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ARISTOTLE’S FOUR CAUSES OF SCIENCE *

“There are four causes in terms of which a thing or event would be
satisfactorily explained — material, efficient,formal and final. Take
a statue. It is made of marble (material cause); it is made by the
sculptor using certain tools (efficient cause); it is in the shape of a
horse (formal cause which guides the sculptor as be chips away at the
marble); it is to commemorate the fabulous exploits of Bucephalus,
the horse of Alexander the Great (final cause). Also to understand
why something is what it is, it is necessary to understand it in terms
of the four causes.”

™ This example of Aristotle’s four causes of science is taken from the book The natural
and the artefactual: The implications of deep science and deep technology for environmen-
tal philosophy (Lee, 1999)
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+ 1.1. VisioN AND WARS

The brain is the only organ that named itself. This is a popular statement that appears
here and there, often on the internet, as a riddle, trivia, fun fact, shower thought, or
even a scientific statement. Often subjected to philosophical and (less so) scientific dis-
cussions, this statement is not entirely true. It was not one brain that named itself. The
formation of words and languages is a collective process. The current English word
“brain” comes from (ignoring the proto languages) the old English word “bragn”. Over
the past, us humans, collectively agreed to name this organ in our own languages. We
might have agreed over the name, but we haven’t, and still don’t, fully agree about the
functional organization of the brain. Our current understanding of the brain, espe-
cially the vision, has been significantly shaped by scientific and non-scientific wars. This
section is a summary of historical events that led up to our current understanding of
vision as a function of the brain.

1.1.1. Localization Wars

“The quarrel is very acrimonious; indeed the subject of localization of
functions in the brain seems to have a peculiar effect on the temper of those
who cultivate it experimentally.”

- William James, The Principles of Psychology

The Cerebral cortex is the outer layer (sheet) of the largest part of the brain, the cere-
brum. For the longest time in human history, the cerebral cortex was considered to
be a homogeneous structure and different parts of the cortex were considered largely
equivalent. Only a few isolated cases advocated for the different functions of the cere-
bral cortex (Gross, 1999). One of the earliest signs of the cortex not being uniform and
featureless was discovered by a 24-year-old medical student at the University of Parma,
named Francesco Gennari (1752-1797). He observed a white line that divides the grey
matter and runs parallel to the cortex. He reported this observation in his monograph
titled De Peculiari Structura Cerebri (1782). We now know that this white strip known
as Stria of Gennari, marks the primary visual cortex in primates. However, Gennari,
at the time, didn’t know the significance of his own finding (Glickstein and Rizzolatti,
1984).

Attack on Phrenology

Franz Joseph Gall (1758-1828) is widely considered to be the starting point of cortical
(functional) localization (Gross, 1999). While Gennari had no idea of that what he dis-
covered was the primary location of visual processing, Gall had a firm (but wrong) idea
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of functional locations of the cortex. He was one of the founders of the field of Phrenol-
ogy, which today is rendered as a pseudoscience (Webb et al., 2022). He identified 35
psychological traits, or the faculties of the brain, and their associated locations based on
the size of cranial (skull) bumps. Phrenologists believed that a person’s capacity for a
given trait could be predicted by the size of the cranial bump that is associated with it
(Jones et al., 2018).

Gall’s work was met with a lot of political, religious and scientific criticism, with
Pierre Flourens (1794-1867) being his strongest scientific critic. Flourens conducted
behavioural and lesion studies on animals and observed that lesions in particular (local-
ized) regions of brain resulted in a mixture of cognitive effects (Glickstein, 1988). While
he did conclude that the cerebral cortex was the seat of intelligence, sensation and vo-
lition, he denied their localizations (Simpson, 2005). However, his lesions were indis-
criminate and ignored anatomical boundaries, which rendered his methods largely in-
adequate and inappropriate (Zola-Morgan, 1995). In his work Examen de la phrénologie
(1842, English translation by de Lucena Meigs (Flourens, 1846)), holistic statements
such as “It has been shown by my late experiments, that we may cut away, either in
front, or behind, or above, or on one side, a very considerable slice of the hemisphere
of the brain, without destroying the intelligence” can be found.

Gall’s ludicrous observations were not entirely a failure and ultimately, he would
be proven right but for the wrong reasons (Folzenlogen and Ormond, 2019). He ob-
served that his more verbal friends and colleagues had protruding eyes. He attributed
this to their enlarged frontal lobe, which he concluded was the language area (Jerison,
1977). In an interesting turn of events, Paul Broca (1824-1880) did confirm this and,
in a sense, vindicated Gall (Gross, 1999). Today, the region associated with speech pro-
duction, known as Broca’s area, was discovered by Gall some years before Broca was
born (Jerison, 1977).

The Battle of Vision

Gall’s legacy lived on for a while. In fact, one of his followers, Bartolomeo Panizza
(1785-1867), was the first person to propose the localization of visual function of the
cortex. He noticed that strokes to the occipital lobe caused partial or complete loss of
vision. He also tracked degradation of the optic nerve (in dogs) back to the occipital
cortex. On top of that, he also noticed that removal of one hemisphere of this region
resulted in blindness in the opposite eye (Wickens, 2014). However, his work went
largely unnoticed and was only realized after the work of Ferrier, Munk and Schifer
(Gross, 1999).

David Ferrier (1843-1928), strongly believed that the angular gyrus in the Parietal
Lobe, was the center of vision. He concluded that after conducting a series of (electrical)
stimulations and lesion experiments on monkeys. He was aware of Panizza’s work but
did not support it. He was unable to produce eye movements upon stimulation of
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the occipital region, nor did he observe any significant visual impairment in this region
when lesioned (Wickens, 2014).

On the contrary, stimulating the angular gyrus, resulted in eye movements (akin to
a visual experience) and lesioning the angular gyrus caused complete blindness (Glick-
stein, 1985; Wickens, 2014). He conducted his experiment on three monkeys. One of
the monkeys, who was very fond of tea, was unable to find the teacup placed straight in
its line of sight. It turns out that in two of the monkeys, the lesions disrupted visually-
guided action (such as eye movements) and not vision itself. And the third monkey, it
just so happens, was already blind (Fishman, 1995b).

Hermann Munk (1839-1912), soon after Ferrier’s experiments, justly reported that
it was the damage to the occipital lobe, not to the parietal lobe, that caused blind-
ness. Munk also suggested that the angular gyrus was not related to vision, but was
merely responsible for tactile eye movements (Fishman, 1995a). However, Munk was
not gentle in his opposition. He lambasted Ferrier with ruthless statements. In his
work, Munk (1890) described Ferrier’s work with words like “worthless”, “gratuitous
constructions” and “useless”. William James, in his iconic psychology textbook (James
et al., 1890), writes “Munk’s absolute tone about his observations and his theoretical
arrogance have led to his ruin as an authority.” Ferrier’s work received another big blow
when Edward Albert Schifer entered the battle. His studies reported results opposite
to Ferrier’s claims, thereby supporting Munk’s claim that the occipital lobe, not the
angular gyrus, was the seat of vision. By the turn of the 19th century, the debate of the
visual area was converging towards the occipital lobe (the striate cortex) (Gross, 1999).

1.1.2.  Russo-Japanese War

As thelocalization of the visual area of the brain was being established (in its right place),
a stage was setting up for another question, and another war. But this time the war was
a violent one and the question was: how is the visual cortex organized? Salomon Hen-
schen (1847-1930) began investigating the topography of the visual cortex. With the
empirical data from over 160 blind or hemianopic (from cortical lesions) subjects, he
was able to correctly map the upper and lower visual fields to the lower and upper (re-
versed) banks of the calcarine sulcus. However, he reversed the center-periphery map-
ping, which could be caused by the large size and dispersions of the lesions (caused by
strokes) (Glickstein, 2014).

The need for smaller and more precise lesions was, regrettably, satisfied by Mosin-
Nagant Model 91, Russia’s rifle of choice during the Russo-Japanese war (1904-1905).
This new type of weaponry had a muzzle velocity of 620 m/s and a bullet diameter of
7.6 mm, which allowed for cleaner wounds that would enter and exit the skull without
significant damage to the surrounding brain tissue (refer to Figure 1.1). Japanese sol-
diers who were shot in the back of their heads had some blind spots in their vision, “as
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if they were wearing glasses spattered with black paint” (Kean, 2014). In order to assess
the amount of pension that would justly fit the amount of damage the soldiers have
suffered, Japanese authorities appointed Tatsuji Inouye (1881-1976). He took this op-
portunity to explore the topographical organization of the visual cortex (Tubbs et al.,
2012).

Fall 20

Figure 1.1.: Bullet wounds made by the Mosin rifle making a straight path through the skull and the shoul-
der. (Inouye, 1909)

Kraniokoordinometer

Figure 1.2.: Cranio-coordinometer (Inouye, 1909)
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With the intention of precisely mapping the trajectories (straight lines) of these bul-
lets through the brain, Inouye constructed the cranio-coordinometer (see Figure 1.2).
This way, he was able to measure the extent of the visual cortex using a three-coordinate
system. The folded visual cortex was flattened, which made visualizations easy to under-
stand. With 29 subjects, he successfully mapped retinotopic topography on the visual
cortex. He also corrected Henschen’s mistake by mapping the central visual fields to
the caudal part of the visual cortex, and peripheral visual fields to the anterior part. In
his mapping, the central visual fields, correctly so, occupied a much larger part than
the peripheral fields, thus making it clear that there is an oversampling of central visual
fields (Glickstein, 2014; Jokl and Hiyama, 2007).

Later, after World War I, Gordon Holmes (1876-1965) obtained largely the same re-
sults as Inouye. Holmes, and not Inouye, has been widely credited for these discover-
ies. Firstly, because Holmes had the cultural advantage of being British. Secondly, he
reported his studies with simpler schematics, which were easier to read, intuitive and
appeared in textbooks worldwide (Kean, 2014).

Whether it is Inouye or Holmes, these historic discoveries of retinotopic organiza-
tion of the visual cortex, sadly, resulted from violent wars. Fortunately, science today
has advanced a lot. Researchers today, thanks to techniques like functional Magnetic
Resonance Imaging (fMRI), do not need wars to understand the mapping of the hu-
man brain. And this would have deeply satisfied Inouye; as he writes in his work (In-
ouye, 1909; Jokl and Hiyama, 2007):

“The bardship and ferocity of the last war led me to publish these obser-
vations. The awfulness and horror of the experience, of which those who did
not take part cannot have the slightest appreciation, at the same time raised
the bope in me and in all other physicians that in the future, war may, if
possible, be prevented. If this is not to be, then it should be carried our with
all possible care, reducing as much as possible the terrible sorrow and hard-
ships for its participants. If my work could have even the slightest influence
in this direction, then it would fill me with the greatest contentment.”

- Tatsuji Inouye, 1909
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+ 1.2. RETINOTOPYIN THE TIME OF FMRI

«

“... Atsome point in his lecture, e said something paraphrased to, ..
this is brand new. .. we are able to use MRI to see function without any con-

»

and

trast agent! Here’s a movie provided to me by Ken Kwong at our center....
He showed the movie of a series of sequential grainy, low-resolution axial
EPI subtraction images of a plane that included visual cortex—depicted at
the bottom of the image. When a flashing checkerboard was shown to the
subject, the visual cortex “lit up.” Our jaws fully dropped. Tom went on,
“and we don’t really know yet what the mechanism is bebind this....” My

» »

primary reaction to this was “I have a thesis project!

- Peter A. Bandettini, (Bandettini, 2015)

1.2.1.  functional Magnetic Resonance Imaging (fMRI)

fMRI has been a breakthrough in neuroimaging. Since the 1990s, it has dominated
the field of human brain mapping, largely because of its non-invasiveness, lack of radia-
tion and spatio-temporal resolution. fMRI infers neuronal activity from the changes in
blood flow in the brain. Anincrease in neuronal activity triggers an increase of the blood
flow to these neurons. The increased blood supply provides food (glucose and oxygen)
to these hungry neurons. The oversupply of oxygenated hemoglobin (diamagnetic)
flushes away the de-oxygenated hemoglobin (paramagnetic). This causes an increase
in the homogeneity of local magnetic field, thereby increasing the MRI signal (when
compared to a non-active state). This contrast signal measured by fMRI is called as the
blood-oxygenation-level-dependent (BOLD) signal or response (Goebel, 2007).

1.2.2. Retinotopy

Retinotopy is the mapping or the projection of the visual field (what we see) from the
retina to the visual cortex. If we consider a film camera as an analogy to vision; the retina
would be the lens, and the visual cortex would be the photographic film onto which an
image (visual field) is being projected. It essentially answers the question of what point
in our visual space corresponds to what point on the visual cortex. Since the visual
cortex is organized retinotopically, adjacent points in the visual field are represented by
the adjacent positions on the visual cortex (Wandell and Winawer, 2011).

T Part I, Chapter 2 of the book fMRI: from nuclear spins to brain functions (Uludag
etal., 2015)
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With the use of fMRI, retinotopy has become as essential aspect of vision research.
fMRI made it possible to obtain retinotopic maps non-invasively (Sereno et al., 1995;
DeYoe et al., 1996; Engel et al., 1997). The retinotopic maps obtained in the late 90s
came from stimulus-referred tMRI responses using sets of ring and wedge stimuli. This
approach, pioneered by (Sereno et al., 1995), is often known as the phase-encoding
model (Wandell and Winawer, 2011). Figure 1.3 (Dougherty et al., 2003) depicts the
retinotopic mapping in polar coordinates. The expanding ring stimulus maps eccen-
tricity (distance from the center of the visual field/cortex) and the rotating wedge stim-
ulus maps the polar angle. Once eccentricity and polar angle are mapped, one can, for
each voxel (fMRI volume unit), map its preferred position in the visual field.

Figure 1.3.: Retinotopic maps of eccentricity and polar angle mapped using expanding ring and rotating
wedge stimuli (Dougherty et al., 2003)

1.2.3. Population Receptive fields (pRF) mapping

The term receptive field was first coined by Sherrington (1910), who used this term to
describe an assemblage of points on the skin that would elicit a reflex movement when
a particular stimulus was applied. Hartline (1938), extended this concept to the retina.
Hartline described the receptive field of a single nerve optic fiber as the region of the
retina that needs to be illuminated in order to elicit a response in that fiber.

A population receptive field (pRF), extends the concept of single neuron receptive
fields to a population of neurons (Victor et al.,, 1994). In the modern context of fMRI,
apRF would be the aggregated response of the population of neurons contained within
one fMRI voxel (subject to a stimulus). If a stimulus placed (illuminated) in the top-
right corner of your visual field, evokes a response in a particular population of neurons,
then the pRF of that population is considered to be located at top right corner of the
visual field. However, a pRF not only encodes the location of the stimulus, but also, its
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size or the coverage. The size of a pRF is harder to quantify than the location because it
depends on the shape of the pRF. A natural assumption to the shape of pRFs is a 2D
isotropic Gaussian, with the size of pRF being 1 standard deviation of the Gaussian.
However, since we do not know the ground-truth about the nature of pRF, their true
shape is still being contested (Silson et al., 2018; Merkel et al., 2018; Lerma-Usabiaga
etal.,, 2020b; Bhat et al., 2021)

More recently, the work done by Dumoulin and Wandell (2008), laid the ground for
a parametric and expandable pRF computational model. Their approach still serves as
the gold-standard approach for pRF mapping. The approach assumes a simple linear
model between the stimulus and the acquired fMRI BOLD response. Then for each
voxel, an appropriate set of pRF parameters (location and size) are chosen. The pRF pa-
rameter was chosen using a grid-search with an aim to minimize the difference between
predicted and true BOLD response.

pRF mapping, since then, has become a cornerstone of computational neuroscience
and has enabled researchers to understand the relationship between eccentricity and
the size of receptive fields along the visual hierarchy (Dumoulin and Wandell, 2008;
Amano etal., 2009; Harvey and Dumoulin, 2011; Silva et al., 2018), to investigate neu-
ral plasticity and visual development from childhood to adulthood (Dekker et al., 20195
Gomez et al., 2018) and to study the dynamic changes of receptive fields in response to
attention (Klein et al., 2014; Kay et al., 2015; Vo et al., 2017; van Es et al., 2018).

pRF modelling has not only enabled researchers to understand fundamental mech-
anisms and organization of the brain, but also helped them study the pathology of dis-
eases such as Alzheimer’s disease (Brewer and Barton, 2014), schizophrenia (Anderson
etal., 2017), albinism (Ahmadi et al., 2019), (artificial) scotoma in patients with macu-
lar degradation (Baseler et al., 2011; Barton and Brewer, 2015; Papanikolaou et al., 2015;
Linhardtetal., 2022) and in healthy populations (Binda et al., 2013; Haak et al., 2012;
Hummer et al., 2018) and even blindness (Georgy et al., 2019).

Furthermore, the ability to estimate receptive field parameters is crucial for several
applications. For instance, receptive fields can serve as a target for transcranial magnetic
stimulation (Sack et al., 2009) or provide a spatial forward model for computational
models (Peters et al., 2012). Additionally, receptive fields can be inverted to provide a
decoding model for reconstructing perceived stimuli, as well as imagined, visual stimuli
(Thirion et al., 2006; Senden et al., 2019).

# 1.3. NEED FOR SPEED

One hindrance to pRF mapping models is that they typically consume a large amount
of computational time and resources. A pRF map is normally a pixel-to-voxel map.
Given the humongous number of voxels recorded during an fMRI scan, the map itself
consumes a lot of memory and at times becomes impossible to work with on regular
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laptop/desktop (unless a very selective mask is used). Also, computing with such alarge
map slows down the whole procedure. The mapping procedures, such as grid-search,
which searches over each voxel and parameter, adds to the computational load. This
can cause researchers to spend a lot of their valuable time on pRF mapping.

In order to tackle this, we propose a novel, fast and model-free method to map re-
ceptive fields based on hashing of the stimulus (Bhat et al., 2021, described in Chapter
2). Our method is capable of reliably mapping the pRFs within seconds, when com-
pared to other methods that take hours for the same number of voxels. At the heart of
our methods lies hashing of the stimulus (Sutton and Barto, 2018). Hashing is a tech-
nique used in machine learning to reduce the dimensionality of the state space. This
is done by computing the overlap between a feature and a hashing function such as a
Gaussian or a Radial Basis Function. In our case, the stimulus itself is a sparse space
(bar stimulus) and only few pixels are covered by the stimulus. So instead of storing the
entire stimulus, we only store the overlap between stimulus and randomly generated
2D Gaussians.

Following the hash-encoding of the stimulus, we perform either ridge regression (for
fast mapping) or gradient-descent (for online mapping). In order to estimate pRF pa-
rameters, we also propose a fast parameter estimation procedure, that takes advantage
of the relationship between a Gaussian’s location and the mean pixel intensity to predict
its size. With the fast mapping procedure, the pRFs are immediately available after the
retinotopic scanning session. Alternatively, researchers can make use of an online map-
ping technique to estimate pRFs (and their parameters) in real-time (as the stimulus
is being presented). This online mapping combined with reconstruction of perceived
and mental imagery (Thirion etal., 2006; Senden etal., 2019) can pave the way for brain
computer interfaces (BClIs). Some work has already been done towards such BCIs by
Goebel et al. (2022). Such a BCI can be, in future, helpful for locked-in patients.

+ 1.4. THE19™ PROBLEMIN SYSTEMS NEU-
ROSCIENCE

Van Hemmen and Sejnowski (2005), in their book 23 Problems in Systems Neuroscience,
invite 23 experts, to address problems in neuroscience at that time. The 19** problem
discussed in the book proposes a new line of research to enrich the traditional way of
studying the neuronal properties by supplementing the receptive fields with projective
frelds. Unlike the receptive fields, which receive the sensory stimuli to explain the neu-
ronal activity, projective fields receive neuronal activity from other neurons. Sejnowski
(2006) suggests that stimulus-inferred receptive fields explain only a part of the neu-
ronal activity and expresses the need of a unified model that would incorporate the
“projective” part of the neuronal activity.
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A)

connective field center (vo)

Figure 1.4.: Depiction of Connective Fields (CFs). Panel A) shows one such CF modelled as 2D isotropic
Gaussian and projected onto the cortical surface. Panel B) show two more CFs projected onto a flattened
cortical surface with their corresponding target voxels. This figure was adapted from Haak et al. (2013).
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Figure 1.5.: Illustration of DMD on a dynamical system. In this case, the system is the snapshots of fluid
flowing past a rigid cylinder. The DMD thus decomposes this system into its spatial and temporal dynam-
ics. Note that the regression step here is shown to construct the full state transition matrix A. However, in
actual DMD one would construct a reduced order model of the matrix A. This figure was adapted from
Brunton and Kutz (2022)

This problem (often referred to as “Connective Fields” in the literature) has been
largely unaddressed so far, with only a few exceptions such as Heinzle eral. (2011); Haak
et al. (2013) and Invernizzi et al. (2022). In any case, none of they proposed models
unify pRFs and connective fields (CFs). An illustration of CFs, as modelled by Haak
etal. (2013) is shown in Figure 1.4. We propose here a novel, efficient and unifying con-
nective field model based on algebraic Dynamic Mode Decomposition with stimulus as
acontrol (aDMDc; Fonzi et al., 2020) (addressed in Chapter 3 of this work). aDMDc,
is variant of regular DMD (Tu et al., 2014), which incorporates algebraic and differen-
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tial terms. We model pRFs as the algebraic term (control) and CFs as the differential
term, which unifies both pRF and CF modelling.

Dynamic Mode Decomposition (DMD) is a powerful data-driven tool which has
gained a lot of popularity in the field of fluid dynamics. DMD constructs a reduced
order model of the system, which makes it a very convenient tool for very large datasets.
A typical CF map is a voxel-to-voxel map, which can be a very large matrix (even larger
than pRFs). This makes DMD’s reduced order model a very suitable candidate for CF
modelling. Additionally, this reduced model is sufficient to capture the spatio-temporal
dynamics of the system, which can be used to make predictions. Figure 1.5 depicts how
DMD decomposes the spatial and temporal dynamics of a fluid-flow system.

As mentioned previously, a CF map is huge, thereby making CF modelling a com-
putationally expensive task. The established models analyze the data one voxel at a time
(grid-search is involved in Haak et al. (2013); Invernizzi et al. (2022) and Heinzle et al.
(2011)) perform support vector regression per voxel), making CF modelling compu-
tationally inefficient. The method proposed in this work constructs a reduced-order
model of CFs which is computationally very inexpensive, in terms of memory con-
sumption. Which in turn makes our procedure very fast.

+ 1.5. THEEFFICIENT CAUSE OF SCIENCE

In Physics I1 3 and Metaphysics V' 2, Aristotle lays out four causes which are all “”why”
questions, that need to be addressed by the “student of nature” in a way that is appro-
priate to the science of nature (Falcon, 2006). The true understanding of these four
causes is often subjected to interpretations and translations. In Aristotelian science,
these four causes are indispensable tools for a successful investigation of nature or the
world around us (Falcon, 2006). In the simple context of a bronze statue, its construc-
tion can be decomposed into four causes as:

¢ The Material Cause: The Material of which it is made, e.g. bronze.

* The Formal Cause: The form or a plan for making it, e.g. artisan’s blueprints
or thoughts.

* The Efficient Cause: Things or the forces that make it happen, e.g. artisan’s
tools.

* The Final Cause: The reason for which it is being made, e.g. commemoration
of a hero.

In the context of neuroscience of vision, the material cause could be, for instance, the
data acquired from fMRI. The formal cause then be simply a general linear model that
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would be used to predict the fMRI time courses. The efficient canse would be the tools,
techniques and methods to actually solve the linear model. And finally, understanding
how vision works (through, for example, pRFs and CFs) would be the final cause.

This work is dedicated to the efficient cause of science. That is, to develop compu-
tational tools for mapping pRFs and CFs. Note that, the word efficient has a slightly
different meaning than what Aristotle meant when he refers to the efhicient cause. The
etymology of the word efficient (Oxford Dictionary, Online) reveals that, originally it
meant ‘accomplishing’ (from Latin efficere) and ‘making/causing’ from late Middle En-
glish . Which is the same meaning that Aristotle refers to in his work (for example, a
tool that makes something happen). In modern sense, just ‘accomplishing’ something
might not be good enough and hence, efficient today means doing something in a good
way with no waste of time, money or energy. In any case, the tools and methods pro-
posed in this work are efficient in both the modern and Aristotelian sense.

The rest of this work is organized as follows: in Chapter 2, we propose a fast, effi-
cient and model-free approach for mapping population receptive fields. We show that
our methods are extremely fast, without much loss of performance and can be readily
used for real-time applications. In Chapter 3, we extend the notion of pRFs to connec-
tive field modelling. We propose a unifying approach that efficiently models CFs (and
pRFs) on a variety of simulated scenarios. Furthermore, we validate our approach on
empirical data by visualizing some exemplary connective fields on the cortical surface
and we also show how well our model fits the data by reporting the similarity between
estimated and true BOLD signal. In Chapter 4, we test out our model on visual tasks
to see if there is any fundamental difference between perception and imagery, in terms
of CFs and spatio-temporal dynamics. Chapter 5 or the general discussion, sheds light
on topics such as what are some caveats of these models, when to use which model and
how our models compare to other existing models and the direction for future research.


https://www.oxfordlearnersdictionaries.com/definition/english/efficient?q=efficient
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Chapter 2 Abstract

ABSTRACT

Population receptive field (pRF) mapping is a popular tool in computational neuroimag-
ing that allows for the investigation of receptive field properties, their topography and
interrelations in health and disease. Furthermore, the possibility to invert population
receptive fields provides a decoding model for constructing stimuli from observed cor-
tical activation patterns. This has been suggested to pave the road towards pRF-based
brain-computer interface (BCI) communication systems, which would be able to di-
rectly decode internally visualized letters from topographically organized brain activ-
ity. A major stumbling block for such an application is, however, that the pRF map-
ping procedure is computationally heavy and time consuming. To address this, we pro-
pose a novel and fast pRF mapping procedure that is suitable for real-time applications.
The method is built upon hashed-Gaussian encoding of the stimulus, which tremen-
dously reduces computational resources. After the stimulus is encoded, mapping can
be performed using either ridge regression for fast offline analyses or gradient descent
for real-time applications. We validate our model-agnostic approach 7z silico, as well as
on empirical tMRI data obtained from 3T and 7T MRI scanners. Our approach is ca-
pable of estimating receptive fields and their parameters for millions of voxels in mere
seconds. This method thus facilitates real-time applications of population receptive

field mapping.

“Livin’ off borrowed time, the clock tick faster.”

- Madpvillain (MF DOOM), Accordion
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+ 2.1. INTRODUCTION

The retinotopic organization of the human visual cortex has intrigued neuroscientists
ever since the beginning of the nineteenth century when visual field maps were first
discovered in soldiers suftering from occipital wounds (Inouye, 1909; Holmes, 1918).
With the advent of functional magnetic resonance imaging (fMRI) in the early 1990s
(Kwong et al,, 1992; Ogawa et al., 1992), it became possible to map retinotopy non-
invasively (Sereno et al., 1995; DeYoe et al., 1996; Engel et al., 1997). Sereno et al. (1995)
pioneered a phase encoding procedure that allowed for the systematic investigation
of polar angle and eccentricity distributions. More recently, Dumoulin and Wandell
(2008) spearheaded the population receptive field (pRF) mapping approach which pro-
vided an expandable, parametric, model of receptive fields. This allowed researchers to
study additional properties of receptive fields and their topography as well as relation-
ships between receptive field properties.

The pRF approach has, for instance, enabled researchers to understand the relation-
ship between eccentricity and the size of receptive fields along the visual hierarchy (Du-
moulin and Wandell, 2008; Amano et al., 2009; Harvey and Dumoulin, 2011; Silva
etal., 2018), to investigate neural plasticity and visual development from childhood to
adulthood (Dekker et al., 2019; Gomez et al., 2018) and to study the dynamic changes
of receptive fields in response to attention (Klein et al., 2014; Kay et al., 2015; Vo et al,,
2017;van Es et al., 2018). Furthermore, pRF modelling has aided researchers’ investiga-
tions of pathology such as Alzheimer’s disease (Brewer and Barton, 2014), schizophre-
nia (Anderson et al., 2017), albinism (Ahmadi et al., 2019), (artificial) scotoma in pa-
tients with macular degradation (Baseler et al., 2011; Barton and Brewer, 2015; Pa-
panikolaou et al., 2015) and in healthy populations (Binda et al., 2013; Haak et al,,
2012; Hummer et al., 2018) and even blindness (Georgy et al., 2019). Additionally,
the ability to estimate receptive field parameters is crucial for a number of applications.
For instance, receptive fields can serve as a target for transcranial magnetic stimulation
(Sack etal.,, 2009) or provide a spatial forward model for computational models (Peters
etal,, 2012). Furthermore, receptive fields can be inverted to provide a decoding model
for reconstructing perceived, as well as imagined, visual stimuli (Thirion et al., 2006;
Senden et al., 2019).

The latter has been suggested to pave the road towards pRF-based brain-computer
interface (BCI) communication systems able to directly decode internally visualized let-
ters from topographically organized brain activity (Senden et al., 2019). This is hin-
dered, however, by the method’s immense consumption of computational time and
resources. This issue largely remains unaddressed, although some recent work (Thie-
len etal., 2019) has proposed a fast deep-learning based mapping algorithm (DeepRF).
The DeepRF method deploys a deep convolutional neural network (ResNet) which re-
ceives a time-series as input and predicts the corresponding pRF parameters. Once the
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network is trained, pRF parameters can be estimated simply using a rapid forward pass.
This method is indeed faster than standard methods such as grid-search and achieves
faithful estimation of pRF parameters with an average computational time of 0.01 to
0.03 seconds per voxel. However, the procedure requires the generated simulated data
(for training) and the empirical data to have the same experimental design. Hence, for
empirical data with a new experimental design, the network needs to be trained again
and the training of the deep neural network can take up to several hours. Moreover,
fMRI data typically contains a large number of voxels. The high spatial resolution at
field strengths of 3 and 7 Tesla leads to hundreds of thousands or even millions of vox-
els. Therefore, despite achieving low computational time per voxel, the total compu-
tational time for all voxels is on the order of several minutes. This makes the approach
unfeasible for real-time analysis. With the aim to enable estimation of receptive fields in
real-time, we propose here a novel model-agnostic procedure which can be used offline
(using ridge regression) as well as online (using gradient descent).

The method relies on regularized linear regression whose basis set is a hashed-Gaussian
encoding of the stimulus-evoked response. Specifically, the stimulus space is exhaus-
tively partitioned as a set of features where each feature uniquely encodes the stimu-
lus by computing the overlap between the stimulus and a set of randomly positioned
Gaussians. This type of encoding considerably reduces the memory requirements and
thereby accelerates calculations.

Using two previously acquired datasets from 3 Tesla and 7 Tesla MR systems, we
show that the proposed approach works extremely fast. It is able to estimate receptive
field shapes of millions of voxels within seconds. This allows the selection of visually
responsive voxels through cross-validation and subsequent estimation of receptive field
parameters within about one minute even if the data consists of more than 4 million
voxels.

% 2.2. METHODS

2.2.1.  Fast Mapping Procedure (f-pRF)

Tile Coding and Hashing

To reduce computation time as well as to lower memory requirements, we encode the
stimulus using tile coding and hashing (Albus, 1975, 1981). Tile coding is a linear func-
tion approximation used in reinforcement learning (Sutton and Barto, 2018) to deal
with large and continuous state spaces. In tile coding, the state space is exhaustively
partitioned into sub-regions called tiles. Usually, the presence of an entity within a tile
(in this case, the presence of a stimulus in a region of the visual field) is encoded in a bi-
nary fashion. However, it is also possible to encode features using radial basis functions
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which have the additional benefit of varying smoothly. Memory requirements can be
reduced further by hashing a group of individual, non-contiguous, tiles into a single tile.
Figure 2.1 depicts tile-coding and hashing of sample stimuli. The presence of a stimu-
lus is encoded as the extent of overlap between the stimulus and hashed tilings. For our
purposes, we use a 2-D isotropic Gaussian as the radial basis function. Subsequently,
we hash by combining five randomly selected Gaussians into a single tile leading to a
total of 250 tilings. The S Gaussian tiles within a tiling may or may not overlap. We
normalized each tile to ensure that the volume under its surface is equal to one.

' I
AP ind -
/

Overlap

Figure 2.1.: Illustration of tile-coding and hashing. The top row shows sample stimuli. The middle row
shows sample tilings, each containing S Gaussians which make up one tile. The bottom row shows overlap
between stimuli and corresponding tiles.

Encoding Stimuli

Using hashed-Gaussians as tiles, it is possible to encode retinotopic stimuli. First, an
overlap between a binary indicator function and a tiling matrix I'(pixels-by-tiles) is
computed. The binary indicator function S (time-by-pixels) marks the position of the
stimulus aperture at each moment in time. Subsequently, the computed overlap is con-
volved with a canonical two-gamma hemodynamic response function (HRF) function
(h) to obtain the encoded stimulus ¢

¢=ST*h (2.1)

Ridge Regression (f-pRFE,45.)

We use ridge regression for fast offline pRF mapping (i.e. after all functional volumes
have been acquired). Specifically, the blood-oxygen-level dependent (BOLD) response
is modeled by



Chapter 2 Section 2.2

B=¢0+e¢ (2.2)

where 0 are the estimated weights and € denotes the residuals. Note that, prior to
computing 6, both ¢ and the BOLD data B are z-normalized. In order to estimate 6,
the discrepancy between the measured and predicted BOLD response (¢)) needs to be
minimized. Therefore, we define the error or the loss as

1 1
E =2 (B=¢0)" (B—a0)+ ;7003 (2.3)
In order to avoid over-fitting, we use Lo regularization and A denotes the regulariza-
tion factor. The gradient of the error with respect to 6 can be computed as

oE

00

By setting %—g — 0 and solving for optimal 6, we get

= —¢TB+ ¢Tp + N0 (2.4)

0= (¢"¢+A\)" "B (2.5)

Receptive fields can now be straightforwardly obtained by multiplying the tiling ma-
trix with the estimated 8: W = T'6. These raw receptive fields are then subjected to
post-processing as they tend to contain anomalous pixel intensities. These can be re-
moved by first normalizing the raw receptive fields to the range [0, 1] and then shrink-
ing them by raising each entry to a power of some positive integer (shrinkage factor).
This shrinks noisy pixel intensities close to 0 while leaving those close to 1 unaffected
(figure 2.2), thus yielding cleaner receptive fields.

a) b)

Figure 2.2.: The effect of shrinking a raw receptive field. a, Raw receptive field displaying undesirably large
pixel intensities. b, The receptive field after shrinkage with a factor of 9. ¢, The corresponding ground
truth receptive field.

Similarity Metric

In order to compare the receptive fields obtained from ridge regression with corre-
sponding ground-truth/grid-search receptive fields, we use the Jaccard Index (JI; or Jac-
card Similarity). The Jaccard Index is bound to [0, 1] (give that the quantities that are
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being compared are in the same range), with 1 indicating that receptive fields are iden-
tical. Since the Jaccard Index is a conservative metric that is highly sensitive to residual
anomalous pixel intensities, we aid interpretation of our results by providing a Nul/-
model generated from a re-sampling procedure. Specifically, for each estimated recep-
tive field, we pair it with a random ground-truth/grid-search receptive field and com-
pute the JI. The average over these pairs is the JI of one randomization. We repeat this
procedure 1000 times to obtain a Null-distribution of randomized JIs. We refer to the
mean of the Null-distribution as the baseline.

2.2.2.  Online Gradient Descent (f-pRF,q)

For online pRF mapping we use gradient descent to iteratively update ¢ with each ac-
quired volume. In this case, we define the loss function as

B =3 (B ) (B o) (2.6)

The gradient of the loss function with respect to the parameter 6 is

oF _ —¢" B+ ¢" 0 (2.7)
00
At each time point, ¢ is updated by a factor (learning rate 1) of the gradient. Note
that, unlike ridge regression, a regularization term is not needed in this case, as gradient
descent s effectively regularized by the learning rate (see A.1). Considering the n*" time
point, the update can be computed as

On = Op_1 +n(¢" B — ¢ ¢0n_1) (2.8)

Similar to the offline method, prior to tile coding and hashing, the stimulus needs
to be convolved with the HRF. Furthermore, both the BOLD signal B and encoded
stimulus ¢ need to be z-normalized. However, in an online setting this needs to be
performed in real-time. Real-time z-normalization requires real-time estimation of the
mean and variance of a signal which can be done using Welford’s online algorithm
(Welford, 1962). Once the current mean Z(t) and variance o2 (¢) have been estimated,
the current z-score can be estimated as

(2.9)

Voxel Selection

Since not all measured voxels are visual, and hence may not carry significant informa-
tion, a voxel selection procedure is desirable. We evaluate voxels in terms of the cross-
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validated Pearson correlation coefficient (fitness) between their predicted and measured
BOLD responses. To account for temporal autocorrelation in the BOLD response, we
use a blocked cross-validation procedure (Roberts et al., 2017). Specifically, the data is
split into p windows along the time axis. Ridge regression is performed on window 1
and the estimated 6 values are used to predict the BOLD response for the remaining
p — 1 windows. This is followed by ridge regression on windows 1 and 2 and predict-
ing the BOLD response in the remaining p — 2 windows. This procedure continues
until ridge regression is performed on windows 1 to p — 1 and the BOLD response is
predicted for the p”* (last) window. The overall fitness for each voxel is then given by
the mean of fitness values computed for each split. The data used in this paper has 304
time points. We split the data into 4 windows of equal length and retain voxels whose
fitness falls within the top 1 %.

2.2.3. Fast pRF Parameter Estimation

Post-processed receptive fields obtained from our ridge regression and gradient descent
methods can be readily used to estimate parameters of an isotropic Gaussian pRF model
(i.e. the x-location, y-location and size) using a fast procedure. Since peak pixel inten-
sity of a Gaussian receptive field is at its center, we estimate the x- and y-coordinate of
pre-processed model-free receptive fields by finding the location of their peak pixel in-
tensity. To estimate the size of receptive fields, our procedure utilizes the relationship
between the standard deviation, eccentricity and the mean pixel intensity in an isotropic
Gaussian embedded in a finite image. Specifically, given a Gaussian at a fixed location,
mean pixel intensity increases as a function of its standard deviation. Furthermore, in
a finite image and assuming a fixed size, mean pixel intensity decreases as the Gaussian
is progressively moved toward the edge of an image. Therefore, for a given image size,
we generate isotropic Gaussians with 25 different standard deviations, located at 25 ec-
centricities along an axis of 45°, and compute their mean pixel intensities. This can
be utilized to perform a linear regression with mean pixel intensity and eccentricities
predicting the receptive field size. We then use the resulting regression weights together
with previously estimated locations and mean pixel intensity of our receptive fields to
obtain an estimate of their size.

2.2.4.  Grid Search (GS-pRF)

In order to compare our approach with a standard grid-search based approach, we use
the grid-search described in (Senden et al., 2019). In order to search for pRF location,
this approach splits the visual field into 100-by-100 circular grid points whose density
decays exponentially with eccentricity. Close to the fovea the grid is thus denser than
in the periphery, taking cortical magnification into account. Since there is a well estab-
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lished linear relationship between eccentricity and the size of pRF (Freeman and Simon-
celli, 2011), the grid-search explores a range of slopes (from 0.1 to 1 in steps of 0.1) of
the size-eccentricity relationship rather than pRF sizes directly. This effectively allows
for exploration of a greater range of receptive field sizes. The code for this approach (as
well as our new method) is part of the Computational Neuroimaging Toolbox (avail-
able at https://github.com/ccnmaastricht/ CNI_toolbox).

2.2.5. Data

Simulated Data

We simulate fMRI data for a V1-like cortical sheet extending 55 mm along and approx-
imately 40 mm orthogonal to the horizontal meridian in both hemispheres. Since such
a sheet is akin to a flattened cortical mesh, model units are referred to as vertices rather
than voxels. Each vertex in the model is a 0.5 mm isotropic patch whose receptive field
center is directly related to its position on the surface in accordance with a complex-
logarithmic topographic mapping (Schwartz, 1980; Balasubramanian etal., 2002) with
parameter values (o = 0.7,cc = 0.9; Polimeni et al., 2005). The shape of model recep-
tive fields is given by a 2-dimensional Gaussian.

(z — p12) + (y — 1)’
202

f (i, pry, 0) = exp — (2.10)

with (ftz, f,y) being the receptive field center and o its size. Below an eccentricity of
e = 2.38° all model vertices have a receptive field size of ¢ = 0.5° whereas they exhibit
a linear relationship with eccentricity (¢ = 0.21e) beyond this cutoff (c.f. Freeman
and Simoncelli, 2011).

A simulated fMRI signal (sampled at a rate of 0.5 Hz) for each vertex is obtained by
first performing element-wise multiplication between the receptive field of a vertex and
the effective stimulus presented per time point, summing the result and subsequently
convolving the obtained signal with the canonical two-gamma hemodynamic response
function. Two sources of distortion are added to the signal. First, a spatial smooth-
ing kernel is applied to simulate the point-spread function of BOLD activity on the
surface of the striate cortex (Shmuel et al., 2007). Second, autocorrelated noise gen-
erated by an Ornstein-Uhlenbeck process with variance Ufwi se = 0.51isadded. The
smoothing kernel is independently applied to the clean signal and the noise before the
two are combined. We simulate both 3T- and 7T-like signals by adjusting the full-width
at half-maximum of the spatial smoothing kernel (3.5 mm and 2 mm for 3T and 7T,
respectively; c.f. Shmuel et al., 2007) and the time constant of the Ornstein-Uhlenbeck
process (2.25 s and 1s for 3T and 7T, respectively).

~ 23 ~
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Three Tesla Empirical Data

This dataset, previously described in (Senden et al., 2014), comprises a retinotopy run
obtained from three participants (all male, age range = 27-35 years, mean age = 32
years). During this run a bar aperture (1.5° wide) revealing a flickering checkerboard
pattern (10 Hz) was presented in four orientations. For each orientation, the bar cov-
ered the entire screen in 12 discrete steps (each step lasting 2s). Within each orien-
tation, the sequence of steps (and hence of the locations) was randomized and each
orientation was presented six times. Furthermore, within each presentation four bar
stimuli were replaced with mean luminance images for four consecutive steps. These
data were acquired on a Siemens 3T Tim Trio scanner equipped with a 32-channel head
coil (Siemens, Erlangen, Germany) using a gradient-echo echo-planar imaging sequence
(31 transversal slices; TR = 2000 ms; TE = 30 ms; FA = 77°; FoV = 216 x 216 mm?;
2 mm isotropic resolution; no slice gap; GR APPA = 2). Preprocessing consisted of slice
scan time correction, (rigid body) motion correction, linear trend removal, and tempo-
ral high-pass filtering (up to 2 cycles per run).

For visualization purposes, we also include anatomical data for subject 1. Anatomical
data were collected with a T1-weighted MPR AGE imaging sequence (192 sagittal slices;
TR = 2250 ms; TE = 2.17 ms; FA =9°; FvV =256 x 256 mm?; 1 mm isotropic reso-
lution; GRAPPA = 2). In the anatomical images, the grey/white matter boundary was
detected and segmented using the advanced automatic segmentation tools of BrainVoy-
ager 20 which are optimized for high-field MRI data. A region-growing approach ana-
lyzed local intensity histograms, corrected topological errors of the segmented grey/white
matter border, and finally reconstructed meshes of the cortical surfaces (Kriegeskorte
and Goebel, 2001; Goebel et al., 2006). The data is available at https://doi.org/10.
34894/ITWEFZP. The dataset is available at https://doi.org/doi:10.5061/dryad.mb8hé.

Seven Tesla Empirical Data

This dataset, previously described in (Senden et al., 2019), comprises retinotopy as well
as passive viewing of letter stimuli obtained from six participants (2 female, age range =
21-49 years, mean age = 30.7 years). During the retinotopy run a bar aperture (1.33°
wide) revealing a flickering checkerboard pattern (10 Hz) was presented in four orien-
tations. For each orientation, the bar covered the entire screen in 12 discrete steps (each
step lasting 3 s). Within each orientation, the sequence of steps (and hence of the loca-
tions) was randomized and each orientation was presented six times. During the passive
viewing run four letters "H’, T, ’S’ and ’C’) were presented in a 8° by 8° bounding
frame for a duration of 6 s and their shape was filled with a flickering checkerboard pat-
tern (10 Hz). These data were acquired on a Siemens Magnetom 7T scanner (Siemens;
Erlangen, Germany) equipped with a 32 channel head-coil (Nova Medical Inc.; Wilm-
ington, MA, USA) using high-resolution gradient echo echo-planar imaging sequence
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(82 transversal slices; TR = 3000 ms; TE = 26 ms; generalized auto-calibrating par-
tially parallel acquisitions (GRAPPA) factor = 3; multi-band factor = 2; FA = 55°% FoV
=186 x 186 mm?; 0.8 mm isotropic resolution). In addition, this dataset includes five
functional volumes acquired with opposed phase encoding directions to correct for EPI
distortions that occur at higher field strengths (Andersson et al., 2003). Preprocessing
turther consisted of (rigid body) motion correction, linear trend removal, and temporal
high-pass filtering (up to 3 cycles per run).

For visualization purposes, we also include anatomical data for subject 3. Anatomical
data was acquired with a T1-weighted magnetization prepared rapid acquisition gradi-
ent echo (Marques et al,, 2010) sequence [240 sagittal slices, matrix = 320 x 320 mm,
voxel size = 0.7 mm isotropic, first inversion time TI1 = 900 ms, second inversion time
TI2 = 2750 ms, echo time (TE) = 2.46 ms repetition time (TR) = 5000 ms, first nom-
inal flip angle = 5°, and second nominal flip angle = 3°. Anatomical images were inter-
polated to a nominal resolution of 0.8 mm isotropic to match the resolution of func-
tional images. In the anatomical images, the grey/white matter boundary was detected
and segmented using the advanced automatic segmentation tools of BrainVoyager 20
which are optimized for high-field MRI data. A region-growing approach analyzed lo-
cal intensity histograms, corrected topological errors of the segmented grey/white mat-
ter border, and finally reconstructed meshes of the cortical surfaces (Kriegeskorte and
Goebel, 2001; Goebel et al., 2006). The data is available at https://doi.org/10.34894/
ITWEZP

2.2.6. Real-time Processing

To mimic a real-time scenario, we limited the preprocessing of functional data to trilin-
ear 3D rigid body motion correction which was applied in a simulated real-time setup
using Turbo-BrainVoyager (TBV; v4.0bl, Brain Innovation B.V., Maastricht, The Nether-
lands). The data was accessed directly from TBV using a network interface providing
fast transfer speed suitable for real-time applications. The receiver was implemented
in MATLAB™(version 2019a, The Mathworks .inc, Natick, MA, USA) using JAVA
based TCP/IP interfaces.

% 2.3. RESULTS

All experiments were performed using MATLAB™(version 2019a, The Mathworks
Ainc, Natick, MA, USA) running on an HP® Z440 workstation with an Intel® Xeon®
Processor (E5-1650 v4, 32GB RAM) and an Ubuntu 20.04 operating system. The set
of hyperparameters (learning rate 7 = 0.1, shrinkage factor = 6 and FWHM =
0.15) remain the same for all experiments, except for reconstruction of perceived letter
shapes where a shrinkage factor of 9 was used. This set of hyperparameters was chosen

~ 250 ~
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using Bayesian Optimization performed on a simulated dataset with Jaccard Distance
as loss function. All the figures generated using MATLAB™(including the parts of
Figures 2.1 and 2.2) were generated using export_fig (Altman, 2020). Our methods are
available as part of the Computational Neuroimaging Toolbox (https://github.com/
ccnmaastricht/ CNI_toolbox). Example scripts for using our approach are available at
https://github.com/ccnmaastricht/real_time_pRF.

2.3.1.  Fast Mapping Procedure

Simulated Data

a) Ridge Regression Ground Truth b) Ridge Regression Ground Truth

Figure 2.3.: Comparison of ridge-estimated and ground-truth receptive fields. a) Small (top) and large
(bottom) estimated and ground-truth receptive fields for simulated 3T data (I'R = 2000ms). b)
Small (top) and large (bottom) estimated and ground-truth receptive fields for simulated 7T data (T'R =
3000ms).

The fast, ridge-based, mapping procedure (f-pRFiqq) was first tested on simulated
data to investigate whether it faithfully recovers known population receptive field shapes
and their parameters. Overall, the mean Jaccard Similarity (JS) between the estimated
and ground-truth receptive field shapes was 0.3452 (95 % CI [0.3409, 0.3495]) and
0.3920 (95 % CI [0.3877, 0.3963]), for simulated 3T and 7T data, respectively. For
comparison, corresponding Null-model (Table 2.2) JS values were 0.0418 and 0.0410,
respectively. There is thus good correspondence between estimated and ground-truth
receptive field shapes which is also apparent from the sample receptive fields shown in
figure 2.3. Next, we examined the correspondence between receptive field parameters
obtained with the two methods. While receptive fields mapped using the f-pRFyiq,. are
not exactly Gaussian, estimated parameters nevertheless show an excellent correspon-
dence with ground truth parameters for both simulated 3T and 7T data (see figures
2.4 and A.3 respectively as well as table 2.1). Please note that despite the high correla-
tion, the receptive field size tends to be slightly overestimated by our method. Figure 22
shows that the size estimations can be improved by using a different shrinkage factor (in
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this case, a higher one). The shrinkage factor we obtained from Bayesian optimization
maximized fidelity of the receptive field shape rather than pRF parameters. In the case
of this dataset, a larger shrinkage would result in better pRF size estimates at the cost
of somewhat worse estimates of receptive field shapes. This indicates that there is slight
trade-oft between these two goals but appropriate choices of the shrinkage parameter
allow for faithful estimates of either.

X-coordinate Y-coordinate Standard Deviation
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Figure 2.4.: Estimated vs ground-truth pRF parameters for a) f-pRFiige and b) GS-pRF. A line with a
slope of 1is included as a reference. Voxels whose receptive fields lie outside the field of view were ignored
for estimating pRF parameters. Results are from simulated 3T data. Results for simulated 7T data are
comparable (see supplementary figure A.3).

‘ X-coordinate ‘ Y-coordinate ‘ size (0)

3T | 0.9913(95 % CI[0.9909, 0.9916]) | 0.9871(95 % CI[0.9865, 0.9876]) | 0.9674 (95 % CI [0.9660, 9686])
7T | 0.9958 (95 % CI[0.9957,9960]) | 0.9949 (95 % CI [0.9946,0.9951]) | 0.9681(95 % CI[0.9668, 0.9693])

Table 2.1.: Correlations between estimated and ground-truth pRF parameters

Next, we evaluated the f-pRFjqee approach in terms of its computational perfor-
mance. To that end we measured both memory consumption and the computation
time required for the mapping procedure itself as well as for subsequent parameter
estimation. Computation times were estimated using MATLAB™’s stopwatch util-
ity. The execution time measured using this utility can be aftected by many unknown
variables pertaining to memory, processor, memory caching, MATLAB™s just-in-
time compiler, etc. This may influence the execution time measurement each time a

~ 27 ~



Chapter 2 Section 2.3

subroutine is executed. Therefore, we report computation times as a mean over 100
runs. Memory requirements were estimated using GNU/Linux’s pmap command.
The memory requirements reported here are calculated as mem,q; — memy, where
MEeMymaq is the maximum amount of memory consumed during the procedure and
memy is the memory occupied by MATLAB™™before starting the procedure (which
includes loading of data into memory and other background processes occupying mem-
ory). Memory consumption during the procedure was logged every 0.1 seconds using
GNU/Linux’s watch command. Note that since here we are only interested in compu-
tational performance we test the mapping procedure on randomly generated data of the
size 304 — by —voxels. Memory consumption was averaged over 100 repetitions of the
procedure. As can be appreciated from figure 2.5 the f-pRF;gg. procedure is extremely
fast (less than 10 s for more than 3 million voxels) when compared to grid-search (GS-
pRF), which may take up to several hours. The computation time only starts to increase
as the needed memory exceeds the available memory. As a consequence, virtual mem-
ory gets consumed which slows down the mapping procedure. Memory consumption
scales linearly with the number of voxels and allows for estimation of ~ 1.75and ~ 3.5
million voxels on systems with 8GB and 16GB of RAM, respectively.

a) ~b)
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Figure 2.5.: Memory consumption (orange) and computation time (blue), as a function of the number of
voxels for a) f-pRFiigge and b) parameter estimation. Data points corresponding to Os reflect < 1 Kb.

Empirical Data

Following up on simulation results, we tested the f-pRFjqq. procedure on previously
acquired empirical data. Similar to the simulated data, we asses our method in terms of
its ability to estimate pRF shapes and their parameters as well as computational perfor-
mance. Since ground truth receptive field shapes and parameters are not known for em-
pirical data, we assess our method on its ability to produce estimates that are consistent
with a GS-pRF mapping procedure (as described in section 2.2.4). Sample receptive
fields estimated in the 3T and the 7T empirical data are shown in figures 2.7 and 2.6,
respectively. Retinotopic surface maps for a representative subject in the 7T and 3T
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datasets are shown in Figure 2.9. These results qualitatively indicate a good agreement
between receptive field location parameters estimated by our method and the GS-pRF
approach. Quantitatively, we observe that the Jaccard similarity between receptive fields
estimated using the f-pRF ;4. and GS-pRF methods consistently exceed those expected
based on the Null model. The JS is particularly high (with respect to the baseline) for
subjects 3, 5 and 6 for the 7T empirical dataset. This is also apparent from scatter plots
showing the correspondence between pRF parameters obtained from our method and
GS-pRF in representative subjects (see 2.8a and 2.8b for the 3T and 7T dataset, respec-
tively). In order to compare our approach with the GS-pRF in terms of predictability,
we report mean, cross-validated, correlation coefficients (over top 1% voxels obtained
using crossvalidation), between the predicted and the acquired BOLD signals, in table
2.3. We also report the mean correlation coefficients over top 1% voxels obtained from
GS-pRF (not crossvalidated) in table A.1. It is clear from both the tables 2.3 and A.1
that our method yields better correlation coefficients across subjects and datasets. It is
to be noted that there exists a disagreement between the top 1% voxels selected using
f-pRFigge and GS-pRF. We report the percentage overlap between the top 1% voxels
obtained from f-pRFyi4s and the ones obtained from GS-pRF in table A.2. The per-
centage overlap is in general high for the majority of the subjects. The most overlap we
observed was 80.49% (subject 3, 7T data) and the least we observed was of 44.12%
(subject 1, 7T data).

El) Ridge Regression Grid Search b) Ridge Regression Grid Search C) Ridge Regression Grid Search

d) Ridge Regression Grid Search e) Ridge Regression Grid Search f) Ridge Regression Grid Search

Figure 2.6.: Comparison of f-pRFiiqe and ground-truth receptive field parameters for 7T data. a) Small
(top) and large (bottom) estimated and GS-pRF receptive fields for subject 1. b-f) Same as panel a for
subjects 2 to 6, respectively. The axes are centered at pRF location estimated using GS-pRF. The axes are
centered at pRF location estimated using GS-pRF
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Ridge Regression
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Ridge Regression

Grid Search

Ridge Regression Grid Search

Figure 2.7.: Comparison of f-pRFyigg. and GS-pRF receptive field parameters for 3T data. a) Small (top)
and large (bottom) estimated and ground-truth receptive fields for subject 1. b,c) Same as panel a for

subjects 2 and 3, respectively
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Figure 2.8.: Fast procedure vs GS-pRF estimated pRF parameters for a) 3T (subject 1) and b) 7T (subject

3) data, respectively. A line with a slope of 1 is included as a reference.
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Eccentricity Polar Angle Eccentricity Polar Angle
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Figure 2.9.: Exemplary eccentricity and polar angle maps in both hemispheres of a) S03 from 7T data and
b) SO1 from 3T data. The upper row shows maps obtained using our fast parameter estimation procedure
whereas the bottom row shows maps obtained using the GS-pRF procedure. In accordance with the cor-
relation results between maps (see table ??), the two polar angle and eccentricity maps are visually highly
similar. Surface maps for SO5 from 77T data are shown in A.6
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‘ Jaccard Similarity ‘ baseline

S01 | 0.1939 (95 % CI [0.1903,0.1976]) | 0.0605
S02 | 0.3088 (95 % CI [0.3044,0.3132]) | 0.0673
S03 | 0.4998 (95 % CI [0.4961,0.5035]) | 0.0701
S01 | 0.2781(95 % CI[0.2721,0.2840]) | 0.0781 S04 | 0.3333 (95 % CI [0.3295,0.3371]) | 0.0707
S02 | 0.2607 (95 % CI [0.2554,0.2661]) | 0.0957  SOS | 0.4527 (95 % CI [0.4489,0.4565]) | 0.0786
S03 | 0.3050 (95 % CI [0.2993,0.3107]) | 0.0905  S06 | 0.4564 (95 % CI [0.4532,0.4595]) | 0.0808

() (b)

‘ Jaccard Similarity ‘ baseline

Table 2.2.: Mean Jaccard Similarities between receptive fields estimated with the fast procedure and those
obtained from GS-pRF for a) 3T and b) 7T empiricial data.

| f-pRFrigge | GS-pRF

SO1 | 0.4424 (95 % CI [0.4396,0.4452]) | 0.3800 (95 % CI [0.3753,0.3846])
S02 | 0.4413 (95 % CI [0.4386,0.4441]) | 0.3750 (95 % CI [0.3706,0.3794])
S03 | 0.4494 (95 % CI [0.4460,0.4528]) | 0.3850 (95 % CI [0.3797,0.3903])

(2)
| f-pRFyidge | GS-pRF

SO1 | 0.4237 (95 % CI [0.4227,0.4246]) | 0.2369 (95 % CI [0.2348,0.2390])
S02 | 0.3855 (95 % CI [0.3847,0.3864]) | 0.1772 (95 % CI [0.1745,0.1799])
S03 | 0.5501(95 % CI [0.5484,0.5519]) | 0.5312 (95 % CI [0.5280,0.5345]
S04 | 0.4115 (95 % CI [0.4103,0.4127]) | 0.2962 (95 % CI [0.2940,0.2985
)
)

]
S05 | 0.4797 (95 % CI [0.4782,0.4812]) | 0.4277 (95 % CI [0.4246,0.4307]
S06 | 0.4928 (95 % CI [0.4913,0.4943]) | 0.4206 (95 % CI [0.4178,0.4234]

)
)
)
)

(b)

Table 2.3.: Mean correlation coeflicients between predicted and acquired BOLD signal obtained from a)
3T and b) 7T empirical data using top 1% cross-validated voxels.

We again evaluate computational performance in terms of computation times and
memory consumption. We estimate both based on 100 runs for each dataset. Since
each subject has a different number of voxels, for each run a subject was chosen ran-
domly. The computation time is computed separately for f-pRFyigq, cross-validation
and parameter estimation. The mean computation times or execution times for both
datasets are reported in tables 2.4a and 2.4b. The computation times suggest that our
algorithm is extremely fast in mapping receptive fields. The actual mapping procedure
happens within a second for the 3T dataset and in a few seconds for the 7T dataset.
Cross-validation, which selects the best voxels, finishes in a couple of seconds for the
3T dataset and takes less than a minute for the 7T dataset. The estimation of pRF pa-
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rameters (for all voxels) also takes only a few seconds for both datasets. This means that
receptive fields and their pRF parameters are readily available for further analysis.

‘ Mean ‘ Average data size per subject

F-pR Fgge 0.2055 (95 % CI [0.2010,0.2100])
Cross-validation 1.3495 (95 % CI [1.3162,1.3828]) | 199,931 Voxels x 304 Volumes
Parameter estimation | 4.2546 (95 % CI [4.2474,4.2618])

(a)
‘ Mean ‘ Average data size per subject

FpRFrigge 7.0519 (95 % CI [6.1177,7.9861])
Cross-validation 51.4157 (95 % CI [46.7570 ,56.0744]) | 4,200,164 Voxels X 304 Volumes
Parameter estimation | 7.4357 (95 % CI [7.2950,7.5764])

(b)

Table 2.4.: Mean computation times in seconds for a) 3T and b) 7T empirical data. The average data size
per subject reflects the amount of data processed by the algorithm at a time.

2.3.2.  Online Gradient Descent (f-pRF,q)

To demonstrate the capability of f-pRFgq to work in a real-time setting, we mimicked a
real-time scenario using TurboBrainVoyager™(as described in section 2.2.6). We show
in A.1 that f-pRFjgee and f-pRFgq yield similar receptive fields through hyperparame-
ter sharing. Therefore, we do not provide an evaluation of the ability of the method to
reliably estimate receptive field shapes and parameters. Instead, we evaluate its perfor-
mance in terms of whether estimated receptive fields are suitable for projecting cortical
activity back into the visual field. For that purpose we utilize data acquired as subjects
passively viewed letter shapes previously described in (Senden et al., 2019). The recon-
structions obtained from our approach (see figure 2.10) are recognizable and compara-
ble to those obtained from receptive fields resulting from GS-pRF.

In order to assess the convergence of our algorithm, we keep track of how gradients
(Figure 2.11a ) and Jaccard Similarity (Figure 2.11b) change over time. The analysis
was performed using simulated data. It can be seen from Figure 2.11a that the relative
change in weights converge very early during stimulus presentation and the Jaccard Sim-
ilarity converges gradually over the time. There are some occasional peaks in the gradi-
ent change which are the result of an occasional overshooting. Our method facilitates
tracking of gradients in real-time. Researchers can possibly use this to track changes
in gradients or (hashed)weights in real-time and decide when to stop presenting the
stimulus. Furthermore, the gradient-descent method can be used in conjunction with
simulations to optimize experimental design.
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Figure 2.10.: Reconstructions of perceived letter shapes.
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Figure 2.11.: Change in a) the gradient (relative to weights) and b) Jaccard Similarity over time. The Jaccard
Similarity was computed between estimated and ground-truth receptive fields. The plot was generated
using simulated 3T data.
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The mean computation times per volume acquisition per subject for the 3T and 7T
datasets are reported in tables 2.5a and 2.5b, respectively. MATLAB™uses a just-in-
time compiler, which has to be executed the first time and has to first load the sub-
routine into memory and compile. This often causes the first iteration to be slower.
Therefore, we exclude the execution time of the first acquired volume while comput-
ing the mean and standard deviation and report it separately. The average computation
time per acquired volume is less than the repetition time (2000ms for 3T and 3000m.s
for 7T), which means that the receptive fields are updated before the next volume is ac-
quired. This is especially useful in a real-time setting where the mapping occurs while
the data is being acquired. Figure 2.12 depicts how memory requirements scale with
computation time. The computation time only starts to increase when the required
memory exceeds the available memory. Generally, up to 1 million voxels can be com-
fortably estimated within less than 150015 and requiring less than 2GB of RAM.

‘ Mean ‘ First Iteration | Number of Voxels
SO1 | 0.1439 (95 % CI [0.1425, 0.1453]) 0.2648 229,125
S02 | 0.1172 (95 % CI [0.1159, 0.1185]) 0.2007 177,684
S03 | 0.1249 (95 % CI [0.1235, 0.1263]) 0.2181 192,984

(a)

‘ Mean ‘ First Iteration | Number of Voxels
S01 | 2.3974 (95 % CI [2.3651, 2.4297]) 5.1320 4,553,058
S02 | 2.0619 (95 % CI [2.0568, 2.0670]) 4.2419 3,957,690
S03 | 2.4027 (95 % CI [2.3973, 2.4081]) 4.9889 4,564,020
S04 | 2.0082 (95 % CI [1.9809, 2.0355]) 3.9555 3,830,696
S05 2.1258 (95 % CI [2.1150, 2.1366]) 4.5136 4,023,250
S06 | 2.2441 (95 % CI [2.2392, 2.2490]) 4.7994 4,272,268

(b)

Table 2.5.: Mean computation time (in seconds) per volume per subject for the real-time mapping tech-
nique performed on a) 3T and b) 7T empirical data. For each subject, data for 304 volumes was recorded.
Since the first iteration (corresponding to the first volume) is usually abnormally high, it is not included
for computing mean and standard deviation.
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Figure 2.12.: Memory and computation time requirements for the real-time pRF as a function of the
number of voxels. Data points corresponding to Os reflect < 1 Kb of memory consumed and < 0.01
seconds required for execution, respectively.

2.3.3.  Poorly estimated receptive field size

At larger eccentricities our approach shows poor correspondence with the GS-pRF al-
gorithm in terms of receptive field size. This is surprising given the good correspon-
dence between estimated and ground-truth receptive field sizes for simulated data. One
potential reason for the discrepancy between our (model-free) and the GS-pRF ap-
proach is that the latter assumes receptive fields to have a circular shape. If receptive
fields are not circular, a GS-pRF method may estimate receptive field sizes inaccurately.
Elongation of receptive fields have been observerd in several studies (Greene et al., 2014;
Silson et al.,, 2018; Lee et al., 2013; Merkel et al., 2018) rendering this a viable expla-
nation for the discrepancy. An alternative explanation, assuming receptive fields are
generally circular, is that the model-based GS-pRF procedure can accurately capture
sizes of receptive fields located beyond the visual field of view (the region of the visual
field covered by the stimulus) whereas our model-free procedure cannot. Indeed, our
model-free procedure would produce a smaller, elongated, receptive field located within
the field of view if a large receptive field is located outside the field of view. Below we
explore both possibilities.

Anisotropic Model

We investigate the ability of our approach to capture elongated receptive fields by gen-
erating simulated data (similar to 2.2.5) using anisotropic Gaussians as ground-truth
receptive fields:

($ - xO)Q (y - y0)2))

202 * 202

f(z,y) = exp(—( (2.11)
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We vary o as a ratio of o, such that the ratio between 0, and o, increases with
eccentricity. We first obtain o, as described in section 2.2.5. We then compute oy =
poz; where p is 0, rescaled in the range [0.5, 3]. We generate simulated 3T an 7T data
with this anisotropic model with the remaining simulation parameters remaining the
same as described in section 2.2.5. We define standard deviation o of such anisotropic
receptive fields as the geometric mean of o and oy, thatis, 0 = \/Oz0y. Using the
geometric mean ensures that the area of an ellipse with semi-minor axis 0, and semi-
major axis 0 is the same as a circle with radius of .

To examine whether our approach reliably captures the shape of the receptive fields,
we visually inspect them. Figures 2.13 and 2.14 show that our approach is able to gener-
ally capture anisotropic receptive field shapes and sizes rather well. The corresponding
correlation coefficients are reported in Table 2.6. However, as receptive fields become
more elongated, our method tends to slightly underestimate their size. Interestingly, the
GS-pRF method assuming isotropic receptive fields tends to somewhat overestimate re-
ceptive field sizes at large eccentricities. In conjunction, these effects can account for the
discrepancy between the f-pRFyigg. and GS-pRF pRF mapping procedure. In order to
analyze our approach quantitatively, we compute the JS between estimated receptive
fields, ground truth receptive fields and the receptive fields obtained from GS-pRF (see
Table ??). Note that the GS-pRF method yields pure Gaussians containing no anoma-
lous activations whereas our method yields anomalous activations surrounding the re-

ceptive field. Even slight anomalies get penalized in the JS thus accounting for overall
better fit observed for the GS-pRF method.

a) Ridge Regression Ground Truth b) Ridge Regression Ground Truth

Figure 2.13.: Comparison of f-pRFyige. estimated and anisotropic ground-truth receptive fields. a) Small
(top) and large (bottom) estimated and ground-truth receptive fields for simulated 3T data. b) Small (top)
and large (bottom) estimated and ground-truth receptive fields for simulated 7T data. The axes are cen-
tered at pRF location estimated using GS-pRF.
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Figure 2.14.: Comparison of receptive field size estimates and ground truth. a) Sizes estimated using our
fast procedure vs ground truth sizes. b) Sizes estimated using GS-pRF vs ground truth sizes. ¢) Sizes esti-
mated using our fast procedure vs GS-pRF estimates. Al results are based on simulated anisotropic 3T .
Results for simulated 7T data are shown in A.5

‘ X-coordinate ‘ Y-coordinate ‘ Standard Deviation

0.9900 (95 % CI [0.9895, 0.9903]) | 0.9886 (95 % CI [0.9881,0.9890]) | 0.9588 (95 % CI [0.9571, 0.9604])
0.9950 (95 % CI [0.9948, 0.9952]) | 0.9962 (95 % CI [0.9960, 0.9963]) | 0.9163 (95 % CI [0.9130, 0.9195])
0.9909 (95 % CI [0.9905, 0.9913]) | 0.9891 (95 % CI [0.9887,0.9896]) | 0.9122 (95 % CI [0.9088, 0.9156])

(2)

‘ X-coordinate ‘ Y-coordinate ‘ Standard Deviation

0.9915 (95 % CI [0.9912, 0.9919]) | 0.9940 (95 % CI [0.9938, 0.9942]) | 0.9615 (95 % CI [0.9599, 0.9630])
0.9971 (95 % CI [0.9970, 0.9972]) | 0.9972 (95 % CI [0.9971,0.9973]) | 0.9215 (95 % CI [0.9184, 0.9245])
0.9923 (95 % CI [0.9920, 0.9926]) | 0.9927 (95 % CI [0.9924, 0.9930]) | 0.9115 (95 % CI [0.9081, 0.9149])

(b)

f-pRFyigge vs. ground truth
GS-pRF vs. ground truth
f-pRFyidge vs. GS-pRF

f-pRFyigge vs. ground truth
GS-pRF vs. ground truth
f—pRF,idgs vs. GS-pRF

Table 2.6.: Correlation coefficients between fast and GS-pRF estimated pRF parameters for simulated a)
3T and b) 7T data based on anisotropic ground-truth receptive fields.

Receptive Fields Beyond the Field of View

Next, we examine to what extent our approach fails to effectively map the receptive
fields that (partially) lie beyond the field of view. We generate simulated data with 1000
isotropic receptive fields. All receptive fields are centered at an eccentricity of 5 V/2. This
would mean, in the case of visual field of maximum radius of 5, the receptive fields are all
centered at the top right corner (edge of the stimulus space). Figure 2.15 depicts how the
estimated pRF size parameter is affected by an increase in the measured visual field. For
comparison, we estimate the receptive field size parameter from receptive field shapes
obtained with f-pRFyjg,. using three different methods a) our fast parameter estimation
procedure b) Levenberg-Marquadt (Levenberg, 1944) with pRF location parameters
estimated using our fast procedure and ¢) an exhaustive search for pRF parameters for
an initial guess followed by maximum likelihood estimation (Mineault, 2021). Lastly,
we use our grid search method without the slope (eccentricity vs size) assumption; i.e.,
exploring a fixed set of pRF sizes (we term this vanilla grid-search). It is clear from
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Figure 2.15 thatitis alimitation of our approach (f-pRFi4,.) that receptive fields whose
center is at the border or even exceeds the visual field of view are poorly mapped. It can
also be seen from the figure that estimations get better as the field of view becomes
larger. Hence, in order to faithfully estimate receptive fields that are centered at high
eccentricities, we recommend designing the experiment with a larger field of view.

Subsequently, we also investigated if there exists a trade off between the size of the
field of view and the reliability of estimation of the receptive fields. For this purpose, we
generate simulated data with 1000 isotropic receptive fields that lie at the center of field
of view (eccentricity of 0). We choose eccentricity of O to eliminate the possibility of
having border effects as described previously. The methods for estimation of pRF size
parameter are the same as mentioned previously. It can be seen from Figure 2.16, that
initially (left most figures) the size estimations are poor for large receptive fields since
they are extremely large for a relatively small field of view. As the field of view increases,
the estimations get better. However, after a certain point, relatively small receptive fields
get estimated poorly. This is because, in the case of relatively large field of view, the bar
aperture needs to be wider to cover the field of view with the same number of steps. As
a consequence, the stimulus becomes too coarse to reliably estimate smaller receptive
fields. In order to account for smaller receptive fields while also measuring a large field
of view, a narrow bar would need to traverse the field of view with a larger number of
steps. However, this would require longer runs. Our method thus demands a trade-oft
between field-of-view, stimulus-size and run-length. In cases where fast estimation of
pRF parameters is not essential, we thus recommend to use a grid-search method since
it is less affected these effects.
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Figure 2.15.: Change in the estimation of the pRF size parameter with respect to change in field of view. All
the receptive fields are centered at an eccentricity of 5v/2. The maximum radius increases (left to right) in
the range [5, 8,12, 15, 19]. The receptive fields sizes (1 standard deviation) are in the range [0.5, 20]. The
plots are generated using a) f-pRFyigge b) Levenberg-Marquadt with pRF location parameters estimated
using f-pRFyigge and ¢) an exhaustive search for pRF parameters for initial guess followed by maximum
likelihood estimation. d) vanilla grid search. Note that the discrete steps in the grid search result from
the resolution of the grid. As more parameter values are explored, this curve would become increasingly
smooth but estimation would take more time
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lowed by maximum likelihood estimation (Mineault, 2021) d) vanilla grid search.
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% 2.4. DISCUSSION

We propose a fast approach for receptive field mapping and pRF parameter estimation
that is suitable for real-time applications. A linear voxel-to-pixel map typically is a huge
data matrix which requires a large amount of memory in order to be stored and to be op-
erated on; rendering operations slow. To reduce data by more than 90%, we encode the
stimulus using tile coding and hashing. This lowers memory requirements and hence
strongly reduces computational time. We evaluated our approach on simulated as well
as real empirical data in terms of computational times, correlations between predicted
and acquired BOLD signals, fidelity of estimated receptive field shapes and parameters
and the suitability of estimated pRF shapes for projecting cortical activity back into the
visual field.

We find that our approach is extremely fast at mapping receptive field shapes and es-
timating their parameters with computational times on the order of seconds and ~ 1
minute, respectively. Specifically, because our approach can successfully estimate recep-
tive field shapes for large amounts of voxels in mere seconds, it is straightforward to iden-
tify visually responsive voxels by conducting a quick cross-validation procedure. This
allows limiting parameter estimation to these voxels and thus to keep computational
time low for this process as well. This also eliminates the need of using a pre-defined
mask; though such a mask may be used in addition. Furthermore, cross-validation is
performed in batches and we provide the option of adjusting the batch size which can
turther speed up parameter estimation. The only other approach, to date, that facili-
tates fast mapping of pRFs is based on training deep neural networks to predict pRF
parameters (DeepRF; Thielen et al., 2019). Our method is fundamentally different
from DeepRF and does not assume initial shape of the pRFs. In terms of computation
time, our approach remains significantly faster. Average computational time required
per voxel is less than a second for DeepRF. It has been reported in ( Thielen et al., 2019),
that the computation time required per voxel is on the order 1072 seconds (excluding
the time required for training). In the case of f-pRFig,., the computational time re-
quired per voxel for parameter estimation is on the order 107 seconds.

In terms of fidelity, we observe excellent correspondence between estimated pRFs
and ground-truth pRFs both in terms of shapes and parameters for simulated data. For
empirical data, we observe excellent correspondence between pRF locations estimated
from our procedure and from GS-pRF (as described 2.2.4). However, for pRF size,
results of the two methods correspond less well. In particular, for larger eccentricities
correspondence is poor. We observed that the receptive fields at high eccentricities; i.e.,
located at or beyond the border of the stimulated region of the visual field, tend to be
anisotropic (elongated) and mostly underestimated. It has been reported in (Greene
et al., 2014) that pRFs located in the proximity of this border tend to be underesti-
mated. Studies such as (Silson et al., 2018; Merkel et al., 2018, 2020) further report
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elongation of receptive fields and (Silson et al., 2018) report that the aspect ratio of
receptive fields increase with eccentricity. In order to investigate how reliable our map-
ping procedure is when the underlying receptive fields are elongated and when the re-
ceptive fields are located near the stimulus border we conducted additional, unplanned,
analyses.

First, we simulated data based on elliptical receptive fields. We observed excellent cor-
respondence between pRF parameters from our approach and ground-truth parame-
ters. Our algorithm estimated the size of such elliptical receptive fields better than the
GS-pRF method. This means that our method is more flexible and freer in capturing
the shape of the receptive fields than model-based methods. As such, our method is
in principle able to capture the true shape of a receptive field. However, an analysis of
how receptive field size estimates are effected by their eccentricity and the visual field of
view revealed that estimates are only accurate within a certain region of the visual field
of view. Our analysis revealed that a major limitation of our approach is the inability
to reliably estimate receptive fields that are located at or beyond the stimulus border
(lie outside the visual field of view). In order to accommodate such receptive fields,
we recommend setting up the experiment with a larger field of view (Figure 2.15). Our
analysis also suggests that there exists a trade-off between the size of the field of view and
reliable estimation of receptive fields. Having a large field of view may hamper reliable
estimation of relatively small receptive fields (Figure 2.16), if the stimulus needs to be
enlarged to cover the expanded field of view with the same number of steps. In order to
reliably estimate small receptive fields with a large field of view, we recommend increas-
ing the number of steps in which the stimulus sweeps the space (thereby increasing the
length of the experiment). Alternatively, if fast estimation of pRF parameters is not an
issue, one could consider utilizing a vanilla grid-search method as it is less susceptible to
these effects (Figures 2.15d and 2.16d).

The flexibility of our method comes thus at the cost of an inability to deal with large,
circular, receptive fields that lie beyond the field of view (i.e. outside the region of stim-
ulation). This is in line with the observation that linear encoding methods (such as
ridge regression) fail to reliably estimate large receptive fields (Lage-Castellanos et al.,
2020); or rather those receptive fields that partially lie beyond the field of view. In the
pREF validation framework established by (Lerma-Usabiaga et al., 2020a), the authors
report that pRF size estimates significantly depend on the HRF model, and varies sig-
nificantly from implementation to implementation. Similar observations have been
made by Lage-Castellanos et al.(2020). However, both studies report negligible differ-
ences in location estimates. This is in line with our findings.

Nevertheless, for the purpose of projecting cortical activations back into the visual
field, the true shape of receptive fields at the edges of the visual field do not matter. In-
deed, as can be seen from Figure 2.10, our model-free approach faithfully reconstructs
the letter shapes from their associated BOLD activity. Recognizable reconstructions of
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these shapes were possible even though data underwent real-time preprocessing which
is generally considered being of lower quality than offline preprocessing. This high-
lights that our method is suitable for real-time applications such as content-based BCI
letter-speller systems.

In that context it is also important to highlight that the results reported here were
obtained using a single set of hyperparameters (learning rate, FWHM and shrinkage
factor) except for reconstruction of mental imagery where we used a higher shrink-
age factor. While hyperparameters were obtained using Bayesian Optimization on the
simulated dataset (refer to A.2), the set of hyperparameters used here produced ro-
bust results for empirical data obtained from different participants, field strengths and
pre-processing procedures. We provide an example script for Bayesian Optimization
as well as for generating synthetic data to allow potential users of our method to ad-
just hyperparameters to their specific experimental setups and needs (https://github.
com/ccnmaastricht/real _time_pRF). We also encourage users to report their stimulus,
setup and the hyperparameters that they found optimal for their dataset/experiment
(https://forms.gle/3hXd4DT6ixveGJtu6). This information will be compiled to of-
fer optimized user-recommendations on the wiki of the Computational Neuroimaging
Toolbox.

In conclusion, we present an extremely fast and flexible pRF mapping approach
which can be either used in parallel with data acquisition (f-pRFgq) or after the data
has been fully acquired (f-pRFigqe ). This opens the door for real-time applications that
rely on pRF estimates such as BCI speller systems. We also propose a fast method to es-
timate pRF parameters. A limitation of this method, and model-free approaches in
general, is that receptive fields partially lying beyond the stimulus space are dealt with
poorly. This can be remedied by combining fast estimation of receptive fields for voxel
selection with subsequent grid-search to obtain their pRF parameters.
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ABSTRACT

A population receptive field (pRF) is a contiguous region of the visual field that repre-
sents stimulus-selectivity of a population of neurons contained within one fMRI voxel.
A connective field (CF) is a cortico-cortical extension to the concept of receptive fields
and represents the selectivity of voxels within one brain region for the activity exhibited
by a spatially contiguous group of voxels in another brain region. One limitation of ex-
isting CF models is that they do not incorporate pRFs in the model and hence cannot
disentangle to what extent a voxel’s activity is driven directly by the stimulus or by other
voxels in the network. Another limitation, inherent to CF modelling, is thata CF map s
a voxel-to-voxel map which incurs severe computational and memory-related costs. To
overcome these limitations, we propose a novel, unified and computationally efficient
connective field modelling framework utilizing algebraic dynamic mode decomposi-
tion with model predictive control (aDMDc). This data-driven method is model-free
(no prior assumptions are made of the shape of CFs) and computes a reduced-order
representation of CFs. This renders the extraction of CFs and pRFs to be a simple read-
out task for the corresponding regions of interests. Another advantage of this method is
that the underlying dynamics of the system can be independently isolated into tempo-
ral and spatial components. We validate our framework 7z silco, as well as on empirical
fMRI data. We demonstrate that our approach is capable of efficiently and simultane-
ously estimating CFs and pRFs.

“One geometry cannot be more true than another; it can only be more
convenient”

- Henri Poincaré, La Science et [’ Hypothese
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+ 3.1. INTRODUCTION

The retinotopic organization of the visual cortex, with respect to its stimulus-selectivity,
has been substantially studied over the past decades. The onset of functional Magnetic
Resonance Imaging (fMRI) has made population receptive field (pRF) mapping a cor-
nerstone of computational neuroscience. However, the visual cortex is not a simple
stimulus-response machine; but the cortical neurons act in concert with other neurons
(Van Hemmen and Sejnowski, 2005) which, at times, are driven by the stimulus. In
the past couple of decades, a fresh way of studying visual neurons has emerged, which
investigates the response of neurons in one cortical area as a function of neuronal ac-
tivity in a different part of the cortex (as opposed to the stimulus). This approach is
often termed as Connective Fields (CFs) (Haak et al., 2013). But terms such as Pro-
Jective Fields (Van Hemmen and Sejnowski, 2005) and Cortico-cortical Receptive Fields
(Heinzle et al., 2011) are also used to address the functional connectivity under consid-
eration.

To this date, very few methods have been developed to model CFs. Heinzle et al.
(2011) use support vector regression to predict time courses of voxels in V3 from the
voxels in V1. Haak et al. (2013) use a grid-search based approach (similar to pRF ap-
proach proposed by Dumoulin and Wandell (2008)) to predict time courses in V2, V3
and hV4 from the voxels in V1. Motivated by the findings of Motter (2009) and Ku-
mano and Uka (2010) from monkey studies, Haak et al. (2013) assume the CFs to be
a bivariate and isotropic Gaussian projected over the cortex. Zimmermann (2014) (in
Chapter 4) use a ridge regression-based approach to predict laminar connectivity from
V1 to V2. More recently, a bayesian approach for modelling CFs has been proposed by
Invernizzi et al. (2022). This approach has also been further validated on the data from
3T scanners (which are more commonly available than 7T scanners) for its uncertainty
and reliability (Invernizzi et al., 2021).

One of the main issues with these CF modelling methods is that they do not account
for the part of the response that is generated through pRFs. If an MRI voxel has both
CFs and pRFs, the previously mentioned methods would fail to capture, the voxel’s
activity as a combined response of CFs and pRFs. Although, the need for such a uni-
fied intrinsic and extrinsic (stimulus-driven) model has been expressed in Van Hemmen
and Sejnowski (2005), but a methodological implementation of such a model remains
largely unaddressed to this day. Another innate issue with CFs is that their modelling
results in a voxel-by-voxel map. Given the enormous number of voxels, such a CF map
can typically consume a great deal of computational resources.

In order to establish a unified CF and pRF framework, we make use of algebraic Dy-
namic Mode Decomposition with control (aDMDc, Fonzi et al. (2020)). aDMDc is
a variant of regular Dynamic Mode Decomposition (Schmid, 2010) that incorporates
algebraic terms with model predictive control (Proctor et al., 2016). DMD and its vari-
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ants are widely used in fluid dynamics. DMD, uses a truncated Singular Value Decom-
position (Hansen, 1987) based approach to approximate reduced order model (ROM)
of a state-transition matrix which is low rank in structure. Such a low rank ROM ap-
proximation allows for independent estimation of spatial and temporal dynamics of
the system without actually estimating the large (full) state-transition matrix.

We propose here a novel and efficient method to simultaneously map CFs and pRFs
in one unified model. We model CFs as a state-transition matrix and pRFs as a predic-
tive control. DMD-based approach allows for a reduced order approximation of full CF
matrix. In order to compute CFs from source to target regions of interest (ROI), one
can simply read them out from the reduced order model, instead of calculating the full
matrix. However, the pRF matrix (pzxel-by-voxel) remains a large quantity that needs
to be estimated. In order to tackle this, we encode the stimulus with hashed-Gaussians
(Bhatetal, 2021). The ROM from DMD and hash-encoded stimulus significantly re-
duces the computational time and memory consumption.

We validate our approach on simulated data (similar to the simulated data used in
Bhat et al. (2021)) and on 7T empirical data (Allen et al., 2022). We observe excellent
correspondence between predicted BOLD signal and ground-truth BOLD signal. We
also observe good fidelity between estimated and ground-truth CFs, pRFs and pRF
parameters. Finally, to present the contiguity of estimated CFs, we project them on the
cortex.

% 3.2. METHODS

3.2.1. Dynamic Mode Decomposition and its variants

Standard DMD

DMD (Schmid, 2010) is a popular technique, primarily used in fluid dynamics, to ex-
tract underlying physical mechanisms and dynamics of relative large data sequences
(flow fields). In practice, the DMD framework developed by Tu et al. (2014) (also
known as exact DMD) is considered to be the standard DMD (Brunton and Kutz,
2022). DMD assumes the following linear discreet dynamical system sampled from
a continuous (flow) process at time intervals of At:

x(t + At) = Ax(t) (3.1)

Where z is a snapshot of a system’s state at time ¢ and A is a state transition matrix.
Assuming At =1

x(t+1) = Ax(t) (3.2)
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Above equations can be written in matrix form as:

X' = AX (3.3)

where X and X" is the collection of snapshots of the system which are separated in
time by At. DMD tries to find the best low-rank fit solution for the operator A by
collecting multiple snapshots of the system over time. Mathematically, the best low-
rank approximation of A can be obtained by:

A:argmz'nHX/—AXHF:X/XT (3.4)
A

where ||. ||  is the Frobenius norm and { denotes Moore-Penrose pseudo-inverse.

One of the simplest and computationally efficient ways of solving this system is to
take pseudo-inverse of the matrix X using truncated SVD (Singular Value Decom-
position) (cf. Hanson, 1971; Varah, 1973). Standard SVD decomposes the matrix
X € R™™ (wheren >> m)as:

X =vuxv? (3.5)
where
o 0 0 0]
0 02 0 0
] | | | :
0 0 . 0
X, X Xl = (U Us U Vi Vo ... V] (3.6)
0 0 0 oy
] | | NN :
0 0 0 0]

Truncated SVD aims to obtain a best low rank approximation of X by only keep-
ing top 7 singular values (where << n) (Eckart-Young Theorem, Eckart and Young
(1936)) .

X~UsVT (3.7)

And the operator A can be subsequently approximated as:

A~ X'VvEUT (3.8)

A general property of SVD is that the matrices U and V' are orthogonal; which means
that the inverse operation of these matrices is simply a transpose operation. Also, the
matrix ¥ is a diagonal matrix and its inverse is simply one over the singular values. This
makes inverting the matrices, yielded from SVD, more computationally efficient than
inverting the matrix itself.

However, in order to extract the underlying dynamics of the system, computation
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of the full A is not necessary. Instead, one can obtain reduced order model A. This is
done by projecting the A matrix onto an orthogonal basis of U.

A=U0TX've! (3.9)

The matrix A € R™7 is much smaller than the matrix A € R"*" (since r << n).
This makes the whole procedure very memory eflicient. It has been shown by Schmid
(2010) that the eigenvalues of Aand Aare equivalent and the eigenvectors scale linearly.
This would mean A is sufficient to extract spatial (eigenvectors) and temporal (eigen-
values) dynamics of the system.

Dynamic Mode Decomposition with Control (DMDc)

Many real-world complex systems are often actuated by an external force or control.
For example, in epidemiology, the spread of infectious diseases can be controlled by
vaccinations or other preventive measures. DMDc (Proctor et al., 2016) was developed
to extend standard DMD to model predictive control. DMDc can be formulated as:

Tiy1 = Azxy 4+ Buy X' = AX + BU (310)

where A is the state-transition matrix and U is the external control or stimulus. In
order to solve this system in DMD tone, the system can be manipulated as:

X

X =[4 8|}

} =GO (3.11)

The matrix G can be approximate by simply inverting the truncated SVD of €2 (just
like DMD).

G~ X'Vs'U" (3.12)
In order to obtain A and B, G can be dissevered as:
~ ~T ~~ ~T
G~ |[A B~ {X’VZ*lUl X'VE-1U, (3.13)

where a; and ﬁ; are obtained by spliting U according to the columns of A and B
respectively. Similar to DMD, reduced order A can be directly obtained by projecting
A to an orthogonal basis. Unlike DMD, in this case, the orthogonal basis would be U ,
which is obtained by computing SVD of X’ (instead of X).

A=UTX'Ve'UlU =07 AU (3.14)
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Algebriac DMDc (aDMDc)

aDMDc Fonzi et al. (2020) was developed to solve algebriac differential equations in a
DMD way. The algebriac differential system can be formulated as:
lﬂft_H = Al‘t + But (315)
20001 = Fugsq (3.16)
where Equation 3.15 is the differential term and Equation 3.16 is the algebriact term.
This system can rewritten as a single linear system as:
X' = AX + BU + FU' (3.17)

This system can be solved in a DMD way simply by concatonating matrices as:

X
X'=[A B F|]|U|=¥Q (3.18)
U/

The reduced order models can then be computed as:

A=U"x'v'ulv (3.19)
B=U"x'vstuf (3.20)
F=UTx'vs-'uf (3.21)

where (7, 3 and V are obtained from truncated SVD of €2 and U is obtained from
truncated SVD of X', which are are truncated at the thresholds of p; and p2 respec-
tively .

3.2.2. Connective Field Modelling using aDMDc

We model both CFs and pRFs in an aDMDc framework. We assume that one part of
the BOLD response at time ¢ + At is explained by the the BOLD response at time
t through CFs, which may or may not be controlled by a stimulus at time ¢ through
pRFs. And the other part of the BOLD response at time ¢ + At is explained exclusively
by the stimulus at time ¢ + At through classical pRFs. Note that, the At here is limited
by the one TR of fMRI. This is mathematically equivalent to Equation 3.17. Where
X is the BOLD response, A is the CF matrix and F and B are the receptive the field
matrices and U is the stimuli presented.
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In order to further reduce the computational load, we employ the same strategy as
used by Bhatetal. (2021), to hash-encode the stimulus and then convolve it with hemo-
dynamic response function to create time courses. The stimulus U is hashed to Y. And
the matrices BB and F' are changed to matrices [ and K respectively, which denote the
linear weights on the hashed stimuli. For hashing, we use the same tiling parameters
as reported in Bhat et al. (2021), that is 250 tillings with 5 Gaussian tiles within each
tiling. This system with hash-encoded stimuli can be written as:

X'=AX+HY + KY (3.22)

The reduced order CF matrix A can now be estimated in exactly the same way as
Equation 3.19. The full order CFs between source and target ROIs can now simply be
read-out as:

AROI = Uta’/‘get 12( Usj(;urce (323)

3.2.3. Simulated Data

A B C

D E F

Figure 3.1.: Schematic illustrations of different connectivity scenarios between two brain areas.

In order to validate our framework on ground-truth quantities, we generate biologi-
cally plausible data for functionally simulating V1. The method for generating V1 data
is described in Bhat et al. (2021). In order to functionally simulate a higher visual area,
we simply add another set of voxels whose responses result from alinear combination of
activity exhibited by V1 units and not from the stimulus. The neuronal responses are
generated by multiplying a connective field model and neuronal responses generated
in the lower visual area. We simulate six different scenarios (illustrated in Figure 3.1)
which are different combinations of feedforward, feedback and lateral connectivities.
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We model the connective field as a 2D isotropic Gaussian over a flattened (simulated)
cortical surface. Note that, we do not generate time-shifted time courses. The stimu-
lus presentation and transfer of activity between low and high visual areas, all happens
within same TR (At). This is done to stay as close as possible to real-time data acquisi-

tion which is restricted by fMRI’s TR.

3.2.4. Empirical Data

After validating our approach on the simulated dataset, we demonstrate its applicability
to a real brain dataset. For that purpose, we use Natural Scenes Dataset (NSD) (Allen
etal., 2022). The NSD dataset contains measurements of fMRI responses from 8 par-
ticipants obtained using a 7T fMRI machine. For this work we only use the 1st run out
of 12, pRF and category functional localizer runs. We use the high-resolution version
of the data which was sampled at Imm (TR = 1000ms). The pRF stimulus used was a
sweeping bar stimulus.

%+ 3.3. RESULTS

3.3.1. Simulated Data

Estimated

Ground Truth

E) &

@

BOLD Response
S

IS

%

Figure 3.2.: Comparison between estimated and ground-truth quantities on the simulated dataset. A-C)
CFs estimated with connectivities corresponding to connections A,B and C in Figure 3.1. D) Population
receptive fields. E) BOLD response.


http://naturalscenesdataset.org/

Chapter 3 Section 3.3

The quantities estimated using our approach (namely CFs, pRFs and BOLD re-
sponse) are compared with their ground-truth counterparts in Figure 3.2. We also dis-
play CFs estimated on different connectivities such as feedforward/feedback, lateral and
their combinations (Figure 3.2 A, B and C). It can be seen from Figure 3.2 that there
is good visual correspondence between the estimated and the ground-truth quantities.
It can also be seen that in case of a combination of feedforward/feedback and lateral
connections, a voxel can have two CFs. One CF is lateral (the same visual area) and the
other is from another visual area. In this case, the CF estimation is relatively poor when
compared to single CFs. Nevertheless, there is some fidelity towards ground-truth CFs.
The pRFsand BOLD response show excellent correspondence with ground-truth data.
The visualizations of CFs and pRFs are obtained after applying shrinkage (as described
in Bhat et al. (2021)) in order to shrink noisy, small-value pixels towards 0. Further-
more, we estimate pRF parameters using the method described in section 2.2.3. The
correspondence between estimated pRF parameters and ground-truth parameters is de-
picted in Figure 3.3. It can be seen that there is an excellent correspondence between
the parameters, with correlation coefficients being 0.9721, 0.9674 and 0.9412 for pRF
locations (along X and Y coordinate axes) and pRF size, respectively.

X-coordinate Y-coordinate Standard Deviation
2

Mapped RFs
Mapped RFs

Ground Truth RFs Ground Truth RFs Ground Truth RFs

Figure 3.3.: Comparison between estimated pRF parameters and ground-truth pRF parameters

In order to quantify these correspondences, we use the conservative metric of Jaccard
Similarity. Metrics such as the correlation coefficient can often be misleading. Figure
3.4 compares cross-validated (Roberts et al., 2017) Jaccard Similarities and Correlation
Coefhicients per voxel. It can be seen that correlations are always high regardless of the
voxel. On the other hand, Jaccard Similarities are dispersed over a wider range, thus jus-
tifying our choice of similarity metric. However, the similarity depends largely on the
truncation threshold of SVD. For the visualizations, we used the Gavish-Donobo thresh-
old (Donoho and Gavish, 2013), which is widely used in DMD literature, including
aDMDc Fonzi et al. (2020). However, this threshold does not provide enough insight
into to what extent the threshold affects estimation of individual quantities (in our case
CFsand pRFs). In order to address this, we scrutinize the effect of truncation threshold
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with further analysis.
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Figure 3.4.: Comparison between estimated pRF parameters and ground-truth pRF parameters

Truncation threshold analysis

Computation of the low-rank approximation of CF or the low-rank state transition ma-
trix j’ requires two thresholds, p1 and p2, for truncated SVD on §2 and X respectively
(refer to section 3.2.1). We evaluate the effect of these thresholds on Jaccard Similarity
(JS, also known as Jaccard Index) between estimated and ground-truth quantities for
all connectivity scenarios. Figure 3.5 depicts the JSs over all possible values of thresh-
olds over all connectivity scenarios, ground truth quantities (CFs, pRFs and BOLD
response). We choose JS because of its conservative nature and correlations can often
be misleading. In case of BOLD response, we report cross-validated JSs. In order to
deal with autocorrelated BOLD response, we use block cross-validation (Roberts et al.,
2017). With rows and columns representing all the possible values of p1 and pa, respec-
tively. In addition to that, for each connectivity and ground-truth quantity, we nor-
malize the JSs between [0, 1] so that they can be multiplied (symbolized by IT in Figure
3.5) to get aggregated JSs. The final product, or the product of products, depicts an ag-
gregated or global JS over all connectivities and ground-truth quantities. Finally, we
also show a magnified version of the final product to illustrate the position of Gavish-
Donoho thresholds versus the thresholds yielding maximum aggregated JS.

It can be seen from Figure 3.5 that JS profiles do not change across connectivities.
The JS between estimated and ground-truth BOLD response is excellent for most of
the thresholds. This means that aDMDc is, in general, excellent at modelling and pre-
dicting the timecourses. The highest JS for BOLD response is observed for very high
thresholds. The aggregated JSs of pRFs and CFs, have similar overlapping profiles. The
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final products give an idea about the region of thresholds to consider to get overall good
JS, without optimizing for individual quantities. It can also be observed that this region
demands higher thresholds than Gavish-Donobo thresholds.
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Fields 200 20 20 20
300 3w 300

20w w2 3w w20 3w ™ 2w
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Population 100 1o 1o
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Figure 3.5.: Evaluation of truncation thresholds on Jaccard Indices (similarity) (and their products) for var-
ious scenarios. Top left grid (3-by-7): Each element depicts the Jaccard Similarity (JS) between estimated
end ground-truth quantities. The columns correspond to different connectivites (A-F), as depicted in Fig-
ure 3.1. The rows are the quantities on which JSs were calculated. IT: This symbol represents product of
normalized ([0, 1]) JSs. The bottom-left IT represents products of individual columns (connectivities) and
the top-right IT represents product of individual rows (CFs, pRFs and BOLD response). Bottom-right
corner element: This element is product of all normalized ([0, 1]) products (ILs). A magnified version of
this element is depicted below the grid, which also depicts the position of Gavish-Donobho (Donoho and
Gavish, 2013) threshold and maximum JS or product of products.

Balanced Similarity

It is to be noted that, when dealing with real-world empirical data, researchers do not
have the luxury of having ground-truth pRFs and CFs. As can be seen from Figure 3.5,
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the higher the threshold, the better the model gets at fitting the BOLD response. How-
ever the computational efficiency would decrease with high thresholds. The idea of an
optimal threshold would be to keep the rank as low as possible without compromising
important structures (singular values) in the system. Thus making selection of thresh-
old a balancing act between good approximation and good (computational) efficiency.
In order to examine thresholds with this point of view, we propose here a data-driven
metric which uses JS as similarity metric but penalizes high thresholds. We refer to this
metric as balanced similarity (denoted by 3).

The truncation thresholds are simply discreet (integer) indices which are limited by
the number of time points. Thus, their “magnitude” is neither scalable nor interpretable.
We instead use the Frobenius norm as a proxy to a threshold’s magnitude. The Frobe-

nius norm of a matrix is equal to the L2 norm of singular values (||.||p = />, 02),

which increases with the magnitude of the threshold. Since we are dealing with two dif-
ferent thresholds , we use the geometric mean of the two Frobenius norms to calculate
the effective magnitude of the two thresholds. Thus, the balanced similarity 3 for two
thresholds p; and p2 can be defined as:

B(m,pz)—M 1- \/Zagl\/zag,z (3.24)
P1 P2

- Yimax(G,G)
e e

Jaccard Similarity

Where (; € Z and EZ € Z are true and estimated quantities of interest (pRF, CF
and BOLD, respectively). The geometric mean is rescaled to [0, 1].

Figure 3.6 evaluates the effect of thresholds in terms of balanced metric. It can be
clearly seen from the global product (product of products) , that the thresholds yield-
ing maximum similarity are very close to the Gavish-Donoho thresholds. This suggests
that the Gavish-Donoho is indeed good choice of data-driven threshold for optimally
extracting low-rank structures. Note that, the similarity matrices were computed over
a grid of all possible values of thresholds. This was done for illustrative purposes only.
In practice, it is recommended using converging algorithms such as Bayesian Optimiza-
tion with a custom loss function, in order to optimize thresholds in an efficient way.

The actual values of estimated thresholds and corresponding Jaccard Similarites are
reported in Table 3.1a and 3.1b respectively. Since the JS profiles do not change for
different connectivities, we report the thresholds estimated only for connectivity A.
Since ]S is a conservative approach, we compare it to a null-model to obtain baseline
JSs. The null-model consists of randomly generated quantites to compare with ground-
truth quantities. We get JSs higher than baseline regardless of the thresholds. The JSs
are especially high for the BOLD response. The difference in JSs estimated from pRFs
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Figure 3.6.: Evaluation of truncation thresholds on balanced similarities (and their products) for various
scenarios. The figure is organized just like the Figure 3.5 except for the similarity metric. In this figure,
balanced similarities (and their products) are used.

is higher than the JSs estimated from CFs. This indicates that in order to get better
pRFs, one should use a higher thresholds than Gavish-Donoho threshold or the ones
estimated from the balanced similarity.

Lastly, in order to measure the computational performance of our approach, we re-
portin Figure 3.7 the time required (in seconds) to compute CFs over a range of voxels.
The computation time is the total time required for performing two SVDs and com-
pute A. The reported computation time, per number of voxels, is the mean over 10
runs. The hardware used was an HP® Z440 workstation with an Intel® Xeon® Proces-
sor (E5-1650 v4, 32GB R AM) and the software was MATLAB™(version 2022a, The
Mathworks .inc, Natick, MA, USA).
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CF | pRF | BOLD | Global | Gavish-Donoho | Balanced
P1 88 88 161 89 12 16
p2 | 120 | 140 225 135 17 16

(@)

Local | Global | Gavish-Donoho | Balanced | Baseline

CF 0.3631 | 0.3563 0.2574 0.3001 0.0760

pRF 0.3582 | 0.3489 0.1424 0.1815 0.0481
BOLD Response | 0.9993 | 0.9638 0.7806 0.7940 0.0372

(b)

Table 3.1.: a) SVD truncation thresholds (p1 and p2), from left to right, yielding the best JS for estimated
quantities (CFs,pRFs and BOLD response), thresholds yielding the best global (aggregated) JS, Gavish-
Donoho thresholds and balanced thresholds. b) JSs of estimated quantities for different thresholds: (from
left to right) best individual thresholds, best global (aggregated) thresholds, Gavish-Donoho thresholds,
Balanced thresholds and null-model JSs.
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Figure 3.7.: Mean computational time (over 10 runs) over a range of voxels. The total computational time

per run includes the time required to compute the two SVDs and A

3.3.2. Empirical Data

We, further, validate our approach on empirical data obtained from Allen et al. (2022).
Firstly, in order to test how good our model fits the data, we compute both Jaccard
Similarity and Correlation Coefficient between estimated and true BOLD signal. Ad-
ditionally, we compare our unified model to pRF-only model (as proposed by Bhat
et al. (2021)). It can be seen from Table 3.2, that our model significantly outperforms
the pRF-only model. Also, the correlation coefficients obtained from the fast pRF ap-
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Subject Correlation Coefficient Jaccard Similairty
Fast pRF Mapping | Unified Model | Fast pRF Mapping | Unified Model
01 0.5851 0.9866 0.2079 0.7421
02 0.5873 0.9905 0.2077 0.7457
03 0.6083 0.9892 0.2473 0.7282
04 0.6089 0.9861 0.2624 0.7150
05 0.6177 0.9860 0.3270 0.7277
06 0.5899 0.9859 0.2118 0.7389
07 0.6094 0.9894 0.2419 0.7518
08 0.5987 0.9849 0.2497 0.7376

Table 3.2.: Comparison between Fast pRF mapping (Bhat et al., 2021) and unified model proposed here,
in terms of Jaccard Similarity and Correlation Coeflicient. Both metrics are obtained after corss-validation

proach are in a similar range as reported by Bhat et al. (2021) on the empirical data.
This suggests that pRF alone is not enough and the CF term is indeed necessary to
completely account for BOLD response. Secondly, we also visualize exemplary CFs
(for V1 > V3and V2 > V3 respectively) from Subject 01 on a cortical surface in

Figure 3.8 .

Figure 3.8.: Visualizations of CFs on a cortical surface (for a Source = Target). A) V1 = V3 and B)
V2 = V3.). The CFs were visualized with beta threshold B2, which uses a library-of-HRFs approach (for

more details refer to Allen et al. (2022)). These visualizations were generated using BrainBrowser (Beck

etal.).
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% 3.4. DISCUSSION

In this work, we propose a unifying computationally efficient framework for modelling
connective fields, which are modelled with aDMDc (Fonzi et al., 2020). Our approach
not only considered stimulus-inferred neuronal activity through population receptive
fields (traditional retinotopy) but also considers neuronal activity transferred from an-
other set of neurons through connective fields. aDMDc constructs a reduced order
models of both pRFs, thus allowing for a computationally efficient solution. Addition-
ally, we hash-encode the stimulus (Bhat et al., 2021), which further increases the com-
putational efficiency of our framework. Furthermore, our approach is model-agnostic,
as in, no prior assumption is made on the shape of both CFs and pRFs.

Over the past years, very few models have been proposed to model connective fields,
such as Heinzle et al. (2011); Haak et al. (2013) and Invernizzi et al. (2022). These mod-
els are either based on some sort of grid-search or compute CFs voxel-by-voxel. Given
the sheer number of voxels there can be, a CF map can tremendously drag down com-
putational performance. Furthermore, these models do not account for both CFs and
pRFs simultaneously. Our model is able to tackle both of these issues. We validate our
approach on both simulated data (with different connectivity scenarios) and also on the
empirical data to observe how good our model is at predicting real BOLD timecourses.

On the simulated data, we observe good correspondence between estimated and ground-
truth estimated CFs, pRFs and (especially for) BOLD signals. Overall, good correspon-
dence is observed for all the different connectivity scenarios that we simulate. Addition-
ally, we observe excellent correspondence between estimated and ground-truth pRF pa-
rameters (Figure 3.3). One inconvenience with our model is the choice of the trunca-
tion ranks. This led us to further explore how truncation ranks affect overall mapping.
Although data-driven threshold estimations such as Donoho and Gavish (2013) exist,
we decided to investigate this issue in the context of CF and pRF mapping. For this
analysis we choose the conservative Jaccard Similarity (JS) as metric, as opposed to a
correlation coefhicient. We show in Figure 3.4, that correlations can be misleading. We
first explored the space that yields overall good JSs over all estimated quantities (over all
connectivity scenarios) (Figure 3.5). We observed that the best thresholds we get do not
agree with Gavish-Donoho thresholds. On the other hand, the best thresholds we get
are quite high and this can adversely affect the computational performance. In order
to find an optimal threshold, that would not only produce good estimations but also
keep the truncation rank as low as possible, we propose a new similarity metric, referred
to as balanced similarity (Equation 3.3.1). With this new metric, we noticed that, the
best estimated thresholds move much closer to Gavish-Donoho thresholds. This led
us to conclude that that Gasvish-Donoho threshold is indeed a good candidate for an
optimal threshold (Figure 3.6). Additionally, we also observe that similarity spaces are
similar, if not identical, across connectivities, regardless of the similarity metric. And
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the estimated BOLD responses are almost always good (when compared to ground-
truth) and are hardly affected by the choice of thresholds.

In terms of computational time, our approach is very fast. For a million voxels, the
computation time required to estimate a reduced order CF model is just over 2 minutes
(Figure 3.7). However, the total computation time for a fixed number of voxels would
certainly depend on the truncation thresholds. If computation time needs to be prior-
itized, we recommend using the Gavish-Donoho threshold which is optimally low.

We also show that our approach works well on not only on simulated data, but
also on empirical data. Visually, we depict some exemplary CFs on the cortical sur-
face, which form a neat contigous region. We quantify our model in terms of both
Jaccard Similarity and correlation coefficient and compare it with a pRF-only model
(Bhatetal.,, 2021). While the pRF-only model performs well on the empirical data, our
model significantly outperforms it (Table 3.2). This suggests that a voxel-to-voxel map-
ping is indeed necessary to account for a full BOLD response.

In conclusion, we provide here an efficient method for modelling the connective
fields. Our model unifies CFs and pRFs in one framework without making any as-
sumptions about the true shape of CFs and pRFs. The threshold analysis included in
this work provides directions for choosing appropriate thresholds. If computation time
is the priority and/or if the data is assumed to have alow-rank structure, we recommend
using the Gavsih-Donoho cutoft. Otherwise, we recommend using optimization algo-
rithms such as Bayesian Optimization to search for thresholds that would minimize a
certain customized loss function. Finally, we report that our model is better at fitting
the data than the pRF-only model, which suggests that voxel-to-voxel mapping is nec-
essary for accounting for the full BOLD response, and pRFs alone are not enough.
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ABSTRACT

To what extent the underlying neural mechanisms and representations overlap during
perception and mental imagery, has been an actively debated subject in neuroscience. In
order to compare the governing dynamics of perception and mental imagery, we inspect
previously acquired fMRI data using Dynamic Mode Decomposition (DMD). Specifi-
cally, we compare the connective fields and spatio-temporal dynamics. Since fMRI data
is typically huge, DMD allows for a convenient and efficient decomposition of the data
into its respective spatial and temporal components. We find consistently similar dis-
tribution of connective fields during both the tasks and across subjects. We also find
that there is, in general, an absence of representations of connective fields in the pri-
mary visual cortex (V1). However, we do not find any significant overlap in temporal
and spatial dynamics, except for the static component (zero frequency). These find-
ings suggest that although mental imagery and perception share information pathways
(connective fields), their spatio-temporal dynamics are arbitrary regardless of the task
and the subject.

“The real purpose of the scientific method is to make sure Nature hasn’t
misled you into thinking you know something you don’t actually know.”

- Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance
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* 4.1. INTRODUCTION

Visual experience, the largest part of our sensory experience, can be driven externally
and/or internally (Dijkstra et al., 2019). The externally driven visual experience, known
as perception, is triggered when light is incident upon the retina. And the internal expe-
rience, triggered by high level processes (such as working memory (Baddeley and An-
drade, 2000; Keogh and Pearson, 2011; Tong, 2013)), is known as mental imagery. De-
spite being differently driven experiences, there has been a mounting evidence, that they
both share similar neural representations in early visual areas (Albers et al., 2013; Dijk-
stra et al., 20172a) and late visual areas (Stokes et al., 2009; Reddy et al., 20105 Lee et al.,
2012; Pearson, 2019). Despite of the agreement between the neural representations, the
question of to what extent the underlying neural mechanisms and dynamics overlap,
remains ambiguous.

In order to address this question, we use exact Dynamic Mode Decomposition (DMD;
Tuetal, 2014; Brunton and Kutz, 2022) on the mental imagery and perception fMRI
data used by Senden et al. (2019). DMD is a powerful data-driven tool, popularly used
in fluid dynamics, and is incredibly useful for analyzing large real-world dynamical sys-
tems. DMD yields a reduced-order model of the system whose eigenvalues (temporal
dynamics) are same as the full-order model and eigenvectors (spatial dynamcis) scale lin-
early with the eigenvectors of the full-model. These eigenvalues and eigenvectors can
be conveniently used to deconstruct the system into its dominant temporal and spatial
(also known as DMD modes) components.

We use DMD to obtain the connective field matrix and spatio-temporal dynamics
of mental imagery and perception to investigate the overlapping features. Due to the
absence of retinotopic stimuli, we use DMD without any control. This way, the neu-
ronal activity in the visual cortex is solely explained by intrinsic dynamics. Before we
analyze such a dynamical system, we first ensure that our model faithfully explains the
data. We observe a consistent connective field distribution across perception and men-
tal imagery and across subjects. We also observe that most connective fields originate
in V2 and V3, with negligible presence in V1. Furthermore, we observe no meaningful
overlap within and across perception and mental imagery. These findings suggest that
connective fields are inherent structures in the visual cortex which are shared by both
perception and mental imagery. However, their spatio temporal dynamics can be arbi-
trary.
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%+ 4.2. METHODS

4.2.1.  Dynamic Mode Decomposition

Consider the following discreet linear dynamical system:

= AX (4.1)

where X € Rvorelsxtime=1 454 x/ ¢ Ruovelsxtime—1 yre collection of snapshots
of the system which are separated in time by At and A € [Rvozelsxvovels
transition matrix. In our case, these snapshots would simply be BOLD responses of
fMRI voxels over time, A would be a connective field matrix and At would be be the
temporal resolution of the fMRI.

is the state

DMD tries to find a reduced order model A of the full transition matrix A that best
approximates the data.

A=UTAU =UTX'VE! (4.2)

where U , % and V7 are obtained from truncated singular value decomposition of
X. Thesize of reduced order model A € R™*" depends on the truncation rank r which
is determined by using Gavish-Donobo threshold (Donoho and Gavish, 2013). In any
case it would be much smaller than the full A matrix since r < time << voxels. For
more detailed explanation of DMD, please refer to section 3.2.1, Chapter 3.

4.2.2.  Spatio-Temporal Dynamics

Spatio-temporal characteristics of a system are governed by its eigenvectors and eigen-
values. Since A is obtained from A through a similarity transform ((~] being a unitary
matrix), it’s eigenvalues are preserved and can be obtained simply through an eigen de-
composition (Brunton and Kutz, 2022):

AW = WA (4.3)

where A € Crankxrank s diagonal matrix containing the eigenvalues A of A (same

as eigenvlaues of A) However the eigenvectors W of A are not exactly the same as that
of A. It has been proven in Tu et al. (2014), that the exact eigenvectors of A can be
computed as:

o =XVelw (4.4)

(Cvoxels xrank

The eigenvectors € are known as DMD modes. Given a truncation
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rank 7, A contains top r complex frequencies of the system and ® contains top 7 spatial
modes of the system.

4.2.3. Data

The data used in this work has been previously acquired by Senden et al. (2019) for re-
constructing mental imagery. We use 2 of the 6 subjects (S03 and S05) for our analysis.
The data was collected using a 7-Tesla Siemens Magnetron scannter (Siemens; Erlan-
gen, Germany). The actual task involved either perceiving or imagining four letters
‘H’,T”,‘S” and ‘C’. Prior to the task, each participant practiced training sessions to con-
trol their imagery of visual letters. The task involved four imagery runs and one percep-
tual run as a control.

+ 4.3. RESULTS

In order to validate the fidelity of our model in approximating the data, we report in Ta-
ble 4.1, the cross-validated Jaccard Similarities (JSs) and correlation coefficients between
true and predicted BOLD responses. The similarity metrics are compared to a baseline
null-model, where we compute cross-validated similarity metrics over randomly gener-
ated data with the same number of voxels as the BOLD data and time points equal to
the mean of perception and imagery time points. It can be clearly seen that; indeed, our

model is able to faithfully fit the data.

Similarity
Metric
Jaccard S03 0.8138 | 0.8153 | 0.8070 | 0.8204 0.8176 0.3568
Similarity S05 0.8311 | 0.8437 | 0.8298 | 0.8402 0.8306 0.4118
Correlation S03 0.9812 | 0.9872 | 0.98711 | 0.9921 0.9851 ~ 1072
Coeflicient S05 0.9929 | 0.9924 | 0.9845 | 0.9986 0.9867 ~ 1071

Subject Mental Imagery Perception | Baseline

Table 4.1.: Jaccard Similarities and correlation coefficients between true and predicted BOLD responses
for subjects 03 and 05 over four mental imagery runs and one perception run compared to a baseline. The
baseline was computed over randomly generated data

4.3.1. Connective Fields

Aggregated connective fields over two visual areas are depicted in Figure 4.1, where each
column is a source region and each row is a target region. It can be seen that across runs
and subjects, the connective fields dominate higher visual areas. The presence of con-
nective fields in V1 (as a source) is very weak.
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In order to quantify the aggregated connective fields, we first compute correlation
coefhicients between them. It can be seen from Table 4.2, that that the aggregated con-
nective fields are highly correlated to each other for S03. Also, for SOS, most runs are
highly correlated to each other, except for the first run which is weakly correlated with
perception and the third imagery run. Next, we investigate if there are any differences
or similarities between total feedback and feedforward connectivities. Total feedback
and feedforward connectivities are computed by taking the sum of upper and lower
triangular parts of the aggregated connective field matrices. To that extent, referring
to Table 4.3 we observe that these total feedback/feedforward connectivities are largely
arbitrary.

Mental Imagery Perception

i L vi o 0.24 v 0.25
022 0.22 0.22 022
02 0.2 0.2
s03 v2 02 2 02 vz o1 V2 ors | 2
.1
0.18 0.18 0.16 0.15
V3 016 V3 v3 01s V3 016 4 v3
- 0.16 0.14

vl vz v3 vi vz v3 vi vz v3 vi vz v3 Vi vz v3

0.18 0.2
017
Vi 016 V1 v Vi o |V 02
0.16 0.18
vz v2 vz 016 y2 016 | v2
S05 015 016
0.15 0.14
V3 v3 v3 v3 v3 014
014 014 012

Vi vz v3 Vi vz v3 vi vz v3 Vi vz v vi vz v3

Figure 4.1.: Aggregated connective fields between three visual areas. The columns represent the source
regions and the rows are the target regions.

4.3.2. Spatio-Temporal Dynamics

In order to depict temporal dynamics of the systems, we use the (complex) eigenvalues
of reduced order connective field matrix A. In order to visualize these eigenvalues we
take inspiration from Krake et al. (2021). For real-valued data, if a DMD eigenvalue is
complex, then its complex conjugate is also a DMD eigenvalue (proved in Krake et al.
(2021)). Therefore, we remove eigenvalues with a negative imaginary part to get rid of
redundant temporal dynamics. Furthermore, in order to quantify the dominance of a
mode, we scale it with its amplitude. The amplitude of a, as suggested, can be calculated
as:

a=®"zy (4.5)

where ® = [v1, 19, ..., 1] are the DMD modes, 23 is the second time-point in the
time series and T denotes Moore-Penrose pseudoinverse. Note that, conventionally, in
DMD literature, this amplitude is referred by the letter b and is computed with the
first timepoint in the time-series. But we refer to the amplitude as a and following the
recommendations made by Krake et al. (2021), we use the second time-point (instead
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nn 12 I3 14 P
nn 1 0.8812 | 0.9834 | 0.9806 | 0.9618
I2 | 0.8812 1 0.8355 | 0.9275 | 0.9702
I3 | 0.9835 | 0.8355 1 0.9585 | 0.9328
I4 | 0.9806 | 0.9275 | 0.9585 1 0.9884
P | 0.9618 | 0.9702 | 0.9328 | 0.9884 1

(@

nn 12 I3 I4 P
I 1 0.7529 | 0.2485 | 0.7158 | 0.5469
I2 | 0.7529 1 0.6622 | 0.9232 | 0.9273
I3 | 0.2485 | 0.6622 1 0.7484 | 0.8628
I4 | 0.7158 | 0.9232 | 0.7484 1 0.9310
P | 0.5469 | 0.9273 | 0.8628 | 0.9310 1

(b)

Table 4.2.: Correlation coefficients between aggregated connective fields between the runs for a) S03 and
b) S05

nn I2 I3 14 |
03 Feedback 3.8541 | 3.2821 | 4.1296 | 4.2479 | 3.9839
Feedforward | 2.5367 | 2.5420 | 2.8631 | 2.7811 | 2.8130
05 Feedback 2.6709 | 2.6413 | 2.7994 | 2.5128 | 3.0505
Feedforward | 4.1676 | 2.7038 | 1.8303 | 2.3761 | 2.5320

Table 4.3.: Total feedforward (lower triangle) and feedback (upper triangle) connectivity for each subject
and run. Prior to computing the sum, the aggregated connective fields were normalized between [0, 1]

of the first). Also, in Krake et al. (2021), the second timepoint is denoted by 21 because
their indexing starts with 0.

Additionally, we compute the frequency corresponding a DMD eigenvalue \; as
(Brunton etal., 2016):

(4.6)

- [ Resi )

2

where () is the imaginary part of a complex number and At in our case is 3 sec-
onds. This frequency (as compared to the one used in Krake et al. (2021)) is more in-
terpretable, since it has the unit of cycles/second or hertz. In Figure 4.2, as recommended
by Krake et al. (2021), we depict the absolute values of complex eigenvalues (|\|) over
their corresponding frequencies. Furthermore, we modify the visualization recommen-
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dation made in Krake et al. (2021), by scaling not only the opacity of an eigenvalue but
also its particle size with its scaled mode amplitude |a;v;|. This means that larger and
opaquer eigenvalues are more dominant than small and faded ones. The particles
correspond to all 4 mental imagery runs, while the magenta ones represent a single per-
ception run.

As seen from the Figure 4.2, the eigenvalues for all the runs are arbitrary without
any overlap, regardless of the subject or the visual task, except for the first eigenvalue. It
should be noted that we do not plot the first eigenvalue corresponding to 14-0¢ , which
is a zero frequency component or the static component. Zero frequency corresponds
to static spatio-temporal behaviour which shows a constant behaviour. All the runs
have first eigenvalue corresponding to zero frequency. The scaled amplitudes of these
eigenvalues are identically large and would completely overshadow the scaling of the
size and opacity of the other particles, rendering them very hard to visualize.

n 12 I3 14 P
nn 1 0.1833 | 0.1934 | 0.2450 | 0.2110
12 | 0.1833 1 0.1775 | 0.1998 | 0.1767
I3 | 01934 | 0.1775 1 0.2003 | 0.2154
I4 | 0.2450 | 0.1998 | 0.2003 1 0.1702
P | 0.2110 | 0.1767 | 0.2154 | 0.1702 1

(@)

nn 12 I3 14 o
nn 1 0.1733 | 0.1845 | 0.1829 | 0.2238
I2 | 0.1733 1 0.2229 | 0.1976 | 0.1986
I3 | 0.1845 | 0.2229 1 0.1792 | 0.2075
I4 | 0.1829 | 0.1976 | 0.1792 1 0.1718
P | 0.2238 | 0.1986 | 0.2075 | 0.1718 1

(b)

Table 4.4.: Correlation coefficients between top DMD modes between the runs for a) S03 and b) S05

In order to investigate the extent to which DMD spatial modes overlap between men-
tal imagery and perception, we compute the correlation coefficient between most scaled
dominant DMD modes between the runs. Table 4.4 shows the correlation coefficients
for a) S03 and b) SO5. It can be seen from the table that these dominant spatial struc-
tures are arbitrary and do not correlate with the visual task. It is to be noted again that,
we do not include the DMD mode corresponding to the zero frequency. These static
DMD modes are identical across across runs, for individual subjects.
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A ) * Mental Imagery
Perception
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Frequency (hz)
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Frequency (hz)

Figure 4.2.: The absolute value of eigenvalues |A| plotted against their corresponding frequencies for A)
S03 and B) S05. The size and the opacity of the particles are scaled with the scaled mode amplitude |av/|.
The mental imagery eigenvalues are in and perceptual eigenvalues are in magenta.

* 4.4. DISCUSSION

In this preliminary work we investigate the extent to which neural mechanisms overlap
between perception and mental imagery. We assess this overlap using Dynamic Mode
Decomposition, in terms of connective fields and spatio-temporal dynamics. We per-
form our analysis on the data previously acquired by Senden et al. (2019). DMD is an
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efficient tool that allows for estimation of quantities of interest with reasonable com-
putational sources. Before our investigation, we ensure that the model approximates
the data very well in terms of Jaccard Similarity and correlation coefficients.

In terms of connective fields, we observed that they are largely sourced at higher visual
areas (V3/V2), which indicates a stronger top-down activity from higher visual areas to
either primary visual cortex or laterally to other higher visual areas. It has been largely
believed that perception can be explained by bottom-up activity, and mental imagery
by top-down activity. However, a lot of research also shows that top-down activity is
also important for perception (Buschman and Miller, 2007; Muckli, 2010; Muckli and
Petro, 2013). More recently, it has been shown in Dijkstra et al. (2017b), that there is
a strong increase in top-down coupling during both perception and mental imagery,
which goes well with what we observed here via connective fields. However, a lack of
bottom-up connective fields from V1, even in perception, needs to be addressed with
further research.

Regarding the spatio-temporal characteristics, we did not observe any meaningful
overlap between mental imagery and perception. With the help of the visualization
technique suggested in Krake et al. (2021), we obtain and visualize scaled DMD eigen-
values against their corresponding frequencies. We observe that these temporal eigen-
values, both dominant and non-dominant, are arbitrary. Similarly, for spatial DMD
modes, we did not observe any significant difference or similarity between runs, regard-
less of the visual task. The only spatio-temporal overlap that we observed was with
DMD mode and eigenvalue associated with zero frequency.

Although these findings were the result of a preliminary investigation, further re-
search is needed to validate our results. The data used in this study was used for re-
constructing mental imagery (Senden et al., 2019) and not for comparing the neural
mechanisms. Therefore, we recommend using a different task, which can be tailored
more towards this analysis. In terms of temporal dynamics, fMRI sufters from tempo-
ral resolution. Therefore, to get a clearer picture of the temporal dynamics, one could
use different recording techniques such as ElectroCochleoGraphy (ECoG), electroen-
cephalogram (EEG), etc. In order to get a better understanding of the spatial dynamics,
the analysis should also include segmented data from higher visual, and even non-visual
brain regions.

~ 72 ~



XKES
GENERAL DISCUSSION

~ 73 ~



Chapter 5 Section 5.2

%+ S.1. SyNoOPSIS

This work primarily focuses on providing efficient methods that can save researchers
their valuable time. In Chapter 2, we propose an extremely fast method for population
receptive field (pRF) mapping. The vital catalyst to this method, is the hash-encoding
of the stimulus (inspired from Sutton and Barto (2018)), which dramatically reduces
the computational requirements. This facilitates mapping of millions of voxels within
seconds. Researchers can conveniently use this method in two ways a) In an offline
way: Where the pRFs and their subsequent parameters are readily available once the
data is collected. Based on ridge regression, this method is ideal for post hoc analysis
or for pRF related computation between two experiments. b) In an online way: This
method, based on gradient-descent, can be used for real-time applications, where pRFs
need to be mapped or extracted as the data is being collected. In Chapter 3, we attempt
to address the unification problem (Sejnowski, 2006) (pRFs and Connective Fields) in
an efficient way. Connective fields (CFs) are a natural extension to traditional pRFs.
Inspired from fluid dynamics, we use (algebraic) Dynamic Mode Decomposition with
control (aDMDc Fonzi et al., 2020), to simultaneously map pRFs and CFs. Contin-
uing with the theme of this work, aDMDc , which is based on estimating reduced or-
der models, combined with hash-encoding of the stimuli, is very efficient. Finally, in
Chapter 4, we use DMD, to shed some light on the processes of mental imagery and
perception. We observe very similar representation of connective fields, regardless of
the task or the subject. However, we observe no overlap between the spatio-temporal
mechanisms of mental imagery and perception, and also within mental imagery runs.

% 5.2. THE MOTIVE

In the fMRI era, population receptive field mapping has been dominating the field of
visual neuroscience. pRFs give a topographical insight into how our vision is mapped
onto the cortex. This mapping can be incredibly useful, not only in understanding our
vision, butalso for understanding the (full or partial) lack of vision. This knowledge can
be then used in pathology and treatment of diseases and conditions that affect healthy
vision. Given the size of fMRI based data, methods developed prior to this work (Bhat
et al.,, 2021), are very slow and computationally exhaustive. Furthermore, pRF map-
ping lies at the heart of developing fMRI based Brain-Computer Interfaces (BCIs) for
helping locked-in patients. Given the long computational time, standard methods are
impractical for real-time BCIs. This straightforward motive of real-time pRF mapping
led us to develop an extremely fast pRF mapping technique which can be used both
offline (post hoc) and online (in real-time).

However, in visual neuroscience it is well known that stimulus alone may not be
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enough to explain neuronal activity. One brain region can also elicit activity through a
different brain region. A Connective Field extends the concept of a pRF to an intrinsic
voxel-to-voxel mapping. Although, the methods for both pRF and CF mapping exist,
they fail to account for their counterpart and are mapped separately. Unifying the idea
of pRFsand CFs, has been a lingering problem in neuroscience (Sejnowski, 2006). This
motivated us to use aDMDc (Fonzi et al.,, 2020) framework, to simultaneously map
pRFs and CFs. The model we propose is a linear algebraic differential system, with
CFs mapped through the differential term and pRFs through the algebraic term. Fur-
thermore, we again hash-encode the stimuli using randomly generated Gaussians (Bhat
etal., 2021). aDMDc in combination with hash-encoded stimuli, preserving the theme
of this work, makes the whole mapping procedure computationally efficient. Addi-
tionally , DMD (and its flavours), are also able to obtain decoupled spatio-temporal
characteristics of the system. These characteristics can be used to understand the un-
derlying mechanism of a dynamical system. This motivated us to use DMD to compare
the dynamics of mental imagery and perception.

*+ 5.3. METHODS AND THEIR VALIDATIONS

Extremely Fast pRF Mapping

The computational load of an algorithm is directly proportional to the amount of data
that is being computed on. A pRF map is a huge matrix (pixels-by-voxels). The ultra-
high spatial resolution comes at the cost of having to deal with large number of voxels in
the first place. Researchers, normally, work around large number of voxels by masking
out non-interesting voxels. However, even with masks, the number of voxels can con-
tribute to a significant computational load. Instead of reducing the number of voxels,
we reduce the number of pixels. This is done by encoding the overlap between the stim-
ulus and randomly generated Gaussians, which then collapse into features (tile-coding
and hashing; Sutton and Barto, 2018). The sparsity of the stimulus allows for encoding
with a small number of features (much fewer than pixels). This significantly reduces
the consumption of computational resources. Additionally, we also propose a fast pa-
rameter estimation method, that makes use of the location of the pRF (the pixel with
highest value) and its mean pixel intensity, to predict its size. The pRF mapping and
subsequent extraction of their parameters can be done in an online fashion as the data
is being collected, using gradient-descent. For post-hoc estimation of pRFs and their
parameters, we use ridge regression.

In terms of speed, our approach, without a doubrt, is remarkably fast. We show that,
on a regular workstation, it is possible to map millions of voxels within seconds. In
a proof-of-concept study (Goebel et al., 2022), our approach was used to map pRFs
in real-time, followed by their inversion for reconstructing imagined stimuli. In terms
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of estimating the pRFs and their parameters, we validate our approach on both sim-
ulated data (with ground-truth) and empirical data. We get excellent correspondence
between the estimated and the ground-truth quantities. On empirical data, we observe
our model approximates the true BOLD data very well. Since we do not have ground
truth pRFs, we compare our estimations with a standard grid-search approach (Du-
moulin and Wandell, 2008; Senden et al., 2014). We again find excellent correspon-
dence between the locations of the pRFs, but considerable discrepancy between their
sizes. We also report that our approach poorly estimates the pRF sizes for the pRFs lo-
cated at the edge of the visual field. This has been suggested to be a general drawback of
linear models (Lage-Castellanos et al., 2020), which grid-search based methods do not
suffer from.

Connective Field Modelling

A connective field map is a monstrous voxel-by-voxel map, when compared to pRF’s
voxel-by-pixel. On top of that, unifying pRFs and CFs makes it a much harder task. We
use aDMDc framework, which estimates a reduced order model of CFs, which reduces
the computational load. We, again, hash-encode the stimulus, which further reduces
the computational load. The extent to which the CF model can be reduced depends on
the truncation rank of the Singular Value Decomposition (SVD). Although data-driven
methods like the Gavish-Donoho threshold (Donoho and Gavish, 2013) exist, we in-
vestigate the effect truncation rank in context of CFs, pRFs and different connectivity
scenarios. We observed that the best estimating truncation rank is much higher than
Gavish-Donoho threshold. However, if we impose the constraint of rank (to improve
computational efficieny), we observed that the Gavish-Donoho threhsold is indeed an
optimal candidate.

We first validate our approach on simulated the where we observe excellent corre-
spondence between predicted BOLD timecourse and ground-truth BOLD timecourse.
We also observe good correspondence (compared to a baseline) between estimated and
ground-truth CFs, pRFs and pRF parameters. On empirical data, we not only out-
perform the pRF-only model, but also observe an excellent approximation of BOLD
timecourses (compared to a baseline).

We further, use DMD’s ability to disentangle spatio-temporal properties of a dynam-
ical system to compare the processes of mental imagery and perception. To that extent,
we did find very similar CF representations between mental imagery and perception.
However, the spatio-temporal dynamics were largely found to be arbitrary.
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%+ S.4. FUTURE CONSIDERATIONS AND REC-
OMMENDATIONS

No scientific method can be perfect. In principle, one method cannot be better than
the other, it can only be advantageous in its context. Given the plethora of methods
proposed, discussed and compared, the question arises: When to use which method ?

When it comes to pRF mapping, the fast method proposed here is a good general-
purpose method. If online estimation of pRFs and their parameters is required, the
gradient-descent based method should be used. Otherwise, the ridge regression method
should be used, since it is a bit faster than grandient-descent. However, if the priority
is reliably estimating the size of pRFs (especially towards the edge of the visual field), a
grid-search based method is recommended. If the research design demands excellent ap-
proximation or prediction of the BOLD timecourses, aDMDc based method is better
for estimation of pRFs. Finally, in case the pRFs need to be strictly Gaussians, grid-
search methods should be used.

For connective field modelling, it is difficult to directly compare aDMDc based model
and other proposed models (such as: Heinzle et al., 2011; Haak et al., 2013; Invernizzi
etal., 2022) for two reasons. 1) aDMDc based model forms a system of (algebraic) dif-
ferential equations and other models assume a linear algebraic model, missing the time-
delay component. 2) These non-differential models do not consider stimulus-driven
pRFs in the mapping. If a computationally efficient and/or unified model is preferred,
aDMDc based model is indeed better. In terms of approximating the BOLD signal,
we recommend comparing different models on the same dataset and then making an
informed decision about which model to use. For a fair comparison and to discard
stimulus-driven activity, it is recommended that the data should be generated from a
task that does not involve a stimulus. In case DMD or aDMDc based method is chosen,
for general-purpose, we recommend using the Gavish-Donoho threshold (Donoho and
Gavish, 2013), since it is optimal candidate. However, for specific cases, we recommend
using Bayesian Optimization to determine the best threshold, for a specific function.

aDMDc is not limited to the visual cortex or fMRI. It can be conveniently used for
other brain regions, different stimuli and different acquisition techniques such as Elec-
troencephalogram (EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG)
etc. Itis also important to consider the spatial and temporal resolution of the data acqui-
sition technique for extracting spatio-temporal dynamics using DMD based methods.
Lastly, it is important to consider the causalities with any mapping techniques. Fit-
ting the data faithfully does not always ensure meaningful mapping. A model can fit
the data excellently but might still have misleading mappings. Linear mapping meth-
ods, are often prone to spurious causalities. In the context of this work, there is always
a possibility of having ghost pRFs and CFs. These spurious connections often occur

~ 77 ~



Chapter 5 Section 5.4

due to indirect causalities. Techniques for detecting indirect causality such as Partial
Cross Mapping (Leng et al., 2020) do exist. However, these techniques are suitable for
very small number of variables and scale very poorly with large number of variables (in
our case, number of voxels and pixels). Scaling these causality-detecting methods re-
mains an open research question that should be considered to improve the faithfulness

of mapping.
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§ APPENDIX TO CHAPTER 2

+ A.l.  Hyperparameter sharing between gradient descent and
ridge regression

Here we show that, under reasonable assumptions, the learning rate for gradient de-
scent and the regularization parameter in ridge regression are inversely related. In a
real-time setting, each iteration of online gradient descent corresponds to observing
a single data point (time volume). Alternatively, one might consider performing an of-
fline gradient descent with a single iteration where a single batch contains the entire
dataset. That s, referring to equation 2.8,n = 1 and n — 1 = 0. If we assume that we
initialize 0y < 0, where 0 is the optimal solution, then we get:

0 =no’ B (A1)

And from equtaion 2.5, we have:

0= (6"p+ )" ¢"B (A.2)
For the case that A = % and that \ is sufficiently large such that TP + N\ ~ M\,

n®'B ~ (T® + A1) '®TB (A.3)

Thus, if weuse A = L witha sufficiently large A, ridge regression and online gradient
descent yield similar results.

# A.2. Effect of hyperparameters on mapping procedure

The set of hyperparameters involved in the mapping procedure are learning rate (or
regularization parameter), FWHM of hashed Gaussians and shrinkage. Note that we
do not address learning rate and regularization parameter separately since we assume
them to be the inverse of each other (refer to A.1). For all the experiments reported in
this paper, we use the same set of hyperparameters (except for projecting cortical activity

back into the visual field, which benefits from slightly higher shrinkage).
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In order to understand how the choice of hyperparameters can affect receptive field
mapping, we fine-tune them by minimizing an objective function using Bayesian Op-
timization. Bayesian Optimization enables us to visualize the model mean (estimated
objective function surface). For the objective (or loss) function we use Jaccard Distance

which can be defined as:

> min(ws, ;)
> max (g, i)

In figure A.1, we present objective function models of two cases: A.la where we keep

fip(X,Y) =1~ (A.4)

shrinkage constant and A.1b where keep learning rate constant. It can be seen from fig-
ure A.la that the mapping procedure is not very sensitive to learning rate. However, for
the relation proved in A.3 to hold true, we recommend using a small value of learning
rate (< 1). Shrinkage does not have any effect on mapping itself, since it is used after the
mapping procedure to remove abnormal pixels surrounding the receptive fields. Using
a large value of shrinkage will reduce the size of the receptive field. FWHM, however,
has a direct effect on the mapping procedure. Figure A.2 shows how a combination
of FWHM and shrinkage affect the shape of the mapped receptive fields. Using a large
FWHM would result in a large overlap between the stimulus and hashed Gaussians,
thereby over-encoding the presence of the stimulus. As a result, the mapping proce-
dure would overestimate the size of the receptive fields. This effect is clear from figure
A.2, where we visually compare the receptive fields (for the same voxel) obtained using
different values of FWHM. The shrinkage and FWHM have an opposite effect on the
receptive fields. Hence it is important to use a balanced choice of FWHM and shrink-
age in order to obtain optimal receptive fields.
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# A.3. Supplementary Figures and Tables

a) Objective function model b) Objective function model
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Figure A.1.: Estimated objective function model for a) the learning rate and the FWHM (the shrinkage
was set to 6 b) the shrinkage and FWHM (the learning rate was set to 7 = 0.1. The hyperparameters
were optimized for Jaccard Distance between mapped receptive fields and ground-truth receptive fields
based on 3T-like simulated data. The optimization was performed using Bayesian Optimization. The
optimization was stopped after 40 evaluations.
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Figure A.2.: The effect of FWHM of hashed Gaussians on mapped receptive fields. The receptive field on
the top left is the ground-truth receptive field based on 3T-like simulated data. The rest of the receptive
fields were mapped using different FWHMs in the range [0.1, 1]. The learning rate was kept constant to
0.1 and shrinkage was not used. Note that, we use FWHM relative to resolution of stimulus space and
hence it is restricted to the range [0, 1].
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Figure A.3.: Estimated vs ground-truth pRF parameters for a) f—pRFridge and b) GS-pRF. A line with a
slope of 1is included as a reference. The voxels lying beyond the radius of measured visual field (maximum
eccentricity) were ignored for estimating pRF parameters.
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Table A.1.: Mean correlation coefficients between predicted and acquired BOLD signal obtained from a)

(b)

3T and b) 7T empirical data using top 1% voxels obtained from GS-pRF.
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Figure A.4.: Scatter plots between the pRF parameters (location and size) estimated using f—pRF,idge and
the grid search method on 3 Tesla empirical data. The subfigures a and b correspond to subjects 02 and
subject 03 respectively.

Subject | Overlap

S01 4412 %
- S02 | 52.19%
Subject | Overlap 503 80.49 %
S01 72.08% S04 57.23%
S02 7156 %  SO5 80.45 %
S03 73.04%  S06 81.06 %

(@) (b)

Table A.2.: Percentage overlap between top 1% voxels obtained from GS-pRF and f-pRFigg. from a) 3T
and b) 7T empirical data
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Figure A.5.: Comparison of receptive field size estimates and ground truth for 7T empirical data. a) Sizes
estimated using our fast procedure vs ground truth sizes. b) Sizes estimated using grid-search vs ground
truth sizes. ¢) Sizes estimated using our fast procedure vs grid-search estimates.
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Figure A.6.: Eccentricity and polar angle maps in both hemispheres of S0S in the 7T dataset. The upper
row shows maps obtained using our fast parameter estimation procedure whereas the bottom row shows
maps obtained using the GS-pRF procedure.
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# IMmracT

functional Magnetic Resonance Imaging (fMRI) has revolutionized the way researchers
examine the brain. However, the high (or ultra high) resolution of fMRI comes at a cost
ofa colossal amount of data. Even though computers are getting more powerful and ac-
cessible, analyzing fMRI data can still be computationally heavy and time consuming.
The main objective of this work was to provide an arsenal of computational methods,
which individually or together can reduce the computational burden. Although these
methods were specifically developed to model population receptive fields (pRFs) and
connective fields (CFs); they can be conveniently extended to other domains.

In Chapter 2, we demonstrate that it is now possible to faithfully map pRFs of mil-
lions of voxels in the order of seconds. This can indeed save researchers a lot of their
precious time. Such a fast mapping was made possible by hash-encoding (Sutton and
Barto, 2018) the stimulus space, which tremendously reduces memory requirements.
Linear models are widely used for their simplicity and interpretability. The linear mod-
els with a large and relatively sparse predictor space, can benefit from hash-encoding
to accelerate the linear mapping. A drastic reduction in memory requirements has an
added benefit of mapping the pRFsin an online fashion (real-time pRF mapping). This
can largely impact development of brain-computer interfaces (BCIs) for helping locked-
in patients. In a recent proof-of-concept work by Goebel et al. (2022), it was demon-
strated that such an online pRF mapping can be used to reconstruct imaged letters in
real-time. This can pave a way for developing a letter speller BCI which can, in real-
time, reconstruct imagined letters and display them back to the participants, in MRI
scanners, as feedback.

In Chapter 3, we propose a novel method for modelling CFs, which are a natural
extension to the pRFs. In this chapter, we not only tackle the computational ineffi-
ciency of CF modelling, but also propose a unified CF and pRF model. To achieve this,
we combine algebraic Dynamic Mode Decomposition (aDMDc; Fonzi et al., 2020),
which stems from the field of fluid dynamics, with the hash-encoding of the stimulus
space (Bhat et al,, 2021). This goes to show that these methods are very generalized
and can be used to tackle a variety of different problems ranging from fluid mechanics
to computational neuroimaging. We further, in Chapter 4, use DMD to investigate

~ 99 ~



IMrACT

the similarities and differences between mental imagery and perception tasks. In this
preliminary work we observed spatio-temporal characteristics of mental imagery and
perception, to be largely arbitrary. However, we observed very similar aggregated CFs
between the two tasks and subjects. The DMD-based methods can indeed enrich how
we study not just vision, but also the brain as a dynamical system.
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