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Prices of interest rate derivatives in the LIBOR market model can be efficiently approximated by drift approximations say RRaaoouull PPiieetteerrsszz, AAnnttoooonn PPeellsssseerr aanndd MMaarrcceell vvaann
RReeggeennmmoorrtteell. They introduce a novel drift approximation based on the Brownian bridge.

Bridging Brownian LIBOR

As the size of the book grows, the lengthy computational time can start to
exceed an overnight run, and can thus potentially hinder effective risk
management.

In this paper, we examine drift approximations that render the state
of the LIBOR model as Markovian with respect to a low number of
Wiener processes. Hunter, Jäckel & Joshi (2001) and Kurbanmuradov,
Sabelfeld & Schoenmakers (2002) introduced drift approximations for
the LIBOR market model, in order to limit MC computational time.
Together with a non-restrictive assumption on the volatility, named sepa-
rability, single time-step drift approximations enable the implementation
of finite differences or partial differential equations (PDEs), that are much more
efficient than MC. Single time-step pricing is accurate for deals up to, say,
10 years. We propose a novel drift approximation based on the Brownian
bridge. The novel Brownian bridge scheme has least-squares error over a
certain class (to be defined) of single time-step discretizations. Viewed as
a MC discretization, the Brownian bridge scheme converges weakly with
order 1. The presentation in this paper is based on the research article of
Pietersz, Pelsser & Van Regenmortel (2004).

Drift approximations, thus also the Brownian bridge version, are
employed in two other areas. First, Piterbarg (2003, Section 13) uses drift
approximated prices as control variates. Second, the implementation of
the likelihood ratio method (LRM), for efficient calculations of risk sen-
sitivities, requires the forward rates to be Gaussian, and thus drift
approximations can be used, as proposed by Glasserman & Zhao (1999).
For an exposition of LRM, see Jäckel (2003).

The outline of this paper is as follows. First, we show how a single time-
step discretization in combination with separability leads to finite differ-
ence pricing. Second, the Brownian bridge discretization is introduced,

Introduction
Recent developments in the interest rate derivatives industry have seen
an increase in complexity of products. European call and put options on
LIBOR and swaps, so-called caps/f loors and swaptions, once deemed exotic,
are now considered plain vanilla. The newer more complex products,
named exotic LIBOR derivatives, are tailored to investor requirements and
contain many additional features. For example, these products may be
callable at multiple exercise dates, or may contain knock-out or knock-in
features. Also, a ‘fixed’ or ‘floating’ payment in the underlying exotic
swap, depending on realized LIBOR �, may be, for example, capped or
floored, min(�, k) or max(�, k), with k the maximum or minimum
coupon rate; inverse, k − �; leveraged, λ × �, with λ the leverage rate, or;
ranged, r × �, with r the ratio of the number of days over the accrual
period for which a certain reference rate is within a contractually pre-
scribed range. This list of features is certainly not exhaustive, and more-
over combinations are possible, also the type and coupon rates can vary
with the index of the payment.

Caps and swaptions are valued with the Black (1976) formula. For exot-
ic LIBOR derivatives however, the now more or less market standard for
valuation and risk management thereof is the LIBOR market model of
Brace, Gątarek & Musiela (1997). Prices within the LIBOR market model are
invariably calculated by Monte Carlo (MC) simulation. The drawback of
MC is the relatively long computational time. The time involved is multi-
plied by the amount of derivatives in the book and the number of
required risk sensitivities. Usually, there is a sensitivity per each underly-
ing LIBOR or swap rate used to build the yield curve, and per each volatili-
ty of underlying cap or swaption to which the model has been calibrated.
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Econometric Institute, Faculty of Economics, Erasmus University Rotterdam, P.O. Box
1738, 3000 DR Rotterdam, The Netherlands
Marcel van Regenmortel
Product Development Group (HQ7011), ABN AMRO Bank, P.O. Box 283, 1000 EA
Amsterdam, The Netherlands
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and other single time-step discretizations are mentioned. Third and
fourth, the Brownian bridge scheme is discussed for single and multi time-
steps, respectively. Fifth, the framework is illustrated with a 2-factor model.
Sixth, we end with conclusions.

Single Time-step Pricing Framework
Let 0 =: t0 < t1 < . . . < tn+1 denote a tenor structure. Associated with this
tenor structure are forward LIBOR rates fi, i = 1, . . . , n, with fi correspon-
ding to the period [ti, ti+1] with day count fraction δi. The log1 forward
rates satisfy the stochastic differential equation (SDE)

d log fi = {µi(f , t) − 1
2 ||σ i(t)||2}dt + σ i(t) · dw . (1) 

Here, σ i(t) denotes a d-tuple, with entry k relating to the volatility with
respect to the kth Brownian motion wk driving the model. We may
define the absolute level of instantaneous volatility by σi(t) = ||σ i(t)||
and the instantaneous correlation ρij(t) by σ i(t) · σ j(t) = σi(t)σj(t)ρij(t) .
The term µi(f , t) is determined by the chosen measure. In this paper,
we work only2 with the terminal measure, associated with the dis-
count bond maturing at time tn+1 as numeraire. For the terminal
measure, we have

µi(f , t) = −
n∑

j=i+1

δ j fj

1 + δ j fj
σ i(t)σ j(t)ρij(t) = −

n∑
j=i+1

δ j fjσ i(t) · σ j(t)

1 + δ j fj
. (2)

Suppose τ1 < . . . < τM is a time discretization. Denote zi(u, v) = ∫ v
u σ i(s)

·dw(s). We consider discretizations of the form

log fi(τm+1) = log fi(τm) + µ̄i(τm, τm+1, f(τm), z(τm, τm+1))

− 1

2

τm+1∫
τm

σ 2
i (s) ds+zi(τm, τm+1).

(3) 

Here µ̄ stems from the discretization scheme applied, which can be the
Euler, predictor-corrector or Brownian bridge schemes. Details of those
schemes are given in the next section. The single time-step forward rates
process f DA is then defined by

f DA
i (t) = fi(0) exp


µ̄i(0, t, f(0), z(0, t)) − 1

2

t∫
0

σ 2
i (s) ds + zi(0, t)


 . (4) 

(‘DA’ for drift approximated.) Now suppose that we make the following
separability assumption on volatility, 

σ i(t) = γ (t)vi, (entry-by-entry multiplication) , (5) 

for some d-dimensional vector-valued γ (·) and vi . Then the state of the n-
dimensional drift approximated forward rates process is fully deter-
mined by the state of the d-dimensional process x(0, ·), defined by,

x(0, t) =
t∫

0

γ (s)dw(s), (entry-by-entry multiplication) . (6) 

This can be seen as follows. We have

zi(0, t) =
t∫

0

σ i(s) · dw(s) =
∫ t

0
viγ (s) · dw(s)

= vi ·
t∫

0

γ (s)dw(s) = vi · x(0, t),

(7) 

and then substituting (7) into (4) yields the desired result. This d-dimen-
sional representability result enables pricing by a d-dimensional PDE,
instead of a n-dimensional. The d-dimensional PDE is

∂π

∂ t
+ 1

2

d∑
k=1

γ 2
k (t)

∂2π

∂x2
k

= 0 , (8)

with appropriate boundary conditions. Here π denotes the numeraire-
relative value of the derivative contract. The reduction of dimensionality
(‘rank’) from n to d highlights the importance of rank reduction of corre-
lation matrices. For a recent review article on this topic, see Pietersz &
Groenen (2004).

The Brownian Bridge LIBOR Drift
Approximation
In this section, first, we mention other available discretizations. Second,
we present the new Brownian bridge LIBOR scheme.

The schemes that we mention are Euler, predictor-corrector and
Milstein. We only mention the form of µ̄ in (3), since the other scheme-
components in (3) are equal for all discretizations considered. For
Euler, 

µ̄Euler
i (τm, τm+1, f(τm), z(τm, τm+1)) = (τm+1 − τm)×

−



n∑
j=i+1

δ j fj(τm)σ i(τm) · σ j(τm)

1 + δ j fj(τm)


 .

(9)

The predictor-corrector scheme, introduced to a finance setting by
Hunter et al. (2001), is as

µ̄
predictor -corrector
i (τm, τm+1, f(τm), z(τm, τm+1)) = (τm+1 − τm)×

−

 1

2

n∑
j=i+1

δ j fj(τm)σ i(τm) · σ j(τm)

1 + δ j fj(τm)

+ 1

2

n∑
j=i+1

δ j fj(τm+1)σ i(τm+1) · σ j(τm+1)

1 + δ j fj(τm+1)


 .

(10)

Note that scheme (10) is calculated iteratively for i = n, n − 1, . . ., since
the expression for µ̄i involves the time-τm+1 forward rates fj(τm+1),
j = i + 1, . . . , n.

^
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The Milstein scheme is a second order scheme, which means that the
error of the discretization diminishes quadratically with the time-step
�τ ↓ 0. Intuitively, one can anticipate that the error then also grows qua-
dratically with increasing �τ , which implies that Milstein is not efficient
for the single time-step pricing framework. Indeed, in the tests of the
next section, it is shown that the Milstein scheme performs worst over all
schemes considered in this paper. We therefore omit further discussion
of the Milstein scheme.

The idea of the Brownian bridge scheme is to incorporate all available
information in the drift-estimate given the Brownian increment. In
mathematical terms, this amounts to taking the expectation of the drift,
conditional on the Brownian increment. In terms of a formula,

µ̄
Browne-bridge
i (τm, τm+1, f(τm), z(τm, τm+1))

= −E


∫ τm+1

τm

n∑
j=i+1

δj fj(s)σ i(s) · σ j(s)

1 + δj fj(s)
ds

∣∣∣∣∣∣ f(τm), z(τm, τm+1)


 .

(11)

That is the definition of the Brownian bridge scheme and there you have
it. All things easier said than done, the question still remains of how to
numerically approximate the expression in (11). This approximation is
detailed in the following 4 steps.

1. Interchange the expectation and the integration over time; this is
allowed by application of Fubini’s theorem, 

E


 τm+1∫

τm

n∑
j=i+1

δ j fj(s)σ i(s) · σ j(s)

1 + δ j fj(s)
ds

∣∣∣∣∣∣ f(τm), z(τm, τm+1)




=
τm+1∫
τm

E


 n∑

j=i+1

δ j fj(s)σ i(s) · σ j(s)

1 + δ j fj(s)

∣∣∣∣∣∣ f(τm), z(τm, τm+1)


 ds.

(12)

2. (Approximation) Assume, for purpose of approximating (12) only, that
the forward rate fj(s) has deterministic drift. 

τm+1∫
τm

E


 n∑

j=i+1

δ j fj(s)σ i(s) · σ j(s)

1 + δ j fj(s)

∣∣∣∣∣∣ f(τm), z(τm, τm+1)


 ds ≈

τm+1∫
τm

E


 n∑

j=i+1

δ j f DD
j (s)σ i(s) · σ j(s)

1 + δ j f DD
j (s)

∣∣∣∣∣∣ f(τm), z(τm, τm+1)


 ds

(13) 

(‘DD’ for ‘deterministic drift’.) Having assumed (13), f DD
j (s)|{fj(τm),

fj(τm+1)} becomes distributed as a geometric Brownian bridge. It is a well-
known fact for the Brownian bridge that the drift prior to conditioning is
irrelevant to the process after conditioning. Because of this nil-depend-
ence of the drift, it follows that the assumption of deterministic drift
instead of the stochastic drift (2) probably has a negligible impact on the
drift approximation. Indeed, in the tests of the next section, the
Brownian bridge scheme is shown to have very high accuracy. We stress
here once more that the assumption of deterministic drift is used only

for approximation from (12) to (13), and not in the discretization scheme
(3) itself.

3. The mean of the Brownian bridge forward rate is given by (see
Appendix A of Pietersz et al. (2004)), 

E
 f DD
j (t)|fj(τm), fj(τm+1)� = fj(τm)

(
fj(τm+1)

fj(τm)

) α2
j
(τm ,t)

α2
j
(τm ,τm+1 )

× exp

{
1

2

α2
j (τm, t)

α2
j (τm, τm+1)

(α2
j (τm, τm+1) − α2

j (τm, t))

}
,

(14)

with α2
j (u, v) = ∫ v

u σ 2
j (s) ds. 

4. (Approximation) For calculation of the expectation in (13), substitute
the forward LIBOR rates with their means, 

τm+1∫
τm

E


 n∑

j=i+1

δ j f DD
j (s)σ i(s) · σ j(s)

1 + δ j f DD
j (s)

∣∣∣∣f(τm), z(τm, τm+1)


 ds ≈

τm+1∫
τm

n∑
j=i+1

δ jE[f DD
j (s)|f(τm), z(τm, τm+1)]σ i(s) · σ j(s)

1 + δ jE[f DD
j (s)|f(τm), z(τm, τm+1)]

ds.

(15)

Of course, the expectation in the first line of (15) can be evaluated
numerically, but such is very time consuming. Moreover, we show in the
next section that the approximation (15) leads to sufficiently accurate
results.

For illustration, MATLAB code is given in the appendix, implement-
ing the Brownian bridge scheme. The code implements a single time-step
in a single-factor model with constant volatility. These simplications are
for clarity of exposition only and are, of course, not a restriction imposed
by the Brownian bridge scheme.

Brownian Bridge Scheme 
for Single Time-steps
The performance of the Brownian bridge scheme for single time-steps is
investigated both theoretically and numerically.

Theoretically, the result relates to the squared error of a discretiza-
tion. Let {f̄} be a single time-step discretization. Then the expected
squared error is defined by

S2({f̄}) = E
⌊
||f̄(τm+1) − f(τm+1)||2|f̄(τm) = f(τm)

⌋
. (16)

Pietersz et al. (2004) establish the following result, which is based on the
least-squares property of the expectation or projection operator employed
in the definition of the Brownian bridge scheme in (11).

Theorem 1 (Least-squares optimality of the Brownian bridge scheme) The
single time-step discretization {f̄} that yields least expected squared error ({f̄}) for
the forward rate process (1) over all single time-step discretizations of the form (3) is
given by the Brownian bridge scheme (11).



Wilmott magazine 101

^
TECHNICAL ARTICLE 7

Numerically, the discretizations of the previous section are compared
in the LIBOR-in-arrears test of Hunter et al. (2001). For details of this test,
the reader is referred there. Only the idea of the test is briefly described
here. Consider a forward rate under the measure of a discount bond
maturing at its fixing time. The associated forward rate process is not a
martingale under this measure, and the respective SDE thus features a sto-
chastic drift term. Nonetheless, an analytical formula for the probability
density of the forward rate at its fixing time can be derived. Also, a single
time-step discretization implies a certain such density. This discretization-
implied density may then be compared to the true density to determine
the accuracy of the respective discretization. The results of this test have
been displayed in Figure 1. In the left and right panels, the density and
error in the density have been depicted, respectively. Parameters are: the
3-months forward rate maturing 30 years from today, with an initial level
of 8% and volatility of 24%. The ‘BB alternative’ scheme indicates full
numerical integration of the expectation in Step 4 of the approximation
of (11), instead of inserting the mean of the Brownian bridge. Note thus
that there is virtually no difference of inserting the mean versus a full
numerical integration, establishing the validity of the approximation (15)
in Step 4. As can be seen from Figure 1, the Brownian bridge scheme has
almost zero discretization bias compared to the other discretizations. The
Brownian bridge is thus superior for single time-steps, which can be
expected from Theorem 1. Also, Milstein is the worst performing scheme.
As mentioned before, this is due to the large time-step and the Milstein-
specific quadratic error in the time-step. The numerical results on the
Milstein scheme show that we cannot hope to obtain better results with
higher-order schemes for single-time steps. Consequently, the Brownian
bridge scheme is thus the best one can possibly hope to obtain for single
time-steps, over all discretizations (including higher-order ones).

Brownian Bridge Scheme 
for Multi Time-steps
In this section, we study the Brownian bridge scheme viewed as a multi
time-step MC simulation scheme, both theoretically and numerically,
even though the Brownian bridge scheme has been designed for single-
time steps. The theoretical result relates to the weak convergence of the
scheme and the associated order of convergence. The maximum step size of
a discretization is defined as max{τm+1 − τm; m = 0, . . . , M}.

Definition 1 (Weak convergence) A scheme {f̄} with maximum step size ε is
said to converge weakly to {f} with order β , if for all functions g with 2(β + 1)-
polynomially bounded derivatives, there exists a constant c such that for sufficiently
small ε,

|E[g(f)] − E[g(f)]| ≤ c × εβ . (17) 

In finance, we are interested in the correct estimation of prices of deriva-
tives, which are expectations under the risk-neutral measure of deriva-
tive-payoffs. Therefore weak convergence is a criterion of financial inter-
est. Pietersz et al. (2004) prove the following result.

TThheeoorreemm 22 (Weak convergence of the Brownian bridge scheme) The
Brownian bridge scheme (11) converges weakly with order 1 to the forward rates
process (1).

For comparison purposes, the Euler, predictor-corrector and
Milstein schemes also converge weakly with orders 1, 1, and 2, respec-
tively. In the remainder of this section, the various discretization
schemes are compared numerically. To this order, the discretization
biases of a floating leg and of a cap are estimated by MC simulation. To
obtain a bias-estimate with minimal standard error, we jointly simulate
the values of individual payments in the floating leg and cap under

their respective forward measures. Such procedure
filters out the discretization bias from the random
noise in the simulation. Note that, under the for-
ward measure, there is no drift term and therefore
the associated payoff is an unbiased estimator of the
value of the contract. If we denote by πterminal and
πfwd the numeraire-deflated contract payoff in the
terminal and forward measure, respectively, then an
unbiased estimator of the bias is πterminal − πfwd .
Alternatively, we can benchmark against the analyti-
cal value of the floating leg or cap, which yields the
unbiased estimator of the bias πterminal − πanalytical .
The variances of the two estimators are

var[πterminal − πfwd ] = var[πterminal ] + var[πfwd ]

− 2cov[πterminal , πfwd ]
, (18) 

var[πterminal − πanalytical ] = var[πterminal ] .Figure 1:: Results of the LIBOR-in-arrears test extended from Hunter et al. (2001)
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If we assume var[πterminal ] ≈ var[πfwd ], then (18) becomes

var[πterminal − πfwd ] ≈ var[πterminal ] × 2 × (1 − ρ [πterminal , πfwd ]) (20) 

Therefore, if ρ [πterminal , πfwd ] > 1
2 , we have variance reduction. In our

numerical LIBOR tests we found ρ ≈ 0.999, which means that the variance
is reduced by a factor of 500. The benchmark against the forward measure
payoff is thus also a useful tool when validating an implementation of a
LIBOR market model, since a bias that stems from an implementation error
is more easily filtered out from the random noise of the MC simulation.

The results of the MC convergence tests have been displayed in
Figure 2. The settings of the test are as follows. We use 10,000,000 simula-
tion paths, forward rates at 3%, volatility at 30%, and a 1-factor model. For
the cap, we consider a 5-years deal, paying LIBOR over the strike of 2.5% (if
at all) fixed at 1, 2, . . ., 5 years and paid at 2, 3, . . ., 6 years. For the floating
leg, LIBOR is fixed at 0.25, 0.5, . . ., 1.25 years and paid at 0.5, 0.75, . . ., 1.5
years. The values of the cap and floating leg are 0.0368 and 0.0364, respec-
tively. The results of the test clearly show that any discretization smarter
than Euler attains a discretization bias that is statistically indiscernible
from the bias obtained by the best performing discretization. In terms of
computational time, the ranking from fastest to slowest, in our numerical
tests, is: 1. Euler, 2. Milstein, 3. predictor-corrector, 4. Brownian bridge. We
emphasize here again that the strength of the Brownian bridge scheme
lies in single time-steps, and not in multi time-steps.

Illustration with a Two-factor Model
The purpose of this example is to show that the single time-step pricing
framework estimates prices sufficiently accurate for shorter maturity
deals, while providing a significant reduction of computational time
over Longstaff & Schwartz (2001) American option Monte Carlo pricing.
We consider the pricing of a Bermudan swaption in a 2-factor model

given by (under the forward measure)

dfi

fi
= (18%) ×

{
vidw1 +

√
1 − v2

i dw2

}
, vi = ti − t1

tn − t1
. (21) 

This instantaneous volatility form is entirely hypothetical, used for pur-
pose of illustration only. The volatility structure has the property of declin-
ing correlation as the expiry difference between forward rates increases.
Further parameters: Initial forward rates at 3%, a pay fixed Bermudan
swaption with the strike at 3%, we use 50,000 paths in the simulation, and
regression on all forward rates available in the model, with a constant
term, and one linear term for each forward rate. For the numerical imple-
mentation of the two-dimensional PDE, we use the Hopscotch scheme3, see
Wilmott (1998, Paragraph 48.5). The results have been displayed in Table 1.
There, NPV, Comp. time, Std. err., bp, and s, abbreviate net present value, compu-
tational time, standard error, basis points and seconds, respectively. The results

show that the single time-step pricing framework
prices the Bermudan swaptions sufficiently accurate-
ly, while providing a significant reduction of compu-
tational time compared to the least squares Monte
Carlo algorithm of Longstaff & Schwartz (2001).

For more extensive numerical tests with the sin-
gle-time step pricing framework, the reader is
referred to Pietersz et al. (2004). The test results
reported there include investigation of 1-factor model
prices, exercise boundaries and risk sensitivities.

Conclusions
We presented the new Brownian bridge scheme for
the LIBOR market model. The Brownian bridge
scheme enjoys superior accuracy for single time-
steps and is thus particularly apt for use in the sin-
gle time-step approximate pricing framework.Figure 2:: Results of the MC convergence tests

TABLE 1: RESULTS OF THE 2-FACTOR MODEL
COMPARISON.

Brownian bridge Longstaff & Schwartz (2001)
Estimated Comp.  Estimated Comp Std. err.

Bermudan NPV (bp) time (s) NPV (bp) time (s) (bp) 
2NC1 23.06  0.1 22.59  1 0.15
3NC1 49.92 0.3 49.26 3 0.29
4NC1 78.03 1 77.08 5 0.42
5NC1 105.82 2 105.23 9 0.54
6NC1 133.23 4 130.74 14 0.66
7NC1 166.93 7 165.19 22 0.84
8NC1 200.13 11 197.44 32 0.98
9NC1 230.50 17 228.48 41 1.15



% f0, scalar, time zero forward LIBOR

% a, scalar, day count fraction

% vol, scalar, volatility of forward LIBOR

% t, scalar, time (at which forward LIBOR has already been 

%   predicted)

% zt, scalar, help variable associated with forward LIBOR 

%   predicted at time t

% mean of Brownian bridge

m=s./t.*zt-0.5.*vol.^2.*s.*s./t+log(f0)+log(a); % Eqtn

(14)

%   in log-form

result =vol*exp(m)./(1.0+exp(m)); % the essential form of

the 

%   BGM drift in terms of log rates:exp(.)/(1+exp(.))

Appendix: MATLAB Code Illustrating the
Brownian Bridge Scheme
function result = fBB(n,f0,a,vol,t,z)

% calculates forward LIBOR rates in one-factor model with

% Brownian bridge drift approximation & single time step, 

% given the normal increment z

% n, no. of forward LIBORs, a positive integer

% f0, array with n elements, time zero forward LIBORs

% a, array with n elements, day count fractions

% vol, array with n elements, vol[i] = volatility of for-

ward

%  LIBOR i

% t, time (scalar)

% z, Gaussian increment ~N(0,1), scalar

f=zeros(n,1); % creates zero array with n entries, f is

used

% to store result

% first do ultimate forward LIBOR => martingale!

f(n) =f0(n)*exp(-0.5*vol(n)^ 2*t+vol(n)*sqrt(t)*z); 

% loop from penultimate LIBOR down to first LIBOR

run_drift =0.0; % used for efficient calculation of drift

for i =n-1:-1:1

zt =log(f(i+1)/f0(i+1))+0.5*vol(i+1)^ 2*t; % needed

for 

% ‘driftBB’ function below

% quad is a standard integration routine in MATLAB

% quad(@f,a,b,tol,trace,p1,p2,. . .) integrates the 

% function f(s,p1,p2,. . .) over s from a to b with 

% convergence criteria tol and trace

% for definitions of tol and trace we refer to MATLAB 

% documentation

% of course, one can use any other integration routine 

% instead of quad

% adjusting the convergence criterion of the numerical 

% integrator allows for a trade-off between accuracy

% and computational speed

% for example, the predictor-corrector scheme is a 

% special case of the Brownian bridge scheme if the 

% crudest integrator (two-point trapezoid) is used

run_drift = run_drift-quad(@driftBB,0.0,t,1.0e- 

6,0,f0(i+1),a(i+1),vol(i+1),t,zt);

f(i) =f0(i)*exp((run_drift*vol(i)-0.5*vol(i)^

2*t)+vol(i)*sqrt(t)*z); % Eqtn (4)

end

result = f; % return result f

function result = driftBB(s,f0,a,vol,t,zt)

% calculates drift term evaluated at the mean of the

Brownian 

% bridge. this function will be integrated over time.

% s, scalar, current (intermediate) time
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1. The reason for working with log rates, instead of, for example, rates or (log) relative dis-
count bond prices, is that log rates obtain the smallest simulation discretization error, by
far. See Glasserman & Merener (2003, Section 7).
2. The reason for working with the terminal measure is that the time-t terminal numeraire
bn+1is fully determined by time-t forward rates, since bn+1(ti) = 1/

∏n
j=i (1 + δj fj(ti)).

This implies that, under the terminal measure, the numeraire-deflated payoff of an interest
rate derivative can be fully determined by time-t forward rates, and thus we can estimate
prices on a finite difference grid. Such can never be the case for the spot numeraire, since
bspot (ti) = ∏i−1

j=0 (1 + δj fj(tj)), which is clearly path-dependent.
3. We thank Glyn Baker for the use of his Hopscotch implementation.
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