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ACCOUNTING FOR STOCHASTIC

INTEREST RATES, STOCHASTIC

VOLATILITY AND A GENERAL

CORRELATION STRUCTURE IN

THE VALUATION OF FORWARD

STARTING OPTIONS

ALEXANDER VAN HAASTRECHT*
ANTOON PELSSER

A quantitative analysis on the pricing of forward starting options under stochastic
volatility and stochastic interest rates is performed. The main finding is that for-
ward starting options not only depend on future smiles, but also directly on the
evolution of the interest rates as well as the dependency structures among 
the underlying asset, the interest rates, and the stochastic volatility: compared to
vanilla options, dynamic structures such as forward starting options are much
more sensitive to model specifications such as volatility, interest rate, and correla-
tion movements. We conclude that it is of crucial importance to take all these 
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factors explicitly into account for a proper valuation and risk management of
these securities. The performed analysis is facilitated by deriving closed-form for-
mulas for the valuation of forward starting options, hereby taking the stochastic
volatility, stochastic interest rates as well the dependency structure between all
these processes explicitly into account. The valuation framework is derived using
a probabilistic approach, enabling a fast and efficient evaluation of the option
price by Fourier inverting the forward starting characteristic functions. © 2010
Wiley Periodicals, Inc. Jrl Fut Mark 31:103–125, 2011

INTRODUCTION

Due to the increasing popularity for exotic structures like cliquets and ratchet
options, the pricing of forward starting options (which can be seen as natural
building blocks for these contracts) has recently attracted a lot of attention from
both academics and practitioners. Forward starting options belong to the class
of path-dependent European-style contracts in the sense that they not only
depend on the terminal value of the underlying asset, but also on the asset price
at an intermediate point (often dubbed as “strike determination date”).
Typically, a forward starting contract gives the holder a call (or put) option with
a strike that is set equal to a fixed proportion of the underlying asset price at this
intermediate date. A special form of this option is that on the (future) return of
the underlying, which can be seen as a call option on the ratio of the stock price
at maturity and the intermediate date. This is often being used by insurance
companies to hedge unit-linked guarantees embedded in life insurance prod-
ucts. Additionally, structured products involving forward starting options (like
cliquet and ratchet structures) are often tailored for investors seeking upside
potential, while keeping protection against downside movements.

Though forward starting options seem quite simple exotic derivatives, their
valuation can be demanding, depending on the underlying model. Our pricing
takes into account two important factors in the pricing of forward starting
options: stochastic volatility and stochastic interest rates, while also taking into
account the correlation between those processes explicitly. It is hardly neces-
sary to motivate the inclusion of stochastic volatility in a derivative pricing
model. Stochastic interest rates are crucial for the pricing of forward starting
options because securities with forward starting features often have a long-
dated maturity and are therefore much more interest rate sensitive, e.g. see
Guo and Hung (2008) or Kijima and Muromachi (2001). The addition of inter-
est rates as a stochastic factor has been the subject of empirical investigations
most notably by Bakshi, Cao and Chen (2000). These authors show that the
hedging performance of delta hedging strategies of long-maturity options
improves when taking stochastic interest rates into account.
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The pricing of forward starting options was first considered by Rubinstein
(1991) who provides a closed-form solution for the pricing of forward starting
options based on the assumptions of the Black and Scholes (1973) model.
Lucic (2003), Hong (2004) and Kruse and Nögel (2005) relax the constant
volatility assumption and consider the pricing of forward starting options under
Heston (1993) stochastic volatility. The pricing of forward starting options
under stochastic volatility with independent stochastic interest rates was con-
sidered by Guo and Hung (2008), Ahlip and Rutkowski (2009) and Nunes and
Alcaria (2009). The framework employed in this study distinguishes itself from
these models by a closed-form pricing formula and an explicit, rather than
implicit, incorporation of the correlation between the underlying and the term
structure of interest rates. The flexibility of the stochastic volatility model with
(correlated) stochastic rates and the pricing of vanilla call options in such a
framework has been covered in Ahlip (2008) and van Haastrecht, Lord, Pelsser
and Schrager (2009).

The main goal of this work is performing a quantitative analysis on 
the pricing of forward starting options under stochastic volatility and stochas-
tic interest rates. In particular we want to investigate the impact of stochastic
volatility, stochastic interest rates as well as a realistic dependency structure
between all the underlying processes on the valuation of these securities. The
analysis is made possible by developing a closed-form solution for the price of a
forward starting option in a model in which the instantaneous stochastic
volatility is given by the Schöbel and Zhu (1999) model and the interest rates
follow Hull and White (1993) dynamics. We explicitly incorporate the correla-
tion between the underlying stock and the term structure of interest rates,
which is an important empirical characteristic that needs to be taken into
account for the pricing and hedging of long-term options, e.g. see Bakshi et al.
(2000) or Piterbarg (2005). The setup of the study is as follows: we discuss the
modelling framework in second section. The pricing of forward starting options
and corresponding option pricing formulas is considered in subsequent sec-
tion. In penultimate section we discuss the implementation of these formulas
and analyze the valuation and risk management of forward starting option
under stochastic volatility, stochastic interest rates, and a general correlation
structure. Finally, we conclude in last section.

THE MODELLING FRAMEWORK

Under the risk-neutral measure Q, which uses a money market account as
numeraire, we assume that S(t) has the following Schöbel–Zhu–Hull–White
dynamics
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(1)

(2)

see van Haastrecht et al. (2009). Here n(t), driver for the stochastic volatility
�n(t) of the stock, follows an Ornstein–Uhlenbeck process. The parameters of
the volatility process are the positive constants k (mean reversion), n(0) (short-
term mean), c (long-term mean) and t (volatility of the volatility). The interest
rates are given by a one-factor Hull–White (1993) model, which can be
expressed as

(3)

(4)

Here a (mean reversion) and s (volatility) are the positive parameters of
the model, and where b(t) can be used to exactly fit the current term structure
of interest rates, e.g. see Pelsser (2000) or Brigo and Mercurio (2006) for fur-
ther details. The model allows for a general correlation structure between all
driving model factors, i.e. the correlation matrix between of the Brownian
motions WS(t), Wr(t), Wn(t) is given by

(5)

Even though the dynamics incorporate stochastic interest rates, stochastic
volatility, and a general correlation, one can still obtain closed-form formulas
for European option prices, which is a big advantage in the calibration, see van
Haastrecht et al. (2009).

At first sight, one curious property of the model is that the volatility
process n(t) affects the sign of the instantaneous correlation between n(t) and
ln x(t). Indeed, one can show that

(6)

This effect is visualized in Figure 1, where we have plotted a sample path
of x(t), n(t), and �n(t)�.

Indeed, when n(t) is negative and decreasing, the asset price is increasing,
contrary to what one would expect from the parameter configuration. The key
lies therein that n(t) should not be interpreted as the volatility of the underlying
asset: it is merely a latent variable which drives the true volatility of the asset,

Corr(d ln x(t), dn(t) ) �
rxnn(t)t

2n2(t)t2
� rxn sgn(n(t) )  dt,

°
1 rSr rSn

rSr 1 rrn

rSn rrn 1
¢ .

dx(t) � �ax(t) dt � sdWQ
r (t), x(0) � 0.

r(t) � b(t) � x(t),  r(0) � r0,

n(t) � k(c � n(t) )  dt � t dWQ
n (t),  n(0) � n0,

dS(t) � r(t)S(t)  dt � n(t)S(t)  dWQ
S (t),  S(0) � S0,
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the true volatility being defined as the square root of the variance. Indeed if one
applies the Ito–Tanaka theorem to derive the dynamics of �n(t)�, e.g. see Revuz
and Yor (1999), this leads to an instantaneous correlation of

(7)

as we would like it to be.

FORWARD STARTING OPTIONS

Forward starting options are contracts which not only on depend on the termi-
nal value of the underlying asset, but also on the asset price at an intermediate
time between the current time and its expiry time. Kruse and Nögel (2005)
consider two types of forward starting options under the Heston (1993) model:
European forward starting call options on the underlying asset and on the
underlying return. The first structure is prevalent in Employee stock option
schemes, whereas the second category forms a building block for cliquet,
ratchet, and Unit-Linked insurance options. In both contracts a premium is
paid on the purchase date; however, the option’s life will only start on an inter-
mediate date (in-between the purchase and expiry date, dubbed as the strike
determination time). Thus, the terminal payoff of these options depends on the
underlying asset price at both the maturity and the start date of the underlying
option. The next definitions formalize these options.

Corr(d ln x(t), d 0n(t) 0 ) �
rxn 0n(t) 0 t
2n2(t)t2

� rxn dt,
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FIGURE 1
Sample path of S(t), n(t) and �n(t)�. SZ parameters are k � t � 1, n(0) � c � 25%, x(0) � 100.
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Definition 1: The terminal payoff of a European forward starting call option on
the underlying asset price S, with a percentage strike of K, strike determination
time Ti�1 and maturity Ti is given by

(8)

Definition 2: The terminal payoff of a European forward starting call option on
the return of the underlying asset price S, with an absolute strike of K, deter-
mination time Ti�1 and maturity Ti is given by

(9)

Pricing formulas for these options are provided in the following two sections.

Pricing Formula for a Forward Starting Option on the
Underlying Asset

We can express the price of the forward starting call option price CF(Ti�1, Ti)
on the underlying asset, i.e. with terminal payoff (8), in the following expecta-
tion under the risk-neutral measure 

(10)

Instead of evaluating the expected discounted payoff under the risk-
neutral bank account measure, we can also change the underlying probability
measure to evaluate this expectation under the stock price probability measure

(e.g. see Geman, Karoui, & Rochet, 1996), i.e. with the stock price S as
numeraire. Hence, conditional on time t, we can evaluate the price of the for-
ward starting option (10) as

(11)

where the last line can be interpreted as a put option with strike 1/K on the
ratio S(Ti�1)/S(Ti). For the pricing of the forward starting option on the under-
lying asset, it suffices to know the characteristic function fF(Ti�1, Ti, u) of ln
S(Ti�1)/S(Ti) under the stock price probability measure . The characteristic
function solution is given by the following closed-form expression

QS

 � S(t)K�Q
S c a 1

K
�

S(Ti�1)

S(Ti)
b� `Ft d ,

 � S(t)�Q
S c a1 � K

S(Ti�1)

S(Ti)
b� `Ft d

 CF(Ti�1, Ti) � S(t) �Q
S c 1

S(Ti)
(S(Ti) � KS(Ti�1) )� `Ft d

QS

CF(Ti�1, Ti) � �Q c e��
Ti

t
 r(u) du(S(Ti) � KS(Ti�1) )� 0Ft d .
Q

c S(Ti)

S(Ti�1)
� K d �

.

[S(Ti) � KS(Ti�1)]�.
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(12)

see Appendix A.
Following Heston (1993), Carr and Madan (1999), Levis (2001) and Lord

and Kahl (2008), we can express the option (11) with log strike k :� ln 1/K, in
terms of the (T-forward) characteristic function as

(13)

(14)

where a � 1 has been introduced for Fourier Transform regularization.
Note that in principle it is also possible, following the lines of Rubinstein

(1991), Guo and Hung (2008) and Ahlip and Ruthowski (2009), to express the
forward starting option price as the expected value of a future call option price,
which can be evaluated using similar techniques as the evaluation of formula
(11), but results in a pricing formula containing two integrals. However, work-
ing out the equivalent expectation (11) results in a pricing formula which only
contains one integral. Not only does this make the corresponding implementa-
tion more efficient, but even more importantly it has been shown in Andersen
and Andreasen (2002) and Lord and Kahl (2008) that the double integral for-
mulation suffers from numerical instabilities whereas the single integral can be
implemented in a numerically very stable way.

Pricing Formula for a Forward Starting Option on the
Underlying Return

For the price of the forward starting call option on the return of
the underlying asset, i.e. with terminal payoff (8), the following expectation
under the Ti-forward measure holds

(15)

that is, where the corresponding numeraire is now the (pure) discount bond
P(t, Ti) maturing at time Ti. For the pricing of the forward starting return
option, it suffices to know the characteristic function fR(Ti�1, Ti, u) of 

CR(Ti�1, Ti) � P(t, Ti)�QTi c a S(Ti)

S(Ti�1)
� Kb� `Ft d ,

CR(Ti�1, Ti)

cF(Ti�1, Ti, v) :�
fF(Ti�1, Ti, v � (a � 1)i)

(iv � a)(iv � a � 1)
,

CF(Ti�1, Ti, k) �
1
p �

�

0

Re(e(a� iv)kcF(Ti�1, Ti, v)) dv,

�

exp ca2mn � a3m
2
n �

(a1sxr
2
xn(t, Ti�1) � a2sn � 2a3mnsn)

2

2(1 � 2a3s
2
n )

d
21 � 2a3s

2
n

,

fF(Ti�1, Ti, u) � exp ca0 � a1mx �
1
2

 a2
1s

2
x(1 � r2

xn(t, Ti�1) ) d
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ln S(Ti)/S(Ti�1) under the stock price probability measure . A closed-form
solution for this characteristic function is given by

(16)

see Appendix B.
Consequently, the forward starting option (11) with log strike k :� ln K,

can be expressed in terms of the (T-forward) characteristic function as

(17)

(18)

see Carr and Madan (1999), Lewis (2001), and Lord and Kahl (2008) where
has been introduced for Fourier Transform regularization, see Carr and

Madan (1999), Lewis (2001), and Lord and Kahl (2008).

NUMERICAL RESULTS

To investigate the impact of stochastic volatility and stochastic interest rates on
the prices of forward starting options, we will consider the following numerical
test cases. As the prices of forward starting options can be calculated in closed-
form, a Monte Carlo benchmark against the pricing formulas (13)–(17) forms
a standard test case for their implementation. We then explicitly investigate the
impact and parameter sensitivities of stochastic interest rates and stochastic
volatility on the prices of forward starting options. Finally, we tackle the issue
of model risk and compare our framework with the Black and Scholes (1973)
and Heston (1993) model, respectively, considered in Rubinstein (1991) and
Guo and Hung (2008) for the valuation of forward starters.

Implementation of the Option Pricing Formulas

In this section we consider the practical implementation of the pricing formu-
las (13) and (17); both the implementation of the inverse Fourier transform, as
well as the calculation of the characteristic function underlying this transform,
deserve some attention. For the calculation of the inverse Fourier transform we

a � ��

cR(Ti�1, Ti, v) :�
fR(Ti�1, Ti, v � (a � 1)i)

(a � iv)(a � 1 � iv)
,

CR(Ti�1, Ti, k) �
1
p �

�

0

Re(e�(a�iv)kc(Ti�1, Ti, v) )  dv,

�

exp cb2mn � b3m
2
n �

(b1sxr
2
xn(t, Ti�1) � b2sn � 2b3mnsn)

2

2(1 � 2b3s
2
n )

d
21 � 2b3s

2
n

,

 fR(Ti�1, Ti, u) � exp cb0 � b1mx �
1
2

b2
1s

2
x(1 � r2

xn(t, Ti�1) ) d

QS
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refer the reader to Lord and Kahl (2008), Kilin (2006), and van Haastrecht 
et al. (2009), where this topic is covered in great detail. Instead we focus on the
application-specific calculation of the characteristic functions (12) and (16).
The calculation of the characteristic functions (12) and (16) is trivial up to the
calculation of the constants A(u, t, T) of (A14) and L(u, t, T) of (B6), which
involves the calculation of a numerical integral. Hence we focus on the calcu-
lation of A(u, t, T), but a completely analogous reasoning holds for the calcula-
tion of L(u, t, T).

It is possible to write a closed-form expression for the remaining integral in
(A14). As the ordinary differential equation for D(u, t, T) is exactly the same as
in the Heston (1993) or Schöbel and Zhu (1999) model, it will involve a com-
plex logarithm and should therefore be evaluated as outlined in Lord and Kahl
(2007) in order to avoid any discontinuities. The main problem however lies in
the integrals over C(u, t, T) and C2(u, t, T), which will involve the Gaussian
hypergeometric 2F1(a, b, c; z). The most efficient way to evaluate this hyperge-
ometric function (according to Press & Flannery, 1992) is to integrate the
defining differential equation. Since all of the terms involved in D(u, t, T) are
also required in C(u, t, T), numerical integration of the second part of (A14)
seems to be the most efficient method for evaluating A(u, t, T). Note that we
hereby conveniently avoid any issues regarding complex discontinuities alto-
gether. It remains to have a closer look at the implementation of the numerical
integral of A(u, t, T) and L(u, t, T).

We compute the prices for short- and long-term forward starting option for
a range of strikes and where we use fixed-point Gaussian–Legendre quadrature
to compute the numerical integral in (A14) and (B6). Hereby, we vary the num-
ber of quadrature points to determine how many points are needed in the test
cases to obtain a certain accuracy. The numerical results together with the cor-
responding Monte Carlo estimates (using 106 sample paths) can be found in
Table and below.

From the tables we see that the characteristic functions (12) and (16)
underlying the option price formulas can be calculated very accurately, using
only a small number of quadrature points; the prices of short-term options
(Table I) and long-term options (Table II) can be calculated within a basis point
of accuracy by using respectively just two and eight quadrature points for the
calculation of the integral in A(u, t, T) and L(u, t, T). Note hereby that the cor-
responding Monte Carlo confidence interval is also larger in test case of Table II,
due to the longer-dated maturity. Combining the efficient calculation of char-
acteristic functions (12) and (16) with the efficient Fourier inversion tech-
niques, we can all in all conclude the pricing of forward starting options can be
done fast, highly accurate and in closed-form using the latter methods.
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Impact of Stochastic Interest Rates and 
Stochastic Volatility

In this section we will cover the impact of stochastic volatility and (correlated)
stochastic interest rates on the prices of forward starting options. That is, we
investigate qualitative aspects of our extended framework in comparison to
deterministic (or independent) interest rates and volatility assumptions.
Rubinstein (1991) considered the pricing of a vanilla forward starting option in
the Black and Scholes (1973) framework; as both interest rates and volatilities
are deterministic in this model, the prices of forward starting options are (up to
deterministic discounting effects) equal for all forward starting dates. The con-
stant volatility assumption has been relaxed by Lucic (2003), Hong (2004), and
Kruse and Nögel (2005), who consider the pricing of forward starting options
under Heston (1993) stochastic volatility. The impact of stochastic volatility
can be seen from the top graphs of Figure 2.

TABLE I

Closed-Form Solution Prices (CF(N)) Using N Quadrature Points for A(u, T1, T2) in (32) and
Monte Carlo Prices (MC) of the Forward Starting Call Option (11) for t � 0, T1 � 5, T2 � 15

and P(t, T1) � P(t, T2) � 1.0 and Model Parameters k � 1.00, n(0) � c � 0.20, a � 0.02, 
s � 0.01, t � 0.50, rSv � �0.70, rSr � 0.30 and rrv � 0.15

strike level (%) CF(4) CF(8) CF(16) CF(1024) MC (�95% Interval)

50 65.31 65.26 65.26 65.26 65.30 (�0.31)
75 53.94 53.85 53.85 53.85 53.89 (�0.29)
100 44.97 44.85 44.85 44.85 44.90 (�0.27)
125 37.80 37.65 37.65 37.65 37.71 (�0.25)
150 32.00 31.82 31.82 31.82 31.89 (�0.24)

TABLE II

Closed-Form Solution Prices (CF(N)) Using N Quadrature Points for L(u, T1, T2) in (50) and
Monte Carlo Prices (MC) of the Forward Starting Return Call Option (15) for t � 0, T1 � 1,
T2 � 2 and P(t, T1) � P(t, T2) � 1.0 and Model Parameters k � 0.30, n(0) � c � 0.15, t �

0.20, a � 0.05, s � 0.01, rS � �0.40, rSrv � 0.20 and rrv � 0.10

strike level (%) CF(1) CF(2) CF(4) CF(1024) MC (�95% Interval)

50 50.23 50.24 50.24 50.24 50.27 (�0.05)
75 26.77 26.79 26.79 26.79 26.80 (�0.04)
100 8.56 8.39 8.39 8.39 8.39 (�0.03)
125 2.07 2.04 2.04 2.04 2.05 (�0.02)
150 0.69 0.69 0.69 0.69 0.69 (�0.01)
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Compared to constant volatility, the addition of stochastic volatility
increases the future uncertainty about the underlying option price which is
hence reflected in higher implied volatilities for longer forward starting dates.
Intuitively this effect is rather appealing as this coincides with market prices
for forward starting structures where the writer of such an option wants to be
compensated for the extra (future) volatility risk he is exposed to. Furthermore
it is interesting to note from the figures that these effects are more apparent
where the underlying option has a short maturity, which effect may be
explained by the mean reverting property of stochastic volatility that is less
severe for a short-term option hence increasing the future volatility risk.
Finally, note from the top two graphs of Figure 2 that with deterministic rates
the long-term uncertainty approaches a limit (or a stationary state) as the
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FIGURE 2
The figures plot, for different option maturities, the impact of stochastic interest rates on the forward
implied volatility structure of an underlying call (left pictures) and return call option (right pictures).

Parameters are k � 1.0, n(t) � c � 0.20, � t � 0.5, rSn � �0.70, rSr � rrn � 0 and P(t, s) �
exp(�0.04(s � t)) for all s � t. The top figures plot the volatility structure for deterministic interest rates,

while the bottom figures plot the volatility structure for stochastic interest rates case with parameters 
a � 0.02 and s � 0.01.
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forward starting date or the underlying option maturity increase. For example
the implied volatilities for forward starting options with a forward date of 10
and 30 years are exactly equal, which is counterintuitive as the term structure
of implied volatilities remains increasing for long-term options and in general
does not flatten out nor approaches a limit, for instance see the implied volatil-
ity quotes in long-maturity equity markets (readily available from MarkIT 
or Bloomberg) or the over-the-counter FX quotes in Piterbarg (2005) or
Andreasen (2006).

More likely, the discrepancy with the way the market and the latter models
look at long-term implied volatility structures suggests that these models lack
an extra factor in their pricing frameworks; this conjecture is supported by Guo
and Hung (2008) and Kijima and Muromachi (2001), who claim that stochas-
tic interest rates are crucial for the pricing of forward starting options as these
securities are often much more interest rate sensitive due to their long-term
nature. In fact if we look at the bottom graphs of Figure 2, where we add sto-
chastic interest rates to the framework with stochastic volatility, we see that the
implied volatilities increase for longer forward starting and maturity dates.
These model effects also correspond with a general feature of the interest rate
market: the market’s view on the uncertainty of long-maturity bonds is often
much higher than that of shorter maturity bonds, reflecting the increasing
impact of stochastic interest rates for long-dated structures. In this sense sto-
chastic interest rates do seem to incorporate the larger uncertainty the writers
of the forward starting options are exposed to.

The addition of stochastic interest rates as an independent factor for the
pricing of forward starting options has been investigated in Guo and Hung
(2008) and Nunes and Alcaria (2009). Though one step in the right direction,
the independency assumption is certainly not supported by empirical analysis
(e.g. see Baur, 2009) nor do the exotic option markets (such as hybrid equity-
interest rate options) price these derivatives in this way, e.g. see Andreasen
(2007) or Antonov, Arneguy, and Audet (2008); from Figure C1 of Appendix C
and Figure D1 of Appendix D, we see that correlated stochastic interest rates
can have a big impact on the prices of forward starting options. From Figure C1
we can see that for a positive rate-asset correlation coefficient the prices of for-
ward starting options increase and vice versa for a negative correlation coeffi-
cient. In particular note from Figure C1 that, though the correlation coefficient
between the interest rate and the stock also affects the implied volatility struc-
ture of the current time vanilla options, the effects on the prices of forward
starting options are much more pronounced. Forward starting options are thus
not only more interest rate and volatility sensitive, but are also much more
exposed to correlation risks. This is not surprising as a joint movement in both



Valuation of Forward Starting Options 115

Journal of Futures Markets DOI: 10.1002/fut

the interest rate and the asset price not only affects future discounting, but
more importantly also the (joint) asset price distribution. All in all, we can con-
clude that because forward starting options are very sensitive to future interest
rate movements, volatility smiles as well as their dependency structure with the
underlying asset, it is very important to take all these stochastic quantities into
account for proper pricing and risk management of these derivatives.

CONCLUSION

We have performed a quantitative analysis on the valuation of forward starting
options, where we explicitly accounted for stochastic volatility, stochastic inter-
est rates as well as a general dependency structure between all underlying
processes. The analysis was made possible by the development of closed-form
formulas involving the pricing of the two main forward starting structures, cur-
rently present in the literature and the financial markets. Using a probabilistic
approach, we derived closed-form expressions for the characteristic functions
of the assets underlying the forward starting options. We then demonstrated
how forward starting options can be priced efficiently and in closed-form by
Fourier inverting these forward starting characteristic functions. An additional
advantage of this technique is that our modelling framework can include jumps
as a trivial extension, as we already work in the Fourier option pricing domain.

Our results are of great practical importance as the derivative markets for
long-dated dynamic securities such as forward starting options have grown very
rapidly over the last decade; compared to vanilla options, these structures
directly depend on future volatility smiles, the term structure of interest rates as
well as their dependency structure with the underlying asset. Moreover, as these
contracts often incorporate long-dated maturities, we found that it is of crucial
importance to take stochastic interest rates, volatility, and a general correlation
structure into account for a proper valuation and hedging of these securities:
not doing so leads to serious mispricings, not to mention the potential for
hedge errors. Compared to other models, the analysis performed in our frame-
work stands out by modelling both the stochastic volatility and interest rates, as
well as taking a general correlation structure between all underlying drivers
explicitly into account.

Besides investigating the behaviorof these dynamic derivatives, our formu-
las can also be used to directly price or hedge financial contracts. For instance
unit-linked guarantees embedded in life insurance products, being sold in large
amounts by insurance companies, can be priced in closed-form relying on our
formulas. The same applies for cliquet options, which are heavily traded in over-
the-counter markets, and CEO/employee stock option plans. Furthermore,
there is a big intercourse between forward starting options considered here and
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over-the-counter exotic structures such as ratchet options and pension con-
tracts, as these form the natural building blocks and hedge instruments for
such contracts. Finally, as all the above-mentioned products explicitly depend
on future volatility smiles, the term structure of interest rates as well as their
dependency structure with the underlying asset, we judge that a proper valua-
tion framework should account for all these characteristics.

APPENDIX A: DERIVATION OF THE
CHARACTERISTIC FUNCTION UNDER THE
STOCK PRICE MEASURE

This appendix derives the characteristic function of Equation (12). To this end,
we define the forward asset price F as

(A1)

where P(t, T) denotes the price of a (pure) discount bond at time t maturing at
time T. Using the tower law of conditional expectations, i.e. conditioning on
the time Ti�1, we can therefore express the characteristic function fF of ln
S(Ti�1)/S(Ti) under the stock price measure as

(A2)

This characteristic function can be evaluated in two steps.
First, in the Gaussian rate model (e.g. see Brigo & Mercurio, 2006) we

have for P(t, T)

(A3)

with AHW, BHW defined in (A11) and (A12).
Secondly, note that the inner expectation in (A2) is just the characteristic

function of ln � F(Ti, Ti) evaluated at the point �u. To determine its solution,
we follow Heston (1993) and reduce the problem of finding the characteristic
function of the forward log-asset price dynamics to solving a partial 
differential equation. The Feynman–Kac theorem implies that the characteris-
tic function

(A4)

is given by the solution of the partial differential equation,

f(t, y, n) � �QS

[exp(iuy(T) ) 0Ft],

P(t, T) � AHW(t, T)e�BHW(t,T)x(t),

� �Q
S

[eiu ln P(Ti�1,Ti)�iu ln F(Ti�1,Ti)�QS5ei(�u)ln F(Ti,Ti) 0FTi�1
6 0Ft].

fF(Ti�1, Ti, u) :� �Q
S c expaiu ln  

S(Ti�1)

S(Ti)
b ƒ Ft d

F(t, T) �
S(t)

P(t, T)
,
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(A5)

(A6)

where the subscripts denote partial derivatives. To solve for this characteristic
function explicitly, we guess the functional form

(A7)

and substitute this in (A5). This reduces it to a system of ordinary differential
equations for A, B, C, and D, which can be solved for in closed form, see
(A14)–(A17).

By substituting the characteristic function solution (A7) and (A3) in (A2),
the characteristic function fF(Ti�1, Ti, u) can be expressed completely in terms
of the Gaussian factors x(Ti�1) and n2(Ti�1), i.e.

(A8)

Because the above expression is a Gaussian quadratic form of the variables
x(Ti�1) and n(Ti�1), one can evaluate this expectation completely in terms of
the means mx, mn, variances , and correlation rxn(t, Ti�1) of these two state
variables, e.g. see Feuerverger and Wong (2000) or Glasserman (2003). 
A straightforward evaluation (e.g. by completing the square or by integration
the exponential affine function against the bivariate normal distribution) of this
Gaussian quadratic expectation results in the characteristic function fF(Ti�1,
Ti, u) of (12).

Here, the constants a0, . . . , a3 are given by

(A9)

(A10)

where the bond price formula of the Hull and White (1993) model can be
obtained with

(A11)

AHW(Ti�1, Ti) �
PM(t, Ti)

PM(t, Ti�1)
 exp c 1

2
(V(Ti�1, Ti) � V(t, Ti) � V(t, Ti�1))d

a2 :� C(�u, Ti�1, Ti)  a3 :�
1
2

 D(�u, Ti�1, Ti),

a0 :� iu ln AHW(Ti�1, Ti) � A(�u, Ti�1, Ti),  a1 :� �iuBHW(Ti�1, Ti),

s2
ns2

x

fF(Ti�1, Ti, u) �: �Q
S

[exp5a0 � a1x(Ti�1) � a2n(Ti�1) � a3n
2(Ti�1)6 0Ft].

f(t, y, n) � exp cA(u, t, T) � B(u, t, T)y(t) � C(u, t, T)n(t) �
1
2

 D(u, t, T)n2(t)d ,

f(T, y, n) � exp(iuy(T) ),

� (rSntn(t) � rrntsBHW(t, T) ) fyn �
1
2

 t2fnn,

0 � ft �
1
2

 n2
F(t)( fyy � fy) � k(j(t) � n(t)) fn
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(A12)

(A13)

and the solutions to the ordinary differential equations of the characteristic
function solution (A7) by

(A14)

(A15)

(A16)

(A17)

with

(A18)

and where , are defined as , .
Finally, we provide the moments of n(Ti�1) and x(Ti�1) under the stock

price measure. Using Fubini’s theorem, Ito’s isometry and some tedious, but
straightforward algebra, one can show that (conditional on time t) the pair
n(Ti�1), x(Ti�1) follows a bivariate normal distribution with means mn, mx, vari-
ances , and correlation rxn(t, Ti�1), respectively, given bys2

xs2
n

c
~ :� kc�k~k~: � k � rSntc

~
k
~

g6 �
rSrsg2 � rrnstiu

a(g � a)
,  g7 � (g3 � g4) � (g5 � g6),

g4 �
rSrsg2 � k~ac

~
� rrnstiu

ag
,  g5 �

rSrsg1 � rrnstiu

a(g � a)
,

g2 � g � (k~ � rSntiu),  g3 �
rSrsg1 � k~ac

~
� rrnstiu

ag
,

g � 2(k~ � rSntiu)2 � t2u(i � u),  g1 � g � (k~ � rSn tiu),

D(u, t, T) � u(i � u)
1 � e�2g(T�t)

g1 � g2e
�2g(T�t),

C(u, t, T) � u(i � u)
((g3�g4e

�2g(T�t)) � (g5e�a(T�t) �g6e
�(2g�a)(T�t)) �g7 e�g(T�t))

g1� g2e�2g(T�t)

B(u, t, T) � iu,

� �
T

t

c (k~c~ � rrn iutsBHW(s, T))C(s)�
1
2
t2(C2(s) � D(s))dds,

A(u, t, T) �
1
2

 u(i � u)V(t, T)

V(t, T) �
s2

a2 c(T � t) �
2
a  e�a(T�t) �

1
2a

 e�2a(T�t) �
3
2a
d ,

BHW(Ti�1, Ti) �
1 � e�a(Ti�Ti�1)

a
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(A19)

(A20)

(A21)

(A22)

(A23)

where

(A24)

(A25)

(A26)

APPENDIX B: DERIVATION OF THE
CHARACTERISTIC FUNCTION UNDER THE 
Ti-FORWARD MEASURE

This appendix derives the characteristic function of Equation (12). The char-
acteristic function fR of ln S(Ti)/S(Ti�1) under the Ti-forward probability meas-
ure can be obtained using similar arguments as in Appendix A. That is, using
the tower law of conditional expectations, i.e. conditioning on the time Ti�1 fil-
tration , we have that

(B1)

The inner expectation is the characteristic function of ln � F(Ti, Ti), now
under the Ti-forward measure, evaluated at the point u. Its solution f(t, y, v) can
obtained using analogous techniques as in Appendix B, and is given by

� �Q
Ti[e�iu ln P(Ti�1, Ti)�iu lnF(Ti�1, Ti)�Q

Ti5eiu lnF(Ti,Ti) 0FTi�1
6 0Ft].

fR(Ti�1, Ti, u) :� �Q
Ti c expaiu ln 

S(Ti)

S(Ti�1)
b ƒ Ft d

FTi�1

r12 � rrn

s2rSrt

s1s2(a � k~ )
 c 1 � e�(a�k~ )(Ti � 1�t)

(a � k
~ )

�
1�e�2a(Ti�1�t)

2a
d .

s2 �
rSrst

a � k~
 B

1
2k~

�
1
2a

�
1
k~�a �

e�2k~ (Ti�1�t)

2k~
�

e�2a(Ti�1�t)

2a
�

2e(k~�a)(Ti�1�t)

(k~�a) ,

s1 � sB
1 � e�2a(Ti�1�t)

2a
,

rxn(t, Ti�1) �
rrnst

sxsn(a � k
~ )

 [1 � e�(a�k~ )(Ti � 1�t)],

s2
x � s2

1 � s2
2 � 2r12s1s2

mx � rSrs � ac
~

a [1 � e�a(Ti�1�t)] �
n(0) � c

~

(a�k~ )
 [e�k~ (Ti�1�t) � e�a(Ti�1�t)]b,

s2
n �
t2

2k~
(1 � e�2k~ (Tt�1�t),

mn � c
~

� (n(t) � c
~

)ek
~(Ti�1�t)
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(B2)

Substituting this solution and the Gaussian bond formula (A3) in (B1) we
obtain that

(B3)

the only difference with the Gaussian quadratic form (A8) being the dynamics
of the processes x(Ti�1) and n(Ti�1), which now instead need to be evaluated
under the Ti-forward measure. The solution for the characteristic function
fR(Ti�1, Ti, u) is therefore given by the same evaluation of the Gaussian quad-
ratic expectation, resulting in the characteristic function (16).

Here, the constants b0, . . . , b3 are here given by

(B4)

(B5)

where AHW, BHW are defined in (A11) and (A12). The characteristic function
solution (B2) can be obtained by

(B6)

(B7)

(B8)

(B9)

with V(t, T) as in (A13) and where

(B10)d � 2(k � rSntiu)2 � t2u(i � u),  d1 � d � (k � rSntiu),

O(u, t, T) � �u(i � u)
1 � e�2d(T�t)

d1 � d2e
�2d(T�t),

N(u, t, T) � �u(i� u)
((d3 � d4e

�2d(T�t)) � (d5e
�a(T�t) � d6e

�(2d�a)(T�t)) � d7e�d(T�t) )

d1� d2e
�2d(T�t) ,

M(u, t, T) � iu,

� �
T

t

c(kc � rrn(iu � 1)tsBHW(s, T) )N(s) �
1
2

 t2(N2(s) � O(s))d  ds,

L(u, t, T) � �
1
2

 u(i � u)V(t, T)

b2 :� N(u, Ti�1, Ti)  b3 :�
1
2

 O(u, Ti�1, Ti).

b0 :� �iu ln AHW(Ti�1, Ti) � L(u, Ti�1, Ti),  b1 :� iuBHW(Ti�1, Ti),

fR(Ti�1, Ti, u) � �Q
Ti[exp 5b0 � b1x(Ti�1) � b2n(Ti�1) � b3n

2(Ti�1)6 0Ft],

f(t, y, n) � exp cL(u, t, T) � M(u, t, T)y(t) � N(u, t, T)n(t) �
1
2

 O(u, t, T)n2(t)d .
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Finally, we provide the moments of the pair n(Ti�1), x(Ti�1) under the 
Ti-forward measure, which (conditional on time t) follows a bivariate normal
distribution with means mn, mx, variances , and correlation rxn(t, Ti�1),
respectively, given by

(B11)

(B12)

(B13)

(B14)

(B15)

APPENDIX C: IMPACT OF THE RATE-ASSET
CORRELATION COEFFICIENT ON THE FORWARD
STARTING OPTIONS

Impact of the rate-asset correlation rSr on the (forward) implied volatility struc-
ture for different underlying call option maturities is given in Figure C1.

APPENDIX D: IMPACT OF THE RATE-VOLATILITY
CORRELATION COEFFICIENT ON THE FORWARD
STARTING OPTIONS

Impact of the rate-volatility correlation rrn on the (forward) implied volatility
structure for different underlying call option maturities is given in Figure D1.

rxn(t, Ti�1) �
rrnst

sxsn(a � k)
[1 � e�(a�k)(Ti�1�t)].

s2
x �
s2

2a
(1 � e�2a(Ti�1�t) ),

mx � x(t)e�a(Ti�1�t) � MTi(t, Ti�1),

s2
n �
t2

2k
 (1 � e�2k(Ti�1�t)),

�
rrnst

a(k � a)
 (e�a(Ti�t)�k(Ti�1�t) � e�a(Ti�Ti�1) ),

 mn � n(t)e�k(Ti�1�t) � ac �
rrnst

ak b (1 � e�k(Ti�1�t) )

s2
xs2

n

 d6 �
rSrsd2 � rrnst(iu � 1)

a(d � a)
,  d7 � (d3 � d4) � (d5 � d6).

 d4 �
rSrsd2 � kac � rrnst(iu � 1)

ad
,  d5 �

rSrsd1 � rrnst(iu � 1)

a(d � a)
,

 d2 � d � (k � rSntiu),  d3 �
rSrsd1 � kac � rrnst(iu � 1)

ad
,
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FIGURE C1
Impact of the rate-asset correlation rSr on the (forward) implied volatility structure for different

underlying call option maturities. Parameters are k � 1.0, � n(t) � c � 0.20, t � 0.5, a � 0.02, 
s � 0.01, � rSn � �0.70, rrn � 0 and P(t, s) � exp(�0.04 � (s � t)) for all s � t. The top figure shows
the impact of this correlation on the volatilities of the current time (vanilla) options, whereas the bottom

figure plots these volatility structures for forward starting call options with strike determination date 
T1 � 10 year.
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FIGURE D1
Impact of the rate-volatility correlation rrn on the (forward) implied volatility structure for different

underlying call option maturities. Parameters are k � 1.0, � n(t) � c � 0.20, t � 0.5, a � 0.02, s �
0.01, � rSn � �0.70, rrn � 0 and P(t, s) � exp(�0.04 � (s � t)) for all s � t. The top figure graphs the
impact of this � correlation on the volatilities of the current time (vanilla) options, whereas the bottom

figure plots these volatility structures for forward starting call options with strike determination date 
T1 � 10 year.
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