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Swap Vega in BGM: Pitfall and Alternative 
 
Raoul Pietersz1 and Antoon Pelsser2 
 
 
This paper contains a warning for practitioners who are developing the Libor BGM 
model for risk management of a swap-based interest rate derivative. Namely for 
certain volatility functions the estimate of swap vega may be poor. An explanation 
for this phenomenon is given and a simple alternative method is developed that 
estimates vega with clarity at a low number of simulation paths for all volatility 
functions. 
 
Introduction 
The Libor BGM interest rate model was introduced by Brace, Gątarek, Musiela 
(1997) and others. This model is presently most popular amongst both academics 
and practitioners alike. To name a reason, the Libor BGM model has the potential of 
risk managing exotic interest rate derivatives that depend on both the cap and 
swaption markets. BGM has the potential to become the central interest rate model. 
It features lognormal Libor rates and almost lognormal swap rates and 
consequently also the market standard Black formula for caps and swaptions.  
 
The choice of the volatility function allows for future volatility modeling. In this 
paper we show however that this introduces a pitfall when calculating swap vega. 
The swap vega is the sensitivity of a derivative with respect to an underlying 
swaption volatility. In combination with certain volatility functions BGM may3 
produce poorly estimated swap vega when these are calculated by re-calibration 
and with a low number of simulation paths, say 10,000. Incorrect swap vega leave 
practitioners with unknowingly taking on large uncovered positions and thus 
increasing the variance of profit and loss (P&L). Unstable vega lead to large and 
unnecessary transaction costs when rebalancing the hedging portfolio based on 
fluctuations of vega that are not really material. 
 
Re-calibration approach 
A common and usually very successful method for calculating a Greek in a model 
equipped with a calibration algorithm is to perturb market input, re-calibrate and 
then re-value the option. The difference in value divided by the perturbation size is 
then an estimate for the Greek. If however this technique is applied to the 
calculation of swap vega in the Libor BGM model, then it may (depending on the 
volatility function) yield estimates with large uncertainty. In other words, the 
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standard error of the vega is relatively high. The uncertainty disappears of course 
by increasing the number of simulation paths, but the number required for clarity 
can by far supersede 10,000, which is probably the maximum in a practical 
environment. This large uncertainty in vega has been illustrated in the exhibit, for 
three volatility function cases. 
 
[INSERT EXHIBIT SOMEWHERE HERE] 
 
We see that for a constant volatility calibration the vega is estimated with low 
uncertainty. The number of simulation paths needed for clarity of vega thus 
severely depends on the chosen calibration. To understand the cause, we look at 
swap vega in the swap market model. 
 
Swap vega and the swap market model 
A swap market model features log-normally distributed swap rates. The implied 
swaption volatility in terms of instantaneous volatility is given by 
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The swap vega is defined as the sensitivity of the value V  of a derivative with 
respect to the implied swaption volatility: 
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As may be seen from equation (1), there are an uncountable number of 
perturbations in the swap rate instantaneous volatility to obtain the very same 
perturbation in the Black implied swaption volatility. There is however a natural 1-
dimensional parameterized perturbation, namely a simple proportional increment. 
This has been illustrated in Figure 1. 

 
Figure 1: Natural increment of Black implied swaption volatility through proportional increment of the swap rate 

instantaneous volatility. 



 
In terms of an equation, 
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It may be shown that the above perturbation leads to: 

• An increase in the implied volatility for the relevant swaption bucket. 

• All other swaption volatilities remain unchanged. 

• The swap rate correlation is not changed. 
 
An alternative method 
The method is based on a perturbation in the forward rate volatility to match a 
constant swap rate volatility increment. The method is briefly hinted at in section 
10.6.3 of Rebonato, 2002, in terms of covariance matrices. In comparison, our 
derivation below is written more directly in terms of the volatility vectors. 
 
In Hull and White, 2000, it is shown that the swap rate volatility vector is a 
weighted average of forward rate volatility vectors; 
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and that a high-quality approximating formula for European swaption prices can be 
obtained by evaluating the weights at time zero. Write )0(: :: Ni

j
Ni
j ww =  and make the 

convention that iNii Tttt >== ,0)()( :σσ , then these volatility vectors can be jointly 

related through the matrix equation 
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The perturbation in swap rate volatility for the kth bucket prescribed by equation (2) 
is 
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The corresponding perturbation in the Libor volatility vectors is given by 
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With the new Libor volatility vectors, prices can be recomputed in the BGM model 
and the vegas calculated. The vega calculated with the alternative approach for the 
deal of the exhibit have been displayed in Figure 2. 
 



 
Figure 2: Vega calculated with the alternative approach. Error bars denote a 95% confidence bound based on twice the 

standard error. 

 
Reason for poor estimation of vega for certain volatility functions 
In this section an explanation is given for the poorly estimated vega of the re-
calibration approach for certain volatility functions. To check whether the true swap 
rate dynamics are captured we simply have to verify that the swap rate volatility is 
perturbed as prescribed by equation (2). This test was performed for the THFRV 
deal of the exhibit. Results show that for the re-calibration approach the swap rate 
volatility increment (in the limit) is completely different than prescribed by equation 
(2). This holds for all buckets. For illustration we restrict to the exhibit in Figure 3. 

�

Figure 3: Swap rate volatility dynamics for both the re-calibration and 
alternative approach in the setup of the exhibit. Concern here is the 
calculation of vega corresponding to bucket 30. To accomplish this, the 
price differential has to be computed in the limit of the 30 into 1 swaption 



implied volatility perturbation σ∆  tending to zero. This implies a swap rate 
quadratic variation increment of 30 2σ∆ . This total variation increment has 
to be distributed over all time periods. The first data set displays the 
constant volatility way of distributing the variation increment, namely 
proportional to the swap rate instantaneous volatility over the period. The 
second data set displays the distribution as implied by re-calibrating the 
THFRV model to the swaption volatilities. Note that for each data set the 
sum of the variation increments equals 100%. 

To understand that the resulting vega is more hard to estimate for the 
THFRV/THSRV case, note that the vega is a multiple of an expectation of a 
difference in discounted payoffs in a model with either perturbed volatility or the 
original volatility, 
 

[ ],:: PPcE NiNi −=Ψ   
here Ni:Ψ  denotes the estimated vega for bucket i , c  is the reciprocal of the 

perturbation size Ni:σ∆ , and NiP:  and P  denote the discounted payoff in the 

perturbed and original model, respectively. The expectation under the risk neutral 
measure is denoted by ][•E . The simulation variance of the vega is thus given by 
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The vega standard error is thus minimized if the covariance between the discounted 
payoff in either the original and the perturbed model is largest. This occurs under 
small perturbations of volatility as implied by the constant volatility regime. In the 
presence of a perturbation such as the THFRV recalibration of Figure 3 however the 
stochasticity in the simulation basically is moved around to other independent 
stochastic increments, thereby decreasing the covariance. This leads to the large 
uncertainty in the vega. 
 
Comparison with the swap market model 
An approximate equivalence between the Libor and swap market models was 
established in Joshi and Theis, 2002. On the basis of this equivalence, vega 
calculated with the alternative approach for the Libor market model were shown to 
be largely similar to those obtained in a swap market model. The reader is referred 
to Pietersz and Pelsser, 2003, for this and further details on the whole topic 
described in this text. 
 
Conclusions 
We showed that care should be taken when calculating swap vega per bucket in the 
Libor BGM model by re-calibration, because the perturbation in instantaneous swap 
rate volatility is hidden and potentially unstable. If the method proposed in this text 
is applied however, then it is possible to obtain correct swap vega per bucket in the 
BGM model for any volatility function at a low number of simulation paths.  
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EXHIBIT: Examples of swap vega based on re-calibration  
 
BGM. Suppose given a tenor structure 110 ,,,:0 += NTTT K  with corresponding forward 
Libor rates iL  for borrowing/lending over the period ].,[ 1+ii TT  Each forward rate is 

modeled as  
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Here iσ  denotes forward rate volatility and )1( +iW denotes a Brownian motion under 

the ith forward measure. The correlation structure is modeled by 
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Calibrations. Three volatility calibrations are considered: 

1. (THFRV) Time homogeneous forward rate volatility. The algorithm is based on 
Newton Rhapson. Maintains future cap volatility curve. 

2. (THSRV) Time homogeneous swap rate volatility. The calibration algorithm is 
a two stage bootstrap algorithm. Maintains future swaption volatility curve. 

3. (CONST) Constant forward rate volatility. Implies constant swap rate 
volatility. Distorts future volatility curves. 

The forward rate correlation was calibrated by means of a principal component 
analysis (PCA) (Hull and White, 2000). 
 
Market and deal data. We considered a 31NC1 co-terminal Bermudan payer’s 
swaption deal struck at 5% with annual compounding. The notation xNCy denotes 
an ‘x non-call y’ Bermudan option, which is exercisable into a swap with a maturity 
of x years from today and callable only after y years. The option is callable 
annually. The BGM tenor structure is 0 < 1 < 2 < … < 31. All initial forward rates 
are taken to equal 5%. The time-zero forward rate instantaneous correlation is 
assumed given by the form 
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The market European swaption volatilities were taken as displayed in Table A. 

Table A: Swaption volatilities for re-calibration illustration. 

Expiry 1 2 3 … 28 29 30 
Tenor 30 29 28 … 3 2 1 

Swaption Volatility 15.2% 15.2% 15.4% … 20.4% 20.6% 20.8% 

 
Numerical results. The numerical results have been displayed in Figure 4 and 5. The 
vega have been poorly estimated for the THFRV and THSRV cases, whereas these 
have been more accurately estimated by the constant volatility calibration. For the 



THFRV case, the vega have been calculated at 1,000,000 simulation paths, see 
figure 6. 
 

 
Figure 4: Re-calibration swap vega results for 10,000 simulation paths. Error bars around the CONST vegas denote a 
95% confidence bound based on twice the standard error. The vega is a scaled numerical derivative and we verified 

that it is insensitive to the actual size of the small volatility perturbation used. 

 

Figure 5: Empirical standard errors of the vega for 10,000 simulation paths. 



 
 

Figure 5: Re-calibration THFRV vega results for 1,000,000 simulation paths. Error 
bars denote a 95% confidence bound based on twice the standard error. The vega is a 

scaled numerical derivative and we verified that it is insensitive to the actual size of 
the small volatility perturbation used. 


