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Doudou Gong∗ Bas Dietzenbacher† Hans Peters‡
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Abstract

This paper introduces the new class of one-bound core games, where the core can be

described by either a lower bound or an upper bound on the payoffs of the players, named

lower bound core games and upper bound core games, respectively. We study the relation of

the class of one-bound core games with several other classes of games and characterize the

new class by the structure of the core and in terms of Davis-Maschler reduced games. We also

provide explicit expressions and axiomatic characterizations of the nucleolus for one-bound

core games, and show that the nucleolus coincides with the Shapley value when these games

are convex.

Keywords: one-bound core games, lower bound core games, upper bound core games, core,

nucleolus

JEL classification: C71

1 Introduction

In a cooperative game with transferable utility, coalitions of cooperating players are able to attain

joint revenues. A characteristic function models this feature by assigning to each possible coalition

a real number, called worth, reflecting these joint revenues. Depending on the structure of the

characteristic function, different classes of games arise. For a class of games, a main issue in

each game is how to allocate the worth of the grand coalition, consisting of all players in the

game. Solution concepts assign to each game in a certain class such an allocation. A central

benchmark for evaluating solutions is the core, which equals the set of allocations that for each

coalition assign in total at least the worth to its members. The nucleolus (cf. Schmeidler 1969) is

a particular solution that assigns to each game with a nonempty core the unique core allocation

that lexicographically minimizes the maximal excesses over all coalitions.

∗School of Economics and Management, Nanjing University of Science and Technology, Nanjing, China.
E-mail: d.gong@njust.edu.cn

†Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands.
Corresponding author. E-mail: b.dietzenbacher@maastrichtuniversity.nl

‡Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands.
E-mail: h.peters@maastrichtuniversity.nl

1



In this paper, we introduce a new class of cooperative games, called one-bound core games,

where the core can be described by either a lower bound or an upper bound on the payoffs of

the players. A game is a lower bound core game if the core can be described by a lower bound

on the payoffs of the players, and an upper bound core game if the core can be described by

an upper bound on the payoffs of the players. Both lower bound core games and upper bound

core games are specific two-bound core games (cf. Gong et al. 2022b), where the core can be

described by a lower bound and an upper bound on the payoffs of the players. Moreover, upper

bound core games generalize 1-convex games (cf. Driessen 1985), where the worth of the grand

coalition is large enough for each nonempty coalition to cover its worth while allocating to all

non-members their marginal contributions to the grand coalition. We provide a necessary and

sufficient condition for one-bound core games to be convex (cf. Shapley 1971).

We characterize one-bound core games by the structure of the core. A game with nonempty

core is a lower bound core game if and only if each player obtains its maximal payoff within the

core exactly when the other players obtain their minimal payoffs within the core, or equivalently,

in each extreme point of the core precisely one player obtains its maximal payoff within the

core and all other players obtain their minimal payoffs within the core. Similarly, a game with

nonempty core is an upper bound core game if and only if each player obtains its minimal payoff

within the core exactly when the other players obtain their maximal payoffs within the core, or

equivalently, in each extreme point of the core precisely one player obtains its minimal payoff

within the core and all other players obtain their maximal payoffs within the core. We show that

a game with nonempty core is a lower bound core game if and only if all Davis-Maschler reduced

games with respect to core allocations have the same lower exact core bound. Similarly, a game

with nonempty core is an upper bound core game if and only if all Davis-Maschler reduced games

with respect to core allocations have the same upper exact core bound.

We also study the nucleolus for one-bound core games. We show that it is the unique pre-

imputation that is a convex combination of the two exact core bounds. We provide axiomatic

characterizations based on new properties that require that the difference between the allocation

and the minimal payoff or maximal payoff within the core is equal for all players. For convex

one-bound core games, the nucleolus coincides with the Shapley value (cf. Shapley 1953), another

well-known solution for cooperative games.

The remainder of this paper is organized as follows. Section 2 provides preliminary definitions

and notation for cooperative games. Section 3 introduces and studies one-bound core games.

Section 4 analyzes the nucleolus for one-bound core games. Section 5 concludes.
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2 Preliminaries

Let N be a nonempty and finite set of players and let 2N = {S | S ⊆ N} be the set of all

coalitions. For all x ∈ RN , we denote xS = (xi)i∈S for all S ∈ 2N \ {∅}. For all x, y ∈ RN , we

denote x ≤ y if xi ≤ yi for all i ∈ N , x ≥ y if xi ≥ yi for all i ∈ N , and x+ y = (xi + yi)i∈N .

A (transferable utility) game is a pair (N, v), where v : 2N → R assigns to each coalition

S ∈ 2N its worth v(S) ∈ R such that v(∅) = 0. The class of all games with player set N is

denoted by ΓN . For simplicity, we write v ∈ ΓN rather than (N, v) ∈ ΓN .

For each game v ∈ ΓN , the set of pre-imputations X(v) ⊆ RN is given by

X(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N)

}
,

and the core C(v) ⊆ RN is given by

C(v) =

{
x ∈ X(v)

∣∣∣∣∣ ∀S ∈ 2N :
∑
i∈S

xi ≥ v(S)

}
.

A game v ∈ ΓN is balanced (cf. Bondareva 1963 and Shapley 1967) if and only if C(v) ̸= ∅. The
class of all balanced games with player set N is denoted by ΓN

b .

For each game v ∈ ΓN
b , the lower exact core bound l∗(v) ∈ RN (cf. Bondareva and Driessen

1994) is given by

l∗i (v) = min
x∈C(v)

xi for all i ∈ N,

and the upper exact core bound u∗(v) ∈ RN (cf. Bondareva and Driessen 1994) is given by

u∗
i (v) = max

x∈C(v)
xi for all i ∈ N.

A game v ∈ ΓN
b is a two-bound core game (cf. Gong et al. 2022b) if there exist l, u ∈ RN

such that C(v) = {x ∈ X(v) | l ≤ x ≤ u}. Gong et al. (2022b) showed that a game v ∈ ΓN
b is a

two-bound core game if and only if

C(v) = {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)} .

The class of all two-bound core games with player set N is denoted by ΓN
t . Gong et al. (2022b)

showed that ΓN
t = ΓN

b if and only if |N | ≤ 3.

A game v ∈ ΓN
b is a 1-convex game (cf. Driessen 1985) if

v(S) +
∑

i∈N\S

(v(N)− v(N \ {i})) ≤ v(N) for all S ∈ 2N \ {∅}.

The class of all 1-convex games with player set N is denoted by ΓN
1c.
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A game v ∈ ΓN is convex (cf. Shapley 1971) if and only if

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}.

The class of all convex games with player set N is denoted by ΓN
c . Shapley (1971) showed that

ΓN
c ⊆ ΓN

b , and ΓN
c = ΓN

b if and only if |N | ≤ 2. Moreover, for each v ∈ ΓN
c , l∗i (v) = v({i}) and

u∗
i (v) = v(N)− v(N \ {i}) for all i ∈ N .

A solution φ on a domain of games assigns to each game v in this domain an allocation φ(v) ∈
X(v). The nucleolus η (cf. Schmeidler 1969) is the solution that assigns to each game v ∈ ΓN

b

the allocation x ∈ X(v) that lexicographically minimizes the maximal excesses v(S) −
∑

i∈S xi

over all S ∈ 2N \ {∅}. Clearly, η(v) ∈ C(v) for all v ∈ ΓN
b . Gong et al. (2022b) showed that the

nucleolus of a two-bound core game v ∈ ΓN
t is for each i ∈ N given by

ηi(v) =

l∗i (v) + min
{

1
2 (u

∗
i (v)− l∗i (v)), λ

}
if 1

2

∑
i∈N (u∗

i (v) + l∗i (v)) ≥ v(N);

l∗i (v) + max
{

1
2 (u

∗
i (v)− l∗i (v)), u

∗
i (v)− l∗i (v)− λ

}
if 1

2

∑
i∈N (u∗

i (v) + l∗i (v)) ≤ v(N),

where λ ∈ R is such that
∑

i∈N ηi(v) = v(N). The Shapley value ϕ (cf. Shapley 1953) is the

solution that assigns to each game v ∈ ΓN the allocation given by

ϕi(v) =
∑

S∈2N :i/∈S

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) for all i ∈ N.

Shapley (1971) showed that ϕ(v) ∈ C(v) for all v ∈ ΓN
c .

3 One-bound core games

In this section, we introduce the new class of one-bound core games, where the core can be

described by either a lower bound or an upper bound on the payoffs of the players. A game is a

lower bound core game if the core can be described by a lower bound on the payoffs of the players,

and an upper bound core game if the core can be described by an upper bound on the payoffs of

the players.

Definition 1

A game v ∈ ΓN
b is a lower bound core game if there exists l ∈ RN such that

C(v) = {x ∈ X(v) | l ≤ x} .

A game v ∈ ΓN
b is an upper bound core game if there exists u ∈ RN such that

C(v) = {x ∈ X(v) | x ≤ u} .

A game is a one-bound core game if it is a lower bound core game or an upper bound core game.
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The class of all lower bound core games with player set N is denoted by ΓN
l . The class of all

upper bound core games with player set N is denoted by ΓN
u . It turns out that each lower bound

core game and each upper bound core game can be described by the lower exact core bound and

the upper exact core bound, respectively.

Lemma 1

(i) A game v ∈ ΓN
b is a lower bound core game if and only if C(v) = {x ∈ X(v) | l∗(v) ≤ x}.

(ii) A game v ∈ ΓN
b is an upper bound core game if and only if C(v) = {x ∈ X(v) | x ≤ u∗(v)}.

Proof. (i) The if-part follows directly from the definition of lower bound core games. For the

only-if part, assume that C(v) = {x ∈ X(v) | l ≤ x} for some l ∈ RN . Then l ≤ l∗(v), which

implies that

C(v) ⊆ {x ∈ X(v) | l∗(v) ≤ x} ⊆ {x ∈ X(v) | l ≤ x} = C(v).

Hence, C(v) = {x ∈ X(v) | l∗(v) ≤ x}.
(ii) The proof is analogous to the proof of (i).

All lower bound core games with at most two players are upper bound core games, and all

upper bound core games with at most two players are lower bound core games, but this does not

hold for more players.

Theorem 1

ΓN
l = ΓN

u if and only if |N | ≤ 2.

Proof. Assume that |N | ≤ 2. Let v ∈ ΓN
b . Then l∗i (v) = v({i}) and u∗

i (v) = v(N) − v(N \ {i})
for all i ∈ N , which implies that C(v) = {x ∈ X(v) | l∗(v) ≤ x} = {x ∈ X(v) | x ≤ u∗(v)}, so
v ∈ ΓN

l ∩ ΓN
u . Hence, ΓN

l = ΓN
u = ΓN

b .

Let v ∈ ΓN
b with |N | ≥ 3 be defined by

v(S) =

1 if S = N ;

0 otherwise.

Then l∗i (v) = 0 and u∗
i (v) = 1 for all i ∈ N . This implies that C(v) = {x ∈ X(v) | l∗(v) ≤ x} and

C(v) ̸= {x ∈ X(v) | x ≤ u∗(v)}. Hence, v ∈ ΓN
l \ ΓN

u .

Let v ∈ ΓN
b with |N | ≥ 3 be defined by

v(S) =


|N | − 1 if S = N ;

|N | − 2 if |S| = |N | − 1;

0 otherwise.

Then l∗i (v) = 0 and u∗
i (v) = 1 for all i ∈ N . This implies that C(v) ̸= {x ∈ X(v) | l∗(v) ≤ x} and

C(v) = {x ∈ X(v) | x ≤ u∗(v)}. Hence, v ∈ ΓN
u \ ΓN

l .
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As the following theorem shows, all 1-convex games are upper bound core games, and all one-

bound core games are two-bound core games. Strict inclusion depends on the number of players

in the game.

Theorem 2

(i) If |N | = 1, then ΓN
1c = ΓN

l = ΓN
u = ΓN

t = ΓN
b = ΓN .

(ii) If |N | = 2, then ΓN
1c = ΓN

l = ΓN
u = ΓN

t = ΓN
b ⊊ ΓN .

(iii) If |N | = 3, then ΓN
l ⊊ ΓN

t = ΓN
b ⊊ ΓN and ΓN

1c ⊊ ΓN
u ⊊ ΓN

t = ΓN
b ⊊ ΓN .

(iv) If |N | ≥ 4, then ΓN
l ⊊ ΓN

t ⊊ ΓN
b ⊊ ΓN and ΓN

1c ⊊ ΓN
u ⊊ ΓN

t ⊊ ΓN
b ⊊ ΓN .

Proof. First, we show that ΓN
l ⊆ ΓN

t ⊆ ΓN
b ⊆ ΓN and ΓN

1c ⊆ ΓN
u ⊆ ΓN

t ⊆ ΓN
b ⊆ ΓN .

Let v ∈ ΓN
l . Then C(v) ⊆ {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)} ⊆ {x ∈ X(v) | l∗(v) ≤ x} = C(v),

so C(v) = {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)}. Hence, v ∈ ΓN
t .

Let v ∈ ΓN
1c. If x ∈ X(v) and x ≤ u∗(v), then for each S ∈ 2N \ {∅},∑

i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S

xi ≥ v(N)−
∑

i∈N\S

u∗
i (v) ≥ v(N)−

∑
i∈N\S

(v(N)− v(N \ {i})) ≥ v(S),

so x ∈ C(v). This implies that C(v) = {x ∈ X(v) | x ≤ u∗(v)}. Hence, v ∈ ΓN
u .

Let v ∈ ΓN
u . Then C(v) ⊆ {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)} ⊆ {x ∈ X(v) | x ≤ u∗(v)} = C(v),

so C(v) = {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)}. Hence, v ∈ ΓN
t .

(i) & (ii) Assume that |N | ∈ {1, 2}. Clearly, ΓN
b = ΓN if and only if |N | = 1. Let v ∈ ΓN

b .

Then for each S ∈ 2N \ {∅},

v(S) +
∑

i∈N\S

(v(N)− v(N \ {i})) = v(N).

This implies that v ∈ ΓN
1c. Hence, ΓN

1c = ΓN
l = ΓN

u = ΓN
t = ΓN

b .

(iii) & (iv) Assume that |N | ≥ 3. Let v ∈ ΓN
u be defined by

v(S) =

|S| if |S| ∈ {1, |N |};

0 otherwise.

Then v(N)− v(N \ {i}) = |N | for all i ∈ N . This implies that for each S ∈ 2N with |S| = 1,

v(S) +
∑

i∈N\S

(v(N)− v(N \ {i})) = 1 + (|N | − 1) |N | > |N | = v(N),

so v /∈ ΓN
1c. Hence, ΓN

1c ⊊ ΓN
u .
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Let v ∈ ΓN
t be defined by

v(S) =


3 if S = N ;

1 if |S| = |N | − 1;

0 otherwise.

Then l∗i (v) = 0 and u∗
i (v) = 2 for all i ∈ N . This implies that C(v) ̸= {x ∈ X(v) | l∗(v) ≤ x} and

C(v) ̸= {x ∈ X(v) | x ≤ u∗(v)}, so v /∈ ΓN
l ∪ ΓN

u . Hence, ΓN
l ⊊ ΓN

t and ΓN
u ⊊ ΓN

t .

As the following example shows, one-bound core games are not necessarily convex, and convex

games are not necessarily one-bound core games.

Example 1

Let v ∈ ΓN
l ∪ ΓN

u with |N | ≥ 3 be defined by

v(S) =

|S| if |S| ∈ {1, |N |};

0 otherwise.

Then v({i})− v(∅) = 1 > −1 = v({i, j})− v({j}) for all distinct i, j ∈ N , so v /∈ ΓN
c .

Now, let v ∈ ΓN
c with |N | ≥ 3 be defined by

v(S) =


3 if S = N ;

1 if |S| = |N | − 1;

0 otherwise.

Then l∗i (v) = 0 and u∗
i (v) = 2 for all i ∈ N , which implies that C(v) ̸= {x ∈ X(v) | l∗(v) ≤ x}

and C(v) ̸= {x ∈ X(v) | x ≤ u∗(v)}, so v /∈ ΓN
l ∪ ΓN

u . △

We provide a necessary and sufficient condition for one-bound core games to be convex.

Theorem 3

(i) A lower bound core game v ∈ ΓN
l is convex if and only if∑

i∈S

l∗i (v) = v(S) for all S ∈ 2N \ {N}.

(ii) An upper bound core game v ∈ ΓN
u is convex if and only if∑

i∈N\S

u∗
i (v) = v(N)− v(S) for all S ∈ 2N \ {∅}.

Proof. (i) Let v ∈ ΓN
l . Assume that

∑
i∈S l∗i (v) = v(S) for all S ∈ 2N \ {N}. Let i ∈ N and let

S ⊆ N \ {i}. If S = N \ {i}, then

v(S ∪ {i})− v(S) = v(N)− v(N \ {i}) = v(N)−
∑

j∈N\{i}

l∗j (v) ≥
∑
j∈N

l∗j (v)−
∑

j∈N\{i}

l∗j (v) = l∗i (v).
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If S ̸= N \ {i}, then v(S ∪ {i})− v(S) =
∑

j∈S∪{i} l
∗
j (v)−

∑
j∈S l∗j (v) = l∗i (v). This implies that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N \ {i}. Hence, v ∈ ΓN
c .

Let v ∈ ΓN
l . Then (v(N)−

∑
j∈N\{i} l

∗
j (v), l

∗
N\{i}(v)) ∈ C(v) for all i ∈ N , which implies that∑

i∈S l∗i (v) ≥ v(S) for all S ∈ 2N \ {N}. Assume that v ∈ ΓN
c . Let S ∈ 2N \ {∅, N}. Denote

S = {i1, . . . , i|S|}. Then

∑
i∈S

l∗i (v) =
∑
i∈S

v({i}) =
|S|∑
k=1

(v({ik})− v(∅)) ≤
|S|∑
k=1

(v({i1, . . . , ik})− v({i1, . . . , ik−1})) = v(S),

where the first equality and the inequality follow from convexity. Hence,
∑

i∈S l∗i (v) = v(S) for

all S ∈ 2N \ {N}.
(ii) Let v ∈ ΓN

u . Assume that
∑

i∈N\S u∗
i (v) = v(N) − v(S) for all S ∈ 2N \ {∅}. Let i ∈ N

and let S ⊆ N \ {i}. If S = ∅, then

v(S ∪ {i})− v(S) = v({i}) = v(N)−
∑

j∈N\{i}

u∗
j (v) ≤

∑
j∈N

u∗
j (v)−

∑
j∈N\{i}

u∗
j (v) = u∗

i (v).

If S ̸= ∅, then

v(S ∪ {i})− v(S) =

v(N)−
∑

j∈N\(S∪{i})

u∗
j (v)

−

v(N)−
∑

j∈N\S

u∗
j (v)

 = u∗
i (v).

This implies that v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N \ {i}. Hence, v ∈ ΓN
c .

Let v ∈ ΓN
u . Then (v(N) −

∑
j∈N\{i} u

∗
j (v), u

∗
N\{i}(v)) ∈ C(v) for all i ∈ N , which implies

that
∑

i∈N\S u∗
i (v) ≤ v(N)−v(S) for all S ∈ 2N \{∅}. Assume that v ∈ ΓN

c . Let S ∈ 2N \{∅, N}.
Denote N \ S = {i1, . . . , i|N\S|}. Then∑

i∈N\S

u∗
i (v) =

∑
i∈N\S

(v(N)− v(N \ {i}))

=

|N\S|∑
k=1

(v(N)− v(N \ {ik}))

=

|N\S|∑
k=1

(v((N \ {ik}) ∪ {ik})− v(N \ {ik}))

≥
|N\S|∑
k=1

(v((N \ {i1, . . . , ik}) ∪ {ik})− v(N \ {i1, . . . , ik}))

= v(N)− v(N \ (N \ S))

= v(N)− v(S),

where the first equality and the inequality follow from convexity. Hence,
∑

i∈N\S u∗
i (v) = v(N)−

v(S) for all S ∈ 2N \ {∅}.
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One-bound core games are characterized by the structure of the core. A balanced game is

a lower bound core game if and only if each player obtains its maximal payoff within the core

exactly when the other players obtain their minimal payoffs within the core, or equivalently, in

each extreme point of the core precisely one player obtains its maximal payoff within the core

and all other players obtain their minimal payoffs within the core. Similarly, a balanced game is

an upper bound core game if and only if each player obtains its minimal payoff within the core

exactly when the other players obtain their maximal payoffs within the core, or equivalently, in

each extreme point of the core precisely one player obtains its minimal payoff within the core and

all other players obtain their maximal payoffs within the core. These observations are captured

by the following theorem.

Theorem 4

(i) A game v ∈ ΓN
b is a lower bound core game if and only if u∗

i (v) +
∑

j∈N\{i} l
∗
j (v) = v(N)

for all i ∈ N , or equivalently, C(v) = conv{(u∗
i (v), l

∗
N\{i}(v)) | i ∈ N}.1

(ii) A game v ∈ ΓN
b is an upper bound core game if and only if l∗i (v) +

∑
j∈N\{i} u

∗
j (v) = v(N)

for all i ∈ N , or equivalently, C(v) = conv{(l∗i (v), u∗
N\{i}(v)) | i ∈ N}.

Proof. (i) Assume that v ∈ ΓN
l . Let i ∈ N . For each x ∈ C(v) with xi = u∗

i (v),

u∗
i (v) = xi = v(N)−

∑
j∈N\{i}

xj ≤ v(N)−
∑

j∈N\{i}

l∗j (v).

For x ∈ RN with xi = v(N)−
∑

j∈N\{i} l
∗
j (v) and xj = l∗j (v) for all j ∈ N \{i}, we have x ∈ X(v)

and l∗(v) ≤ x, which implies that x ∈ C(v), so u∗
i (v) ≥ xi = v(N) −

∑
j∈N\{i} l

∗
j (v). Hence,

u∗
i (v) = v(N)−

∑
j∈N\{i} l

∗
j (v) for all i ∈ N .

For each i ∈ N and each x ∈ C(v) such that xi = u∗
i (v), we have xj = l∗j (v) for all

j ∈ N \ {i}, which implies that (u∗
i (v), l

∗
N\{i}(v)) ∈ C(v). Convexity of the core implies that

conv{(u∗
i (v), l

∗
N\{i}(v)) | i ∈ N} ⊆ C(v). Let x ∈ C(v). Define λ ∈ [0, 1]N by

λi =
xi − l∗i (v)

v(N)−
∑

j∈N l∗j (v)
for all i ∈ N.

Then
∑

i∈N λi = 1 and x =
∑

i∈N λi(u
∗
i (v), l

∗
N\{i}(v)), so x ∈ conv{(u∗

i (v), l
∗
N\{i}(v)) | i ∈ N}.

Hence, C(v) = conv{(u∗
i (v), l

∗
N\{i}(v)) | i ∈ N}.

Let v ∈ ΓN
b . Assume that C(v) = conv{(u∗

i (v), l
∗
N\{i}(v)) | i ∈ N}. Then

∑
i∈S l∗i (v) ≥ v(S)

for all S ∈ 2N \ {N}. Let x ∈ X(v) be such that l∗(v) ≤ x. For each S ∈ 2N \ {N},∑
i∈S

xi ≥
∑
i∈S

l∗i (v) ≥ v(S),

which implies that x ∈ C(v), so C(v) = {x ∈ X(v) | l∗(v) ≤ x}. Hence, v ∈ ΓN
l .

1The convex hull conv(Y ) of a set Y ⊆ RN is the smallest convex set containing Y .
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(ii) Assume that v ∈ ΓN
u . Let i ∈ N . For each x ∈ C(v) with x = l∗i (v),

l∗i (v) = xi = v(N)−
∑

j∈N\{i}

xj ≥ v(N)−
∑

j∈N\{i}

u∗
j (v).

For x ∈ RN with xi = v(N)−
∑

j∈N\{i} u
∗
j (v) and xj = u∗

j (v) for all j ∈ N \{i}, we have x ∈ X(v)

and x ≤ u∗(v), which implies that x ∈ C(v), so l∗i (v) ≤ xi = v(N) −
∑

j∈N\{i} u
∗
j (v). Hence,

l∗i (v) = v(N)−
∑

j∈N\{i} u
∗
j (v) for all i ∈ N .

For each i ∈ N and each x ∈ C(v) such that xi = l∗i (v), we have xj = u∗
j (v) for all

j ∈ N \ {i}, which implies that (l∗i (v), u
∗
N\{i}(v)) ∈ C(v). Convexity of the core implies that

conv{(l∗i (v), u∗
N\{i}(v)) | i ∈ N} ⊆ C(v). Let x ∈ C(v). Define λ ∈ [0, 1]N by

λi =
u∗
i (v)− xi∑

j∈N u∗
j (v)− v(N)

for all i ∈ N.

Then
∑

i∈N λi = 1 and x =
∑

i∈N λi(l
∗
i (v), u

∗
N\{i}(v)), so x ∈ conv{(l∗i (v), u∗

N\{i}(v)) | i ∈ N}.
Hence, C(v) = conv{(l∗i (v), u∗

N\{i}(v)) | i ∈ N}.
Let v ∈ ΓN

b . Assume that C(v) = conv{(l∗i (v), u∗
N\{i}(v)) | i ∈ N}. Then v(N)−

∑
i∈N\S u∗

i (v) ≥
v(S) for all S ∈ 2N \ {∅}. Let x ∈ X(v) be such that x ≤ u∗(v). For each S ∈ 2N \ {∅},∑

i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S

xi = v(N)−
∑

i∈N\S

xi ≥ v(N)−
∑

i∈N\S

u∗
i (v) ≥ v(S),

which implies that x ∈ C(v), so C(v) = {x ∈ X(v) | x ≤ u∗(v)}. Hence, v ∈ ΓN
u .

Corollary 1

Let v ∈ ΓN
l ∪ ΓN

u . Then |C(v)| = 1 if and only if l∗i (v) = u∗
i (v) for some i ∈ N .

The reduced game (cf. Davis and Maschler 1965) of v ∈ ΓN
b on T ∈ 2N \ {∅} with respect to

x ∈ RN , denoted by vxT ∈ ΓT , is defined by

vxT (S) =


v(N)−

∑
i∈N\T xi if S = T ;

maxQ⊆N\T

{
v(S ∪Q)−

∑
i∈Q xi

}
if S ∈ 2T \ {∅, T};

0 if S = ∅.

In other words, the worth of a coalition in a reduced game is defined as the maximal remainder in

cooperation with any subgroup of players in the original game that are not present in the reduced

game. We show that a balanced game is a lower bound core game if and only if all reduced games

with respect to core allocations have the same lower exact core bound. Similarly, a balanced game

is an upper bound core game if and only if all reduced games with respect to core allocations have

the same upper exact core bound. We use the following lemma, which follows from Peleg (1986)

and Hwang and Sudhölter (2001).
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Lemma 2

Let v ∈ ΓN
b , let T ∈ 2N \ {∅}, and let x ∈ C(v). Then C(vxT ) = {y ∈ X(vxT ) | (y, xN\T ) ∈ C(v)}.

Theorem 5

(i) A game v ∈ ΓN
b is a lower bound core game if and only if l∗(vxT ) = l∗T (v) for all T ∈ 2N with

|T | ≥ 2 and all x ∈ C(v).

(ii) A game v ∈ ΓN
b is an upper bound core game if and only if u∗(vxT ) = u∗

T (v) for all T ∈ 2N

with |T | ≥ 2 and all x ∈ C(v).

Proof. (i) Let v ∈ ΓN
b . For the only-if part, assume that v ∈ ΓN

l . Let T ∈ 2N with |T | ≥ 2

and let x ∈ C(v). By Lemma 2, l∗(vxT ) ≥ l∗T (v). For each i ∈ T , define yi ∈ X(vxT ) by

yii =
∑

j∈T xj −
∑

j∈T\{i} l
∗
j (v) and yij = l∗j (v) for all j ∈ T \ {i}. For each i ∈ T ,

yii =
∑
j∈T

xj −
∑

j∈T\{i}

l∗j (v) = xi +
∑

j∈T\{i}

xj −
∑

j∈T\{i}

l∗j (v) ≥ xi ≥ l∗i (v),

which implies that l∗(v) ≤ (yi, xN\T ), so (yi, xN\T ) ∈ C(v). By Lemma 2, yi ∈ C(vxT ) for all

i ∈ T , so l∗(vxT ) ≤ l∗T (v). Hence, l∗(vxT ) = l∗T (v).

For the if-part, assume that l∗(vxT ) = l∗T (v) for all T ∈ 2N with |T | ≥ 2 and all x ∈ C(v).

If |N | ≤ 2, then v ∈ ΓN
l by Theorem 2. Suppose that |N | ≥ 3. Denote N = {1, . . . , |N |}. Let

x1 ∈ C(v) be such that x1
1 = l∗1(v). Then l∗(vx

1

N\{1}) = l∗N\{1}(v). Let x2 ∈ C(vx
1

N\{1}) be such

that x2
2 = l∗2(v

x1

N\{1}) = l∗2(v). By Lemma 2, (x2, x1
1) ∈ C(v). Moreover, l∗(v

(x2,x1
1)

N\{1,2}) = l∗N\{1,2}(v)

if |N | > 3. If |N | > 3, let x3 ∈ C(v
(x2,x1

1)

N\{1,2}) be such that x3
3 = l∗3(v

(x2,x1
1)

N\{1,2}) = l∗3(v). By Lemma 2,

(x3, x2
2, x

1
1) ∈ C(v). Continuing this reasoning, (v(N) −

∑|N |−1
i=1 l∗i (v), l

∗
{1,...,|N |−1}(v)) ∈ C(v).

This holds for all permutations, so (u∗
i (v), l

∗
N\{i}(v)) ∈ C(v) for all i ∈ N . Convexity of the core

implies that conv{(u∗
i (v), l

∗
N\{i}(v)) | i ∈ N} ⊆ C(v). Now, let x ∈ C(v). Define λ ∈ [0, 1]N by

λi =
xi − l∗i (v)

v(N)−
∑

j∈N l∗j (v)
for all i ∈ N.

Then
∑

i∈N λi = 1 and x =
∑

i∈N λi(u
∗
i (v), l

∗
N\{i}(v)), so x ∈ conv{(u∗

i (v), l
∗
N\{i}(v)) | i ∈ N}.

This implies that C(v) = conv{(u∗
i (v), l

∗
N\{i}(v)) | i ∈ N}. Hence, by Theorem 4, v ∈ ΓN

l .

(ii) Let v ∈ ΓN
b . For the only-if part, assume that v ∈ ΓN

u . Let T ∈ 2N with |T | ≥ 2 and let x ∈
C(v). Then u∗(vxT ) ≤ u∗

T (v). For each i ∈ T , define yi ∈ X(vxT ) by yii =
∑

j∈T xj−
∑

j∈T\{i} u
∗
j (v)

and yij = u∗
j (v) for all j ∈ T \ {i}. For each i ∈ T ,

yii =
∑
j∈T

xj −
∑

j∈T\{i}

u∗
j (v) = xi +

∑
j∈T\{i}

xj −
∑

j∈T\{i}

u∗
j (v) ≤ xi ≤ u∗

i (v),

which implies that (yi, xN\T ) ≤ u∗(v), so (yi, xN\T ) ∈ C(v). By Lemma 2, yi ∈ C(vxT ) for all

i ∈ T , so u∗(vxT ) ≥ u∗
T (v). Hence, u∗(vxT ) = u∗

T (v).
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For the if-part, assume that u∗(vxT ) = u∗
T (v) for all T ∈ 2N with |T | ≥ 2 and all x ∈ C(v). If

|N | ≤ 2, then v ∈ ΓN
u by Theorem 2. Suppose that |N | ≥ 3. Denote N = {1, . . . , |N |}. Let x1 ∈

C(v) be such that x1
1 = u∗

1(v). Then u∗(vx
1

N\{1}) = u∗
N\{1}(v). Let x2 ∈ C(vx

1

N\{1}) be such that

x2
2 = u∗

2(v
x1

N\{1}) = u∗
2(v). By Lemma 2, (x2, x1

1) ∈ C(v). Moreover, u∗(v
(x2,x1

1)

N\{1,2}) = u∗
N\{1,2}(v) if

|N | > 3. If |N | > 3, let x3 ∈ C(v
(x2,x1

1)

N\{1,2}) be such that x3
3 = u∗

3(v
(x2,x1

1)

N\{1,2}) = u∗
3(v). By Lemma 2,

(x3, x2
2, x

1
1) ∈ C(v). Continuing this reasoning, (v(N) −

∑|N |−1
i=1 u∗

i (v), u
∗
{1,...,|N |−1}(v)) ∈ C(v).

This holds for all permutations, so (l∗i (v), u
∗
N\{i}(v)) ∈ C(v) for all i ∈ N . Convexity of the core

implies that conv{(l∗i (v), u∗
N\{i}(v)) | i ∈ N} ⊆ C(v). Now, let x ∈ C(v). Define λ ∈ [0, 1]N by

λi =
u∗
i (v)− xi∑

j∈N u∗
j (v)− v(N)

for all i ∈ N.

Then
∑

i∈N λi = 1 and x =
∑

i∈N λi(l
∗
i (v), u

∗
N\{i}(v)), so x ∈ conv{(l∗i (v), u∗

N\{i}(v)) | i ∈ N}.
This implies that C(v) = conv{(l∗i (v), u∗

N\{i}(v)) | i ∈ N}. Hence, by Theorem 4, v ∈ ΓN
u .

4 Nucleolus

In this section, we analyze the nucleolus for one-bound core games. The nucleolus for one-bound

core games is the unique pre-imputation that is a convex combination of the lower exact core

bound and the upper exact core bound.

Theorem 6

(i) Let v ∈ ΓN
l be a lower bound core game. Then

η(v) =
1

|N |
u∗(v) +

(
1− 1

|N |

)
l∗(v).

(ii) Let v ∈ ΓN
u be an upper bound core game. Then

η(v) =
1

|N |
l∗(v) +

(
1− 1

|N |

)
u∗(v).

Proof. (i) By Theorem 2, v ∈ ΓN
t . By Theorem 4, u∗

i (v) − l∗i (v) = v(N) −
∑

j∈N l∗j (v) for all

i ∈ N . This implies that ηi(v)− l∗i (v) = ηj(v)− l∗j (v) for all i, j ∈ N , so for each i ∈ N , we have

ηi(v) = l∗i (v) +
1

|N |

v(N)−
∑
j∈N

l∗j (v)


= l∗i (v) +

1

|N |
(u∗

i (v)− l∗i (v))

=
1

|N |
u∗
i (v) +

(
1− 1

|N |

)
l∗i (v).
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(ii) By Theorem 2, v ∈ ΓN
t . By Theorem 4, u∗

i (v)− l∗i (v) =
∑

j∈N u∗
j (v)− v(N) for all i ∈ N .

This implies that ηi(v)− l∗i (v) = ηj(v)− l∗j (v) for all i, j ∈ N , so for each i ∈ N , we have

ηi(v) = l∗i (v) +
1

|N |

v(N)−
∑
j∈N

l∗j (v)


= l∗i (v) +

1

|N |

l∗i (v) +
∑

j∈N\{i}

u∗
j (v)−

∑
j∈N

l∗j (v)


= l∗i (v) +

1

|N |
∑

j∈N\{i}

(
u∗
j (v)− l∗j (v)

)
= l∗i (v) +

1

|N |
(|N | − 1) (u∗

i (v)− l∗i (v))

=
1

|N |
l∗i (v) +

(
1− 1

|N |

)
u∗
i (v).

Corollary 2

Let v ∈ ΓN
l ∪ ΓN

u be a one-bound core game. Then

η(v) = λl∗(v) + (1− λ)u∗(v),

where λ ∈ [0, 1] is such that
∑

i∈N ηi(v) = v(N).

The nucleolus for one-bound core games is characterized by the properties that require that

the difference between the allocation and the minimal payoff or maximal payoff within the core

is equal for all players. We refer to these properties as balanced lower gaps and balanced upper

gaps, respectively.

Definition 2

A solution φ on a subdomain of balanced games satisfies balanced lower gaps if for each game v

in this domain, it holds that φi(v)− l∗i (v) = φj(v)− l∗j (v) for all i, j ∈ N .

A solution φ on a subdomain of balanced games satisfies balanced upper gaps if for each game v

in this domain, it holds that u∗
i (v)− φi(v) = u∗

j (v)− φj(v) for all i, j ∈ N .
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Theorem 7

(i) The nucleolus is the unique solution for one-bound core games satisfying balanced lower

gaps.2

(ii) The nucleolus is the unique solution for one-bound core games satisfying balanced upper

gaps.3

Proof. (i) Let v ∈ ΓN
l ∪ ΓN

u . Let i, j ∈ N . If v ∈ ΓN
l , then Theorem 4 implies that

u∗
i (v)− l∗i (v) = v(N)−

∑
k∈N

l∗k(v) = u∗
j (v)− l∗j (v).

If v ∈ ΓN
u , then Theorem 4 implies that

u∗
i (v)− l∗i (v) =

∑
k∈N

u∗
k(v)− v(N) = u∗

j (v)− l∗j (v).

By Theorem 6,

ηi(v)− l∗i (v) =
1

|N |
(u∗

i (v)− l∗i (v)) =
1

|N |
(
u∗
j (v)− l∗j (v)

)
= ηj(v)− l∗j (v).

Hence, the nucleolus satisfies balanced lower gaps.

Let φ be a solution on ΓN
l ∪ ΓN

u satisfying balanced lower gaps. Let i ∈ N . If v ∈ ΓN
l , then

Theorem 4 implies that v(N)− u∗
i (v) =

∑
j∈N\{i} l

∗
j (v), so

φi(v) = u∗
i (v) + (v(N)− u∗

i (v)) + (φi(v)− v(N))

= u∗
i (v) +

∑
j∈N\{i}

l∗j (v)−
∑

j∈N\{i}

φj(v)

= u∗
i (v)−

∑
j∈N\{i}

(
φj(v)− l∗j (v)

)
= u∗

i (v)−
∑

j∈N\{i}

(φi(v)− l∗i (v))

= u∗
i (v)− (|N | − 1) (φi(v)− l∗i (v))

= u∗
i (v) + (|N | − 1) l∗i (v)− (|N | − 1)φi(v),

where the fourth equality follows from balanced lower gaps, and rewriting yields

φi(v) =
1

|N |
u∗
i (v) +

(
1− 1

|N |

)
l∗i (v).

2In fact, the nucleolus is the unique solution satisfying balanced lower gaps on each subdomain of one-bound
core games.

3In fact, the nucleolus is the unique solution satisfying balanced upper gaps on each subdomain of one-bound
core games.
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If v ∈ ΓN
u , then Theorem 4 implies that l∗j (v) = v(N)−

∑
k∈N\{j} u

∗
k(v) for all j ∈ N , so

φi(v) = l∗i (v) +
1

|N |
|N | (φi(v)− l∗i (v))

= l∗i (v) +
1

|N |
∑
j∈N

(
φj(v)− l∗j (v)

)

= l∗i (v) +
1

|N |

∑
j∈N

φj(v)−
∑
j∈N

l∗j (v)


= l∗i (v) +

1

|N |

v(N)−
∑
j∈N

v(N)−
∑

k∈N\{j}

u∗
k(v)


= l∗i (v) +

1

|N |

v(N)− |N |v(N) +
∑
j∈N

∑
k∈N\{j}

u∗
k(v)


= l∗i (v) +

1

|N |

(1− |N |)v(N) + (|N | − 1)
∑
j∈N

u∗
j (v)


= l∗i (v) +

1

|N |
(|N | − 1)

∑
j∈N

u∗
j (v)− v(N)


= l∗i (v) +

1

|N |
(|N | − 1) (u∗

i (v)− l∗i (v))

=
1

|N |
l∗i (v) +

(
1− 1

|N |

)
u∗
i (v),

where the second equality follows from balanced lower gaps. Hence, by Theorem 6, φi(v) = ηi(v).

(ii) The proof is analogous to the proof of (i).

The nucleolus assigns to each one-bound core game a specific core allocation. As the following

example shows, the Shapley value does not assign to each one-bound core game a core allocation.

Example 2

Let N = {1, 2, 3} and let v ∈ ΓN
l ∩ ΓN

u be defined by

v(S) =

6 if S ∈ {{1, 2}, {1, 3}, N};

0 otherwise.

Then l∗(v) = u∗(v) = (6, 0, 0), so η(v) = (6, 0, 0) and η(v) ∈ C(v). However, ϕ(v) = (4, 1, 1) and

ϕ(v) /∈ C(v). △
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However, the Shapley value assigns to each convex one-bound core game a specific core allo-

cation. In fact, as the following theorem states, the nucleolus and the Shapley value coincide for

convex one-bound core games.

Theorem 8

Let v ∈ ΓN
l ∪ ΓN

u be a one-bound core game. If v is convex, then the nucleolus coincides with the

Shapley value.

Proof. We only prove the case v ∈ ΓN
u ; the case v ∈ ΓN

l follows analogously. Assume that v ∈ ΓN
c .

Let i ∈ N . By Theorem 3, for each S ∈ 2N \ {∅} with i /∈ S,

v(S ∪ {i})− v(S) =

v(N)−
∑

j∈N\(S∪{i})

u∗
j (v)

−

v(N)−
∑

j∈N\S

u∗
j (v)

 = u∗
i (v).

This implies that

ϕi(v) =
∑

S∈2N :i/∈S

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S))

=
1

|N |
v({i}) +

∑
S∈2N\{∅}:i/∈S

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S))

=
1

|N |
l∗i (v) +

∑
S∈2N\{∅}:i/∈S

|S|!(|N | − |S| − 1)!

|N |!
u∗
i (v)

=
1

|N |
l∗i (v) +

|N |−1∑
k=1

(
|N | − 1

k

)
k!(|N | − k − 1)!

|N |!
u∗
i (v)

=
1

|N |
l∗i (v) +

|N |−1∑
k=1

(|N | − 1)!

k!(|N | − k − 1)!

k!(|N | − k − 1)!

|N |!
u∗
i (v)

=
1

|N |
l∗i (v) +

|N |−1∑
k=1

1

|N |
u∗
i (v)

=
1

|N |
l∗i (v) +

|N | − 1

|N |
u∗
i (v)

=
1

|N |
l∗i (v) +

(
1− 1

|N |

)
u∗
i (v).

Hence, by Theorem 6, φi(v) = ηi(v).
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5 Concluding remarks

In this paper, the new class of one-bound core games is introduced. By Theorem 2, all one-

bound core games are two-bound core games. By Lemma 2 and Theorem 5, all reduced games of

one-bound core games with respect to core allocations are one-bound core games. This implies

that the axiomatic characterizations of the core, the nucleolus, and the egalitarian core (cf. Arin

and Iñarra 2001) provided by Gong et al. (2022a) on the class of two-bound core games can be

reformulated on the class of one-bound core games. However, the exact core bounds of reduced

two-bound core games are not necessarily the same. By Theorem 5, if all reduced games of a

balanced game have the same exact core bound, then it is necessarily a one-bound core game.
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