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a b s t r a c t

Guaranteed annuity options are options providing the right to convert a policyholder’s accumulated
funds to a life annuity at a fixed rate when the policy matures. These options were a common feature
in UK retirement savings contracts issued in the 1970’s and 1980’s when interest rates were high, but
caused problems for insurers as the interest rates began to fall in the 1990’s. Currently, these options are
frequently sold in the US and Japan as part of variable annuity products. The last decade the literature
on pricing and risk management of these options evolved. Until now, for pricing these options generally
a geometric Brownian motion for equity prices is assumed. However, given the long maturities of the
insurance contracts a stochastic volatility model for equity prices would be more suitable. In this paper
explicit expressions are derived for prices of guaranteed annuity options assuming stochastic volatility
for equity prices and either a 1-factor or 2-factor Gaussian interest rate model. The results indicate that
the impact of ignoring stochastic volatility can be significant.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Life insurers often include embedded options in the terms of
their products. One of the most familiar embedded options is the
Guaranteed Annuity Option (GAO). A GAO provides the right to
convert a policyholder’s accumulated funds to a life annuity at a
fixed rate when the policy matures. These options were a common
feature in retirement savings contracts issued in the 1970’s and
1980’s in the United Kingdom (UK). According to Bolton et al.
(1997) the most popular guaranteed conversion rate was about
11%. Due to the high interest rates at that time, the GAOs were far
out of the money. However, as the interest rate levels decreased
in the 1990’s and the (expected) mortality rates improved, the
value of the GAOs increased rapidly and amongst others led to
the downfall of Equitable Life in 2000. Currently, similar options
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are frequently sold under the name Guaranteed Minimum Income
Benefit (GMIB) in the US and Japan as part of variable annuity
products. The markets for variable annuities in the US and Japan
have grown explosively over the past years, and growth in Europe
is also expected, see Wyman (2007).

The last decade the literature on pricing and risk management
of these options evolved. Approaches for risk management
and hedging of GAOs were described in Dunbar (1999), Yang
(2001), Wilkie et al. (2003) and Pelsser (2003). The pricing of GAOs
and GMIBs has been described by several authors, for example van
Bezooyen et al. (1998), Boyle and Hardy (2001), Ballotta and
Haberman (2003), Boyle and Hardy (2003), Biffis and Millossovich
(2006), Chu and Kwok (2007), Bauer et al. (2008) and Marshall
et al. (2009). In most of these papers, the focus is on unit
linked deferred annuity contracts purchased originally by a single
premium. Generally a standard geometric Brownian motion is
assumed for equity prices. However, Ballotta andHaberman (2003)
and Chu and Kwok (2007) noted that, given the long maturities
of the insurance contracts, a stochastic volatility model for equity
prices would be more suitable.

In this paper explicit expressions are derived for prices of
GAOs, assuming stochastic volatility for equity prices and (of
course) stochastic interest rates. The model used for this is
the Schöbel–Zhu Hull–White (SZHW) model, introduced in van
Haastrecht et al. (2009). The model combines the stochastic

0167-6687/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2010.06.007



Author's personal copy

A. van Haastrecht et al. / Insurance: Mathematics and Economics 47 (2010) 266–277 267

volatility model of Schöbel and Zhu (1999) with the 1-factor
Gaussian interest rate model of Hull and White (1993), taking
the correlation structure between those processes explicitly into
account. Furthermore, this is extended to the case of a 2-factor
Gaussian interest rate model.

The remainder of the paper is organized as follows. First, in
Section 2 the characteristics of the GAO are given. Section 3
describes the SZHWmodel to be used for the pricing of the GAO. In
Section 5 explicit pricing formulas are derived for the GAOs given
an underlying SZHW model. These results are extended to a 2-
factor Hull–White model in Section 6. In Section 7 two numerical
examples are worked out: the first shows the impact of stochastic
volatility on the pricing of the GAO, whilst the second example
deals with a comparison of the efficiency of our explicit formula
for the 2-factor model with existing methods in the literature.
Conclusions are given in Section 8.

2. Guaranteed annuity contract

A GAO gives the holder the right to receive at the retirement
date T either a cash payment equal to the investment in the
equity fund S(T ) or a life annuity of this investment against the
guaranteed rate g . A rational policy holder would choose the
greater of the two assets. In other words, if at inception, the policy
holder is aged x and the normal retirement date is at time T , then
the annuity value at maturity is S(T )+H(T )with GAO payoffH(T )
equal to

H(T ) :=


gS(T )

n−
i=0

ciP(T , ti)− S(T )

+

, (1)

provided that the policy holder is still alive at that time. Here g
is the guaranteed rate, P(T , ti) the zero-coupon bond at time T
maturing at ti and ci the insurance amounts for time i multiplied
by the probability of survival from time T until time ti for the
policyholder. Without loss of generality, we will use unit insured
amounts in the remainder of this paper. Furthermore, we assume
that the survival probabilities are independent of the equity prices
and interest rates. Note that

H(T ) = gS(T )


n−

i=0

ciP(T , ti)− K

+

, (2)

where K := 1/g and (x)+ := max(x, 0). This last equality shows
that one can interpret the GAO as a quanto call optionwith strike K
on the zero-coupon bond portfolio

∑n
i=0 ciP(T , ti) which is payed

out using the exchange rate/currency S(T ), e.g. see Boyle andHardy
(2003). Under the risk-neutral measure Q, which uses the money
market account B(T ),

B(T ) := exp
∫ T

0
r(u)du


(3)

as numeraire, the price of this option can be expressed as

C(T ) = (R−X)PX EQ


exp


−

∫ T

0
r(u)du


gS(T )

×


n−

i=0

ciP(T , ti)− K

+
, (4)

where (R−X)PX denotes the probability that the policy holder aged
X survives R − X years, i.e. until the retirement age R at time
T . To derive an explicit expression for the GAO of (4), it is more
convenient to measure payments in terms of units of stock instead
of money market values. Mathematically, we can establish this by

using the equity price S(T ) as numeraire and changing from the
risk-neutral measure to the equity-price measure QS , see Geman
et al. (1996). Under the equity-price measure QS , the GAO price is
then given by

C(T ) = (R−X)PX gS(0)EQS


n−

i=0

ciP(T , ti)− K

+
. (5)

To evaluate this expectation we need to take into account the
dynamics of the zero-couponbonds prices P(T , ti)under the equity
price measure.

Apart from the guaranteed rate, the drivers of the GAO price are
the interest rates, the equity prices, the correlation between those,
and the survival probabilities. The combined model for interest
rates and equity prices is explained in Section 3. This model needs
an assumption for the correlation, which could be derived from
historical data. Note that if it is assumed that equity prices and
interest rates are independent, it does not matter which model
is assumed for equity prices.1 Both from historical data as well
from market quotes, one however rarely finds that the equity
prices and interest rates behave in an independent fashion. As
this dependency structure is one of the main driver for the GAO
price and its sensitivities, a non-trivial structure therefore has to
be taken into account for a proper pricing and risk management
of these derivatives, e.g. see Boyle and Hardy (2003), Ballotta and
Haberman (2003) or Baur (2009).

3. The Schöbel–Zhu–Hull–White model

The model used in this paper is the Schöbel–Zhu Hull–White
(SZHW) model, introduced in van Haastrecht et al. (2009). The
model combines the stochastic volatility model of Schöbel and
Zhu (1999) with the 1-factor Gaussian interest rate model of Hull
and White (1993), taking explicitly into account the correlation
between these processes. In the SZHW model, the process for
equity price S(t) under the risk-neutral measure Q is:

dS(t)
S(t)

= r(t)dt + ν(t)dWQ
S (t), S(0) = S0, (6)

ν(t) = κ (ψ − ν(t)) dt + τdWQ
ν (t), ν(0) = ν0. (7)

Here ν(t), which follows an Ornstein–Uhlenbeck process, is
the (instantaneous) stochastic volatility of the equity S(t). The
parameters of the volatility process are the positive constants κ
(mean reversion), ν(0) (short-term mean), ψ (long-term mean)
and τ (volatility of the volatility). We assume the interest rates
are given by a one-factor Hull and White (1993) process, whose
dynamics under Q can be parameterized by

r(t) = α(t)+ x(t), r(0) = r0, (8)

dx(t) = −ax(t)dt + σdWQ
x (t), x(0) = 0. (9)

Here a (mean reversion) and σ (volatility) are the positive
parameters of the model, and where α(t) can be used to fit the
current term structure of interest rates exactly, e.g. see Pelsser
(2000) or Brigo and Mercurio (2006). Under the above dynamics
for the equity, volatility and interest rates there exist closed-form
calibration formulas for the prices of European equity options,
e.g. see van Haastrecht et al. (2009). Moreover the model allows
for a general correlation structure, i.e.

dWQ
ν (t)dW

Q
S (t) = ρνSdt, dWQ

x (t)dW
Q
S (t) = ρxSdt,

dWQ
x (t)dW

Q
ν (t) = ρxνdt,

(10)

1 Explicit pricing formulas, for this case, under one and two-factor Gaussian
interest rates are provided in Appendix C.
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where ρνS , ρxS and ρxν are the instantaneous correlation param-
eters between the Brownian motions of the equity price, the
stochastic volatility and the interest rate. Having the flexibility
to correlate the equity price with both stochastic volatility and
stochastic interest rates yields a realistic model, which is of prac-
tical importance for the pricing and hedging of options with long-
term exposures such as guaranteed annuities, e.g. see Boyle and
Hardy (2003).

It is hardly necessary to motivate the inclusion of stochastic
volatility in a long-term derivative pricing model. First, compared
to constant volatility models, stochastic volatility models are sig-
nificantly better able to fit the market’s option data, e.g. see An-
dreasen (2006) or Andersen and Brotherton-Ratcliffe (2001).
Second, as stochastic interest rates and stochastic volatility are
empirical phenomena, the addition of these factors yields a more
realistic model, which becomes important for the pricing and
especially the hedging of long-term derivatives. The addition of
stochastic volatility and stochastic interest rates as stochastic fac-
tors is important when considering long-maturity equity deriva-
tives and has been the subject of empirical investigations most
notably by Bakshi et al. (2000). These authors show that the hedg-
ing performance of delta hedging strategies of long-maturity op-
tions improves when stochastic volatility and stochastic interest
rates are taken into account.

Stochastic volatility models have been described by several
others, for example Stein and Stein (1991), Heston (1993), Schöbel
and Zhu (1999), Duffie et al. (2000, 2003), van der Ploeg (2006)
and van Haastrecht et al. (2009). Also regime-switching models
are suggested in the literature for the pricing of equity-linked
insurance policies, e.g. see Hardy (2001) and Brigo and Mercurio
(2006). In the limit of an infinite number of regimes these models
again converge to a continuous-time stochastic volatility model,
however in discrete time they can benefit from a greater analytical
tractability. A proper model assessment, greatly depends on the
properties of the embedded options in the insurance contract.

To investigate the impact of using a stochastic volatility model
on the pricing of GAOs, note that the GAO directly depends on
the stochastic interest rates, the underlying equity fund and the
correlation between the rates and the equity. For the pricing of
GAOs we therefore choose to use the SZHW model over other
stochastic volatility models, as this model distinguishes itself
models by an explicit incorporation of the correlation between the
underlying equity fund and the term structure of interest rates,
whilst maintaining a high degree of analytical tractability.

In Section 7 the impact of stochastic volatility on the pricing
of GAOs is investigated. That is, we compare the pricing of GAOs
in the SZHW stochastic volatility model with the Black–Scholes
Hull–White (BSHW) constant volatility model. The BSHW process
for equity prices S(t) under the risk neutral measure Q is:

dS(t)
S(t)

= r(t)dt + σSdWQ
S (t), S(0) = S0, (11)

where the interest rate process r(t) follows Hull andWhite (1993)
dynamics as in (8) andwith the instantaneous correlation between
Brownianmotions of the interest rate and the equity price equal to

dWQ
S (t)dW

Q
x (t) = ρxSdt. (12)

In the following section both the SZHW and BSHW model are
calibrated to market data.

4. Calibration of the SZHW and BSHWmodel

To come up with a fair analysis of the impact of stochastic
volatility on the pricing of GAOs, we first calibrate the BSHW
and SZHW model to the same market’s option data per end July
2007. This is done by first calibrating the interest rate parameters,

then estimating the effective correlation between the interest rates
and equity, and finally we specify the equity components of the
BSHW/SZHW model. We detail the calibration approach in the
following.

4.1. Interest rates

First we calibrate the Hull and White (1993) interest rate
models to EU and US swaption markets. The option prices
and corresponding swap curves are obtained from Bloomberg.
Here a total of 151 swaption prices, which are contributed by
various issuers and maintained by Bloomberg, can be found for
different tenors and maturities ranging from 1 to 30 years. For
the calibration of the interest rate model we used close (mid)
swaption prices 31st of July 2007. We calibrate the Hull and
White (1993) models to these prices by minimizing the sum of
the squared differences between the model’s and the market’s
swaption implied volatilities. For the USmarket, the mean average
price error is 1.88% and for the EUmarket 1.34%which is very good
given the large set of optionprices that is fittedusing only 2 interest
rate parameters.

4.2. Terminal correlation

After calibrating the interest rate component, we need to
calibrate the equity and correlation parameters. For the equity
component of the GAO we assume a large stock index, for which
the Eurostoxx50 index (EU) and the S&P500 (US) are used. The
Eurostoxx50 consists of 50 large European companies is traded
on the Dow–Jones exchange, whilst the S&P500 is maintained by
Standard&Poors and consists of NASDAQ andNYSE denoted shares.
The effective 10 years correlation between the log equity returns
and the interest rates is determined by time series analysis of the
10-year swap rate and the log returns of the EuroStoxx50 (EU)
and S&P500 (US) index over the period from February 2002 to July
2007. For the EU and the US this resulted in correlation coefficients
of 34.65% and 14.64% between the interest rates and the log equity
returns.

It is well known that it is hard to calibrate the correlation
coefficient. Furthermore large bid-ask spreads have to be paid to
hedge this risk, which shows that the markets for correlation risks
are unfortunately not very liquid. As a result, additional capital
needs to be reserved in order to protect against this unhedgeable
risk.

4.3. Equity

Using the interest rate parameters and the effective correlation
parameter determined in the previous steps, the equity specific
parameters are calibrated to option prices on the EuroStoxx50
and S&P500 index. These option prices are obtained from the
implied volatility service of MarkIT, a financial data provider,
which provides (mid) implied volatility quotes by averaging quotes
from a large number of issuers. For large indices a total of 94 liquid
quotes are available for 10 maturities ranging from 1 month up to
15 years, and 10 strikes ranging from 60% to 200%.

To aid a fair comparison between the models, the SZHW
model is calibrated in such a way that the effective correlation
between interest rates and equity prices is equal to that of the
BSHW process. Finally, as the considered GAO in Section 7 only
depends on terminal asset price distribution after 10 years, we
have calibrated the equitymodel tomarket option pricesmaturing
in 10 years time. This estimation is performed by minimizing the
sum of absolute differences betweenmarket’s andmodel’s implied
volatilities. The calibration results to the Eurostoxx50 and S&P500
can be found in Table 1.

The tables show that SZHW is significantly better in captur-
ing the market’s implied volatility structure and provides an ex-
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Table 1
Comparison of the calibration results for the SZHW and BSHW model for 10-year
call options with different strikes. Calibrations are performed on market data for
options of major indices at the end of July 2007: for EU index the EuroStoxx50 is
used, whereas for US index this is the S&P500.

Strike Market (%) SZHW (%) BSHW (%)

Implied volatility, 10-year call options, EU

80 27.8 27.9 26.4
90 27.1 27.1 26.4
95 26.7 26.7 26.4

100 26.4 26.4 26.4
105 26.0 26.0 26.4
110 25.7 25.7 26.4
120 25.1 25.1 26.4

Implied volatility, 10-year call options, US

80 27.5 27.5 25.8
90 26.6 26.6 25.8
95 26.2 26.2 25.8

100 25.8 25.8 25.8
105 25.4 25.4 25.8
110 25.0 25.0 25.8
120 24.3 24.4 25.8

Fig. 1. Risk-neutral density of the log-asset price for the SZHW and BSHW model,
calibrated to EU market option data.

tremely good fit. The fit of the BSHW model is relatively poor.
Furthermore, a direct consequence of the log-normal distribution
of the BSHWmodel, it that the asset returns have thin tails, which
does not correspond to historical data nor to the market’s view on
long-term asset returns. The SZHWmodel provides amore realistic
picture on the market’s view on long-term asset returns as it can
incorporate heavy-tailed returns. The latter can bemade especially
clear by looking at the risk-neutral densities of the log-asset price
of the SZHW and BSHW model. These are plotted in Fig. 1 for the
BSHW and SZHWmodel, calibrated to EU option prices.

Clearly, the SZHWmodel incorporates the skewness and heavy-
tails seen in option markets (e.g. see Bakshi et al. (1997)) a lot
more realistically than the BSHW model. The effects of these log-
asset price distributions on the pricing of GAOs, combined with
correlated interest rates, are extensively analyzed in Section 7.

5. Pricing the guaranteed annuity option under stochastic
volatility and stochastic interest rates

For the pricing of theGAO in the SZHWmodel, i.e. the evaluation
of (5), we need to consider the pricing of zero-coupon bonds in
the Gaussian rate model. In the Hull and White (1993) model, one
has the following expression for the time-T price of a zero-coupon
bond P(T , ti)maturing at time ti:

P(T , ti) = A(T , ti)e−B(T ,ti)x(T ), (13)

where

A(T , ti) =
PM(0, ti)
PM(0, T )

× exp
[
1
2
(V (T , ti)− V (0, ti)+ V (0, T ))

]
, (14)

B(T , ti) =
1 − e−a(ti−T )

a
, (15)

V (T , ti) =
σ 2

a2


(ti − T )+

2
a
e−a(ti−T )

−
1
2a

e−2a(ti−T )
−

3
2a


, (16)

and with PM(0, s) denoting the market’s time zero discount factor
maturing at time s. Using (13), we have for the GAO price (5) under
the equity price measure QS :

C(T ) = (R−X)PX gS(0)EQS

×


n−

i=0

ciA(T , ti)e−B(T ,ti)x(T ) − K

+
. (17)

To further evaluate this expression, we first have to consider the
dynamics of x(T ) under the equity price measure QS in the SZHW
model.

5.1. Taking the equity price as numeraire

To change the money market account numeraire into the
equity price numeraire, we need to calculate the corresponding
Radon–Nikodým derivative (e.g. see Geman et al. (1996)), which
is given by

dQS

dQ
=

S(T )B(0)
S(0)B(T )

= exp
[
−

1
2

∫ T

0
ν2(u)du +

∫ T

0
ν(u)dWQ

S (u)
]
. (18)

The multi-dimensional version of Girsanov’s theorem (e.g. see Ok-
sendal (2005)) hence implies that

dWQS

S (t) → dWQ
S (t)− ν(t)dt, (19)

dWQS

x (t) → dWQ
x (t)− ρxSν(t)dt, (20)

dWQS

ν (t) → dWQ
ν (t)− ρνSν(t)dt, (21)

are QS Brownian motions. Hence under QS one has the following
model dynamics for the volatility and interest rate process

dx(t) = −ax(t)dt + ρxSσν(t)dt + σdWQS

x (t), x(0) = 0, (22)

dν(t) = κ (ψ − ν(t)) dt + ρνSτν(t)dt + τdWQS

ν (t)

= κ(ψ − ν(t))dt + τdWQS

ν (t), ν(0) = ν0, (23)

where κ := κ − ρνSτ , ψ :=
κψκ . After some calculations,

conditional on the current time filtration F0, one can show that:

ν(T ) = ψ + (ν(0)− ψ)e−κT
+ τ

∫ T

0
e−κ(T−u)dWQS

ν (u), (24)

x(T ) = ρxSσ

ψ
a


1 − e−aT 

+
ν(0)− ψ
a −κ 

e−κT
− e−aT 

+
ρxSστ

(a −κ)
∫ T

0


e−κ(T−u)

− e−a(T−u)dWQS

ν (u)

+ σ

∫ T

0
e−a(T−u)dWQS

x (u). (25)
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Using Ito’s isometry and Fubini’s theorem, we have that x(T )
(conditional on F0) is normally distributed with mean µx and
variance σ 2

x given by

µx = ρxSσ

ψ
a


1 − e−aT 

+
ν(0)− ψ
(a −κ) e−κT

− e−aT  , (26)

σ 2
x = σ 2

1 + σ 2
2 + 2ρ12σ1σ2 (27)

where

σ1 = σ


1 − e−2aT

2a
, (28)

σ2 =
ρxSστ

a −κ
×


1
2κ +

1
2a

−
2

(κ + a)
−

e−2κT
2κ −

e−2aT

2a
+

2e−(κ+a)T

(κ + a)
, (29)

ρ12 = ρxν
σ 2ρxSτ

σ1σ2(a −κ)
[
1 − e−(a+κ)T
(a +κ) −

1 − e−2aT

2a

]
. (30)

5.2. Explicit formula for the GAO price

Using the results from the previous paragraph, we can now
further evaluate the expression (17) for the GAO price in the SZHW
model: as the zero-coupon bond price is a monotone function of
one state variable, x(T ), one can use the Jamshidian (1989) result
and write the call option (17) on the sum of zero-coupon bonds as
a sum of zero-coupon bond call options: let x∗ solve

n−
i=0

ciA(T , ti)e−B(T ,ti)x∗ = K , (31)

and let

Ki := A(T , ti)e−B(T ,ti)x∗ . (32)

Using Jamshidian (1989), we have that the price of GAO is equal to
the price of a sum of zero-coupon bond options, i.e.

C(T ) = (R−X)PX gS(0)EQS

×


n−

i=0

ci

A(T , ti)e−B(T ,ti)x(T ) − Ki

+
. (33)

As x(T ) is normally distributed, we have that P(T , ti) = A(T , ti)
e−B(T ,ti)x(T ) is log-normally distributed. Provided that we know the
mean Mi and variance Vi of ln P(T , ti) under QS , one can directly
express the above expectation in terms of the Black and Scholes
(1973) formula, i.e.

C(T ) = (R−X)PX gS(0)
n−

i=0

ci

FiN


di1

− KiN


di2

, (34)

Fi = eMi+
1
2 Vi , (35)

di1 =
ln (Fi/Ki)+

1
2Vi

√
Vi

, (36)

di2 = di1 −


Vi. (37)

To determine Mi and Vi, recall from (26) and (27) that x(T ) is
normally distributed with mean µx and variance σx. Hence with
P(T , ti) = A(T , ti)e−B(T ,ti)x(T ), one can directly obtain that themean
Mi and variance Vi of ln P(T , ti) are given by

Mi = ln A(T , ti)− B(T , ti)µx, (38)

Vi = B2(T , ti)σ 2
x . (39)

Hence under the SZHW dynamics (6)–(9), we have derived the
explicit formula (34) for the price of a GAO under stochastic
volatility and correlated stochastic interest rates. With this result,
we are able to investigate the impact of stochastic volatility on the
pricing of GAOs, which will be the subject of Section 7.1.

6. Extension to two-factor interest rates

A one-factor assumption for the short interest rate unfortu-
nately that all future interest rates are driven by one factor.
As reported in Brigo and Mercurio (2006), principal components
analysis show that the full interest rate curve is (depending on the
currency) typically driven by two or more factors. When calibrat-
ing calibrating to European swaption prices, it is demonstrated in
that a two-factor Gaussian model gives significantly better fits and
produces more realistic future interest rate curves. Furthermore,
as noted in Chu and Kwok (2007), the one-factor assumption typ-
ically leads to a full correlation of all future interest rates. In par-
ticular these authors recommend to use a two-factor interest rate
model for the pricing of long-term derivatives and GAO contracts
in particular. In this section, we therefore generalize the setting of
the previous section fromone to two-factorGaussian interest rates.
That is under the risk-neutral measureQ, we assume the following
dynamics for the short interest rate process:

r(t) = ϕ(t)+ x(t)+ y(t), r(0) = r0, (40)

dx(t) = −ax(t)dt + σdWQ
x (t), x(0) = 0, (41)

dy(t) = −by(t)dt + ηdWQ
y (t), y(0) = 0, (42)

dWQ
x (t)dW

Q
y (t) = ρxydt. (43)

Here a, b (mean reversion) and σ , η (volatility) are the positive
parameters of the model and |ρxy| ≤ 1. The deterministic function
ϕ(t) can be used to exactly fit the current term structure of interest
rates, e.g. see Brigo and Mercurio (2006). Much of the analytical
structure of the one-factor Gaussian is preserved in this two-factor
setting. For example time T zero-coupon bond prices maturity at
time ti are given by

P(T , ti) = A(T , ti)e−B(a,T ,ti)x(T )−B(b,T ,ti)y(T ), (44)

where

A(T , ti) =
PM(0, ti)
PM(0, T )

× exp
[
1
2
(V (T , ti)− V (0, ti)+ V (0, T ))

]
, (45)

B(z, T , ti) =
1 − e−z(ti−T )

z
, (46)

V (T , ti) =
σ 2

a2

[
(ti − T )+

2
a
e−a(ti−T )

−
1
2a

e−2a(ti−T )
−

3
2a

]
+
η2

b2

[
(ti − T )+

2
b
e−b(ti−T )

−
1
2b

e−2b(ti−T )
−

3
2b

]
+ 2ρxy

ση

ab

[
(ti − T )+

e−a(ti−T )
− 1

a

+
e−b(ti−T )

− 1
b

−
e−(a+b)(ti−T )

− 1
a + b

]
. (47)

Substituting the zero-coupon bond expression (44) into the pricing
Eq. (5) and evaluating this expectation, results in the following
explicit expression for the GAO price:

C(T ) = (R−X)PX gS(0)
∫

∞

−∞

e−
1
2


x−µx
σx

2
σx

√
2π

× [Fi(x)N (h2(x))− KN (h1(x))] dx, (48)



Author's personal copy

A. van Haastrecht et al. / Insurance: Mathematics and Economics 47 (2010) 266–277 271

where N denotes the cumulative standard normal distribution
function and with

h1(x) :=
y∗

− µy

σy


1 − ρ2

xy

−
ρxy(x − µx)

σx

1 − ρ2

, (49)

h2(x) := h1(x)+ B(b, T , ti)σy

1 − ρ2

xy, (50)

λi(x) := ciA(T , ti)e−B(a,T ,ti)x, (51)

κi(x) := −B(b, T , ti)
[
µy −

1
2
σ 2
y (1 − ρ2

xy)B(b, T , ti)

+ ρxyσy
(x − µx)

σx

]
, (52)

Fi(x) :=

n−
i=0

λi(x)eκi(x), (53)

and with y∗ the unique solution of
n−

i=0

λi(x)e−B(b,T ,ti)y∗ = K . (54)

The proof of (48) is given in Appendix A.
In the pricing formula (48) it remains to determine the first

two moments of x(T ) and y(T ) and the (terminal) correlation
between x(T ) and y(T ), under the equity price measure QS . These
are given in Appendix B. Note that in the pricing formula (48),
one is integrating a Gaussian probability density function against a
bounded function. Because the Gaussian density functions decays
very rapidly,2 one can therefore truncate the integration domain
in an implementation of (48) to a suitable number of standard
deviations σx around the mean µx.

7. Numerical examples

In this section two numerical examples are given. In Section 7.1
the values of the GAO using the stochastic volatility model
described in 3 are compared with values that result when
a geometric Brownian motion is assumed for equity prices.
Section 7.2 deals with sensitivity analyses of different risk drivers.
In Section 7.3 our approach for two-factor interest rate models is
compared with the methods described in Chu and Kwok (2007).

7.1. Comparison results SZHW model and Black–Scholes Hull–White
model

In this section the impact of stochastic volatility of equity
prices is shown for an example policy. The results for the SZHW
model given in (6)–(9) are compared with a model that combines
a Black–Scholes process for equity prices with a one-factor Hull
White model for interest rates, the so-called Black–Scholes-
Hull–White (BSHW) model given in (11)–(12). The SZHW and
BSHW models are both calibrated to market information (implied
volatilities and interest rates) per end July 2007, see Section 4.

In the example, the policyholder is 55 years old, the retirement
age is 65, giving the maturity T of the GAO option of 10 years.
Furthermore, S(0) is assumed to be 100. The survival rates
are based on the PNMA00 table of the Continuous Mortality
Investigation (CMI) for male pensioners.3

In Table 2 the prices for the GAO are given for both models. The
prices are given for different guaranteed rates g . As mentioned

2 For instance, 99.9999% of the probability mass of a Gaussian density function
lies within five standard deviations around its mean.
3 This table is available at: http://www.actuaries.org.uk/knowledge/cmi/cmi_

tables/00_series_tables.

Table 2
Comparison of GAO total values and time values of the SZHW and BSHW model
for different guaranteed rates g . In the examples: at-the-money guaranteed rate g
is 8.21% (EU) and 8.44% (US), effective correlation between the stock price and the
interest rates is 34.65% (EU) and 14.64% (US).

Srike g (%) SZHW BSHW Rel. Diff (%)

Total value, EU

8.23 3.82 3.07 +24.5
7 0.59 0.39 +50.7
8 2.89 2.26 +28.0
9 8.40 7.25 +15.8
10 17.02 15.53 +9.6
11 27.37 25.69 +6.5
12 38.30 36.47 +5.0
13 49.35 47.37 +4.2

Time value, EU

8.23 3.82 3.07 +24.5
7 0.59 0.39 +50.7
8 2.89 2.26 +28.0
9 2.43 1.29 +88.9
10 −0.11 −1.60 −93.0
11 −0.93 −2.60 −64.4
12 −1.17 −2.99 −61.0
13 −1.28 −3.26 −60.7

Total value, US

8.44 5.43 4.84 +12.0
7 1.04 0.88 +18.0
8 3.54 3.11 +13.6
9 8.53 7.74 +10.3
10 16.06 14.90 +7.8
11 25.42 23.96 +6.1
12 35.73 34.06 +4.9
13 46.43 44.58 +4.1

Time value, US

8.44 5.43 4.84 +12.0
7 1.04 0.88 +18.0
8 3.54 3.11 +13.6
9 7.27 6.47 +12.3
10 4.15 2.99 +39.1
11 2.86 1.40 +104.2
12 2.53 0.86 +195.5
13 2.58 0.74 +250.1

in Section 1, the most popular conversion rate in the 1970s and
1980swas around 11%. Currently, the GMIB contracts in the US and
Japan will be based on at-the-money guaranteed conversion rates.
The results for the SZHW model are obtained using the explicit
expressions given in (34)–(39). The pricing formula for the BSHW is
a special case of this, and is also derived in Ballotta and Haberman
(2003). The results are determined for EU data and US data with an
equity-interest rate correlation of respectively 0.3465 and 0.1464
(see Section 4). The table presents the total value of the GAO aswell
as the time value. The time value is determined as the difference
between the total value and the (forward) intrinsic value. The latter
is determined by setting all volatilities to zero. While the total
value gives the impact on the total prices, the time value gives
more insight in the relative impact of the models (since those only
have impact the time value). Also, the time value of the GAO is
often reported separately, for example within Embedded Value
reporting of insurers.

The table shows that the use of a stochastic volatility model
such as the SZHWmodel has a significant impact on the total value
of the GAO. The value increases with 4%–50% for a EU data and
4%–17% for a US data, depending on the level of the guarantee.

These price differences are not caused by a volatility effect as
both models are calibrated to the same market data in Section 3.
Fig. 1 of Section 3, however showed that the distribution of equity
prices under a SZHWprocess has a heavy left tail, but also relatively
more mass on the right of the distribution compared to the BSHW
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Table 3
Comparison of the simulated distribution of discounted payoffs for the SZHW and
BSHW model: reported are the probabilities that the discounted payoff lies in a
specific interval.

Payoff SZHW (%) BSHW (%) Diff (%)

0 58.3 58.5 −0.2
(0, 1] 7.5 5.2 2.2
(1, 10] 22.0 26.3 −4.3
(10, 20] 7.2 6.8 0.4
(20, 30] 2.7 1.9 0.8
(30, 40] 1.2 0.7 0.4
(40, 50] 0.5 0.3 0.2
(50, 60] 0.3 0.1 0.1
(60, 70] 0.2 0.1 0.1
(70, 80] 0.1 0.1 0.0
(80, 90] 0.1 0.0 0.0
(90, 100] 0.0 0.0 0.0
(100, 110] 0.0 0.0 0.0
>110 0.1 0.0 0.1

process. Given a positive correlation between equity prices and
interest rates, and the fact that the GAO pays off when interest
rates are low, this means that for the SZHW model there will be
some very lowpayoffs for equity prices in the left tail, but relatively
higher payoffs for the remaining scenarios. This is illustrated in
Table 3. For the EU data and g = 8.23%, 50,000 Monte Carlo
simulations are generated for both models and the discounted
payoffs are segmented in specific intervals.

The table shows that indeed:
• SZHW has relatively much payoffs in the interval (0, 1) due to

the heavy left tail.
• For the remaining intervals, SZHW has more mass to the right,

illustrated by the less frequent payoffs in the interval (1, 10) and
more frequent payoffs in the intervals greater than 10.

Since the models only have an impact on the time value, the
relative changes in time value for in-the-money GAOs are higher,
which is also illustrated in Table 2. One might wonder why the
time values for the EU data are negative for high levels of g . The
reason for this is that due to the positive correlation between
interest rates and equity prices, higher equity volatility means that
there is a higher chance of lower payoffs, leading to a lower total
option value compared to the intrinsic value. For the US data no
negative time values are reported. Reason for this is that due to
the lower correlation between interest rates and equity prices, the
effect described above is less significant than the positive impact
of interest rates on the time value.

7.2. Impact of different risk drivers

As noted in Section 2, we assume that the survival probabilities
are independent of the equity prices and interest rates. It is
interesting though to see the impact of significant changes in those
survival probabilities on the GAO price and to compare it with
the impact of changes in equity prices and interest rates. To get a
feeling about this, we apply shocks for these risk drivers as defined
in the technical specifications of the Quantitative Impact Study
5 (QIS5) of CEIOPS.4 QIS5 is the basis for the Solvency 2, a new
risk-based framework for regulatory required solvency capital. The
shocks are aimed to represent the 99.5% percentile on a 1 year
horizon.

Table 4 shows the impact of 2 shifts in survival probabilities. The
shifts are based on a 25% reduction of mortality rates (longevity
risk) and a 15% increase in mortality rates (mortality risk). Table 5
shows the impact of 2 shifts in the yield curve. The shifts are given
in Appendix D. Table 6 shows the impact of shocks of +39% and
−/−39% on equity prices.

4 Committee of European Insurance and Occupational Pensions Supervisors.

Table 4
Impact of survival probabilities on GAO total value.

Strike g (%) SZHW Longevity Mortality

Total value, EU

8.23 3.82 7.28 2.53
7 0.59 1.61 0.31
8 2.89 5.82 1.85
9 8.40 13.63 6.17
10 17.02 24.01 13.72
11 27.37 35.49 23.38
12 38.30 47.25 33.86
13 49.35 59.05 44.52

Total value, US

8.44 5.43 9.08 3.88
7 1.04 2.88 0.85
8 3.54 7.61 3.07
9 8.53 15.22 7.71
10 16.06 25.05 14.90
11 25.42 36.13 24.01
12 35.73 47.76 34.14
13 46.43 59.56 44.68

Table 5
Impact of changes in yield curve on GAO total value.

Strike g (%) SZHW Rates down Rates up

Total value, EU

8.23 3.82 9.91 1.11
7 0.59 2.49 0.10
8 2.89 8.10 0.77
9 8.40 17.38 3.24
10 17.02 28.80 8.65
11 27.37 40.94 16.71
12 38.30 53.23 26.19
13 49.35 65.54 36.13

Total value, US

8.44 5.43 10.48 1.54
7 1.04 3.42 0.25
8 3.54 8.83 1.15
9 8.53 17.20 3.58
10 16.06 27.69 8.21
11 25.42 39.27 15.05
12 35.73 51.26 23.50
13 46.43 63.37 32.79

Table 6
Impact of shocks on equity prices on GAO total value.

Strike g (%) SZHW Equity up Equity down

Total value, EU

8.23 3.82 5.31 2.33
7 0.59 0.81 0.36
8 2.89 4.01 1.76
9 8.40 11.67 5.12
10 17.02 23.66 10.38
11 27.37 38.04 16.70
12 38.30 53.24 23.36
13 49.35 68.60 30.10

Total value, US

8.44 5.43 7.54 3.31
7 1.04 1.44 0.63
8 3.54 4.92 2.16
9 8.53 11.86 5.20
10 16.06 22.33 9.80
11 25.42 35.33 15.51
12 35.73 49.67 21.80
13 46.43 64.53 28.32

Although the impact differs for different strike levels, the tables
show that the impact of the different risk drivers is reasonably
similar for this particular example. Table 4 shows that indeed the
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GAO value increases significantly when a shift down is applied to
the mortality rates. A shift up in mortality rate has the opposite
effect on the value of the GAO. Similar effects can be seen in Table 5
for the yield curve shifts. Note that the impact of the yield curve
shifts is (coincidently) approximately equal to a 1% shift in the
strike level. Of course, higher (lower) equity prices will lead to
higher (lower) payments, as shown in Table 6. But for low strike
prices, the impact of changes in equity prices is less than the impact
of interest rates and longevity

7.3. Comparison results of the two-factor model with Chu and Kwok
(2007)

A special case of our modeling framework is considered
in Chu and Kwok (2007), namely an equity model with constant
volatility. Chu and Kwok (2007) argue that for a two-factor
Gaussian interest rate model no analytical pricing formulas exist.
Therefore they propose three approximation methods for the
valuation of GAOs:

1. Method of minimum variance duration: This method approxi-
mates the annuity with a single zero-coupon bond and mini-
mizes the approximation error by choosing the maturity of the
zero-coupon bond to be equal to the stochastic duration.

2. Edgeworth expansion: This method makes use of the Edgeworth
approximation of the probability distribution of the value of the
annuity (see Collin-Dufresne and Goldstein (2002)).

3. Affine approximation: This method approximates the condi-
tional distributions of the risk factors in affine diffusions.

In the paper the runtimes and approximation errors are compared
with benchmark results using Monte Carlo simulations and the
method of minimum variance duration comes out most favorably.
The other approximation methods do have very long runtime, the
Edgeworth expansion method requires even more time then a
Monte Carlo simulation.

However, as we have shown in Section 6, it is possible to derive
an explicit expression where only a single numerical integration is
needed for the case of a two-factor Gaussian interest rate model.
It takes hardly any runtime (a couple of hundreds of seconds) to
do this numerical integration, whilst it provides exact results. The
parameter setting used is the same as in Chu and Kwok (2007)
and is given in Appendix E. Table 7 shows a comparison of the
results for the different methods and a Monte Carlo simulation
with 1000,000 sample paths, which are compared to the exact GAO
prices obtained by the quasi closed-form expression in (48).

The table shows that the approximation methods considered
by Chu and Kwok (2007) break down for higher interest rates,
where the guarantee is out-the-money. Note hereby that the
first moment of the underlying distribution is main driving
factor for the option price, while for the price of out-of-the-
money options the higher moments play a more important role,
e.g. see Brigo and Mercurio (2006). Taking into account that
the mean of the underlying annuity is determined exactly in
the approximations, this implies that these methods have severe
difficulties in estimating the higher moments of the underlying
distribution, resulting in poor an approximation quality of the out-
of-money GAOs, see Table 7.

The explicit (quasi closed-form) exact formula (48) does give
highly accurate prices for GAOs across for all strike levels. Both
the Monte Carlo method as the explicit formula are unbiased.
Differences between the Monte Carlo method and the exact
formula are sampling errors as we can see that the 95% confidence
interval of theMonte Carlomethod for all cases is overlappingwith
the price of the explicit exact formula. Typically such Monte Carlo
noise increases for out-of-the-money options (e.g. see Glasserman
(2003)) as can also be seen from Table 7 for the considered GAOs.

The careful reader may notice that in the above example the sign
of the difference between the Monte Carlo price and the exact
formula is always negative, which is due to the fact that the same
set of Monte Carlo paths is used for all strikes.

Where the Affine approximation method and the Edgeworth
expansion method take require a very long runtime (according
to Chu and Kwok (2007), the runtime of the Edgeworth expansion
is even larger than of the Monte Carlo method with 100,000
sample paths), the runtime the explicit quasi-closed-formmethod
is comparable to the method of minimum variance duration and
takes only a few hundreds of a second. The closed-form exact
approach proposed in Section 6 is preferable compared to the
approaches described in Chu and Kwok (2007), as it gives exact
GAO prices over all strike levels whilst being computationally very
efficient.

8. Conclusion

In this paper explicit formulas for the pricing of GAOs using
a stochastic volatility model for equity prices are given. The
considered framework further allows for 1-factor and 2-factor
Gaussian interest rates, whilst taking the correlation between the
equity, the stochastic volatility and the stochastic interest rates
explicitly into account. The basis for the explicit formulas for GAOs
lies in the fact that under the equity price measure, the GAO can be
written in terms of an option on a sum of coupon bearing bonds:
after some calculations the Jamshidian (1989) result can be used
that expresses the latter option on a sum into a sum of options
which can be priced in closed-form. For 1-factor interest rates the
price of a GAO can be expressed as sum of Black and Scholes (1973)
options, whereas an explicit expression using a single integral can
be established for the case of a two-factor Gaussian interest rate
model.

A special case of our modeling framework, that is an equity
model with constant volatility, is considered in Chu and Kwok
(2007). These authors argue that for a two-factor Gaussian interest
ratemodel no analytical pricing formulas exist and propose several
approximationmethods for the valuation of GAOs. In this paperwe
did derive an exact quasi-closed-form pricing formula in terms of a
single numerical integral, which called for a comparison between
these valuation methods. The numerical results show that the use
of the quasi closed-form exact approach is preferable compared to
the approaches described in Chu and Kwok (2007), as it gives exact
GAO prices over all strike levels whilst being computational very
efficient to compute.

Because GAOs generally involve long-dated maturities and the
annuity payoff is directly linked to the performance of an equity
fund, it is important for a proper pricing and risk management
of such products to consider realistic returns for the equity
fund combined with a non-trivial dependency structure with the
underlying interest rates. Using US and the EUmarket option data,
we investigated the effects of a stochastic volatility model for
the pricing of GAOs. Time-series analysis between the considered
equity funds (S&P500 for US and EuroStoxx50 for EU) and the long
term interest rates revealed a substantial positive correlation. We
then calibrated the stochastic and the constant volatility model
to the market’s options and this correlation, making sure that
the implied correlation between the terminal asset price and the
interest rates is equal in both frameworks for a fair comparison.
For both markets, the results indicate that the impact of using
a stochastic volatility model is significant. From the sensitivity
analysis it followed that the volatility riskmight also be dominated
by changes in mortality or interest rates, depending on the
moneyness of the contract. In the considered empirical test cases
we found that, the prices for the GAOs using a stochastic volatility
model for equity prices are considerably higher in comparison to
the constant volatility model, especially for GAOs with out-of-the-
money strikes.
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Table 7
Comparison between the explicit (quasi closed-form) exact formula in (48), the method of minimum variance duration, the Edgeworth expansion, the affine approximation
and a Monte Carlo simulation. Numbers in parentheses are the relative differences compared to the exact formula for the GAO price. Values lying within the 95% confidence
interval of the Monte Carlo estimates are starred (*) and made bold.

r0 (%) Strike
level (%)

Exact Min. var.
duration

Edgeworth
expansion

Affine approx Monte Carlo
(±95% interval)

0.5 127 11.800∗ 11.810∗ (0.1%) 11.816∗ (0.1%) 11.7913∗ (−0.1%) 11.792
1.0 123 9.756∗ 9.771∗ (0.2%) 9.750∗ (−0.1%) 9.7412∗ (−0.1%) 9.749
1.5 118 7.874∗ 7.896∗ (0.3%) 7.848∗ (−0.3%) 7.8529∗ (−0.3%) 7.868
2.0 114 6.169∗ 6.195 (0.4%) 6.1293 (−0.6%) 6.142∗ (−0.4%) 6.163
2.5 110 4.661∗ 4.686 (0.5%) 4.6199 (−0.9%) 4.631 (−0.6%) 4.656
3.0 106 3.373∗ 3.391 (0.5%) 3.3408 (−1.0%) 3.346 (−0.8%) 3.368
3.5 103 2.322∗ 2.327∗ (0.2%) 2.300 (−0.9%) 2.304∗ (−0.7%) 2.317
4.0 99 1.510∗ 1.501∗ (−0.6%) 1.490 (−1.3%) 1.506∗ (−0.3%) 1.507
4.5 96 0.921∗ 0.901 (−2.2%) 0.8942 (−2.9%) 0.931 (1.0%) 0.920
5.0 93 0.525∗ 0.498 (−5.1%) 0.4922 (−6.2%) 0.544 (3.6%) 0.524
5.5 90 0.278∗ 0.252 (−9.4%) − − 0.278
6.0 88 0.136∗ 0.115 (−15.4%) − − 0.135
6.5 85 0.061∗ 0.047 (−23.3%) − − 0.061
7.0 83 0.025∗ 0.017 (−32.8%) − − 0.025

Appendix A. Pricing of a coupon bearing option under two-
factor interest rates

Let the pair (x(T ), y(T )) follow a bivariate normal distribution,
i.e. with means µx, µy, variances σ 2

x , σ
2
y and correlation ρ. The

probability density function f (x, y)of (x(T ), y(T )) is hence givenby

f (x, y)

=

exp

−

1
2(1−ρ2xy)

[
x−µx
σx

2
− 2ρxy

(x−µx)(y−µy)
σxσy

+


y−µy
σy

2]
2πσxσy


1 − ρ2

xy

. (55)

Furthermore, let the time T price of the zero-coupon bond P(T , ti)
maturing at time ti be given by

P(T , ti) = A(T , ti)e−B(a,T ,ti)x(T )−B(b,T ,ti)y(T ). (56)

We then come to the following proposition.

Proposition A.1. The expected value of the coupon-bearing option
maturing at time T , paying coupons ci at times i = 0, . . . , n and with
strike K is given by a one-dimensional integral, i.e.

E


n−

i=0

ciP(T , ti)− K

+

=

∫
∞

−∞

∫
∞

−∞


n−

i=0

ciA(T , ti)e−B(a,T ,ti)x(T )−B(b,T ,ti)y(T ) − K

+

× f (x, y)dydx

=

∫
∞

−∞

e−
1
2


x−µx
σx

2
σx

√
2π

[Fi(x)N (h2(x))− KN (h1(x))] dx

=: G

µx, µy, σx, σy, ρxy


, (57)

where N denotes the cumulative standard normal distribution
function, with

h1(x) :=
y∗

− µy

σy


1 − ρ2

xy

−
ρxy(x − µx)

σx


1 − ρ2

xy

,

h2(x) := h1(x)+ B(b, T , ti)σy

1 − ρ2

xy,

λi(x) := ciA(T , ti)e−B(a,T ,ti)x,

κi(x) := −B(b, T , ti)

×

[
µy −

1
2
σ 2
y (1 − ρ2

xy)B(b, T , ti)+ ρxyσy
(x − µx)

σx

]
,

Fi(x) :=

n−
i=0

λi(x)eκi(x)

and with y∗ the unique solution of
n−

i=0

λi(x)e−B(b,T ,ti)y∗ = K .

Proof. The result is analogous to the derivation of the swaption
price under the G2++ model, we therefore refer to equation
(4.31) in Brigo and Mercurio (2006) on pp. 158–159 and the
corresponding proof on pp. 173–175. �

Appendix B. Moments and terminal correlation of the two-
factor Gaussian interest rates

To determine the moments of x(T ) and y(T ) under the equity
price measure, we need to consider the dynamics of (40), there
stated under the risk-neutral measure Q, under the equity price
measure QS . To change the underlying numeraire (e.g. see Geman
et al. (1996)), we calculate the corresponding Radon–Nikodým
derivative which is given by

dQS

dQ
=

S(T )B(0)
S(0)B(T )

= exp
[
−

1
2

∫ T

0
ν2(u)du +

∫ T

0
ν(u)dWQ

S (u)
]
. (58)

The multi-dimensional version of Girsanov’s theorem (e.g. see Ok-
sendal (2005)) hence implies that

dWQS

S (t) → dWQ
S (t)− ν(t)dt, (59)

dWQS

x (t) → dWQ
x (t)− ρxSν(t)dt, (60)

dWQS

y (t) → dWQ
y (t)− ρySν(t)dt, (61)

dWQS

ν (t) → dWQ
ν (t)− ρνSν(t)dt, (62)

are QS Brownian motions. Hence under QS one has the following
model dynamics for the volatility and interest rate process

dx(t) = −ax(t)dt + ρxSσν(t)dt + σdWQS

x (t), x(0) = 0, (63)

dy(t) = −ay(t)dt + ρySην(t)dt + ηdWQS

y (t), y(0) = 0, (64)

dν(t) =κ ψ − ν(t)

dt + τdWQS

ν (t), ν(0) = ν0, (65)
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whereκ := κ − ρνSτ , ψ :=
κψκ . Integrating the latter dynamics

(conditional on the current time filtration F0) yields the following
explicit solutions:

ν(T ) = ψ + (ν(0)− ψ)e−κT
+ τ

∫ T

0
e−κ(T−u)dWQS

ν (u), (66)

x(T ) = ρxSσ

ψ
a


1 − e−aT 

+
ν(0)− ψ
a −κ 

e−κT
− e−aT 

+
ρxSστ

(a −κ)
∫ T

0


e−κ(T−u)

− e−a(T−u)dWQS

ν (u)

+ σ

∫ T

0
e−a(T−u)dWQS

x (u), (67)

y(T ) = ρySη

ψ
b


1 − e−bT 

+
ν(0)− ψ
b −κ 

e−κT
− e−bT 

+
ρySητ

(b −κ)
∫ T

0


e−κ(T−u)

− e−b(T−u)dWQS

ν (u)

+ η

∫ T

0
e−b(T−u)dWQS

y (u). (68)

Using Ito’s isometry, one has that the x(T ), y(T ) (conditional onF0)
is normally distributedwithmeansµx, µy and variance σ 2

x , σ
2
y and

correlation ρxy(T ) given by

µx := ρxSσ

ψ
a


1 − e−aT 

+
ν(0)− ψ
(a −κ) e−κT

− e−aT  , (69)

µy := ρySσ

ψ
b


1 − e−bT 

+
ν(0)− ψ
(b −κ) e−κT

− e−bT  , (70)

σ 2
x := σ 2

1 (σ , a)+ σ 2
2 (σ , a, ρxS)+ 2ρ12(σ , a, ρxν, ρxS)

× σ1(σ , a)σ2(σ , a, ρxS), (71)

σ 2
y := σ 2

1 (η, b)+ σ 2
2 (η, b, ρyS)+ 2ρ12(η, b, ρyν, ρyS)

× σ1(η, b)σ2(η, b, ρyS), (72)

ρxy :=
Cov (x(T ), y(T ))

σxσy
, (73)

where

σ1(λ, z) := λ


1 − e−2zT

2z
,

σ2(λ, z, ρ)

:=
ρλτ

z −κ


1
2κ +

1
2z

−
2

(κ + z)
−

e−2κT
2κ −

e−2zT

2z
+

2e−(κ+z)T

(κ + z)
,

ρ12(λ, z, ρ1, ρ2) := ρ1
λ2ρ2τ

σ1(λ, z)σ2(λ, z, ρ2)(z −κ)
×

[
1 − e−(z+κ)T
(z +κ) −

1 − e−2zT

2z

]
,

Cov (x(T ), y(T ))

:= ρxyση

[
1 − e−(a+b)T

(a + b)

]
+ ρxνσ

ρySητ

(b −κ)
[
1 − e−(a+κ)T
(a +κ) −

1 − e−(a+b)T

(a + b)

]
+ ρyνη

ρxSστ

(a −κ)
[
1 − e−(b+κ)T
(b +κ) −

1 − e−(a+b)T

(a + b)

]
+
ρxSστ

(a −κ) ρySητ(b −κ)
[
1 − e−2κT

2κ +
1 − e−(a+b)T

(a + b)

−
1 − e−(a+κ)T
(a +κ) −

1 − e−(b+κ)T
(b +κ)

]
.

Appendix C. Special case: pricing formulas with an indepen-
dent equity price process or pure interest rate guaranteed an-
nuities

If one does not link the GAO to the performance of an equity
fund (e.g. seen in the Netherlands) the expression (4) for the GAO
price can be simplified significantly. One then has that the GAO
price is given by

C(T ) = (R−X)PX EQ


exp


−

∫ T

0
r(u)du



× g


n−

i=0

ciP(T , ti)− K

+
(74)

= (R−X)PX gP(0, T )EQT


n−

i=0

ciP(T , ti)− K

+
, (75)

where the above expectation is takenwith respect to the T -forward
measure QT , which uses the zero-coupon bond price maturing at
time T as numeraire.Moreover, also in case one assumes the equity
price is independent from the annuity, e.g. according to Boyle
and Hardy (2003) and Pelsser (2003), one ends up with the same
expectation as (74); to obtain this price, one only has to multiply
formula (74) with the expected future equity price EQT

[S(T )]. In
the following sections we will derive explicit expressions for the
GAO price under both one-factor and two-factor Gaussian interest
rates.

C.1. Hull–White model

Under QT , one has the following expression for the stochastic
process x(T ), driving the short interest rate (e.g. see Brigo and
Mercurio (2006) and Pelsser (2000)):

x(T ) = µT
x + σ

∫ T

0
e−a(T−u)dWQ T

x (u), (76)

hence from Ito’s isometry, we have that x(T ) is normally
distributed with mean µx and variance σ 2

x given by

µT
x := −

σ 2

a2

1 − e−aT 

+
σ 2

2a2

1 − e−2aT  , (77)

σ T
x := σ


1 − e−2aT

2a
. (78)

Just as in Section 5, we have that x(T ) is normally distributed,
i.e. with the same variance σ 2

x , but with a differentmeanµT
x . Hence

completely analogous to Section 5, one can use the Jamshidian
(1989) result and write the call option on the sum of zero-coupon
bonds as a sum of zero-coupon bond call options: let x∗ solve

n−
i=0

ciA(T , ti)e−B(T ,ti)x∗ = K , (79)

and let

Ki := A(T , ti)e−B(T ,ti)x∗ . (80)

Using Jamshidian (1989), we can have that the price of a GAO is
given by the price of a sum of zero-coupon bond options, i.e.

C(T ) = (R−X)PX gP(0, T )

× EQT


n−

i=0

ci

A(T , ti)e−B(T ,ti)x(T ) − Ki

+
. (81)
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As the bond price again follows a log-normal distribution in the
Gaussian model, one can express GAO price in terms of the Black
and Scholes (1973) formula, i.e.

C(T ) = (R−X)PX gP(0, T )
n−

i=0

ci

FiN


di1

− KiN


di2

, (82)

Fi = eMi+
1
2 Vi , (83)

di1 =
ln (Fi/Ki)+

1
2Vi

√
Vi

, (84)

di2 = di1 −


Vi, (85)

where

Mi = ln A(T , ti)− B(T , ti)µT
x , (86)

Vi = B2(T , ti)

σ T
x

2
, (87)

and note that the above expression only deviates from (34) in the
different means and variances for the x(T ) process.

C.2. Gaussian two-factor model

Under QT , one has the following expression for the stochastic
processes x(T ), y(T ) that drive the short interest rate (e.g. see Brigo
and Mercurio (2006)):

x(T ) = µT
x + σ

∫ T

0
e−a(T−u)dWQ T

x (u),

y(T ) = µT
y + σ

∫ T

0
e−b(T−u)dWQ T

y (u),

(88)

hence x(T ), y(T ) is normally distributed with means µT
x , µ

T
y ,

variances σ 2
x , σ

2
y and correlation ρxy(T ) given by

µT
x := −


σ 2

a2
+ ρxy

ση

ab

 
1 − e−aT 

+
σ 2

2a2

1 − e−2aT 

+
ρxyση

b(a + b)


1 − e−(a+b)T  , (89)

µT
y := −


η2

b2
+ ρxy

ση

ab

 
1 − e−bT 

+
η2

2b2

1 − e−2bT 

+
ρxyση

a(a + b)


1 − e−(a+b)T  , (90)

σx := σ


1 − e−2aT

2a
, (91)

σy := η


1 − e−2bT

2b
, (92)

ρxy(T ) := ρxy
ση

σxσy


1 − e−(a+b)T

(a + b)


. (93)

Hence analogously to Section 6, one has that the GAO price is given
by

C(T ) = (R−X)PX gP(0, T )G

µT

x , µ
T
y , σx, σy, ρxy(T )


, (94)

where G is given by an explicit expression, i.e. defined by Eq. (57)
of Appendix A.

Appendix D. Yield curve shocks

In Section 7.2 the 2 shocks given in Table 8 are applied to
the yield curves. These shocks are aimed to represent the 99.5%
percentile on a 1 year horizon in the Quantitative Impact Study 5
of CEIOPS.

Table 8
Percentage yield changes for the up and down sensitivity shock in QIS5.

Maturity Up (%) Down (%)

1 75 −75
2 65 −65
3 56 −56
4 50 −50
5 46 −46
6 42 −42
7 39 −39
8 36 −36
9 33 −33

10 31 −31
11 30 −30
12 29 −29
13 28 −28
14 28 −28
15 27 −27
16 28 −28
17 28 −28
18 28 −28
19 29 −29
20 29 −29
21 29 −29
22 30 −30
23 30 −30
24 30 −30
25 30 −30
26 30 −30
27 30 −30
28 30 −30
29 30 −30
30 30 −30

Appendix E. Model setup of the Chu and Kwok (2007) case

In this appendix we describe the numerical input of the ex-
ample being used in Chu and Kwok (2007). We also report the
relative differences between the GAO price obtained by their
methods and the explicit (quasi-closed-form) exact expression in
(48) for that example; note that as the Black–Scholes G2++ model,
used in Chu and Kwok (2007), is special case of the Schöbel–Zhu
G2++ considered in Section 6, we can one on one translate their pa-
rameters into our modeling framework. As the notation is slightly
different, we explicitly provide this translation into our modeling
framework.

The GAO is specified using the guaranteed rate g = 9, the
current age of the policy holder x = 50 and his retirement age
is r = 65, with corresponding probability of survival (R−X)PX =

0.9091 and time to expiry for the GAO equal to T = 15 years. The
equity price ismodeled by the Black and Scholes (1973)modelwith
parameters:

q = 5%, S(0) = 100 exp(−q · T ) = 47.24, σS = 10%, (95)

where q denotes the continuous dividend rate and σS the constant
volatility of the equity price. The current (continuous) yield
curve is given by (97) and for the G2++ interest rate model
(e.g. see Brigo and Mercurio (2006)) the following parameters are
used:

a = 0.77, b = 0.08, σ = 2%, η = 1%, ρxy = −0.7 (96)

where the correlations between equity and interest rate drivers
given by ρxS = 0.5 and ρyS = 0.0071. Finally, the i-year survival
probabilities ci from policy holder’s retirement age 65 are provided
in Table 9.

In Section 7.3 we compared the prices of the explicit
solution (48) and estimates obtained using 1000,000 Monte Carlo
simulationswith theMinimumVariance, the Edgeworth andAffine
Approximation method which are used in Chu and Kwok (2007).
These results can be found in Table 7, where a comparison is
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Table 9
i-year survival probabilities ci from policy holder’s retirement age 65. A maximum
age of 100 is assumed, that is for all j > 35: cj = 0.

c0 1.0000 c9 0.8304 c18 0.4889 c27 0.0998
c1 0.9871 c10 0.8018 c19 0.4414 c28 0.0725
c2 0.9730 c11 0.7708 c20 0.3934 c29 0.0503
c3 0.9578 c12 0.7374 c21 0.3454 c30 0.0330
c4 0.9411 c13 0.7015 c22 0.2981 c31 0.0203
c5 0.9229 c14 0.6632 c23 0.2523 c32 0.0115
c6 0.9029 c15 0.6226 c24 0.2088 c33 0.0059
c7 0.8808 c16 0.5798 c25 0.1684 c34 0.0027
c8 0.8567 c17 0.5351 c26 0.1319 c35 0.0011

given for different levels r0 of the yield curve provided by the
(continuous) yields

Y (T ) = r0 + 0.04(1 − e−0.2T ). (97)
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