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Abstract

A broad class of exofic interest rate derivatives can be valued simply by
adjusting the forward interest rate. This adjustment is known in the market as
convexity correction. Various ad hoc rules are used to calculate the convexity
correction for different products, many of them mutually inconsistent. In this
research paper we put convexity correction on a firm mathematical basis by
showing that it can be interpreted as the side-effect of a change of probability
measure. This provides us with a theoretically consistent framework to
calculate convexity corrections. Using this framework we review various
expressions for LIBOR in arrears and diff swaps that have been derived in the
literature. Furthermore, we propose a simple method to calculate analytical
approximations for general instances of convexity correction.

1. Introduction

Many products that are actively traded in interest rate derivative
markets have pay-offs that only depend on a few interest rates
which are only observed at one point in time. One could
characterize such products as ‘exotic European’ options. The
value of these products is determined solely by the (joint)
probability distribution of the relevant rates at this one point
in time. This explains why this type of product has become
particularly liquid in recent years. Examples of this type of
product are LIBOR in arrears swaps, diff swaps and constant
maturity swaps (also known as CMS swaps) and CMS caps.

All these products can be characterized by the fact that
certain interest rates are paid at the ‘wrong’ time and/or in the
‘wrong’ currency. It turns out that the price of these products
can be expressed as the discounted forward rate, where the
forward interest rate has to be adjusted to reflect the ‘incorrect’
payment. This adjustment is known in the market as convexity
correction or convexity adjustment.

1 www.ewr.nl/few/people/pelsser

Practitioners use various ad hoc rules to calculate
convexity corrections for different products, often based on
Taylor approximations (see, for example, Brotherton-Ratcliffe
and Ihen 1993, Li and Raghavan 1996, Hunt and Pelsser 1998,
Benhamou 2000). For an overview of applications to various
products, see Hull (2000), chapters 19 and 20. However, many
of these rules are theoretically inconsistent and cannot be used
to derive convexity corrections for general products.

In this research paper, we will put convexity correction on
a firm mathematical basis by showing that it can be interpreted
as the side-effect of a change of numeraire. This means that
we will show how convexity correction can be understood
mathematically as the expected value of an interest rate under a
different probability measure than its own martingale measure.
In this setting we derive an exact expression for LIBOR in
arrears®. To analyse convexity correction across different

2 Many of the single-currency results for LIBOR in arrears we review in this
paper have also been derived by Jamshidian (1997), Ratkowski (1998) and
Pugachevsky (2001). Pugachevsky also derives expressions for CMS rates,
but he nses a different approximation than is proposed in this paper.
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currencies, we show how the change of numeraire theorem
can be applied to a multi-currency setting. In this setting we
derive an exact expression for diff swaps’. Finally, we show
how convexity corrections for general interest rate derivatives
can be calculated analytically using the surprisingly simple
but effective linear swap rate model (LSM) of Hunt and
Kennedy (2000).

The remainder of this paper is organized as follows. In
section 2 we show how the change of numeraire theorem can
be extended to a multi-currency setting. In sections 3 and 4,
we derive the theoretical framework to calculate convexity
corrections for single- and muiti-currency products. Finally,
we show In sections 5 and 6 how convexity corrections
for general interest rate payments and options on interest
rate payments can be calculated using the approximation we
propose.

2. Multi-currency change of numeraire
theorem

In this section we review how, in an arbitrage-free economy,
different probability measures can be used to value a given
product. From this observation one can derive the well known
change of numeraire theorem. Then we demonstrate how this
theorem can be applied to multi-currency economies. With
these tools we are then in a position to put the concept of
convexity correction on a firm mathematical basis.

The well known change of numeraire theorem due to
Géman ef ol (1995) shows how in an arbitrage-free economy
an expectation under a probability measure Q" generated by
anumeraire NV can be represented as an expectation under an
equivalent (absolutely continuous) probability measure Q¥
generated by the numeraire M times the Radon-Nikodym
derivative d@"/d@Y which is equal to the ratio of the
numeraires N /M. Por an expectation at time 0 of a random
variable H (T} at time T we have

(1

EY(H(T)) = EM (H(T)M),

M(T)/M(0)

where EV, E¥ denote expectations under the probability
measures @V, Q¥ respectively.

Many of the products we are interested in will be multi-
currency products. Hence, we demonstrate in this section
how the change of numeraire theorem can he applied to multi-
currency economies. Suppose we have a domestic economy
d and a foreign economy f together with the exchange rate
X@/13(¢) that expresses the value at time ¢ of one unit of foreign
currency in terms of domestic currency. This immediately
implies the relation XU/ = 1/X9/" ‘We also assume that
this system of economies and exchange rates is arbitrage free
and complete. This implies that for a numeraire N@ in the
domestic economy there exists a unique martingale measure
Q"9 such that all N@ rebased traded assets in the domestic
economy become martingales. Note that we have two types
of traded asset in the domestic economy: the domestic assets

3 These results have been derived previously by Pedersen and Mil-
tersen (2000) and Schlégl (2002).

Z“ and the foreign assets denominated in domestic currency
which are given by X@/H z()  All these assets are traded
assets in the domestic economy and can be used as numeraires
if their values are strictly positive.

Let us now consider two numeraires, one in the domestic
economy, say N, and one in the foreign economy, say
M), As the exchange rate is strictly positive, the domestic
value of the foreign numeraire X /) M/ is a valid numeraire
in the domestic economy. Hence, there exists a unigque
martingale measure Q¥4 such that all X@//) 319 rebased
traded assets in the domestic economy become martingales.
What is the relation between the probability measure Q¥4 ip
the domestic economy and Q*/ in the foreign economy? All
X @/ prth) rebased traded assets in the domestic economy are
martingales under Q**-¢. Hence, the domestic values of the
foreign traded assets, X/ zWy x@iN M = W phH
are also martingales. But this implies (given the uniqueness
of a probability measure for a parficular numeraire) that
QXM and @M/ are the same probability measure. So under
the measure QY7 all X/ IM ) rebased traded assets are
martingales in the domestic economy and all M\" rebased
traded assets are martingales in the foreign economy.

From the domestic economy perspective we have N and
X@D M) as domestic numeraires. Hence, we can apply the
single-currency change of numeraire theorem which yields

dQN.d N@ (7) X@nhoymih () 5
dQM-F T XWN(TYMUN(T) N@ Q) - @

On the other hand, from the foreign perspective we have
XU/ N@ and M) as foreign numeraires. Hence, we can
apply the single-currency change of numeraire theorem to this
case as well which yields

M ()
XUy N@ )

dQN,d X(f/d)(T)N(d)(T)

doM.f MO(T) )

Note that equations (2) and (3) are identical since X749 =
1/ X4/ Hence, we have derived the following result®.

Muiti-currency change of numeraire. Given an arbitrage-
Sfree system of economies (d, [), an exchange rate X and
two numeraives N'D and M7 within the economies with the
associated martingale measures Q¥4 and Q™1 we have that

dQM4 B N@(T) X(d/f)(O)M(f)(O)

dQM.f T XWH{TYMU(T) N0

B XU (N (T MO @
- MO XHDOYND )

If we set X = 1 the multi-currency change of numeraire
theorem reduces to the single-currency case.

% This result has previously been derived by Frey and Sommer (1996) and
Schidgl (2002).
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3. Convexity correction for single
currency

Given the change of numeraire theorems, we are now in
a position to investigate convexity correction. Convexity
correction arises when an interest rate is paid out at the *wron g’
time and/or in the ‘wrong’ currency.

Suppose we are given a forward interest rate y with
maturity 7° (which can be, for example, a forward LIBOR
rate or a forward par swap rate) and a numeraire P such
that the forward rate y is a martingale under the associated
probability measure Q. In the single-currency case we can
have a contract where the interest rate y(T') is observed at T
but paid at a later date § > T. If we denote the discount
bond that matures at $ by Dg, we have that the value of this
contract at time 7 is given by V(T) = y(T)Dg(T). Using Dg
as the numeraire with the associated forward measure Q° we
can express the value of this contract at time 0 as

V(0) = Ds(0)E* (y(T)). 5)

However, under the measure Q5 the process y is in general not
a martingale. Expectation (5) can be expressed as v(0) times
a correction term. This correction term is known in the market
as the convexity correction or conrvexity adjustment. Using (5)
market participants calculate the value of the pay-off as the
discounted value of the convexity-corrected pay-off ES(y).
What remains to be done is to find an expression for £ (¥).

We do know the process of y under its ‘own’ martingale
measure Q7. Using the change of numeraire theorem, we can
express the Q%-expectation E¥ in terms of a Q" -expectation
E" as follows:

dQ’
ES(y(T)) = E7 (y(T) dQ,,)

Ds(T) P(0)
P(T) Ds(0)

where R denotes the Radon-Nikodym derivative (with R(0) =
1). Both y and R are martingales under the measure QF. It
we know the joint probability distribution of y(7') and R(T)
the expectation can be calculated explicitly and we obtain an
expression for the convexity correction.

One possible approach is to assume that both y(7) and
R(T) have lognormal distributions. Hence, for 0 < ¢ < T we
assume that y(z) follows the process dy = ayy dW, and R(r)
follows the process dR = opR dWy under the measure QF
with correlation dW, dWy = Py g df. Under this assumption
we can calculate (6) as

= Ef (y(T) ) = EP(y(TYR(I)) (6)

E(y(T)) = EP (WT)R(T)) = y(O)err=ooxl (7

Note that the Radon-Nikodym derivative R(¢) is a ratio of
traded assets whose values can be observed in the market.
Hence, the instantancous volatility and the correlation of
the R(¢) process (which remain unaffected by a change of
measure) cart be estimated from historical data.

3.1. Example: LIBOR in arrears

Let us consider an example where we can obtain an exact
expression for a single-currency convexity correction. In a
normal LIBOR payment, the LIBOR interest rate L is observed
attime T and paid at the end of the accrual period attime T+ A
as « L(T), where « denotes the daycount fraction for the time
peried {T, T + A}. The forward LIBOR rate I. () is defined as

L@y = 1 Dr(t) = Drea(®) ’ ®
o4 Droa(t)

whete Dr, Dy, denote discount factors that mature at times
T and T + A respectively. Hence, if we choose Dyoa as the
numeraire then under the associated martingale measure Q7+

the forward LIBOR rate L is a martingale.
InaLIBOR in arrears contract, the interest payient at time
T is based on the rate L(T). Hence, the LIBOR payment is
fixed only at the end of the interest rate period {7 — A , T). The
pay-oif of a LIBOR in arrears payment at time T is therefore
equal to VMA(T) = L(7). The value at time 0 of this payment
is given by VMA(0) = Dy (0) BT (L(T)) = Dy (0) L, where L.
denotes the convexity-corrected forward LIBOR rate to reflect
the payment in arrears. To calculate the convexity correction
we proceed as follows. From the change of numeraire theorem
we obtain that the Radon-Nikedym derivative for the change
of measure dQ”*2 /dQ7 is given by the ratio of the numeraires

dQT
dQT+A =

Dr{T) Dr,a(0)
Dria(T) Dr(0) -~

&

Using the definition (8) we can rewrite the Radon-Nikodym
derivative as’
dQ"  1+aL(T)

AT+ T 1+ gL’ (10)

Using this expression we can calculate L as
- dQ¥
L=E"(L(D)=E™* (L(T)W)

_ ETAMLY(A +aL(T)))

N 1+al(0)

L) +aETH(L(TY)

- 1+aL(0)
The expression above is valid irrespective of the distribution
of L. Tf we make the additional assumption that the forward

LIBOR rate has a lognormal distribution under the measure
Q""" we have that ET*A(L(T)?)} = L(0)%°'T and we obtain

(1)

a7
1+aL(0)e ) (12)

L= L(O)( [ +aL(0)

where o denotes the volatility® of L.

5 The relationship between forward measures to the beginning and end
of a forward LIBOR accrual period was first presented by Musiela and
Rutkowski (1997).

& Note that the LIBOR in arrears convexity correction approximation given
in Hul? (2000, p 553) is to first order equal to the exact formula {12). The exact
expressions for LIBOR in arrears have also been derived by Jamshidian (1597),
Rutkowski (1998) and Pugachevsky (2001).
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4. Convexity correction for
multi-currency

Let us now consider the multi-currency case. In this case we
have a contract where a foreign interest rate y(7") is observed
at T but paid in domestic currency at a later date § = 7. If we
denote the domestic discount bond that matures at § by D(d)
we have that the value of this contract in domestic terms at
time T is given by V@(T) = y"(T)DY(T). Using D" as
the numeraire and the associated measure @ we can express
the value of this contract at time 0 as
V@) = DPOE () (T)). (13)

However, under the measure Q%7 the process y/? is in general
not a martingale, We do know the process of y\/? under
its ‘own’ martingale measure Q”/, Using the change of
numeraire theorem, we can express the expectation E5¢ in
terms of B/ as follows:

QS N4

)

Just like the single-currency case the Radon—Nikodym
derivative R/ is a ratio of traded assets whose values can
be observed in the market. Hence, the volatility and the
correlation of the R*/f) process (which remain unaffected by
a change of measure) can be estimated from historical data.
Another approach to evaluate (14) is to decompose R/ asthe
forward exchange rate times DY /P, which is the single-
currency Radon—Nikodym derivative of equation (6). This
leads to the expression

ES((T) = B ( Gh

= EPF (DT RYID(TY). (14)

BTy = BN ( T QM)
dQrs
DENT) PYID)
— gPr{ v (i) s
=FE (y (T)(X (T)P(f)(T)))X(f/d)(O)ngd)(O)
— P Sy (f1d) 5 s
PUH0)
X —_—
XD () Dgff) )
(f)
_ gt e gD o Ds (T))
)
PO 15)

X e o A
XU () Déd) (0)

where Fg denotes the forward exchange rate for delivery at time
§. The volatility of the forward exchange rate is quoted in the
market as the implied volatility of a foreign exchange option
with maturity S. The process Fy is not a martingale under the
measure QFF, but the drift of the process can be determined
from the fact that Dgf 1P and Fy Dgf ) 1PU) are martingales
under Q7. Hence, expression (15) can be used for explicit
computations for cross currency convexity corrections,

4.1. Example: diffed LIBOR

For a diffed LIBOR contract (also known as quantoed LIBOR)
a foreign LIBOR rate L7 is observed at T and is paid
in domestic currency at time T + A. These diffed LIBOR
payments are often paid in the form of a differential swap or
diff swap. In a diff swap a floating interest rate in the foreign
currency is exchanged against a floating rate in the domestic
currency where both rates are applied to the same domestic
notional principal. The domestic leg of a diff swap can be
valued as a standard floating leg in the domestic currency. The
foreign leg of the diff swap is a portfolio of diffed foreign
LIBOR payments, and its value can be calculated as the sum
of the individual diffed LIBOR payments.
For diffed LIBOR the expression (15) reduces to

d
ET+A,d(L(f) (TH = ET+A.f(L(f) (T)F}{_/A)(T)) '}f/d)(o)
+A
(16

If we make the approximating assumption that the forward

LIBOR rate and the forward exchange rate have lognormal

distributions under Q7*%7, then the convexity-corrected
foreign LTBOR rate L'’ is given by’

igf) = Ll(f)(o)ePaLUFGLT! (17)

where the volatility of the forward exchange rate with delivery

attime 7+ A is denoted by 0. Here oy, denotes the volatility of

the foreign LIBOR rate L") and pr ;. denotes the correlation

between the forward (f/d) exchange rate and L"), By the

exchange rate ( f/d) we mean the value of one unit of domestic
currency in terms of foreign currency.

Note that the approximating assumption that both the
LIBOR rates and the forward exchange rates have lognormal
distributions is unlikely to be satisfied in practice. The
assumption is, for example, incompatible with the case of
lognormal models for the forward LIBOR rates combined with
the usual assumption that the volatility of the spot exchange
rate is deterministic. This case is examined in Musiela and
Rutkowski (1997, section 17.3).

For many practical applications, the correlation between
the forward exchange rate and the forward LIBOR rate is
approximated by the correlation between the spot exchange
rate and the spot LIBOR rate®.

Note that, using formula (15), one can also derive an exact
expression for diffed LIBOR in arrears, but the formula is
rather tedious and therefore omitted from this paper.

5. Simple approximation formula for
convexity correction

Omly for very special cases can exact expressions for the
convexity correction be obtained. In these special cases the
Radon—Nikodym derivative of the change of measure is equal

7 Formuiae for diffed LYBOR have been derived previously by Pedersen and
Miltersen (2000) and Schldgl (2002).

8 Note that, if we calculate the correlation between the forward (d/f)
exchange rate and L7, we must use —p in our formula.
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to a simple function of the interest rate that determines the pay-
off. Apointincaseis LIBOR in arrears. In this section we want
to propose a method to approximate convexity corrections that
exploits the idea of making the Radon-Nikodym derivative a
function of the payout rate,

5.1. Approximation for single currency

For derivative contracts with a pay-off based on an interest
rate y, the numeraire that makes the interest rate a martingale
is always a portfolio of discount bonds of the form > Dy
Let us denote this numeraire by P, In the general (single-
currency) case we have that the interest rate is observed at time
T, and patd out at time S > 7. Hence, the Radon-Nikodym
derivative is of the form R(T) = Ds(T)/P(T).

The LSM? of Hunt and Kennedy (2000) provides us with
a convenient way to approximate R(T). In this model one
approximates Dg{T)/P (T} by the linear form A + Bgy(T),
where A = (37, ;1) ! and By = (Ds(0)/P(0) — A)/y(0).
Note that A is a constant and By only depends on the maturity
S. Using this approximation we can evaluate (6) explicitly as

s P(0) P( DS(T))
= E"(yr
B =558 VD50
_ PO _p
= D@ E"(y(T)(A+ Bsy(T)})
_ At Bsy(©@eT
_y(o)( A+ Bsy(0) ) e

The linear approximation of the LSM does seem
very crude at first, but can be justified by the following
argument. Convexity corrections only become sizeable for
large maturities. However, for large maturities the term
structure almost moves in parallel. Hence, a change in the
level of the long end of the curve is well described by the swap
rate. Furthermore, for paralle! moves in the curve, the ratio
Dg(T}/P(T) is closely approximated by a linear function of
the swap rate, which is exactly what the LSM does. Hence,
exactly for long maturities the assumptions of the .SM become
quite accurate, This leads to a good approximation of the
convexity correction for long maturities.

5.2. Example: constant maturity swap

A particularly liquid type of exotic European interest rate
contract is a constant maturity swap (or CMS). This is a swap
where at every payment date a payment calculated from a swap
rate y isexchanged for a fixed rate. Usually, these payments are
treated as floating payments: at the preceding payment date 7
the swap rate y(T') is observed, the actual payment is made at
the next payment date S. Hence, each CMS payment consists
of a swap rate y that is observed at time 7 and paid out (only
once)attime § > 7. Note that the term and payment frequency
of the swap rate may be different from the specifications of the
CMS swap itself.

The forward swap rate y(r) is defined as (Dy(t) —
Dy (t)y/ P(x), where Dy has a maturity equal to the start date T
of the swap, Dy has a maturity equal to the last payment date

7 See the appendix for a brief derivation of this model.

Table 1, Forward 20 year CMS rate y(T') paid at T + 1.
Simulations based on 500 000 runs in a two-factor LIBOR market
model with volatility specification A'(T) = 0.256 exp{—0.1457T},
AXT) =7.334exp{—4.0967} and correlation —0.744 between the
factors. The initial terr structure of LIBOR rates is flat at 5%.

OLBOR  Oswap LMM  StdErr LSM

T (%) (%) (%) (%) (%)
1 155 11.8  35.017 0.001 5.024
2 175 113 5032 0.002 5.045
3 172 10.8 5044 0.002 5.061
4  16.6 162 5053 0002 5073
5 158 9.7 5064 0.002 5.083
6 151 9.2 5067 0.002 5090
7 144 87 5070 0002 5005
8 138 83 5073 0.002 5.099
9 132 8.0 5073 0002 5.102
10 127 76 5074 0.002 5.103
11 122 73 5075 0.002 5105
12 11.8 7.0 5075 0.003 5106
13 114 68 35073 0.003 5.106
14 11.0 65 5072 0.003 5.107
15 106 63 5073 0.003 5107
16 103 61 5075 0.003 5.107
17 100 59 5078 0.003 5107
18 9.8 58 5078 0.003 5.106
19 9.5 56 5075 0.003 5.105
20 93 54 5074  0.003 5.104

Ty of the swap and P(¢) is the present value of a basis point
(or PVBP) of the swap given by ¥, ;.1 D; (t) where the D;
are the discount factors with maturity dates equal to the dates
at which fixed payments are made in the swap. If we use the
PVBP P(¢) as a numeraire, then the forward swap rate y(f) is
a martingale under the measure'® Q7. To calculate the value
of a CMS payment at time 0 we use the convexity-corrected
swap rate ¥ given by (18).

Let us compare the convexity correction formula (18)
with Monte Carlo simulations in a two-factor LIBOR market
model (LMM)'!. In table 1 we have summarized the results
for the expectation ET*!(y5(T)) simulated in a two-factor
LMM with annual LIBOR rates. The volatility functions of
the LIBOR rates are given by AN(T) = 0.256 exp{—0.1457'}
and A%(T} = 7.334 exp{—4.096T}. The correlation between
the two factors is given by —0.744. Hence, we have a model
with two negatively correlated factors, where the first factor
has a low mean reversion of 0.145 and the second factor has
a high mean reversion of 7,334, As shown in the second
and third columns of table 1, we replicate with this volatility
specification for the LMM the volatility hump of LIBOR rates
and a declining volatility structure for 20 year swap rates which
is consistent with empirical observations.

Using a market model with annual time-steps we have
simulated the value of 20 year swap rates observed at time T
which are paid at time T+1for7 = 1, ..., 20. For this pay-off
scheme typically observed in CMS swaps, one cannot apply
standard Taylor series based convexity correction formulae
(as proposed in Hull 2000, chapter 20) without introducing

10This was first pointed ot by Jamshidian (1997),

! For further details on the implementation of a Monte Carlo simulation in
a multi-factor LMM, we refer to Hull (2000, chapter 22), or Pelsser (2000,
chapter 8).

63



A Pelsser

QUANTITATIVE FINANCE

additional correlations between the forward swap rate and the
forward 1 year rate.

From table 1 we see that the approximations calculated
with the LSM formula (18) (see column ‘LSM’ ) are very
close to the Monte Carlo simulation in the two-factor LMM
(see column ‘LMM’). We do see that the LSM formula over-
estimates the convexity correction somewhat. This effect can
be attributed to the fact that the LSM is a one-factor model
which tends to over-estimate the correlation between different
interest rates.

5.3. Approximation for multi-currency

Let us consider the use of the LSM in the multi-currency
case. In the foreign economy, we approximate Dgf TP by
AP 4+ By, First, we determine the expected value of
the forward exchange rate F' from the fact that the Radon—
Nikodym derivative R/ = FY/(TyDS(TY/ P (T isa
martingale under the measure Q7. We have

(f/d) 5 _ P f (fd) 3
5 O0%0m =F (FS @ P(f)(T))

= BPI (PP AD + By O (1)
+ B BN (FO 1))y D (0)eromenT (19)

where we have made the (market standard) assumption that
F is a lognormal process; furthermore, the volatility of F is
denoted by o and pr, , denotes the correlation between F and

y. We can now solve for EP’f(FS(f/d)(T)) to obtain

B (D))
o

Given this expression, we can evaluate the cross-currency
expectation (15) as

ESAGWTy) =y 0)
; AL 4 Bgf)y(f)(O)B(rfyzwr,yrfw}-ﬁ o1
AD + By @yerrserat )

Note that this expression depends on the F and the y)
volatility which can both be observed in the market; the
correlation pr , between the forward F/X process and the
forward swap rate process also enters the formuia.

Note also that, if we set pr, = 0 or o = 0, then the
cross-currency formula (21) reduces to the single-currency
formula (18).

AU 4 Bgf)y(f)(()) )

20
AW 4+ By 0)errsore,T 0)

x (epp‘yﬁ'pd).

6. Options on convexity-corrected rates

Not only are we interested in interest rates paid in different
currencies and/or at different times, but also we want to value
call and put options and digital options on these rates. Using
the change of numeraire theorem, we can proceed exactly as
before.

Take for example a call option on a foreign interest rate
observed at time T and paid in domestic currency at a later

date § = T. The value of such a contract at time 7" is given by
VT) = D (T max{y"(T) — K, 0}. We can value this
pay-off as

V) = DI (0)ESY (max{y"(T) — K, 0} (22)
= DY (O) B/ (max{y"(T) — K, )R (T)) (23)

= DO E™Y (max{y(TYRYD (1Y — K RN (T), 0)).
(24)

The last line can be interpreted as an exchange option between
yR and K R. We know that v is a lognormal martingale under
the measure Q7f. In general the processes y(t)R(¢) and
K R(#) are not lognormal processes under the measure Q7.
If we approximate the probability distributions of y(T)R(T)
and K R(T) by lognormal distributions, the option value can
then be evaluated by the Margrabe (1978) formula as follows:

V@) = DY O)(E\N(d) — E2N(dy)),
Ei = BRI (yD (I REIN(TY),
E; = EPY(RRYINTY) =K,

iy = log(E:/Ey) + 152 (25)
, = :
N T)R(d/f)(T)
2 _ P.f ¥
= (k’g( K RGID(T) ))

= var™/ Qog yUT)) = 07T,

The expression for F; is the convexity-corrected forward rate
which can be denoted by 7. Hence, we can simplify the
expression above to obtain

V@ 0) = DR OGP N () — KN (d)),
log(3Y/K) £ J07T
1,2 - O—yﬁ L]

which is the market standard method of valuing options on
convexity-corrected rates and says ‘apply the Black formula
using the convexity-corrected rate as the forward rate’,

For the cases where we approximate the Radon—-Nikodym
derivative with the LSM, the approximation results in an
expression for the Radon—Nikodym derivative which is not
exactly lognormaily distributed. However, the market standard
method will be a good approximation.

(26)

Acknowledgments

The author would like to thank participants of the Maths
Week 2000 conference in London and the Dutch Mathematical
Conference in Amsterdam, Jeroen Kerkhof, Marek Rutkowski
and two anonymous referees for their comments and
suggestions.

Appendix

In this appendix we derive the LSM. The LSM is due to Hunt
and Kennedy (2000, chapter 13). Let y{#) be a forward par
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swap rate with swap start date Ty, payment dates 71, ..., T,
P@t) = YV o1 Di(t) the PVBP of the swap and Q7 the
martingale measure associated with the mumeraire P, The
swap rate y{¢) is defined as y(r) = (Dg(t) — Dy(1))/P(D)
and is therefore a martingale under QF. Define Dg{t) =
Dg(t)/P(r), then D s(f) is also a martingale under the measure
Q.
In the LSM the assumption is made that BS(TO) =
A + Bsy(Tp), where A is a constant and By is a deterministic
function of §. Hence, it is assumed that the PVBP rebased
discount factor D can be approximated by a linear expression
in the swap rate v. Let us solve for the parameter A and
the function Bg for § > Ty, We know that }55 should be a
martingale. To check the martingale property we consider

Ds(0)
P{0)
= ET(A 4 Bsy(Tp)) = A+ Bsy(0).
The martingale property of Dy is ensured if we set

Ds(0) = = E"(Ds(Ty)

_ Ds(@)/P©) -4
y(©)

The parameter A can be determined as follows. Consider the
identity Z‘;V o;-10;(t) = 1. Expanding this expression yields

N N
(A ZOA;I) + ( Cﬁf_iBj"!) y(f).
i=1 i=1
4 4

1 0

Bg

,_.
Il

Hence, we find A = 1/ Ziv -1. It is left as an exercise for
the reader to check the condition on the By.

Note that, if y is a forward LIBOR rate L;, then we have
that P(f) = aDypya(f). The LSM model now generates the
following expression:

Dr (1)

bry = o Droalt)

1
= A+BrL == +L(p),
o

which reflects exactly the definition of the forward LIBOR
rate L;.
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