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a b s t r a c t

In this paper we develop a framework for optimal investment decisions for insurance companies in the
presence of (partially) unhedgeable risk. The perspective that we choose is from an insurance company
thatmaximises the stream of dividends paid to its shareholders. The policy instruments that the company
has are the dividend policy and the investment policy. Using stochastic control theory, we derive simul-
taneously the optimal investment policy and the optimal dividend policy, taking the insurance risks to be
given. We study the trade off between investing in the optimal hedge portfolio and the fully diversified
portfolio. We show next how the pricing of unhedgeable risk can also be embedded in our framework.
Finally, we derive the distribution of the time of bankruptcy and demonstrate its usefulness in calibrating
the model.
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1. Introduction

Insurance companies are faced with risks of many types. These
include financial risks such as risks inherent in the investment pro-
cess, but also non-financial risks such as the insurance claims that
are at the core of the insurance operation. While most financial
risks are generally assumed to be hedgeable, which means that
such risks can be replicated in the financial markets, insurance
claims are generally considered to be unhedgeable as no replicat-
ing portfolio exists for most ‘‘insurance events’’.

In this paper we aim to develop a framework for optimal in-
vestment decisions for insurance companies in the presence of
(partially) unhedgeable risks. The perspective that we choose is

0167-6687/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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from an insurance company that tries to maximise the stream of
dividends paid to its shareholders. The policy instruments that the
company has to this end are the dividend policy and the invest-
ment policy. The insurance company can continue to pay dividends
until bankruptcy, and hence the time of bankruptcy is also endoge-
nously controlled by the dividend and investment policies.

The problemof optimising dividends payout schemes has a long
history in actuarialmathematics; see, for example, the early contri-
butions by De Finetti (1957), Borch (1967, 1969), Bühlmann (1970)
and Gerber (1972, 1979). More recently the study of the problem
has received an important impulse by the application of controlled
diffusion techniques; see, for example, Paulsen andGjessing (1997)
and the overview paper by Taksar (2000).

The starting points for this paper are the results obtained in
the papers by Asmussen and Taksar (1997, AT hereafter), Højgaard
and Taksar (1999, HT99 hereafter) and Højgaard and Taksar (2004,
HT04 hereafter). Especially the results of HT99 and HT04 are quite
interesting. In HT99, they analyse the case where an insurance
company searches both an optimal dividend policy and an optimal
level of reinsurance. In HT04, they consider the casewhere also the
investment risk can be controlled.

This paper asks a different, yet basic question which appears
to have been overlooked in the optimal dividends literature: how
does the presence of partially hedgeable and partially unhedgeable
risk (which is the usual case in insurance) impact the optimal in-
vestment and optimal dividend policies? To answer this question
wedistinguish carefully betweenhedgeable risks (i.e., risks that are
traded on the financial markets) and unhedgeable risks (i.e., risks
that are not traded on the financial markets). This distinction al-
lows us to study the fundamental trade off between investing in
the optimal hedge portfolio (reducing risk exposure) and invest-
ing in the fully diversified portfolio (increasing expected asset re-
turns). This trade off is at the core of Asset–Liability Management
(ALM).

Given our setup, we can use our results to infer what price
should be charged for accepting additional unhedgeable risks such
that the value of the insurance company remains unchanged. This
provides a novelmechanism for the valuation of unhedgeable risks
which can be viewed as the marriage of equivalent utility valua-
tion on the one hand, and value and dividend optimisation in ruin
theory on the other. We also derive the non-trivial probability dis-
tribution of the time of bankruptcy, and we illustrate how this in-
formation can be used to calibrate the model such that the implied
default probabilities are consistent with observed default proba-
bilities for insurance companies.

The outline of this paper is as follows. In Section 2 we introduce
our framework. In Section 3 we derive the optimal policies and we
illustrate the derived solution by means of an example. Section 4
discusses the pricing of insurance and Section 5 studies the time
of bankruptcy. Section 6 analyzes the optimisation problem under
general utility functions and, finally, Section 7 contains some con-
cluding remarks.

2. Stylised insurance company

We fix a probability space (Ω, F ,P) with a filtration (Ft)t≥0,
which we assume to satisfy the usual assumptions (completed and
right-continuous). This filtration represents the flow of informa-
tion on which decisions are based. All Brownian motions that we
consider below are defined on (Ω, F ,P) and adapted to its filtra-
tion.

The surplus St of the insurance company is defined as the
difference in value between assets and liabilities. The insurance
company remains solvent as long as St > 0. We propose to model

the surplus process by

dSt = (α′µA + m)dt +


α

−1

′ 
6A σAM

σ ′

AM σ 2
M

1/2

×


dWA
dWM


− σIdWI . (2.1)

To explain this elaborate model for the surplus process we focus
first on its liability component, and then on its asset component.

We assume that the liability component is driven by two
sources of risk: the diffusion term σIdWI which represents the in-
surance risks, and the diffusion term σMdWM which represents the
financial market risk component of the liabilities. Many types of
insurance liabilities, for example unit-linked or participating con-
tracts, have exposure to financial market risk. We will assume
(without loss of generality) that the standard Brownian motions
WM and WI are independent. The drift term of the surplus pro-
cess contains a (positive) margin m that the insurance company
has built into its liability process to cover the insurance risks and
management fees. We assume that there is competition in the in-
surance market and that m is exogenously given and not a control
variable for the insurance company. Please note that the constants
m, σM and σI are absolute quantities and not ‘‘percentages’’.

We assume that the assets of the insurance company can only
be invested in financial markets. However, the insurance company
can choose fromauniverse ofN investment categories. The (N×1)-
vector µA denotes the vector of expected investment returns, the
(N × N)-matrix 6A denotes the covariance matrix of the invest-
ment returns (which means that 6A is symmetric) and WA is an
N-dimensional standard Brownian motion. We assume that 6A is
a positive definite matrix so that it is non-singular. The vector α
captures the exposure in absolute terms to each of the N invest-
ment categories. Please note that the constants µA and 6A denote
a vector of return percentages and a matrix of return variances, re-
spectively.

In Eq. (2.1)wehave stacked theN+1 sources of financialmarket
risk together in an (N + 1)-vector, with an (N + 1) × (N + 1)
covariance matrix. The (N × 1)-vector σAM denotes the covariance
of each asset category with the insurance liability portfolio. When
the financial risk of the insurance liabilities is spanned by the N
investment opportunities, then the vector σAM is collinear with the
matrix 6A and as a consequence the (N + 1) × (N + 1) covariance
matrix is rank-deficient. In this case it will be possible to choose a
vector α such that all financial risk drivers are eliminated. This is
known as the replicating portfolio. In this case the surplus process
reduces to dSt = mdt−σIdWI . Thismeans thatwhen the insurance
company decides to invest in the replicating portfolio, the surplus
process is driven by pure insurance risks only. The optimal
dividend policy for this special case is investigated in the AT paper.

If the insurance company decides to deviate from the replicat-
ing portfolio then the surplus process may benefit from additional
excess returns, but at the cost of increased risk. It is this risk/return
trade off which is the subject of so-called ALM (Asset–Liability
Management) models.

To lighten the notation for the analysis of the surplus process,
we replace the N + 2 Brownian motions by a single diffusion term
which has the same law:

dSt =

α′µA + m


dt +


α

−1

′ 
6A σAM

σ ′

AM σ 2
M


×


α

−1


+ σ 2

I

1/2

dW . (2.2)

For a typical insurance company the surplus S is a factor 10–20
smaller than the total asset portfolio A (or the liability portfolio
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L). Therefore an arithmetic specification of the surplus process St
seems a reasonable approximation. It can moreover be viewed as
the diffusion limit of the classical Cramér–Lundberg risk model
(see also AT, HT99 and HT04, and the references therein), and of an
analogous jump model for gains and losses on assets, with a risk
premium as drift term. Considering alternative more realistic sur-
plus processes, with e.g., asymmetric and heavy tails, means that
one has to resort to numerical methods to compute the optimal
policies in the (already complex) dynamic programming problem
specified below.

3. Optimal policies

After HTwe seek the optimal solution for the following dynamic
programming problem:

sup
α,D

E

 τ

0
e−ctdDt , (3.1)

s.t. dSt = (α′µA + m)dt +


α

−1

′ 
6A σAM

σ ′

AM σ 2
M


×


α

−1


+ σ 2

I

1/2

dW − dDt ,

S0 = x − D0,

where Dt denotes the cumulative dividend payout process, and τ
denotes the time of bankruptcy defined as τ := inf{t : St = 0}, x
denotes the initial surplus of the insurance company, and c de-
notes the (subjective) discount rate that shareholders use to dis-
count future dividends. In our search for the optimal dividend and
optimal investment policies we restrict ourselves to cumulative
dividend payout processes that are adapted to (Ft)t≥0, that are
non-decreasing and right-continuous and satisfy D0− = 0.

Remark 3.1. When deriving the optimal dividend and optimal in-
vestment policies it is assumed that the management of the insur-
ance company acts in the shareholders’ interests. We thus refrain
from possible agency problems between shareholders and man-
agement.

Remark 3.2. In (3.1), the expected discounted dividend stream
paid to the shareholders is maximised, implicitly assuming that
shareholders admit a linear utility function. In particular, the risk
discount rate c of the shareholders does not react to changes
in riskiness of the balance sheet of the insurance company. The
dynamic programming problem becomes much more complex in
case one would consider non-linear utility functions; see Hubalek
and Schachermayer (2004), Thonhauser and Albrecher (2007) or
Grandits et al. (2007) for (partial) extensions in this direction of
the simpler 1-dimensional case without investment risk control,
and also Section 6 below.

Remark 3.3. As is usual in ruin models, it is assumed that
bankruptcy takes place when St = 0 for the first time, even though
in reality the insurance company may decide to raise external
funds at (or prior to) such occasion. The decision whether or not to
raise external funds would be based on a trade off between incur-
ring high costs of external financing while realising future profits
on the one hand and not incurring high costs of external financing
and not realising future profits on the other hand. We refrain from
making such trade off and assume that bankruptcy takes placewith
certainty as soon as St = 0 for the first time.

Following HT, we define a value function V (x) := E
 τ

0 e−ctdDt ,
which is the expected value of the discounted dividends given the
initial level of surplus x. Note that from this definition it follows

that V (0) = 0, because when x = 0 the insurance company
immediately goes bankrupt and no dividends will ever be paid to
the shareholders.

Using similar arguments as HT we find that V (x) satisfies the
following HJB equation:

max


max

α

1
2


α

−1

′ 
6A σAM

σ ′

AM σ 2
M


α

−1


+ σ 2

I



× V ′′(x) + (α′µA + m)V ′(x) − cV (x), 1 − V ′(x)


= 0. (3.2)

Let us start in the region where V ′(x) > 1, so V (x) must satisfy

max
α

1
2


α

−1

′ 
6A σAM

σ ′

AM σ 2
M


α

−1


+ σ 2

I


V ′′(x)

+ (α′µA + m)V ′(x) − cV (x) = 0. (3.3)

The expression on the left-hand side is maximised for

α∗(x) =


−

V ′(x)
V ′′(x)


6−1

A µA + 6−1
A σAM . (3.4)

We can interpret the optimal portfolio α∗ as follows: the opti-
mal portfolio consists of two parts. The term 6−1

A σAM is the hedge
portfolio that replicates as much of the (financial) liability risks as
possible. Note that this term does not depend on the level of the
surplus x. The term 6−1

A µA is the mean–variance optimal ‘‘Merton
portfolio’’ (see Merton, 1969, 1971). The exposure to the Merton
portfolio depends only on the level of the surplus x through the
function −V ′(x)/V ′′(x). Hence, we find that, like in the CAPM, we
get a two-fund separation solution for the optimal portfolio, and
therefore the optimal choice of N assets can be reduced to a 1-
dimensional problem.

The result we have found has important consequences for the
ALM process of an insurance company: In a first stage, the insur-
ance company can determine the optimal hedge portfolio6−1

A σAM .
This is a fixed portfolio that does not depend on the surplus posi-
tion of the insurance company, but is determined by the nature
of the liability portfolio. In a second stage, the insurance company
can determine the mean–variance optimal portfolio 6−1

A µA. This
is the ‘‘speculative’’ portfolio that the insurance company uses to
optimise its expected asset returns. The composition of this portfo-
lio is given exogenously, only the amount invested in this portfolio
depends on the surplus x. More specifically, the dependence on the
surplus x is via a ‘‘risk tolerance’’ term −V ′(x)/V ′′(x) which is the
reciprocal of the absolute risk aversion measure −V ′′(x)/V ′(x) in-
troduced by Pratt (1964) in the context of utility functions.

The variance σ 2
U of the unhedgeable risk consists of two compo-

nents:

σ 2
U :=


σ 2
M − σ ′

AM6−1
A σAM


+ σ 2

I ;

the first term (between brackets) is the market risk of the portfo-
lio of insurance liabilities that is not hedged by the optimal hedge
portfolio while the second term is the variance σ 2

I of the (non-
traded) insurance risks. It is the variance σ 2

U that determines the
mean–variance trade off that the insurance company has to make
in the ALM process.

If we define the risk tolerance β(x) := −V ′(x)/V ′′(x) in expres-
sion (3.4) and substitute into (3.3) we obtain
1
2


β(x)2σ 2

A + σ 2
U


V ′′(x)

+

β(x)σ 2

A + µU

V ′(x) − cV (x) = 0; (3.5)

where σ 2
A := µ′

A6
−1
A µA,
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σ 2
U :=


σ 2
M − σ ′

AM6−1
A σAM


+ σ 2

I ,

µU := µ′

A6
−1
A σAM + m.

Before we proceed, we will make the additional assumption
that (due to riskmanagement or regulatory restrictions) there is an
upper bound on the investment positionα∗(x), which is equivalent
to imposing an upper bound on the risk tolerance β(x). Hence, we
assume β(x) ≤ M for an exogenously given upper boundM .

To construct a solution to (3.5), we assume there are three
regions:

1. 0 < x < u0, where we follow a ‘‘dynamic’’ ALM policy with
β(x) < M , and no dividends are paid out;

2. u0 < x < u1, where we follow a ‘‘maximum risk’’ strategy with
β(x) ≡ M , and no dividends are paid out;

3. u1 < x, wherewe pay out immediately the excess surplus x−u1
as dividends to the shareholders. Such a dividend strategy is
called a barrier strategy.

Remark 3.4 (Using Barrier Strategy by Insurance Companies in Real-
ity). It is our observation that insurance companies do implement
such barrier strategies in reality, albeit in a modified form. In the
real world, insurance companies make a distinction between ‘‘tied
surplus’’ and ‘‘free surplus’’. The tied surplus is needed as a buffer
capital against the risky insurance and investment positions, but
the free surplus (i.e. the surplus x > u1) is not immediately paid
out to the shareholders, but is held ‘‘on behalf of’’ the sharehold-
ers to do strategic acquisitions. In a perfectly transparent world,
holding the free surplus x > u1 will increase the value function in
exactly the same linear fashion as the value function we derive in
Section 3.3.

3.1. Dynamic region 0 < x < u0

To construct a solution for the ‘‘dynamic’’ region 0 < x < u0,
we could substitute the definition for β(x) back into Eq. (3.5) and
obtain a differential equation for V (x). Unfortunately, the resulting
non-linear differential equation is very difficult to solve directly.
We therefore proceed along a different path and solve for the risk
tolerance β(x).

Substituting V ′′(x) = −V ′(x)/β(x) into (3.5) leads to

1
2


σ 2
A β(x) + 2µU −

σ 2
U

β(x)


V ′(x) − cV (x) = 0. (3.6)

Taking the derivative with respect to x of this equation leads to

1
2


σ 2
A +

σ 2
U

β(x)2


β ′(x)V ′(x)

+
1
2


σ 2
A β(x) + 2µU −

σ 2
U

β(x)


V ′′(x) − cV ′(x) = 0. (3.7)

Substituting once more V ′′(x) = −V ′(x)/β(x) into (3.7) leads to

1
2


σ 2
A +

σ 2
U

β(x)2


β ′(x)V ′(x)

−
1
2


σ 2
A β(x) + 2µU −

σ 2
U

β(x)


V ′(x)
β(x)

− cV ′(x) = 0. (3.8)

As the value function V is an increasing function, we have that V ′

is strictly positive for all x. Hence, we are allowed to divide (3.8) by
V ′ and we obtain a differential equation for β(x):

β ′(x) =
(σ 2

A + 2c)β(x)2 + 2µUβ(x) − σ 2
U

σ 2
A β(x)2 + σ 2

U
. (3.9)

This is a first order ordinary differential equation (ODE) of the form

dβ
dx

=
Aβ2

+ Bβ − C
β2 + C

; (3.10)

with A :=
σ 2
A + 2c
σ 2
A

, B :=
2µU

σ 2
A

, C :=
σ 2
U

σ 2
A
.

We can express the solution to (3.10) in the form:
β2

+ C
Aβ2 + Bβ − C

dβ − Cβ =


dx. (3.11)

The integral on the right-hand side of (3.11) is trivial and is equal to
x. The integral on the left-hand side of (3.11) is a rational function
in β which can be integrated analytically. We find the following
expression for β(x):

B2
+ 2A(1 + A)C

2A2
√
B2 + 4AC

ln


2Aβ + B −

√
B2 + 4AC

2Aβ + B +
√
B2 + 4AC



−
B

2A2
ln

Aβ2

+ Bβ − C

+

β

A
− Cβ = x. (3.12)

If we set x = 0 in Eq. (3.6), use V (0) = 0 and divide by V ′(0), we
obtain

σ 2
A β(0) + 2µU −

σ 2
U

β(0)
= 0. (3.13)

If we multiply by β(0) we obtain a quadratic equation. Selecting
the positive root gives the following expression for β(0):

β(0) = −
µU

σ 2
A

+


µU

σ 2
A

2

+


σU

σA

2

. (3.14)

If we substitute this expression for β(0) into (3.12) for x = 0 we
can solve for Cβ , but the resulting expression is omitted here for
brevity.

Notice that (3.12) is the expression for the inverse function of
β(x). Let us denote this inverse function by x(β). Although we do
not obtain an explicit expression for β(x), the implicit Eq. (3.12)
is still quite useful: the inverse function x(β) is strictly increasing.
Hence, β(x) itself is also strictly increasing in x. So for increasing
levels of the surplus x, the optimal investment policy for the
insurance company is to hold an ever increasing amount of risky
assets until the maximum risk tolerance level M is reached. The
surplus level u0 is defined as the first pointwhere the risk tolerance
β reaches themaximum levelM . If we substituteβ = M into (3.12)
we obtain directly an analytical expression for u0.

Let us now construct the expression for V (x) on 0 < x < u0.
The definition β(x) = −V ′(x)/V ′′(x) gives a differential equation
for V (x). If we take the reciprocal on both sides and integrate we
obtain

C0 −


1

β(x)
dx =


V ′′(x)
V ′(x)

dx. (3.15)

The integral on the right-hand side easily evaluates to ln V ′(x). The
left-hand integral is slightly more complicated since an explicit
expression for β(x) is not available. We can evaluate the integral
if we perform a change of variable from dx to dβ . Using the Change
of Variables Theorem dx = (dx/dβ)dβ =


1/(dβ/dx)


dβ , we can

substitute the expression for β ′(x) given in Eq. (3.11) into the left-
hand side of Eq. (3.15):

C0 −


1
β


β2

+ C
Aβ2 + Bβ − C


dβ = ln V ′(x). (3.16)
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The left-hand side is a rational function in β that can be integrated
explicitly. After taking the exponential we obtain:

V ′(x) = eC0β(x)


2Aβ(x)+B+

√
B2+4AC

2Aβ(x)+B−
√

B2+4AC

 B(A−1)
2A

√
B2+4AC


Aβ(x)2 + Bβ(x) − C

 A+1
2A

= eC0β(x)

×

 
σ 2
A +2c


β(x)+µU+


µ2
U+


σ 2
A +2c


σ 2
U

σ 2
A +2c


β(x)+µU−


µ2
U+


σ 2
A +2c


σ 2
U


cµU

(σ2
A +2c)

√
µ2
U+(σ2

A +2c)σ2
U

 
σ 2
A +2c


β(x)2+2µUβ(x)−σ 2

U

σ 2
A

 σ2
A +c

σ2
A +2c

. (3.17)

If we substitute this result for V ′(x) into Eq. (3.6) we obtain the
following expression for V (x):

V (x) = C∗

0


σ 2
A β(x)2 + 2µUβ(x) − σ 2

U



×

 
σ 2
A +2c


β(x)+µU+


µ2
U+


σ 2
A +2c


σ 2
U

σ 2
A +2c


β(x)+µU−


µ2
U+


σ 2
A +2c


σ 2
U


cµU

(σ2
A +2c)

√
µ2
U+(σ2

A +2c)σ2
U


σ 2
A + 2c


β(x)2 + 2µUβ(x) − σ 2

U

 σ2
A +c

σ2
A +2c

, (3.18)

where C∗

0 denotes an arbitrary constant that will be solved later in
Eq. (3.24) and with µU , σA and σU as defined below (3.5).

3.2. Maximum risk region u0 < x < u1

On the interval u0 < x < u1, the insurance company will
follow the ‘‘maximum risk’’ strategy by holding the risk tolerance
β(x) ≡ M . The value function on the interval u0 < x < u1, denoted
by V1(x), is therefore a solution of the equation

1
2
σ 2
MMV ′′(x) + µMMV ′(x) − cV (x) = 0; (3.19)

with µMM := (Mσ 2
A + µU), σ 2

MM :=

M2σ 2

A + σ 2
U


.

The solution to this second order ODE is given by

V1(x) = C1eγM+(x−u0) + C2eγM−(x−u0); (3.20)

with γM± :=
1

σ 2
MM


−µMM ±


µ2

MM + 2cσ 2
MM


.

At the point x = u0, we know β(u0) = M = −V ′(u0)/V ′′(u0). We
also know that V (u0) = V1(u0). These two pieces of information
are sufficient to determine C1 and C2:
V (u0) = C1 + C2

0 = C1

γM+ + Mγ 2

M+


+ C2


γM− + Mγ 2

M−


.

(3.21)

The function V1(x) is therefore given by

V1(x) = V (u0)


γM+ + Mγ 2

M+


eγM−(x−u0)

−

γM− + Mγ 2

M−


eγM+(x−u0)

(γM+ − γM−) + M

γ 2
M+

− γ 2
M−

 . (3.22)

Please note that at this point the function value V (u0) still depends
on the (unresolved) constant C∗

0 . This final constant will be deter-
mined in the next section.

3.3. Dividend region u1 < x

We can now solve for the upper limit u1. From Eq. (3.2) it fol-
lows that for x > u1, the insurer immediately pays out the excess
surplus x − u1 as dividends. Hence, the function V (x) satisfies the
equation V ′(x) = 1. The solution is given by V2(x) = C3 + x. The
point u1 is the point where the function V1(x) makes a ‘‘smooth’’

Table 1
Parameter specification.

Parameter Value

σM 2.47 Ge
σI 4.57 Ge
sA 15.0%
m 1.26 Ge
µA 3.00%
M 15 Ge
c 5.00%

This table reports the parameter values
chosen when generating Figs. 1 and 2. The
values are adapted from the annual report
of a large European insurance company.
The ‘‘absolute’’ quantities are obtained by
multiplying returns and volatilities with the
asset and liability values reported by the
insurance company. All ‘‘absolute’’ quantities
are reported in billions of euro (Ge).

Fig. 1. Optimal investment in ‘‘speculative’’ portfolio as a function of the initial
surplus. This figure displays the optimal investment in the ‘‘speculative’’ portfolio
β(x)µA/s2A derived in Section 3 as a function of the initial surplus x on the interval
0 < x < u0 and u0 < x < u1 . Recall that when x > u0 a ‘‘maximum risk’’ strategy
MµA/s2A is adopted. The units of the initial surplus and optimal investments are
billion Euros. The parameters used to generate this graph are reported in Table 1.

contact with the function V2. This means that the first and second
derivatives should match at the point u1.

Since V2(x) is a straight line, its second derivative is 0. We can
solve for u1 from the equation V ′′

1 (u1) = 0. This leads to:

u1 = u0 +
1

γM+ − γM−

ln


γM+ + Mγ 2

M+


γ 2
M−

γM− + Mγ 2
M−


γ 2
M+


. (3.23)

Given this value for u1, we can now solve for the remaining
constant C∗

0 in V (u0) from the condition V ′

1(u1) = 1. This leads to

V (u0) =
(γM+ − γM−) + M


γ 2
M+

− γ 2
M−


γM+ + Mγ 2

M+


γM−eγM−(u1−u0) −


γM− + Mγ 2

M−


γM+eγM+(u1−u0)

.

(3.24)

Finally, we solve for C3 from V1(u1) − u1 = C3.

3.4. Example

Let us illustrate the derived solutionwith an example. Although
our derivation so far has been fully N-dimensional, we see from
Eq. (3.5) that the problem of determining the value function V (x)
is essentially a one-dimensional problem. Hence, for ease of expo-
sition, we will use a one-dimensional setup for our numerical il-
lustration. We therefore set N = 1, and take ΣA =: s2A (and hence
σAM = sAσM ). The parameter specification is set as in Table 1. Fig. 1
displays the optimal investment in the risky asset in the ‘‘specu-
lative’’ portfolio β(x)µA/s2A as a function of the initial surplus x.
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Fig. 2. Value function (V (x)). This figure displays the value function derived in
Section 3 as a function of the initial surplus x. The grey part corresponds to V (x) on
the interval 0 < x < u0 while the black part corresponds to V1(x) on the interval
u0 < x < u1 . Recall that on the interval x > u1 , V2(x) is a straight line. The units
of the initial surplus and value function are billion Euros. The parameters used to
generate this graph are reported in Table 1.

Next, Fig. 2 displays the expected value of the discounted dividends
under the optimal investment and optimal dividend policy as a
function of the initial surplus, i.e., the value function. For our pa-
rameters, we find the following values u0 = 12.3 and u1 = 22.5
(rounded to three significant digits).

4. The pricing of insurance

The value function turns out to be decreasing in σI . The sensi-
tivity of the value function with respect to σI can be interpreted
as the marginal price of insurance risk. It provides a novel mecha-
nism for the valuation of unhedgeable risks which can be viewed
as the marriage of equivalent utility valuation on the one hand,
and value and dividend optimisation in ruin theory on the other.
The marginal price of insurance risk is such that the shareholders
are indifferent between bearing an additional unit of insurance risk
(asmeasured by σI ) while receiving an immediate dividend payout
equal to the marginal price of insurance risk, and not bearing the
additional unit of insurance risk.

Alternatively (but essentially equivalently), to price insurance
risk one may determine the increase of the margin m that offsets
the decrease of the value function when an additional unit of
insurance risk is borne. Let us denote this quantity by dm/dσI .
Suppose we consider the value function V (x;m, σI) as a function
of the parameters m and σI . Then if we insist that the ‘‘total
derivative’’ dV = 0, we obtain (with slight abuse of notation)

∂V
∂σI

+
∂V
∂m

dm
dσI

= 0

and from this it follows that we can express dm/dσI as

dm
dσI

= −
∂V
∂σI


∂V
∂m

. (4.1)

Both derivatives in the numerator and the denominator can be
calculated analytically given the analytical expressions for V (x)we
have derived.

The quantity dm/dσI can be interpreted as the increase in the
margin m that the shareholders require to accept one additional
unit of insurance risk σI . This quantity could also be interpreted
as the ‘‘market (or shareholders) price of insurance risk’’. It is the
compensating rate for which shareholders, under the optimal in-
vestment and dividend policies maximising shareholders’ value,
are indifferent between accepting and not accepting to bear ad-
ditional insurance risk.

Fig. 3. Market price of insurance risk dm/dσI . This figure illustrates the sensitivity
of the market price of insurance risk dm/dσI ; see Section 4. The units of the initial
surplus are billion Euros. The parameters used to generate this graph are reported
in Table 1.

Let us consider again the example of Section 3.4. Fig. 3 displays
the market price of insurance risk dm/dσI for different values of
initial surplus x. Note that the market price of insurance risk is
not a constant in our model, but depends on the initial surplus
x. For low levels of initial surplus, an increase in insurance risk σI
leads to a relatively large increase in the probability of bankruptcy.
Therefore, the shareholders require a higher compensation at low
levels of surplus, compared to higher levels of surplus.

5. The time of bankruptcy

In this section we study the distribution of the time of bank-
ruptcy τ . We denote by ϕ(λ, x) = E[e−λτ

], λ > 0, the Laplace
transform of (the distribution function of) τ .

Because the optimal dividend policy is a barrier strategy, the
(modified) surplus process x is a Brownianmotion with a reflecting
barrier (at the level u1 where the excess surplus is paid out as
dividends to the shareholders) and an absorbing barrier at the level
0 (at which bankruptcy takes place).

In the region 0 < x < u0 the surplus process x follows
the stochastic differential equation dx =


β(x)σ 2

A + µU

dt +

β(x)2σ 2
A + σ 2

U dW , therefore, the Laplace transform ϕ(λ, x) is a
solution of the ODE

1
2


β(x)2σ 2

A + σ 2
U


ϕ′′(x)

+

β(x)σ 2

A + µU

ϕ′(x) − λϕ(x) = 0 (5.1)

in the region 0 < x < u0.
In the region u0 < x < u1 the surplus process x follows

the stochastic differential equation dx =

Mσ 2

A + µU

dt +

M2σ 2
A + σ 2

U dW , and the function ϕ(λ, x) is a solution of the ODE

1
2


M2σ 2

A + σ 2
U


ϕ′′(x) +


Mσ 2

A + µU

ϕ′(x) − λϕ(x) = 0 (5.2)

in the region u0 < x < u1.
Due to the reflecting boundary at u1 and the absorbing bound-

ary at 0, the Laplace transform ϕ(λ, x) satisfies the following
boundary conditions (see, for example, Cox andMiller, 1965, Chap-
ter 5.7):

ϕ(λ, 0) = 1, (5.3)
d
dx

ϕ(λ, u1) = 0. (5.4)
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5.1. Solution for ϕ in the region 0 < x < u0

Due to the complexity of the function β(x), we cannot provide a
fully analytical solution to (5.1). However, since we are interested
in finding an expression for E[τ ] = −

d
dλϕ(λ = 0, x) we only need

to find an expression for d
dλϕ(λ = 0, x).

If we take the derivative with respect to λ in (5.1) we find:

1
2


β(x)2σ 2

A + σ 2
U


ϕ′′

λ(x) +

β(x)σ 2

A + µU

ϕ′

λ(x)

− ϕ(x) − λϕλ(x) = 0, (5.5)

where ϕλ(x) is shorthand notation for d
dλϕ(λ, x). If we now evalu-

ate (5.5) at our point of interest λ = 0, then the ODE simplifies to

1
2


β(x)2σ 2

A + σ 2
U


ϕ′′

λ(x) +

β(x)σ 2

A + µU

ϕ′

λ(x)

= ϕ(0, x) = 1. (5.6)

The substitution ϕ(0, x) = 1 follows immediately from ϕ(0, x) =

E[e−0τ
] = 1. The ODE we have now obtained is a non-homoge-

neous first-order ODE, which we can solve.
Let us proceed to construct the solution. First, we make the

substitution ξ(x) := ϕ′

λ(x). We then obtain the equation

1
2


β(x)2σ 2

A + σ 2
U


ξ ′(x) +


β(x)σ 2

A + µU

ξ(x) = 1. (5.7)

We can now do a change of variables from x to β(x) since β(x) is
monotonically increasing in x. This leads to

1
2


β(x)2σ 2

A + σ 2
U


ξ ′(β(x))β ′(x)

+

β(x)σ 2

A + µU

ξ(β(x)) = 1. (5.8)

If we substitute the expression for β ′(x) given in (3.9), then (5.8)
simplifies to

1
2


(σ 2

A + 2c)β2
+ 2µUβ − σ 2

U


ξ ′(β)

+

βσ 2

A + µU

ξ(β) = 1, (5.9)

which is a first-order ODE that depends on β only.
The next step is to find a solution for the homogeneous equation

1
2


(σ 2

A + 2c)β2
+ 2µUβ − σ 2

U


ξ ′(β)

+

βσ 2

A + µU

ξ(β) = 0. (5.10)

The solution to the homogeneous equation (5.10) can be repre-
sented as

ξH(β) = exp


−


βσ 2

A + µU
1
2


(σ 2

A + 2c)β2 + 2µUβ − σ 2
U

dβ . (5.11)

This expression can be evaluated as

ξH (β) =



σ2
A+2c


β+µU+


µ2
U+


σ2
A+2c


σ2
U

σ2
A+2c


β+µU−


µ2
U+


σ2
A+2c


σ2
U


2cµU

σ2
A+2c


µ2
U+


σ2
A+2c


σ2
U


(σ 2

A + 2c)β2 + 2µUβ − σ 2
U

 σ2
A

σ2
A+2c

. (5.12)

The solution to the non-homogeneous equation (5.8) can be
found by ‘‘variation of constants’’. If we use the ansatz ξ(β)
= Cξ (β)ξH(β), and substitute this ansatz into (5.8), we obtain the
following differential equation for Cξ :

1
2


(σ 2

A + 2c)β2
+ 2µUβ − σ 2

U


C ′

ξ (β)ξH(β) = 1. (5.13)

Hence, Cξ (β) can be represented in integral form as

Cξ (β) =


1

1
2


(σ 2

A + 2c)β2 + 2µUβ − σ 2
U


ξH(β)

dβ. (5.14)

Summarising, we can represent the solution to (5.6) as

ϕ′

λ(x) =

Cϕ +


1

1
2


(σ 2

A + 2c)β(x)2 + 2µUβ(x) − σ 2
U


ξH(β(x))

dβ(x)


× ξH(β(x)), (5.15)

where Cϕ denotes an arbitrary integration constant.
Finally, the function ϕλ(x) can be found by integrating the

previous expression

ϕλ(x) =

 x

0
ϕ′

λ(y)dy

=

 x

0
ϕ′

λ


β(y)

 1
β ′(y)

dβ(y)

=

 β(x)

β(0)
ϕ′

λ(β)


σ 2
A β2

+ σ 2
U

(σ 2
A + 2c)β2 + 2µUβ − σ 2

U


dβ. (5.16)

Note that we have chosen the boundaries of the integration in such
a way that the boundary condition (5.3) at ϕλ(0) = 0 is already
satisfied. Unfortunately, we cannot simplify the integral in (5.16)
any further, andwehave to resort to numerical integration.We can
however still track the dependence on the constant Cϕ by rewriting
(5.16) as the sum of two terms:

ϕλ(x) = Φ0(x) + CϕΦ1(x) (5.17)

with

Φ0(x)

:=

 β(x)

β(0)

 β

β(0)

dγ
1
2


(σ 2

A + 2c)γ 2 + 2µUγ − σ 2
U


ξH(γ )



× ξH(β)
σ 2
A β2

+ σ 2
U

(σ 2
A + 2c)β2 + 2µUβ − σ 2

U
dβ

Φ1(x) :=

 β(x)

β(0)
ξH(β)

σ 2
A β2

+ σ 2
U

(σ 2
A + 2c)β2 + 2µUβ − σ 2

U
dβ.

The constant Cϕ will be resolved in the next section when we will
solve for the upper boundary condition (5.4).

5.2. Solution for ϕ in the region u0 < x < u1

In the region u0 < x < u1 the function ϕ1(λ, x) is given by
the ODE (5.2). As noted in the previous section, we are ultimately
interested in ϕλ1(x) :=

d
dλϕ1(0, x). Using a similar argument as in

the previous section, we find the ϕλ1(x) satisfies the ODE

1
2
σ 2
MMϕ′′

λ1(x) + µMMϕ′

λ1(x) = 1, (5.18)

with σ 2
MM and µMM as defined in (3.19). The solution to this ODE is

ϕλ1(x) = G1 +
x − u0

µMM
+ G2 exp


−

µMM
1
2σ

2
MM

(x − u0)


. (5.19)

At the point x = u0, we know β(u0) = M . Furthermore, at x = u0,
the function ϕ must satisfy a ‘‘smooth pasting’’ condition. This im-
plies that ϕλ(u0) = ϕλ1(u0) and that ϕ′

λ(u0) = ϕ′

λ1(u0). Further-
more, we have the upper boundary condition ϕ′

λ1(u1) = 0. These
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Fig. 4. Expected time until bankruptcy as a function of the initial surplus. This
figure displays the expected time until bankruptcy τ derived in Section 5 as a
function of the initial surplus x. The units of the initial surplus are billion Euros, the
time is measured in years. The parameters used to generate this graph are reported
in Table 1.

three pieces of information are sufficient to determine the integra-
tion constants G1,G2 and Cϕ:

Φ0(u0) + CϕΦ1(u0) = G1 + G2,
Cϕ +

 M

β(0)

dβ
1
2


(σ 2

A + 2c)β2 + 2µUβ − σ 2
U


ξH(β)


× ξH(M) =

1
µMM

− G2
µMM
1
2σ

2
MM

.

1
µMM

− G2
µMM
1
2σ

2
MM

exp


−

µMM
1
2σ

2
MM

(u1 − u0)


= 0.

(5.20)

These are three linear equations that are straightforward to solve,
and the resulting expressions are omitted here for brevity.

5.3. Results for τ

The expectation of the time until bankruptcy τ for a given
surplus x can be calculated as E[τ |x] = −ϕλ(x), where we can use
the closed-form expressions we have found for both the intervals
0 < x < u0 and u0 < x < u1.

The expected time until bankruptcy can be useful in calibrating
the model. In particular, it may be used to infer the dividend dis-
count rate c. Suppose that the insurance company aims for a given
expected survival time (which is closely related to the probabil-
ity of bankruptcy over a 1-year horizon). Then, using the expres-
sion forE[τ ] (which implicitly depends on c), one can solve for the
value of c for which, under the corresponding optimal investment
and optimal dividend policy, the survival time aimed at is achieved.

Let us consider again the example of Section 3.4. Fig. 4 displays
the expected time of bankruptcy under the optimal investment
and optimal dividend policy as a function of the initial surplus x.
With a dividend discount rate of 5.00% and an initial surplus of
17 billion Euros, the expected time of bankruptcy is 93.7 years.
With a dividend discount rate of 4.00% (3.50%) and the same initial
surplus of 17 billion Euros, the expected time of bankruptcy would
be 153 (206) years. Under Solvency II, the European Commission
proposes a Solvency Capital Requirement which is such that the
annual probability of insurer bankruptcy (i.e., the event that the
value of liabilities exceeds the value of assets) is 5 · 10−3, which
corresponds, under serial independence, to an expected time of
bankruptcy of 200 years.

6. General utility functions

In this section, we study the optimal investment policy and the
optimal dividend policy under a general utility specification. That

is, we replace the linear utility function implicitly assumed in our
dynamic programming problem (3.1) by a general utility function
U : R+ → R+ andmaximise the expected value of the discounted
utility of dividend payments until ruin; see also Remark 3.2.

We start by making fairly general assumptions on U . In partic-
ular, we assume that U is non-decreasing and furthermore that
U satisfies the (selection of) Inada conditions that U is concave,
U(0) = 0 and limx↑+∞ U ′(x) = 0. Special cases of interest, satisfy-
ing our assumptions, are that of (the bounded from below version
of) power utility:

U(x) =
xξ

ξ
, ξ ∈ (0, 1),

and exponential utility:

U(x) = 1 − e−x/θ , θ > 0.

Under these assumptions on U we may suppose without loss
of generality that the dividend process D is absolutely continuous
with respect to the Lebesgue measure, because a singular part
of D does not contribute to the objective function. We therefore
suppose that the process (Dt)t≥0 admits a density process (dt)t≥0:

Dt =

 t

0
dsds, a.s., t ≥ 0.

Using similar arguments as in HT (who restrict attention to lin-
ear utility functions but whose arguments can be adapted to apply
also in this general setting) we then find that, on the ‘‘dynamic’’ re-
gion where the upper bound on the investment position is strictly
satisfied, the value function V (x) ≡ E

 τ

0 e−ctU(dt)dt satisfies the
HJB equation

sup
α,d


1
2


α

−1

′ 
6A σAM

σ ′

AM σ 2
M


α

−1


+ σ 2

I


V ′′(x)

+ (α′µA + m − d)V ′(x) − cV (x) + U(d)


= 0. (6.1)

The supremum is attained at

d∗(x) = (U ′)−1(V ′(x)); (6.2)

α∗(x) =


−

V ′(x)
V ′′(x)


(6A)

−1 µA + (6A)
−1 σAM . (6.3)

Substituting the solutions (6.2) and (6.3) back into Eq. (6.1) yields
a non-linear ODE for V (x) that has to be solved numerically. Also,
the corresponding ODE for β(x) = −

V ′(x)
V ′′(x) (or its inverse) can no

longer be solved analytically (as opposed to the linear utility case).
Nevertheless, (6.2) and (6.3) allow us to characterise the full

structure of the solution. Similar to the linear utility case, on the ac-
tive region, the optimal investment portfolio consists of two parts:
the optimal hedge portfolio and the mean–variance optimal ‘‘Mer-
ton portfolio’’ (two-fund separation). Again, a two-stage procedure
applies, as in Section 3: In a first stage, the insurer can determine
analytically the optimal hedge portfolio, ignoring the surplus posi-
tion of the company. In a second stage the insurer then determines
the mean–variance optimal portfolio, the composition of which
can be calculated analytically while the exposure to which should
now be determined numerically.

Notice that the optimal dividend strategy is no longer a barrier
strategy. In the power utility case it converges to a barrier strategy
when ξ ↑ 1 (ξ = 1: linear utility case). We thus find that risk-
averse shareholders prefer some ‘‘early’’ dividend payouts rather
than increasing the surplus of the company at the maximum rate
which would allow for more aggressive risk-taking.
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7. Conclusions

In this paper we have developed results for the optimal divi-
dend payout and investment decisions for insurance companies in
the presence of (partially) unhedgeable risks. While the search for
optimal dividend and optimal investment strategies has been quite
an active area of research in recent years, we ask in our paper a dif-
ferent, yet important, question: how does the presence of partially
hedgeable and unhedgeable risk – which is the usual case in insur-
ance – affect the optimal dividend and investment policies?

Our results can be summarised as follows. First, we are able
to characterise analytically the optimal dividend strategy, which
under linear preferences is a barrier strategy. It is our observation
that such behaviour is consistent with the way in which insurance
companies make a distinction between ‘‘tied surplus’’ and ‘‘free
surplus’’.

Second, we are able to give an analytical characterisation of the
optimal investment strategy that the insurance company should
follow in a general N-asset setting. We find that the optimal
strategy consists of two parts. First, we identify a hedge portfolio
that replicates as much as possible of the liability risks with traded
assets. This hedge portfolio does not depend on the level of surplus.
Second, we identify a mean–variance optimal Merton portfolio.
The exposure to this portfolio depends in a non-linear fashion on
the surplus of the insurance company. These results have direct
and important implications for the optimal ALM strategies that
insurance companies should follow.

Next, we have presented a novel mechanism for the valuation
of unhedgeable risks. Our results allow for an analytical treatment
of this valuation problem. Finally, we also derive the probability
distribution of the time of bankruptcy in closed form, and we
illustrate how this information can be used to calibrate our model
such that the implied default probabilities are consistent with
observed default probabilities.

To be able to derive these analytical results, we have to make
some rather strong assumptions on the utility function of the
shareholders and the price processes that the assets and liabilities
follow. We have partially explored what the consequences are of
relaxing these assumptions, and we believe this is also an interest-
ing direction for further research.
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