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a b s t r a c t

We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic
volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign
exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and
Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be
instantaneously correlated with each other, i.e. we allow for a general correlation structure between
the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products
often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates,
volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both
the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical
importance for the pricing and hedging of such long-term contracts. We show that European options,
typically used for the calibration of the model to market prices, and forward starting options can be
priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss
the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of
European and forward starting options. The model will be especially useful for the pricing and risk
management of insurance contracts and other exotic derivatives involving long-term maturities.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The derivative markets are maturing more and more. Not only
are increasingly exotic structures created, the markets for plain
vanilla derivatives are also growing. One of the recent advances in
equity derivatives and exchange rate derivatives is the develop-
ment of a market for long-maturity European options.1 In this pa-
per we develop a stochastic volatility model aimed at pricing and

I The authorswould like to thank Damiano Brigo, Mark Davis, Vladimir Piterbarg,
Wim Schoutens and participants of the QuantitativeMethods in Finance conference
2008 in Sydney and the Actuarial and Financial Mathematics Conference 2009 in
Brussels for their comments and suggestions.
∗ Corresponding author at: Netspar/University of Amsterdam, Department of
Quantitative Economics, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands.
E-mail addresses: a.vanhaastrecht@uva.nl (A. van Haastrecht),

r.lord@cardano.com (R. Lord), a.pelsser@maastrichtuniversity.nl (A. Pelsser),
02037_schrager@ing-life.co.jp (D. Schrager).
1 The implied volatility service ofMarkIT, a financial data provider, shows regular
quotes on a large number of major equity indices for option maturities up to
10–15 years.

0167-6687/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2009.09.003
risk managing long-maturity insurance contracts involving equity,
interest rate and exchange rate risks.
We extend the models by Stein and Stein (1991) and Schöbel

and Zhu (1999) to allow for Hull andWhite (1993) stochastic inter-
est rates as well as correlation between the stock price process, its
stochastic volatility and interest rates. We call it the Schöbel–Zhu
Hull–White (SZHW) model. Our model enables to take into ac-
count two important factors in the pricing of long-maturity equity
or exchange rate derivatives: stochastic volatility and stochastic
interest rates, whilst also taking into account the correlation be-
tween those processes explicitly. It is hardly necessary to motivate
the inclusion of stochastic volatility in a derivative pricing model.
The addition of interest rates as a stochastic factor is important
when considering long-maturity equity derivatives and has been
the subject of empirical investigationsmost notably by Bakshi et al.
(2000). These authors show that the hedging performance of delta
hedging strategies of long-maturity options improves when tak-
ing stochastic interest rates into account. Interest rate risk is not as
much a factor for short maturity options. This result is also intu-
itively appealing since the interest rate risk of equity derivatives,
the option’s rho, is increasing with time to maturity. The SZHW

http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
mailto:a.vanhaastrecht@uva.nl
mailto:r.lord@cardano.com
mailto:a.pelsser@maastrichtuniversity.nl
mailto:02037_schrager@ing-life.co.jp
http://dx.doi.org/10.1016/j.insmatheco.2009.09.003
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model can be used in the pricing and risk management for a range
of insurance and exotic derivatives contracts. One can for exam-
ple think of pension products, variable and guaranteed annuities
(e.g. see Ballotta and Haberman (2003)), long-maturity PRDC FX
contracts (e.g. see Piterbarg (2005)), rate of return guarantees in
Unit-Linked contracts (e.g. see Schrager and Pelsser (2004)) and
many other structures which have a long-term nature.
Our paper can be placed in the derivative pricing literature on

stochastic volatility models as it adds to or extends work by Stein
and Stein (1991), Heston (1993), Schöbel and Zhu (1999) or, since
our model can be placed in the affine class, in the more general
context of Duffie et al. (2000), Duffie et al. (2003) and van der
Ploeg (2006). The SZHWmodel benefits greatly from the analytical
tractability typical for this class of models. Our work can also be
viewed as an extension of the work by Amin and Jarrow (1992)
on stochastic volatility. In a related paper Ahlip (2008) considers
an extension of the Schöbel–Zhu model to Gaussian stochastic
interest rates for the pricing of exchange rate options. Upon a closer
look however the correlation structure considered by this paper is
limited to perfect correlation between the stochastic processes.2
The affine stochastic volatility models fall in the broader literature
on stochastic volatility which covers both volatility modelling for
the purpose of derivative pricing as well as real world volatility
modeling. Previous papers that covered both stochastic volatility
and stochastic interest rates in derivative pricing include: Scott
(1997), Bakshi et al. (1997), Amin and Ng (1993) and Andreasen
(2006). The SZHW model distinguishes itself from these models
by a closed form call pricing formula and/or explicit, rather than
implicit, incorporation of the correlation between underlying and
the term structure of interest rates.
Our contribution to the existing literature is fourfold:

• First, we derive the conditional characteristic function of the
SZHW model in closed form and analyse pricing vanilla equity
calls andputs using transform inversion.We also derive a closed
form expression for the conditional characteristic function.
• Second, since the practical relevance of any model is lim-
ited without a numerical implementation, we extensively con-
sider the efficient implementation of the transform inversion
(see Lord and Kahl (2007)) required to price European options.
In particular we derive a theoretical result on the limiting be-
haviour of the conditional characteristic function of the SZHW
model which allows us to calculate of the inversion integral
much more accurately.
• Third, we consider the pricing of forward starting options.
• Fourth, we generalise the SZHW model to be able to value
FX options in a framework where both domestic and foreign
interest rate processes are stochastic.

The outline for the remainder of the paper is as follows. First, we
introduce themodel and focus on the analytical properties. Second,
we consider the effect of stochastic interest rates and correlation
on the implied volatility term structure. Third, we consider the
numerical implementation of the transform inversion integral.
Fourth, we consider the pricing of forward starting options. Fifth,
we present the extension of themodel for FX options involving two
interest rate processes. Finally we conclude.

2. The Schöbel–Zhu–Hull–White model

The model we will derive here is a combination of the famous
Hull and White (1993) model for the stochastic interest rates and
the Schöbel and Zhu (1999) model for stochastic volatility. The

2 We thank Vladimir Piterbarg for pointing out this paper to us.
model has three key variables, which we allow to be correlated
with each other: the stock price x(t), the Hull–White interest
rate process r(t) and the stochastic stock volatility which follows
an Ornstein–Uhlenbeck process cf. Schöbel and Zhu (1999). The
risk-neutral asset price dynamics of the Schöbel–Zhu–Hull–White
(SZHW) read:

dx(t) = x(t)r(t)dt + x(t)ν(t)dWx(t), x(0) = x0, (1)

dr(t) =
(
θ(t)− ar(t)

)
dt + σdWr(t), r(0) = r0, (2)

dν(t) = κ
(
ψ − ν(t)

)
dt + τdWν(t), ν(0) = ν0, (3)

where a, σ , κ, ψ, τ are positive parameters which can be in-
ferred from market data and correspond to the mean reversion
and volatility of the short rate process, and the mean reversion,
long-term volatility and volatility of the volatility process respec-
tively. The quantity r0 and the deterministic function θ(t) are
used to match the currently observed term structure of inter-
est rates, e.g. see Hull and White (1993). The hidden parame-
ter v0 > 0, corresponds to the current instantaneous volatility
and hence should be determined directly from market (e.g. just
as the non-observable short interest rate), but is in practice of-
ten (mis-)used as extra parameter for calibration. Finally, W̃ (t) =(
Wx(t),Wr(t),Wν(t)

)
denotes a Brownian motion under the risk-

neutral measureQ with covariance matrix:

Var
(
W̃ (t)

)
=

( 1 ρxr ρxν
ρxr 1 ρrν
ρxν ρrν 1

)
t. (4)

Note that as ν(t) follows an Ornstein–Uhlenbeck process, there is
a slight change that ν(t) becomes negative; effectively this implies
that the sign of instantaneous correlation between ln x(t) and ν(t)
changes as ν(t) goes through zero:

Corr
(
d ln x(t), dν(t)

)
= Corr

(
ν(t)dWx(t), τdWν(t)

)
=
ρxνν(t)τ√
ν2(t)τ 2

dt = ρxν sgn
(
ν(t)

)
dt, (5)

but the actual volatility is |ν(t)|, whichwould not have this feature.

2.1. European option pricing

We will now show that general payoffs which are a function of
the stock price atmaturity T can be priced using the corresponding
characteristic function of the log-asset price. Thereforewe evaluate
the probability distribution of the T -forward stock price at time T .
Instead of evaluating expected discounted payoff under the risk-
neutral bank account measure, we can also change the underlying
probability measure to evaluate this expectation under the T -
forward probabilitymeasureQT (e.g. see Geman et al. (1996)). This
is equivalent to choosing the T -discount bond as numeraire. Hence
conditional on time t , we can evaluate the price of a European stock
option (w = 1 for a call option, w = −1 for a put option) with
strike K = exp(k) as

EQ

[
exp

[
−

∫ T

t
r(u)du

] (
w(S(T )− K)

)+
|Ft

]
= P(t, T )EQT

[(
w(F T (T )− K)

)+
|Ft

]
, (6)

where P(t, T ) denotes the price of a (pure) discount bond and
F T (t) := S(t)

P(t,T ) denotes the T -forward stock price. The above
expression can be numerically evaluated by means of a Fourier
inversion of the log-asset price characteristic function.
Following Carr and Madan (1999), Lewis (2001) and Lord and

Kahl (2007), we can then write the call option (6) with log strike
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k, in terms of the (T -forward) characteristic function φT of the log
asset price z(T ), i.e.

CT (k) = P(t, T )
1
π

∫
∞

0
Re
(
e−(α+iv)kψT (v)

)
dv

+ R
(
F T (t), K , α(k)

)
, (7)

where the residue term R equals

R
(
F , K , α

)
:= F · 1{α≤0} − K · 1{α≤−1}

−
1
2

(
F · 1{α=0} − K · 1{α=−1}

)
, (8)

with

ψT (v) :=
φT

(
v − (α + 1)i

)
(α + iv)(α + 1+ iv)

, (9)

andwhereφT (v) := EQT
[
exp

(
iuz(T )

)
|Ft

]
denotes the T -forward

characteristic function of the log asset price. Thus for the pric-
ing of call options in the SZHW model, it suffices to know the
characteristic function of the log-asset price process. We will
derive this characteristic function in the following subsection.
Section 4 is concerned with the numerical implementation of
Eq. (7) and presents an alternative pricing equation which trans-
forms the integration domain to the unit interval and hence avoids
truncation errors, see also Lord and Kahl (2007).

2.2. The T-forward dynamics

For the Hull–White model we have the following analytical
expression for the discount bond price:

P(t, T ) = exp
[
Ar(t, T )− Br(t, T )r(t)

]
, (10)

where Ar(t, T ) is used to calibrate to the interest rate term
structure, and with:

Br(t, T ) :=
1− e−a(T−t)

a
. (11)

Hence the forward stock price can be expressed as

F T (t) =
S(t)

exp
[
Ar(t, T )− Br(t, T )r(t)

] . (12)

Under the risk-neutral measureQ (where we use the money mar-
ket bank account as numeraire) the discount bond price follows the
process dP(t, T ) = r(t)P(t, T )dt−σBr(t, T )P(t, T )dWr(t). Hence,
by an application of Ito’s lemma, we find the following T -forward
stock price process:

dF T (t) =
(
σ 2B2r (t, T )+ ρxrν(t)σBr(t, T )

)
F T (t)dt

+ ν(t)F T (t)dWx(t)+ σBr(t, T )F T (t)dWr(t). (13)

By definition the forward stock price will be a martingale under
the T -forward measure. This is achieved by defining the following
transformations of the Brownian motions:

dWr(t) 7→ dW Tr (t)− σBr(t, T )dt,

dWx(t) 7→ dW Tx (t)− ρxrσBr(t, T )dt,

dWν(t) 7→ dW Tν (t)− ρrνσBr(t, T )dt. (14)
Hence under the T -forward measure the processes for F T (t) and
ν(t) are given by

dF T (t) = ν(t)F T (t)dW Tx (t)+ σBr(t, T )F
T (t)dW Tr (t), (15)

dν(t) = κ
((
ψ −

ρrνστ

κ
Br(t, T )

)
− ν(t)

)
dt + τdW Tν (t), (16)

whereW Tx (t),W
T
r (t),W

T
ν (t) are now Brownianmotions under the

T -forward QT . We can simplify (15) by switching to logarithmic
coordinates and rotating the Brownian motionsW Tx (t) andW

T
r (t)

to W TF (t). Defining y(t) := log
(
F T (t)

)
and an application of Ito’s

lemma yields

dy(t) = −
1
2
ν2F (t)dt + νF (t)dW

T
F (t), (17)

dν(t) = κ
(
ξ(t)− ν(t)

)
dt + τdW Tν (t) (18)

with

ν2F (t) := ν
2(t)+ 2ρxrν(t)σBr(t, T )+ σ 2B2r (t, T ) (19)

ξ(t) :=
(
ψ −

ρrνστ

κ
Br(t, T )

)
. (20)

Notice that we now have reduced the system (1) of the three
variables x(t), r(t) and ν(t) under the risk-neutral measure, to the
system (17) of two variables y(t) and ν(t) under the T -forward
measure. What remains is to find the characteristic function of the
reduced system of variables.
Determining the characteristic function of the forward log-asset price
We will now determine the characteristic function of the

reduced system (17), which we will do by means of a partial
differential approach. That is, we apply the Feynman–Kac theorem
and reduce the problem of finding the characteristic of the forward
log-asset price dynamics to solving a partial differential equation;
that is, the Feynman–Kac theorem implies that the characteristic
function

f (t, y, ν) = EQT
[
exp

(
iuy(T )

)
|Ft

]
, (21)

is given by the solution of the following partial differential
equation

0 = ft −
1
2
ν2F (t)fy + κ

(
ξ(t)− ν(t)

)
fν +

1
2
ν2F (t)fyy

+
(
ρxντν(t)+ ρrντσBr(t, T )

)
fyν +

1
2
τ 2fνν, (22)

f (T , y, ν) = exp
(
iuy(T )

)
, (23)

where the subscripts denote partial derivatives and we took into
account that the covariance term dy(t)dν(t) is equal to

dy(t)dν(t) =
(
ν(t)dW Tx (t)+ σBr(t, T )dW

T
r (t)

)(
τdW Tν (t)

)
=
(
ρxντν(t)+ ρrντσBr(t, T )

)
dt, (24)

and to ease the notation we dropped the explicit (t, y, ν)-
dependence for f .
Due to the affine structure of themodel, we can solve the defin-

ing partial differential equation (22) subject to the boundary con-
dition (23), which leads to the following proposition.

Proposition 2.1. The characteristic function of T -forward log-asset
price of the SZHW model is given by the closed-form solution in
Box I.

Proof. Themodel we are considering is not an affine model in y(t)
and ν(t), but it is if we enlarge the state space to include ν2(t):
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5)

6)

7)

8)

9)

0)

1)
f (t, y, ν) = exp
[
A(u, t, T )+ B(u, t, T )y(t)+ C(u, t, T )ν(t)+

1
2
D(u, t, T )ν2(t)

]
, (2

where:

A(u, t, T ) = −
1
2
u
(
i+ u

)
V (t, T )+

∫ T

t

[(
κψ + ρrν(iu− 1)τσBr(s, T )

)
C(s)+

1
2
τ 2
(
C2(s)+ D(s)

)]
ds (2

B(u, t, T ) = iu, (2

C(u, t, T ) = −u
(
i+ u

)((γ3 − γ4e−2γ (T−t))− (γ5e−a(T−t) − γ6e−(2γ+a)(T−t))− γ7e−γ (T−t))
γ1 + γ2e−2γ (T−t)

, (2

D(u, t, T ) = −u
(
i+ u

) 1− e−2γ (T−t)
γ1 + γ2e−2γ (T−t)

, (2

with:

γ =

√
(κ − ρxντ iu)2 + τ 2u

(
i+ u

)
, γ1 = γ + (κ − ρxντ iu), (3

γ2 = γ − (κ − ρxντ iu), γ3 =
ρxrσγ1 + κaψ + ρrνστ(iu− 1)

aγ
,

γ4 =
ρxrσγ2 − κaψ − ρrνστ(iu− 1)

aγ
, γ5 =

ρxrσγ1 + ρrνστ(iu− 1)
a(γ − a)

,

γ6 =
ρxrσγ2 − ρrνστ(iu− 1)

a(γ + a)
, γ7 = (γ3 − γ4)− (γ5 − γ6),

and:

V (t, T ) =
σ 2

a2

(
(T − t)+

2
a
e−a(T−t) −

1
2a
e−2a(T−t) −

3
2a

)
. (3

Box I.
dy(t) = −
1
2
ν2F (t)dt + νF (t)dW

T
F (t) (32)

dν(t) = κ
(
ξ(t)− ν(t)

)
dt + τdW Tν (t) (33)

dν2(t) = 2ν(t)dν(t)+ τ 2dt

= 2κ
( τ 2
2κ
+ ξ(t)ν(t)− ν2(t)

)
dt + 2τν(t)dW Tν (t). (34)

We can find the characteristic function of the T -forward log
price by solving the partial differential equation (22) for the joint
distribution f (t, y, ν) with the corresponding boundary condition
(23); substituting the partial derivatives of the functional form
(25) into (22) provides us four ordinary differential equations
containing the functions A(t), B(t), C(t) and D(t). Solving this
system yields the above solution, see Appendix A. �

We note that the strip of regularity of the SZHW characteristic
function is the same as that of the Schöbel and Zhu (1999) model,
for which we refer the reader to Lord and Kahl (2007).

3. Impact of stochastic interest rates and correlation

To gain some insights into the impact of the correlated
stochastic rates and corresponding parameter sensitivities we
will look at the at-the-money implied volatility structure which
we compute for different parameter settings. Besides comparing
different parameter settings of the SZHW model, we also make a
comparison with the classical Schöbel and Zhu (1999) model to
determine the impact of stochastic rates in general. The behaviour
of the ‘non-interest rate’ parameters are similar to other stochastic
volatility models like Heston (1993) and Schöbel and Zhu (1999),
that is the volatility of the volatility lifts the wings of the volatility
smile, the correlation between the stock process and the volatility
Maturity
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Fig. 1. Impact of ρxr on at-the-money implied volatilities. The graph corresponds
to the (degenerate) Black–Scholes–Hull–White case with parameter values r(t) =
0.05, a = 0.05, σ = 0.01, v(0) = ψ = 0.20, ρxv = 0.0 and constant volatility
process.

process can incorporate a skew, and the short and long-term vol
determine the level of the implied volatility structure. The impact
of stochastic rates and the corresponding correlation can be found
in the Fig. 1.
From Fig. 1, one can see that the stochastic interest rates

add extra flexibility to the modeling framework; by changing the
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Fig. 2. Impact of ρxν on at-the-money implied volatilities. The graph corresponds
to the parameter values r(t) = 0.05, a = 0.05, σ = 0.01, v(0) = ψ = 0.20,
ρxr = 0.0 and with volatility process with a mean reversion coefficient of κ = 0.5
and volatility of volatility τ = 0.2.

rate-asset correlation one can create an upward (or an initially
downward) sloping term structure of volatility, even in case the
volatility process is constant. If we compare the case with zero
correlation between the equity and interest rate drivers with
the ordinary process with deterministic rates, we see that the
stochastic rates make the term structure upward sloping. Note
that this is in correspondence with empirical data, which shows
higher at-the-money volatilities the longer the maturities go. The
effect becomesmore apparent formaturities larger than five years;
while for one year the effect of uncorrelated stochastic rates is
below a basis point, the effect on a five year option is already more
than ten basis points which increases to a couple of hundred basis
points for a thirty year option. Thesemodel effects also correspond
with a general feature of the interest rate market: the market’s
view on the uncertainty of long-maturity bonds is often much
higher than that of shorter bond, hence reflecting the increasing
impact of stochastic interest rates for long-maturity equity options.
Finally, we note that for higher positive values of linear correlation
coefficient between equity and the interest rate component, the
impact of stochastic rates becomes more apparent.
From Fig. 2, one can see that the effect of the correlation co-

efficient between the drivers of the rate and volatility process is
similar, however the impact on the implied volatility structure
is less severe and different in sign: a positive correlation coeffi-
cient causes a dampening effect, whereas a negative correlation
increases the overall volatility, which effect can also be seen from
the volatility dynamics (16). Note hereby that the increasing term
structure for ρrν =, in the Fig. 2 is mainly caused by the Schö-
bel–Zhu stochastic volatility process in comparison to the deter-
ministic volatility process used in Fig. 1. In comparison to the
Schöbel and Zhu (1999) model, we can see that the stochastic in-
terest rates increase the slope of the term structure. More impor-
tantly, the implied volatilities do not die out, but remain upward
sloping, which behaviour often corresponds with implied volatil-
ity quotes in long-maturity equity (e.g. see MarkIT) or FX (e.g. see
Andreasen (2006)) options. However for strong positive correla-
tion values this might be the other way around. In contrast to the
first picture, we see somewhat smaller effects: for example the in-
creasing effect of stochastic rates is even larger than that of the
dampening effect of a positive correlation of 30% between the rate
and volatility drivers. Again we see that the effects of stochastic
rates become more apparent for longer maturities.
In general, we can see from Figs. 1 and 2 that stochastic rates

have a significant impact on the backbone of the implied volatility
structure and add extra flexibility to the modeling framework.
The effects become more apparent for larger maturities and for
larger absolute values of the correlation coefficients. Hereby the
effect of correlation coefficient between equity and interest rates
seems to be the most determinant factor. One can then use these
degrees of freedom in several ways: either one jointly calibrates
these parameters to implied volatility surfaces (or some other
options), or one can first calibrate these and then use the other
parameters to calibrate the remainder of the model. In our opinion
this choice has to depend on the exotic product: if the correlations
are of larger impact on an exotic product (e.g. on a hybrid equity-
interest rate product) than on short-dated vanilla calls, it might
then be preferable to use a historical estimate for the correlation
coefficient at the cost of a slightly worse calibration result. One
way or the other, the SZHW stands out by the additional freedom
it offers by explicitlymodelling the correlation coefficient between
the underlying, the stochastic volatility and the stochastic interest
rates.

3.1. Relationship with the Heston model

It was already noted by Heston (1993) in this famous 1993-
paper, that an Ornstein–Uhlenbeck process for the volatility is
closely related to a square-root process for the variance process.
If the volatility follows an Ornstein–Uhlenbeck process as in (1):
dν(t) = κ

(
ψ − ν(t)

)
dt + τdWν(t),

then Ito’s lemma shows that the variance process ν2(t) follows the
process

dν2(t) = 2κ
( τ 2
2κ
+ ψν(t)− ν2(t)

)
dt + 2τν(t)dWν(t). (35)

Since the variance process of the Heston model has the following
dynamics

dν2H(t) = κH
(
ψH − ν

2
H(t)

)
dt + τHνH(t)dWν(t), (36)

one can easily establish a relationship between the Heston and
the Schöbel–Zhu model; in the case the long-term mean of the
volatility process of (1) ψ = 0, Schöbel–Zhu model equals the
Heston model in which κH = 2κ , τH = 2τ and ψH = τ2

2κ . The
overlap of the models is restricted to this very special case.

4. Calculating the inverse Fourier transform

In Lord and Kahl (2007) the practical calculation of the inverse
Fourier transform (7) is discussed in great detail

CT (k) = P(t, T )
1
π

∫
∞

0
Re
(
e−
(
α+iv

)
k
ψT (v)

)
dv

+ R
(
F T (t), K , α(k)

)
. (37)

They recommend that
• Any truncation error is avoided by appropriately transforming
the range of integration to a finite interval.
• An adaptive integration algorithm is used, hereby allowing the
discretization error to be of a prescribed maximum size.
• The damping parameter α is chosen such that the integrand
is minimized in v = 0, which typically leads to much more
accurate prices for options which have long maturities and/or
are away from the at-the-money level.

By changing variables from v to g(v), whichmaps [0,∞) 7→ [0, 1],
the pricing equation (37) becomes



A. van Haastrecht et al. / Insurance: Mathematics and Economics 45 (2009) 436–448 441
CT (k) = P(t, T )
1
π

∫ 1

0
Re
(
e−
(
α+ig(v)

)
k
ψT
(
g(v)

)
· g ′(v)

)
dv

+ R
(
F T (t), K , α(k)

)
. (38)

However one carefully has to choose the transformation function g
such that the integrand remains finite over the range of integration,
as it is in (37). To find such a transformation, we analyse the
limiting behaviour of the characteristic function. In particular,
suppose that the characteristic function of the SZHW model for
large values of u behaves as

φT (u) ∝ exp
(
φr(u)+ iφi(u)

)
, (39)

with both φr(u) and φi(u) functions on the real line. The integrand
in (37) will then have the following asymptotics

Re
(
e−i(u−iα)k

φT
(
u− (α + 1)i

)
(α + iu)(α + i+ iu)

)

∝
e−αk+ψr

(
u−(α+1)i

)
u2

· cos
(
ku− ψi

(
u− (α + 1)i

))
. (40)

In the remainder we will determine ψr , which will tell us which
transformation function is suitable to use. Lord and Kahl (2007)
already supplies a number of intermediary results for the Schöbel
and Zhu (1999) model, but as the notation we use here is slightly
different, we will briefly restate these results. For large values of
u, only γ , γ1 and γ2 in (30) are O(u), whereas γ3 to γ6 tend to a
constant, and γ7 is actually O

( 1
u

)
. The limits we require here are

lim
u→∞

γ (u)
u
= τ

√
1− ρxν =: γ (∞), (41)

lim
u→∞

γ1(u)
u
= γ (∞)− iρxντ =: γ1(∞), (42)

lim
u→∞

γ3(u) = σ
ρxrγ (∞)+ iτ

(
ρrν − ρxrρxν

)
aγ (∞)

=: γ3(∞), (43)

lim
u→∞

γ5(u) = σ
ρxrγ (∞)+ iτ

(
ρrν − ρxrρxν

)
aγ (∞)

=: γ5(∞). (44)

We find that the limiting behaviour for C(u, t, T ) in (28) follows
from

lim
u→∞

C(u, t, T )
u

= −
γ3(∞)− γ5(∞)e−a(T−t)

γ1(∞)

= −
iρrν + ρxr

(√
1− ρ2xν − iρxν

)
τ
(
1− ρ2xν − iρxν

√
1− ρ2xν

) σ
τ
Br(t, T )

≡ C(∞)
σ

τ
Br(t, T ). (45)

From the above result, the limiting behaviour of D(u, t, T ) in (29)
for large values of u follows as

lim
u→∞

D(u, t, T )
u

= −
1

γ1(∞)
. (46)

Finally, we need to analyse A(t) = A(u, t, T ) in (26). Its defining
ODE (103) can be found in Appendix A, i.e.

∂A(u, t, T )
∂t

= −

[
κξ(t)+ iuρrντσBr(t, T )

]
C(u, t, T )

+
1
2
u
(
i+ u

)
σ 2B2r (t, T )

−
1
2
τ 2
(
C2(u, t, T )+ D(u, t, T )

)
. (47)
The first derivative of A(u, t, T ) behaves as O(u2) for large values
of u, as can be seen from

lim
u→∞

1
u2
∂A(u, t, T )

∂t
=
1
2

(
1− C2(∞)− 2iρrνC(∞)

)
σ 2B2r (t, T ).

(48)

Finally, together with the boundary condition A(u, T , T ) = 0, we
have

lim
u→∞

A(u, t, T )
u2

= −

∫ T

t
lim
u→∞

1
u2
∂A(u, s, T )

∂s
ds

= −
1
2
V (t, T ) ·

(
1− C2(∞)− 2iρrνC(∞)

)
≡ −A(∞), (49)

where V (t, T ) denotes the integrated bond variance, i.e. as defined
in (31). One can show that Re

(
A(∞)

)
≥ 0 as V (t, T ) ≥ 0 and:

Re
(
C2(∞)+ 2iρrνC(∞)

)
=
ρ2xr − 2ρrνρxrρxν + ρ

2
rν(4ρ

2
xν − 3)

1− ρ2xν
≤ 1. (50)

This follows bymaximising the right-hand side with respect to the
constraint that the three correlations constitute a positive semi-
definite correlationmatrix. For example, themaximum is achieved
when ρxr = − 12

√
3, ρxν = − 12 and ρrν = 0.

The above analysis determines φr as

φr

(
u− (α + 1)i

)
= −Re

(
A(∞)

)
· u2. (51)

One can conclude that the tail behaviour of the characteristic func-
tion of the SZHW model is quite different from that of the Schö-
bel and Zhu (1999) model; whereas the decay in the Schöbel–Zhu
model is only exponential, the decay here resembles that of a Gaus-
sian characteristic function, caused by the addition of a Gaussian
short rate process. Clearly, if σ (the volatility of the short rate) is
zero, A(∞) = 0 and the decay of the characteristic function be-
comes exponential once again. As the tail behaviour of the char-
acteristic function is of the same from as that of the Black and
Scholes (1973) characteristic function, an appropriate transforma-
tion function is, as in Lord and Kahl (2007),

g(u) = −
ln u
√
A(∞)

, (52)

which can be used in the pricing equation (38).

5. Forward starting options

Due to the popularity of forward starting options such as cli-
quets, the pricing of forward starting options has recently attracted
the attention of both practitioners and academics (e.g. see Lucić
(2003), Hong (2004), Kruse andNögel (2005) and Brigo andMercu-
rio (2006)). In this sectionwewill show how one can price forward
starting options within the SZHW framework; following Hong
(2004), we consider the (forward) log return of the asset price x:

z(Ti−1, Ti) := log
( x(Ti)
x(Ti−1)

)
. (53)

Since

log x(t) = y(t)+ log P(t, Ti), (54)

we can express (53) also in terms of the Ti-forward log-asset price
y(t), i.e.

z(Ti−1, Ti) = y(Ti)− y(Ti−1)− log P(Ti−1, Ti). (55)
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Weare then interested in the following forward starting call option
with strike K = exp(k) on the return x(Ti)

x(Ti−1)
,

CTi−1,Ti(k) = EQ

[
exp

[
−

∫ Ti

t
r(u)du

]( x(Ti)
x(Ti−1)

− K
)+∣∣∣∣Ft]

= P(t, Ti)EQT
[(
F TiTi−1,Ti(Ti)− K

)+
|Ft

]
, (56)

where

F TiTi−1,Ti(Ti) := exp
[
z(Ti−1, Ti)

]
denotes the forward return between Ti−1 and Ti under the Ti-
forward measure. Note that the above expression is nothing more
than some call option under the T -forward measure. Therefore, as
noted by Hong (2004), the pricing of forward starting options can
be reduced to finding the characteristic function of the log forward
return under the T -forward measure; by replacing the log-asset
price by the forward log-return one can directly apply the pricing
equation (7) or (38), i.e. by replacing the corresponding character-
istic function by ψTi−1,Ti(v): the characteristic function (under the
Ti-forwardmeasure) of the forward log-return between Ti−1 and Ti.
What remains to be done for the pricing of forward starting options
is the derivation of this forward characteristic function, which we
will deal with in the following subsection.

5.1. Forward characteristic function

We will now derive the forward characteristic function of the
forward log return zTiTi−1,Ti = y(Ti) − y(Ti−1) − log P(Ti−1) in the
SZHW model. In the derivation we will use the now following
corollary.

Corollary 5.1. Let Z be a standard normal distributed random vari-
able, furthermore let p and q be two positive constants. Then the
moment-generating function, provided that uq < 1, of Y := pZ +
q
2Z
2 is given by

φY (u, p, q) := E exp(uY ) =
exp

(
p2u2

2−2uq

)
√
1− uq

. (57)

Proof. Either by completing the square and using properties of the
non-central chi-squared distribution or by direct integration of an
exponential affine form against the normal distribution, e.g. see
Johnson et al. (1994) or Glasserman (2003). �

Before we can apply the above corollary we first need to rewrite
the characteristic function of the log-return y(Ti) − y(Ti−1) in the
form of the above corollary. To simplify the notation we write
B := iu, A(Ti−1) := A(u, Ti−1, Ti), C(Ti−1) := C(u, Ti−1, Ti) and
D(Ti−1) := D(u, Ti−1, Ti). By using the tower law for conditional
expectations and the (conditional) characteristic function of the
SZHWmodel one can then obtain

φTi−1,Ti(u)

= EQT
{
exp

(
iu
[
y(Ti)− y(Ti−1)− log P(Ti−1, Ti)

])∣∣∣∣Ft} (58)

= EQT
{

EQT
[
exp

(
iu
[
y(Ti)− y(Ti−1)

− log P(Ti−1, Ti)
])∣∣∣FTi−1]∣∣∣∣Ft}

= exp
[
A(Ti−1)− iuAr(Ti−1, Ti)

]

×EQT
{
exp

[
iuBr(Ti−1, Ti)r(Ti−1)+ C(Ti−1)ν(Ti−1)

+
1
2
D(Ti−1)ν2(Ti−1)

]∣∣∣∣Ft}.
Since the pair

(
r(Ti−1), ν(Ti−1)

)
, conditional on its standard time-t

filtration, follows a joint Gaussian distribution with means µr , µν
(see (65), (67)) and variances σ 2r , σ

2
ν (see (66), (68)), we can write

the sum of dependent normal variates r(Ti−1), ν(Ti−1) in terms of
two independent standard normal distributions Z1 and Z2 (e.g. by
a Cholesky decomposition):

iubr(Ti−1)+ cν(Ti−1)+
1
2
dν2(Ti−1)

d
= iub

(
µr + σr

[
ρrν(t, Ti−1)Z1 +

√
1− ρ2rν(t, Ti−1)Z2

])
+ c

(
µν + σνZ1

)
+
1
2
d
(
µν + σνZ1

)2
= iubµr + cµν +

1
2
dµ2ν + iubσr

√
1− ρ2rν(t, Ti−1)Z2

+

[
cσν + dµνσν + iubρrν(t, Ti−1)σr

]
Z1 +

1
2
dσ 2ν Z

2
1 , (59)

where the correlationρrν(t, Ti−1) between r(Ti−1) and ν(Ti−1) over
the interval [t, Ti−1] is given by

ρrν(t, Ti−1) =
ρrνστ

σrσν(a+ κ)

[
1− e−(a+κ)(Ti−1−t)

]
. (60)

Hence using the independence of Z1 and Z2 and Eqs. (59)–(58), one
can find the following expression for the forward characteristic
function

φTi−1,Ti(u) = exp
[
A(Ti−1)+ iu

(
Br(Ti−1, Ti)µr − Ar(Ti−1, Ti)

)
+ C(Ti−1)µν +

1
2
D(Ti−1)µ2ν

]
×EQT

{
exp

[
iuBr(Ti−1, Ti)σr

√
1− ρ2rν(t, Ti−1)Z2

]∣∣∣∣Ft}
×EQT

{
exp

([
C(Ti−1)σν + D(Ti−1)µνσν

+ iuBr(Ti−1, Ti)ρrν(t, Ti−1)σr
]
Z1 +

1
2
D(Ti−1)σ 2ν Z

2
1

)∣∣∣∣Ft}. (61)
Hence we come to the following proposition

Proposition 5.2. Conditional on the current time t, the characteristic
function of the forward log return z(Ti−1, Ti) under the Ti-forward
measure is given by the following closed-form solution:

φTi−1,Ti(u) = exp
[
A(Ti−1)+ iu

[
Br(Ti−1, Ti)µr − Ar(Ti−1, Ti)

]
+ C(Ti−1)µν +

1
2
D(Ti−1)µ2ν

]
×φZ2

(
iuBr(Ti−1, Ti)σr

√
1− ρ2rν(t, Ti−1)

)
×φY

(
1, P(Ti−1),Q (Ti−1)

)
(62)

with

P(Ti−1) = C(Ti−1)σν + D(Ti−1)µνσν + iuρrν(t, Ti−1)Br(Ti−1, Ti)σr ,
Q (Ti−1) = D(Ti−1)σ 2ν ,

φZ2(y) = exp
(
y2

2

)
,
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and where φY
(
1, P(Ti−1),Q (Ti−1)

)
, provided that Q (Ti−1) < 1, is

given by Corollary 5.1.
Proof. The result follows directly by evaluating the expectations
from expression (61) for the moment-generating function of
the standard Gaussian distribution Z2 evaluated in the point
iuBr(Ti−1, Ti)σr

√
1− ρ2rν(t, Ti−1), while the second expectation is

the moment generating function of the random variable Y =
P(Ti−1)Z1 +

Q (Ti−1)
2 Z21 evaluated in the unit point, for which

(provided that Q (Ti−1) < 1) an analytical expression is given by
Corollary 5.1. �

What yet remains, is to determine (conditional on the time-t)
the Ti-forward mean and variance of the Ornstein–Uhlenbeck
processes r(Ti−1) and ν(Ti−1). Before we do this, we briefly address
the strip of regularity and decay of the characteristic function.
The strip of regularity of (62) is once again determined by

C(Ti−1), see Andersen and Piterbarg (2007) for a detailed analysis
in case of the Heston model, and Lord and Kahl (2007) for the
SZ model. The difference with the SZ and SZHW models is the
additional condition that Q (Ti−1) < 1, which is imposed by
Corollary 5.1.
The decay of the characteristic function is slightly different than

our analysis for the SZHW model. We will briefly mention how to
derive the exact behaviour, thoughwe do not provide all details for
reasons of brevity. For large values of u, the characteristic function

will behave like
exp
(
−C1u2

)
√
1+C2u2

, where C1 and C2 are constants. Both

A(Ti − 1), φZ2 and φY contribute to the exponential term, whereas
only the latter contributes to the square root term.

5.2. Moments of the Hull–White short interest rate

To determine the moments of the Hull–White short interest
rate under the Ti-forward measure, for a certain time Ti−1 ≤ Ti
and conditional on the filtration at time t , one can consider the
following transformation of variables (see e.g. Pelsser (2000) or
Brigo and Mercurio (2006))
r(Ti−1) = α(Ti−1)+ β(Ti−1), (63)
with β a driftless Ornstein–Uhlenbeck process and where

α(Ti−1) = e−aTi−1
(
r(t)+

∫ Ti−1

t
eauθ(s)du

)
,

which, in case one wants to fit the initial term structure of interest
rates evolves into

α(Ti−1) = f (t, Ti−1)+
σ 2

2a2

(
1− e−aTi−1

)2
.

A solution for β(Ti−1)|β(t) under the Ti-forward measure is given
by
β(Ti−1) = β(t)e−a(Ti−1−t) −MTi(t, Ti−1)

+ σ

∫ Ti−1

t
e−a(Ti−1−u)dW Tir (u),

where

MTi(t, Ti−1) =
σ 2

a2

(
1− e−a(Ti−1−t)

)
−
σ 2

2a2

(
e−a(Ti−Ti−1) − e−a(Ti+Ti−1−2t)

)
. (64)

Hence, from Ito’s isometry, we immediately have that r(Ti−1),
under the Ti-forward measure (conditional on time t), is normally
distributed with mean µr and variance σ 2r given by

µr = β(t)e−a(Ti−1−t) −MTi(t, Ti−1)+ α(Ti−1), (65)

σ 2r =
σ 2

2a

(
1− e−2a(Ti−1−t)

)
, (66)

which can hence be used in Proposition 5.2.
5.3. Moments of the Schöbel–Zhu volatility process

To determine the first twomoments of the Schöbel–Zhu volatil-
ity process, under the Ti-forwardmeasure, for a certain time Ti−1 ≤
Ti and conditional on the filtration at time t , one can integrate the
dynamics of (16) to obtain

ν(Ti−1) = ν(t)e−κ(Ti−1−t) +
∫ Ti−1

t
κξ(u)e−κ(Ti−1−u)du

+

∫ Ti−1

t
τe−κ(Ti−1−u)dW Tν (u),

where ξ(u) := ψ− ρrνστ
aκ

(
1−ea(Ti−u)

)
. Hence under the Ti-forward

measure, we have the following for the mean and standard devia-
tion of ν:

µν = ν(t)e−κ(Ti−1−t) +
(
ψ −

ρrνστ

aκ

)(
1− e−κ(Ti−1−t)

)
−

ρrνστ

a(κ + a)

(
e−a(Ti−t)−κ(Ti−1−t) − e−a(Ti−Ti−1)

)
, (67)

σ 2ν =
τ 2

2κ

(
1− e−2κ(Ti−1−t)

)
, (68)

which can hence be used in Proposition 5.2.

6. Schöbel–Zhu–Hull–White Foreign Exchange model

In this sectionwepresent the Schöbel–Zhu–Hull–White Foreign
Exchange (SZHW-FX) model. That is, we introduce a domestic and
a foreign exchange currency, which are modelled by Hull–White
processes. We model the exchange rate process by geometric
motion where we let the volatility follow an Ornstein–Uhlenbeck
process. Moreover we allow all factors to be correlated with each
other.
Notation is as follows: we let x(t) denote the Foreign Exchange

(FX) rate, with volatility ν, between the domestic currency r1
and the foreign currency r2. The risk-neutral FX dynamics of the
Schöbel–Zhu–Hull–White (SZHW) then read:

dx(t) = x(t)
(
r1(t)− r2(t)

)
dt

+ x(t)ν(t)dWx(t), x(0) = x0, (69)

dr1(t) =
(
θ1(t)− a1r1(t)

)
dt + σ1dWr1(t), r1(0) = r10 , (70)

dr2(t) =
(
θ2(t)− a2r2(t)− ρxr2ν(t)σ2

)
dt

+ σ2dWr2(t), r2(0) = r20 , (71)

dν(t) = κ
(
ψ − ν(t)

)
dt + τdWν(t), ν(0) = ν0, (72)

where ai, σi, κ, ψ, τ are positive parameters. Hence the domes-
tic and the (shifted) foreign interest rate markets are modelled
by Hull–White models and the exchange rate is modelled by a
Schöbel–Zhu stochastic volatilitymodel. W̃ (t) =

(
Wx(t),Wr1 ,Wr2

(t),Wν(t)
)
denotes a Brownian motion under the risk-neutral

measureQ with a positive covariance matrix:

Var
(
W̃ (t)

)
=

 1 ρxr1 ρxr2 ρxν
ρxr1 1 ρr1r2 ρr1ν
ρxr2 ρr1r2 1 ρr2ν
ρxν ρr1ν ρr2ν 1

 t. (73)

We will now show that the above model dynamics yield a closed-
form expression for the price of an European FX-option with strike
K and maturity T . Hence we consider:

EQ

[ (
w(x(T )− K)

)+
N1(T )

∣∣∣∣∣Ft
]
, (74)
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wherew = ±1 for a call/put option and with

N1(T ) = exp
[∫ T

t
r(u)du

]
(75)

denotes the bank-account in the domestic economy. We can also
represent the expectation (76) in the domestic T -forwardmeasure
QT associated with a domestic zero-coupon bond option P1(t, T )
which matures at time T , hence we obtain

EQ

[ (
w(x(T )− K)

)+
N1(T )

∣∣∣∣∣Ft
]

= P1(t, T )EQT
[(
w(FFXT (T )− K)

)+
|Ft

]
, (76)

where

FFXT (t) =
x(t)P2(t, T )
P1(t, T )

(77)

denotes the forward FX-rate under the domestic T -forward mea-
sure.
The Hull–White model yields analytical expressions for the

above prices of the zero-coupon discount bonds, i.e.

Pi(t, T ) = exp
[
Ai(t, T )− Bi(t, T )ri(t)

]
with: Bi(t, T ) :=

1− e−ai(T−t)

ai
, (78)

where Ai(t, T ) is affine function. Hencewe can express the forward
FX-rate as

FFXT (t) =
x(t) exp

[
A2(t, T )− B2(t, T )r2(t)

]
exp

[
A1(t, T )− B1(t, T )r1(t)

] . (79)

Note that under their own risk-neutral measures (where we the
money market bank account of their own currency is used as
numeraire) the discount bond prices follows the processes

dPi(t, T )
Pi(t, T )

= ri(t)dt − σiBi(t, T )dWri(t), (80)

hence, by an application of Ito’s lemma, we find the following
dynamics for the T -forward stock price process

dFFXT (t)
FFXT (t)

=
(
σ 21 B

2
1(t, T )+ ρxr1ν(t)σ1B1(t, T )

− ρr1r2σ2B2(t, T )σ1B1(t, T )
)
dt

+ ν(t)dWx(t)+ σ1B1(t, T )dWr1(t)

− σ2B2(t, T )dWr2(t). (81)

By definition the forward FX-rate is a martingale process under
the domestic T -forward measure. This is achieved by defining the
following transformations of the Brownian motion(s):

dWr1(t) 7→ dW Tr1(t)− σ1B1(t, T )dt,

dWr2(t) 7→ dW Tr2(t)− ρr1r2σ1B1(t, T )dt,

dWx(t) 7→ dW Tx (t)− ρxr1σ1B1(t, T )dt,

dWν(t) 7→ dW Tν (t)− ρr1νσ1B1(t, T )dt.

Hence under the domestic T -forwardmeasure the forward FX-rate
and the associated volatility process are given by

dFFXT (t)
FFXT (t)

= ν(t)dW Tx (t)+ σ1B1(t, T )dW
T
r1

− σ2B2(t, T )dW Tr2(t) (82)

dν(t) = κ
(
ψ −

ρr1νσ1τ

κ
B1(t, T )− ν(t)

)
dt + τdW Tν (t). (83)
We can simplify (82) by switching to logarithmic coordinates and
rotating the BrownianmotionsW Tx (t),W

T
r1(t) andW

T
r2(t) toW

T
F (t).

Defining y(t) := log
(
FFXT (t)

)
and an application of Ito’s lemma

yields

dy(t) = −
1
2
ν2F (t)dt + νF (t)dW

T
F (t) (84)

dν(t) = κ
(
ξ(t)− ν(t)

)
dt + τdW Tν (t), (85)

with:

ν2F (t) := ν2(t)+ σ 21 B
2
1(t, T )+ σ

2
2 B
2
2(t, T )

+2ρxr1ν(t)σ1B1(t, T )− 2ρxr2ν(t)σ2B2(t, T )
− 2ρr1r2σ1B1(t, T )σ2B2(t, T ) (86)

ξ(t) := ψ −
ρr1νσ1τ

κ
B1(t, T ). (87)

Notice that we have now reduced the system (69) of the variables
x(t), r1(t), r2(t), ν(t) under the domestic risk-neutral measure, to
the system (84) of variables y(t) and ν(t) under the domestic T -
forward measure. What now remains is to determine the charac-
teristic function of this reduced system.
Determining the characteristic function of the forward log-FX rate
We will now determine the characteristic function of the for-

ward FX rate. Since this calculation goes in a similar spirit as
the calculation of the ordinary characteristic function of the
Schöbel–Zhu–Hull–Whitemodel of Section 2, we restrict ourselves
to the most important steps. Again we apply the Feynman–Kac
theoremand reduce the search for the characteristic function of the
forward-FX rate dynamics to solving a partial differential equation.
That is, we try to determine the Kolmogorov backward partial
differential equation of the joint probability function f = f (t, y, ν).
To this end we need to take into account the following covariance
term

dy(t)dν(t) =
(
ν(t)dW Tx (t)+ σ1B1(t, T )dW

T
r1(t)

− σ2B2(t, T )dW Tr1(t)
)(
τdW Tν (t)

)
=

(
ρxντν(t)+ ρr1ντσ1B1(t, T )− ρr2ντσ2B2(t, T )

)
dt. (88)

Hence using (84) and (88), the Feynman–Kac theorem then implies
that the solution of the following PDE

0 = ft −
1
2
ν2F (t)fy + κ

(
ξ(t)− ν(t)

)
fν +

1
2
ν2F (t)fyy

+

(
ρxντν(t)+ ρr1ντσ1B1(t, T )− ρr2ντσ2B2(t, T )

)
fyν

+
1
2
τ 2fνν, (89)

subject to the terminal boundary condition f (T , y, ν) = exp
(iuy(T )), equals the characteristic function of the forward FX-rate
dynamics. Solving the above system hence leads to the following
proposition.

Proposition 6.1. The characteristic function of domestic T -forward
log SZHW-FX-rate is given by the closed-form solution in Box II.

Proof. See Appendix B. �

The strip of regularity and the decay of the characteristic func-
tion can be determined analogous to the SZHW model. The func-
tion C(u, t, T ) once again determines the strip of regularity,
whereas A(u, t, T ) ensures the characteristic function decays like
exp

(
−C(u, t, T )u2

)
, where the exact constant follows from a sim-

ilar analysis to that in Section 4.



A. van Haastrecht et al. / Insurance: Mathematics and Economics 45 (2009) 436–448 445

0)

1)

2)

3)

4)

5)

6)
f (t, y, ν) = exp
[
A(t)+ B(t)y(t)+ C(t)ν(t)+

1
2
D(t)ν2(t)

]
, (9

where:

A(u, t, T ) =
1
2

(
B2 − B

)
VFX (t, T )+

∫ T

t

[(
κψ + ρr1ν(iu− 1)τσ1B1(s, T )− ρr2ν iuτσ2B2(s, T )

)
C(s)+

1
2
τ 2
(
C2(s)+ D(s)

)]
ds, (9

B = iu, (9

C(u, t, T ) = −u
(
i+ u

)
×

((
γ3 − γ4e−2γ (T−t)

)
−
(
γ5e−a1(T−t) − γ6e−(2γ+a1)(T−t)

)
− γ7e−γ (T−t)

)
γ1 + γ2e−2γ (T−t)

+ u
(
i+ u

)
×

((
γ8 − γ9e−2γ (T−t)

)
−
(
γ10e−a2(T−t) − γ11e−(2γ+a2)(T−t)

)
− γ12e−γ (T−t)

)
γ1 + γ2e−2γ (T−t)

, (9

D(u, t, T ) = −u
(
i+ u

) 1− e−2γ (T−t)
γ1 + γ2e−2γ (T−t)

(9

with:

γ =
√
(κ − ρxντB)2 − τ 2(B2 − B), (9

γ1 = γ + (κ − ρxντB), γ2 = γ − (κ − ρxντB),

γ3 =
ρxr1σ1γ1 + κa1ψ + ρr1νσ1τ(iu− 1)

a1γ
, γ4 =

ρxr1σ1γ2 − κa1ψ − ρr1νσ1τ(iu− 1)
a1γ

,

γ5 =
ρxr1σ1γ1 + ρr1νσ1τ(iu− 1)

a1(γ − a1)
, γ6 =

ρxr1σ1γ2 − ρr1νσ1τ(iu− 1)
a1(γ + a1)

,

γ8 =
ρxr2σ2γ1 + ρr2νσ2τB

a2γ
, γ9 =

ρxr2σ2γ2 − ρr2νσ2τB
a2γ

,

γ10 =
ρxr2σ2γ1 + ρr2νσ2τB

a2(γ − a2)
, γ11 =

ρxr2σ2γ2 − ρr2νσ2τB
a2(γ + a2)

,

γ7 = (γ3 − γ4)− (γ5 − γ6), γ12 = (γ8 − γ9)− (γ10 − γ11)

and:

VFX (t, T ) :=
σ 21

a21

(
(T − t)+

2
a1
e−a1(T−t) −

1
2a1
e−2a1(T−t) −

3
2a1

)
+
σ 22

a22

(
(T − t)+

2
a2
e−a2(T−t) −

1
2a2
e−2a2(T−t) −

3
2a2

)
− 2ρr1r2

σ1σ2

a1a2

(
(T − t)+

e−a1(T−t) − 1
a1

+
e−a2(T−t) − 1

a2
−
e−(a1+a2)(T−t) − 1

a1 + a2

)
. (9

Box II.
7. Conclusion

We have introduced the SZHW model which allows for the
pricing of insurance contracts under both stochastic volatility and
stochastic interest rates in conjunction with an explicit incorpora-
tion of the correlation between the underlying asset and the term
structure of interest rates. As insurance contracts typically involve
long maturities, they are are much more sensitive to changes in
the interest rates and the volatility. Therefore, having the flexibil-
ity to correlate the underlying asset price with both the stochastic
volatility and the stochastic interest rates yields a more realistic
model, which is of practical importance for the pricing and hedg-
ing of long-term options.
Our model incorporates the closed-form pricing of European

options by Fourier transforming the conditional characteristic
function of the asset price in closed-form. We extensively con-
sidered the numerical implementation of the pricing formulas
which enables a fast and accurate valuation of European options,
which is a big advantage for the calibration (and sensitivity analy-
sis) of the model to market prices. We have also derived a closed-
form pricing formula for forward starting options, which allows for
a calibration of the model to forward smiles.
The SZHW model will be especially useful in the pricing and
risk management of insurance contracts and other long-maturity
exotic derivatives. Examples include pension products, variable
and guaranteed annuities, rate of return guarantees, unit-linked
contracts and exotic options like PRDC FX options which have a
long-term nature. For these products it is especially important to
consider the risk of the underlying in conjunction with the interest
rate risk of the contract. Given empirical data on option prices our
model can be used to examine the pricing and especially hedging
performance of stochastic volatility models while correcting for
interest rate risk. An empirical study on the relative performance of
the SZHWmodel versus other stochastic volatility models, as well
as the relative benefit of the modelling of stochastic interest rates
(covered earlier by Bakshi et al. (1997)), is beyond the scope of this
paper, and is left for future research.

Appendix A. Deriving the log asset price characteristic function

In this appendix wewill show that the partial differential equa-
tion (22)

ft + κ
(
ξ(t)− ν(t)

)
fν +

1
2
ν2F (t)

(
fyy − fy

)
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+
(
ρxντν(t)+ ρrντσBr(t, T )

)
fyν +

1
2
τ 2fνν = 0, (97)

subject to the terminal boundary condition

f (T , y, ν) = ψ(y, ν) := exp
(
iuy(T )

)
,

has a solution given by (25)–(29).
To lighten the notation, we from here on omit the explicit de-

pendence on u and T in the A, B, C,D terms and hence write A(t)
instead of A(u, t, T ) for these terms. Using the ansatz

f (t, y, ν) = exp
[
A(t)+ B(t)y(t)+ C(t)ν(t)+

1
2
D(t)ν2(t)

]
, (98)

we find the following partial derivatives for f = f (t, y, ν):

ft = f ·
(
A′(t)+ B′(t)y(t)+ C ′(t)ν(t)+

1
2
D′(t)ν2(t)

)
,

fy = fB(t),

fν = f ·
(
C(t)+ D(t)ν(t)

)
, fyy = fB2(t),

fyν = fB(t)
(
C(t)+ D(t)ν(t)

)
fνν = f ·

(
C(t)+ D(t)ν2(t)

)
= f ·

(
C2(t)+ D(t)+ 2C(t)D(t)ν(t)+ D2(t)ν2(t)

)
.

Substituting these partial derivatives into the partial differential
equation (97) then gives(
A′(t)+ B′(t)y(t)+ C ′(t)ν(t)+

1
2
D′(t)ν2(t)

)
+ κ

(
ξ(t)− ν(t)

)(
C(t)+ D(t)ν(t)

)
+
1
2

(
ν2(t)+ 2ρxrν(t)σBr(t, T )+ σ 2B2r (t, T )

)(
B2(t)− B(t)

)
+
(
ρxντν(t)+ ρrντσBr(t, T )

)
B(t)

(
C(t)+ D(t)ν(t))

+
1
2
τ 2
(
C2(t)+ D(t)+ 2C(t)D(t)ν(t)+ D2(t)ν2(t)

)
= 0. (99)

Collecting terms for y(t),ν(t), and 1
2ν
2(t) then yields the fol-

lowing four ordinary differential equations for the functions
A(t), . . . ,D(t):

0 = B′(t)⇒ B(t) := B, (100)

0 = D′(t)− 2
(
κ − ρxντB

)
D(t)+ τ 2D2(t)+ (B2 − B), (101)

0 = C ′(t)+
(
ρxντB− κ + τ 2D

)
C(t)+ ρxrσBr(t, T )

(
B2 − B

)
+
(
κξ(t)+ ρrντσBr(t, T )B

)
D(t), (102)

0 = A′(t)+
(
κξ(t)+ ρrντσBr(t, T )B

)
C(t)

+
1
2
σ 2B2r (t, T )

(
B2 − B

)
+
1
2
τ 2
(
C2(t)+ D(t)

)
. (103)

As already noted in Eq. (100), it immediately that follows B(t) = B
equals a constant since its derivative is zero. Subject to the bound-
ary condition (97) we then find

B = iu. (104)

The second Eq. (101) yields a Riccati equation with constant coef-
ficients with boundary condition D(T ) = 0:

D′(t) = −(B2 − B)+ 2(κ − ρxντB)D(t)− τ 2D2(t)
=: q0 + q1D(t)+ q2D2(t).

Making the substitution D(t) = −v
′(t)

q2v(t)
transforms the Riccati equa-

tion into the following second order linear differential equation
with constant coefficients:

v′′(t)− q1v′(t)+ q0q2v(t) = 0, (105)
which solution is given by

v(t) = γ1 exp
[
λ+(T − t)

]
+ γ2 exp

[
λ−(T − t)

]
,

λ± = −
q1
2
±

√
q21 − 4q0q2.

Hence defining γ =
√
q21 − 4q0q2 we find:

D(t) =
−v′(t)
q2v(t)

= −
1
τ 2

γ1γ2eγ (T−t) − γ1γ2e−γ (T−t)

γ1eγ (T−t) + γ2e−γ (T−t)

= (B2 − B)
eγ (T−t) − e−γ (T−t)

γ1eγ (T−t) + γ2e−γ (T−t)

= −u
(
i+ u

) 1− e−2γ (T−t)
γ1 + γ2e−2γ (T−t)

(106)

with: γ =
√
(κ − ρxντB)2 − τ 2(B2 − B), (107)

γ1 = γ +
1
2
q1 = γ + (κ − ρxντB), (108)

γ2 = γ −
1
2
q1 = γ − (κ − ρxντB). (109)

Here the constants in Eq. (106) are determined from the identity
(γ + 1

2q1)(γ −
1
2q1) = −(B

2
− B)τ 2 and the boundary condition

D(T ) = 0.
The third Eq. (102) looks pretty daunting, but is merely a first

order linear ordinary differential equation of the form C ′(t) +
g(t)C(t) + h(t) = 0. Subject to the boundary condition C(T ) = 0
and using (20), we can hence represent a solution for C(t) as:

C(t) =
∫ T

t
h(s) exp

[∫ s

t
g(w)dw

]
ds, (110)

with: g(w) = −(κ − ρxντB)+ τ 2D(w), (111)

h(s) = ρxrσBr(s, T )
(
B2 − B)+

(
κξ(s)+ ρrντσBr(s, T )B

)
D(s)

= ρxrσBr(s, T )
(
B2 − B)

+
(
κψ + ρrν(B− 1)τσBr(s, T )

)
D(s). (112)

We first consider the integral over g: dividing Eq. (101) by D(t),
rearranging terms and integrating we find the surprisingly simple
solution:∫
g(w)dw =

∫
−(κ − ρxντB)+ τ 2D(w)dw

=

∫
(κ − ρxντB)−

(B2 − B)
D(w)

−
D′(w)
D(w)

dw

= log
(
γ1eγ (T−w) + γ2e−γ (T−w)

)
+ C, (113)

where C denotes the integration constant. Hence taking the
exponent and filling in the required integration boundaries yields

exp
[∫ s

t
g(w)dw

]
=
γ1eγ (T−s) + γ2e−γ (T−s)

γ1eγ (T−t) + γ2e−γ (T−t)
, (114)

and after a straightforward calculation we get C(t) as in Box III.
Finally, by solving Eq. (103), we find the following expression

for A(t):

A(t) =
∫ T

t

1
2

(
B2 − B

)
σ 2B2r (s, T )ds

+

∫ T

t

[(
κξ(t)+ ρrντσBr(s, T )B

)
C(s)

+
1
2
τ 2
(
C2(s)+ D(s)

)]
ds
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5)
C(t) =
1

γ1eγ (T−t) + γ2e−γ (T−t)

∫ T

t
h(s)

(
γ1eγ (T−s) + γ2e−γ (T−s)

)
ds

=
(
B2 − B

)((γ3eγ (T−t) − γ4e−γ (T−t))− (γ5e(γ−a)(T−t) − γ6e−(γ+a)(T−t))− γ7)
γ1eγ (T−t) + γ2e−γ (T−t)

= −u
(
i+ u

)((γ3 − γ4e−2γ (T−t))− (γ5e−a(T−t) − γ6e−(2γ+a)(T−t))− γ7e−γ (T−t))
γ1 + γ2e−2γ (T−t)

, (11

with γ , γ1, . . . , γ7 as defined in (30).
Box III.
= −
1
2
u
(
i+ u

)
V (t, T )

+

∫ T

t

[(
κψ + ρrν(iu− 1)τσBr(s, T )

)
C(s)

+
1
2
τ 2
(
C2(s)+ D(s)

)]
ds (116)

where V (t, T ) can be found by simple integration and is given by

V (t, T ) =
σ 2

a2

(
(T − t)+

2
a
e−a(T−t) −

1
2a
e−2a(T−t) −

3
2a

)
. (117)

It is possible to write a closed-form expression for the remaining
integral in (116). As the ordinary differential equation for D(s)
is exactly the same as in the Heston (1993) or Schöbel and Zhu
(1999) model, it will involve a complex logarithm and should
therefore be evaluated as outlined in Lord and Kahl (2008) in
order to avoid any discontinuities. The main problem however
lies in the integrals over C(s) and C2(s), which will involve the
Gaussian hypergeometric 2F1(a, b, c; z). The most efficient way
to evaluate this hypergeometric function (according to Numerical
Recipes, Press and Flannery (1992)) is to integrate the defining
differential equation. Since all of the terms involved in D(u) are
also required in C(u), numerical integration of the second part
of (116) seems to be the most efficient method for evaluating
A(t). Hereby we conveniently avoid any issues regarding complex
discontinuities altogether.

Appendix B. Deriving the log FX-rate characteristic function

In this appendixwewill prove that the partial differential equa-
tion (89), i.e.

0 = ft + κ
(
ξ(t)− ν(t)

)
fν +

1
2
ν2F (t)

(
fyy − fy

)
+

(
ρxντν(t)+ ρr1ντσ1B1(t, T )− ρr2ντσ2B2(t, T )

)
fyν

+
1
2
τ 2fνν, (118)

subject to the terminal boundary condition f (T , y, σ ) = exp(
iuy(T )

)
has a solution given by (90)–(95); we follow the same ap-

proach as in Appendix A, that is we use the ansatz (90), find the
corresponding partial derivatives and substitute these in the PDE
(118).
Expanding ν2F (t) according to (86) and collecting the terms for

y(t), ν(t) and 12ν
2(t) yields the following system of ordinary dif-

ferential equations for the functions A(t), . . . ,D(t):

0 = B′(t)⇒ B(t) := B, (119)

0 = D′(t)− 2
(
κ − ρxντB

)
D(t)+ τ 2D2(t)+ (B2 − B), (120)

0 = C ′(t)+
(
ρxντB− κ + τ 2D

)
C(t)
+
(
ρxr1σ1B1(t, T )− ρxr2σ2B2(t, T )

)(
B2 − B

)
+

(
κξ(t)+

(
ρr1ντσ1B1(t, T )− ρr2ντσ2B2(t, T )

)
B
)
D(t), (121)

0 = A′(t)+
(
κξ(t)+ ρr1ντσ1B1(t, T )B− ρr2ντσ2B2(t, T )B

)
C(t)

+

(1
2
σ 21 B

2
1(t, T )+

1
2
σ 22 B

2
2(t, T )− ρr1r2σ1B1(t, T )σ2B2(t, T )

)
×
(
B2 − B

)
+
1
2
τ 2
(
C2(t)+ D(t)

)
. (122)

Hence we end up with an analogue system of ordinary differen-
tial equations as in Appendix A: the first two differential equations
(119) and (120) for B and D(t) are equivalent to (100) and (101)
whose solutions are given in the Eqs. (104) and (106)–(109). The
third Eq. (121) for C(t) looks pretty daunting, but is again merely a
first order linear differential equation of the form C ′(t)+g(t)C(t)+
h(t) = 0, with associated boundary condition C(T ) = 0. Hence ex-
panding ξ(t) according to (87), we can represent a solution for C(t)
as:

C(t) =
∫ T

t
h(s) exp

[∫ s

t
g(w)dw

]
ds, (123)

with: g(w) = −(κ − ρxντB)+ τ 2D(w), (124)

h(s) =
(
ρxr1σ1B1(s, T )− ρxr2σ2B2(s, T )

)(
B2 − B)

+

(
κξ(s)+

(
ρr1ντσ1B1(s, T )− ρr2ντσ2B2(s, T )

)
B
)
D(s)

= ρxr1σ1B1(s, T )
(
B2 − B)+

(
κψ + ρr1ν(B− 1)τσ1B1(s, T )

)
D(s)

− ρxr2σ2B2(s, T )
(
B2 − B

)
−

(
ρr2νBτσ2B2(s, T )

)
D(s). (125)

Now notice that the integral over g is equivalent to (113), hence its
solution is given by Eq. (114), i.e.

exp
[∫ s

t
g(w)dw

]
=
γ1eγ (T−s) + γ2e−γ (T−s)

γ1eγ (T−t) + γ2e−γ (T−t)
, (126)

with γ , γ1 and γ2 defined in (95). Substituting this expression into
(123) we find (after a long but straightforward calculation) C(t) as
in Box IV.
Finally, by solving Eq. (122), we find the following expression

for A(t):

A(t) =
∫ T

t

1
2

(
B2 − B

)(
σ 21 B

2
1(s, T )+ σ

2
2 B
2
2(s, T )

− 2ρr1r2σ1B1(s, T )σ2B2(s, T )
)
ds

+

∫ T

t

[
κ
(
ξ(s)+ ρr1νBτσ1B1(t, T )− ρr2νBτσ2B2(t, T )

)
C(s)

+
1
2
τ 2
(
C2(s)+ D(s)

)]
ds
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7)
C(t) =
(
B2 − B

)((γ3eγ (T−t) − γ4e−γ (T−t))− (γ5e(γ−a1)(T−t) − γ6e−(γ+a1)(T−t))− γ7)
γ1eγ (T−t) + γ2e−γ (T−t)

−
(
B2 − B

)((γ8eγ (T−t) − γ9e−γ (T−t))− (γ10e(γ−a2)(T−t) − γ11e−(γ+a2)(T−t))− γ12)
γ1eγ (T−t) + γ2e−γ (T−t)

= −u
(
i+ u

)((γ3 − γ4e−2γ (T−t))− (γ5e−a1(T−t) − γ6e−(2γ+a1)(T−t))− γ7e−γ (T−t))
γ1 + γ2e−2γ (T−t)

+ u
(
i+ u

)((γ8 − γ9e−2γ (T−t))− (γ10e−a2(T−t) − γ11e−(2γ+a2)(T−t))− γ12e−γ (T−t))
γ1 + γ2e−2γ (T−t)

, (12

with γ , γ1, . . . , γ12 as defined in (95).
Box IV.
=
1
2

(
B2 − B

)
VFX (t, T )+

∫ T

t

[(
κψ + ρr1ν(iu− 1)τσ1B1(s, T )

− ρr2ν iuτσ2B2(s, T )
)
C(s)+

1
2
τ 2
(
C2(s)+ D(s)

)]
ds, (128)

where VFX (t, T ) can found by simple integration and is given by:

VFX (t, T )

:=
σ 21

a21

(
(T − t)+

2
a1
e−a1(T−t) −

1
2a1
e−2a1(T−t) −

3
2a1

)
+
σ 22

a22

(
(T − t)+

2
a2
e−a2(T−t) −

1
2a2
e−2a2(T−t) −

3
2a2

)
− 2ρr1r2

σ1σ2

a1a2

(
(T − t)+

e−a1(T−t) − 1
a1

+
e−a2(T−t) − 1

a2
−
e−(a1+a2)(T−t) − 1

a1 + a2

)
. (129)

Analogue to (116), integrating over the C(s) and C2(s) terms in
(128) seems to be the most efficient method to evaluate A(t).
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