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We propose a simulation algorithm for the Schöbel–Zhu model and its extension
to include stochastic interest rates. Both schemes are derived by analyzing the
lessons learned from the Broadie and Kaya scheme on how to avoid the so-called
leaking correlation phenomenon in the simulation of the Heston model. All intro-
duced schemes are exponentially affine in expectation, which greatly facilitates the
derivation of a martingale correction. In addition we study the regularity of each
scheme. The numerical results indicate that our scheme consistently outperforms
the Euler scheme. For a special case of the Schöbel–Zhu model which coincides
with the Heston model, our scheme performs similarly to the QE-M scheme of
Andersen. The results reaffirm that when simulating stochastic volatility models it
is of the utmost importance to match the correlation between the asset price and
the stochastic volatility process.

1 INTRODUCTION

Stochastic volatility models have become the de facto standard to price and hedge
complex financial products; in derivative models the behavior of financial derivatives

The authors would like to thank Jeroen Decuypere, Peter Jäckel, participants of the London Cass
Business School seminar series, and an anonymous referee, for their valuable comments and
suggestions.
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2 A. van Haastrecht et al

is usually modeled by stochastic differential equations that jointly describe the move-
ments of the underlying financial assets, such as stock prices, stock variances and
interest rates. Though certain models yield closed-form solutions for some products,
the vast majority cannot be priced in closed-form. Nonetheless, Monte Carlo meth-
ods provide a popular and flexible pricing alternative to value such exotic deriva-
tives. Due to technical advances such as multi-processor programming, increasing
computational power and variance reduction techniques, Monte Carlo techniques are
expected to become even more widely applicable in the near future. Taking these
advances into account, Monte Carlo techniques are still computationally relatively
expensive, hence much attention focuses on efficient simulation schemes aiming to
minimize computational effort while retaining a high degree of accuracy.

In the last decade the literature on efficient simulation schemes for stochastic volatil-
ity has evolved.Approaches to price derivatives with stochastic volatility models were
described in Hull and White (1987), Stein and Stein (1991), Heston (1993) and the
Schöbel and Zhu (1999) model. The latter two models stand out for allowing the
stochastic volatility to be correlated with the underlying asset, while still allowing for
closed-form formulas for most vanilla options used in the model’s calibration. Dis-
cretization schemes for models have been described by several authors, for example
Jäckel (2002), Glasserman (2003), Kahl and Jäckel (2006), Andersen (2008), Lord
et al (2008), Smith (2008) and van Haastrecht and Pelsser (2010). Most of these papers
focus on efficient discretization methods for the Heston (1993) model, paying par-
ticular attention to the discretization of the underlying square-root variance process.
Andersen (2008) was the first to make the key observation that for any discretization
scheme of the Heston (1993) model it is crucially important to match the correla-
tion between the underlying and the variance process as close as possible. Simple
Euler schemes which do not take this into account suffer from the so-called leaking
correlation phenomenon.

In this paper simulation schemes are presented for the Schöbel and Zhu (1999)
(SZ) stochastic volatility model and its extensions. Instead of only focusing on the
simulation of the volatility process, which in the case of the SZ model is normally
distributed and hence can easily be simulated exactly, like Andersen we also pay
particular attention to the aforementioned “leaking correlation” issue. It appears that
this issue is a general problem in the simulation of stochastic volatility models. As
we aim for our analysis to be as broadly applicable as possible, we also consider an
extension of the SZ model which incorporates stochastic interest rates: the Schöbel–
Zhu–Hull–White (SZHW) model, as considered in van Haastrecht et al (2009). This
extension combines the SZ model with the one-factor Gaussian interest rate model
of Hull and White (1993), allowing for a general correlation structure between all
processes. This is closely related to the recent advances in the development of a market
for long-maturity European options in equity and exchange rate derivatives, showing
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Monte Carlo pricing in the Schöbel–Zhu model and its extensions 3

liquid quotes for European options ranging up to fifteen years, for which maturities
we feel a model including stochastic interest rates is more suitable. Finally, we note
that the methods presented here also facilitate the pricing of interest rate derivatives in
the context of stochastic volatility London Interbank Offered Rate (LIBOR) market
models (see, for example, Zhu 2007).

The remainder of the paper is organized as follows. First, the SZ model is described
in Section 2. Section 3 analyzes the problem of leaking correlations in the Schöbel and
Zhu (1999) and Heston (1993) stochastic volatility models. In Section 4 discretization
schemes are presented for the SZ model. These results are extended with stochastic
interest rates in Section 5. In Section 6 numerical examples are worked out, showing
the impact of leaking correlations in Monte Carlo methods for stochastic volatility
models. Conclusions are given in Section 7.

2 THE SCHÖBEL–ZHU MODEL

The risk-neutral log-asset price dynamics of the Schöbel and Zhu (1999) model read

d ln x.t/ D �1
2
�2.t/ dt C �.t/ dWx.t/; ln x.0/ D ln.x0/; (2.1)

d�.t/ D �. � �.t// dt C � dW�.t/; �.0/ D �0; (2.2)

where �,  , � are positive parameters corresponding to the mean reversion, the long-
term volatility and the volatility of the volatility process, and with Wx.t/ and W�.t/
being two Brownian motions under some probability measure Q with linear correla-
tion coefficient �x� . The variance process is defined as �2.t/, whose dynamics can
be obtained from (2.2) using Ito’s lemma and are given by

d�2.t/ D 2�

�
�2

2�
C �.t/� �2.t/

�
dt C 2�

p
�2.t/ dW�.t/; �2.0/ D �20 ; (2.3)

which will be used in Section 4 for the model’s simulation.
Here, x.t/ represents the asset price process (eg, a stock, a foreign exchange rate or

a LIBOR rate), and is assumed to be a martingale in the chosen probability measure.
Since it is straightforward to allow for a deterministic drift, we omit this for ease
of exposure. In Section 5 we elaborate more on the case of stochastic interest rates.
At first sight, one curious property of the Schöbel and Zhu (1999) model is that the
volatility process �.t/ affects the sign of the instantaneous correlation between �.t/
and ln x.t/. Indeed, we can show that

Corr.d ln x.t/; d�.t// D �x��.t/�p
�2.t/�2

D �x� sgn.�.t//: (2.4)

This effect is visualized in Figure 1 on the next page, where we have plotted a sample
path of x.t/, �.t/ and jv.t/j.
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4 A. van Haastrecht et al

FIGURE 1 Sample path of x.t/, �.t/ and j�.t/j.
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SZ parameters are � D � D 1, �.0/ D  D 25%, �x� D �1 and x.0/ D 100.

When �.t/ is negative and decreasing, the asset price is increasing, contrary to
what we would expect from the parameter configuration. The key lies therein that
�.t/ should not be interpreted as the volatility of the underlying asset.1 It is merely
a latent variable which drives the true volatility of the asset, the true volatility being
defined as the square root of the variance.

If one applies the Ito–Tanaka theorem (see, for example, Revuz and Yor 1999) to
derive the dynamics of j�.t/j, we can indeed show that

Corr.d ln x.t/; dj�.t/j/ D �x� j�.t/j�p
�2.t/�2

D �x� ; (2.5)

exactly as we would like it to be. We can intuitively also see this by considering the
case where �.t/ is far away from the origin, and considering the case where �.t/ > 0
and �.t/ < 0. This will lead to the same result.

1 It would be preferable to write “volatility”, but we will refrain from doing this unless it causes
confusion.

Journal of Computational Finance 17(3)
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3 LEAKING CORRELATION IN STOCHASTIC VOLATILITY MODELS

One of the major problems Andersen (2008) signalled with Euler schemes of the
Heston (1993) model (see Lord et al (2008) for an overview) is their inability to
generate a correlation between the increments of the asset and the stochastic volatility
processes which resembles that of the true process. As the correlation parameter
in stochastic volatility models is an important determinant of the skew in implied
volatilities, we can imagine that not being able to match this parameter can lead to
a significant mispricing of options with strikes that are further away from the at-the-
money level.

Such problems in the Heston model are partially caused by the fact that an Euler
discretization tries to approximate a Feller process, which is guaranteed to be positive,
by a Gaussian process. While stochastic volatility in the Schöbel and Zhu (1999) (SZ)
model is itself Gaussian, we will show that “leaking correlation” as this phenomenon
has been dubbed, is still an issue. Before we can design an effective simulation scheme
for the SZ model and its extensions, we will take an excursion to the Heston model and
pinpoint exactly why Andersen’s simulation schemes are successful in reproducing
the right correlation.

For completeness, we first state the dynamics of the Heston model. In this model,
the dynamics of the log asset are described by the following set of SDEs:

d ln x.t/ D �1
2
�2.t/ dt C

p
�2.t/ dWx.t/; ln x.0/ D ln.x0/; (3.1)

d�2.t/ D �H . H � �2.t// dt C �H
p
�2.t/ dW�.t/; �.0/ D �0; (3.2)

where again �2.t/ is the variance of the log-asset price.
In this section we will focus on a special case of the SZ model where the long-

term level of mean reversion for the volatility �.t/,  , equals zero. This special case
also happens to be a special case of the Heston model, which can be seen from the
dynamics of �2.t/:

d�2.t/ D .�2 � 2��2.t// dt C 2�
p
�2.t/ dW�.t/: (3.3)

In this case the Heston and SZ parameters are related as follows

�H 7! 2�;  H 7! �2

2�
; �H 7! 2�: (3.4)

Recall that from (2.2) we can easily see that the volatility process follows a standard
Gaussian distribution. When  D 0, we can write

�.t C�/ D K1�.t/CK2Z� ; (3.5)

with

K1 D e��� and K2 D �

s
1 � e�2��

2�
: (3.6)

Research Paper www.risk.net/journal



6 A. van Haastrecht et al

Turning to the log-asset price, integrating the SDE in (2.1) and (3.1) yields

ln x.t C�/ D ln x.t/ � 1

2

Z tC�

t

�2.u/ du

C �x�

Z tC�

t

�.u/ dW�.u/C O�x�
Z tC�

t

v.u/ d QWx.u/; (3.7)

where W� and QWx are independent Brownian motions and O�x� WD p
1 � �2x� . Using

an Euler discretization, this would become

ln x.t C�/ D ln x.t/ � 1
2
�2.t/�C �.t/

p
�.�x�Z� C

p
1 � �2x�Zx/; (3.8)

with Z� ; Zx standard normally distributed random variables. Conditional upon x.t/
and �.t/, the correlation between ln x.t C�/ and �.t C�/ equals

Corrt Œln x.t C�/; �.t C�/� D Covt Œln x.t C�/; �.t C�/�

K2j�.t/j
p
�

D Covt Œln x.t C�/;Z� �

j�.t/jp�
D �x� sgn.�.t//: (3.9)

So with a naive Euler discretization it seems there is no “leaking correlation”, as
reported for the Heston model in Andersen (2008), as this perfectly matches the
instantaneous correlation between d ln x.t/ and d�.t/ in (2.5). Let us turn to �2.t/,
however, which is a quadratic Gaussian. Note that the asset price dynamics, which
are correlated with the underlying, are of quadratic order. That is, denoting O.�2/ as
the order in its mean square sense, we have that

Z tC�

t

�.u/ dW�.u/ D �2.t C�/ � �2.t/
2�

� 1
2
��C �

�

Z tC�

t

�2.u/ du � O.�2/

(3.10)
(see, for example, Andersen (2008) and (3.14)).

Hence, in simulating the asset price, it is of particular importance that the correlation
between d ln x.t/ and d�2.t/ is preserved. After some calculations, we can show that
in the Euler scheme

Corrt Œln x.t C�/; �2.t C�/� D �x�
K1j�.t/jq

K21�
2.t/C 1

2
K22

; (3.11)

which tends to �x� as �.t/ tends to plus or minus infinity, but can differ substantially
when �.t/ is close to zero and even equals zero when �.t/ does. In this sense an Euler

Journal of Computational Finance 17(3)
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FIGURE 2 Correlation between ln x.tC�/ and �2.tC�/ for various values of the volatility
�.t/.
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Here we have used the parameters � D � D 1, � D �0.3 and� D 1
4 . The central schemes uses ı1 D ı2 D 0.5 for

the drift interpolations.

discretization in the SZ model also suffers from leaking correlation in the same way
as in the Heston model. This behavior is visualized in Figure 2.

In the above schemes we simulate �.t/ exactly. All the discretizations therefore
refer to how (3.1) is discretized. Euler therefore means an Euler discretization of
(3.1), central implies we use (3.13) with ı1 D ı2 D 1

2
. BK Euler implies we use

(3.15) for the log asset, with an Euler discretization of the integrated variance, and
BK central also implies we use (3.15) for the log asset, but with a central discretization
for (3.12).

Clearly the correlation from an Euler scheme is far from the exact correlation
(see Andersen 2008, Appendix A). A typical range for the volatility, for the Heston
parameter setting of the above table, is between and around the positive unit interval.
For instance if �.t/ D 30%, we have that more than 99% of the probability mass of
�.t C �/ lies between �0:91 and 1:38. Note that this interval corresponds exactly
to the region where the correlation of the Euler scheme is misaligned the most with
the true correlation. The question is what the best way is to improve upon the Euler
scheme. When we simulate x.t C �/, we would already have computed �.t C �/.

Research Paper www.risk.net/journal



8 A. van Haastrecht et al

One possibility is therefore to approximate the integrated variance in (3.7) using a
second-order approximation to computeZ tC�

t

�2.u/ du � ı1�
2.t/C ı2�

2.t C�/�; (3.12)

leading to

ln x.t C�/ D ln x.t/ � 1
2
Œı1�

2.t/C ı2�
2.t C�/��

C �x��.t/t.W�.t C�/ �W�.t//
C O�x�

p
ı1�2.t/C ı2�2.t C�/. QWx.t C�/ � QWx.t//: (3.13)

A special case is the central discretization, where ı1 D ı2 D 1
2

. As can be seen
from Figure 2 on the preceding page, using a central discretization does improve the
correlation behavior somewhat, although it is still quite far from the true correlation.
Andersen’s discretization for the log-asset price uses an insight of Broadie and Kaya
(2006) which, as can be seen by integrating the SDE of (3.3) directly, relates the first
stochastic integral in (3.7) in terms of already simulated quantities and the integrated
varianceZ tC�

t

�.u/ dW�.u/ D �2.t C�/ � �2.t/
2�

� 1
2
��C �

�

Z tC�

t

�2.u/ du: (3.14)

Substituting this in (3.7) yields

ln x.t C�/ D ln x.t/C
�
�x��

�
� 1
2

� Z tC�

t

�2.u/ duC �x�

2�
Œ�2.t C�/ � �2.t/�

C
p
1 � �2x�

Z tC�

t

�.u/ d QWx.u/: (3.15)

Once again we can choose to approximate the integrated variance with an Euler
discretization or, as Andersen does in the Heston model, with a central discretization.
The correlation for both schemes is analyzed in Figure 2 on the preceding page. As
we can see, it is the combination of the insight of Broadie and Kaya (2006) and the
central discretization which brings the correlation much more in line with the true
correlation. For this reason all simulation schemes we consider in the remainder of
this paper will use Broadie and Kaya’s insight, as well as a central discretization for
the integrated variance.

4 SIMULATION IN THE SCHÖBEL–ZHU MODEL

Having demonstrated in the previous section how to best preserve the correlation
structure between the asset and stochastic volatility processes in a special case of

Journal of Computational Finance 17(3)



Monte Carlo pricing in the Schöbel–Zhu model and its extensions 9

the SZ model, we will now formulate our simulation scheme for the full SZ model.
In addition, we will demonstrate how to apply a martingale correction such that the
forward price of the asset is matched exactly.

For those readers wondering whether an exact simulation of the SZ model is feasi-
ble à la Broadie and Kaya (2006), it should be mentioned that, contrary to the Heston
model, the increment of the log asset price process is not normally distributed condi-
tional upon the old and new realizations of the volatility process, and the integrated
variance process. In addition to the mentioned realizations, we also need to con-
dition on the integrated volatility process, which complicates matters considerably.
Nevertheless, as we have seen in the case of the Heston model, schemes based on a
simple drift interpolation method are computationally much more efficient than exact
transform-based methods (see Lord et al (2008), Andersen (2008) or van Haastrecht
and Pelsser (2010)). From a practical point of view it is therefore not a disadvantage
that an exact simulation is not feasible.

4.1 Simulation scheme for the SZ model

As the volatility process � in (3.2) follows an Ornstein–Uhlenbeck process, we have
the following explicit solution for �.t C�/ (conditional on the time-t filtration):

�.t C�/ D �.t/e��� C
Z tC�

t

� e��.tC��u/ duC
Z tC�

t

�e��.tC��u/ dW�.u/:

As follows from Ito’s isometry that .�.tC�/ j �.t// is normally distributed with mean
�� WD K1�.t/CK2 and standard deviation 	� WD K3, a sample of �.t C�/ j �.t/
can be obtained by setting

�.t C�/ D K1�.t/CK2 CK3Z� ; (4.1)

where

K1 WDe���; K2 WD  .1 � e���/; (4.2)

K3 WD�
r
1

2�
.1 � e�2��/; (4.3)

and Z� is a sample from the standard normal distribution. This can be generated
directly and efficiently by “inverting” the standard normal distribution (see, for exam-
ple,Acklam 2003). Note that the above sampling of the volatility process, immediately
also gives us realizations for the variance process.

As the previous section demonstrated, it is beneficial to apply the Broadie and Kaya
(2006) insight and replace

R tC�
t

�.u/ d QWx.u/ in (3.7) by expressing it in other model

Research Paper www.risk.net/journal



10 A. van Haastrecht et al

quantities. This can be achieved by integrating (2.3), leading to

Z tC�

t

�.u/ dW�.u/

D 1

2�

�
�2.t C�/ � �2.t/ � �2�C 2�

Z tC�

t

�2.u/ du � 2�
Z tC�

t

 �.u/ du

�
:

(4.4)

Substituting (4.4) in (3.7) yields

ln x.t C�/ D ln x.t/ � 1

2

Z tC�

t

�.u/ duC �x��

�

Z tC�

t

.�2.u/ �  �.u// du

C �x�

2�
.�2.t C�/ � �2.t/ � �2�/C

q
1 � �2x�

Z tC�

t

�.u/ QWx.u/:
(4.5)

As in the previous section, we replace the integrals over the variance and volatility
by linear combinations of their realizations at t and t C�

Z tC�

t

�p.u/ du j �.t/; �.t C�/ � ı1�
p.t/C ı2�

p.t C�/; (4.6)

for p 2 f1; 2g and some constants ı1; ı2. These constants can be set in several ways:
an Euler-like setting would read ı1 D 1, ı2 D 0, while a central/mid-point/predictor–
corrector method uses ı1 D ı2 D 1

2
. By applying the above drift interpolation method

in (4.5), one obtains the following discretization scheme:

ln x.t C�/ D ln x.t/C C0 C C1�.t/C C2�.t C�/C C3�
2.t/C C4�

2.t C�/

C
p
ı1�2.t/C ı2�2.t C�/C5Zx (4.7)

with

C0 D �1
2
�x���; C1 D �ı1�x� ��

�
;

C2 D �ı2�x� ��
�

; C3 D �1
2
ı1�C �x�

�
.ı1�� � 1

2
/;

C4 D �1
2
ı2�C �x�

�
.ı2��C 1

2
/; C5 D

p
1 � �2x�

p
�:

Despite the fact the scheme is based on the exact solution of the asset and volatility
processes, the discretization for the asset is in general not a martingale, and its net
drift away from a martingale can be significant for certain parameter choices. In
the following section we show how to enforce this martingale condition. As (4.7) is

Journal of Computational Finance 17(3)
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exponentially affine after we exponentiate and take expectations with respect to the
Gaussian random variates, we will refer to this scheme as an exponentially affine in
expectation (EAE) scheme. This property will prove to be very convenient in enforcing
the exact martingale condition.

4.2 Martingale correction, regularity

As discussed in Andersen and Piterbarg (2007), the continuous-time asset price pro-
cess x.t/ might not have finite higher moments, but it will always be a martingale
under the chosen measure

E
QŒx.t C�/ j Ft � D x.t/ < 1: (4.8)

If we replace x.t C �/ by its discretization Qx.t C �/, the martingale condition is
no longer satisfied. Though the net drift away from the martingale is controllable by
reducing the size of the time step, its size, as mentioned, can be significant depending
on the parameters of the model. Following Glasserman and Zhao (2000) andAndersen
(2008), we investigate whether it is possible to exactly satisfy this martingale property.
Additionally, we look at the regularity of the discretization scheme: that is, we look
at whether there might be parameter values where the discretization Qx could blow up
(see also Andersen (2008)).

First of all note that, by the tower law of conditional expectations, we have

E
QŒ Qx.t C�/ j Ft � D EfEQŒ Qx.t C�/ j Ft ; �.t C�/� j Ftg; (4.9)

hence for the martingale condition (4.8) to hold, we need the latter expectation to equal
Qx.t/; using the moment-generating function of the normal distribution, we have the
following for the discretized asset price Qx.t C�/:

Qx.t C�/

D Qx.t/ expŒC �
0 C C1v.t/C C3v

2.t/�EfexpŒC2v.t C�/C C4v
2.t C�/�

� E
Q.expŒ

p
ı1�2.t/C ı2�2.t C�/C5Zx� j Ft ; v.t C�//

D Qx.t/ expŒC �
0 C C1v.t/C C3v

2.t/�

� EŒexpŒC2v.t C�/C C4v
2.t C�/C 1

2
C 25 .ı1�

2.t/C ı2�
2.t C�//��:

(4.10)

As mentioned earlier, this is where the EAE property of the scheme becomes apparent.
We are left with evaluating the expectation of an exponentially affine form. Taking
the Ft -measurable terms out of the expectation, and dividing by Qx.t/, we thus find
that the following expectation has to be satisfied for the martingale condition,

1 D expŒC �
0 CD1�.t/CD3�

2.t/�EQfexpŒD2�.t C�/CD4�
2.t C�/� j Ftg

D expŒC �
0 CD1�.t/CD3�

2.t/�
H .1/; (4.11)
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12 A. van Haastrecht et al

where 
H .t/ denotes the moment-generating function of the (discretized) process

H WD D2�.t C�/CD4�
2.t C�/; (4.12)

evaluated in the point t , with

D1 WD C1;

D2 WD C2;

D3 WD C3 C 1
2
.1 � �2x�/ı1�;

D4 WD C4 C 1
2
.1 � �2x�/ı2�: (4.13)

If the regularity condition 
H .1/ < 1 is satisfied, the martingale condition (ie,
(4.11)) can be satisfied by setting

C �
0 WD �D1�.t/ �D3�2.t/ � ln.
H .1//: (4.14)

It now remains to determine the moment-generating function of the random variable
H and investigate its existence. To this end, we will use the following corollary.

Corollary 4.1 Let X be a normally distributed random variable with mean �
and variance 	2; furthermore, let p and q be two constants. Then provided that
the regularity condition uq	2 < 1 is satisfied, the moment-generating function of
Y WD pX C 1

2
qX2 is given by

E exp.uY / D exp

�
� p2

2q

��
1p

1 � uq	2
�

exp

� 1
2
�uq	2

1 � uq	2
�
; (4.15)

with

� D
�
�C p=q

	

�2
: (4.16)

Proof For instance see Johnson et al (1994). �

Since the volatility process, conditional upon Ft , is normally distributed, we can
immediately use Corollary 4.1 withp D D2 and q D 2D4. Provided that 2D4	2� < 1,
we find that 
H .1/ is given by


H .1/ D exp

�
� D2

2

4D4

��
1p

1 � 2D4K23

�
exp

�
��D4K

2
3

1 � 2D4K23

�
(4.17)

with

�� WD
�
�� C .D2=2D4/

K3

�2
D

�
�.t/K1 CK2 C .D2=2D4/

K3

�2
; (4.18)

with K1; K2 as defined in (4.2) and (4.3).
The following proposition applies the above result to the martingale correction in

(4.7) and the corresponding regularity condition.
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Proposition 4.2 The regularity of the simulation scheme (4.7) holds if and only
if the following regularity condition is satisfied:

�2

�
.1 � e�2��/

�
� 1
2
�2x�ı2�C �x�

�
.ı2��C 1

2
/

�
< 1; (4.19)

Given that this condition is satisfied, we can ensure the martingale property in the
SZ-scheme of (4.7) by replacing the constant C0 by

C �
0 D E0 CE1�.t/CE2�

2.t/; (4.20)

with

E0 WD 1
2

ln.1 � 2D4K23 / � D4.K2 C .D2=2D4//
2

1 � 2D4K23
;

E1 WD �D1 � 2D4K1.K2 C .D2=2D4//

1 � 2D4K23
;

E2 WD �D3 � D4K
2
1

1 � 2D4K23
(4.21)

and whereK1; K2; K3 are as defined in (4.2), (4.3) andD1; : : : ;D4 are as in (4.13).

Proof Follows immediately from the results above. �

Remark 4.3 We note that (4.19) is not restrictive; for negative �x� (which is more
often the case than in option markets), the condition is automatically satisfied. How-
ever, for (strictly) positive �x� the condition (4.19) imposes a limit on the size of the
time step. Nonetheless, for practical sizes of the time step (eg, � D 1

4
), it is unlikely

that the regularity condition (4.19) will be violated. For example, with � D 1, � D 1
2

,
ı1 D ı2 D 1

2
and �x� D 1, this condition is satisfied as long as � < 6:18.

5 MONTE CARLO PRICING UNDER STOCHASTIC INTEREST
RATES

The SZHW model as introduced in van Haastrecht et al (2009) extends the Schöbel
and Zhu (1999) model for stochastic volatility with Hull and White (1993) stochastic
interest rates. It can for example be used to value equity options or equity-interest rate
hybrids. It models three key variables which are allowed to be correlated with each
other: the asset price x.t/, the Hull and White (1993) interest rate process r.t/ and
the stochastic volatility of the asset, which follows an Ornstein–Uhlenbeck process
in accordance with (Schöbel and Zhu 1999). The risk-neutral asset price dynamics of
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14 A. van Haastrecht et al

the SZHW model hence read:

dx.t/ D x.t/r.t/ dt C x.t/�.t/ dWx.t/; x.0/ D x0; (5.1)

dr.t/ D .�.t/ � ar.t// dt C 	 dWr.t/; r.0/ D r0; (5.2)

d�.t/ D �. � �.t// dt C � dW�.t/; �.0/ D �0; (5.3)

where a; 	; �; �0;  ; � are positive parameters which can be inferred from market
data and correspond to the mean reversion and volatility of the short rate process,
and the mean reversion, long-term volatility and volatility of the volatility process,
respectively. The quantity r0 and the deterministic function �.t/ are used to match the
currently observed term structure of interest rates (see, for example, Hull and White
1993). Finally, QW .t/ D .Wx.t/;Wr.t/;W�.t// denotes a Brownian motion under the
risk-neutral measure Q with covariance matrix

Var. QW .t// D

0
B@ 1 �xr �x�

�xr 1 �r�

�x� �r� 1

1
CA t: (5.4)

Though we can price vanilla options in an SZHW model by transforming the charac-
teristic function of the log-asset price (see, for example, van Haastrecht et al 2009),
sometimes there is a need to price more complex securities, such as path-dependent
or multi-asset securities, for which we have to resort to, for example, Monte Carlo
simulation. In this section we will present a simulation scheme for the SZHW model,
based on the insights of the previous section.

First of all, instead of looking at these dynamics under the risk-neutral bank account
measure, we change the underlying probability measure to evaluate this expectation
under the T -forward probability measure QT (see, for example, Geman et al 1995).
Effectively this reduces the dimension of the Monte Carlo simulation as we can
eliminate the path dependency of the stochastic interest rates in discounting future
cash flows as we discount using the zero-coupon bond maturing at time T , rather than
using the money market account. We note that it may not always be a good idea to
simulate under the T -forward probability measure, due to the fact that dividing by a
numeraire that is a discount bond can lead to a higher sampling error than when we
divide by a money market account that accumulates through time (see, for example,
Glasserman and Zhao 2000; Andersen and Piterbarg 2010, Section 14.6.1.3). Since
the issues behind the simulation and their corresponding solutions are the same,
regardless of whether we choose a risk-neutral or a T -forward measure, we choose
to work with the T -forward measure and ease our notation.

To this end we define y.t; T /, the logarithm of the forward asset price F.t; T /, as

y.t; T / WD ln

�
x.t/

P.t; T /

�
D lnF.t; T /: (5.5)
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An application of Ito’s lemma yields the following asset price dynamics where
P.t; T / is the time-t value of a zero-coupon bond maturing at time T :

dy.t; T / D �1
2
�2F .t/ dt C �.t/ dW T

x .t/C 	Br.t; T / dW T
r .t/; (5.6)

�2F .t/ WD �2.t/C 2�xr�.t/	Br.t; T /C 	2B2r .t; T /; (5.7)

withBr.u; T / WD .1=a/Œ1�e�a.T�u/� and where the volatility and variance dynamics
read

d�.t/ D �

��
 � �r�	�

�
Br.t; T /

�
� �.t/

�
dt C � dW T

� .t/; (5.8)

d�2.t/ D 2�

�
�2

2�
C

�
 � �r�	�

�
Br.t; T /

�
�.t/ � �2.t/

�
dt C 2��.t/ dW T

� .t/:

(5.9)

All of the above SDEs are specified in the T -forward measure, induced by using
P.�; T / as the numeraire asset. To this end, W T

x , W T
r and W T

� are all Brownian
motions under the T -forward measure. Before turning to the simulation of the asset
price dynamics, we first consider the simulation of the Gaussian rate and volatility
process which is common in both of the schemes we will consider.

5.1 Interest rate and variance simulation

For the Ornstein–Uhlenbeck stochastic volatility process, we have the following solu-
tion under the T -forward measure QT :

�.t C�/ D �.t/e��� C
Z tC�

t

�

�
 � �r�	�

�
Br.u; T /

�
e��.tC��u/ du

C
Z tC�

t

�e��.tC��u/dW T
� .u/: (5.10)

From Ito’s isometry we therefore have that .�.t C�/ j �.t// is normally distributed
with mean �� D K1�.t/CK2 and variance 	2� D K23 . A sample of �.t C�/ j �.t/
can be obtained by

�.t C�/ D K1�.t/CK2 CK3Z� ; (5.11)

with Z� a standard normal distributed random variable and where

K1 WD e���;

K2 WD
�
 � �r�	�

a�

�
.1 � e���/ � �r�	�

a.� C a/
.e�a.T�t/��� � e�a.T�t��//;

(5.12)

K3 WD �

r
1

2�
.1 � e�2��/: (5.13)
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16 A. van Haastrecht et al

Though the volatility and the directly related variance process can be simulated from
their exact distributions, we need to resort to discretization methods for a (joint) asset
price sampling. We will deal with this in the following sections.

5.2 Asset price sampling scheme

Recall that we have the following solution for the SZHW log-asset price solution
under the T -forward measure QT :

y.t C�;T / D y.t; T / � 1

2

Z tC�

t

�2F .u/ du

C 	

Z tC�

t

Br.u; T / dW T
r .u/C

Z tC�

t

�.u/ dW T
x .u/ (5.14)

with
�2F .u/ D �2.u/C 2�xr�.u/	Br.u; T /C 	2B2r .u; T /; (5.15)

and where W T
x .u/ and W T

r .u/ are correlated Brownian motions. In a Monte Carlo
simulation it is often convenient to express these correlated Brownian motions in
terms of three orthogonal components QW T

v , QW T
x and QW T

r , eg, by using a Cholesky
decomposition; the asset dynamics of (5.14) hence become

y.t C�;T /

D y.t; T / � 1

2

Z tC�

t

�2F .u/ du

C
Z tC�

t

�.u/ d.�x� QW T
� .u/C

p
1 � �2x� QW T

x .u//

C 	

Z tC�

t

Br.u; T / d.�r� QW T
� .u/C !xr

QW T
x .u/C

p
1 � �2r� � !2xr QW T

r .u//;

(5.16)

with
!xr D �xr � �x��r�p

1 � �2x�
: (5.17)

As Section 4 demonstrated, it is beneficial to apply the Broadie and Kaya (2006)
insight and replace

R tC�
t

�.u/ d QW T
x .u/ in (5.16) by expressing it in other model

quantities. This can be achieved by integrating (5.9), leading to

Z tC�

t

�.u/ d QW T
� .u/ D 1

2�

�
�2.t C�/ � �2.t/ � �2�C 2�

Z tC�

t

�2.u/ du

� 2�
Z tC�

t

�
 � �r�	�

�
Br.u; T /

�
�.u/ du

�
: (5.18)
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Substituting (5.18) in (5.16) yields

y.t C�;T / D y.t; T / � 1

2

Z tC�

t

�2F .u/ du

C �x��

�

Z tC�

t

�
�2.u/ �

�
 � �r�	�

�
Br.u; T /

�
�.u/

�
du

C �x�

2�
.�2.t C�/ � �2.t/ � �2�/

C
Z tC�

t

.
p
1 � �2x��.u/C !xr	Br.u; T // d QW T

x .u/

C �r�

Z tC�

t

	Br.u; T / d QW T
� .u/

C
q
1 � �2r� � !2xr

Z tC�

t

	Br.u; T / d QW T
r .u/: (5.19)

This leaves us with three stochastic integrals, which we tackle in order of complex-
ity. We start with the last, which follows directly from Ito’s isometry

Z tC�

t

	Br.u; T / d QW T
r .u/ �

sZ tC�

t

	2B2r .u; T / duZr ; (5.20)

withZr an independent standard normal random variable. The first stochastic integral
in (5.19) follows similarly as

Z tC�

t

�q
1 � �2x��.u/C !xr	Br.u; T /

�
d QW T

x .u/

�
� Z tC�

t

..1 � �2x�/�2.u/C 2
p
1 � �2x�!xr	Br.u; T /�.u/

C !2xr	
2B2r .u; T // du

�1=2
Zx; (5.21)

with Zx an independent standard normal distributed random variable. Finally, the
second integral follows from the fact that the pair

� Z tC�

t

	Br.u; T / d QW T
� .u/;

Z tC�

t

d QW T
� .u/

�

follows a bivariate normal distribution with correlation ���2.t; t C �/ and a condi-
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tioning argument

Z tC�

t

	Br.u; T / d QW T
� .u/

ˇ̌̌
ˇ

Z tC�

t

d QW T
� .u/

�
p
G.t; t C�/.���2.t; t C�/Z� C

p
1 � �2��2.t; t C�/Z�2/;

(5.22)

���2.t; t C�/ WD
R tC�
t

	Br.u; T / dup
�G.t; t C�/

; (5.23)

with Z�2 an independent standard normal random variable and with

G.t; t C�/

WD
Z tC�

t

	2B2r .u; T / du

D 	2

a2

�
�C 1

2a
e�2a.T�t��/ � 2

a
e�a.T�t��/ � 1

2a
e�2a.T�t/ C 2

a
e�a.T�t/

�
:

(5.24)

Having eliminated all stochastic integrals, we are left with deterministic inte-
grals over 	Br.u; T /, �.u/ and powers thereof. For the deterministic integrals over
	Br.u; T / we use the following explicit solutions:

H.t; t C�/ WD
Z tC�

t

	Br.u; T / du D 	

a

�
� � 1

a
e�a.T�t��/ C 1

a
e�a.T�t/

�
:

(5.25)
whereas we will approximate all integrals over �.u/ by using the predictor–corrector
method: Z tC�

t

�p.u/ du � .ı1�
p.t/C ı2�

p.t C�//�; (5.26)

for p 2 f1; 2g and some constants ı1; ı2.
Collecting all terms once again yields an EAE scheme for the SZHW model:

y.t C�;T / D y.t; T /C C0 C C1�.t/C C2�.t C�/C C3�
2.t/

C C4�
2.t C�/C C5Zx C C6Z� C C7Z�2 C C8Zr ; (5.27)

where

C0 D � 1
2
ŒG.t; t C�/C �x����;

C1 D � ı1
�
�xrH.t; t C�/C �x�

�
 ��

�
� �r�H.t; t C�/

��
;
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C2 D � ı2
�
�xrH.t; t C�/C �x�

�
 ��

�
� �r�H.t; t C�/

��
;

C3 D � 1
2
ı1�C �x�

�
.ı1�� � 1

2
/;

C4 D � 1
2
ı2�C �x�

�
.ı2��C 1

2
/;

C5 D
p
C50 C C51�.t/C C52�.t C�/C C53�2.t/C C54�2.t C�/;

C50 D!2xrG.t; t C�/;

C51 D2ı1!xr
p
1 � �x�H.t; t C�/;

C52 D2ı2!xr
p
1 � �2x�H.t; t C�/;

C53 Dı1�.1 � �2x�/;

C54 Dı2�.1 � �2x�/;

C6 D�r�
p
G.t; t C�/�vv2.t; t C�/;

C7 D�r�
p
G.t; t C�/

q
1 � �2vv2.t; t C�/;

C8 D
q
1 � �2r� � !2xr

p
G.t; t C�/:

Similar to the SZ scheme (4.7), the above simulation scheme might have a net drift
away from the martingale and violate the (no-arbitrage) martingale property. Nonethe-
less, in the following section, we show that we can easily enforce this martingale
condition by replacing the constant C0 with C �

0 of (4.14).

5.3 Martingale correction, regularity

In this section, using similar techniques to those used in Section 4.2, we will investigate
how to enforce the martingale property of the discretized asset price process Qx in
predictor–corrector scheme (5.27). Furthermore, we investigate the regularity of the
proposed discretization scheme, ie, we investigate whether there are parameter values
where the Qx-process blows up.

By the tower law of conditional expectations, we have that the discretization QF of
the forward asset price F (see (5.5)) satisfies:

E
QT

Œ QF .t C�/ j Ft � D E
QT fEQT

Œ QF .t C�/ j Ft ; �.t C�/� j Ftg: (5.28)
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If we want the martingale condition (4.8) to hold, we need QF .t/ to equal the lat-
ter expectation. We express the inner expectation completely in terms of �.t/ and
�.t C�/ by exponentiating (5.27), taking the expectation over the independent nor-
mal distributions Zx; Zv2 and Zr , and noting from (5.12) that

Z� WD �.t C�/ � �.t/K1 �K2
K3

: (5.29)

We obtain the following expression:

E
QT

Œ QF .t C�/ j Ft ; �.T /�

D QF .t/ expŒD0 CD1�.t/CD2�.t C�/CD3�
2.t/CD4�

2.t C�/�; (5.30)

where

D0 WD C �
0 C 1

2
C 28 C 1

2
C 27 C 1

2
C50 � C6K2

K3
; D1 WD C1 C 1

2
C51 � K1

K3
C6;

D2 WD C2 C 1
2
C52 C 1

K3
C6; D3 WD C3 C 1

2
C53; D4 WD C4 C 1

2
C54:

9>>=
>>;

(5.31)
Once again, due to the EAE property of our scheme, this term is exponentially affine.
By substituting (5.30) in (5.28), we find that the following condition has to be satisfied
for the martingale condition to hold:

1 D E
QT fexpŒD0CD1�.t/CD2�.tC�/CD3�2.t/CD4�2.tC�/� j Ftg: (5.32)

Taking the Ft -measurable terms out of the expectation and collecting terms, we obtain

1 D expŒD0 CD1�.t/CD3�
2.t/�EQT fexpŒD2�.t C�/CD4�

2.t C�/� j Ftg
D expŒD0 CD1�.t/CD3�

2.t/�
H .1/; (5.33)

where 
H .t/ denotes the moment-generating function of the (discretized) process

H WD D2�.t C�/CD4�
2.t C�/; (5.34)

evaluated in the point t . Hence expandingD0, we have that for the martingale condi-
tion to hold we need

1 D exp

�
C �
0 C 1

2
C 28 C 1

2
C 27 C 1

2
C50�C6K2

K3
CD1�.t/CD3�2.t/

�

H .1/; (5.35)

which (assuming the regularity condition 
H .1/ < 1 is satisfied) can be established
by setting

C �
0 WD �1

2
C 28 � 1

2
C 27 � 1

2
C50 CC6

K2

K3
�D1�.t/�D3�2.t/� ln.
H .1//: (5.36)
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As �.t C�/ is still Gaussian under QT , 
H .1/ and its regularity can be determined
in a similar fashion to Section 4.2. The following proposition applies the above result
to the martingale correction and the regularity of the simulation scheme (5.27).

Proposition 5.1 The regularity of the simulation scheme (5.27) holds if and only
if the regularity condition (4.19) is satisfied. Given that this condition is satisfied, we
can ensure the martingale property in the SZHW-scheme of (5.27) by replacing the
constant C0 by

C �
0 D E0 CE1�.t/CE2�

2.t/; (5.37)

where

E0 WD1
2

ln.1 � 2D4K23 / � D4.K2 C .D2=2D4//
2

1 � 2D4K23
� 1
2
C50 C C6

K2

K3
� 1
2
C 87 � 1

2
C 28 C D2

2

4D4
; (5.38)

E1 WD �D1 � 2D4K1.K2 C .D2=2D4//

1 � 2D4K23
;

E2 WD �D3 � D4K
2
1

1 � 2D4K23
; (5.39)

with K1; K2; K3 as defined in (5.12), (5.13) and D1; : : : ;D4 as in (5.31).

Proof Follows directly from the above results. �

6 NUMERICAL RESULTS

Any simulation scheme has to be tested. As they say, the proof of the pudding is in the
eating. In this section our goal is to test our proposed simulation schemes and compare
them with alternate schemes. In our comparisons we focus on the bias of European call
prices, where by “bias” we mean EŒ Ǫ �� ˛, where ˛ is the true price of the European
call and Ǫ is its Monte Carlo estimator. It is of high importance for practitioners to
have a bias as small as possible for reasonable sizes of the time step. Ideally we would
like to be able to simulate the relevant quantities only at those points in time that are
relevant to the option contract that is being priced. Unfortunately, that is not always
possible as has certainly become clear from several papers on the simulation of the
Heston model (see, for example, Lord et al 2008; van Haastrecht and Pelsser 2010).

Table 1 on the next page contains the parameter configurations for our test cases.
Section 6.1 deals with the simulation scheme for the special case of the SZ model
that collapses to a Heston model (see Section 3). Volatilities for Case I are similar to
those in the equity market at the time of writing. In this test case we not only compare
our scheme to an Euler scheme, but also to the best-performing scheme considered in
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TABLE 1 Test cases for the Schöbel–Zhu/Heston, Schöbel–Zhu and Schöbel–Zhu–Hull–
White simulation schemes; in all cases, S.0/ D 100.

Example Type � � v.0/ � �x� r a � �xr �r�

Case I Call-5Y 0.1 0.3 0.0 0.0 �0.6 0.00 — — — —
Case II Call-10Y 0.4 0.4 0.2 0.2 �0.9 0.04 — — — —
Case III Call-15Y 0.4 0.4 0.2 0.2 �0.7 0.04 0.03 0.01 0.2 0.15

Andersen (2008), the QE-M scheme. Indeed, for some of the test cases in Andersen
(2008) the martingale correction was not necessary, but for some it certainly was.
Since when pricing derivatives, matching the forward is a sine qua non, we feel that it
should therefore always be included in any real-life application of such a simulation
scheme. Moreover, since in the EAE scheme the martingale correction can in some
test cases be significant, we feel it would not be fair to compare it to the QE scheme
without a martingale correction.

Finally, we also undertake a comparison with a scheme for the Heston model
recently proposed in Zhu (2011). In Case II we consider a setting of the SZ model
which does not collapse to the Heston model. Here, the volatilities correspond to
levels seen at the end of 2008 and beginning of 2009. Finally, we also test the scheme
which was proposed in Section 5 for the SZHW model: Case III deals with normal,
perhaps slightly excited, long-term market volatilities.

All numerical examples are based on a million simulation paths, where we used the
asset price as a control variate and the Mersenne twister to generate pseudorandom
uniform numbers.

6.1 Results for the Heston/Schöbel–Zhu model

In Case I we consider a special case of the SZ model which corresponds to the Heston
model. First we will address the question of to what extent the Broadie–Kaya insight,
the central discretization of the integrated variance, or the combination of both affects
the size of the bias of our scheme. To this end we will compare the following schemes.

� A simple Euler scheme, where we sample the volatility from its exact (normal)
distribution, and discretize the log asset according to (3.7).

� A scheme we refer to as Euler–central, which is the same as above, except that
we discretize the log asset according to (3.13), using ı1 D ı2 D 1

2
.

� A scheme we refer to as Euler–BK, where we apply the Broadie–Kaya insight,
but discretize the integrated variance using an Euler discretization. In formulas,
this means we discretize the log asset according to (3.15), where the integrated
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TABLE 2 Estimated call option price biases for Case I.

(a) K D 100

� Euler Euler–central BK–Euler EAE

1 �1.914 (˙0.062) �0.009� (˙0.065) �2.626 (˙0.055) �0.130 (˙0.057)
1/2 �0.781 (˙0.060) 0.037� (˙0.061) �1.272 (˙0.056) �0.020� (˙0.057)
1/4 �0.348 (˙0.058) 0.052� (˙0.059) �0.672 (˙0.057) �0.039� (˙0.057)
1/8 �0.136 (˙0.058) 0.033� (˙0.058) �0.325 (˙0.057) �0.003� (˙0.057)
1/16 0.002� (˙0.058) 0.032� (˙0.058) �0.150 (˙0.057) 0.013� (˙0.057)
1/32 �0.015� (˙0.057) 0.011� (˙0.057) �0.089 (˙0.057) �0.010� (˙0.057)

(b) K D 140

� Euler Euler–central BK–Euler EAE

1 0.058� (˙0.074) 1.859 (˙0.079) �2.442 (˙0.064) �0.354 (˙0.066)
1/2 0.226 (˙0.071) 1.035 (˙0.072) �1.123 (˙0.065) �0.080 (˙0.066)
1/4 0.160 (˙0.068) 0.588 (˙0.070) �0.580 (˙0.066) �0.051� (˙0.066)
1/8 0.137 (˙0.067) 0.281 (˙0.068) �0.287 (˙0.066) �0.012� (˙0.066)
1/16 0.138 (˙0.067) 0.172 (˙0.067) �0.134 (˙0.066) 0.003� (˙0.066)
1/32 0.053� (˙0.066) 0.080 (˙0.066) �0.084 (˙0.065) �0.015� (˙0.066)

(c) K D 60

� Euler Euler–central BK–Euler EAE

1 �1.707 (˙0.036) �0.576 (˙0.039) �1.680 (˙0.034) �0.005� (˙0.036)
1/2 �0.793 (˙0.037) �0.300 (˙0.038) �0.865 (˙0.035) 0.004� (˙0.036)
1/4 �0.381 (˙0.037) �0.133 (˙0.037) �0.461 (˙0.036) �0.017� (˙0.036)
1/8 �0.170 (˙0.037) �0.055 (˙0.037) �0.223 (˙0.036) 0.003� (˙0.037)
1/16 �0.044 (˙0.037) �0.025� (˙0.037) �0.111 (˙0.036) 0.004� (˙0.036)
1/32 �0.024� (˙0.037) �0.013� (˙0.037) �0.058 (˙0.036) �0.001� (˙0.036)

Numbers in parentheses are the widths of the confidence interval at a 99% confidence level. Asterisks denote
the biases that were not significantly different from zero. EThe exact price for strikes K D 100, 140 and 60 are,
respectively, 27.90, 14.23 and 50.34.

variance as well as the stochastic integral are approximated using an Euler
discretization; for this scheme we have included a martingale correction.

� Our EAE scheme, which combines the central discretization with Broadie–
Kaya’s insight, together with a martingale correction.

In Table 2, we have displayed estimated call option price biases for Case I, as a
function of the strike level (K D 60, 100 or 140) and the time step� (1 through 1/32).

Research Paper www.risk.net/journal



24 A. van Haastrecht et al

Numbers in parentheses are the widths of the confidence interval at a 99% confidence
level. Asterisks denote the biases that were not significantly different from zero.
We note a couple of interesting things. First of all, we noticed that the Broadie–
Kaya insight by itself does not lead to an improvement in the correlation structure,
as witnessed in Figure 2 on page 7. This is confirmed here. Secondly, the central
discretization does seem to improve the bias of the simulation scheme, except in
the case of high strikes. Overall, we can conclude that adding the Broadie–Kaya
insight and the central discretization together yields the best result, where the central
discretization appears to have the highest impact.

We now turn to a comparison with other schemes. Since we are considering a
special case of the Heston model, we can also compare the QE-M discretization of
Andersen (2008). Whereas our EAE scheme samples from the exact distributions of
�.t/ and �2.t/, Andersen’s QE scheme uses

� a quadratic Gaussian distribution when VarŒ�2.t C�/�=EŒ�2.t C�/� 6 1:5,

� a mixture of zero and an exponential function, otherwise.

Our scheme and the QE-M scheme therefore differ for low values of �.t/, to be precise
when

�2.t/ 2
�
0;
.e�� � 1/�2

4�

�
: (6.1)

Finally, we also compare our scheme with the Zhu (2011) scheme. In this scheme, the
SDE for the square root of the stochastic variance is derived. As the square root is not
differentiable in zero, Ito’s lemma is incorrectly applied here (see, for example, Kahl
and Jäckel 2006; Lord et al 2008). Luckily, Zhu’s best-performing method, a moment-
matching method, does not depend too much on this premise. The numerical examples
in his paper suggest that this method is comparable to Andersen’s QE scheme for low
values of the volatility of variance parameter, but is outperformed for realistic levels
of the volatility of variance parameter.

From the results it is clear that – at least for this parameter configuration – Zhu’s
method is better than a simple Euler discretization for lower strikes, though for higher
strikes the Euler scheme wins. However, the QE-M and EAE methods are much better
in terms of bias. Both methods are too close to be able to distinguish between them.

As we eventually want to judge a scheme based on its efficiency, we should look
at its accuracy in combination with the computational effort of the methods. To this
end we also report the computational times for the four simulation methods that are
provided in Table 3 on the facing page.

From Table 3 on the facing page we can see the Euler scheme takes the least time
to compute, followed by Zhu’s method, the EAE scheme and the QE-M scheme. Still,
the efficiency of the QE-M scheme and the EAE method by far outperforms those of
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TABLE 3 Computational times in seconds for Case I for the Euler, Zhu, QE-M and EAE
schemes, all with 1 000 000 sample paths.

� Euler Zhu QE-M EAE

1 0.9 1.0 1.2 1.1
1/2 1.8 2.0 2.4 2.2
1/4 3.6 4.0 5.0 4.3
1/8 7.0 7.9 10.2 8.6

1/16 13.9 15.7 20.8 17.1
1/32 28.1 31.3 41.9 33.5

the Euler and Zhu’s method, as can be seen if we take a look at the accuracy of the
methods in Table 2 on page 23. From that table, we can see that the EAE and QE-M
only need two or four time steps a year to produce a scheme with no significant bias,
whereas the Euler and Zhu schemes in most cases need at least sixteen time steps a
year to produce a scheme negligible bias. Though the QE-M scheme and the EAE
method produce a similar accuracy, the EAE method is more efficient. This can be
explained by the fact that the exact Gaussian volatility distribution of the Schöbel
and Zhu (1999) model is explicitly utilized in the EAE method, whereas the variance
simulation of the QE-M method is tailored for the Heston (1993) model.

6.2 Results for the Schöbel–Zhu and Schöbel–Zhu–Hull–White
models

We move on to Cases II and III, which are slightly more benign due to a nonzero
value of  2 in Case II and the inclusion of stochastic interest rates for Case III. The
numerical results for these cases can be found in Table 4 on the next page and Table 5
on page 27. Computational times for both cases are very similar to those reported in
Table 3 and are hence omitted.3 We only consider the EAE scheme here and compare
it to the simplest scheme, an Euler scheme.

In Case II, a non-Heston SZ model, the differences between the Euler and EAE
methods are indeed closer, though still noticeably in favor of the EAE method. From
Table 5 on page 27 we can see that especially for in- and out-of-the-money options,
the EAE scheme significantly outperforms the Euler scheme.

Finally, we take a look at the performance of the simulation schemes for the SZHW
model, where in addition to the SZ model we have stochastic interest rates that are
correlated with both the underlying and the stochastic volatility process. While the

2 This makes the distribution less fat tailed.
3 These are available from the authors upon request.
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TABLE 4 Estimated call option price biases for Case II.

(a) K D 100

� Euler EAE

1 �0.828 (˙0.059) �0.389 (˙0.050)
1/2 �0.314 (˙0.055) �0.165 (˙0.050)
1/4 �0.145 (˙0.052) �0.034� (˙0.050)
1/8 �0.068 (˙0.051) 0.014� (˙0.050)

1/16 �0.043� (˙0.051) 0.005� (˙0.050)
1/32 0.017� (˙0.050) 0.003� (˙0.050)

(b) K D 140

� Euler EAE

1 �0.495 (˙0.080) �0.457 (˙0.063)
1/2 �0.110 (˙0.072) �0.204 (˙0.064)
1/4 �0.032� (˙0.068) �0.041� (˙0.064)
1/8 �0.003� (˙0.066) 0.013� (˙0.064)

1/16 0.002� (˙0.065) 0.005� (˙0.064)
1/32 0.034� (˙0.065) 0.005� (˙0.064)

(c) K D 60

� Euler EAE

1 �0.699 (˙0.035) �0.278 (˙0.031)
1/2 �0.298 (˙0.033) �0.110 (˙0.032)
1/4 �0.151 (˙0.033) �0.023� (˙0.032)
1/8 �0.070 (˙0.032) 0.007� (˙0.032)

1/16 �0.046 (˙0.032) 0.004� (˙0.032)
1/32 0.005� (˙0.032) 0.004� (˙0.032)

Results for Case II, exact prices: 56.77, 45.34 and 70.89. Numbers in parentheses are the widths of the confidence
interval at a 99% confidence level. Asterisks denote the biases that were not significantly different from zero.

addition of stochastic interest rates complicates the scheme slightly, the picture is
similar to before, as can be seen from Table 5 on the facing page.

Again the EAE method produces a much smaller discretization error than the Euler
scheme, allowing the user to utilize bigger time steps, instead of the smaller ones
we would be confined to when using the Euler method. For example, for the strikes
considered we could safely use a time step of a quarter of a year for the EAE method,
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TABLE 5 Estimated call option price biases for Case III.

(a) K D 100

� Euler EAE

1 �0.323 (˙0.032) �0.069 (˙0.032)
1/2 �0.151 (˙0.032) �0.036 (˙0.032)
1/4 �0.087 (˙0.032) 0.008� (˙0.032)
1/8 �0.029� (˙0.032) 0.005� (˙0.032)

1/16 �0.006� (˙0.032) �0.022� (˙0.032)
1/32 0.001� (˙0.032) 0.001� (˙0.032)

(b) K D 140

� Euler EAE

1 �0.299 (˙0.047) �0.085 (˙0.046)
1/2 �0.127 (˙0.046) �0.046� (˙0.046)
1/4 �0.077 (˙0.046) 0.012� (˙0.046)
1/8 �0.014� (˙0.046) 0.006� (˙0.046)

1/16 �0.002� (˙0.046) �0.022� (˙0.046)
1/32 0.014� (˙0.046) �0.008� (˙0.046)

(c) K D 60

� Euler EAE

1 �0.190 (˙0.016) �0.041 (˙0.017)
1/2 �0.095 (˙0.017) �0.017 (˙0.017)
1/4 �0.052 (˙0.017) 0.005� (˙0.017)
1/8 �0.019 (˙0.017) 0.005� (˙0.017)

1/16 0.005� (˙0.017) �0.007� (˙0.017)
1/32 �0.001� (˙0.017) 0.004� (˙0.017)

Results for Case III, exact prices: 53.75, 40.69 and 69.97. Numbers in parentheses are the widths of the confidence
interval at a 99% confidence level. Asterisks denote the biases that were not significantly different from zero.

and have a bias which is not significantly different from zero. In the Euler method,
this is only achieved with a time step equal to 1/16.

7 CONCLUSION

A major problem signaled with Euler schemes in the simulation of stochastic volatility
models is their inability to generate the proper correlation between the increments
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of the asset and the stochastic volatility processes. As the correlation parameter in
the stochastic volatility models is an important determinant of the skew in implied
volatilities, not being able to match this parameter leads to a significant mispricing of
options with strikes far away from the at-the-money level. In the Heston (1993) model
this so-called leaking correlation problem is partially caused by the fact that an Euler
discretization tries to approximate a square-root process using a Gaussian process.
However, even when the stochastic volatility itself is Gaussian, such as in Schöbel
and Zhu (1999)-like models, we have shown that the problem of leaking correlation
is still an issue.

In this paper we have proposed simulation algorithms for the SZ model and its
extensions. By analyzing the lessons learned from the Andersen (2008) quadratic
exponential scheme for the simulation of the Heston model, we conclude that the cen-
tral discretization of the integrated variance terms affects the bias most. In addition,
the insight from Broadie and Kaya (2006) helps to improve the correlation structure
of the resulting discretization. Based on these insights, we have formulated a simu-
lation scheme for the SZ model which is tailored to match the correlation between
the increments of the asset price and the variance processes of the continuous-time
dynamics. A simulation scheme for the SZHW model considered in van Haastrecht
et al (2009), which incorporates the need for stochastic interest rates, was derived as
well. This is closely related to the recent advances in the development of markets for
long-term derivatives, for which maturities the inclusion of stochastic interest rates
in a derivatives pricing model is more appropriate.

All introduced schemes have been carefully chosen to be EAE, which greatly
facilitates the derivation of a martingale correction. Finally, we numerically compared
the new simulation schemes with other recent schemes in the literature. For a special
case of the SZ model which coincides with Heston, our proposed scheme has a
similar performance to the QE-M scheme of Andersen (2008), while being slightly
more efficient in terms of computational time required. For the general SZ and SZHW
model, it has been demonstrated that our scheme consistently outperforms the Euler
scheme. These results affirm that Andersen’s result is more widely applicable than to
the Heston model alone; we conclude that for the simulation of stochastic volatility
models, it is of great importance to match the correlation between the asset price and
its stochastic volatility (and variance) process.
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