivity to temporally structured stimuli in audition (Joris et al., 
2004). We also found that advancing the phase of the modulated stimulus to a sharp 
intensity/contrast change (from maximum to minimum) at the onset of the stimulus, 
further shortened the response times. The phase advancement creates both a stronger 
onset and a maximal intensity change from maximal to minimal at the beginning of the 
stimulus. Our observations hence show the key role of both factors in the detection of 
modulated stimuli. Overall, visual response times were found to be faster than auditory 
response times. While generally auditory reaction times have been reported to be faster 
than visual reaction times (Ng and Chan, 2012; Shelton and Kumar, 2010; Arrighi et al., 
2005), the opposite trend has also been observed showing the dependence of this effect 
on a specific task and stimulus features (Shams et al., 2010).

Second, for the visual task, we found that a weak auditory influence (at an estimated 
55% or 65% detection threshold) did not affect visual detection thresholds or response 
times. The lack of auditory influences on the visual task may be caused by weak auditory 
stimuli being incapable of capturing attention, as most of the participants reported 
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being oblivious to the low-intensity auditory stimuli. While previous studies have shown 
auditory influences on responses in the visual cortex (Wang et al., 2008; Bolognini et al., 
2010; Ibrahim et al., 2016) and have also shown behavioral (dis)advantages (Di Russo 
et al., 2002; Shams et al., 2002), differences in task and stimuli with our study may have 
played a role in these divergent results. The primary explanatory factor can be that all 
these studies presented their stimuli more centrally [foveal and parafoveal between 0-8o 

(Shams et al., 2002; Bolognini et al., 2010),10o (Chen et al., 2017) in humans] or at a 
maximal peripheral location of 20o for monkeys (Wang et al., 2008). Additionally, we 
are studying the influences of low-intensity stimuli. Thus, compared to more centrally 
presented stimuli as used in previous studies, the added auditory stimuli might need to 
be at a higher intensity for significant cross-modal effects on the detection of peripheral 
visual stimuli to occur. This hypothesis will, however, require further testing.

Third, we observed a cross-sensory effect of visual stimuli on response times for auditory 
stimuli. Depending on temporal (in)congruence and synchrony between modulated AV 
streams, we observed that visual influences could not only speed up (facilitation effects) 
the response times for auditory stimuli but could also slow them down (degradation 
effects). We first consider the facilitation effects of modulated visual influences on 
modulated auditory stimuli during the auditory task (see the left halves of Figure 4C, 
D, and E). These effects depended on the phase relations between the visual and auditory 
streams. When the phase of the visual modulation led the modulated sound by 100 ms 
in the auditory task (fV>A), a multisensory benefit (i.e., faster response times for both 
modulated and static sounds) due to the modulated visual influence was observed (gray 
bar Figure 4E, left). However, when auditory and visual modulations were in phase 
(fA=V), no multisensory interaction was observed (gray bars Figure 4C, left). This finding 
of a visually-driven benefit on response time for modulation detection in the peripheral 
sounds when the concurrent visual stimulus is phase-advanced by 100ms may indicate a 
role of the direct influences from early visual to early auditory cortex. The response time 
advantage cannot be attributed to increased salience at the onset of the phase-advanced 
visual stimulus, as the static visual stimuli have the same salience at onset yet provide 
no advantage. Thus, the temporal dynamics of the visual stimulus must play a role. In 
the phase-advanced visual stimulus, the maximum-to-minimum intensity sweeps in the 
visual stream precede the analogous intensity sweeps in the auditory stimulus by 100 ms. 
Taking into account that neuronal response latencies are longer for visual stimuli than 
sounds [55 ms (Schroeder et al., 2008) in V1, and 23 ms (Besle et al. 2008) in A1], the 
visual intensity sweeps would have ~75 ms to carry cross-modal information to the early 
auditory areas that could facilitate auditory neural activity in response to the auditory 
sweeps. This is short enough to be compatible with direct interactions between early 
cortical sites and shows the prominent role of stimulus features at onset in driving the 
cross-modal advantages. Such early advantages may provide a benefit to multisensory 
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information processing in higher-order cortical regions. Note that when the modulated 
auditory stimulus itself was phase advanced fA>V, the visual modulated influence did not 
provide a response time benefit (gray bars Figure 4D, left).

The underlying mechanisms and pathways for the observed multisensory interaction 
cannot be disentangled based on the present study and would require future neuroimaging 
and electrophysiological studies. However, the current findings can be put into perspective 
based on existing evidence of mechanisms that underlie cross-sensory effects. For example, 
“oscillatory phase-resetting” has been shown to play a part in multisensory interactions 
among early sensory cortices (Lakatos et al., 2007; Doesburg et al., 2008; Schroeder 
and Lakatos, 2009; Atilgan et al., 2018). More specifically, visual stimuli may influence 
auditory processing by resetting the phase of ongoing oscillatory auditory cortical activity. 
Cross-sensory phase-resetting has been observed in early auditory areas with influences 
coming from somatosensory (Kayser and Kayser, 2018) and visual input (Kayseret al., 
2010). Facilitation or suppression effects have been shown to be dependent on the 
temporal relationship between the onsets of stimuli (Kayser et al., 2010), in line with the 
lead in onset for visual compared to auditory stimuli in the fV>A condition in the present 
study. Additionally, these effects are more pronounced at near-threshold levels (Schroeder 
and Lakatos, 2009; ten Oever et al., 2014) compatible with the low-contrast visual 
stimuli we have used. Based on our observations for phase condition fV>A, where a leading 
modulated visual stimulus provided a response time benefit to static and modulated 
sounds, the sharp intensity changes at the first part of the visual stimuli (from peak to 
trough contrast), as well as the recurring intensity changes in further cycles of the visual 
oscillation, may have caused phase-resets in local oscillatory activity in the early visual 
cortices. These changes, in turn, might have led to an enhanced representation of the 
auditory information, engaging sensory integration between early cortical sites. While 
its underlying mechanism remains speculative, our results may provide a basis for future 
experiments.

An additional facilitatory effect of modulated visual influence was observed for static 
auditory stimuli in the fA>V and fV>A conditions, but not the fA=V condition (gray bars 
in right-hand parts of Figs. 3C, D, E). The facilitatory effect of the modulated visual 
influence in the fA>V condition is remarkable because the AV stimuli in that condition 
and the fA=V condition were identical (i.e., the same static auditory stimulus combined 
with the same visual influence). Therefore, the advantages in the fA>V condition (and 
possibly also the fV>A condition) for the static auditory stimulus somehow were acquired 
indirectly from the advantages experienced by the modulated auditory stimulus from 
the modulated visual influences, thus implying cross-trial effects. It is not clear how 
these cross-trial influences occur, but in a broad sense, they are in line with the idea that 
audiovisual interactions can occur at multiple stages of sensory processing (Cappe et 
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al., 2009; Koelewijn et al., 2010). Hence, whereas a large portion of the observed data 
shows that direct visual-to-auditory influences at peripherical locations might play a role 
in multisensory processing, the observed cross-trial dependencies of visual-to-auditory 
benefits to trials with static stimuli might rely on contributions of higher association 
cortices in the brain (Covic et al., 2017). As in our experiment design, the (in)congruent 
modulated and static stimuli are presented randomly in a staircase design with varying 
intensity of stimuli, we are unable to comment on the nature of serial interactions 
extending over trials. These observations pose interesting questions for further research.

We also observed a degradation effect of static visual influence. That is, only in the 
presence of a phase difference between AV streams, the static visual influence slowed 
down the response time for both modulated and static auditory stimuli compared to the 
unisensory and congruent modulated conditions. This effect, however, was present only 
for the modulated auditory (Figure 4D-E left) and not for the static auditory stimuli 
(Figure 4D-E right). Our findings may represent a distraction effect of the static visual 
stimulus. A possible explanation for the absence of this effect in phase condition fA=V 
might be found in the overall longer response times for that condition. As participants 
already took a long time to respond, the presence of the static visual stimulus may 
not have further slowed the responses down. That is, the static visual stimuli can only 
provide a disadvantage in case of a comparative advantage driven by phase-advanced 
modulated auditory stimuli (fA>V) or visual stimuli (fV>A). A slightly different view on 
these degradation effects is the idea that, especially in the cases where the modulated visual 
influence is integrated with the modulated auditory stimulus (as witnessed by a response 
time benefit), a static visual influence will be harmful. Hence, the observed degradation 
effects also support a form of audiovisual interaction.

To summarize, in our paradigm studying audiovisual interactions in far periphery, 
we found evidence for barely-detectable visual stimuli influencing (facilitation and 
degradation) the response times for auditory stimuli in a modulation detection task, but 
not for the reverse. Due to a programming error, eye movements were only recorded before 
the stimulus presentation and at the response. However, fixation samples at response time 
in each trial strongly support that participants fixated accurately (in 96% of the ~100,000 
trials fixation samples fell within 2.5o of the fixation center, see Methods). Although 
our conclusions would have been stronger without our programming error, the fixation 
data we do have make it unlikely that the observed asymmetrical nature of multisensory 
interaction would be due to a confounding effect of inaccurate fixation. The observed 
visual-to-auditory influences only occurred for appropriate phase-differences between the 
modulated AV stimuli. Our data support a role of direct interactions between early visual 
and auditory areas through manipulation of AV synchrony (Lakatos et al., 2007). The 
involvement of early sensory regions in multisensory processing of stimuli at peripheral 
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locations does not exclude a probable major role for higher-order cortices. Multisensory 
integration is a multifaceted process, and higher-order cortices are likely involved in 
among others directing attention, object recognition and cross-trial effects. Hence, our 
findings support a view where both the early auditory and visual cortices as well as higher-
order auditory and visual cortex contribute to multisensory integration (Ghazanfar and 
Schroeder, 2006). This research extends the behavioral evidence of the importance of 
cross-sensory temporal cues for auditory processing (Besle et al. 2008; Doesburg et al. 
2008; Stevenson et al. 2010) to the far periphery. By combining temporally and spatially 
high-resolution neuroimaging techniques, future studies may provide insight into the 
precise temporal mechanisms as well as locate the cortical sites driving these cross-modal 
observations. Future work may also detail cross-sensory interactions ranging from far 
peripheral to foveal visual space.
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Supplementary Materials

1 Supplementary Data

1.1 Congruency does not influence Auditory and Visual Modulation 
Detection Thresholds
We first explored the effects of the congruency of AV streams (modulated and static) and 
the phase relation between modulated AV stimuli on modulation detection thresholds. 
Supplementary Figure 3 shows auditory (A-C) and visual (D-F) modulation detection 
thresholds obtained in the unisensory condition, as well as those obtained in the 
audiovisual congruent and incongruent conditions for each phase-condition. No effect 
of (in)congruence was observed on either the auditory or the visual detection thresholds 
for any phase condition as shown by the following statistical analysis.

Auditory detection thresholds are shown in Supplementary Figure 3 (A-C). A mixed 
ANOVA showed neither significant main effects nor interactions among between-subject 
factor “Phase condition” (3 levels: fA=V – fA>V – fV>A) and within-subject factors “Sensory 
condition” (3 levels: unisensory – congruent – incongruent) and “Intensity” (65% – 
55%).

Visual detection thresholds are shown in Supplementary Figure 3 (D-F). A nearly 
significant 3-way interaction (F(4,48) = 2.48, p = 0.056) was found between “Phase 
condition” (3 levels: fA=V – fA>V – fV>A), “Sensory condition” (3 levels: unisensory – 
congruent – incongruent), and Intensity (2 levels: 65% – 55%). All other interactions 
and main effects failed to reach significance.

1.2 Detailed statistical analysis of  response times during Auditory task
A mixed four-way ANOVA analysis of between-subject factor: “Phase condition” 
(levels: fA=V – fA>V – fV>A) and the three within-subject factors “Auditory stimulus” 
(levels: modulated – static), “Visual influence” (levels: modulated – static – none) and 
“Intensity” of the visual influence (levels: 55% – 65%) showed a significant four-way 
interaction (F(4,48) = 2.957, p = 0.029). The interaction was analyzed for each level 
of phase condition for further analysis (Supplementary Figure 4). As concluded by the 
following analysis, the effects across “Intensity” levels were not significantly different 
across phase conditions and thus the observations were simplified in the main text by 
combining both levels.

For phase condition fA=V, there was no significant three-way interaction between factors 
“Auditory stimulus”, “Visual influence” and “Intensity”. The two-way interactions and 
main effects also failed to reach significance.
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For phase condition fA>V, the three-way interaction between “Auditory stimulus”, 
“Visual influence” and “Intensity” was significant (F0.016(2,48) = 6.267, p = 0.003). 
This interaction was explored for modulated and static auditory stimuli separately. For 
modulated auditory stimuli, there was no significant interaction between factors “Visual 
influence” and “Intensity”. The main effect of “Visual influence, however, was significant 
(F(2,16) = 12.7411, p < 0.001, α = 0.008). Post hoc comparisons showed that modulated 
visual influence sped up response times for static auditory stimuli, while static visual 
influence slowed down the responses (modulated vs static t(8) = -4.31, p[corrected] 
= 0.007, modulated vs none t(8) = -1.78, p[corrected] = 0.337, static vs none t(8) = 
3.54, p[corrected] = 0.02). For static auditory stimuli, the interaction between factors 
“Visual influence” and “Intensity” was significant (F0.008(2,48) = 5.38, p = 0.007) and 
was further explored for the two levels of Intensity (55% and 65%). At 55% intensity, 
there was a significant effect of “Visual influence” (F0.003(2,16) = 14.366, p < 0.001; 
modulated vs static: t(8) = -4.14, p[corrected] = 0.009; modulated vs none: t(8) = -5.217, 
p[corrected] = 0.002, static vs none t(8) = 0.232, p[corrected] > 0.999). “Visual influence” 
also significantly affected the response times at 65% intensity (F0.003(2,16) = 19.08, p < 
0.001; modulated vs static t(8) = -5.178, p[corrected] = 0.002; modulated vs none t(8) = 
-4.32, p[corrected] = 0.007; static vs none t(8) = 2.87, p[corrected] = 0.062). Overall, the 
presence of a modulated visual influence improved the response times for static sounds 
irrespective of its intensity.

For phase condition fV>A, there was a significant three-way interaction between “Auditory 
stimulus”, “Visual influence” and “Intensity” (F0.016(2,48) = 6.64, p = 0.002). This 
interaction was broken down for each level of “Auditory stimulus”. For modulated 
auditory stimuli, the main effect of “Visual influence” was significant (F0.008(2,16) = 
58.99, p < 0.001; modulated vs static t(8) = -7.698, p[corrected] < 0.001; modulated vs 
none t(8) = -8.55, p[corrected] < 0.001; static vs none t(8) = 5.778, p[corrected] = 0.001). 
The two-way interaction between “Visual influence” and “intensity” and the main effect 
of “Intensity” was insignificant. In case of static auditory stimuli, the interaction between 
“Visual influence” and intensity was significant (F0.008(2,48) = 10.174, p < 0.001). This 
interaction was further explored for each level of “Intensity”. At 55% intensity, “Visual 
influence” had a significant effect on response times of static sounds (F0.003(2,16) = 18.5, 
p < 0.001; modulated vs static t(8) = -3.27, p[corrected] = 0.03; modulated vs none t(8) 
= -11.89, p[corrected] < 0.001; static vs none t(8) = -1.468, p[corrected] = 0.54). The 
“Visual influence” at 65% also showed significant effects (F0.003(2,16) = 10.67, p = 0.001; 
modulated vs static t(8) = -3.40, p[corrected] = 0.02; modulated vs none t(8) = -3.86, 
p[corrected] = 0.01; static vs none t(8) = 1.33, p[corrected] = 0.65).
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2 Supplementary Figures

Supplementary Figure 1: Estimation of unisensory modulation detection thresholds for a single participant 
executing the visual task. (A) Measurements (black line) in an 84% correct detection threshold staircase 
(4 correct responses: contrast down, 1 incorrect response: contrast up). The final threshold is shown by 
the red line and is computed as the mean of the last 10 reversal points. (B) The 50% detection threshold 
measurements (black line, 1 correct response: contrast down, 1 incorrect response: contrast up) are shown, 
with the red line indicating chance detection level (the mean of the last 10 reversal points). (C) The measured 
84% and 50% correct contrast thresholds (in red) are used to compute the 65% and 55% correct contrast 
thresholds (in blue) used in the multisensory conditions. Specifically, the 65% and 55% detection steps are 
estimated by z-scoring the contrast steps between the 84% and 50% measurements, and then interpolating 
the intermediate steps (from 50% to 84%).

Supplementary Figure 2: Eye location at the instance of response for all trials shown for the three 
participant groups. The axes indicate the location along the screen, where the participants were required 
to fixate at the center (0,0) and the visual stimulus was presented at the farthest right location along the 
azimuth. Participants across groups were fixating close to the fixation center in the vast majority of the trials 
and showed no particular bias towards the stimulus location.
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Supplementary Figure 3. Auditory and visual modulation detection thresholds. Auditory detection thresholds 
are shown in (A-C) for all phase conditions (fA=V, fA>V, fV>A respectively). The SPL values are shown for the 
peak intensity of the stimuli. Visual detection thresholds are shown in (D-F) for all phase conditions. The 
detection thresholds for all unisensory (black), congruent (blue) and incongruent (red) conditions are plotted 
for two intensities of the unattended modality (at estimated 55% and 65% detection threshold). Error bars 
represent ± 1 SEM.
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Supplementary Figure 4: Response times during the auditory modulation detection task with visual 
influences. The figure shows the interaction of “Auditory stimulus” and “Visual influence” plotted separately 
for the three phase conditions fA=V (Group 1), fA>V (Group 2) and fV>A (Group 3), with “Intensity” of visual 
influence at 55% (A-C) and 65% (D-F). Light and dark gray bars represent the presence of near-threshold 
modulated and static visual influences respectively, while white bars show the unisensory condition. Gray bars 
with a blue outline indicate the phase-advanced visual condition. Individual participant data is shown using 
colored dots (different groups refer to different participant samples). Bar height reflects the mean of the data.
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Supplementary Figure 5: Response times during the visual modulation detection task with auditory influences. 
How response times for “Visual stimulus” are affected by “Auditory influence”, is plotted separately for the three 
phase conditions fA=V (Group 1), fA>V (Group 2) and fV>A (Group 3), with “Intensity” of auditory influence 
at 55% (A-C) and 65% (D-F). Light and dark gray bars represent the presence of near-threshold modulated 
and static visual influences respectively, while white bars show the unisensory condition. The gray bars with 
a red outline indicate the phase-advanced auditory condition. Individual participant data is shown using 
colored dots (different groups refer to different participant samples). Bar height reflects the mean of the data.
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and Attentional Influences on Peripheral 
Sound Processing
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The present thesis investigated information processing in the human auditory cortex (AC) 
and the use of computational modeling to bridge information obtained across methods 
(physiological to behavioral), scales (from single neuron to behavior), and species (human 
and non-human primates). Furthermore, the presented work generated new datasets and 
empirical results that can inform, extend, and improve the AC computational models. 
In the first part of the thesis, we constructed a computational model of the AC that 
incorporates the parallel information processing pathways along the rostral-caudal axis 
of the AC. This model links neuronal response properties at the microscale to functional 
observations at the meso- and macroscale. The model was validated against existing data 
and then employed to construct hypotheses on the neural correlates of experimental 
(i.e., behavioral and neuroimaging) observations in human sound perception. In the 
second part of the thesis, behavioral and neuroimaging techniques were used to detail 
the visual influences on auditory processing in the AC. Overall, our results suggested 
distinct roles of the parallel information processing pathways for sound processing and 
provided evidence for the role of the AC beyond uniquely unisensory processing. Across 
these studies, both the simulated and observed responses showed interesting variations 
along the auditory cortical hierarchy, and suggest a prominent role for belt regions in 
auditory processing of complex sounds and audiovisual processing. In this chapter, we 
integrate results reported in the individual chapters and discuss follow-up research along 
with potential future applications.

1 Bridging the Scales: From Neurons to Imaging and Behavior

The computational modeling approach taken in Chapters 2 and 3 primarily intended to 
link the different scales of empirical observations to each other. Specifically, we focused 
on the differences in sound processing that exist along the rostral-caudal axis of the AC. 
This research was fueled by evidence that the areas located caudally and rostrally to the 
primary auditory cortex exhibit distinct neuronal response properties (Recanzone et al., 
2000; Tian et al., 2001; Bendor and Wang, 2008; Camalier et al., 2012; Kuśmierek et 
al., 2014) which have been proposed to underlie their functional specialization, thus 
forming the starting points of “what” (rostral) and “where” (caudal) pathways (Kaas et al., 
1999; Romanski et al., 1999b; Belin et al., 2000; Kaas and Hackett, 2000; Rauschecker 
and Tian, 2000; Tian et al., 2001; Arnott et al., 2004). How the differences in neuronal 
dynamics lead to specific roles in auditory perception, has remained an open question 
in auditory neuroscience (Jasmin et al., 2019).

The computational model presented in Chapter 2 was built on physiological and 
electrophysiological observations primarily recorded from non-human primates (Kaas 
and Hackett, 2000). The model was employed to investigate the contribution of the 
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different cortical streams in the representation and processing of basic acoustic features 
(i.e., temporal modulation, pitch) in the context of artificial and natural (speech) stimuli. 
The model, simulating neuronal populations (operating at mesoscale), replicated human 
performance in simple psychophysical tasks. Thereby it provided insight on how human 
auditory perception may be shaped by underlying neuronal responses and which cortical 
sites might underlie said behavior. The simulations showed more complex computations 
when moving higher in the auditory cortical hierarchy. This is consistent with the role of 
belt areas in increasingly complex auditory tasks. That is, while the detection of amplitude 
modulations in simple artificial stimuli was primarily coded by the simulated core areas 
of the AC, testing with more complex stimuli showed that the simulated auditory belt 
(but not core) provided a distributed coding mechanism for temporal and spectral pitch 
(in the caudal and rostral regions of the simulated belt, respectively). Further analysis 
with speech stimuli strengthened the idea that the neuronal response properties may be 
optimized along the rostral-caudal belt to process different acoustical features in parallel, 
with different simulated regions preferentially coding different oscillatory components 
of the signal. Interestingly, the slowest oscillations, representing the speech envelope, 
were coded in parallel across simulated regions and may serve to “timestamp” the traces 
of different speech aspects belonging to the same speech utterance across streams. This 
might serve as a binding mechanism that ensures the unified processing of different 
components of speech (Giraud and Poeppel, 2012; Yi et al., 2019), which may be coded 
in a distributed fashion. Such a temporal code can also underlie the binding of auditory 
sources in stream segregation (Elhilali et al., 2009). 

Despite being simplistic, the proposed computational model of the auditory cortex 
offered a general framework for information processing along the rostral-caudal axis in 
the AC. The model was then used to gain new insights into existing experimental data 
in Chapter 3. Recent neuroimaging studies have reported a spectro-temporal trade-off 
along the rostral-caudal belt, i.e., a preference for fine spectral structures of sounds in 
the rostral regions, in comparison with partiality to fine temporal features of sounds 
in the caudal regions (Schöwiesner and Zatorre, 2009; Santoro et al., 2014). While 
the hemodynamic blood oxygenation level-dependent (BOLD) signals measured with 
functional MRI (fMRI) are correlated to the underlying neuronal activity (Logothetis 
et al. 2001; Logothetis et al. 1999; Rees et al., 2000), it does not directly measure 
the neuronal activity. Thus, a forward modeling approach was put forth in Chapter 3 
to determine whether the spectro-temporal preferences for sound features along the 
rostral-caudal streams, inferred from the modeling of fMRI data (Santoro et al., 2014, 
2017), could be a direct consequence of the fundamental neuronal mechanisms and 
response properties. The applied approach combined the computational model of the 
AC presented in Chapter 2 with a biophysical model of the hemodynamic BOLD 
response (Havlicek et al., 2015). Our simulations showed that the hemodynamics of 
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a caudal belt region in the AC were best explained by the neuronal models with faster 
temporal dynamics and broader spectral tuning, while that of a rostral belt region were 
best explained through fine spectral tuning combined with slower temporal dynamics. 
These simulations provided a direct link between observations of neuronal dynamics 
from electrophysiological recordings (microscale) upon which the model was built, to 
the BOLD responses (mesoscale). Whereas the observation of BOLD responses provided 
information about distinct preferences for sound features along the rostral-caudal belt 
regions, the proposed modeling approach provided insights into the neuronal dynamics 
that may cause the observed experimental effects.

The modeling endeavors of Chapters 2 and 3 have shown how computational modeling 
can meaningfully integrate experimental observations, generate new insights into existing 
datasets, and produce hypotheses for future research. The primary focus of the model 
was to establish evidence for the role of neuronal dynamics in meso- and macroscale level 
observations. The model, however, represents a simplification of a complex system and 
one has to remain cautious of its limitations. Models cannot replace data and the link to 
empirical observations must be maintained. Also, the models can only suggest or disprove 
a certain mechanism as a root cause for an observation and will always be reliant on the 
experimental findings for definitive proof. The simplicity of the current model, which 
allowed us to manipulate parameters in a well-controlled manner, ignored other key 
contributors to information processing in the AC. We explored the processing in tonotopic 
channels, but the influences of non-tonotopic connectivity and multisensory information 
were essentially disregarded in the current model implementation. Furthermore, the 
model was strictly feed-forward and modeled no cortico-cortical connectivity beyond 
the AC. Thus, for the model to grow towards a more “realistic” view of the information 
processing in the AC, we required deeper exploration of other information arriving in 
the AC (modulatory or driving influences, feed-forward and/or feedback sources) and 
how that information interacts with sound processing. Thus, the latter half of the thesis 
specifically focused on collecting datasets that may shed light on multisensory influences 
on auditory processing.

2 Visual Influences in the Auditory Cortex

Our environment is highly multisensory, and sounds are almost always accompanied 
by information from other senses. Recent studies show direct anatomical connections 
between the early auditory and visual cortices that are concentrated in visual sites 
representing the far peripheral field of view (Falchier et al., 2002, 2010). The behavioral 
and cortical correlates of this spatially specific connectivity have, to-date, remained 
unexplored in humans and were the focus of the research presented in Chapters 4 and 5.

Summary and General Discussion

Ch
ap

te
r 

6

137



To establish evidence of cross-sensory influences between peripherally-presented 
audiovisual stimuli, we employed a psychophysical approach in Chapter 4. The 
bidirectional audiovisual interactions were explored in the far periphery using simple 
stimuli (gratings and noise bursts; modulated and static) in a modulation detection task. 
We found evidence of multisensory influences of visual stimuli on auditory reaction times 
during the modulation detection task, but no reciprocal effects of audition on vision. 
By manipulating the congruency and the phase of the modulated stimuli (auditory and 
visual) at the onset of the stimuli, we found that the observed effects were highly sensitive 
to the temporal structure of the stimuli. That is, depending on temporal (in)congruence 
and synchrony between modulated audiovisual streams, the visual influences not only 
sped up (facilitation effects) the response times for auditory stimuli but also slowed them 
down (degradation effects). These results showed successful multisensory integration 
but painted a complex picture of underlying neuronal mechanisms, which could rely on 
direct communication between the early auditory and visual cortices but also influences 
from higher-order cortical sites.

The study presented in Chapter 5 was driven by the two key results reported in Chapter 
4 i.e., the visual influence on audition with no reciprocal effects and, the sensitivity of 
these effects to the temporal relationship (phase, congruency) between the far-peripheral 
stimuli. To locate the cortical sites driving these cross-modal observations, we investigated 
the visual influences on the auditory cortex in a cortical depth-dependent manner using 
high-resolution functional MRI at 7 Tesla in Chapter 5. Due to the setup constraints 
of the MRI scanner, the stimuli could not be presented as peripherally as in Chapter 
4. Thus, we first tested the spatial dependence of previous observations by repeating 
the modulation detection task measurements at a less peripheral location. We found 
evidence of a visual benefit for the auditory modulation detection thresholds even without 
a cross-sensory phase shift, while this shift was essential for observing a multisensory 
benefit at the more peripheral location. These results suggested that the exact nature of 
the audiovisual interactions varies with respect to the location of the stimuli, something 
that sets up precedence for future research beyond this thesis.

Driven by the task-dependence observed in the behavioral study, these multisensory 
interactions were explored in two different attention conditions with the hypothesis 
that by directing attention to the auditory stream, the multisensory effect would be 
enhanced in the auditory regions. The depth-dependent analysis of high-resolution fMRI 
data exploits the fact that neuronal populations at different cortical depths have distinct 
anatomical connectivity and properties. While the sensory input arrives at the middle 
layers, feedback signals shape predominantly the responses of deep and superficial layers 
(Felleman and Van Essen, 1991; Winer and Schreiner, 2011). These distinct columnar 
properties can be reflected in the independent responses across cortical depths and are 
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measurable because of the sub-millimeter resolution of the fMRI data (De Martino et 
al., 2015; Moerel et al., 2018; Gau et al., 2020). Our preliminary analyses showed a 
significant multisensory enhancement of responses across a cortical network including 
the primary and non-primary auditory cortex, the left primary and non-primary visual 
cortex (contralateral to stimulus location), bilateral insular cortex, and the ventrolateral 
prefrontal cortex. In the AC, the multisensory enhancement increased along the auditory 
cortical hierarchy and was strongest in the superior temporal gyrus, which likely reflects 
the auditory parabelt. While multisensory influences (enhancement and suppression) 
were present throughout layers of the AC, the multisensory enhancement was modulated 
by attention in the deep layers of the auditory belt. This effect was only observed when 
directing attention towards the auditory stimulus and was absent when the attention 
was diverted away from both stimulus streams. This modulatory effect of attention in 
deep layers, rather than middle layers, suggests that this context-dependent multisensory 
influence originates as a feedback signal. Where this feedback originates, remains to be 
determined. Some possible candidates could be tertiary auditory regions, visual cortex, 
or frontal regions. However, the tertiary auditory regions are not a likely source of 
the observed effects as short-range feedback more strongly targets the superficial than 
deep layers (Clavagnier et al., 2004). Future analyses will include multivariate pattern 
analysis to examine the multisensory effects in a multivariate fashion, and cortical depth-
dependent connectivity analysis which may help discriminate between the frontal regions 
and visual cortex as sources of the observed context-dependent multisensory enhancement 
in deep layers of the auditory belt.

How do the observed cross-sensory influences on AC processing relate to the parallel 
processing streams of the AC explored in the first half of this thesis? The increased 
multisensory enhancement in the deep layers of belt areas when attention is directed to 
the auditory stimulus is of particular interest. The multisensory effect observed in Chapter 
4 is driven by congruency in spatial location and temporal features of the auditory and 
visual stimuli. Our modeling approaches presented in Chapter 3 suggested that the 
caudal belt regions are optimized for capturing temporal sound dynamics. We, therefore, 
hypothesize that the attentional influence on multisensory processing targeted caudal 
instead of rostral belt regions. Moreover, beyond processing the temporal dynamics 
of auditory stimuli, we hypothesize that caudal belt regions may process the temporal 
dynamics of their multisensory counterparts as well. In line with these hypotheses, 
the direct projections from peripheral primary and secondary visual cortex have been 
shown to target caudal auditory regions (Falchier et al., 2010). These hypotheses may 
be in part addressed through further analysis of the dataset reported in Chapter 5. 
Electrophysiological experiments will also be required to fully test these hypotheses, as 
these measurements are needed in order to shed light on the temporal mechanisms of 
multisensory integration of peripheral audiovisual stimuli.
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3 Future Perspectives

The research presented in this thesis showed how information across spatial and temporal 
scales, from neuron to behavior, can be integrated to better the understanding of the 
information processing in the AC. There are multiple avenues to pursue next. The 
primary focus of the proposed model was to merge the evidence for the role of neuronal 
dynamics with meso- and macroscale level observations. In future work, our experimental 
data described in Chapters 4 and 5 will allow extending the computational model of 
the AC to incorporate the influence of multisensory input. This extension will require 
additional model mechanisms. Specifically, as the observed multisensory effects were 
modulating rather than driving, modulatory cortico-cortical and/or thalamo-cortical 
connections will need to be added to the model. Furthermore, as the multisensory effects 
varied with cortical depth, a cortical depth-specific model of the AC is needed. To this 
end, the existing modeling approach can be extended with the neuronal models that 
capture the laminar-specific processing [e.g., Canonical Microcircuit model (Bastos et 
al., 2012)]. With such updates, the resulting “multisensory AC model” could be used 
for several purposes. A forward modeling approach, as used in Chapter 3, where the 
updated neuronal model can now be paired with laminar models of BOLD signals 
(Havlicek and Uludağ, 2020), would allow gaining insight into the neuronal dynamics 
(i.e., the microscale) of the mesoscale data collected in Chapter 5. As such, the model 
could be used to generate predictions regarding the spatial dependence of the observed 
effects across the visual field, test the role of cross-sensory temporal dynamics, and model 
attentional influences. These predictions will, however, be dependent on empirical data 
to be tested.

Based on data, the neuronal model may also be further optimized in the future. For 
example, model inversion informed by the high-resolution imaging data could help 
in further refining the current architecture and connectivity constraints of the model. 
Similarly, the proposed neuronal model could be used along with other measurement 
models, such as local field potential models, that simulate electrophysiological recordings 
and results could be used to refine the current temporal properties of the model. New 
data would then be required to test the validity and generalizability of these model 
modifications. Future electrophysiological measurements of the multisensory cortical 
responses could also be modeled in a multimodal dynamic causal modeling framework 
(Wei et al., 2020). Here an integrative approach could be taken to maximize the benefits 
of data from fMRI (spatial) and electrophysiological (temporal) modalities, inform the 
neuronal dynamics, and thereby improve the quality of model predictions.

Generating and optimizing an AC model that incorporates multisensory influences may 
prove beneficial for the understanding of aberrant multisensory integration. Diminished 
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multisensory integration has been hypothesized to underlie a number of psychiatric 
disorders, including autism and schizophrenia spectrum disorders (Stevenson et al., 2014; 
Zhou et al., 2018). Through non-invasive imaging (e.g., fMRI, or MEG data), mesoscale 
information of changes in brain processing with these disorders could be collected. By 
adapting model parameters to match this mesoscale information, conclusions could be 
drawn at other spatial scales. This may improve our understanding of the performance of 
patients on behavioral tests and neuroimaging studies (de Gelder et al., 1991; Surguladze 
et al., 2001; de Gelder et al., 2003; Smith and Bennetto, 2007; Stone et al., 2011; 
Brandwein et al., 2013; Stevenson et al., 2014), and allow constructing hypotheses 
on what underlies these disorders at the microscale level, possibly opening the road to 
intervention.

A model always provides a simplistic view of a complex system and therefore never 
captures that system to its full extent. This holds especially true for models of the brain, 
where the available data only cover a very small fraction – and often at a very limited 
temporal and spatial resolution–of the modeled system. However, our results have shown 
that despite their simplicity, computational models can serve a variety of purposes. By 
linking multiple scales of observations, the use of computational models ranges from 
hypotheses testing to the generation of new hypotheses, thereby improving our current 
understanding of the brain. When modeling and data-driven approaches are designed 
to complement each other, their collaborative advantages benefit the understanding of 
a system, as shown for auditory processing in this thesis. Thus, by developing data and 
models together, we avoid the risk of losing sight of the proverbial bigger picture.

Summary and General Discussion
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Impact Statement

The ability to hear and interpret the sounds around us is not only necessary for survival 
but also enriches our life with interpersonal communication. In this thesis, we used 
computational and experimental methods to enhance our understanding of how the 
human brain processes sounds, and showed how the two approaches reinforce each 
other. We presented a computational model of the auditory cortex and used it to generate 
insight into the cortical processes that may underlie a range of experimental observations. 
The model predictions were used to generate hypotheses on auditory cortical processing 
as well, which can be tested in future experiments. However, the model is a simplification 
of a complex system and needs to evolve to better represent the auditory cortex. An 
avenue for the model to grow was explored by studying multisensory processing, and 
specifically the effects of visual input on auditory processing. Multisensory processing 
is important because our environment is full of information from different senses. This 
multisensory information guides our perception and behavior. In a behavioral study, we 
found an influence of what we see on what we hear, but not vice versa. We then explored 
the regions of the brain involved in the process. In the future, we plan to use this data 
to extend and improve the model of information processing in the auditory cortex. This 
can help elucidate the brain processes that underlie multisensory processing. As quite a 
few psychiatric and neurodevelopmental disorders, including schizophrenia and autism, 
are characterized by abnormalities in multisensory processing, this extended model may 
in the future also be used to characterize the neuronal sources of multisensory processing 
deficits.
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