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This article proposes a novel and intuitive risk-
neutral valuation model for real estate derivatives. 
The authors first model the underlying efficient 
market price of real estate and then construct the 
observed index value with an adaptation of the 
price update rule by Blundell and Ward [1987]. 
The resulting index behavior can easily be ana-
lyzed and closed-form pricing solutions are derived 
for forwards, swaps, and European put and call 
options. They demonstrate the application of the 
model by valuing a put option on a house price 
index. Autocorrelation in the index returns appears 
to have a large impact on the option value. They 
also study the effect of an over- or undervalued real 
estate market. The observed effects are significant 
and as expected.

Recently, interest in real estate 
derivatives has surged. This 
interest has been fueled by, 
among other things, the intro-

duction of real estate futures on the Chicago 
Mercantile Exchange (CME) in 2006. These 
futures give investors the opportunity to 
directly manage house price risk. Currently, 
trading is possible using 20 regional indexes 
and two composite indexes. See research by 
Bertus et al. [2008] and Shiller [2008] for 
more information. Geltner and Fisher [2007] 
and Fabozzi et al. [2009, 2011] also provide a 
good overview of other real estate derivatives 
markets, such as swap trading on the U.K. 

Investment Property Database index (IPD) or 
the U.S. NCREIF Property Index (NPI).

Currently, the most mature property 
derivatives market is the U.K. IPD deriva-
tives market. At the end of 2008, some GBP 
19.3 billion of swaps referenced IPD indexes. 
In the beginning of 2009, trading in IPD 
derivatives decreased signif icantly, how-
ever, mostly because fewer deals between 
banks were executed with Lehman Brothers 
exiting the market and several other banks 
cutting back on new business activities. The 
U.S. CME futures market does not yet have 
much liquidity, with only occasional trades. 
Property derivatives markets in France and 
Germany are also still very small.

In this article, we develop a novel and 
intuitive risk-neutral valuation model for real 
estate derivatives. Our main goal is to value 
derivatives that are coupled to private real 
estate indexes with a signif icant degree of 
autocorrelation. It is well known from the 
real estate literature (see, e.g., Geltner et al. 
[2003] for an overview) that autocorrelation 
can occur in appraisal-based indexes because 
appraisers slowly update past prices with 
new market information. Transaction-based 
indexes can also exhibit a positive autocor-
relation because private real estate markets 
are less informationally efficient than public 
securities markets. As a result, the price dis-
covery and information aggregation func-
tions of the private real estate market are less 
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effective. This can cause noisy prices and inertia in asset 
values (and returns); see Shiller [2008, p. 4] and the 
references given in that paper.

A significantly positive autocorrelation implies a 
(partial) predictability of future returns and opportuni-
ties for arbitrageurs. It is not possible, however, to trade 
the assets that constitute a private real estate index in a 
liquid market and at low costs. In practice, the index is 
thus not a tradable asset and arbitrage possibilities are 
very limited. This can also cause significant problems for 
suppliers of real estate derivatives because they cannot 
easily trade the underlying assets and (delta) hedge their 
positions. Nevertheless, derivatives markets for forward 
and swap contracts are emerging in recent years.

Geltner and Fisher [2007] noted, however, that a 
2006 survey of (potential) market participants identi-
fied a lack of confidence in how real estate derivatives 
should be priced. They also noted that this concern is 
understandable, because the underlying asset cannot be 
traded in a frictionless market. This makes it impos-
sible to use classic pricing formulas for derivatives (such 
as the relationship between spot and forward prices), 
because these formulas only apply under strict no-
arbitrage assumptions. Geltner and Fisher [2007] argued, 
however, that the valuation of real estate derivatives is 
still possible using equilibrium pricing rules, provided 
that the dynamic behavior of the underlying real estate 
index is properly taken into account. In this article, we 
take the next step by proposing a quantitative risk-neu-
tral valuation model that can be used for actual pricing 
purposes.

A small body of related research exists in the 
equity option literature. Lo and Wang [1995] studied the 
effect of predictability of asset returns in a continuous-
time model. They propose an adjustment of the Black 
and Scholes [1973] pricing formula for stock options 
to account for the effect of predictability. Jokivuolle 
[1998] developed a discrete-time model to derive an 
analytical pricing formula for options on a stock index 
that exhibits positive correlation due to infrequent 
trading of the underlying stocks. He assumed that the 
unobservable true liquidation value of the index fol-
lows a random walk process. The observed (autocor-
related) index is then modeled as the weighted average 
of current and past returns. More recently, Liao and 
Chen [2006] derived a closed-form formula for a Euro-
pean option on an asset with returns following a first-
order moving average process. Fabozzi et al. [2011] used 

mean-reverting continuous-time models, which exhibit 
predictability for the drift term, for deriving closed-form 
solutions of the main property derivatives traded in the 
financial markets.

The real estate literature also contains a few pio-
neering papers on risk-neutral valuation. Early examples 
of risk-neutral valuation techniques are given by Kau 
et al. [1990], Buetow and Albert [1998] and Buttimer 
and Kau [1997]. The Buttimer and Kau paper is espe-
cially important because it describes how a risk-neutral 
valuation model can be used to value derivatives that are 
related to commercial real estate indexes. Throughout 
their paper, these authors assume that the real estate 
index follows a random walk process with drift. By 
construction, such a process leads to uncorrelated index 
returns. They noted, however, that their model can also 
be used in case of autocorrelated indexes, provided that 
a proper transformation can be found to switch (back 
and forth) between the autocorrelated index (which is 
observed) and the uncorrelated variable (which is explic-
itly modeled).

A different approach is followed by Shiller and 
Weiss [1999] in their paper on home equity insurance. 
They first fitted the observed real estate returns with a 
simple autoregressive (AR) model with one lag. Using 
this model, the conditional returns and volatilities can be 
determined analytically. The assumption was then made 
that options on the house price index can be valued 
using an adaptation of the familiar Black and Scholes 
[1973] equation. This adaptation consists of replacing 
the expected risk-free return with the expected real-
world return and the implied volatility with the esti-
mated value from the AR model. One aspect of this 
approach is adopted by us, namely modeling the real 
estate returns with an AR model. We view the second, 
heuristic, step (in which the real-world return is directly 
used as an input for a risk-neutral valuation formula) as 
problematic, however.

Our approach circumvents this problem by fol-
lowing the approach of Jokivuolle [1998]. We thus 
explicitly model the (underlying) “eff icient market” 
value of the real estate index and then construct the 
observed index. We argue that an adaptation of the 
price update rule proposed by Blundell and Ward [1987] 
serves this purpose well. The first modification of this 
update rule is straightforward and consists of adding 
multiple lag terms. This leads to an AR model that can 
be estimated using standard econometric techniques. 

JOD-VAN BRAGT.indd   90JOD-VAN BRAGT.indd   90 8/19/15   12:40:59 PM8/19/15   12:40:59 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

5.
23

.1
:8

9-
11

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.ii
jo

ur
na

ls
.c

om
 b

y 
A

nt
oo

n 
Pe

ls
se

r 
on

 0
9/

30
/1

5.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



THE JOURNAL OF DERIVATIVES   91FALL 2015

A second modification is more fundamental from a valu-
ation perspective and consists of using the accrued value 
of past observations. Empirical results confirm that the 
volatility and autocorrelation of a (transaction-based) 
Dutch house price index can be replicated quite well (on 
an annual basis) with our model. As a second example, 
we consider monthly data for the U.S. 10-city S&P/
Case-Shiller house price index. Our analysis shows that 
modeling seasonality and stochastic volatility is impor-
tant for such monthly data.

The remainder of this article is organized as fol-
lows. First, we introduce our theoretical framework and 
analyze the properties of the real-world and risk-neutral 
process for real estate indexes with autocorrelation. We 
also explain how the real estate model can be coupled 
to a stochastic interest rate model. The subsequent sec-
tion contains closed-form pricing formulas for forwards, 
swaps, and European options. We then estimate the real 
estate model using historical information for house price 
indexes in the Netherlands and the United States and go 
on to discuss the valuation of a European put option on 
a house price index using Monte Carlo simulation. We 
also assess the quality of the derived closed-form option 
pricing formula.

THEORETICAL FRAMEWORK

Notational Conventions

Our risk-neutral model consists of a discrete-time 
model for the observed real estate index in combination 
with continuous-time models for the efficient market 
process of real estate and for interest rates. The current 
point in time is denoted as t = 0. Time is measured with 
respect to the period between two price updates of the 
real estate index. Unless stated otherwise (and without 
loss of generality), we assume that the time step between 
two price updates is equal to one year. Hence, t = 1 cor-
responds to one year ahead, t = 2 to two years ahead, and 
so on. In the continuous-time models, the non-integer 
points in time are also sampled. To avoid confusion, we 
therefore denote the continuous-time variable with τ in 
the remainder of this article.

Real-World Process

Price update model. We model the real-world 
process of a real estate index with an adaptation of 

the price update rule proposed by Blundell and Ward 
[1987].1 They suggest that the new price is a weighted 
sum of the current market price and the last period’s 
price. More precisely, they propose the following price 
update rule:2

 ( ) ( ) (1 ) ( 1)a( Ky K) (1 t(t(= (Ky ) −)K t(  (1)

where a(t) is the current price, a(t − 1) is the previous 
price, y(t) is the “true” market price, and K is a con-
stant, 0 ≤ K ≤ 1. The parameter K is commonly referred 
to as the “confidence” parameter. If K is close to 1, 
the market price y(t) is weighted heavily; if K is small, 
the emphasis is more on the previous price a(t − 1). 
The simple price update rule in Equation (1) is fre-
quently used to model appraisal smoothing in real estate 
indexes. See Geltner et al. [2003] for an extensive over-
view of research in this area. We show in this article 
that this price update rule can also be used to describe 
the dynamic behavior of autocorrelated transaction-
based indexes.

The model in Equation (1) is equivalent to an expo-
nentially weighted moving average (EWMA) model, see 
Hull [2009, pp. 479–480]. By substituting the expression 
for a(t − 1) in a(t), the expression for a(t − 2) in a(t − 1), 
and so on, we find that

 ( ) (1 ) ) ( ) ( )
1

1a( K K(1 y t( i K) ( t( m
i

m
i m( 1) (1 )1 t( i K1) (1∑∑ (1= K − 1) (11) (1 −

=

 (2)

where 1 ≤ m ≤ t. This equation shows that the current 
value a(t) partly consists of a basket of previous y-terms, 
where the weight of these terms decreases at an expo-
nential speed (as controlled by the K parameter). By set-
ting m equal to t we also see that the weight of the index 
value at time 0, a(0) is equal to (1 − K) t at time t.

It is important to note that the price update rule 
in Equation (1) does not account properly for the time 
value of money because the previous value a(t − 1) is 
not accrued. From a valuation perspective, this leads to 
a systematic underperformance of the real estate index. 
To correct for this effect, we adapt the price update rule 
in Equation (1) and accrue the past index value with the 
expected (annual) return π:

 ( ) (1 )(1 ) ( 1)a( Ky K) (1 ((= Ky ) )(1K ) (a(  (3)
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Using accrued prices is common practice when 
appraisers set new prices for real estate objects. In this 
case, the reference price level is often formed by pre-
vious transactions for similar objects with a correction 
for the price increase (or decrease) of the real estate 
market up to the current point in time. The expected 
return is not modeled in detail at this point to keep the 
analysis as simple as possible. In practice, the expected 
return may depend (positively) on the amount of risk 
associated with the real estate investment. In the risk-
neutral model the expected return is coupled directly 
to the level of the interest rate, as we explain in detail 
later in this section.

Substitution of a(t − 1) in a(t), a(t − 2) in a(t − 1), and 
so on, again yields the EWMA form of Equation (3):

( ) (1 ) ) ( ) ( )
1

1a( K K(1 y t( i K1) (1 t( m
i

m
i m( 1) (1 )1 t( i K1) (1∑∑ (1= K − 1) (11) (1 −

=

1 ∗  (4)

where 1 ≤ m ≤ t and

 

( ) ( )(1 )

( ( )( ) 1

a ( a)

y t( i y1) t i

m

i

≡)) +)(1 π ,)m

(t + +1)(1 π

∗

∗ −( 1) ( 1)(1 )1) i i+ +1)(1
 (5)

Equation (4) is thus equivalent to Equation (2) if 
we accrue past values.

We can easily determine the evolution of annual 
returns based on Equation (3):

( )
( 1)
( 1)

( ) (1 )
( 2)
( 1)

(1 ) ( 1)r ( K
y(
a(

r ( K
a(
a(

t(a y( )
1)

( K
y t(

r a= + −(1 + π −  (6)

where r a(t) ≡ a(t)/a(t − 1) − 1 is the index return and 
ry(t) ≡ y(t)/y(t − 1) − 1 is the unobserved return, both 
using annual compounding. A much simpler expres-
sion is derived when the index series are expressed in 
logarithms; see Geltner et al. [2003]. In this case, con-
tinuously compounded returns can be expressed as log 
differences:

 ( ) ( ) ( ) ( 1)r ( K r K) (1 t(c
a

c c
a= (K r )y −)K t(∗ ∗( ) (1 K) (1y( )y  (7)

and thus

 
( )

1
( )

1
( 1)r (

K
r (

K
K

r (c
y

c
a

c
a= −)r (

−
∗

∗

∗  (8)

where ( )r (c
a  is the index return and ( )r (c

y  is the unobserved 
market return, both using continuous compounding. 
The parameter K * has a similar interpretation as the 
confidence parameter K. This parameter determines 
what fraction of the index return is explained by the 
unobserved market return (the remaining fraction is 
explained by the past index return). Note that the effect 
of accrual disappears when we take log differences (that 
is, when we assume that past values accrue with the 
same return π).

The efficient market process. We now assume 
that the underlying market returns follow a random walk 
process with drift:

 ( ) ( )r (c
y = π + ε  (9)

where ε(t) is a normally distributed, serially uncorrelated 
noise term with zero mean and variance 2σε . Note that 
the drift parameter π is assumed to be constant here 
to keep the analysis as simple as possible. In successive 
periods of appreciation and depreciation of the price 
levels, however, this assumption is not always valid. A 
more appropriate specification would then be to allow 
π to change over time. An example of such a model is a 
local linear trend model, which is used by, for example, 
Francke [2010].

The confidence parameter K * can be calculated 
from the first-order autoregressive (AR) process that we 
obtain by substituting Equation (9) in Equation (7):

 ( ) ( ) ( 1) ( )r ( K K t( K (c
a

c
a= πK (1 − +1) ε∗ ∗(1 K(1(1 ∗  (10)

K * is thus equal to 1 minus the f irst-order autocor-
relation of the index returns. In practice, we can also 
neglect the difference between K  in Equation (6) and K * 
in Equation (7) because (on average) y(t − 1) ≈ a(t − 1) 
and ( 2)

( 1)
1

1
a(
a( ≈ +π . Under these simplifying assumptions, the 

functional form of Equations (6) and (7) becomes the 
same. Annually and continuously compounded returns 
also have almost the same first-order autocorrelation.3 
It thus follows that K ≈ K *.

A word of caution is appropriate at this point. The 
assumption that the underlying market returns follow a 
random walk with drift is probably too strong for the 
private real estate market because these markets are less 
informationally efficient than public securities markets; 
see also Geltner et al. [2003]. We should therefore be 
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careful not to directly equate the underlying random 
walk process with the true market process. A better 
interpretation would be to state that the observed index 
returns can be modeled using an underlying efficient 
market process in combination with the price update 
rule in Equation (1). In the remainder of this article, we 
therefore refer to y(t) as the efficient market price at time 
t. We will show later in this section that assuming an 
underlying efficient market process makes it possible to 
easily analyze the properties of the constructed real estate 
index with autocorrelation. This facilitates the derivation 
of several pricing formulas in the next section.

Price update rules with multiple lags. The 
price update rule in Equation (1) can easily be extended 
with multiple lag terms. For the general case of p lags 
(with p ≥ 1), we have

 
( ) 1

1 1

a( Ky )
i

p

i

p

i∑ ∑( ) h eai= +( )Ky ) (ai where ω i
=1

 (11)

The generalization of Equation (10) then 
becomes:

 

( ) ( ) ( )

where 1

1

1

r ( K r K (c
a

i

p

i cr
a

i

p

i

∑

∑

= πK ω∑ +) ε ,( )(

ω∑

∗

=

∗ ∗( ) Ka +)

∗

=

∗

 (12)

Equation (12) is an AR model of order p. To esti-
mate the expected return π, the weights iω∗ and the 
variance 2σε  of an AR(p) model different approaches 
can be followed; see Lütkepohl [2006] or Steehouwer 
[2005, pp. 43–129] for detailed overviews. Note that the 
restriction that the sum of the weights should be equal 
to 1 does not complicate the estimation of the model 
since both K * and π are free parameters.

A simple approach is to estimate the model para-
meters with an ordinary least squares (OLS) regression 
method. This method basically minimizes the one-step-
ahead prediction errors. An alternative approach is to 
choose the weights in such a way that the autocovariance 
function of the AR process is exactly equal to the auto-
covariance function of the observed real estate index. 
This correspondence can be achieved by using the Yule–
Walker equations (see Steehouwer [2005, p. 46]).

To decide which model is most appropriate sev-
eral order selection criteria have been proposed in the 

literature (see, e.g., Steehouwer [2005, pp. 82–84]). These 
selection criteria typically choose the model order in such 
a way that the prediction error is minimized while put-
ting a penalty on the number of parameters estimated. 
The estimation of the real estate model is discussed in 
detail later in the article.4

Seasonality. Seasonality in real estate returns 
can become important when modeling quarterly or 
monthly returns. Let us assume that we have already 
modeled the seasonally adjusted index a (t) using 
Equation (1) or Equation (11). We can then add a 
seasonal component g(t) to obtain the index value with 
seasonality, �( )a( :

 ( (� )) ( ( )) ( )ln t( ln t( g t(+( ( ))= ln t(  (13)

or, equivalently:

 �( ) ( )exp( ( ))a( a( g t(=  (14)

Different approaches can be used to estimate the 
g(t) function. A natural assumption is to assume that 
seasonality does not have a net effect on an annual basis. 
For simplicity, one can also assume that the seasonal 
pattern is constant over time. Given these assumptions, 
one could then use so-called dummy variables in the 
OLS regression. These dummy variables are equal to 
1 for the respective periods. For example, a January 
dummy is equal to 1 for all January (log) returns and 
zero for all other months; a February dummy is equal 
to 1 for all February returns and zero otherwise, and so 
on. The g(t) function is then easily constructed using 
the estimated weights of the dummy variables. Another 
(even simpler) method consists of detrending the log 
index and then fitting a (shifted) sine function with a 
period of one year to the data. The first approach (i.e., 
a regression on monthly dummies) is used later in the 
article, in the subsection “Example 2: U.S. House Price 
Index.”

Risk-Neutral Process

In a risk-neutral world, all individuals are indif-
ferent to risk and expect to earn on all securities a return 
equal to the (instantaneous) risk-free rate. Assuming 
that the world is risk neutral greatly facilitates the 
valuation of options: the option payoffs can simply be 
discounted along the path of the short rate for each 
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scenario. It is also important to note that risk-neutral 
valuation gives the correct price of an option in all 
worlds (also the risk-averse real world), not just in the 
risk-neutral world.

Process for interest rates. We model the 
evolution of the short interest rate in this article with 
the familiar one-factor Hull–White (HW) model (see 
Hull [2009, pp. 688–689]). Within the large family of 
interest rate models, the HW model is a typical example 
of a no-arbitrage model. Such a model produces interest-
rate scenarios which are consistent with the current 
term structure. This no-arbitrage feature is extremely 
important for option pricing applications, because a 
small error in the underlying bond prices can cause 
large errors in the price of interest-rate options, see Hull 
[2009, p. 686].

Technically speaking, the one-factor HW model 
assumes that the risk-neutral process for the nominal 
short rate, r

N
, is as follows:

 
( )

( )
( ) ( )1 1dr r d( ) dZN N( )r =)) κ θ τ(

κ
− (r (Nr

⎛
⎝
⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞
⎠⎠ τ +dd σ (1 1dZ  (15)

We denote time in this equation with the symbol 
τ to indicate that we now use a continuous-time model. 
This model assumes that the short interest rate f luctuates 
around the mean-reversion level θ(τ)/κ. The parameter 
κ controls the amount of mean reversion. The θ func-
tion is deterministic and chosen in such a way that the 
model satisf ies the no-arbitrage constraint. The one-
factor HW model is in fact an extension of the Vasicek 
[1997] model in the sense that the mean-reversion level 
is time-dependent instead of constant. σ

1
 controls the 

volatility of the Wiener process dZ
1
.

Price update model. We now derive the risk-
neutral process for real estate indexes with autocorrelation. 
The risk-neutral process for the evolution of the index 
value can be derived analogously to Equation (3):

( ) ( ) (1 ) ( ) ( 1)

where ( ) e p )

a( Ky K) (1 t) t

t) exp qexp(( )( )
1
r d

t

t

Nr∫t

(= Ky ) − )K − ,1)

( )t) )dd
 (16)

The expected return π is thus a time-dependent 
function in a risk-neutral world and depends on the level 
of the (short) interest rate and the direct return. More 
precisely, the term exp( )( )1 d)t N (r (t dd  is the risk-free return 
on a bank account between time t − 1 and t. The term 

exp (−q) is a correction for the direct return q associated 
with real estate investments. By setting q equal to zero 
a total return index is modeled.

Substitution of a(t − 1) in a(t), a(t − 2) in a(t − 1), 
and so on, again yields the following EWMA form of 
Equation (16):

( ) (1 ) ) ( ) ( )
1

1a( K K(1 y t( i K1) (1 t( m
i

m
i m( 1) (1 )1 t( i K1) (1∑∑ (1= K − 1) (11) (1 −

=

1 ∗  (17)

where 1 ≤ m ≤ t and

( ) ( ) p e p

( 1) ( 1) p e p

a ( a)

y t( i y1) t i

( )( )r d( )
t m

t

N∫t∫

( )( )
1
r d( )

t i

t

N∫t∫

( )qm

( )( 1)q i(

≡)) )exp (( exp( ,

(t + 1)expx (( exp(

∗

∗

i  
 (18)

Equation (16) can be extended for the general price 
update model with p lag terms:

( ) ( ) 1
1 1

a( Ky )
i

p

i

p

i∑ ∑( ) whereai= +( )Ky ) (ai ω∑
=

 (19)

The EWMA form of Equation (19) can also be 
derived. Let us assume that T > t ≥ 0. We can now sub-
stitute a*(T − 1) in a(T ), a*(T − 2) in a*(T − 1), and so 
on, until an expression is obtained with only the terms 
y* (t + 1), … , y* (T ) and a*(t), … , a*(t − p + 1):

 
( ) ( 1)

1 1

a( d a
i

T t

i

p

i∑ ∑( )c yi= ∑ (c y (d a∑
=

∗  (20)

where c
T-t

 = K. Explicit expressions for the c
i
 and d

i
 coef-

ficients of this equation can be determined using a soft-
ware package that is able to perform symbolic algebra 
calculations.5

The eff icient market process. We also need 
to specify the risk-neutral process for the underlying 
eff icient market price. Analogously to Equation (9), 
we use a random walk process with drift (geometric 
Brownian motion):

 ( ) ( ( ) ) 2 2dy r q( ) y d( ) y d( )( ) ZN=) τ)) τdd) + σ  (21)

where the volatility σ
2
 is constant and dZ

2
 follows a 

Wiener process. By means of Ito’s lemma, it can be 
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shown that ln y(τ) is governed by the following process 
(see Hull [2009, pp. 270–271]):

 2 2d yln d d2 Z( )( ) 2
2r q( )Nrr=) )) τdd)2 σ  (22)

For numerical reasons, Equation (22) is commonly 
used in practice instead of Equation (21). Note that these 
equations are equivalent to the Black and Scholes [1973] 
price process for a dividend paying stock in case of sto-
chastic interest rates.

Model extensions: Real interest rates, 
inf lation, stochastic volatility. It is also possible to 
model real interest rates and inf lation in a consistent way. 
Brigo and Mercurio [2006, pp. 646–647], for example, 
developed a consistent risk-neutral model for nominal 
and real interest rates as well as the CPI index. To keep 
the analysis as simple as possible, we do not discuss such 
an extended model in this article. Including inf lation may 
be very important for practical applications, however, 
because real estate cash f lows (like rental income or 
maintenance costs) are often inf lation-linked.

Another extension consists of modeling stochastic 
volatility. This is especially important when considering 
high-frequency data, like monthly or quarterly returns. 
An example is given later for monthly U.S. house price 
data. A quite general stochastic volatility model is the 
constant elasticity of variance (CEV) model:

( ) ( ( ) ) ( ) ( )

( ) ( )) ( )

2

3 3( )

dy r q( ) y d( ) V y( ) dZ

dV V d( )) t V3 dZ

N=) τ)) τdd) + V ( ,) 2dZ

=) λ γ( τ(( σ

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

β

This model is a natural extension of the geometric 
Brownian motion in Equation (21) and has for example 
been studied by Jones [2003]. The λ parameter con-
trols the speed of mean reversion of the variance V(τ). 
The γ parameter denotes the mean reversion level, and 
σ

3
 controls the volatility of the variance process. The 

initial variance should, of course, also be specified as a 
boundary condition. The elasticity parameter β must 
satisfy 0.5 ≤ β ≤ 1.0 to retain the uniqueness of option 
prices. Both limiting cases are in fact well-known sto-
chastic volatility models. For β = 1/2, we have the model 
of Heston [1993] and for β = 1 we have the continuous-
time GARCH model as in Nelson [1990]. Maximum 
likelihood estimation of the CEV model parameters, 
based on option prices, is discussed in detail in an excel-
lent paper by Aït-Sahalia and Kimmel [2007].

Martingale Properties

The efficient market process. If there are no 
arbitrage opportunities, the expected price of a traded 
security has to increase in the same way as a bank account 
in a risk-neutral world, see Hull [2009, p. 630]. To verify 
this no-arbitrage restriction, we consider the realization 
of the efficient market price y(t) and the nominal bank 
account ( ) ( ) pB (N ( )

y( )
( )0 r0 dt

Nr≡ (0)e pB(0)exp( )dd  up to time t and 
determine the expected value of the ratio y(T )/B

N
(T ) 

for T > t ≥ 0. Let us first consider the situation where all 
direct returns are reinvested in the index (i.e., we have a 
total return index). This situation can also be modeled 
by setting the direct return q equal to zero. We then 
have that (see Appendix A.1 for the proof ):

 

( )
( )

( )
( )

E
y T(

B (
y t(

B (Q
N

t
N

| =FtFF
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦
⎥⎥
⎦⎦⎦⎦

 (23)

where E
Q
[y(T)/B

N
 (T)|F

t
] means that the expected value 

of y(T ))/B
N
(T ) in a risk-neutral world and conditional 

on the filtration up to time t is considered. The expected 
value of y(T )/B

N
(T ) is thus constant for T > t ≥ 0. That 

is, this ratio is a zero-drift (martingale) process. A total 
return index thus satisfies the martingale requirement 
for traded securities if its dynamics is governed by 
Equation (22).

Note that a price index with q > 0 is not a tradable 
asset, comparable to the situation for an index of dividend-
paying stocks. Consequently, the martingale property is 
not satisfied by a price index if q > 0. In this case,

 

( )
( )

( )
( )

expE
y T(

B (
y t(

B (Q
N

t
N

( )( )q T(T( t| =FtFF T(
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦
⎥⎥
⎦⎦⎦⎦

 (24)

see again Appendix A.1. A price index is thus not a trad-
able asset if direct returns are paid out.

The real estate index process. We now consider 
the realization of the real estate index a(t) up to time 
t and determine the expected value of the ratio a(T )/
B

N
(T ) for T > t ≥ 0. In Appendix A, we also prove that

 

( )
( )

expx

( )

( )(1 ( )) ( ) ( )

E
a(

B ( B (

y t( t t) (

Q
N

t
N

K T T

( )( )q T( t
| =FtFF

T(

−)(1y(× α ( ))))K T⎡⎣⎡⎡ ⎤⎦⎤⎤

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦
⎥⎥
⎦⎦⎦⎦

, ,( )) ( )T K

 (25)
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where α
K,T

(t) ≡ (1 − K)T−t. a(T )/B
N
(T ) is thus a martin-

gale if a(t) = y(t) and q = 0. Because a(t) = y(t) holds in 
general only when K = 1; Equation (16) does not repre-
sent (the risk-neutral process of ) a tradable asset when 
K < 1. Arbitrage opportunities would thus exist in case 
of a complete market when trading an autocorrelated real 
estate index. The reverse argument also holds: the index 
value may well be different from the efficient market 
price, but active trading in the index is not possible in 
this case; otherwise arbitrageurs would quickly force the 
index value toward the efficient market price.

Another important observation is that the future 
development of a total return real estate index with auto-
correlation (i.e., q = 0 and K < 1) is unbiased if the index 
is in equilibrium at time t (i.e., when a(t) = y(t)). By 
“unbiased,” we here mean that E

Q
[a(T )/B

N
(T ) = a(t)/

B
N
(t) for T > t. Stated otherwise, if the real estate index 

starts from an equilibrium situation, the expected return 
is in line with the return on a risk-free bank account. As 
a consequence, the pricing formulas for linear instru-
ments (forwards and swaps) all collapse to the classic 
no-arbitrage formulas if a total return real estate index is 
in equilibrium at the valuation date. This will be proved 
more formally in the next section.

A generalization of Equation (25) also exists for 
the price update model with more than one lag term, as 
specified in Equation (19). Using the same procedure 
as in Appendix A.2, the counterpart of Equation (25) 
follows:

( )
( )

exp

( )
( ) ˆ( 1)

where

ˆ( 1) ( 1) p e p

1 1

E
a(

B (
F

B (
y t( d a(

a( 1) t i

Q
N

tFF

N i

T t

i

p

i∑ ∑ci

( )( )
1
r d( )

t i

t

N∫t

( )( )q T( t

( )( 1)q i(

|

=
T(

(d a(i

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
,

(t + 1)exp (( exp(

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=

i  
 (26)

Incorporating seasonality is also straightforward 
(see Equation (14)):

 

( )
( )

( ( ))
( )
( )

E
a�(

B (
F gexp( E))

a(
B (

FQ
N

t Q( ))F gexp( E))
N

tFF| =FFF |
⎡

⎣

⎢
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⎢
⎢⎢

⎢
⎢⎢

⎣⎣
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⎤

⎦

⎥
⎤⎤

⎥
⎦⎦
⎥⎥
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⎡

⎣

⎢
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⎢
⎢⎢

⎢
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⎣⎣
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⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

 (27)

where �( )a(  is the index value with seasonality.

Theoretical Framework: Conclusion

We have developed a simple and intuitive risk-
neutral model for autocorrelated real estate indexes. This 
model can be coupled to existing risk-neutral models 
for interest rates, inf lation, stochastic volatility etc. 
By studying the martingale properties of the real estate 
index we find that the no-arbitrage restriction is only 
satisf ied under very specific conditions (i.e., for total 
return indexes without autocorrelation). In general, arbi-
trage possibilities thus exist. These cannot be exploited 
easily, however, since the underlying index cannot be 
traded actively. We will use the derived results in the 
next section to derive pricing formulas for various real 
estate derivatives.

PRICING FORMULAS

In this section, we derive pricing formulas for 
derivatives that are linked to autocorrelated real estate 
indexes. To keep the analysis as transparent as possible, 
we first present results for the simple price update model 
with one lag term and then for a model with multiple 
lags.

Forwards

We can easily determine the price of a forward 
contract on a real estate index. Let us assume that the 
forward contract expires at time T > t and that the 
agreed-upon delivery price is F

T
(t). For the owner of 

the forward contract, the payoff at time T is then equal 
to the difference between F

T
(t) and the index a(T ). If 

we denote the price of this contract at time t as f(t), we 
have that

 
) ( )

( ) ( )
( )

f t( B ( E
F ( a(

B (
FN Q( )( E TFF

N
tFF= −⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

 (28)

Using Equation (25) we then arrive at the fol-
lowing result:

 

) ( ) ( ) [ ( )(1 ( ))

( ) ( )]

f t( D( F) ) exp y(y( K[ )(1T (FF t) exp y t( T

K T

( ))( )( )T t( )T t= (D( exp −)(1[y()t α
+ α( )a(

,

,  
 (29)
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where D(t,T ) denotes the price at time t of a zero-
coupon bond that matures at time T > t. The scaling 
factor α

K,T
(t) is equal to (1 − K )T−t. The price of this 

forward contract is equal to zero if

 

( )
exp

( )
[ ( )(1 ( ))

( ) ( ( ) 0

F (
D(

t( t

t f)] if t

T K( )
( )

[ )(1FF (
D(

y t( T

K T

( )( )q T(T( t
=

T(

+ α( )a(

,

,  (30)

When the index value a(t) is also equal to the effi-
cient market price y(t), we obtain the classic relationship 
between the (spot) value of the index and the forward 
price:

( )
expx

( )
( ) if ( ) ( ) and ) 0F (

D(
a( y t( a(a( f t(f t(TFF

( )( )q T( t
=

T(
=)) and= a( f (

 (31)

This analysis is easily extended to more general 
price update models with seasonality and multiple lag 
terms. By substituting Equation (27) in Equation (28), 
we arrive at:

 

( )
expx exp

( )

( ) ˆ( 1)
1 1

F (
D(

y t( d a(

TFF

i

T t

i

p

i

�

∑ ∑ci

( )( )g T( ( )( )q T(
=

q(

( )y(× ∑ c
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=

 (32)

with FTFF�  the forward price including the seasonal 
component.

Geltner and Fisher [2007] noted that the forward 
market can signal that the real estate market is over- or 
undervalued. Equation (30) makes this price discovery 
function of the forward market explicit: using an esti-
mate for the confidence parameter K, together with the 
actual forward price F(T ) and the index value a(t), the 
underlying efficient market price y(t) can be derived. 
The accuracy of the extracted efficient market price is of 
course strongly depending on the degree of liquidity and 
density in the forward market. A reliable price reporting 
system is also crucial. Geltner and Fisher [2007] men-
tioned that the U.K. IPD swap market appears to be 
performing the price discovery function well because 
IPD swap prices have fallen dramatically in 2006, even 
as the IPD index itself has continued to climb. The IPD 

swap market has thus correctly signaled overvaluation 
in the U.K. property market.

If there is a liquid forward market, it also becomes 
possible to (delta) hedge movements of the underlying 
efficient market price. For example, if we calculate the 
sensitivity ∂F

T
(t)/∂y(t) using Equation (30), we f ind 

that

 

exp

( )
[1 ( ) ( )]

D(
K)T K( ) )

( )
[1y(

D( T K( )) T

( )( )q T( t
∂ /( )F (T ( )FF ( ∂ =( )y( )y(

T(
− α αKKKK, ,T K( )

 (33)

where we have used Equation (16) to determine 
∂a(t)/∂y(t). Changes of the efficient market price y(t) are 
thus directly ref lected in changes of the forward price 
F

T
(t). This is an important result because we implic-

itly assumed (see previous discussion) that continuous 
trading in the underlying efficient market index is pos-
sible. This, obviously, cannot be achieved by trading in 
the primary real estate market (due to a limited liquidity 
and high trading costs). Using forward contracts, it how-
ever becomes possible to replicate the efficient market 
process in good approximation, provided this secondary 
market is sufficiently liquid. This also provides a method 
to replicate the cash f lows of more complicated real 
estate derivatives (like options) using delta hedging. A 
liquid forward market would thus serve as the founda-
tion of the risk-neutral valuation method developed in 
this article.

We should also note that in case of stochastic 
interest rates forward and futures prices are not equal. 
This is caused by the daily settlement procedure for 
futures contracts. Assume, for instance, that the real 
estate index is strongly positively correlated with interest 
rates. When the real estate index increases, the gain of a 
long futures contract is invested with a high probability 
at an above-average interest rate. The opposite holds 
when the real estate index drops and the resulting loss 
probably needs to be financed at a below-average interest 
rate. It thus follows that in case of a positive correlation 
between the real estate index and interest rates a long 
futures contract will be more attractive than a long for-
ward contract. Other factors may also cause significant 
differences between forward and futures contracts (like 
taxes and transaction costs).
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Swaps

We assume that the swap contract starts at time 
T

0
 ≥ t and ends at time T

n
 > T

0
. To fix the notation: the 

owner of a receiver swap receives the price return of the 
real estate index in each period and pays the f loating 
rate. The f loating payments are based on the index 
values at the beginning of each period. The f loating 
rate can, for example, be the LIBOR spot rate. We also 
assume (without loss of generality) that the cash f lows 
are swapped annually. Results for a total return index 
can be obtained by setting q equal to zero in the fol-
lowing equations.

We first determine the value of the swaplet that is 
active during the time interval [T

k−1
,T

k
], where 1 ≤ k ≤ n. 

If we denote the price of this swaplet as ∏
k
(t), we can use 

the following result by Björk and Clapham [2002]:6
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 (34)

where L is a scaling parameter which can be used to set 
the notional amount of the swap to the right amount.7 
The total value of the swap, ∏(t), is thus equal to

( ) ( )
( )
( )

( )
( )1

0

0

) LB E)
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B (
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 (35)

Substituting Equation (25) and rearranging terms, 
we find that

 

( ) exp ( )(1 ( ))

( ) ( ) exp

( )(1 ( )) ( ) ( )
0 0
( )) ( )

L) t t)(1 (
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K T0 0
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]
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Π =( )) T(

+ α( )a( expL

−)(1y(× α ( ))))K T
⎡⎣⎡⎡ ⎤⎦⎤⎤

,

,

, 0
( )) ( )T0

 (36)

When a(t) = y(t) and q = 0, the value of the swap 
contract is equal to zero. The same holds if K = 1 and 
q = 0. This is in line with the result obtained by Björk 
and Clapham [2002], who prove that the value of a total 
return real estate swap is exactly equal to zero if the real 
estate index follows a random walk process with drift.8

Results for the general model with multiple lags 
and seasonality can easily be derived by substituting 
Equation (27) in Equation (35). If the swap market is suf-
ficiently liquid it also becomes possible to (delta) hedge 
movements of the underlying eff icient market price. 

For example, if we calculate the sensitivity ∂∏
T
(t)/∂y(t) 

using Equations (36) and (16), we find that

 

( ) ( ) exp

1 ( ) ( )
0 0
( )

t y) L)

L exp

) tK 0

[ ]1 ( ) ( )t) tK N N
( ) T

( )( )q T( tNTT

( )( )0T t0

∂Π / ∂ expL

−L exp

1× ( )t)⎡⎣⎡⎡ ⎤⎦⎤⎤

TN
( )T K

, 0
( )T0

 (37)

A liquid swap market can thus also be used to delta 
hedge more complicated derivatives. If there is no access 
to either a liquid forward or swap market the risk-neutral 
valuation approach cannot be applied. One should then 
resort to methods developed for pricing in incomplete 
markets. A good example of this approach is given in the 
paper by Syz and Vanini [2011]. They studied the effect 
of market frictions (like transaction costs, transaction 
time, and short sale constraints) to explain why prop-
erty returns are swapped against a rate that can deviate 
significantly from LIBOR.

European Options

We value the option at time t. We consider a Euro-
pean option that expires at time T > t ≥ 0 and cannot 
be exercised before that date. If K = 1, an exact pricing 
formula exists. This formula is a modification of the 
familiar Black [1976] equation. The crucial modification 
is an adjustment of the implied volatility parameter to 
account for the effect of stochastic interest rates. This 
adjusted volatility, denoted as 2σ (2

∗ , can be calculated 
as follows, see Brigo and Mercurio [2006, p. 888]:

 

( ) ( ) ( )

2
1

(1 ( ( ))

2

2 2
2

1 2
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σ =) )) σ (2(2
2

+ ρ2
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⎠
⎞⎞

∗

 (38)
with

 

( )
2

( ( ))

1
2

( ( ))
3

2

1
2

2V ( T) 1
2 t exp T t

exp T( 2 (x

))
σ
κ

− +t
κ

⎛
⎝

−
κ

2 −))
κ

⎞
⎠
⎞⎞  (39)

and ρ the correlation between the Wiener processes for 
the short interest rate (see Equation (15)) and the effi-
cient market process (see Equation (22)).
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If K < 1, a simple, approximating pricing formula 
can be derived. Equation (17) shows that the index value 
at time T is equal to a weighted sum of T − t lognormal 
distributions. We thus have an Asian basket option. To 
value this option, we first calculate the first moment 
M

1
 and the second moment M

2
 of the exact probability 

distribution at time T, see Hull [2009, pp. 578–579]:

 

p ( )(1 )
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1

1 0
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 (40)

and

 

exp

exp
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1
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i j
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∑

∑

( )( )2

2 t i
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2 t i

t

+ t

=
,

,i 1  (41)

Using these moments, we can fit the exact distri-
bution with an approximating lognormal distribution. 
This approach was first proposed by Levy [1992]. The 
forward price F

T
(t) and the implied volatility σ can then 

be approximated using the following equation (see also 
Hull [2009, p. 565]):

 
( )

1
ln1

2

1

F ( M
T t

M
MTFF = ;1M σ =

⎛
⎝⎜
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⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 (42)

Closed-form pricing formulas for European put 
and call options are then given by the familiar Black 
[1976] price for an option on a forward contract:
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, 2d2 − σ

 (44)

( )p t(  here denotes the price of a put option, ( )c(  the price 
of a call option, and X  the strike price.

Equations (41)–(44) are also valid for models with 
multiple lag terms and seasonality. Equation (40) should be 
generalized, however, in this case. The proper form is
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1 1 0
1

1

1
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 (45)

The accuracy of this option pricing formula is tested 
later in this article. It is important to note that alterna-
tive pricing techniques for Asian options are available in 
the literature. Lord [2006] provided an overview of the 
current state of the art in this field. A detailed discussion 
of these advanced methods is outside the scope of this 
article. We certainly recommend them, however, when 
option pricing with a very high accuracy is required. We 
also note that an accurate valuation of American options 
is possible using the least squares Monte Carlo method 
by Longstaff and Schwartz [2001].

Pricing Formulas: Conclusions

Our real estate valuation model can be analyzed 
theoretically and closed-form pricing formulas have 
been derived. The formulas for forwards and swaps are 
exact. These formulas collapse to the classic no-arbitrage 
results if the real estate index follows an efficient market 
process. If this is not the case, due to autocorrelation 
in the index returns, deviations from the no-arbitrage 
price occur if the index level is not equal to the efficient 
market price.

Given actual market prices for forwards or swaps, 
the derived pricing formulas can thus be used to estimate 
the difference between the current index level and the 
efficient market price. This facilitates the price discovery 
process: information about market over- or undervalu-
ation can be extracted from the derivatives markets for 
forwards or swaps. This, in turn, can also make the pri-
mary real estate market more efficient because the price 
update process becomes more effective. We also demon-
strated that forward and swap contracts can be used to 
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replicate the underlying efficient market process. Given 
a liquid forward or swap market the developed risk-
neutral valuation model is thus well founded, and more 
complicated derivatives can be hedged and priced.

For European real estate options, a simple, approx-
imate closed-form solution is derived. Because these 
options are essentially Asian (basket) options, existing 
algorithms for Asian stock options can be applied to 
further improve the accuracy. Accurate valuation 
of American real estate options is also possible using 
the Monte Carlo method proposed by Longstaff and 
Schwartz [2001].

The accuracy of the proposed valuation model is of 
course strongly dependent on the ability of the valuation 
model to properly capture the dynamic behavior of the 
real estate index. Model selection and estimation issues 
are therefore discussed in detail in the next section.

ESTIMATION OF THE MODEL

Our real estate model could be calibrated (at least 
partly) using market data if a liquid real estate option 
market would exist. The standard approach for equity 
option models is, for example, to fit the model param-
eters as well as possible to prices of equity options with 
different maturities and strike levels. The market-implied 
volatilities (and sometimes also the market-
implied correlations) are thus the key inputs 
for the model estimation. This approach is 
currently not feasible for real estate, however, 
due to a lack of trading in real estate options. 
We thus have to resort to an estimation of 
the model using historical index data.

We therefore base our analysis on his-
torical data for the Dutch and U.S. residen-
tial markets. We first provide an overview of 
the data in the next subsection. Calibration 
results for the Dutch and U.S. interest rate 
models are then presented. We subsequently 
present calibration results for the Dutch and 
U.S. real estate models.

We mainly focus on annual historical 
data for the Dutch real estate market and 
monthly historical data for the U.S. real 
estate model. Note that it would of course 
be possible to do everything at the monthly 
interval. This would, however, limit the 
accessibility of this article, because the 

analysis at the monthly interval requires much more 
advanced model estimation techniques and does not 
directly lead to analytical prices for real estate deriva-
tives (due to seasonality and stochastic volatility, which 
become important at the monthly interval).

Description of the Data and Model 
Assumptions

In general, calibration results highly depend on 
the underlying data.9 Therefore, it is important to 
investigate the data before calibrating the model. As 
a first example, we consider a transaction-based index 
of Dutch house prices. We use monthly returns for the 
period December 1973–March 2011.10 The index for the 
December 1973–December 1994 period is based on data 
from the Dutch Association of Realtors and Property 
Consultants (NVM), see van Bussel and Mahieu [1996]. 
The index for the January 1995–March 2011 period is 
from Statistics Netherlands (CBS). For more informa-
tion about the latter index, see De Vries et al. [2009].

As a second example, we consider the S&P/Case-
Shiller Home Price Indices (HPI).11 These indexes 
measure the residential housing market in metropol-
itan regions across the United States. All indexes are 
constructed using the repeat sales pricing technique. 

E X H I B I T  1
Summary Statistics
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This methodology collects data on single-family home 
re-sales and captures re-sold sale prices to form sale pairs. 
The S&P/Case-Shiller HPI are calculated monthly and 
published with a two-month lag. The index point for 
each reporting month is based on sales pairs found for 
that month and the preceding two months. This index 
family consists of 20 regional indexes and 2 composite 
indexes as aggregates of the regions. We here consider the 
10-city composite index, which tracks the house price in 
the original 10 S&P/Case-Shiller indexes, because more 
historical data are available (compared with the 20-city 
composite index). We use the monthly index levels for 
the February 1987–March 2011 period. Exhibit 2 con-
tains an overview of the statistics of the Dutch house 
prices and the S&P/Case-Shiller HPI.

In Exhibit 2, Panel A, we show the development of 
the transaction-based index of Dutch house prices and 
the corresponding annual log returns. We observe that 
house prices increased until 1977, when they experienced 
a sharp fall. From the mid-1980s until the early 2000s, 
house prices exhibited a sharp increase. The most recent 
period, the late 2000s, which coincides with the global 
financial crisis, witnessed a decrease of house prices.

Exhibit 2, Panel B, shows the development of the 
S&P/Case-Shiller HPI and the corresponding monthly 
log returns. Notice the sharp increase (more than 250%) 
of the house price index in the period 1997 through 
2006, followed by the sharp decline in prices in the last 
years. Looking more closely, we can also see that the log 
returns exhibit an oscillatory pattern with a period of 
approximately one year. This is due to a seasonal effect. 
In addition, the volatility of the log returns appears to 
be non-stationary over time. For example, the volatility 

in the quiet upward trending market (1995–2005) was 
much lower than during the recent market crash.

The total expected return on owner-occupied 
housing is the expected house price appreciation plus a 
convenience yield, see De Jong et al. [2007]. A conve-
nience yield represents the (non-monetary) benefits from 
the housing services. When we assume that the conve-
nience yield is a constant fraction of the house value, 
we can model this aspect by setting the direct return q 
equal to the convenience yield. De Jong et al. [2007] 
referred to the convenience yield as an imputed rent and 
give an estimate of 67%.  a year for the U.S. housing 
market. The same percentage is used in this article for 
the Dutch housing market. Note that this estimation of 
the convenience yield is lower than a typical rental rate. 
This is due to related expenses for house owners, such as 
depreciation, maintenance and repairs, property taxes, 
insurance, and mortgage interest payments.

It is also important to specify the ratio of the ini-
tial index price level (0)a  and the efficient market price 
(0)y . If (0) (0)a y(0) , the house market is overvalued; 

if (0) (0)a y(0) , the house market is undervalued. The 
question of whether or not the Dutch housing market 
is overvalued has been investigated by Francke et al. 
[2009] using different models. Unfortunately, all models 
estimate the overvaluation of the Dutch market dif-
ferently, ranging between approximately 0% and 12% 
overvaluation. Because the precise amount of overvalua-
tion thus cannot be determined very accurately, we first 
take a neutral stance in the next section by assuming 
that the house market is in equilibrium. The effect of 
over- or undervaluation is then studied in a sensitivity 
analysis.

E X H I B I T  2
Overview of Dutch and U.S. House Price Index Development

Annual Log Return
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Calibration of the Interest Rate Model

The valuation date is March 31, 2011. For the euro 
area, we use the euro (zero-coupon) swap curve as pub-
lished by Bloomberg as the reference nominal interest 
rate curve. We estimate the stochastic interest rate model, 
a continuous-time, one-factor Hull–White model, using 
market prices of forward-at-the-money options on 
euro swap contracts (data also from Bloomberg). The 
two parameters of the one-factor Hull–White model 
(the mean-reversion parameter  and the volatility 
parameter )1σ  are estimated using a large set of swap-
tions, with option and swap maturities ranging from 1 to 
15 years. Swaption prices are typically quoted in terms 
of implied (Black) volatilities. Exhibit 3 gives a graphical 
overview of these volatilities.

We use the Levenberg–Marquardt least-squares 
algorithm to find the optimal model parameters. The 
Hull–White parameters with the best f it are a mean 
reversion κ of 0 0341≈ .0  and a volatility 1σ  of 0 0097≈ .0 . 
A comparison between the model and market prices is 
shown in Exhibit 3, Panel B. In this exhibit, we show 
the difference between the model and market-implied 
volatility for the entire set of swaptions. The average 
absolute error is equal to 0 68.  percentage point; the 
maximum absolute error is 2 16.  percentage points (for 
a two-year option on a one-year swap). We also used 
a more elaborate two-factor Hull–White model. This 
does not improve the results significantly, however, so 
we continue with the one-factor model in the remainder 
of this article. The correlations between the Wiener 
processes for the short interest rate (see Equation (15)) 
and the efficient market process (see Equation (22)) are 

estimated using historical data. More precisely, we use 
the correlation between historical changes in the short 
interest rate and the derived efficient market returns. 
This correlation is equal to 0 16. .

The U.S. interest rate model is calibrated in the 
same way as the Euro interest rate model, i.e., the same 
data range for swaptions is used and also the same opti-
mization procedure. The Hull–White parameters with 
the best fit are a mean reversion equal to 0 0625≈ .0  and a 
volatility parameter equal to 0 0146≈ .0 . The correlation 
parameter is also estimated using historical data and is 
equal to 0 45. .

Example 1: Dutch House Price Index

Using annual historical data, we compare the 
quality of price update models with up to three lags. The 
parameters of Equation (12) are estimated with ordinary 
least squares (OLS) regression using annual log returns 
for the 1977–2010 period. By applying the augmented 
Dickey–Fuller test, the null hypothesis of a unit root 
is rejected at the 5% level for these returns, that is, the 
process is stationary. The main estimation results are 
summarized in Exhibit 4.

Because we assume in our valuation model that the 
efficient market returns follow a random-walk process 
with drift, it is important to check whether the residuals 
indeed have a serial correlation close to zero. In this 
case, the Durbin–Watson test statistic should be close 
to 2. Exhibit 4 shows that this is indeed the case for the 
models with two or three lags.

There exist several order selection criteria to select 
the best AR model. These criteria typically choose the 

E X H I B I T  3
Calibration Results of the Hull–White Model
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model order in such a way that the prediction error is 
minimized while putting a penalty on the number of 
parameters estimated. The prediction error is here mea-
sured using the maximum likelihood residual variance. 
This variance is not corrected for the number of para-
meters estimated. The number of parameters is equal to 
the order of the AR model plus an additional parameter 
for the strength of the random walk process. We use the 
final prediction error criterion (FPE), the Akaike infor-
mation criterion (AIC), the Schwarz criterion (SC), and 
the Hannan and Quinn criterion (HQ).12 The order for 
which the value of the criterion is minimized is seen as 
the model that is closest to the true model and is there-
fore the “optimal” order. Each of the criteria assumes 
that the models are estimated including a constant term. 
Exhibit 5 shows that the model with two lags is unani-
mously selected.

When we select a model with two lags, one addi-
tional historical observation (1976) can be used (com-
pared with the model with three lags). We therefore reran 
the calibration for the model with two lags, including 
this additional observation. This results in the following 
model parameters: 0 404K = .0∗ , 1 0281w = .1∗ , 0 4312w = − .∗ , 

0 041π = . , 0 017K π = .∗ , 0 111σ = .ε , 0 045K σ = .∗
ε . This 

model is used in the remainder of this article.

Example 2: U.S. House Price Index

We calibrate a monthly price update model of the 
U.S. S&P/Case-Shiller Home Price Index in this sec-
tion. The price update model that we consider is thus 
different than the annual price update model that we 
used in the previous section. For higher frequency data, 
aspects like stochastic volatility and seasonality become 
more important and these effects are therefore explicitly 
modeled here.

We model seasonality and stochastic volatility 
as follows. First, we estimate an autoregressive (AR) 
model with seasonal dummies using OLS (see the ear-
lier description). We allow for at most 14 lags—that is, 
a lookback period of at most 14 months.13 We estimate 
the optimal model using the automatic model selection 
option in PCGive.14 We then remove all AR coefficients 
that are not significant and extend this model with a 
GARCH(1,1) stochastic volatility model (see Bollerslev 
[1986]). This model can be written in the following 
form:

 ( ) ( 1) ( 1)2
0 1

2
1

2r)2 t1) (c
aσ =( ))2 α0 +0 (1 r1 c
a + β −(t(  (46)

where ( )σ  is the volatility of the monthly log return 
( )r (c

a . The AR coefficients, the coefficients of the sea-
sonal dummies and the GARCH(1,1) coefficients ( 0α , 

1α , and 1β ) are then determined by maximum likeli-
hood estimation in PCGive. In order to generate risk-
neutral scenarios using the GARCH(1,1) model, the 

E X H I B I T  4
Characteristics of the Estimated Price Update Models

E X H I B I T  5
Selecting the Optimal Order of the Estimated Price 
Update Models

E X H I B I T  6
Characteristics of the Estimated Case-Shiller Model, 
Including Seasonality and Stochastic Volatility

Notes: The AR model consists of 14 lags, of which only the 5 significant
coefficients are included. Three seasonal dummies ( for the months Feb-
ruary, March, and June) are also included. The α

0
, α

1
and β

1
para-

meters are the coefficients of the GARCH(1,1) stochastic volatility model.
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corresponding parameters 0α , 1α , and 1β  are projected 
to the continuous counterpart. For more information, 
refer to Hull [2009, p. 482].

The characteristics of the estimated model are sum-
marized in Exhibit 6. The parameters of Equation (12) 
are estimated with OLS regression using monthly log 
returns for the March 1988–March 2011 period.

The residuals of the regression have a serial correla-
tion close to zero: the Portmanteau test statistic is equal 
to 36.1 (with p-value 0.2418). The residuals are also (in 
good approximation) normally distributed: the normality 
test statistic is equal to 0.63 (with a P-value of 0.72). The 
results are shown in more detail in Exhibit 7.

The top left-hand side graph shows how well 
the model fits the historical data period. The top right 
graph displays the (scaled) residuals. The evolution of 

conditional volatility is displayed in the middle left 
graph. Notice the increasing volatility in the most 
recent period. The histogram in the middle right graph 
shows the histogram of the residuals. Notice that these 
are (approximately) normally distributed. The bottom 
graphs display the autocorrelation functions (ACF) of 
the residuals. These autocorrelations should be close to 
zero if the model fits the data well. This is indeed the 
case. The applied GARCH(1,1) model thus success-
fully describes the stochastic volatility component that 
is present in the data.

MODEL APPLICATION: DERIVATIVE PRICING

The developed valuation model for real estate 
derivatives is explored further in this section. As an 

E X H I B I T  7
Estimation Results for the 10-City Composite S&P/Case-Shiller Index
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example, we consider a house owner who buys a (hypo-
thetical) at-the-money put option with a maturity of 10 
years on his/her house. This option can only be exer-
cised at the maturity date; that is, it is a European option. 
The underlying index is the Dutch house price index 
that we introduced in the previous section. We use the 
price update model with two lags. The direct return  
(i.e., the convenience yield) is set equal to 0 67%. .

It is important to note that a property derivative 
market currently does not exist in the Netherlands 
(a liquid derivatives market also does not exist in the 
United States at this moment). The example given in this 
section is thus only provided to illustrate the developed 
valuation framework. We should also note that our valua-
tion model assumes that continuous trading in the under-
lying efficient market price is possible. We explained 
before that it is possible to replicate continuous trading 
in the underlying index using forward or swap contracts. 
Once a liquid forward or swap market has emerged in 
the Netherlands, the applied valuation framework can 
thus be applied to value (arbitrary complex) property 
derivatives. In practice, it is of course also important to 
distinguish between global and more local real estate 
risk. Derivatives trading typically focuses on the main 
(metropolitan) areas, which can make it more difficult to 
hedge house price risk in local areas using derivatives.

As an interesting side line: in the Netherlands, a 
real-life option on the house price exists. Under certain 
(specific) conditions the so-called Waarborgfonds Eigen 
Woningen (WEW) pays out to the bank (the lender) 
when the owner of the mortgage is not able to fulfill 
his payments. This guarantee is backed up by the Dutch 
government if the buffer of the WEW turns out to be 
insufficient in the future.

Option Pricing Results

We value the 10-year at-the-money put option 
using Monte Carlo simulation. This is done by gener-
ating 1,000,000 risk-neutral scenarios and discounting 
the option payoffs back to time zero along the path of 
the short interest rate.15 To determine the effect of auto-
correlation in the index returns on the option value, we 
also generated results with alternative model parameters. 
For these alternative models, the confidence parameter 
K  is varied between zero and 1. The other weights ( 1w  
and 2w ) are proportionally scaled up or down in order to 
keep the sum of all weights equal to one. Note that we 

assume in this section that the current real estate index 
level (0)a  is equal to the current efficient market level 
(0)y ; see Equation (19). The impact of overvaluation 

(when (0) (0)a y(0) ) or undervaluation (when (0) (0)y a(0) ) 
will be studied in the next section.

The results are shown in Exhibit 8. Recall that 
returns are highly correlated if 0K = . If 1K = , returns 
are almost completely uncorrelated. Also keep in mind 
that the estimated value of K  is equal to 0.404, as indi-
cated in the exhibit. The option premiums are expressed 
as percentages of the notional amount. Exhibit 8 clearly 
shows that the option premiums decrease when the auto-
correlation of the returns increases (i.e., K  decreases). 
This is due to the smaller (cumulative) volatility of the 
autocorrelated real estate returns.

The quality of the approximate analytical pricing 
formula that we derived previously is also investigated 
in Exhibit 8. This analytical pricing formula is very 
accurate for high values of the confidence parameter K. 
In this case, the terminal probability distribution of the 
index value is determined to a large extent by only a 
few lognormal distributions. The terminal distribution 
function can be fitted well with a single lognormal dis-
tribution in this case, so the approximation error is small. 
When  decreases, the terminal probability distribution 

E X H I B I T  8
Price of a 10-Year at-the-Money Put Option on a 
House Price Index as a Function of the Confidence 
Parameter K
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of the index value becomes the sum of a series of dif-
ferent lognormal functions. As a result, the fit with one 
lognormal function deteriorates. However, the quality 
of the approximation remains quite satisfactory. For 
alternative approximation methods, the interested reader 
is referred to the overview in Lord [2006].

Effect of Over- or Undervaluation

We can model overvaluation (undervaluation) of 
the real estate market by setting the current efficient 
market level )y  lower (higher) than the current index 
level (0)a ; see Equation (19). The results are shown in 
Exhibit 9.

In Exhibit 9, the confidence parameter is set equal 
to the default value (0.404). Overvaluation is measured 
as ( (0) (0)) (0)a y(0) y− /(0))y . The option premiums increase, as 
expected, when the initial index level is higher than the 
efficient market price (and vice versa). Exhibit 9 also 
demonstrates that the agreement between the Monte 
Carlo price and the analytical price is very good in cases 
of under- or overvaluation. Information about the degree 
of under- or overvaluation of the real estate market may 
be obtained by using information in the forward or swap 
markets (see Geltner and Fisher [2007] and previous 

discussion in this article) or by using information in the 
public real estate market (see Geltner et al. [2003]).

CONCLUSIONS

We proposed a new and intuitive risk-neutral valu-
ation model for real estate derivatives that are linked 
to autocorrelated indexes. Following Jokivuolle [1998], 
we first modeled the (unobserved) underlying market 
f luctuations using a simple random walk process with 
drift. We then reconstructed the observed index using 
an adaptation of the price update rule by Blundell and 
Ward [1987].

The f irst modif ication of the update rule by 
Blundell and Ward [1987] is straightforward and consists 
of adding multiple lag terms. This leads to an autore-
gressive (AR) model that can be estimated using stan-
dard econometric techniques. A second modification 
is more fundamental from a valuation perspective and 
consists of using the accrued value of past observations. 
We showed, using real (annual and monthly) data, that 
this model is able to reproduce the dynamic behavior 
of a transaction-based house price index with autocor-
relation. For high-frequency data (like monthly house 
prices), aspects like seasonality and stochastic volatility 
can become important. It is possible to model such phe-
nomena as well within the developed framework.

The resulting model has also been analyzed ana-
lytically and closed-form pricing solutions have been 
derived for forwards, swaps, and European put and call 
options. The developed model can be applied once a 
liquid forward or swap market has been established. In 
this case, it becomes possible to (approximately) replicate 
the underlying efficient market process. The risk-neutral 
assumption of continuous trading in the underlying asset 
is then satisfied, and arbitrarily complex derivatives can 
be hedged and priced. Given actual market prices for 
forwards or swaps, the derived pricing formulas can also 
be used to estimate the difference between the current 
index level and the efficient market price. This facilitates 
the price discovery process: information about market 
over- or undervaluation can be extracted from the deriv-
atives markets for forwards or swaps. This, in turn, can 
also make the primary real estate market more efficient 
because the price update process is facilitated.

As an example, we valued a (hypothetical) Euro-
pean put option on a house price index. We first gener-
ated benchmark (Monte Carlo) results and then tested 

E X H I B I T  9
Effect of Over- or Undervaluation on the Option 
Price
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our (approximate) closed-form pricing formula. This 
example highlights the strong effect of autocorrelation 
in the underlying index on the option price. As is well 
known from the real estate literature, a high degree of 
autocorrelation reduces the (annual) volatility of the real 
estate index returns, compared with the (annual) vola-
tility of the underlying “true” market price. This causes 
lower option prices, because the time value of the option 
decreases in this case. Using the proposed model, the 
effect of over- or undervaluation of the real estate market 
is also studied. The observed effects are significant and 
as expected.

Our technique is quite general and can be applied 
for different purposes. First, it can be used to price 

existing derivatives in real estate markets (see the exam-
ples in Buttimer and Kau [1997], Bertus et al. [2008], 
and Geltner and Fisher [2007]). Our technique can also 
be used for the valuation of so-called hybrid forms of 
sales (see Kramer [2008]). In this case, a housing cor-
poration sells a house with a discount to the tenant. In 
addition, there is a profit and loss sharing mechanism 
when the house is sold in the future. By determining 
the present value of the future profits and losses, the 
corporation can determine whether the initial discount 
(given to the home buyer) is reasonable. This informa-
tion can also be used when the corporation reports on a 
pure market-value basis and includes the present value 
of future profits and losses on the balance sheet.

A P P E N D I X

A. PROOFS

A.1 Proof of Equation (24)

Using Equation (22) we find that
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The right-hand side of this expression can be simplified to
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Since we also have that

 
σ = σ[exp( ( – ))| ] exp ( ( – )/2)2 2 2

2E Z T t F T tQ t  (A-3)

we arrive at Equation (24).

A.2 Proof of Equation (25)

The proper starting point for the analysis is Equation (17), since this equation enables us to write a(T ) as a basket of 
previous (accrued) efficient market prices and the (accrued) index value at time t. This becomes clear when we set t equal to T 
and m equal to T − t in Equation (17):

 
∑= − + + −
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Let us first determine whether the accrued prices y*(T − i + 1), at time T and conditional on the filtration up to time t, 
are martingales for 1 ≤ i ≤ T − t if q = 0. This is indeed the case, since
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Using Equation (24) we also find that
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The following result then easily follows:
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Since ∑ ==
−(1– ) 1– (1– ) ,1

– 1 –K K Ki
T t i T t  Equation (25) is obtained.

ENDNOTES

Research for this article took place when David van 
Bragt was affiliated with Ortec Finance.

We would like to thank Bert Kramer and Diederik 
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Symposium in Boston, Massachusetts.

1A much earlier application of this update rule can be 
found in Brown [1959].

2Equation (1) assumes that the price update rule is 
constant over time. Generalizations with time-varying para-
meters can be found in Brown and Matysiak [2002].

3We can, at any given point in time, convert a continu-
ously compounded return ( )r (c

a  into an annually compounded 
return ( )r (a  with the relation ( ) exp(x ( )) 1r ( r (a

c
a= exp(x ))r ( . Let us 

now consider a given time series for ( )r (c
a . We can convert 

these returns into annually compounded returns (using this 
relation). The temporal correlation between the two time 
series is almost the same because changes in ( )r (a  and ( )r (c

a  
are in first-order approximation the same.

4A natural extension of the price update model is to 
model the constant K by a time-dependent function, so that 
the constant K can change with market circumstances. This 
extension, however, is not investigated in this article.

5The following Mathematica program for example 
writes 0)a  in the form of Equation (20) for a price update 
model with two lags:

a[t_] := Ky[t]+ w1 a[t − 1] + (1 − K − w1)a[t − 2] (*price 
update equation with two lags*)
a[0] = a0 (*index value at time 0*)
a[−1] = am1 (*index value at time −1*)

Simplify [a[10]] (*evaluate a(10) and simplify the 
expression*).

6We do not assume (as is the case in Björk and Clapham 
[2002]) that direct returns are reinvested. This situation is, 
however, easily obtained by setting q equal to zero in the 
derived equations.

7The notional is thus not a fixed amount but is adjusted 
periodically by the appreciation and depreciation of the 
index; see the description in Buttimer and Kau [1997, p. 22].

8Patel and Pereira [1996] have extended this result by 
considering the effect of counterparty default risk. They find 
that the swap price is no longer equal to zero in this case 
because a compensation for the additional risk is required. Syz 
and Vanini [2011] studied the effect of market frictions (like 
transaction costs, transaction time, and short sale constraints) 
on the real estate swap market.

9We note that the choice of historical data (for example, the 
region, type, and so on) depends on the application at hand.
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10The annual returns are calculated using the monthly 
returns in a certain year.

11More information about the Case-Shiller indexes, 
including historical data and information about the index 
construction, can be found on http://www.homeprice.stan-
dardandpoors.com.

12The constant c that is used in the HQ criterion is set 
equal to 1.1.

13Results do not improve signif icantly when we use 
more than 14 lags.

14See Doornik and Hendry [2007].
15We use antithetic sampling to reduce the standard 

error of the Monte Carlo estimate.

REFERENCES

Aït-Sahalia, Y., and R. Kimmel. “Maximum Likelihood Esti-
mation of Stochastic Volatility Models.” Journal of Financial 
Economics, 83 (2007), pp. 413-452.

Bertus, M., H. Hollans, and S. Swidler. “Hedging House 
Price Risk with CME Futures Contracts: The Case of Las 
Vegas Residential Real Estate.” Journal of Real Estate Finance 
and Economics, Vol. 37, No. 3 (2008), pp. 265-279.

Björk, T., and E. Clapham. “On the Pricing of Real Estate 
Index Linked Swaps.” Journal of Housing Economics, 11 (2002), 
pp. 418-432.

Black, F. “The Pricing of Commodity Contracts.” Journal of 
Financial Economics, 3 (1976), pp. 167-179.

Black, F., and M.S. Scholes. “The Pricing of Options and 
Corporate Liabilities.” Journal of Political Economy, Vol. 81, 
No. 3 (1973), pp. 637-654.

Blundell, G.F., and C.W.R. Ward. “Property Portfolio Allo-
cation: A Multi-Factor Model.” Journal of Property Research, 
Vol. 4, No. 2 (1987), pp. 145-156.

Bollerslev, T. “Generalized Autoregressive Conditional 
Heteroskedasticity.” Journal of Econometrics, 31 (1986), 
pp. 307-327.

Brigo, D., and F. Mercurio. Interest Rate Models—Theory and 
Practice, 2nd edition. New York: Springer Finance, 2006.

Brown, R.G. Statistical Forecasting for Inventory Control. New 
York: McGraw-Hill, 1959.

Brown, R.G., and G. Matysiak. “Valuation Smoothing 
without Temporal Aggregation.” Journal of Property Research, 
Vol. 15, No. 2 (2002), pp. 89-103.

Buetow, G.W., and J.D. Albert. “The Pricing of Embedded 
Options in Real Estate Lease Contracts.” Journal of Real Estate 
Research, 15 (1998), pp. 253-265.

Buttimer, R.J., and J.B. Kau. “A Model for Pricing Securi-
ties Dependent upon a Real Estate Index.” Journal of Housing 
Economics, 6 (1997), pp. 16-30.

De Jong, F., J. Driessen, and O. van Hemert. “Hedging 
House Price Risk: Portfolio Choice with Housing Futures.” 
Working paper, SSRN, 2007.

De Vries, P., G. Mariën, J. de Haan, and E. Van der Wal. “A 
House Price Index Based on the SPAR Method.” Journal of 
Housing Economics, Vol. 18, No. 3 (2009), pp. 214-223.

Doornik, J.A., and D.F. Hendry. Empirical Econometric Model-
ling Using PCGive: Volumes I-III, 5th edition. London: Tim-
berlake Consultants Press, 2007.

Fabozzi, F.J., R.J. Shiller, and R.S. Tunaru. “Hedging Real-
Estate Risk.” The Journal of Portfolio Management, Vol. 35, 
No. 5 (2009), pp. 92-103.

——. “A Pricing Framework for Real Estate Derivatives.” 
European Financial Management, Vol. 18, No. 5 (2011), pp. 
762-789.

Francke, M.K. “Repeat Sales Index for Thin Markets: 
A Structural Time Series Approach.” Journal of Real Estate 
Finance and Economics, Vol. 41, No. 1 (2010), pp. 24-52.

Francke, M.K., S. Vujic, and G.A. Vos. “Evaluation of House 
Prices Models Using an ECM Approach: The Case of the 
Netherlands.” Ortec Finance Methodological Working Paper 
No. 2009-05, 2009.

Geltner, D., and J. Fisher. “Pricing and Index Considerations 
in Commercial Real Estate Derivatives.” The Journal of Port-
folio Management, Vol. 33, No. 5 (2007), pp. 1-21.

Geltner, D., B.D. MacGregor, and G.M. Schwann. “Appraisal 
Smoothing and Price Discovery in Real Estate Markets.” 
Urban Studies, Vol. 40, No. 5-6 (2003), pp. 1047-1064.

JOD-VAN BRAGT.indd   109JOD-VAN BRAGT.indd   109 8/19/15   12:41:13 PM8/19/15   12:41:13 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

5.
23

.1
:8

9-
11

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.ii
jo

ur
na

ls
.c

om
 b

y 
A

nt
oo

n 
Pe

ls
se

r 
on

 0
9/

30
/1

5.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.

http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2005.10.006
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2005.10.006
http://www.iijournals.com/action/showLinks?crossref=10.1086%2F260062
http://www.iijournals.com/action/showLinks?crossref=10.1006%2Fjhec.1997.0202
http://www.iijournals.com/action/showLinks?crossref=10.1006%2Fjhec.1997.0202
http://www.iijournals.com/action/showLinks?system=10.3905%2FJPM.2009.35.5.092
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjpm.2007.698910
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-008-9129-z
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjpm.2007.698910
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-008-9129-z
http://www.iijournals.com/action/showLinks?crossref=10.1111%2Fj.1468-036X.2011.00635.x
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS1051-1377%2802%2900121-3
http://www.iijournals.com/action/showLinks?crossref=10.1080%2F0042098032000074317
http://www.iijournals.com/action/showLinks?crossref=10.1080%2F095999198368419
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0304-4076%2886%2990063-1
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jhe.2009.07.002
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jhe.2009.07.002
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-009-9203-1
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-009-9203-1
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0304-405X%2876%2990024-6
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0304-405X%2876%2990024-6


110   RISK-NEUTRAL VALUATION OF REAL ESTATE DERIVATIVES FALL 2015

Heston, S.L. “A Closed-Form Solution for Options with Sto-
chastic Volatility with Applications to Bond and Currency 
Options.” Review of Financial Studies, Vol. 6, No. 2 (1993), 
pp. 327-343.

Hull, J.C. Options, Futures, & Other Derivatives, 7th edition. 
New Jersey: Prentice Hall, 2009.

Jokivuolle, E. “Pricing European Options on Autocorre-
lated Indices.” The Journal of Derivatives, Vol. 6, No. 2 (1998), 
pp. 39-52.

Jones, C.S. “The Dynamics of Stochastic Volatility: Evidence 
from Underlying and Option Markets.” Journal of Econometrics, 
116 (2003), pp. 181-224.

Kau, J.D., D.C. Keenan, W.J. Muller, and J.F. Epperson. 
“Pricing Commercial Mortgages and Their Mortgage-Backed 
Securities.” Journal of Real Estate Finance and Economics, Vol. 3, 
No. 4 (1990), pp. 333-356.

Kramer, B. “Hybrid Forms of Sale: Valuation and Risk for 
Housing Corporations.” Property Research Quarterly, 4 (2008), 
pp. 49-56.

Levy, E. “Pricing European Average Rate Currency 
Options.” Journal of International Money and Finance, 14 (1992), 
pp. 474-491.

Liao, S.L., and C.C. Chen. “The Valuation of European 
Options when Asset Returns Are Autocorrelated.” Journal of 
Futures Markets, Vol. 26, No. 1 (2006), pp. 85-102.

Lo, A.W., and J. Wang. “Implementing Option Pricing Models 
when Asset Returns Are Predictable.” Journal of Finance, Vol. 
50, No. 1 (1995), pp. 87-129.

Longstaff, F.A., and E.S. Schwartz. “Valuing American Options 
by Simulation: A Simple Least-Squares Approach.” Review of 
Financial Studies, Vol. 14, No. 1 (2001), pp. 113-147.

Lord, R. “Partially Exact and Bounded Approximations for 
Arithmetic Asian Options.” Journal of Computational Finance, 
Vol. 10, No. 2 (2006), pp. 1-52.

Lütkepohl, H. New Introduction to Multiple Time Series Analysis. 
Berlin: Springer-Verlag, 2006.

Nelson, D.B. “ARCH Models as Diffusion Approximations.” 
Journal of Econometrics, 45 (1990), pp. 7-38.

Patel, K., and R. Pereira. “Pricing Property Index Linked 
Swaps with Counterparty Default Risk.” Journal of Real Estate 
Finance and Economics, Vol. 36, No. 1 (1996), pp. 5-21.

Shiller, R.J. “Derivatives Markets for Home Prices.” Discus-
sion Paper 1648, Cowles Foundation, 2008.

Shiller, R.J., and A.N. Weiss. “Home Equity Insurance.” 
Journal of Real Estate Finance and Economics, Vol. 19, No. 1 
(1999), pp. 21-47.

Steehouwer, H. “Macroeconomic Scenarios and Reality: A 
Frequency Domain Approach for Analyzing Historical Time 
Series and Generating Scenarios for the Future.” PhD thesis, 
Free University of Amsterdam, 2005.

Syz, J.M., and P. Vanini. “Arbitrage Free Price Bounds for 
Property Derivatives.” Journal of Real Estate Finance and Eco-
nomics, Vol. 43, No. 3 (2011), pp. 281-298.

van Bussel, A., and R. Mahieu. “A Repeat Sales Index for 
Residential Property in the Netherlands.” Working paper, 
SSRN, 1996.

Vasicek, O. “An Equilibrium Characterization of the Term 
Structure.” Journal of Financial Economics, 5 (1997), pp. 
177-188.

To order reprints of this article, please contact Dewey Palmieri 
at dpalmieri@iijournals.com or 212-224-3675.

JOD-VAN BRAGT.indd   110JOD-VAN BRAGT.indd   110 8/19/15   12:41:13 PM8/19/15   12:41:13 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

5.
23

.1
:8

9-
11

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.ii
jo

ur
na

ls
.c

om
 b

y 
A

nt
oo

n 
Pe

ls
se

r 
on

 0
9/

30
/1

5.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.

http://www.iijournals.com/action/showLinks?crossref=10.1111%2Fj.1540-6261.1995.tb05168.x
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0304-4076%2890%2990092-8
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frfs%2F14.1.113
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frfs%2F14.1.113
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-007-9073-3
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-007-9073-3
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjod.6.2.39
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-009-9225-8
http://www.iijournals.com/action/showLinks?crossref=10.1007%2Fs11146-009-9225-8
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0261-5606%2892%2990013-N
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS0304-4076%2803%2900107-6
http://www.iijournals.com/action/showLinks?crossref=10.1002%2Ffut.20192
http://www.iijournals.com/action/showLinks?crossref=10.1002%2Ffut.20192
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frfs%2F6.2.327
http://www.iijournals.com/action/showLinks?crossref=10.1023%2FA%3A1007779229387
http://www.iijournals.com/action/showLinks?crossref=10.1016%2F0304-405X%2877%2990016-2
http://www.iijournals.com/action/showLinks?crossref=10.1007%2FBF00178857

