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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS

ANTOON PELSSER

Maastricht University & Netspar

MITJA STADJE

Tilburg University, CentER & Netspar

We consider evaluation methods for payoffs with an inherent financial risk as en-
countered for instance for portfolios held by pension funds and insurance companies.
Pricing such payoffs in a way consistent to market prices typically involves combin-
ing actuarial techniques with methods from mathematical finance. We propose to
extend standard actuarial principles by a new market-consistent evaluation procedure
which we call “two-step market evaluation.” This procedure preserves the structure
of standard evaluation techniques and has many other appealing properties. We give
a complete axiomatic characterization for two-step market evaluations. We show fur-
ther that in a dynamic setting with continuous stock prices every evaluation which is
time-consistent and market-consistent is a two-step market evaluation. We also give
characterization results and examples in terms of g-expectations in a Brownian-Poisson
setting.

KEY WORDS: actuarial valuation principles, financial risk, market-consistency, time-consistency.

1. INTRODUCTION

We investigate evaluation methods for payoffs with an inherent financial risk and propose
a new market-consistent procedure to evaluate these payoffs. Our procedure yields the
extension of many standard actuarial principles into both time-consistent and market-
consistent directions.

Many insurance companies sell products which depend on financial as well as non-
financial risk. Typical examples are equity-linked insurance contracts or catastrophe
insurance futures and bonds. Pricing such payoffs in a way consistent to market prices
usually involves combining actuarial techniques with methods from mathematical fi-
nance. The minimal conditions which any market-consistent evaluation should satisfy
is that a purely financial replicable payoff should be equal to the amount necessary to
replicate it.

Standard actuarial premium principles are typically based on a pooling argument
which justifies applying the law of large numbers to price using the expectation with
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26 A. PELSSER AND M. STADJE

respect to the physical measure and then to take an additional risk load. With these
principles one usually considers a static premium calculation problem: what is the price
today of an insurance contract with payoff at time T? See for example the textbooks by
Bühlmann (1970), Gerber (1979), or Kaas et al. (2008). Also, the concept of convex risk
measures and the closely related one of monetary utility functions have been studied in
such a static setting. See for example Föllmer and Schied (2002), Frittelli and Rosazza
Gianin (2002), Jouini, Schachermayer, and Touzi (2008), and Filipovic and Kupper
(2008).

In financial pricing one usually considers a “dynamic” pricing problem: how does the
price evolve over time until the final payoff date T? This dynamic perspective is driven
by the focus on hedging and replication. This literature started with the seminal paper
of Black and Scholes (1973) and has been immensely generalized to broad classes of
securities and stochastic processes; see Delbaen and Schachermayer (1994).

In recent years, researchers have begun to investigate risk measures in a dynamic
setting, the central question being the construction of time-consistent (“dynamic”) risk
measures. See Riedel (2004), Roorda, Schumacher, and Engwerda (2005), Cheridito,
Delbaen, and Kupper (2006), Rosazza Gianin (2006), Artzner et al. (2007). In a dynamical
context time-consistency is a natural approach to glue together static evaluations. It means
that the same value is assigned to a financial position regardless of whether it is calculated
over two time periods at once or in two-steps backwards in time. In a recent paper Jobert
and Rogers (2008) show how time-consistent valuations can be constructed via backward
induction of static one-period risk-measures (or “valuations”). See also Hardy and Wirch
(2005) for an example with the risk measure given by Average Value at Risk.

An important branch of literature considers risk measures/valuations in a so-called
market-consistent setting. This started with the pricing of contracts in an incomplete-
market setting, where one seeks to extend the arbitrage-free pricing operators (which are
only defined in a complete-market setting) to the larger space of (partially) unhedgeable
contracts. One approach to evaluate the payoff in this situation is by utility indifference
pricing: the investor pays the amount such that he is no worse off in expected utility
terms than he would have been without the claim. The paper by Hodges and Neuberger
(1989) is often cited for the root-idea of this stream of literature. For other contributions
in this direction, see for instance Henderson (2002), Young and Zariphopoulou (2002),
Hobson (2004), Musiela and Zariphopoulou (2004a), Monoyios (2006), and the recent
book by Carmona (2009).

Several papers deal with the extension of the arbitrage-free pricing operators using
(local) risk-minimization techniques and the related notion of minimal martingale mea-
sures; see Föllmer and Schweizer (1989), Schweizer (1995), Delbaen and Schachermayer
(1996). A rich duality theory has been developed that establishes deep connections be-
tween utility maximization and minimization over martingale measures; see Cvitanic
and Karatzas (1992), Kramkov and Schachermayer (1999). A very elegant summary is
given by Rogers (2001). Another stream of the literature, where the class of martingale
measures considered is restricted, is given by the works on good-deal bound pricing,
see Cochrane and Saá-Requejo (2000), Černý and Hodges (2002), and Björk and Slinko
(2006).

Using utility-indifference (and duality) methods, the market-consistency of pricing
operators is automatically induced. However, an explicit formal definition of market-
consistent pricing operators has only begun to emerge recently; see Kupper, Cheridito,
and Filipovic (2008), Malamud, Trubowitz, and Wüthrich (2008), Barrieu and El Karoui
(2005, 2009), and Knispel, Stahl, and Weber (2011).
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 27

In this paper we investigate well-known actuarial premium principles such as the vari-
ance principle and the standard-deviation principle, and study their extension into both
time-consistent and market-consistent directions. To do this, we introduce the concept
of two-step market evaluations and study their properties. Two-step market evaluations
convert any evaluation principle into a market-consistent one by applying the actuar-
ial principle to the residual risk which remains after having conditioned on the future
development of the stock price. This operator splitting preserves the structure and the
computationally tractability of the original actuarial evaluation. Furthermore, we get
some appealing properties like numeraire invariance. We are able to give a complete ax-
iomatic characterization for two-step market evaluations and show that these axioms are
satisfied in a setting where the stock process is continuous and the insurance process is
revealed at fixed time instances (or more generally has predictable jumps). This provides
a strong argument for the use of two-step market evaluations. We also consider some
time-consistent extensions of our market-consistent evaluations to continuous time in a
Brownian-Poisson setting. For this we need some results from the theory of backward
stochastic differential equations (BSDEs), also called g-expectations. For background
material on BSDEs we refer to El Karoui, Peng, and Quenez (1997).

The paper is organized as follows: In Section 2 we define conditional evaluations, give
some background material, and recall some of the most standard actuarial principles. In
Section 3 the notion of market-consistency is defined and two-step market evaluations are
introduced and motivated. We give a complete axiomatic characterization for two-step
market evaluations. In Section 4 it is shown that in a dynamic setting with continuous
stock prices every evaluation which is time-consistent and market-consistent can be
viewed as a two-step market evaluation. In Section 5 we extend our evaluations to
a continuous-time setup with processes with jumps. Section 6 gives a summary and
conclusions. Section 7 contains the proofs of our results.

2. CONDITIONAL EVALUATIONS

Let (�,F, P ) be a probability space. Equalities and inequalities between random vari-
ables are understood in the P -almost sure sense unless explicitly stated otherwise. The
space of bounded random variables will be denoted by L∞(�,F, P ) (L∞(F) for short).
The space of bounded, nonnegative random variables will be denoted by L∞

+ (F). The
space of random variables which are integrable with respect to P will be denoted by
L1(�,F, P ) (L1(F) for short). Financial and insurance positions are represented by ran-
dom variables H ∈ L∞(F) where H(ω) is the discounted net loss of the position at ma-
turity under the scenario ω. Now given a σ -algebra G ⊂ F, with information available
to the agent, we can define a conditional evaluation:

DEFINITION 2.1. A mapping �G : L∞(F) → L∞(G) is called a G-conditional evalua-
tion if the following axioms hold:

• Normalization: �G(0) = 0.
• G-Cash invariance: �G(H + m) = �G(H) + m for H ∈ L∞(F) and m ∈ L∞(G).
• G-Convexity: For H1, H2 ∈ L∞(F)�G(λH1 + (1 − λ)H2) ≤ λ�G(H1) + (1 − λ)�G

(H2) for all λ ∈ L∞(G) with 0 ≤ λ ≤ 1.
• G -Local property: �G(IAH1 + IAc H2) = IA�G(H1) + IAc �G(H2) for all H ∈ L∞(F)

and A ∈ G.
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28 A. PELSSER AND M. STADJE

• Fatou property: For any bounded sequence (Hn) which converges a.s. to H

�G(H) ≤ lim inf
n

�G(Hn).

Normalization guarantees that the null position does not require any capital reserves. If
� is not normal then the agent can consider the operator �(H) − �(0) without changing
his preferences. Convexity, which under cash invariance is equivalent to quasiconvexity,
says that diversification should not be penalized. Cash invariance gives the interpretation
of �(H) as a capital reserve. The local property is motivated in the following way. Since
the agent has the information given by G he knows if the event A has happened or not
and should adjust his evaluation accordingly. If � satisfies

• Monotonicity: For H1, H2 ∈ L∞(F) with H1 ≤ H2 �G(H1) ≤ �G(H2)

then we will call � a monotone conditional evaluation. Monotonicity postulates that if
in a.s. any scenario H2 causes a greater higher loss than H1 then the premium charged
for H2 (or the capital reserve held) should be greater than for H1. Note that if �G
is monotone then ρG(H) := �G(−H) defines a conditional convex risk measure and
UG(H) := −ρG(H) defines a conditional monetary utility function. For the definition of
a convex risk measure, see Föllmer and Schied (2002) or Frittelli and Rosazza Gianin
(2002). In particular, all results in this paper also hold (with obvious change of signs) for
conditional convex risk measures and conditional monetary utility functions.

REMARK 2.2. It has been pointed out to us by Patrick Cheridito that the local prop-
erty is also implied by G-convexity. Indeed, if �G is G-convex, then we have for A ∈ G
that clearly �G(1AH1 + 1Ac H2) ≤ 1A�G(H1) + 1Ac �G(H2). In particular, 1A�G(1AH1 +
1Ac H2) ≤ 1A�G(H1). The other direction follows by setting H̃ = 1AH1 + 1Ac H2. Then as
before

1A�G(H1) = 1A�G(1AH̃ + 1Ac H1) ≤ 1A�G(H̃).

Switching the role of H1 and H2 yields then the desired conclusion.
Other possible axioms which we will consider in a dynamic setting are as follows:

• G-positive homogeneity: For H ∈ L∞(F) �G(λH) = λ�G(H) for all λ ∈ L∞
+ (G).

• Continuity: For any bounded sequence (Hn) which converges a.s. to H

�G(H) = lim
n

�G(Hn).

• p-norm boundedness: There exists p ∈ (1, ∞), λ ∈ L∞
+ (G), and a measure P̄ having

the same zero sets as P such that for H ∈ L∞(F)

�G(H) ≤ λ

∫
(|H| + |H|p) dP̄G .

We will also refer to the continuity axiom as “continuity with respect to a.s. bounded
convergence,” if there is any ambiguity. If � is a G-conditional evaluation which is
additionally assumed to be positively homogeneous then we call � a G-conditional
coherent evaluation. For a further discussion of these axioms see also Artzner et al.
(1999). Note that many similar axioms for premium principles can be found in the
literature, see for instance Deprez and Gerber (1985) or Kaas et al. (2008). Conditional
evaluations in a dynamic setting have been considered for instance in Frittelli and Gianin
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 29

(2004), Roorda et al. (2005), Ruszczynski and Shapiro (2006), Delbaen (2006), Artzner
et al. (2007), Klöppel and Schweizer (2007), Jobert and Rogers (2008), Barrieu and El
Karoui (2009), and Cheridito and Kupper (2011). Classical examples of (conditional)
evaluations are, see for instance Kaas et al. (2008):

EXAMPLE 2.3.

• Conditional mean-variance principle:

�v
G(H) = EG [H] + 1

2
αVarG [H], α ≥ 0.

• Conditional standard-deviation principle:

�st
G (H) = EG [H] + β

√
VarG [H], β ≥ 0.

• Conditional semideviation principle:

�s
G(X) = EG [H] + λ

∣∣EG
[
(H − EG [H])q

+
] ∣∣1/q

, λ ≥ 0, q ∈ [1, ∞),

where x+ is 0 if x < 0 and x else.
• Conditional average value at risk principle:

�
AV@R
G (H) = EG [H] + δAV@Rα

G (H − EG [H]), δ ≥ 0

where AV@Rα
G (H) = 1

α

∫ α

0 V@Rλ
G(H) dλ, α ∈ (0, 1] and V@Rλ

G(H) corresponds to
computing the Value at Risk of H at the confidence level λ with the available
information G.

• Conditional exponential principle:

�v
G(H) = γ log(EG [exp{H/γ }]), γ > 0.

Apart from the exponential principle the evaluations above are generally not monotone.
However, they are continuous, G-convex, G-cash invariant and satisfy the local property.
In particular, they are G-conditional evaluations. The standard-deviation principle, the
average value at risk principle and the semideviation principle additionally satisfy G-
positive homogeneity while the mean-variance principle is p-norm bounded (with P̄ =
P ). The average value at risk principle and the semideviation principle are monotone if
λ or δ are in [0, 1].

We will need some duality results. For a σ -algebra G ⊂ F, denote QG = {ξ ∈
L1(F)|EG [ξ ] = 1} and Q+

G := {ξ ∈ L1
+(F)|EG [ξ ] = 1}. In other words, given the informa-

tion G, QG is the set of all signed measures and Q+
G is the set of all probability measures.

Therefore, conditional on our starting information G, we may identify every ξ ∈ QG with
a signed measure, and every ξ ∈ Q+

G with a probability measure. For instance, for ξ ∈ Q+
G

we can define the corresponding conditional probability measure Qξ

G(A) := EG [ξ IA], and

its conditional density as
dQξ

G
dPG

:= ξ.

Recall that by standard duality results we have that �G is coherent if and only if

�G(H) = ess supξ∈MEG [ξ H],(2.1)

for a unique closed, convex set M ⊂ QG . For the precise definition of the essential
supremum, see the Appendix. ξ is often interpreted as a weighting function for the
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30 A. PELSSER AND M. STADJE

different scenarios ω, or as a test or stress measure. By taking the supremum, a worst-
case approach is being taken. For instance in the good-deal bound literature mentioned in
the introduction the supremum is taken over all pricing kernels with a density admitting
a variance smaller than a certain constant.

Generally it holds for all conditional evaluations that for �∗
G defined by

�∗
G(ξ ) = ess supH∈L∞(F){EG [ξ H] − �G(H)}

we have that

�G(H) = ess supξ∈QG
{
EG [ξ H] − �∗

G(ξ )
}
,(2.2)

see for instance Delbaen (2006) or Cheridito and Kupper (2011). �∗
G is also called the

penalty function corresponding to �G, and −�∗
G(ξ ) may be seen as the plausibility of

the density ξ . The dual representations (2.1) and (2.2) are often interpreted as robust
expectations with respect to different priors, see Hansen and Sargent (2001), or Hansen
and Sargent (2007).

Of course our results also hold without conditioning on G. In this case G is chosen to
be the trivial σ -algebra. However, for our dynamic analysis in the later sections it will
simplify matters if we do our analysis conditional on some information available to the
agent.

3. MARKET-CONSISTENT PRICING

3.1. Market-Consistency and Two-Step Market Evaluations

Let (�,F, P ) be the underlying probability space. Let G ⊂ F be a σ -algebra whose
information is initially available to the agent. Let S = (S1 , . . . , Sn) be the n-dimensional
price process of n traded stocks and denote by F̄ S ⊂ F the σ -algebra generated by
S. Furthermore, we denote by F S the σ -algebra given by the stock process and our
starting informationG, i.e.,F S := F̄ S ∨ G := σ (F̄ S,G). The financial market given by the
n-dimensional stock process S should be arbitrage free and complete, i.e., all derivatives
which conditional onG only depend on S are perfectly hedgeable and there exists a unique
probability measure QG ∈ Q+

G such that S is a martingale under QG (componentwise).
Furthermore, QG is assumed to be a.s. equivalent to PG , in the sense that its conditional
density is positive.

Since F S is in general a strict subset of F , the market given by all F-measurable
payoffs is incomplete. For instance, we could have an untraded insurance process which
is correlated with the traded assets S but not perfectly replicable.

In the financial market the martingale measure QG defines the (linear) no-arbitrage
pricing operator �

f
G : L∞(F S) → L∞(G) given by

�
f
G (HS) := EQG [HS] :=

∫
�

HS(ω)QG(dω) = EG [ξQG H],

where ξQG is the density in Q+
G with which QG may be identified. Note that only the

martingale measure on F S is unique while on the filtration F there can be infinitely many
martingale measures.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 31

The next definition extends the notion of cash invariance to all assets traded in the
financial market. For identical or similar notions of market-consistency see also Cont
(2006), Kupper et al. (2008), Malamud et al. (2008), or Artzner and Eisele (2010).

DEFINITION 3.1. An evaluation is called market-consistent if for any financial payoff
HS ∈ L∞(F S) and H ∈ L∞(F)

�G(HS + H) = EQG [HS] + �G(H).

Market-consistency postulates that liquidly traded assets and payoffs replicable by
them should not carry any risk as they can be converted to cash at any time. It fol-
lows immediately from the definition that a market-consistent evaluation cannot be
“improved” by hedging.

REMARK 3.2. Our definition of market-consistency requires that we have liquidly
traded assets constituting a complete financial market. If the financial market is not
complete then there are two possibilities which may still validate our approach:

(1) One could use certain financial derivatives as additional hedging instruments to
make the financial market complete. For results in this direction, see Jacod and
Protter (2010) and the references therein. Note that in our setting S has to be
finite-dimensional. Therefore, only finitely many additional hedging instruments
are allowed. However, many stochastic volatility models like the Heston model can
be completed in this way.

(2) One could remove certain financial assets as possible hedging instruments. In some
cases the remaining assets might constitute a complete financial market.

The next proposition shows that market-consistency is already implied by the assump-
tion that purely hedgeable derivatives should be valued according to the amount of capital
necessary to replicate them. Furthermore, it shows that, in case that �G is monotone,
market-consistency is equivalent with the no-arbitrage principle in the entire market.

PROPOSITION 3.3. For a conditional evaluation �G : L∞(F) → L∞(G) the following
statements are equivalent:

(i) �G(HS) = EQG [HS] for any financial payoff HS ∈ L∞(F S).
(ii) There exists a penalty function1 cG : QF S = {Z ∈ L1(F)|EF S[Z] = 1

}→ R ∪ {∞}
such that we have for every H ∈ L∞(F)

�G(H) = ess supZ∈QFS {EQG [ZH] − cG(Z)}.

(iii) �G is market-consistent.

Furthermore, in the case that �G is additionally assumed to be monotone, market-
consistency is equivalent with any payoff being evaluated between its super- and subrepli-
cation price.

In particular, in the case of monotonicity, we could have also defined market-
consistency by stating that the evaluation of every payoff should respect the no-arbitrage
principle.

1A function c is called a penalty function if it is convex, lower semicontinuous, and ess inf c = 0.
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32 A. PELSSER AND M. STADJE

Examples of market-consistent evaluations arise if an agent starts with a (usually
non-market-consistent) evaluation �G and then tries to reduce his risk by hedging.
Specifically denote by A all admissible hedging strategies π (defined in an appropriate
way), by MG ⊂ Q+

G := QG ∩ L1
+(F) the set of all local martingale measures, by S̃ the

discounted stock process, and by �∗
G the penalty function corresponding to �G . It can

be shown, see for instance Barrieu and El Karoui (2009), or Toussaint and Sircar (2011),
that under appropriate assumptions

�̄G(H) := ess infπ∈A�G(H + (π · S̃)T) = ess supP̄G∈MG

{
ĒG [H] − �∗

G

(
dP̄G
dPG

)}
.

(3.1)

Note that by definition �̄G is market-consistent. Therefore, one way of obtaining market-
consistent evaluations is to intersect the test measures in the dual representations (2.1)
and (2.2) above with local martingale measures. This is a class of examples which arises
naturally when starting with an evaluation �G . However, the new evaluation �̄G may
be hard to compute, and the structure and interpretation of the original evaluation �G
is lost. For instance, if payoffs are evaluated using the mean-variance principle then
�̄G(H) = ess supP̄G∈MG {ĒG [H] − 1

2α
CG(P̄G |PG)}, where CG is the relative Gini index de-

fined by CG(P̄G |PG) = EG [( dP̄G
dPG

)2 − 1]. For an overview about mean-variance hedging, see
Schweizer (2010) and the reference therein. Now note that two important reasons for the
popularity of the mean-variance principle are: (a) it has a straightforward interpretation;
(b) it is easy to compute. However, while the new evaluation, �̄G(H) is market-consistent
(since it uses risk adjusted probabilities), it is neither easy to compute nor does it directly
relate to the variance of the payoff H from which we started.

Consequently, in this paper we propose a new class of market-consistent evaluations
which we will call two-step market evaluations. Extending standard actuarial principles
with two-step market evaluations will have the advantage that the extensions can be
computed easily and that the interpretation of our starting principles can be preserved.
Furthermore, we will show that two-step market evaluations in general have many other
appealing properties. A strong argument for the use of two-step market evaluations will
be provided in the section 4. There we show that any insurance company which wants to
apply a market-consistent and time-consistent evaluation, has to use a two-step market
evaluation, in a setting where the stock process is continuous and the insurance process
is only revealed at fixed time instances (or more generally at predictable stopping times).

We will start with evaluations like the one from our Examples 2.3. Then we will give
the corresponding market-consistent evaluations which do not arise from hedging but
from operator splitting. Namely, in a first step we compute the value of the position H
by replacing the measure P |G with the measure P |F S, i.e., we compute mean-variance
principle, the standard-deviation principle, etc., of H, conditional on G and the values
of the stocks S. Then for every different future value of the stock price we get a differ-
ent evaluation. However, since payoff depending only on the stock prices are perfectly
hedgeable one could argue that these remaining evaluations do not contain any risk.
Therefore, the total value of the position H should be equal to the initial capital needed
to hedge the different evaluations, obtained in the first step, which depend on S. This
corresponds to taking in a second step the expectation with respect to the risk adjusted
probability measure QG coming from the financial market. This procedure is computa-
tionally tractable and preserves the evaluation principles considered in the beginning.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 33

These principles are applied to the risk which remains after having conditioned on S. We
then get the following market-consistent examples:

EXAMPLE 3.4.

• Two-step mean-variance principle:

�v
G(H) = EQG

[
EF S[H] + 1

2
αVarF S[H]

]
, α ≥ 0.

• Two-step standard-deviation principle:

�s
G(H) = EQG [EF S[H] + β

√
VarF S[H]], β ≥ 0.

• Two-step semideviation principle:

�s
G(X) = EQG

[
EF S[H] + λ

∣∣EF S

[
(H − EF S [H])q

+
] ∣∣1/q
]
, λ ≥ 0, q ∈ [1, ∞).

• Two-step average value at risk principle:

�
AV@R
G (H) = EQG

[
EF S[H] + δAV@Rα

F S(H − EF S[H])
]
, δ ≥ 0.

• Two-step exponential principle:

�G(H) = EQG [γ log(EF S[exp{H/γ }])], γ > 0.

A standard deviation principle, which is different than the one above but is also obtained
by first conditioning on the future stock price, is considered in Møller (2002). The last
example is known in the literature as the indifference price of H under an exponential
utility function. It arises in an incomplete market when an agent maximizes his expo-
nential utility through dynamic trading, see for instance Musiela and Zariphopoulou
(2004b). The indifference price for a claim H is then defined as the amount of cash the
agent is willing to pay for the right to receive H such that he is no worse off in expected
utility terms than he would have been without the claim. For references on indifference
pricing see the introduction. The examples above motivate the following definition:

DEFINITION 3.5. We call a �G : L∞(F) → L∞(G) a two-step market evaluation if there
exists an F S-conditional valuation �F S : L∞(F) → L∞(F S) such that

�G(H) = EQG [�F S(H)] .(3.2)

Note that in case that there is no financial market, i.e., S = 0, our two-step evaluations
reduce to the standard actuarial principles. On the other hand if F S = F , i.e., if the
financial market gives the entire filtration, of course �G(H) = EQG [H].

EXAMPLE 3.6. Another example for a two-step evaluation defined above arises when
combining hedging with an average value at risk principle. Specifically set

�G(H) := ess infπ∈A�
AV@R
G (H + (π · S̃)T).

Define

M :=
{

Q̄G ∈ MG

∣∣∣∣1 − δ ≤ dQ̄G
dPG

≤ 1 + δ
1 − α

α

}
,
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34 A. PELSSER AND M. STADJE

where δ > 0 and the risk level α ∈ (0, 1] have been introduced in Examples 2.3. (Note
that if δ = 0 then �

AV@R
G (H) = EG [H].)

From (3.1) and the dual representation of the average-value at risk principle (see for
instance Föllmer and Schied 2004) it follows that

�G(H) = ess supQ̄G∈MEQ̄G [H].

Let

M′ :=
{

Z ∈ Q+
F S

∣∣∣∣(1 − δ)
dPG
dQG

≤ Z ≤ dPG
dQG

(
1 + δ

1 − α

α

)}
.

Note that dQG
dPG

M′ = M. Furthermore, M′ satisfies the concatenation property on F S,
also called rectangular property or m-stability.2 It may be seen that as a result

�F S(H) := ess supZ∈M′EF S[ZH]

is an F S-conditional evaluation and it holds that

�G(H) = EQG [�F S(H)] ,

compare also with Theorem 3.10 below. In particular, combining hedging with the
average-value at risk principle gives an example of the two-step procedure we explained
above.

EXAMPLE 3.7. Our last example is given by the super-replication price of a contingent
claim. The super-replication price is given by

�G(H) := ess supQ̄G∈MGEQ̄G [H] ,

It is straightforward to check that MG = dQG
dPG

Q+
F S. Clearly,

�F S(H) := ess supZ∈Q+
FS

EF S[ZH]

is an F S-conditional evaluation. It computes the essential supremum conditional on F S.

Since Q+
F S is m-stable it can be seen that

�G(H) = EQG [�F S(H)] .

In particular, the super-replication price is a two-step evaluation.

REMARK 3.8. Note that equity linked insurance payoffs are typically of the form
H = Y(n)

T f (ST) where f (ST ) is a financial derivative and Y(n)
T are the number of policy

holder who survived up to time T (out of an initial cohort of n), see for instance Møller
(2002). In the special case that the financial and the mortality risk are independent a
two-step market evaluation would yield

�G(H) = EQG
[
�F S

(
f (ST)Y(n)

T

)] = EQG [ f (ST)]�G
(
Y(n)

T

)
.

2The rectangular property or m-stability on a σ -algebra Ḡ postulates that for every A ∈ F S and Z1, Z2

∈ M′ we have that IAZ1 + IAc Z2 ∈ M′, see for instance Chen and Epstein (2002) or Delbaen (2006).
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 35

Note that the structure obtained in this special case is similar to the market-consistent
valuation method suggested in chapter 2.6 in Wüthrich, Bühlmann, and Furrer (2008).

Two-step market valuations provide a rich class of market-consistent evaluations with
a clear underlying intuition. They appear as indifference-price with an exponential utility,
in hedging with an average value at risk principle, and in the super-replication price of an
contingent claim. Two-step market valuations are also useful in optimization problems
since the maximum may be computed by a two-step procedure using Bellman’s principle:
first one can compute a value function conditioned on the stock process, and then in a
second step one can compute the optimum by maximizing the value function obtained
in Step 1 under the pricing measure.

Note that contrary to other evaluations two-step market evaluations can be directly
converted into an equivalent evaluation which takes the stock process as the numeraire.
That is, assume payoffs H̃ are expressed in units of the i-th stock, Si for i ∈ {1 , . . . , n}, i.e.,
H̃ = H/Si

T. An agent who wants to use the evaluation �G but wants to express everything
in units of Si obviously should use the evaluation �̃G which satisfies Si

0�̃G(H̃) = �G(H).
The evaluation �̃G often might not be easy to characterize directly, for instance with
a dual representation and a penalty function. However, a two-step market evaluation
remains a two-step market evaluation under the change of numeraire. Moreover, one can
just define the new penalty function of �̃F S as the penalty function of �F S in units of
Si

T. That is we set

�̃∗
F S(ξ ) := �∗

F S(ξ )

Si
T

and �̃F S(H̃) := ess supξ∈L1(F)
{
EF S[H̃] − �̃∗

F S(ξ )
}
.

Denote by Q̃G the unique equivalent martingale measure on F S with numeraire Si that
is

dQ̃G
dPG

:= Si
T

Si
0

dQG
dPG

.

Then we obtain

�̃G(H̃) = �G(H)

Si
0

= EQG

[
Si

T

Si
0

ess supξ∈L1(F){EF S[H̃] − �̃∗
F S(ξ )}

]
= EQ̃G [�̃F S(H̃)].

We will summarize the last paragraph in the following proposition:

PROPOSITION 3.9. If �G is a two-step market evaluation then �̃G is a two-step market
evaluation as well. Furthermore, the penalty function of �̃F S is given by the penalty function
of �F S converted into units of stock i.

Note that for evaluations which are not two step an easy conversion of the penalty
function as given in the last proposition usually only works if the numeraire is
deterministic.

It is not hard to see that a two-step market valuation is always market-consistent, see
the theorems below. On the other hand our Example 3.12 below shows that a market-
consistent valuation is not necessarily a two-step market valuation.

3.2. An Axiomatic Characterization of Two-Step Market Evaluations

Notice that the Examples 3.4 all satisfy the market local property, i.e.:
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36 A. PELSSER AND M. STADJE

• For every A ∈ F S and H ∈ L∞
+ (F)

�G(H) = �G(IAH) + �G(IAc H).(3.3)

The binary options IAH and IAc H can be seen as insurances against the events A or
Ac, respectively. For example if A happens then the owner of the option IAH gets a
nonnegative amount H which possibly depends on the insurance process. If the evaluation
�G is assumed to be sublinear, the value of the insurance contract IAH plus the value
of the insurance contract IAc H should be larger than the value of H = IAH + IAc H.
The economic reason is that if the valuation of H is decomposed into the sum of the
evaluations of the binary insurance contracts then the additional uncertainty given by
the event A for each binary contract, should lead to an increase of the total insurance
premium. The local property however postulates that the uncertainty added to the payoff
H by an event from the financial market should not carry any extra premium. We will
see in Section 4 that, in a setting with a correlated stock and insurance process, the local
property is satisfied for a time-consistent and market-consistent evaluation if the stock
process is continuous and the value of the insurance process for is revealed at fixed time
instances (or more generally at predictable stopping times).

Now the question in which we are interested in the remainder of this section, is the
following: Given a conditional evaluation �G does then its market-consistency and the
market local property imply that every position H has to be priced with a two-step market
valuation? Our results below will actually show that this statement holds.

The following theorem shows that market-consistency and the market local property
in the coherent case are equivalent to two-step market evaluations. Furthermore, it gives
an explicit formula for �F S.

THEOREM 3.10. The following statements are equivalent:

• �G is a coherent market-consistent G-conditional evaluation which satisfies the market
local property.

• There exists an F S-conditional coherent evaluation �F S : L∞(F) → L∞(F S) such
that �G(H) = EQG [�F S(H)]. Furthermore, �F S(H) = ess supZ∈M′EF S[ZH], with

M′ :=
(

dQG
dPG

)−1

M ⊂ {Z ∈ L1(F)|EF S[Z] = 1} = QF S,(3.4)

and M given by (2.1).

The assumptions of the theorem are satisfied for all our examples above except for
the mean-variance and the exponential market-consistent principles. The reason is that
these do not satisfy positive homogeneity. However, in the case that the filtration F S

is generated by countably many sets, and �G is continuous, and monotone or p-norm
bounded, we can prove that an evaluation has to be a two-step market evaluation without
the assumption of positive homogeneity.

THEOREM 3.11. Suppose thatF S is generated by countably many sets.Then the following
statements are equivalent:

• �G is a monotone, continuous market-consistent G-conditional evaluation which satis-
fies the market local property.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 37

• There exists a monotone, continuous F S-conditional evaluation �F S : L∞(F) →
L∞(F S) such that

�G(H) = EQG [�F S(H)] .

Furthermore, if �G is additionally assumed to be p-norm bounded then the statement
also holds without the monotonicity assumption in (i) and (ii).

The mean-variance principle is not monotone but it is p-norm bounded. In particular,
Theorems 3.10–3.11 include all our examples. Theorem 3.11 further applies to the expo-
nential principle, and the average value at risk and the semi-deviation principle if λ and
δ only take values between 0 and 1.

The proof of the last theorem heavily relies on the assumed continuity of our evalua-
tions which was not needed in Theorem 3.10. The evaluation �F S will be obtained only
as an a.s. limit using the martingale convergence theorem without an explicit formula.

Note that the market-consistency of an evaluation � does not necessarily imply that
we get a representation as in Theorems 3.10 and 3.11, since there are market-consistent
evaluations not satisfying the market local property. This can be seen from the following
example:

EXAMPLE 3.12. Assume that G is trivial and let Z1 and Z2 be densities independent
of S with Z1 �= Z2. Then Zi are also independent of dQ

dP . Now suppose that the agent
is not sure if he should trust the density dQ

dP Z1 or dQ
dP Z2. Therefore, he decides to take a

worst-case approach over all convex combinations of dQ
dP Z1 or dQ

dP Z2. That is

�(H) := max
P̄∈M

Ē [H] = max
i=1,2

E

[
dQ

dP
Zi H
]

,(3.5)

with M = {λ dQ
dP Z1 + (1 − λ) dQ

dP Z2|λ ∈ [0, 1]}. It is straightforward to check using the
independence of Zi and S that � is a market-consistent, coherent evaluation. Let H ≥ 0
be F- but not F S-measurable. Assume without loss of generality that the maximum in
(3.5) is attained in i = 1. Now choose a set A ∈ F S such that

E

[
dQ

dP
Z2 IAH

]
> E

[
dQ

dP
Z1 IAH

]
.(3.6)

Since the maximum in (3.5) is attained in i = 1 we must have that

E

[
dQ

dP
Z2 IAc H

]
< E

[
dQ

dP
Z1 IAc H

]
.

But then we get

�(HI A) + �(HI Ac ) = E

[
dQ

dP
Z2 IAH

]
+ E

[
dQ

dP
Z1 IAc H

]

> E

[
dQ

dP
Z1 IAH

]
+ E

[
dQ

dP
Z1 IAc H

]
= �(H).

(3.7)

One possible choice for A and H would be to define H = IAI{Z2>Z1} + IAc I{Z1>Z2}. Then
(3.6) always holds if A is chosen to be a nonzero set with A⊂{Z2 > Z1}. Furthermore,
one can ensure that �(H) = E[Z1 H] by choosing A such that Q(Ac) is sufficiently close
to one. In particular, (3.7) holds and therefore � defined in (3.5) does not satisfy the
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38 A. PELSSER AND M. STADJE

market local property. By the direction (ii) ⇒ (i) of Theorem 3.10 this implies that � is
not a two-step market evaluation.

4. DYNAMIC EVALUATIONS IN CONTINUOUS TIME:
TIME-CONSISTENCY AND MARKET-CONSISTENCY

In this section we will give sufficient conditions in which the market local property holds
in a dynamic setting. Specifically we will obtain that in certain dynamic settings time-
consistency and market-consistency imply that all evaluations have to be two-step market
evaluations. Time-consistency in a dynamic setting often has strong implications. For
instance, for general preferences the indifference price of an agent with time-consistent
dynamic preferences are recursive if and only if the preferences are cash-invariant, see
theorem 3.4, Cheridito and Kupper (2009).

Subsequently, we fix a finite time horizon T > 0. Throughout the rest of the paper we
assume that additional to the stocks (St)0≤t≤T = ((S1

t , . . . , Sn
t ))0≤t≤T, we have an untraded

insurance process (Y t)0≤t≤T . For the sake of simplicity let us assume that the insurance
process is one-dimensional. (The generalization is straightforward.) Let F̄ S be filtration
generated by S, and let F̄Y be the filtration generated by Y . We again assume that the
financial market is complete while the entire market is incomplete. Denote by Q the
unique martingale measure on F̄ S

T with density dQ
dP .

Define the total information which is available as F := F̄ S ∨ F̄Y := σ (F̄ S ∪ F̄Y). Set-
ting Q(A) := E[ dQ

dP IA] for A ∈ FT, we can extend Q canonically to the whole filtration.
We call a collection of mappings (�σ )0≤σ≤T , a continuous-time dynamic evaluation if it
has the following properties:

• For all stopping times σ , �σ is an Fσ -conditional evaluation.
• Time-Consistency: For every H ∈ L∞(FT):

�σ (H) = �σ (�τ (H)) for all stopping times σ ≤ τ.

In a dynamical context time-consistency is a natural assumption to glue together static
risk measures. It means that the same risk is assigned to a financial position regardless
of whether it is calculated over two time periods at once or in two-steps backwards in
time. For a general analysis of weaker notions of time-consistency see, e.g., Roorda et al.
(2005).

REMARK 4.1. Alternative names for our definition of time-consistency would have
been “recursiveness” or “tower property.” Note that in the literature often the following
notion of time-consistency is used: if an asset H1 is preferred to an asset H2 under
all possible scenarios at some time τ then H1 should also have been preferred at every
time σ before τ . Let us call the latter definition of time-consistency property (TC).
Now if � is monotone it is well known that our notion of time-consistency is in fact
equivalent to property (TC). Furthermore, since (TC) implies the monotonicity of �,
our notion of time-consistency includes (TC) as a special case, but it can also be applied
to nonmonotone evaluations.

Time-consistent evaluations have been discussed in continuous time by Peng
(2004), Frittelli and Gianin (2004), Rosazza Gianin (2006), Delbaen (2006), Klöppel
and Schweizer (2007), Bion-Nadal (2008), Bion-Nadal (2009), and Barrieu and El
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 39

Karoui (2009). Duffie and Epstein (1992), Chen and Epstein (2002), and Maccheroni,
Marinacci, and Rustichini (2006) deal with dynamic preferences using similar notions of
time-consistency.

Given a dynamic evaluation (�σ ) we define �σ,τ to be equal to �σ restricted to
L∞(Fτ ), i.e., �σ,τ = �σ |L∞(Fτ ). Next we will assume that the insurance process Y a.s.
jumps only at finitely many predictable time instances, say 0 ≤ τ 1 ≤ τ 2 ≤ . . . and there
is no additional randomness added between the jumps, i.e., F̄Y

τi+1− = F̄Y
τi

for all i. Recall
that a stopping time τ is predictable if there exists a sequence of stopping times τ n < τ

such that τ n ↑ τ . Hitting times of continuous processes are predictable while jump times
of Lévy processes (or more general, strong Markov Feller processes) are not. On the set
where Y does not jump at all we set τ 1 = T .3 One example could be given by a setting
in which the insurance process Y is only updated at finitely many fixed time instances,
t1 < · · · < tk. Another possibility could be that damages occur at unpredictable stopping
times τ̄i , but the amount of money the insurance will have to pay is not clear right away.
Instead the insurance needs some additional time, say ε > 0, to agree to a certain amount
and to pay it out at τ̄i + ε, respectively.

We will use the following definition in a dynamic setting:

DEFINITION 4.2. We will say that a conditional continuous-time evaluation (�σ )σ∈[0,T ]

is market-consistent if for every stopping time σ and every financial payoffs HS ∈
L∞(F̄ S

T ∨ Fσ ) and H ∈ L∞(FT)

�σ (HS + H) = EQ
Fσ

[HS] + �σ (H).

Note that this definition of market-consistency coincides with the definition in the static
case with G = Fσ and F̄ S = F̄ S

T .

Now for every stopping time σ we define τσ to be the time of the next jump after σ ,
i.e., τσ := inf{t > σ |�Yt > 0} ∧ T. Denote F S

τσ
:= F̄ S

τσ
∨ Fσ . That is F S

τσ
is the σ -algebra

which includes all the information (of both stock and insurance process) up to time σ

and additionally the information of the stock process up to the time of the next jump of
Y .

THEOREM 4.3. Suppose that S is continuous and the insurance process is as described
above. Let (�σ )0≤σ≤T be a time-consistent and market-consistent evaluation such that for
every σ , �σ (·) is continuous. Then for every stopping time σ , we have that �σ,τσ

satisfies the
market-local property. In particular, if (�σ ) is additionally assumed to be either monotone,
p-norm bounded, or positively homogeneous then for every stopping time σ there exists an
F S

τσ
-conditional evaluation �F S

τσ
: L∞(Fτσ

) → L∞(F S
τσ

) such that

�σ,τσ
(H) = EQ

Fσ

[
�F S

τσ
(H)
]
.

This theorem shows in particular that in a setting where the agent just observes the
insurance process at finitely many time instances, every market-consistent and time-
consistent evaluation has to admit a representation of the form EQ

Fσ
[�F S

τσ
(H)] at every

stopping time σ . In other words, an agent who wants to use a time-consistent and
market-consistent evaluation has to apply a two-step market evaluation.

Theorem 4.3 also yields the following corollary:

3Similarly we can set some τ i(ω) equal to T if not all paths, (Yt(ω))t, have the same number of jumps.
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40 A. PELSSER AND M. STADJE

COROLLARY 4.4. Suppose that S is continuous, and that the insurance process Y a.s.
jumps only at finitely many fixed time instances, say 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, and F̄Y

ti+1− = F̄Y
ti .

If (�σ )0≤σ≤T is a time-consistent and market-consistent evaluation which is either monotone,
p-norm bounded or positively homogeneous then for every s ∈ [0, T ] there exists an F S

ti -
conditional evaluation �F S

ti
: L∞(Fti ) → L∞(F S

ti ) such that

�s,ti (H) = EQ
Fs

[
�F S

ti
(H)
]
,

where ti is the next time instance after s at which the insurance process jumps.

We have restricted our analysis to payoffs rather than payment streams. However, if
H is a discrete payment streams which pays cash amounts (Hη1 , . . . , Hηk) at stopping
times η1 < η2 < · · · < ηk, we could consider evaluations �σ mapping payment streams,
starting paying amounts from time σ on, to L∞(Fσ ). In this case time-consistency could
be defined as

�σ (H) = �σ (HI[0,τ ) + �τ (HI[τ,T])) for all σ ≤ τ,

see also Cheridito et al. (2006), or Jobert and Rogers (2008). By a proof analogue to
the one for Theorem 4.3 one can then show that for an evaluation satisfying similar
properties as above time-consistency and market-consistency entail

�σ,τσ
(HI[σ,τσ ]) = EQ

Fσ

[
�F S

τσ
(HI [σ,τσ ])

] = EQ
Fσ

[
�F S

τσ
(Hτσ

)
]+ EQ

Fσ

[ ∑
σ≤η<τσ

Hη

]
.

5. MARKET-CONSISTENT EVALUATIONS IN CONTINUOUS TIME

5.1. Results on Market-Consistent BSDEs

In a continuous time Brownian-Poisson setting we can provide examples of time-
consistent and market-consistent evaluations by g-expectations. It is well known that
g-expectations induce time-consistent evaluations, see for instance Peng (2004), Frittelli
and Gianin (2004), Rosazza Gianin (2006), Bion-Nadal (2008), Barrieu and El Karoui
(2009), or El Karoui and Ravanelli (2009). In this section we will give a complete char-
acterization of g-expectations which are market-consistent.

Suppose the filtration F is generated by the following independent processes: an n-
dimensional standard Brownian motion W f , a d-dimensional standard Brownian motion
W , and a Poisson random counting measure N(ds, dx) defined on [0, T] × R \ {0}. We
denote the corresponding compensator by

N̂(ds, dx) = ν(dx) ds.

We assume that the measure ν(dx) is nonnegative and satisfies∫
R\{0}

(|x|2 ∧ 1)ν(dx) < ∞.

Denote Ñ(ds, dx) := N(ds, dx) − N̂(ds, dx).
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 41

Suppose that we have a bond B with B0 = 1 and dBt = rBtdt. We assume that the stock
process S = (S1 , . . . , Sn) is given by

d Si
t = Si

t

(
μi (t, St) dt + σ̃ i (t, St) dW f

t
)
, Si

0 = si
0,

with si
0 > 0 and μi : [0, T] × Rn → R and σ̃ i : [0, T] × Rn → Rn for i = 1 , . . . , n. Note

that we used vector notation for the stochastic integral. Define the vector μ = (μi)i=1 , ... , n

taking values in Rn. The rows of the matrix σ̃ : [0, T] × Rn → Rn×n should be given by
(σ̃ i )i=1,...,n . We assume that μ and σ̃ are uniformly bounded. Furthermore, σ̃ should be in-
vertible, and uniformly elliptic, i.e., there exists K1, K2 > 0 such that K1 In � σ̃ σ̃ᵀ � K2 In .

Furthermore, we need standard measurability and Lipschitz continuity assumptions on
μ and σ̃ . Then it is well known that a solution S for the SDE above exists and that the
corresponding financial market, consisting of (S, B), is complete. Generally payoffs can
depend on (W f , W, Ñ) and may not be replicable.

Let F̄ S be the filtration generated by S. Denote the market price of uncertainty by
θt = σ̃−1(t, St)(μ(t, St) − re), where e is an n-dimensional vector consisting of ones. As in
the sections before we will denote by H hedgeable and unhedgeable discounted payoffs.

We will consider evaluations of H given by the solutions of BSDEs. Denote by P the
predictable σ -algebra on the entire filtration. Let

H2
m :=
{

Z = (Z1, . . . , Zm) ∈ P|E
[∫ T

0
|Zs |2ds

]
< ∞
}

,

where we denote by |·| the Euclidean norm.
Let S2 be the space of all one-dimensional optional processes whose path-maximum is

square integrable with respect to P . Let L2(ν(dx)) be the space all B(R \ {0})-measurable
functions mapping from R \ {0} to R, which are square integrable with respect to ν,
where, as usual, two functions are identified if they are equal ν a.s. Define L2(ν(dx) ×
dP × ds) as all P ⊗ B(R \ {0})-measurable functions which are square-integrable with
respect to ν(dx) × dP × ds. Now suppose that we have a suitably measurable function
g : [0, T] × � × R2 × L2(ν(dx)) → R.

A solution of the BSDE with driver g(t, ω, z f , z, z̃) and terminal condition H ∈
L∞(FT) is a quadruple of processes (Y(H), Zf , Z, Z̃) ∈ S2 × H2

n × H2
d × L2(ν(dx) ×

dP × ds) such that

dY t(H) = −g
(
t, Zf

t , Zt, Z̃t
)

dt + Zf
t dW f

t + ZtdW t +
∫

R\{0}
Z̃t(x)Ñ(dt, dx) and

YT(H) = H.

Often BSDEs are also written in the following equivalent form:

Yt(H) = H +
∫ T

t
g
(
s, Zf

s , Zs, Z̃s
)

ds

−
∫ T

t
Zf

s dW f
s −
∫ T

t
ZsdW s −

∫ T

t

∫
R\{0}

Z̃s(x)Ñ(ds, dx).

Since the terminal condition is given at maturity time T , BSDEs have to be computed
backwards in time. As in many applications a terminal reward is specified and solutions
of BSDEs satisfy a dynamic programming principle, BSDEs are often applied to solve
problems in stochastic optimal control and mathematical finance, see apart from the

 14679965, 2014, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12026 by U
niversity O

f M
aastricht, W

iley O
nline L

ibrary on [17/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



42 A. PELSSER AND M. STADJE

papers mentioned above for instance El Karoui et al. (1997), Lazrak and Quenez (2003),
Hamadène and Jeanblanc (2007), and Porchet, Touzi, and Warin (2009); or for the
discrete time case Madan, Pistorius, and Schoutens (2013).

Subsequently, we will always assume that the BSDE which we consider has a unique
solution. This is for instance the case if g(t, 0, 0, 0) is in L2(dP × dt), and g is uniformly
Lipschitz continuous; that is there exists K > 0 such that∣∣g(t, z f

1 , z1, z̃1
)− g
(
t, z f

0 , z0, z̃0
)∣∣

≤ K

(
z f

1 − z f
0 | + |z1 − z0| +

√∫
R\{0}

|z̃1(x) − z̃0(x)|2ν(dx)

)
,

see for instance Royer (2006) and the reference therein.

EXAMPLE 5.1. Let H be a bounded payoff and define Yt(H) = EFt [H]. Then by
the martingale representation theorem (see, e.g., Jacod and Shiryaev 1987, section 3,
theorem 4.34) there exist predictable square-integrable processes Zf , Z, and Z̃ such that
Y satisfies

dY t(H) = Zf
t dW f

t + ZtdW t +
∫

R\{0}
Z̃t(x)Ñ(dt, dx) and YT(H) = H.

This is the simplest BSDE with g = 0.
Hence, a conditional expectation may be seen as a BSDE with g = 0. This is why BSDEs

are being referred to as g-expectations. The name should express that a BSDE may be
viewed as generalized (usually nonlinear) conditional expectation with an additional
drift.

EXAMPLE 5.2. Let H be a bounded payoff and define Yt(H) = EQ
Ft

[H]. Then by the
martingale representation theorem and by the Girsanov theorem Y (H) satisfies

dY t(H) = −θt Zf
t dt + Zf

t dW f
t + ZtdW t +

∫
R\{0}

Z̃t(x)Ñ(dt, dx) and YT(H) = H.

This is a linear BSDE with g(t, z f , z, z̃) = θtz f .
Subsequently, we will write

E g
t (H) = Yt(H).

In a Markovian setting g-expectations correspond to semilinear parabolic PDEs (or
PIDEs in the case of jumps), see for instance El Karoui et al. (1997) in a Brownian
setting (see Barles, Buckdahn, and Pardoux 1997 in the case of jumps).

It may be seen that if g is convex and g(t, 0, 0, 0) = 0 then the evaluation defined by

�σ (H) := E g
σ (H),

is normal, monotone, cash invariant, convex, time-consistent, and satisfies the local
property. Hence, g-expectations give us an abundance of time-consistent, continuous-
time evaluations. There are also certain sufficient conditions under which, in a Brownian
filtration, a time-consistent evaluation is induced as the solution of a g-expectation, see
Coquet et al. (2002).
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 43

The following theorem gives a complete characterization of market-consistent evalu-
ations given by g-expectations:

THEOREM 5.3. A g-expectation is market-consistent if and only if g(t, z f , z, z̃) − θtz f

does not depend on zf dP × dt a.s.

5.2. Examples of Market-Consistent BSDEs

To get an interpretation of g we will consider some examples. The next proposition gives
a dynamic market-consistent extension of the exponential principle. It follows directly
from Theorem 5.3 above and theorem 2 in Morlais (2010). (Morlais (2010) also allows
for a hedging set C and an initial capital amount x. In our case this becomes C = {0} and
x = 0.)

PROPOSITION 5.4. Define the evaluation � as the solution of the BSDE with driver
function

g(t, z f , z, z̃) = θtz f + 1
2γ

|z|2 + γ

∫
R\{0}

[
exp
{

z̃(x)
γ

}
− z̃(x)

γ
− 1
]

ν(dx).

Then (i) � is market-consistent, and (ii) for pure insurance risk (i.e., terminal conditions
independent of S) � corresponds to the exponential principle from Example 2.3.

Other examples of the driver function g can be obtained by looking at one-period
evaluations in discrete time defined recursively. Namely, suppose that we have an equi-
spaced time grid I = {0, h, 2h , . . . , T} where we assumed without loss of general-
ity that T is a multiple of h. The filtration (Fih)i=0,1,...,T/h is generated by (W f

ih, Wih,

Ñ((0, ih], dx))i=1,...,T/h . Define Sh, j
0 = s j

0 ,Sh, j
(i+1)h = Sh, j

ih (1 + μ j (ih, Sh
ih)h + σ̃ j (ih, Sh

ih)�

W f
(i+1)h) for i = 1 , . . . , T/h and j = 1 , . . . , n, and Sh = (Sh,1 , . . . , Sh,n). Denote fur-

ther F Sh

(i+1)h = F̄ Sh

(i+1)h ∨ Fih , where F̄ Sh
is the filtration generated by Sh. In other words

F Sh
is the information of the (discrete-time) stock process together with the previous

values of the insurance process. Let Qh be the measure (with F̄ Sh
-measurable density)

such that �W f ,∗
(i+1)h := �W f

(i+1)h − θihh is a martingale.
Now we can use evaluations from our Examples 3.4 over one period and glue them

together recursively. Using our two-step procedures for the one-periodic evaluations
could be natural, in particular, if the stock process can be observed before the insurance
process. Suppose for instance for a moment that we are at time ih and the stock process,
Sh, can be observed at time (i + 1

2 )h, whereas the insurance process is revealed after the
stock process at time (i + 1)h. Since data from the financial market can be observed almost
continuously, while data from insurance companies are typically observed less frequently,
this may not be an unreasonable assumption, see also Section 4. Of course our insurance
process will possibly be effected by the financial market through its correlation to W f .
However, it will not be completely predictable due to its dependence on the jumps and W .
In this situation if an evaluation (�σ )σ∈[0,T ] is time-consistent, then market-consistency
would imply that for the aggregated evaluation (�ih)i=0,1 , ... , T/h we have

�ih(H(i+1)h) = �ih
(
�(i+ 1

2 )h(H(i+1)h)
) = EQh

Fih

[
�(i+ 1

2 )h(H(i+1)h)
]
.
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44 A. PELSSER AND M. STADJE

The last equation holds by market-consistency since �(i+ 1
2 )h(H(i+1)h), is F Sh

(i+ 1
2 )h

=
F̄ Sh

(i+ 1
2 )h

∨ Fih-measurable. Therefore, the setting outlined above would indeed give rise
to applying a two-step market evaluation at time-instances ih, to evaluate payoffs up to
time (i + 1)h. We will calculate one example explicitly by considering at time instances ih
the mean-variance two-step market evaluation

�v
ih,(i+1)h(H(i+1)h) = EQh

Fih

[
EF Sh

(i+1)h
[H(i+1)h ] + 1

2
αVarF Sh

(i+1)h
[H(i+1)h ]

]
, α ≥ 0.

To obtain a multi-period evaluation (�h
ih)i=0,1,...,T/h on the whole filtration with �h

ih :
L∞(FT) → L∞(Fih) we will define �h recursively by setting

�h
T(H) = H and �h

ih(C) = �v
Fih

(
�h

(i+1)h(H)
)

for i = 0, 1, . . . , T/h − 1.(5.1)

The following proposition is proved in the Appendix:

PROPOSITION 5.5. Suppose that the evaluation �h is constructed by (5.1), i.e., using
locally the mean-variance two-step market evaluation. Then for every terminal payoff H ∈
L∞(FT) there exists predictable (Zh, f , Zh, Z̃h) and a martingale (Lh

ih)i orthogonal (under
Qh) to (W f

ih, Wih, Ñ((0, ih], dx))i such that for all i we have

�h
ih(H) = H +

T/h−1∑
j=i

([
θ jh Zh, f

jh + α

2

(∣∣Zh
jh

∣∣2 +
∫

R\{0}

∣∣Z̃h
jh(x)
∣∣2ν(dx)

)]
h

+ α

2
EQh

F jh

[(
�Lh

( j+1)h − EF Sh
( j+1)h

[
�Lh

( j+1)h

])2])
−

T/h−1∑
j=i

Zh, f
jh �W f

( j+1)h

−
T/h−1∑

j=i

Zh
jh�W( j+1)h −

T/h−1∑
j=i

∫
R\{0}

Z̃h
jh(x)Ñ(( jh, ( j + 1)h], dx) − (Lh

T − Lh
ih

)
.

(5.2)

In particular, �h satisfies a discrete-time BSDE.

From Proposition 5.5 we may infer that

EF jh

[
��h

( j+1)h(H)
] = −

[
θ jh Zh, f

jh + α

2

(∣∣Zh
jh

∣∣2 +
∫

R\{0}

∣∣Z̃h
jh(x)
∣∣2ν(dx)

)]
h

−α

2
EQh

F jh

[(
�Lh

( j+1)h − EF Sh
( j+1)h

[
�Lh

( j+1)h

])2]
.

Note that the orthogonal martingale terms �Lh
( j+1)h arise because the discretized Brow-

nian motions do not have the representation property. However, the continuous time
Brownian motions and the Poisson random measure do have the representation prop-
erty. Therefore, if we ignore the Lh then an analogous infinitesimal way of charging the
risk in continuous time would be an evaluation which satisfies

EFt [d�t(H)] = −
[
θt Zf

t + α

2

(
|Zt|2 +

∫
R\{0}

|Z̃t(x)|2ν(dx)
)]

dt.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 45

This corresponds to an evaluation given by the solution of a BSDE with driver function

g(t, z, z̃) = θtz f + α

2

(
|z|2 +

∫
R\{0}

|z̃(x)|2ν(dx)
)

.

REMARK 5.6. The analogy stated above only corresponds to the local way of charging
risk. A global correspondence of charging risk would involve proving a convergence
result for the whole path. In the case that the driver function is Lipschitz continuous it
can actually be shown in a purely Brownian setting that after an appropriate scaling the
whole path of the discrete time evaluations converges to the corresponding solution of
the BSDE; see Stadje (2010). However, in Proposition 5.5. the driver function is quadratic
in z. In this case already in the purely Brownian setting an extension by convergence may
not always be possible. Cheridito and Stadje (2010) give an example which shows that in
a setting where the discrete time filtration is generated by a Bernoulli random walk it may
happen that the discrete time Hn are uniformly bounded and converge to H ∈ L∞(F)
but the discrete time evaluations explode.

6. SUMMARY AND CONCLUSIONS

In this paper we have studied the extension of standard actuarial principles in time-
consistent and market-consistent directions by introducing a new market-consistent
evaluation procedure which we call “two-step market evaluation.” On the one hand,
two-step market evaluations sometimes arise when an agent starts with an evaluation
that is not market-consistent, such as the average value at risk or the exponential pre-
mium principle, and then engages in hedging. On the other hand, market-consistent
evaluations can also be defined directly by applying a standard evaluation technique,
conditional on the stock process. In this case the structure of many standard evaluation
techniques can be preserved.

We have shown that two-step market evaluations are invariant if the stock is taken as a
numeraire. In Theorems 3.8 and 3.9 a complete axiomatic characterization for two-step
market evaluations is provided. Moreover, we have proved that in a dynamic setting with
a continuous stock prices process and an insurance process being revealed at predictable
times every evaluation which is time-consistent and market-consistent is a two-step
market evaluation up to the next predictable time, which gives a strong argument for
their use. We have also characterized market-consistency in terms of g-expectations and
studied the extension of the mean-variance and the exponential principle to continuous
time, in a setting with jumps. Our analysis shows that two-step evaluations can provide
a useful, computationally tractable tool for market-consistent valuations.

APPENDIX A: TECHNICAL MATERIAL AND PROOFS

A.1. Background to the Essential Supremum

The first part of the appendix is basically a summary of the definitions and results
given in A.5 Föllmer and Schied (2004). Consider a family of random variables M on
a given probability space (�, F̄ , P ). Now if M is countable then Z∗(ω) = supZ∈M Z(ω)
is also measurable. However, measurability is not guaranteed if M is uncountable. Even
if the pointwise supremum is measurable it might not be the right concept when we
focus on a.s. properties. For instance if P is the Lesbegue measure on � = [0, 1] and
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46 A. PELSSER AND M. STADJE

M = {I {x}|0 ≤ x ≤ 1} then supZ∈M Z = 1 while Z = 0 a.s. for all Z ∈ M. This suggest the
following notion of an essential supremum defined in terms of almost sure inequalities.
This result can be found as theorem A.32 in Föllmer and Schied (2004).

THEOREM A.1. Let M be any set of random variables on (�, F̄ , P ).

(a) There exists a random variable Z∗ such that

Z∗ ≥ Z P -a.s. forall Z ∈ M. (A)

Moreover, Z∗ is a.s. unique in the following sense: Any other random variable Ẑ with
property (A) satisfies Ẑ ≥ Z∗ P -a.s.

(b) Suppose that M is directed upwards, i.e., forZ1, Z2 ∈ M there exists Z3 ∈ M with
Z3 ≥ max (Z1, Z2). Then there exists an increasing sequence Z1 ≤ Z2 ≤ . . . in M
such that Z∗ = limnZn P -a.s.

DEFINITION A.2. The random variable Z∗ in the theorem above is called the essential
supremumof M and we write:

Z∗ = ess supZ∈MZ.

We define the essential infimum similarly.

If the probability space is finite the essential supremum corresponds to the pointwise
supremum taken over all atoms.

LEMMA A.3. If M satisfies the concatenation property, i.e., for every A ∈ F̄ and Z1, Z2

∈ M we have that Z1 IA + Z2 IAc ∈ M, then M is directed upwards.

Proof . Define

Z∗ = Z1 I{Z1≥Z2} + Z2 I{Z1<Z2}.

By the concatenation property Z∗ ∈ M, and by definition Z∗ ≥ max (Z1, Z2). �
A.2. Proofs of the results in Section 3.1

Proof of Proposition 3.3. (i)⇒(ii) By (2.2) we have that

�G(H) = ess supξ∈L1(F)
{
EG [ξ H] − �∗

G(ξ )
}
.

Furthermore,

�∗
G(ξ ) = ess supH∈L∞(F){EG [ξ H] − �G(H)}

≥ ess supH∈L∞(F S){EG [ξ H] − �G(H)}
= ess supH∈L∞(F S){EG [EF S[ξ ]H] − �G(H)}.

(A.1)

The last term in (A.1) is the dual of �G restricted to F S evaluated at EF S[ξ ]. Now by
assumption �G(HS) = EQG [HS] is linear. Thus, its dual penalty function, (�G |F S)∗ :
L1(F S) → R ∪ {∞}, must be equal to the indicator function which is zero if the input
argument is dQG

dPG
, and infinity else. But then, by the inequality above, �∗

G(ξ ) must be
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 47

equal to infinity as well if EF S[ξ ] �= dQG
dPG

. Thus, it is sufficient to consider ξ of the form

ξ = dQG
dPG

Z for a Z := dQG
dPG

∈ QF S. Defining for Z ∈ QF S,cG(Z) = �∗
G( dQG

dPG
Z), we have

indeed that

�G(H) = ess supξ∈L1(F)
{
EG [ξ H] − �∗

G(ξ )
}

= ess supZ∈QFS

{
EG

[
dQG
dPG

ZH
]

− �∗
G

(
dQG
dPG

Z
)}

= ess supZ∈QFS {EQG [ZH] − cG(Z)}.
(ii) ⇒ (iii): It is by (ii)

�G(HS + H) = ess supZ∈QFS

{
EG

[
dQG
dPG

Z(HS + H)
]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG
dPG

ZHS
]

+ EG

[
dQG
dPG

ZH
]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
EF S

[
dQG
dPG

ZHS
]]

+ EG

[
dQG
dPG

ZH
]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG
dPG

HSEF S[Z]
]

+ EG

[
dQG
dPG

ZH
]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG
dPG

HS
]

+ EG

[
dQG
dPG

ZH
]

− cG(Z)
}

= EG

[
dQG
dPG

HS
]

+ ess supZ∈QFS

{
EG

[
dQG
dPG

ZH
]

− cG(Z)
}

= EQG [HS] + �G(H),

where we have used in the fourth equation that dQG/dPG and HS, by assumption, are
F S-measurable. In the fifth equation we have used that EF S[Z] = 1. This proves (ii)⇒(iii).
The direction (iii)⇒(i) is clear using that by normalization �G(0) = 0.

Finally let us show that if �G is additionally assumed to be monotone, then market-
consistency is equivalent to any payoff being evaluated between its super- and sub-
replication price. Clearly, if any payoff is evaluated between its super- and sub-replication
price then for any HS ∈ L∞(F S) we must have that �G(HS) = EQG [HS], as the financial
market is assumed to be complete. Hence, by the direction (i)⇒(iii) shown above, indeed
�G is market-consistent. On the other hand if �G is market-consistent and monotone
then by standard duality results the penalty function in (ii) must have a domain in Q+

F S.

Also note that the set defined by M := dQG
dPG

Q+
F S = { dQG

dPG
Z|Z ∈ Q+

F S} is equal to the set of
all local martingale measures MG . (Actually for our proof we only need that M ⊂ MG .)
This yields that

�G(H) = ess supZ∈Q+
FS

{EQG [ZH] − cG(Z)} ≤ ess supZ∈Q+
FS

EQG [ZH]

= ess supP̄G∈MG ĒG [H],

where we have used in the first equality that (ii) holds as �G is market-consistent. In the
inequality we applied that cG ≥ 0. In the last equality we used that M = MG . Hence,
indeed �G(H) is smaller than the super-replication price of H. To show that �G(H)
is greater than the sub-replication price, note that as c is a penalty function we must
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48 A. PELSSER AND M. STADJE

have ess infZ∈Q+
FS

cG(Z) = 0. Now clearly, Q+
F S satisfies the concatenation property from

Lemma A.3. Thus, there exists a sequence Zn ∈ Q+
F S such that a.s. limn cG(Zn) = 0. This

entails that

�G(H) = ess supZ∈Q+
FS

{EQG [ZH] − cG(Z)}
≥ lim

n
{EQG [Zn H] − cG(Zn)}

≥ lim inf
n

EQG [Zn H] + lim inf
n

−cG(Zn) = lim inf
n

EQG [Zn H]

≥ ess infP̄G∈MG ĒG [H].

Hence, �G(H) is greater than the sub-replication price. The proposition is proved. �
Theorems 3.10 and 3.11 may be seen as versions of the Radon-Nikodyn theorem with

a nonlinear part �F S and without assumptions like monotonicity or continuity. We will
need the following lemma. Its proof is straightforward doing an induction over r.

LEMMA A.4. Suppose that �G satisfies market-consistency and the local property. Then
for disjoint sets C1, . . . , Cr ∈ F S and payoffs H1, . . . , Hr ∈ L∞(F), we have

�G
(
H1 IC1 + · · · + Hr ICr

) = �G
(
H1 IC1

)+ · · · + �G
(
Hr ICr

)
.

The next lemma will also be useful.

LEMMA A.5. A Ḡ-conditional evaluation satisfies �Ḡ(IAH) = IA�Ḡ(H) for every A ∈
Ḡ.

Proof . It is

�Ḡ(IAH) = �Ḡ(IAH + IAc 0) = IA�Ḡ(H) + IAc �Ḡ(0) = IA�Ḡ(H),

by normalization and the local property of �Ḡ . �
For the proof of Theorem 3.10 we will also need the following lemma:

LEMMA A.6. In the setting of Theorem 3.10, the set M′ defined by (3.4) has the con-
catenation property in the sense that Z1, Z2 ∈ M′ implies that for any A ∈ F S we have that
Z1 IA + Z2 IAc ∈ M′. In particular, IAM′ + IAc M′ := {Z1 IA + Z2 IAc |Z1 ∈ M′, Z2 ∈ M′} =
M′.

Proof . For Z1, Z2 ∈ M′ we have

�∗
G

(
dQG
dPG

(
Z1 IA + Z2 IAc

))

= ess supH∈L∞(F)

{
EG

[
dQG
dPG

(Z1 IA + Z2 IAc )H
]

− �G(H)
}

= ess supH∈L∞(F)

{
EG

[
dQG
dPG

Z1(IAH)
]

+ EG

[
dQG
dPG

Z2(IAc H)
]

− �G(HI A + HI Ac )
}

(A.2)
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 49

= ess supHI A,HI Ac ∈L∞(F)

{
EG

[
dQG
dPG

Z1(IAH)
]

− �G(HI A)

+ EG

[
dQG
dPG

Z2(IAc H)
]

− �G(HI Ac )
}

= ess supHI A∈L∞(F)

{
EG

[
dQG
dPG

Z1(HI A)
]

− �G(HI A)
}

+ ess supHI Ac ∈L∞(F)

{
EG

[
dQG
dPG

Z2(HI Ac )
]

− �G(HI Ac )
}

,

where the first equation holds by the definition of �∗. The third equation holds because
of Lemma A.4 for r = 2. (A.2) yields that

�∗
G

(
dQG
dPG

(Z1 IA + Z2 IAc )
)

≤ ess supH∈L∞(F)

{
EG

[
dQG
dPG

Z1 H
]

− �G(H)
}

+ ess supH∈L∞(F)

{
EG

[
dQG
dPG

Z2 H
]

− �G(H)
}

= �∗
G

(
dQG
dPG

Z1

)
+ �∗

G

(
dQG
dPG

Z2

)
= 0 + 0 = 0,

where in the last line we have used that �∗
G( dQG

dPG
Zi ) = 0. The reason for this is that �∗

is zero on M and infinity else. Therefore, the fact that Zi ∈ M′ implies by (3.4) that
dQG
dPG

Zi ∈ dQG
dPG

M′ = M for i = 1, 2.

Since �∗
G is only takes the values zero and infinity we must have that �∗

G( dQG
dPG

(Z1 IA +
Z2 IAc )) = 0. Thus, we can conclude that indeed dQG

dPG

(
Z1 IA + Z2 IAc

) ∈ M. Therefore,

Z1 IA + Z2 IAc ∈
(

dQG
dPG

)−1

M = M′. �

Proof of Theorem 3.10. (ii)⇒(i): It is

�G(HS + H) = EQG [�F S(HS + H)] = EQG [HS] + EQG [�F S(H)] = EQG [HS] + �G(H),

where we have used F S-conditional cash invariance in the second equation. This shows
market-consistency. Moreover,

�G(IAH1 + IAc H2) = EQG [�F S(IAH1 + IAc H2)]

= EQG [IA�F S(H1) + IAc �F S(H2)]

= EQG [�F S(IAH1) + �F S(IAc H2)] = �G(IAH1) + �G(IAc H2),

where we used the F S-local property in the second and Lemma A.5 in the third equation.
(i)⇒(ii): By Proposition 3.3 (iii)⇒(ii) and positive homogeneity, market-consistency

implies that
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50 A. PELSSER AND M. STADJE

�G(H) = ess supZ∈M′EG

[
dQG
dPG

ZH
]

= ess supZ∈M′EG

[
EF S

[
dQG
dPG

ZH
]]

= ess supZ∈M′EG

[
dQG
dPG

EF S[ZH]
]

,

(A.3)

where we used in the third equation that dQG
dPG

is F S-measurable. Define

�F S(H) := ess supZ∈M′EF S[ZH].

Clearly, �F S is normal, F S-convex, F S-cash invariant and F S-positively homogeneous.
The F S-local property is satisfied because for A ∈ F S we have

�F S(IAH1 + IAc H2) = ess supZ∈M′EF S[ZIAH1 + ZIAc H2]

= ess supZ∈M′EF S[ZIAH1] + EF S[ZIAc H2]

= ess supZ1∈M′,Z2∈M′EF S[Z1 IAH1] + EF S[Z2 IAc H2]

= ess supZ1∈M′EF S[Z1 IAH1] + ess supZ2∈M′EF S[Z2 IAc H2]

= IAess supZ1∈M′EF S[Z1 H1] + IAc ess supZ2∈M′EF S[Z2 H2]

= IA�F S(H1) + IAc �F S(H2),

where we used in the third equation that Lemma A.6 implies that M′ = {Z1 IA + Z2 IAc |
Z1 ∈ M′, Z2 ∈ M′}. Hence, indeed �F S is an F S-conditional evaluation. Finally, let us
prove that

�G(H) = EQG [�F S(H)].

Notice that if we could show that

ess supZ∈M′EG

[
dQG
dPG

EF S[ZH]
]

= EG

[
dQG
dPG

ess supZ∈M′EF S[ZH]
]

(A.4)

then we are done, since the left-hand side of (A.4) is equal to �G(H) by (A.3), while the
right-hand side is equal to EQG [�F S(H)] by the definition of �F S. So let us show (A.4).
Clearly,

ess supZ∈M′EG

[
dQG
dPG

EF S[ZH]
]

≤ EG

[
dQG
dPG

ess supZ∈M′EF S[ZH]
]

.

Let us prove “≥.” It is well known, see also Theorem A.1 and Lemma A.3, that the con-
catenation property implies that there exists a sequence Zn ∈ M′ with EF S[Z1 H] ≤
EF S[Z2 H] ≤ · · · such that limn EF S[Zn H] = ess supZ∈M′EF S[ZH]. Therefore, by the
monotone convergence theorem

EG

[
dQG
dPG

ess supZ∈M′EF S[ZH]
]

= lim
n

EG

[
dQG
dPG

EF S [Zn H]
]

≤ ess supZ∈M′EG

[
dQG
dPG

EF S[ZH]
]

.

This shows (A.4). This proves Theorem 3.10. �
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 51

For the proof of Theorem 3.11 we will need the following Corollary of Lemma A.4:

COROLLARY A.7. Suppose that �G is continuous, market-consistent, and satisfies the
local property. Then for disjoint sets C1, C2, . . . ∈ F S and a payoff H ∈ L∞(F) we have

�G

(
H

∞∑
i=1

ICi

)
=

∞∑
i=1

�G(HICi ).

In particular, if �G is additionally assumed to be monotone (or p-norm bounded) then for
every H ∈ L∞(F) the mapping C → �G(HIC) is a real-valued, (signed) measure on F S.

Proof of Theorem 3.11. (ii)⇒(i): Continuity, convexity, and monotonicity in the case
that �F S is monotone, are straightforward. The other properties are seen analogously as
in the proof of Theorem 3.10.

(i)⇒(ii): By assumption F S = G ∨ σ (A1, A2, . . .) and we will assume without loss of
generality that Ai �= Aj if i �= j. For n ∈ N we define the filtration Fn as the smallest
σ -algebra containing G and the events A1 , . . . , An. Now let us define the partitions
corresponding to A1 , . . . , An recursively in a standard way. For n = 1, F1 is generated by
G, and the partition given by B1

1 := A1, B1
2 := Ac

1. Moreover, Fn+1 is generated by G and
the partition

Bn+1
i := Bn

i ∩ An+1 and Bn+1
2n+i := Bn

i ∩ Ac
n+1 i = 1, . . . , 2n .

Of course, F1 ⊂ F2 ⊂ · · · ⊂ F S.
Set qn

k = QG(Bn
k ). Note that qn

k are G-measurable random variables summing up to
one for a.s. all fixed ω. Define

�Fn (H) :=
2n∑

k=1

IBn
k

qn
k

�G(HI Bn
k
),(A.5)

where we we set 0/0 = 0. Note that if qn
k = QG [Bn

k ] = 0 on a nonzero set C ∈ G, then
PG [Bn

k ] = 0 on C as well (as QG is equivalent to PG) and therefore, �G(HI Bn
k
) = 0 on C,

too. In particular, �Fn is well defined.
Next, every set A ∈ Fn can be written as A = (Bn

k1
∩ G1) ∪ . . . ∪ (Bn

kr
∩ Gr ), for a r ∈

{1 , . . . , 2n}, 1 ≤ k1 < k2 < · · · < kr ≤ 2n and Gi ∈ G. As �G(0) = 0, it is straightforward
to check using Definition (A.5) that

�Fn (IAH) = IA�Fn (H).(A.6)

Furthermore, by Lemma A.4 for every H ∈ L∞(F)

EQG [�Fn (H)] =
2n∑

k=1

EQG
[
IBn

k

]
qn

k
�G
(
HI Bn

k

) = �G(H).

We will need the following lemma which is a version of Proposition A.12 in Föllmer and
Schied (2004). �

 14679965, 2014, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12026 by U
niversity O

f M
aastricht, W

iley O
nline L

ibrary on [17/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



52 A. PELSSER AND M. STADJE

LEMMA A.8. Suppose that P̂ and P̄ share the same zero sets, and that F0 ⊂ F . Then
for any bounded F-measurable H

ÊF0 [H] = 1

ĒF0 [dP̂/dP̄ ]
ĒF0

[
dP̂

dP̄
H

]
P̄ and P̂ a.s.

Next we will show the following lemma:

LEMMA A.9. Under our assumptions, for every H ∈ L∞(F) the process Mn = �Fn (H)
is a QG-uniformly integrable4 martingale.

Proof . It may be seen from standard arguments that Mn = �Fn (H) is a QG-martingale.
Let us see that Mn is uniformly integrable under the measure QG . First of all note that in
the case that �G is monotone we have that

�Fn (H) ≤
2n∑

k=1

IBn
k

qn
k

�G
(||H||∞ IBn

k

) = 2n∑
k=1

IBn
k

qn
k

||H||∞qn
k = ||H||∞,

where we used market-consistency in the first equation. Similarly, it is seen that �Fn (H) ≥
−||H||∞. Hence, if �Fn is monotone then for fixed H, �Fn (H) is bounded uniformly. In
particular, Mn is uniformly integrable.

In the case that �G is p-norm bounded, notice that

|�Fn (H)| ≤ λ

∣∣∣∣∣
2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k
dP̄G

∣∣∣∣∣
≤ λ
(||H||∞ + ||H||p

∞
)∣∣∣∣∣

2n∑
k=1

IBn
k

P̄G(Bn
k )

QG(Bn
k )

∣∣∣∣∣= λ
(||H||∞ + ||H||p

∞
)
EQG

[
dP̄G
dQG

∣∣∣∣∣Fn

]
.

Since the last term is uniformly integrable, �Fn (H) is uniformly integrable as well. �
Hence, if �G is monotone or p-norm bounded we may conclude by the martingale

convergence theorem that Mn = �Fn (H) converges a.s. and in L1(QG) to a random
variable M∞. Set

�F S(H) := M∞ = lim
n

�Fn (H).

Now �G(H) = EQG [�F S(H)] will follow from the following lemma:

LEMMA A.10. For all A ∈ F S and H ∈ L∞(F), �F S(H) satisfies the characteristic
equation:

�G(IAH) = EQG [IA�F S(H)].(A.7)

In particular, �G(H) = EQG [�F S(H)]. Furthermore, for every H ∈ L∞(F), �F S(H) is the
unique F S-measurable, and a.s. QG-integrable random variable satisfying (A.7).

4Meaning that limN supn EQG [I{|�Fn (H)|>N}�Fn (H)] = 0.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 53

Proof . Clearly for every n �Fn is Fn- and hence also F S-measurable. This entails that
its limit, �F S, is F S-measurable. Furthermore, for every A ∈ Fn0 ⊂ Fn0+1 ⊂ . . . by (A.6)

�G(IAH) = lim
n

EQG [�Fn (IAH)] = lim
n

EQG [IA�Fn (H)] = EQG [IA�F S(H)],(A.8)

where we have used in the third equality that �Fn (H) converges to �F S(H) in L1(QG).
Now by Corollary A.7 the left-hand side and the right-hand side are signed measures
(measuring sets A ∈ F S). As by (A.8) they both agree on

⋃
n Fn, which is closed under

intersection and generates F S, they must agree on the entire filtration F S. Uniqueness
follows from equation (A.7) using standard arguments.

Now all what is left to prove is the following lemma:

LEMMA A.11. �F S is a continuous, F S-conditional evaluation which is monotone if �G
is monotone.

Proof . By construction, �F S is normalized as �Fn are. If �G is monotone then the
�Fn are monotone as well which implies that �F S is monotone.

Next, let us check that �F S satisfies the F S-local property. It is necessary and sufficient
that for every A ∈ F S and H ∈ L∞(F)

�F S(HI A) = IA�F S(H).

We will prove the equality by showing that the right-hand side satisfies the characteristic
equation (A.7) for the left-hand side. So let A′ ∈ F S. It is

�G(IA′ (IAH)) = �G(IA′∩AH) = EQG [IA′∩A�F S(H)] = EQG [IA′ (IA�F S(H))],

where we have used (A.7) in the second equation. This shows that IA�F S(H) satisfies
the characteristic equation of IAH and hence by the uniqueness stated in Lemma A.10
indeed �F S(HI A) = IA�F S(H).

To see F S-cash invariance of �F S assume that for a m ∈ L∞(F S) and H ∈ L∞(F)

we have that the set A = {�F S(H + m)
(<)
> �F S(H) + m} has positive measure under PG .

Then A has also positive measure under QG and

�G(HI A + mI A) = EQG [�F S((H + m)IA)] = EQG [�F S(H + m)IA]

(<)
> EQG [(�F S(H) + m)IA]

= EQG [�F S(HI A)] + EQG [mI A] = �G(HI A) + EQG [mI A],

where we have used in the second equation the F S-local property of �F S, which we have
proved above. This is a contradiction to the market-consistency of �G . Thus, indeed �F S

is F S-cash invariant.
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54 A. PELSSER AND M. STADJE

Next, for H ∈ L∞(F), and λ ∈ L∞(G) with 0 ≤ λ ≤ 1

�Fn (λH1 + (1 − λ)H2) =
2n∑

k=1

IBn
k

qn
k

�G
(
λIBn

k
H1 + (1 − λ)IBn

k
H2
)

≤
2n∑

k=1

IBn
k

qn
k

(
λ�G
(
IBn

k
H1
)+ (1 − λ)�G

(
IBn

k
H2
))

= λ�Fn (H1) + (1 − λ)�Fn H2),

(A.9)

where we have used the convexity of �G in the inequality. In particular, �F S isG-convex as
limit ofG-convex functionals. Next, let λFn ∈ L∞(Fn) with 0 ≤ λFn ≤ 1. Then there exists
disjoint sets An

1, . . . , An
r ∈ σ (A1, . . . , An) and constants λn

1, . . . , λ
n
r ∈ L∞(G) taking values

in [0, 1] with λFn =∑r
i=1 λn

i IAn
i
. By adding an additional set with an additional constant

equal to zero if necessary, we may assume without loss of generality that � =⋃r
i=1 An

i .

From Lemma A.4 it follows that for sets C1, . . . , Cr ∈ F S

�Fn

(
r∑

i=1

ICi Hi

)
=

2n∑
k=1

IBn
k

qn
k

(
�G

(
r∑

i=1

IBn
k
ICi Hi

))

=
r∑

i=1

2n∑
k=1

IBn
k

qn
k

(
�G
(
IBn

k
ICi Hi
)) = r∑

i=1

�Fn

(
ICi Hi
)
.

(A.10)

Therefore,

�Fn

(
λFn

H1 + (1 − λFn )
H2
) = �Fn

(
r∑

i=1

IAn
i

(
λn

i H1 + (1 − λn
i

)
H2
))

=
r∑

i=1

�Fn

(
λn

i IAn
i
H1 + (1 − λn

i

)
IAn

i
H2
)

≤
r∑

i=1

λn
i �Fn

(
IAn

i
H1
)+ (1 − λn

i

)
�Fn

(
IAn

i
H2
)

=
r∑

i=1

λn
i IAn

i
�Fn (H1) +

r∑
i=1

(
1 − λn

i

)
IAn

i
�Fn (H2)

= λFn
�Fn (H1) + (1 − λFn )

�Fn (H2),

where we have used (A.10) in the second equation, (A.9) in the inequality, and the Fn-
local property for �Fn , proved in (A.6), in the third equation. Hence, indeed �Fn is
Fn-convex.

Next, if λFm ∈ L∞(Fm) with 0 ≤ λFm ≤ 1, and m ∈ N then clearly λFm ∈ Fn for every
n ≥ m. This entails

�F S

(
λFm

H1 + (1 − λFm)
H2
) = lim

n
�Fn

(
λFm(

H1 + (1 − λFm)
H2
)

≤ lim
n

λFm
�Fn (H1) + (1 − λFm)

�Fn (H2)

= λFm
�F S(H1) + (1 − λFn )

�F S(H2).

(A.11)
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 55

Finally, to see that �F S is F S-convex let λF S ∈ L∞(F S) with 0 ≤ λF S ≤ 1. Then also 0 ≤
EFn [λF S

] ≤ 1. Furthermore, by the martingale convergence theorem EFn [λS] converges to
EF S[λS] = λS a.s. We will prove F S-convexity by contradiction. Let A := {�F S(λF S

H1 +
(1 − λF S

)H2) > λF S
�F S(H1) + (1 − λF S

)�F S(H2)} and suppose that A is a nonzero set.
Then clearly

�G
(
IA
(
λF S

H1 + (1 − λF S)
H2
)) = EQG

[
�F S

(
IA
(
λF S

H1 + (1 − λF S)
H2
))]

= EQG
[
IA
(
�F S

(
λF S

H1 + (1 − λF S)
H2
))]

> EQG
[
IA
(
λF S

�F S(H1) + (1 − λF S)
�F S(H2)

)]
,

(A.12)

where we used the local property for �F S. On the other hand,

�G
(
IA
(
λF S

H1 + (1 − λF S)
H2
))

= lim
n

�G
(
EFn

[
λF S]

IAH1 + (1 − EFn

[
λF S])

IAH2
))

= lim
n

EQG
[
�F S

(
EFn

[
λF S]

IAH1 + (1 − EFn

[
λF S])

IAH2
)]

≤ lim
n

EQG
[
EFn

[
λF S]

�F S(IAH1) + (1 − EFn

[
λF S])

�F S(IAH2)
]

= EQG
[
λF S

IA�F S(H1) + (1 − λF S)
IA�F S(H2)

]
,

where we have used the continuity of �G in the first equality and (A.11) in the inequality.
This is a contradiction to (A.12). Therefore, the set A must be a zero set and the F S-
convexity is proved.

Now let us show that �F S is continuous. In the case that �G is monotone, �F S is
monotone as well and the continuity of �F S follows from the characteristic equation
using standard arguments. On the other hand if �G is p-norm bounded we get for
H ∈ L∞(F)

|�Fn (H)| ≤ λ

∣∣∣∣∣
2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k
dP̄G

∣∣∣∣∣
= λ

∣∣∣∣∣
2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k

dP̄G
dQG

dQG

∣∣∣∣∣ = λEQG

[
(|H| + |H|p)

dP̄G
dQG

∣∣∣∣∣Fn

]
.

Therefore,

|�F S(H)| = lim
n

|�Fn (H)|

≤ λEQG

[
(|H| + |H|p)

dP̄G
dQG

∣∣∣∣∣F S

]
(A.13)
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56 A. PELSSER AND M. STADJE

= λEQG

[
dP̄G
dQG

∣∣∣∣∣F S

] EQG

[
(|H| + |H|p)

dP̄G
dQG

∣∣∣∣∣F S

]

EQG

[
dP̄G
dQG

∣∣∣∣∣F S

]

= λEQG

[
dP̄G
dQG

∣∣∣∣∣F S

]∫
(|H| + |H|p) dP̄F S.

The third equation holds by Lemma A.8. Now by (A.13) we can extend �F S to
Lp(�,F, P̄ ) by setting

�̃F S(H) = lim sup
N→∞

lim sup
m→∞

�F S(−m ∨ H ∧ N).

Note that we have that �̃F S is F S-convex (as the lim sup of F S-convex functionals), and
agrees with �F S on L∞(F). By (A.13), for every H we have that �̃F S(H) is real-valued
and uniformly bounded in any Lp(�,F, P̄F S) environment around H.

It follows then from standard arguments for convex functionals, see for instance
theorem 2.2.9 in Zălinescu (2002), that convergence of Hn to H in Lp(�,F, P̄F S) im-
plies that �̃F S(Hn) converges to �̃F S(H). Since �̃F S and �F S agree on L∞(F) we may
concluded that indeed �F S is continuous with respect to bounded a.s. convergence. The
lemma is proved. �

Lemma A.10 and Lemma A.11 imply the theorem.

A.3. Proofs of the Results in Section 4

For the proof of Theorem 4.3 we will need the following lemma:

LEMMA A.12. In the setting of Theorem 4.3, let τ be a stopping time such that σ ≤ τ <

τσ . Let H be a bounded, Fτ -measurable payoff. Then �σ (H) = EQ
Fσ

[H].

Proof . As F̄Y
τi+1− = F̄Y

τi
for all i, H is F̄ S

τ ∨ Fσ -measurable. Consequently, the lemma
follows directly from the definition of market-consistency. �

Proof of Theorem 4.3. As the jump times of Y for the i-th jump, (τ i), are predictable,
respectively, τσ has to be predictable as well. This is seen as follows: First of all note
that by the predictability of τ i there exists sequences of stopping times (τ n

i ) with τ n
i < τi

and τ n
i ↑ τi as n → ∞. Define σ n :=∑∞

i=1 I{τi =τσ }(τ n
i ∨ σ ). Let τ 0 : 0. Then {τi = τσ } =

{τi−1 ≤ σ < τi } ∈ Fσ for i = 1, 2, . . . (Since τσ is the first jump after time σ , we know at
time σ , if we have observed i − 1 jumps so far, so that the next jump will be the i-th one.)
Therefore,

{σ n ≤ t} =
∞⋃

i=1

({
τ n

i ≤ t
} ∩ {σ ≤ t} ∩ {τi = τσ }) ∈ Ft.
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 57

Thus, σ n is indeed a stopping time. Furthermore, clearly σ n < τσ and

σ n ↑
∞∑

i=1

I{τi =τσ }(τi ∨ σ ) =
∞∑

i=1

I{τi =τσ }(τσ ∨ σ ) =
∞∑

i=1

I{τi =τσ }τσ = τσ ,

where we have used that σ < τσ . Hence, τσ is indeed predictable.
Next, let H ∈ L∞(Fτσ

) and A ∈ Fσ m for an m ∈ N. By time-consistency and the local
property of (�σ ) we get for all n ≥ m

�σ (H) = �σ (�σ n (HIA + HI Ac )) = �σ (IA�σ n (H) + IAc �σ n (H)).

Next observe that for n ≥ m, IA�σ n (H) + IAc �σ n (H) is Fσ n -measurable. By Lemma A.12
this implies that

�σ (IA�σ n (H) + IAc �σ n (H)) = EQ
Fσ

[IA�σ n (H) + IAc �σ n (H)]

= EQ
Fσ

[IA�σ n (H)] + EQ
Fσ

[IAc �σ n (H)]

= EQ
Fσ

[�σ n (IAH)] + EQ
Fσ

[�σ n (IAc H)]

= �σ (�σ n (IAH)) + �σ (�σ n (IAc H))

= �σ (IAH) + �σ (IAc H),

where we used Lemma A.5 in the third and time-consistency in the last equation. Hence,
for every A ∈ Fσ m we have that

�σ (H) = �σ (IAH) + �σ (IAc H).(A.14)

Since by assumption S is continuous and F̄Y
τi+1− = F̄Y

τi
for all i,

⋃
m Fσ m is a generating

system for F S
τσ

. By the continuity of �σ this entails that (A.14) holds for all A ∈ F S
τσ

.

Thus, indeed �σ restricted to Fτσ
satisfies the market-local property. This proves the first

part of the theorem. The second part follows from Theorems 3.10 and 3.11.

A.4. Proofs of the Results in Section 5.1

Proof of Theorem 5.3. First assume that g(t, z f , z, z̃) − θtz f does not depend on
zf . We will prove that for every τ , E g

τ is market-consistent, by using Proposition 3.3
(i)⇒ (iii). Without loss of generality assume that τ = 0. Let HS ∈ L∞(F̄ S

T). Denote
by W ∗,f the Brownian motion under Q, i.e., W∗, f

s = W f
s − ∫ s

0 θudu, where the inte-
gral is defined componentwise. Since the financial market is complete there exists a
predictable n-dimensional process Zf ∈ L2(F̄ S, dQ × du) such that HS = ∫ T

0 Zf
s dW∗, f

s .

Define Ys = EQ
F̄ S

s
[HS] = ∫ s

0 Zf
u dW∗, f

u . Clearly, for every stopping time σ we have that

EF̄ S
τ

[∫ T

σ

∣∣Zf
u

∣∣2dW∗, f
u

]
≤ 2||Y||2S∞ ≤ 2||H||2∞.

Predictable processes satisfying such a boundedness property are also called bounded
mean oscillations (BMOs), see Kazamaki (1994). As θ is bounded it follows from the-
orem 3.24 in Barrieu and El Karoui (2009) that Zf is a BMO under P . In particular,
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58 A. PELSSER AND M. STADJE

Zf ∈ L2(F̄ S, dP × du). Now we get

dY s = −g(s, 0, 0, 0) ds + Zf
s dW ∗, f

s

= −(g(s, Zf
s , 0, 0

)− θs Zf
s

)
ds + Zf

s dW∗, f
s = −g

(
s, Zf

s , 0, 0
)

ds + Zf
s dW f

s ,

where we used that g(s, 0, 0, 0) = 0 in the first equation. In the second equation we
applied that g(s, 0, 0, 0) = g(s, zf , 0, 0) − θ szf , as by assumption g(s, zf , 0, 0) − θ szf

does not depend on zf . In the last equation we used the definition of W ∗,f . This entails
that Ys = EQ

F̄ S
s
[H] solves the BSDE with terminal condition H and driver g. Therefore,

indeed for every HS we have that EQ[HS] = E g
0 (HS), and it follows from Proposition 3.3

(i)⇒(iii) (with G = {�, ∅}) that E g
0 is market-consistent. For general τ the argument is

similar.
Now let us prove the other direction. For arbitrary z̄ f ∈ Rn define

ḡ(t, z f , z, z̃) := g(t, z f + z̄ f , z, z̃) − θt z̄ f .

We need to show that ḡ = g. Let (E g
t (H + z̄ f W∗, f

T ), Zf , Z, Z̃) be the solution of the
BSDE with terminal condition H + z̄ f W∗, f

T and driver function g. Note that the process
Y∗

t := E g
t (H + z̄ f W∗, f

T ) − z̄ f W∗, f
t is equal to H at time T . On the other hand we have

dY∗
t = −(g(t, Zf

t , Zt, Z̃t
)− θt z̄ f ) dt + (Zf

t − z̄ f ) dW f
t + ZtdW t +

∫
R\{0}

Z̃t(x)Ñ(dt, dx)

= −ḡ
(
t, Zf

new,t, Zt, Z̃t
)

dt + Zf
new,tdW f

t + ZtdW t +
∫

R\{0}
Z̃t(x)Ñ(dt, dx),

where Zf
new := Zf − z̄ f . Therefore, Y∗ solves the BSDE with terminal condition H and

driver ḡ. Hence, for every t we have E g
t (H + z̄ f W∗, f

T ) − z̄ f W∗, f
t = Y∗

t = E ḡ
t (H). Denote

by S̃ the vector of the discounted stock prices. By market-consistency we can conclude
that for every H ∈ L∞(FT)

E g
t (H) = E g

t

(
H +
∫ T

0
z̄ f σ̃−1(t, ert S̃t) d S̃t

)
−
∫ t

0
z̄ f σ̃−1(t, ert S̃t) d S̃t

= E g
t
(
H + z̄ f W∗, f

T

)− z̄ f W∗, f
t = E ḡ

t (H),

(A.15)

for all t. Next choose z f ∈ Rn, z ∈ Rd , and z̃ ∈ L2(ν(dx)). Set

H := −
∫ T

0
g(s, z f , z, z̃) ds + z f W f

T + zWT +
∫ T

0

∫
R\{0}

z̃(x)Ñ(ds, dx).

Notice that − ∫ t
0 g(s, z f , z, z̃) ds + ∫ t

0 z f dW f
s + ∫ t

0 zdWs + ∫ t
0

∫
R\{0} z̃(x)Ñ(ds, dx) by

definition is the solution of the BSDE with terminal condition H and driver g. In
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TIME-CONSISTENT AND MARKET-CONSISTENT EVALUATIONS 59

particular, E g
0 (H) = 0. By (A.15) this yields E ḡ

0 (H) = E g
0 (H) = 0 and

−
∫ t

0
g(s, z f , z, z̃) ds +

∫ t

0
z f dW f

s +
∫ t

0
zdWs +

∫ t

0

∫
R\{0}

z̃(x)Ñ(ds, dx)

= E g
t (H) = E ḡ

t (H)

= E ḡ
0 (H) −

∫ t

0
ḡ
(
s, Zf

s , Zs, Z̃s
)

ds +
∫ t

0
Zf

s dW f
s +
∫ t

0
ZsdWs

+
∫ t

0

∫
R\{0}

Z̃s(x)Ñ(ds, dx)

= −
∫ t

0
ḡ
(
s, Zf

s , Zs, Z̃s
)

ds +
∫ t

0
Zf

s dW f
s +
∫ t

0
ZsdWs +

∫ t

0

∫
R\{0}

Z̃s(x)Ñ(ds, dx),

where (Zf , Z, Z̃) belong to the solution of the ḡ-expectation with terminal condition H.
By the uniqueness of the decomposition of semimartingales this entails that∫ t

0
z f dW f

s +
∫ t

0
zdWs +

∫ t

0

∫
R\{0}

z̃(x)Ñ(ds, dx)

=
∫ t

0
Zf

s dW f
s +
∫ t

0
ZsdWs +

∫ t

0

∫
R\{0}

Z̃s(x)Ñ(ds, dx),

(A.16)

and ∫ t

0
g(s, z f , z, z̃) ds =

∫ t

0
ḡ(s, Zf

s , Zs, Z̃s) ds.(A.17)

Taking for instance the quadratic covariation with respect to the components of W f ,
W , and with respect to Ñ in (A.16), respectively, we may conclude that Zf

t = z f , Zt =
z,dP × dt a.s., and Z̃t = z̃,ν(dx) × dP × dt. But then (A.17) yields that for a.s. all ω∫ t

0
g(s, z f , z, z̃) ds =

∫ t

0
ḡ(s, z f , z, z̃) ds, for all t ∈ [0, T]

and therefore g(t, z f , z, z̃) = ḡ(t, z f , z, z̃) for a.s. all ω for Lesbegue a.s. all t. �

A.5. Proofs of the Results in Section 5.2

Proof of Proposition 5.5. First of all note that since dQh

dP is σ (W f ,∗
t |0 ≤ t ≤ T)-

measurable, we have that W and Ñ have the same joint distribution under Qh as under
P (since they are independent of W f ,∗).

By well-known projection results, there exists adapted Zh, f
ih : � → Rn, Zh

ih : � → Rd ,

measurable with respect to Fih,Z̃h
ih : � × R \ {0} → R, measurable with respect to Fih ⊗

B(R \ {0}), and a real-valued Qh-martingale (Lh
ih)i which is orthogonal (under Qh) to

W f ,∗
ih , W ih, and Ñ((0, ih], dx), such that

�(i+1)h(H) = EQh

Fih
[�(i+1)h(H)] + Zh, f

ih �W f ,∗
(i+1)h + Zh

ih�W(i+1)h

+
∫

R\{0}
Z̃h

ih(x)Ñ((ih, (i + 1)h], dx) + �Lh
(i+1)h .
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60 A. PELSSER AND M. STADJE

For the sake of simplicity we will omit the superscript h for the Zh,f , Zh, and Z̃h in the
sequel.

It follows that

��(i+1)h(H) = �(i+1)h(H) − �ih(H)

= �(i+1)h(H) − �v
ih,(i+1)h(�(i+1)h(H))

= Zf
ih�W f ,∗

(i+1)h + Zih�W(i+1)h

+
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + �L(i+1)h

−�v
ih

(
Zf

ih�W f ,∗
(i+1)h + Zih�W(i+1)h

+
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + �L(i+1)h

)

= Zf
ih�W f ,∗

(i+1)h + Zih�W(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) +�L(i+1)h

−�v
ih,(i+1)h

(
Zih�W(i+1)h +

∫
R\{0}

Z̃ih(x)Ñ((ih, (i + 1)h], dx) + �L(i+1)h

)

!= Zf
ih�W f

(i+1)h + Zih�W(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) +�L(i+1)h

−
[
θih Zf

ih + α

2
|Zih |2 + α

2

∫
R\{0}

|Z̃ih(x)|2ν(dx)
]

h

−α

2
EQh

Fih

[
(�L(i+1)h − EF Sh

(i+1)h
[�L(i+1)h ])2

]
,

(A.18)

where we have used (5.1) in the third equation. Furthermore, we applied cash invariance
in the third and market-consistency in the fourth equation. To see that the last equation
holds denote by CovPFSh

(i+1)h

(X1, X2) the covariance of X1 and X2 with respect to PF Sh
(i+1)h

.

Since all random variables are F(i+1)h-measurable we may assume that dQh

dP is F Sh

(i+1)h-
measurable.

It is

�v
ih,(i+1)h

(
Zih�W(i+1)h +

∫
R\{0}

Z̃ih(x)Ñ((ih, (i + 1)h], dx) + �L(i+1)h

)

= α

2
EQh

Fih

[
VarF Sh

(i+1)h

(
Zih�W(i+1)h +

∫
R\{0}

Z̃ih(x)Ñ((ih, (i + 1)h], dx) + �L(i+1)h

)]

= α

2

(
h|Zih |2 + h

∫
R\{0}

|Z̃ih(x)|2ν(dx) + EQh

Fih

[(
�L(i+1)h − EF Sh

(i+1)h
[�L(i+1)h ]

)2]

+2
d∑

j=1

Zj
ihEQh

Fih

[
CovPFSh

(i+1)h

(
�Wj

(i+1)h, �L(i+1)h
)]

(A.19)
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+ 2EQh

Fih

[
CovPFSh

(i+1)h

(∫
R\{0}

Z̃ih(x)Ñ((ih, (i + 1)h], dx), �L(i+1)h

)]

+ 2
d∑

j=1

Zj
ihEQh

Fih

[
CovPFSh

(i+1)h

(
�Wj

(i+1)h,

∫
R\{0}

Z̃ih(x)Ñ((ih, (i + 1)h], dx)
)])

,

where we have used that W and Ñ are independent of Sh and that dQh

dP is F Sh

(i+1)h-
measurable.

Hence, to prove (A.18) the only thing what remains left is to show that the the covari-
ance terms in (A.19) are zero. By Lemma A.8 (with P̂ = Qh and P̄ = P ) we get for j =
1 , . . . , d

EQh

F Sh
(i+1)h

[
�Wj

(i+1)h

] = EF Sh
(i+1)h

[
�Wj

(i+1)h

] = EFih [�Wj
(i+1)h ] = 0,

where we used the independence of Sh and W in the second equation. Hence, since L(i+1)h

and �W (i+1)h are orthogonal under Qh
Fih

, we may conclude that

EQh

Fih

[
CovPFSh

(i+1)h

(
�Wj

(i+1)h, �L(i+1)h
)] = EQh

Fih

[
�Wj

(i+1)h�L(i+1)h
]

= CovQh
Fih

(
�Wj

(i+1)h,�L(i+1)h
) = 0.

Similarly, it may be seen that the second and third covariance terms in (A.18) are zero.
Thus, (A.18) is proved. From (A.18) we may finally conclude

�T(H) − �ih(H) =
T/h−1∑

j=i

��( j+1)h(H)

=
T/h−1∑

j=i

(
Zf

jh�W f
( j+1)h + Zjh�W( j+1)h

+
∫

R\{0}
Z̃jh(x)Ñ(( jh, ( j + 1)h], dx) + �L( j+1)h

)

−
T/h−1∑

j=i

[
θ jh Zf

jh + α

2
|Zjh |2 + α

2

∫
R\{0}

|Z̃jh(x)|2ν(dx)
]

h

+ α

2
EQh

F jh

[(
�L( j+1)h − EF Sh

( j+1)h
[�L( j+1)h ]

)2]
.

Since by construction �T (H) = H the proposition is proved. �
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