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a b s t r a c t

Time-consistent valuations (i.e. pricing operators) can be created by backward iteration of one-period
valuations. In this paper we investigate the continuous-time limits of well-known actuarial premium
principles when such backward iteration procedures are applied. This method is applied to an insurance
risk process in the form of a diffusion process and a jump process in order to capture the heavy
tailed nature of insurance liabilities. We show that in the case of the diffusion process, the one-period
time-consistent Variance premium principle converges to the non-linear exponential indifference price.
Furthermore,we show that the Standard-Deviation and the Cost-of-Capital principle converge to the same
price limit. Adding the jump risk gives a more realistic picture of the price. Furthermore, we no longer
observe that the different premium principles converge to the same limit since each principle reflects the
effect of the jumpdifferently. In theCost-of-Capital principle, in particular theVaRoperator fails to capture
the jump risk for small jump probabilities, and the time-consistent price depends on the distribution of
the premium jump.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Standard actuarial premium principles usually consider a
static premium calculation problem: what is today’s price of an
insurance contract with payoff at time T . Textbooks such as those
by Bühlmann (1970), Gerber (1979), and Kaas et al. (2008) provide
examples of this. The study of riskmeasures and the closely related
concept of monetary riskmeasures have also been studied in static
settings by authors such as Artzner et al. (1999) and Cheridito
et al. (2005). The study of utility indifference valuations hasmainly
confined itself to static settings as well. Different applications can
be found in papers by Young and Zariphopoulou (2002), Henderson
(2002), Hobson (2004), Musiela and Zariphopoulou (2004) and
Monoyios (2006), and the book by Carmona (2009).

Financial pricing usually considers a ‘‘dynamic’’ pricing prob-
lem, and looks at how the price evolves over time until the final
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payoff date T . This dynamic perspective is driven by the focus on
hedging and replication. The literature was started by the seminal
paper of Black and Scholes (1973) and has been immensely gener-
alized to broad classes of securities and stochastic processes; see
Delbaen and Schachermayer (1994). Some researches in the last
twodecades focus on combining actuarial and financial pricing. See
for example, Wang (2002) where he used distortion risk measures
to price both types of risks andGoovaerts and Laeven (2008)where
they used actuarial risk measures to price financial derivatives.

In recent years, researchers have begun to investigate riskmea-
sures in a dynamic setting, where the question of constructing
time-consistent (or ‘‘dynamic’’) risk measures has been investi-
gated. See Riedel (2004), Cheridito et al. (2006), Roorda et al.
(2005), Rosazza Gianin (2006), and Artzner et al. (2007). As an ex-
ample, Stadje (2010) showed how a large class of dynamic con-
vex risk measures in continuous-time can be derived from the
limit of their discrete time versions. Moreover, Jobert and Rogers
(2008) showed how time-consistent valuations can be constructed
through the backward induction of static one-period riskmeasures
(or ‘‘valuations’’). And later, Pelsser and Stadje (2014) studied time
and market consistency of the well-known actuarial principles in
a dynamic setting by using a two-step valuation method.

Insurance risk can be modeled in a stochastic way by us-
ing a diffusion process. However, it is usual that insurance risks
exhibit jump type movements in their evolution, and the data
usually contain a number of extreme events and stylized facts
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usually exist such as fat-tailed and skewed distributions. This jus-
tifies the usage of a jump component to draw a realistic inference
about the dynamic pricing framework. Merton (1976) introduced
the jump–diffusion model to price options by assuming discon-
tinuity in returns. The model was developed extensively for fi-
nancial modeling, actuarial valuation and the pricing of different
derivatives and contingent claims in incompletemarkets. There are
numerous works about the jump process in finance; see for ex-
ample Cont and Tankov (2012). For an introduction to the applica-
tion of diffusion and jump processes in insurance see, for example,
Korn et al. (2010) and for more specific actuarial applications see
Biffis (2005), Verrall and Wüthrich (2012), Chen and Cox (2009),
and Jang (2007). Some researchers have generalized the concept of
time-consistent dynamic risk measures by using jump–diffusion
processes when underlying risks include jumps. See for exam-
ple Bion-Nadal (2008). The idea was developed in actuarial valu-
ation using Backward Stochastic Differential Equations (BSDE) and
g-expectations asmorepowerful tools to dealwithnon-linear pric-
ing operators such as different premium principles. There are also
a number of studies about modeling jumps with BSDEs in valua-
tion and portfolio choice. See for example the textbook by Delong
(2013) and the paper by Laeven and Stadje (2014).

In this paper we investigate well-known actuarial premium
principles such as the Variance principle and the Standard-
Deviation principle, and we study their time-consistent exten-
sion. We first consider one-period valuations, then extend this to a
multi-period setting using the backward iterationmethod of Jobert
and Rogers (2008) for a given discrete time-step (t, t + 1t), and
finally consider the continuous-time limit for1t → 0. Amore gen-
eral setting to model the insurance risk could be ‘‘infinite activity
Lévy process’’ where it allows for infinite number of jumps for any
finite time interval. However, as it does not seem realistic for an in-
surance process to have infinite number of jumpswhen (t, t +1t)
is infinitesimally small, we waive the infinite activity Lévy process
and we focus on investigating the method with simple diffusion
and jump–diffusion processes.

We apply backward iteration to a simple diffusion model to
show that the one-period Variance premium principle converges
to the non-linear exponential indifference valuation. Furthermore,
we study the continuous-time limit of the one-period Standard-
Deviation principle and the Cost-of-Capital principle, and establish
that in the diffusion setting, they converge to the same limit rep-
resented by an expectation under an equivalent martingale mea-
sure. We apply the same approach to the jump–diffusion setting
and show that the time-consistent prices for different premium
principles in the limit converge to different results than in the dif-
fusion case. We mainly used the infinitesimal generator together
with Itô’s formula for different forms of the premiumwith the un-
derlying process y(t) in both diffusion and jump–diffusion mod-
els. See for example the book by Shreve (2010) about martingales
and Itô’s formula and the book by Øksendal (2003) for infinites-
imal generators. As an exception, in the Cost-of-Capital principle
under the jump setting, we have to make inference about the dis-
tribution of the insurance process under VaR operator. To do so, we
will assume the jump process as a special case of the Lévy process
and find its characteristic function. To get more insight about the
Lévy process and its applications, see for example Figueroa-López
(2012) and the textbook by Barndorff-Nielsen et al. (2001). We ap-
ply thismethod to a health process to price a stylized life insurance
product andweuse aMarkov chain approximation to discretize the
time and state space of the underlying insurance process. See for
example Kushner and Dupuis (2001), Duan et al. (2003), and Tang
and Li (2007) for the idea of using a Markov chain approximation
to price contingent payoffs in theory and application.

The rest of this paper is organized as follows. In Section 2
we define the time-consistent valuation operators and explain
about the backward iteration method used to construct it. In Sec-
tion 3 we derive the time-consistent extension of the Variance
premium principle with and without discounting. Section 3 also
includes a benchmark version of this premium and theMean Value
principle as a more general pricing rule. In Section 4, we derive
the time-consistent value of the Standard-Deviation and Cost-of-
Capital premium principles. In both sections, we assume that the
underlying pure insurance risks follow a diffusion process and we
represent the results by means of the related Partial Differential
Equation (PDE). In Section 5, we assume that the underlying pro-
cess includes a Poisson jump component and we derive the time-
consistent value for the principles (that we used in Sections 3 and
4) in the form of the Partial Integro-Differential Equations (PIDEs).
In Section 6, we provide an example of the pricing procedure for
a stylized insurance product using the Markov chain method and
show the convergence of the numerical algorithm to analytical so-
lution. We summarize and conclude in Section 7.

2. Time-consistent valuation operators

Let (Ω,F ,P) be the underlying probability space and X(ω)
and Y (ω) be the stochastic insurance risk processes defined over
the σ -algebra F . Indexing for the time 0 ≤ t ≤ T , we form the
filtration Ft as the collection of the σ -algebras. In this paper, we
limit ourselves to the square integrable functions and denote the
space of such random variables as L 2(Ω,Ft ,P).

Time consistency postulates that the order of riskiness of
different portfolios measured by a dynamic risk measure in the
future time is consistent with their riskiness at any time prior to
that point in time and remains the same. It suggests that if at any
time t the position A forms a higher risk than position B, the level
of risk will be higher for all s < t . The next definition formulates
the time consistency of a risk measure.

Definition 2.1. A dynamic risk measure (ρt) is Time-Consistent if
and only if, for all 0 ≤ t ≤ T and ∀X, Y ∈ L2(Ft),

ρT (X) ≤ ρT (Y ) P-a.s. ⇒ ρt(X) ≤ ρt(Y ) P-a.s. (2.1)

or equivalently by its ‘‘recursive’’ form for∀s = 1t, 21t, . . . , T−t ,
we have ρt = ρt(−ρt+s),

where ρt : L 2(FT ) → L 2(Ft) is a conditional riskmeasure for all
T ≥ t . The definition for non-negative risks (e.g. insurance losses)
then becomes,

ρt = ρt(ρt+s). (2.2)

Similar notions of time consistency can be found in Föllmer and
Penner (2006), Cheridito and Stadje (2009), and Acciaio and Penner
(2011).

We construct the time-consistent valuation operators for the
insurance risks by the recursive form (2.2) and we use the
backward induction method introduced by Jobert and Rogers
(2008). In general we assume that the insurance process evolves
during the time period [0, T ] and that atmaturity time T it falls into
a bounded state space where we can also define the state space of
the contingent payoff. Based on this method, time consistency can
be achieved for the price operator by decomposing the valuation
operator into a family of one-period pricing operators that can only
be valuated in shorter intermediate time periods.

To derive the time-consistent actuarial value at the present time
t = 0, we divide the valuation period [0, T ] into a discrete set
{0,1t, 21t, . . . , T −1t, T } so that we can perform amulti-period
valuation by applying the one-period pricing operator to all sub-
intervals denoted by (t, t + 1t). We use well-known actuarial
premium principles such as the Variance, Standard-Deviation and
Cost-of-Capital principles as pricing operators. Our aim is to apply
the backward iteration method to all subintervals (t, t + 1t)
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∈ [0, T ] to obtain the value of the related premium principle at
time zero. We start with a payoff state space that is equal to the
terminal values at time T and calculate the one-period price at time
T − 1t for the last sub-interval (T − 1t, T ). This value space is
derived by conditioning on the information available at T − 1t
and will look like a new payoff state space from the time t − 21t
viewpoint. Next, we repeat the one-period valuation process for
the interval (T − 21t.T − 1t). Conditional on the information
available at T −21t , we then obtain a new value state which plays
the role of the new payoff state space for the former time period.
The set of these conditional values can be used repeatedly as a
new payoff state space for the former time points. We continue
this backward valuation procedure for all subintervals of the form
(t, t + 1t) to gradually reach the time period (0,1t), where we
derive the price of the actuarial risk at time zero.

The method is relatively straightforward and provides a
discrete time valuation for the time-consistent actuarial premium
principles. To derive the theoretical formulation of the time-
consistent actuarial premium principle for a typical time interval
(t, t + 1t), we obtain the continuous-time limit of the premium
operator at time t , on the premium value at time t + 1t when
1t → 0. This will lead to a PDE if the underlying insurance risk is
a diffusion process andwill lead to a PIDE if the underlying process
has a jump component. The results can also be validated via a
(bi/quadrinomial) discretization of the underlying process and by
applying the same valuationmethodwhen1t → 0. In the applied
situation, we achieve an approximation of the time-consistent
premium by increasing the number of (t, t + 1t) subintervals in
[0, T ], which will decrease the size of1t .

Let the mappingΠt : L 2(FT ) → L 2(Ft) for 0 ≤ t ≤ T be the
conditional one-period actuarial valuation operator (e.g. premium
principle) with respect to F (t). We denote the price of the
insurance risk (i.e. insurance premium) at time t by π(t, y(t)).
Then, π(t, y(t)) can be derived for any time interval (t, t +1t), by
applyingΠt to the payoff random variable at time t +1t denoted
by π(t +1t, y(t, t +1t)) as below,

π(t, y) = Πt

π(t +1t, y(t +1t))


= Π


π(t +1t, y(t +1t)) | Ft


. (2.3)

In a backward iteration procedure, π(t + 1t, y(t + 1t))
is supposed to be the conditional value with respect to Ft+1t
obtained one step further from π(t + 21t, y(t + 21t)). We may
also show ‘‘y(t)’’ as ‘‘y’’ later in some formulations to shorten
the notation. For different products and liabilities, there may be
possible boundary conditions.

3. Variance pricing

We start by considering an unhedgeable insurance process y(t),
which is given by means of a diffusion equation:

dy(t) = a(t, y(t)) dt + b(t, y(t)) dW (t). (3.1)

We assume for t ≥ 0, that Ft is the related filtration forWt and
that y(t) is an Itô process with a(t, y(t)) and b(t, y(t)) as adapted
processes where y(t) is still square integrable process.

Note that discounting is usually ignored in the standard
actuarial literature (see for example Kaas et al., 2008). To facilitate
the discussion, wewill first derive the continuous-time limit of the
Variance principle without using discounting in Section 3.1. We
will then consider a case with discounting in Section 3.2, by means
of a constant rate of discount for simplicity.

3.1. Variance principle

If we consider an insurance contract with a payoff at time T ,
defined as a function f


y(T )


, then the actuarial Variance principle
Πv
t [] is defined as (see e.g. Kaas et al., 2008)

Πv
t [f (y(T ))] = E[f (y(T ))|Ft ] +

1
2
αVar[f (y(T ))|Ft ], (3.2)

whereEt [.|Ft ] andVar[.|Ft ] denote the expectation and variance
operators conditional on the information available at time t under
the ‘‘real-world’’ probability measure P. To keep the notation
simple, we will use Et [] and Vart [] instead. The one-period
Variance price can be obtained explicitly by substituting (3.2) into
(2.3):

π vt, y(t) = Et

π vt +1t, y(t +1t)


+

1
2
αVart


π vt +1t, y(t +1t)


. (3.3)

To calculate the continuous-time Variance price at (3.3), we
could derive the stochastic process for π v


t +1t, y(t +1t)


and

π v

t +1t, y(t +1t)

2 by Itô formula, divide the all termsby1t
and take the limit when1t → 0. However a shorter proofs can be
obtained by using the ‘‘infinitesimal generator’’ of theπ v and (π v)2

at t . For the underlying process y(t) in Eq. (3.1), the infinitesimal
generator of y(t) to act on the premium π(t, y(t)) is,

Aπ v(t, y(t)) = lim
1t→0

Et

π v

t +1t, y(t +1t)


− π v


t, y(t)


1t

(3.4a)

= π v
t + aπ v

y +
1
2
b2π v

yy, (3.4b)

whereπ v is smooth enough to be twice continuously differentiable
at t and y = y(t). See, for example, Øksendal (2003) for more on
infinitesimal generators. The short notationsπ v and derivativesπt ,
πy and πyy are continuous functions of (t, y(t)). To avoid too many
parentheses, we denote ‘‘(π v)2’’ as ‘‘π v2’’ and Aπ v(t, y(t)) as Aπ v.

We rewrite the variance term in (3.3) by expectations and
add and subtract π v2 and 2π v Et [π

v
] to obtain the equivalent

expression

Vart

π vt +1t


= Et


π v2(t +1t)


− π v2

−

Et

π v(t +1t)


− π v2

− 2π v 
Et

π v(t +1t)


− π v , (3.5)

where π v(t + 1t) is a shorter notation of π v

t + 1t, y(t + 1t)


.

Dividing by 1t and take the limit when 1t → 0, the continuous-
time limit of the variance term above will be

lim
1t→0

Vart

π v

t +1t


1t

= Aπ v2
− lim

1t→0
1t × (Aπ v)2 − 2π × Aπ v

=

bπ v

y

2 (3.6)

where the first equality is justified by using (3.4a) while the limit
term is clearly equal to zero, and the second equality is the result of
substituting the values of infinitesimal generators from (3.4b) and
some easy simplifications.

Finally, using (3.4) for expectation term in Eq. (3.3) and inserting
for Aπ v from (3.4b), we obtain the continuous-time limit of the
Variance price represented by the following partial differential
equation (PDE)

π v
t + aπ v

y +
1
2
b2π v

yy +
1
2
α

bπ v

y

2
= 0. (3.7)

Note that due to the appearance of the quadratic term (bπy)
2, Eq.

(3.7) is a semi-linear PDE. Assuming π v

T , y(T )


= f


y(T )


, as
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the payoff for the insurance contract at time T , depending on the
mechanism of the different contracts, the PDE may be subject to
different boundary conditions. We discussed a stylized contract in
Section 6. Furthermore, the above PDE is equivalent to a Backward
Stochastic Differential Equation (BSDE) with the quadratic driver
g(t, Z) =

1
2α(bZ)

2. The existence of the solutions of BSDE has been
investigated in numerous studies. See for example Delong (2013).

3.1.1. Explicit solution of the PDE
In this particular case, we can construct the solution of (3.7)

explicitly by employing aHopf–Cole transformation of the solution
that removes the non-linearity from the PDE. The result is only
valid if α is a constant. Consider the auxiliary function hv(t, y) :=

exp{απ v(t, y)}. The original functionπ v(t, y) can be obtained from
the inverse relation π v(t, y) =

1
α
ln hv(t, y). If we now apply the

chain-rule of differentiation, we can express the partial derivatives
of π v() in terms of hv() as

π v
t =

1
α

hv
t

hv
, π v

y =
1
α

hv
y

hv
, π v

yy =
1
α

hv
yyh

v
− (hv

y)
2

(hv)2
. (3.8)

If we substitute these expressions into (3.7), the non-linear terms
are canceled and we obtain a linear PDE for hv(t, y):

hv
t + ahv

y +
1
2
b2hv

yy = 0. (3.9)

Hence, by considering the transformed function hv(t, y), we have
managed to obtain a linear PDE for hv(). The boundary condition at
T is given by hv(T , y(T )) = exp{απ v(T , y(T ))} = exp{αf (y(T ))}.
Using the Feynman–Kaç formula, we can express the solution of
(3.9) as

hv(t, y) = Et

eαf (y(T ))

 y(t) = y

, (3.10)

where the expectation is taken with respect to the stochastic
process y(t) defined in Eq. (3.1) conditional on the information that
at time t the process y(t) is equal to y. From the representation
(3.10), it immediately follows that we can express π v(t, y) as

π v(t, y) =
1
α

lnEt

eαf (y(T ))

 y(t) = y

. (3.11)

The form of the Variance price in the expectation part is equal
to the moment generating function of the time T payoff function
f (y(T )), where for any knowndistribution of f it will be easy to find
a unique closed form formula for the premium. Also note that this
representation of π v() is identical to the exponential indifference
price, which has been studied extensively in recent years. See,
for example, Henderson (2002), Young and Zariphopoulou (2002),
and Musiela and Zariphopoulou (2004). For an overview of recent
advances in indifference pricing, we refer to the book by Carmona
(2009).

To summarize this section, we have established that the
continuous-time limit of the iterated actuarial Variance principle
is the exponential indifference price when α is constant.

3.2. Variance pricing with discounting

Up to now we have ignored discounting in our derivation. (Or
equivalently, we assumed that the interest rate is equal to zero.)
In a time-consistent setting, it is important to take discounting
into consideration, as money today cannot be compared to money
tomorrow.

If we consider the definition of the Variance principle given
in (3.2), it seems that we are adding apples and oranges. The
first term Et [f (y(T ))] is a quantity in monetary units (say e) at
time T . However, the second term Vart [f (y(T ))] is basically the
expectation of f (y(T ))2, and is therefore a quantity in units of (e)2.
We can rectify this situation by understanding that the parameter
α is not a dimensionless quantity, but is a quantity expressed in
units of 1/e. This should not come as a surprise. The parameter
α is similar to the absolute risk aversion parameter introduced by
the seminal paper of Pratt (1964) in which he derives the Variance
principle as an approximation ‘‘in the small’’ of the price that an
economic agent facing a decision under uncertainty should ask.

To stress in our notation the units in which the absolute risk
aversion α is expressed, we will rewrite the absolute risk aversion
as the relative risk aversion γ (also introduced by Pratt, 1964),
which is a dimensionless quantity, divided by a benchmarkwealth-
level X(T ), which is expressed in e at time T . If we now assume a
constant rate of interest r , we can set our benchmark wealth as
X(T ) = X0erT . We can then rewrite our Variance principle as

Πv
t [f (y(T ))] = Et [f (y(T ))] +

1
2

γ

X0erT
Vart [f (y(T ))]. (3.12)

Note thatΠv
t [] leads to a ‘‘forward’’ price expressed in units of e at

time T .
Given the enhanced definition (3.12) of the Variance principle

including discounting, the one-period price will be delivered as
follows:

π vt, y(t) = e−r1t

Et

π vt +1t, y(t +1t)


+

1
2

γ

X0er(t+1t)
Vart


π vt +1t, y(t +1t)


. (3.13)

Note that we have included an additional discounting term e−r1t

to discount the values from time t+1t back to time t . Wemultiply
both sides of (3.13) by er1t and use its Taylor series to obtain

(1 + r1t + O(1t2))π vt, y(t)
= Et


π vt +1t, y(t +1t)


+

1
2

γ

X0er(t+1t)
Vart


π vt +1t, y(t +1t)


. (3.14)

Similar to themethod in Section 3.1, if we divide by1t and take
the limit, by (3.4a), the above equation can be represented as,

rπ v
= Aπ v

+
1
2
γ

X0ert


Aπ v2

− 2π × Aπ v

. (3.15)

The continuous-time limit of the time-consistent Variance price
with discounting will be achievable easily by substituting for
infinitesimal generators in above equation from (3.4b). That result
in the following PDE for π v(t, y):

π v
t + aπ v

y +
1
2
b2π v

yy +
1
2
γ

X0ert
(bπ v

y )
2
− rπ v

= 0. (3.16)

This non-linear PDE can again be linearized by considering
hv(t, y) = exp( γ

X0ert
π v(t, y)) transformation, which leads to the

following expression for the solution of (3.16):

π v(t, y) =
X0ert

γ
lnE


e

γ

X0erT
f (y(T ))

 y(t) = y

. (3.17)

This result shows that the discounting is incorporated into the
non-linear pricing formula, by expressing all units relative to the
‘‘benchmark wealth’’ X(t) = X0ert .2 See the chapter written by
Musiela and Zariphopoulou (2009) in the book by Carmona (2009).

2 For general results concerning ‘‘benchmark pricing’’ in a linear setting, we refer
to Platen (2006) and the book by Platen and Heath (2006).
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3.2.1. Current price as benchmark
In the previous subsection we took the benchmark wealth

to be a risk-free investment X0ert . Another interesting example
can be found when we consider the current price π(t, y) as the
benchmark wealth. This leads to a new pricing operator, which we
will denote by πp(). The one-step valuation is then given as

πpt, y(t) = e−r1t

Et

πpt +1t, y(t +1t)


+

1
2
γ
Vart


πp

t +1t, y(t +1t)


Et

πp

t +1t, y(t +1t)

 . (3.18)

Hence, we assume that we want to measure the variance of πp()
relative to the expected value of πp(). Obviously, this will only be
well-defined if πp(t, y) is strictly positive for all (t, y).

Taking the limitwhen1t → 0 in the above equation and apply-
ing the infinitesimal generator forπ P , we obtain the following PDE:

π
p
t + aπp

y +
1
2
b2πp

yy +
1
2
γ

πp
(bπp

y )
2
− rπp

= 0. (3.19)

Again, we can study the solution of (3.19) by employing a trans-
formation of the solution that removes the non-linearity from the
PDE. Consider the auxiliary function hp(t, y) := (πp(t, y))1/q. The
original function can be obtained from the inverse relationship
πp(t, y) = (hp(t, y))q. If we now apply the chain rule, we can ex-
press the partial derivatives of πp in terms of hp as

π
p
t = q(hp)q−1hp

t , πp
y = q(hp)q−1hp

y,

πp
yy = q(hp)q−1


q − 1
hp

(hp
y)

2
+ hp

yy


.

(3.20)

If we substitute these expressions into (3.19) and simplify, we ob-
tain

hp
t + ahp

y +
1
2
b2

(1 + γ )q − 1

hp
(hp

y)
2
+ hp

yy


−

r
q
hp

= 0. (3.21)

If we choose q = 1/(1 + γ ), then the non-linear terms cancel out
and we obtain a linear PDE for hp(t, y):

hp
t + ahp

y +
1
2
b2hp

yy − r(1 + γ )hp
= 0. (3.22)

The boundary condition at T is given by hp(T , y(T )) = πp

(T , y(T ))1+γ = f (y(T ))1+γ . If we use the Feynman–Kaç formula,
we can express the solution of (3.22) as

hp(t, y) = Et

e−r(1+γ )(T−t)f (y(T ))1+γ

 y(t) = y

, (3.23)

where the expectation is taken with respect to the stochastic pro-
cess y(t) defined in Eq. (3.1) conditional on the information that at
time t the process y(t) is equal to y. From the representation (3.23),
it immediately follows that we can express πp(t, y) as

πp(t, y) = e−r(T−t) 
Et

f (y(T ))1+γ

 y(t) = y
 1

1+γ . (3.24)

Note that this representation of the price πp() also arises in the
study of indifference pricing under power-utility functions, and the
related notion of pricing under ‘‘q-optimal’’ measures. See, for ex-
ample, Hobson (2004) and Henderson and Hobson (2009).

3.3. Mean value principle

The exampleswe gave in the previous subsections are all special
cases of the Mean Value principle, which is defined as

Πm
t [f (y(T ))] = v−1 (Et [v(f (y(T )))]) (3.25)
for any convex and increasing function v() (see Kaas et al.,
2008, Chap. 5).

Once more, we need to pay attention to units. If we want to
apply a general function v() to a value (expressed in units of e),
we need to make sure that the argument of v() is dimensionless.
The easiest way to achieve this is to express the argument for v() in
‘‘forward terms’’. For a single time step of (t, t +1t), we therefore
obtain the following expression for the price:

πmt, y(t) = v−1 
Et

v

e−r1tπmt +1t, y(t +1t)


. (3.26)

We can rewrite this definition as

v


πm

t, y(t)


ert


= Et


v


πm

t +1t, y(t +1t)


er(t+1t)


, (3.27)

from which it is immediately clear that the ‘‘distorted’’ value
v(πm(t, y)/ert) is linear and that it therefore satisfies the
Feynman–Kaç formula. Therefore, its solution corresponds exactly
to the solutions we found in the previous subsections.

As v() is a Borel-measurable function, and if we assume
Et |v(π

m(t, y))| < ∞, it becomes clear that the stochastic process
v

πm

t, y(t)


/ert


is a local martingale as the conditional expec-

tation Et [.] is a martingale (see Shreve, 2010, Lemma 6.4.2). We
can use this consideration to find the corresponding PDE for the
price πm(t, y). We can simplify this by defining the new process
as πmf(t, y) := πm(t, y)/ert , which is the price expressed in for-
ward terms. We use the Itô formula derivation for both stochas-
tic processes πmf(t, y), and also v


πmf(t, y)/ert


with respect to

πmf(t, y). By applying the Itô formula to πmf(t, y) with respect to
(3.1), we get

πmf(t, y) =

 t

0


πmf
t + aπmf

y +
1
2
b2πmf

yy


ds

+

 t

0
bπmf

y dW (s), (3.28)

where we assumed y(0) = πmf(0, y(0)) = 0 at time t = 0.
Then, we apply the differential form of the Itô formula to function
v(πmf(t, y)) and using (3.28) we obtain,

dv

πmf(t, y)


=


πmf
t + aπmf

y +
1
2
bπmf

yy


vy(π

mf)

+
1
2
(bπmf

y )
2vyy(π

mf)


ds

+ bπmf
y vy(π

mf)dW (s). (3.29)

Note that considering πmf a function of (t, y), v() is no longer as-
sumed to be a function of t in Itô formula. Finally, as v


πmf(t, y)


is a martingale process, the drift term can be set equal to zero:
πmf
t + aπmf

y +
1
2
bπmf

yy


vy(π

mf)+
1
2
(bπmf

y )
2vyy(π

mf) = 0.

If we divide both sides by vy(πmf), we obtain the PDE for πmf,

πmf
t + aπmf

y +
1
2
bπmf

yy +
1
2
vyy(π

mf)

vy(πmf)
(bπmf

y )
2

= 0, (3.30)

where this special derivation is true for any time step and we can
relax the assumption of taking the limit when 1t → 0. If we
substitute the πmf

= e−rtπm in (3.30) and simplify the notation,
the corresponding PDE for the discountedMean Value price will be

πm
t + aπm

y +
1
2
bπm

yy +
1
2
vyy(π

m)

vy(πm)
(bπm

y )
2
− rπm

= 0. (3.31)

In both Eqs. (3.30) and (3.31),we observe that the coefficient vyy/vy
in front of the non-linear term can be identified as the ‘‘local risk
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aversion’’, induced by the function v() at the current value πmf().
Note that since the function v() is increasing and convex by as-
sumption, vyy/vy is positive. Both forms of the PDE for the Mean
Value principle are similar to the PDE of the Variance principle
and have a quadratic driver for the equivalent BSDE in a time-
consistent framework.

4. Standard-deviation pricing

4.1. Standard-deviation principle

Anotherwell-known actuarial pricing principle is the Standard-
Deviation principle, defined as

Π s
t [f (y(T ))] = Et [f (y(T ))] + β


Vart [f (y(T ))] (4.1)

(see Kaas et al., 2008). Please note that in this case we also need
to be careful about the dimensionality of the parameter β . Even
though the expectation and the standard deviation are expressed
in units of e, they both have different ‘‘time scales’’. If we use
smaller time scales (aswewill be doingwhen considering the limit
for1t → 0) then, due to the diffusion term dW of the process y, we
have the property that the expectation of any function f (y) scales
linearly with1t , but the standard deviation scales with

√
1t . This

means that the standard deviation term will literally overpower
the expectation term for small 1t . Therefore, the only way to
obtain a well-defined limit for 1t → 0 is if we take β

√
1t as the

parameter for the Standard-Deviation principle over the time step
(t, t +1t).

Another way of understanding this result is to consider the
following example. If we want to compare a standard deviation
measured over an annual time step with a standard deviation
measured over a monthly time step, we have to scale the annual
outcome with

√
1/12 to get a fair comparison. Given the above

discussion on dimensionality and the time scales, we will then get
the following expression for the one-step price:

π st, y(t) = e−r1t

Et

π st +1t, y(t +1t)


+β

√
1t

Vart


π s

t +1t, y(t +1t)


. (4.2)

Wemultiply both sides by er1t , use its Taylor expansion, divide
by1t and take the limit. With some simplifications we obtain,

rπ st, y(t) = lim
1t→0

Et

π s

t +1t, y(t +1t)


− π s


t, y(t)


1t

+β


lim
1t→0

Vart

π s

t +1t, y(t +1t)


1t

= π s
t + aπ s

y +
1
2
b2π s

yy + β


(bπ s

y)
2 (4.3)

where in the second equality we used the definition of the
infinitesimal generator in (3.4) for expectation term and Eq.
(3.6) for variance term. Hence, we arrive at the following partial
differential equation for π s(t, y(t)):

π s
t + aπ s

y +
1
2
b2π s

yy + βb|π s
y | − rπ s

= 0. (4.4)

This is again a semi-linear PDE that can be represented by a BSDE
with a Lipschitz driver, g(t, Z) = β|bZ |. However, the semi-
linearity is much more benign in this case. Whenever the sign of
the partial derivative π s

y does not change anywhere in the do-
main of y (i.e. the function π s either monotonically increases or
monotonically decreases in y), then (4.4) is reduced to the linear
PDE:

π s
t + (a ± βb)π s

y +
1
2
b2π s

yy − rπ s
= 0, (4.5)

where the sign of ±βb depends on the (uniquely defined) sign of
π s
y .
Using the Feynman–Kaç formula, we can represent the solution

of (4.5) as follows:

π s(t, y) = E
S

t


e−r(T−t)f (y(T ))

 y(t) = y

, (4.6)

where ESt [] denotes the expectation at time t with respect to the
‘‘risk-adjusted’’ process yS defined as

dyS =

a(t, y)± βb(t, y)


dt + b(t, y) dW S. (4.7)

The risk-adjusted process is consistent with the concept of
actuarial prudence, where the insurer calculates the premium
using an adjusted drift to make a more conservative assessment
of expectation. Mathematically, the drift rate is adjusted upwards
(a + βb) if the payoff f (y) monotonically increases in y, and is
adjusted downwards (a − βb) if f (y) monotonically decreases in
y. So, the risk adjustment is always in the ‘‘upwind’’ direction of
the risk, making the price π s more expensive than the real-world
expectation E[f (y)].

4.2. Cost-of-Capital principle

Another actuarial pricing principle is the Cost-of-Capital
principle. The Cost-of-Capital method has been widely adopted by
the insurance industry in Europe, and has also been prescribed
as the standard method by the European Insurance and Pensions
Supervisor for the Quantitative Impact Studies (see EIOPA, 2010).3

The Cost-of-Capital principle is based on the following eco-
nomic reasoning. We first consider the ‘‘expected loss’’ E[f (y(T ))]
of the insurance claim f (y(T )) as a basis for pricing. In addition, the
insurance company needs to hold a capital buffer against the ‘‘un-
expected loss’’. This buffer is calculated as a Value-at-Risk (VaR)
over a time horizon (typically 1 year) and a probability threshold
q (usually 0.995 for insurance). The unexpected loss is then calcu-
lated as VaRq


f (y(T ))−E[f (y(T ))]


.4The capital buffer is borrowed

from the shareholders of the insurance company; however, there
is a small probability (1 − q) that the capital buffer is needed to
cover an unexpected loss. Hence, the shareholders require a com-
pensation for this risk in the form of a ‘‘cost of capital’’. This cost
of capital needs to be included in the pricing of the insurance con-
tract. If we denote the cost of capital by δ, then the Cost-of-Capital
principle is given by

Π c
t [f (y(T ))] = Et [f (y(T ))]

+ δVaRq,t


f (y(T ))− Et [f (y(T ))]


. (4.8)

Note that, we also need to be careful about the dimensionality
of the different terms in this case. First, we are comparing VaR
quantities at different time scales, and these have to be scaled
back to a per-annum basis. To do this we divide the VaR term by

3 The idea of valuation based on the cost of capital, was introduced by the Swiss
insurance supervisor as a part of the method used to calculate solvency capitals for
insurance companies (Keller and Luder, 2004). For a critical discussion on the risk
measure implied by the Swiss Solvency Test, we refer to Filipovic and Vogelpoth
(2008).
4 Although using VaR is in line with Solvency II and EIOPA directives, the Swiss

insurance supervisor used ‘‘Expected shortfall’’ (also called ‘‘conditional value at
risk (CVaR)’’ or ‘‘average value at risk (AVaR)’’) instead of VaR.
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√
1t . We must then realize that the cost of capital δ behaves like

an interest rate: it is the compensation the insurance company
needs to pay its shareholders for borrowing the buffer capital over
a certain period. The cost of capital is expressed as a percentage
per annum; hence over a time-step1t the insurance companywill
have to pay a compensation of δ1t per e of buffer capital. As a
result, we obtain a ‘‘net scaling’’ of δ1t/

√
1t = δ

√
1t . Note that

this is the same scaling as for the Standard-Deviation principle. For
a single time-step, we therefore get the following expression for
the Cost-of-Capital price:

π ct, y(t) = e−r1t

Et

π ct +1t, y(t +1t)


+ δ

√
1tVaRq,t


π ct +1t, y(t +1t)


−Et


π ct +1t, y(t +1t)


. (4.9)

Applying the method that we used in Sections 3.1 and 4.1, the
continuous-time limit of the above equation is

rπ ct, y(t) = Aπ c(t, y(t))+ δ
√
1tVaRq,t

×


lim
1t→0

π c

t +1t, y(t +1t)


− Et


π c

t +1t, y(t +1t)


1t


. (4.10)

Using the integral form of the Itô formula for π c(t +1t, y(t +

1t)), the expression under the limit in VaR operator can bewritten
as

lim
1t→0

π c

t, y(t)


− Et


π c

t +1t, y(t +1t)


1t

+ lim
1t→0

1
1t

 t+1t

t


π c
t (s, y(s))+ aπ c

y (s, y(s))

+
1
2
b2π c

yy(s, y(s))

ds

+ lim
1t→0

1
1t

 t+1t

t
bπ c

y (s, y(s))dW (s). (4.11)

The first limit by Eq. (3.4) is equal to−(π c
t (t, y(t))+aπ c

y (t, y(t))+
1
2b

2π c
yy(t, y(t))). If we assume f (s, y(s)) = π c

t (s, y(s)) + aπ c
y

(s, y(s)) +
1
2b

2π c
yy(s, y(s)) is a continuous differentiable function,

by definition of the limit for such a function, the second term will
be

lim
1t→0

1
1t

 t+1t

t


π c
t (s, y(s))+ aπ c

y (s, y(s))

+
1
2
b2π c

yy(s, y(s))

ds = π c

t (t, y(t))+ aπ c
y (t, y(t))

+
1
2
b2π c

yy(t, y(t)), (4.12)

where we recall that a and b, the drift and diffusion rates under the
integration, are also functions of s and y(s) for s > t . This cancels
the first and the second terms of Eq. (4.11) and leaves the third
term, which is an Itô integral, to be valuated.

Valuation of the Itô integral under the VaR1−q,t function is a
critical part of this premium. We denote this integral as,

Z(t +1t) = Z(t)+

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s). (4.13)

In general, the integrand b(s, y(s))π c(s, y(s)) in (4.13) for s > t
is an adapted stochastic process. In this situation, it is difficult to
draw inferences about the distribution of the above Itô integral
and to give a more direct calculation for VaRq,t . Although we do
not know the analytical distribution of Z(t + 1t), we can obtain
its first two moments with respect to the filtration Ft . As the Itô
integral is a martingale, its conditional expectation with respect to
the filtration Ft is zero,

E

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)
 Ft


= 0, (4.14)

where its variance can be obtained based on the Itô isometry for
stochastic integrands as follows:

Var
 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)|Ft


= Et

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)
2

=

 t+1t

t
Et


b(s, y(s))π c

y (s, y(s))
2

ds. (4.15)

Since we want to compute the continuous-time limit of the
price in an Euler–Maruyama approximation settingwhen1t → 0,
we assume Z(t+1t)−Z(t) as a partition (t, t+1t) of the process Z
with drift zero in [0, T ]. Kloeden and Platen (1999) have discussed
the Euler–Maruyama discretization of the stochastic processes.
Using the weak convergence of this approximation, we have

lim
1t→0

1
1t

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)

= lim
1t→0

1
1t


b(t, y(t))π c

y (t, y(t))1W (t)

, (4.16)

where 1W (t) = W (t + 1t) − W (t) is an independent and
identically distributed normal random variable with expected
value zero and variance 1t for all 0 < t ≤ T . Note that at time
t , b(t, y(t))π c

y (t, y(t)) is non-random and when 1t is small, the
distribution of Z(t + 1t) is approximately normal and we can
conclude that when1t → 0,

lim
1t→0

1
1t

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)

∼ N


0,


b(t, y(t))π c

y (t, y(t))
2

1t


. (4.17)

This also shows that in (4.15), lim1t→0
1
1tVar[

 t+1t
t b(s, y(s))π c

y

(s, y(s))dW (s)|Ft ] = (bπ c
y )

2.
Using ‘‘translation and scaling invariance’’ property of the VaR

function with respect to a non-negative constant, we have:

lim
1t→0

VaRq,t

 1
1t

 t+1t

t
b(s, y(s))π c

y (s, y(s))dW (s)


=
1

√
1t

b(t, y(t))
π c

y (t, y(t))
Φ−1(q). (4.18)

Finally, recalling Eq. (4.10) and inserting the limit above instead
of the VaR limit term and so for Aπ c from (3.4b), we derive the
related PDE for the Cost-of-Capital premium principle as

π c
t + aπ c

y +
1
2
b2π c

yy + δkb|π c
y | − rπ c

= 0 (4.19)

where k = Φ−1(q). This PDE is the same as the one we obtained
in (4.4) for the Standard-Deviation price, except for the factor δk,
which replaces β in front of b|π c

y |. This should not come as a
surprise, since the (q)-quantile of y(t + 1t) for a small time-step
1t converges to k times the standard deviation b

√
1t , and hence

the Cost-of-Capital pricing operator π c() should converge to the
Standard-Deviation pricing operator π s()with β = δk.
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If the payoff f (y(T )) is monotonous in y(T ), we can represent
the Cost-of-Capital price π c(t, y) in the sameway as the Standard-
Deviation price (4.6) with respect to the risk-adjusted process y:

dy =

a(t, y)± δkb(t, y)


dt + b(t, y) dW . (4.20)

5. Pricing under jump process

In this section, we extend the concept of time-consistent
actuarial pricing by adding a jump component to the valuation
process. In fact, we generalize the backward iteration of the one-
period valuation of the insurance premium principles when the
unhedgeable insurance process can also jump by an stochastic
arrival time.

Let (Ω,Ft , P) t ≥ 0 be the filtered probability space. We
use the model of Merton (1976) where the insurance process y(t)
follows the jump process of the form

dy(t) = a(t, y(t)) dt + b(t, y(t)) dW (t)+ C(t−, y(t−)) dN(t), (5.1)

where C(t−, y(t−)) = y(t) − y(t−) (with shorter notation ‘‘C(t)’’)
is the bounded jump size random variable with E[C(t)] = β , and
N(t) be the Poisson counting process of the jumpswith conditional
intensity λ(t, y(t))where λ is a continuous function andN(0) = 0.
Note that, y(t−) is the left continuous version of y(t). We assume
we have finitely many jumps in any finite time interval of the form
(t, t + 1t]. Moreover, W (t), N(t) and C(t) are Ft-measurable
processeswith independent increment. Note thatN(t) andC(t) are
assumed to be independent while together they form a compound
Poisson process which is also Ft-measurable with independent
increment.

5.1. Variance pricing with jump

In this section we directly apply the case of Variance pricing
with discounting and we employ the one-period valuation of this
premium principle to obtain a time-consistent price. We recall
(3.13) as the main pricing rule,

π vt, y(t) = e−r1t

Et

π vt +1t, y(t +1t)


+

1
2

γ

X0er(t+1t)
Vart


π vt +1t, y(t +1t)


where π v(t, y(t)) is a sufficiently smooth function and twice
continuously differentiable with respect to both y and t . We recall
Eq. (3.15) as the continuous-time limit of the variance price in
terms of the infinitesimal generator

rπ v
= Aπ v

+
1
2
γ

X0ert


Aπ v2

− 2π v
× Aπ v


.

The infinitesimal generator for π with above conditions is
defined in (3.4a) where for a y(t) modeled by (5.1) at (t, y(t)) it
has a different form as below,

AJπ
v(t, y(t)) = π v

t + aπ v
y +

1
2
b2π v

yy + λ

t, y(t)


×E


π v(t, y(t)+ C(t))− π v(t, y(t))


(5.2)

where the subscript ‘‘J ’’ in AJ exhibits the jump version of the
infinitesimal generator and π v


t, y(t) + C(t)) − π v(t, y(t)


is

the possible premium jump at time t . For the sake of clarity, we
should mention again that the derivative terms are functions of
(t, y(t)) which is suppressed to shorten the notation. For more on
the infinitesimal generators of the jumpprocesses, see for example,
Applebaum (2004).
In general, the expression AJπ
v2

−2π×AJπ
v still, by definition,

represents the limit of the variance term (See the first equality of
Eq. (3.6)). Once again we remind that π v2 is the shorter notation
for square of π v. We calculate the alternative form of the above
expression for the jump–diffusion process. By (5.2) and using the
chain rule for derivatives of π v2, we have

AJπ
v2

= 2π v

π v
t + aπ v

y +
1
2
b2 π v

yy


+

1
2
b2 (π v

y )
2

+ λ

t, y(t)


E


π v2(t, y(t)+ C(t))− π v2(t, y(t))


(5.3)

and

2π vAJπ
v

= 2π v

π v
t + aπ v

y +
1
2
b2 π v

yy


+ λ


t, y(t)


E

2π v(t, y(t)) π v(t, y(t)

+ C(t))− 2π v2(t, y(t))

. (5.4)

Hence, the limit of the variance term is
lim
1t→0

Var

π vt +1t, y(t +1t)


= AJπ

v2
− 2π × AJπ

v

=
1
2
b2 (π v

y )
2
+ λ


t, y(t)


×E


π v (t, y(t)+ C(t))− π v (t, y(t))

2
. (5.5)

Finally, inserting for AJπ
v and AJπ

v2
− 2π × AJπ

v into (3.15),
respectively from (5.2) and (5.5), we obtain the new form of
the differential equation for Variance pricing including a jump
component:

π v
t + aπ v

y +
1
2
b2π v

yy +
1
2
γ

X0ert
(bπ v

y )
2
− rπ v

+ λ

t, y(t)

 
E


π v(t, y(t)+ C(t))− π v(t, y(t))


+

1
2
γ

X0ert
E


π v(t, y(t)+ C(t))− π v(t, y(t))

2
= 0, (5.6)

where λE

(π v(t, y(t)+ C(t))− π v(t, y(t)))2


can be interpreted

as the instantaneous variance of the compound Poisson jump for
the premium at time t . Considering y(t) as a special Lévy process
with the jump size random variable C(t) and the Lévy measure
v(dc), we can exhibit (5.6) by a more standard formulation,

π v
t + aπ v

y +
1
2
b2π v

yy +
1
2
γ

X0ert
(bπ v

y )
2
− rπ v

+ λ

t, y(t)

  
π v(t, y(t)+ c)− π v(t, y(t))

+
1
2
γ

X0ert

π v(t, y(t)+ c)− π v(t, y(t))

2
v(dc) = 0. (5.7)

The above equation is a Partial Integro-Differential Equation
(PIDE), as the expectation terms can be rephrased in the form
of integrals of the premium jump on the jump size in the
related sample space. (5.7) is a semi-linear PIDE where it includes
quadratic terms of both continuous and jump components. The
quadratic term again represents that the equivalent BSDE for this
PIDE will have a quadratic driver g(t, Z) =

1
2

γ

X0ert
(bZ)2. It also

includes the probability of one jump for any point at time t > 0
by means of the parameter λ. Conditional on a ‘‘one-jump’’ event,
the integral (expectation) terms then formulate the effect of the
jump size on the value of π v(t, y). It is also clear that the PDE in
(3.16) is a special case of PIDE in Eq. (5.7) where there is no jump
in the insurance process.
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5.2. Mean value price with jump

In the previous case we assumed a simple jump–diffusion
process (5.1) to drive the underlying risk process y(t) and we
obtained the proper PIDE to describe the time-consistent Variance
premium principle with a jump. Again, to find the PIDE for the
MeanValue principle in the jump case,weneed to reformEq. (3.27)
as the pricing rule. To do so, we still need the martingale property

for v

πm

t,y(t)


ert


, where

πm

t,y(t)


ert = πmf


t, y(t)


. The implicit

compound Poisson process to describe the jumps in (5.1) is not
enough to achieve themartingale property forπmf


t, y(t)


. Instead

we use the compensated version of the Poisson process in (5.1) as
below,

dy(t) = [a(t, y(t))+ λ(t, y(t))C(t−, y(t−))] dt

+ b(t, y(t))dW (t)+ C(t−, y(t−))dÑ(t), (5.8)

where Ñ(t) = N(t) − λ(t, y(t)) × t is the compensated Poisson
process. As we need to evaluate v


πmf


t, y(t)


, we can apply the

Itô formula in two steps for πmf

t, y(t)


with respect to t and y(t)

and then for v(πmf) with respect to πmf. The resulted stochastic
processes for πmf is

πmf(t, y) =


πmf
t + λE


πmf(t, y(t)+ C(t))− πmf(t, y(t))


+ aπmf

y +
1
2
b2πmf

yy


ds + bπmf

y dW (t)

+

πmf(t, y(t)+ C(t))− πmf(t, y(t))


dÑ(t) (5.9)

where λ is shorter notation of λ(t, y(t)). Similarly for v

πmf


we

have,

dv

πmf(t, y)


=


πmf
t + λE


πmf(t, y(t)+ C(t))− πmf(t, y(t))


+ aπmf

y +
1
2
bπmf

yy


vy

πmf

+
1
2
(bπmf

y )
2vyy


πmf

+ λE

v

πmf(t, y(t)+ C(t))


− v


πmf(t, y(t))


dt

+ bπmf
y vy


πmf dW (t)

+

v

πmf(t, y(t)+ C(t))


− v


πmf(t, y(t))


dÑ(t). (5.10)

According to (3.27) and the martingale property of Et

v

πmf

(t + 1t, y(t + 1t))

, the compensated Poisson jump process of

v

πmf(t, y(t))


in (5.10) should also be martingale. So, we set the

drift term above equal to zero:
πmf
t + aπmf

y +
1
2
bπmf

yy + λE

πmf(t, y(t)+ C(t))

−πmf(t, y(t))

vy

πmf

+
1
2
(bπmf

y )
2vyy


πmf

+ λE

v

πmf(t, y(t)+ C(t))


− v


πmf(t, y(t))


= 0. (5.11)

We can simplify this by dividing thewhole equation by vy to obtain
the PIDE for the forward term πmf:

πmf
t + aπmf

y +
1
2
bπmf

yy +
1
2
vyy

πmf


vy

πmf

 (bπmf
y )

2

+ λE


πmf(t, y(t)+ C(t))− πmf(t, y(t))

+
v

πmf(t, y(t)+ C(t))


− v


πmf(t, y(t))


vy

πmf(t, y(t))

 
= 0. (5.12)
Again we substitute for πmf
= e−rtπm in (5.12). After we

simplify the notation, the corresponding PIDE for the discounted
Mean Value principle with jump is then

πm
t + aπm

y +
1
2
bπm

yy +
1
2
vyy (π

m)

vy (πm)
(bπm

y )
2
− rπm

+ λ

 
πm(t, y(t)+ c)− πm(t, y(t))

+
v (πm(t, y(t)+ c))− v (πm(t, y(t)))

vy (πm(t, y(t)))


v(dc) = 0. (5.13)

We recognize that the continuous part of the PIDE is the
same as the related PDE for the Mean Variance principle in
the diffusion case including a positive ‘‘local risk aversion’’ for
increasing and convex function V (). Conditional on the event of
the jumpwith instantaneous rate of λ, the PIDE captures the effect
of the premium jump by means of the term πm(t, y(t) + C(t)) −

πm(t, y(t)) aswell as the relative difference of the convex function
v(π) as a result of the jump with respect to the differentiation of
v()without a jump. If we assume v() as a nonlinear function, then
the PIDE reflects the jump effect on the price in both linear and
nonlinear sense.

5.3. Standard-deviation pricing with jump

To obtain the time-consistent Standard-Deviation price we
have to revalue the principle formula in (4.2) under the jump
process:

π st, y(t) = e−r1t

Et

π st +1t, y(t +1t)


+β

√
1t

Vart


π s

t +1t, y(t +1t)


.

FromEq. (4.3) the equivalent continuous-time limit of the above
price in terms of the infinitesimal generator is

rπ s
= AJπ

s
+ β


AJπ s2 − 2π s × AJπ s (5.14)

whereπ s and AJπ
s are functions of


t, y(t)


. We can insert for AJπ

s

fromEq. (5.2) and forAJπ
v2

−2π×AJπ
v fromEq. (5.5) andhencewe

obtain the appropriate PIDE for the Standard-Deviation principle as
below:

π s
t + aπ s

y +
1
2
b2π s

yy − rπ s

+ λ(t, y(t))
 

π s (t, y(t)+ c)− π s(t, y(t))

v(dc)

+β


λ(t, y(t))


(π s(t, y(t)+ c)− π s(t, y(t)))2 v(dc)+ (bπ s

y)
2 = 0.

(5.15)

The Standard-Deviation PIDE presents the jump effect on the
premium by using the first and second moments of the premium
jumpπ sπ s(y+c)−π s(y). The loading part of the equationwith co-
efficientβ consists of the conditional quadratic premium jump and
quadratic term (bπ s

y)
2, where the square root functionmakes it im-

possible to rewrite a linear version of this PIDE. If there is no jump,
λ = 0, the PIDE will be summarized to the PDE in (4.4) or (4.5).

5.4. Cost-of-Capital principle with jump

The Cost-of-Capital premium principle can also be valued by
assuming a jump process for the underlying insurance process.
The one-step pricing formula is the same as Eq. (4.9). We start
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by recalling its equivalent version in (4.10) and we adapt the
infinitesimal generator to the jump version.

rπ ct, y(t) = AJπ
c(t, y(t))+ δ

√
1t VaRq,t

×


lim
1t→0

π c

t +1t, y(t +1t)


− Et


π c

t +1t, y(t +1t)


1t


. (5.16)

Note that we multiplied VaRq,t by
√
1t to scale down the annual

VaRq to the1t-related version, VaRq1t . This is consistent with the
usual Variance–Covariance method of calculating VaR. Using the
Itô-Doeblin representations ofπ c(t+1t, y(t+1t)) the limit under
VaR can be rearranged as

lim
1t→0

π c

t, y(t)


− Et


π c

t +1t, y(t +1t)


1t

+ lim
1t→0

1
1t

 t+1t

t


π c
t (s, y(s))+ aπ c

y (s, y(s))

+
1
2
b2π c

yy(s, y(s))

ds

+ lim
1t→0

1
1t

 t+1t

t
bπ c

y (s, y(s))dW (s)

+


t<s≤t+1t


π c(s, y(s)+ C(s))− π c(s, y(s))


. (5.17)

The first term, by definition of the infinitesimal generator, is equal
to −AJπ

v(t, y(t)). The second limit by Eq. (4.12) will be equal to

π c
t (t, y(t))+ aπ c

y (t, y(t))+
1
2
b2π c

yy(t, y(t)).

We refer to the last term later. By using Eq. (5.2) to substitute
for AJπ

v(t, y(t)), the summation of the first two terms in (5.17)
will be equal to −λ


t, y(t)


E [π c(t, y(t)+ C(t))− π c(t, y(t))].

By translation invariance for the VaR operator, the expectation
term can be factorized and then its limit will be zero as

lim
1t→0

δ
√
1t

λ

t, y(t)


E

π c(t, y(t)+ C(t))− π c(t, y(t))


= 0. (5.18)

Hence, Eq. (5.16) will be rearranged as

rπ ct, y(t) = π c
t


t, y(t)


+ aπ c

y


t, y(t)


+

1
2
b2π c

yy


t, y(t)


+ λE


π c(t, y(t)+ C(t))− π c(t, y(t))


+ lim

1t→0

δ
√
1t

VaRq,t

 t+1t

t
bπ c

y (s, y(s))dW (s)

+


t<s≤t+1t


π c(s, y(s)+ C(s))− π c(s, y(s))


, (5.19)

where we substitute for AJπ
v(t, y(t)) from (5.2).

To compute this premium, we need some insights into the
distribution of the process under the VaR term. The whole terms
under the VaR function are a special Lévy jump–diffusion process
containing: a Brownian motion with drift zero and diffusion
b(s, y(s))π c

y (s, y(s)) and a compound Poisson process for a jump
componentwith intensity λ1t , compensated by its expected value
between (t, t + 1t). If we assume stationary and independent
increments, it is possible to identify the characteristic function of
the above Lévy process and find its marginal distribution.

In Eq. (4.17) in Section 4.2 we inferred that the limit of
the Itô integral in the VaR operator in (5.19) is normally dis-
tributed with variance 1t(bπy)

2. The summation term X =
t<s≤t+1t


π c(s, y(s) + C(s)) − π c(s, y(s))


, however, is a com-

pound Poisson process with intensity λ1t . Therefore, the terms
under the VaR operator in (5.19) constitute a convolution. We as-
sume that the Itô integral and compound Poisson jumps are inde-
pendent, as so are the frequency and size of the premium jump, and
we calculate the characteristic function ψ(θ) of the convolution.
We denote the convolution of the normal and compound Poisson
random variables byM = Z(t +1t)+X . Note that, under the VaR
operator in Eq. (5.19),M is divided by

√
1t . Hence, considering the

fact that ψ M√
1t
(θ) = ψM(

θ
√
1t
) and the independence assumption,

the characteristic function of the convolution under VaR is

ψ M√
1t
(θ) = exp

−

1t(bπy)
2


θ
√
1t

2
2

+ λ1t

ψX


θ

√
1t


− 1


= exp


−
(bπyθ)

2

2
+ λ1t


ψX


θ

√
1t


− 1


. (5.20)

The distribution of the convolution depends on the distribution
of the premium jump and thus on the form of ψX . If we assume
normally distributed premium jumps, D ∼ N(µ, σ 2), the
characteristic function of the whole convolution turns to

ψ M√
1t
(θ) = exp


−
(bπyθ)

2

2
+ λ1t


iµθ
√
1t

−
σ 2θ2

21t
− 1


= exp


−
(bπyθ)

2

2
+ λ

√
1t(iµθ)−

λσ 2θ2

2
− λ1t


. (5.21)

If we take the limit of ψ M√
1t
(θ)when1t → 0, we obtain

lim
1t→0

ψ M√
1t
(θ) = exp


−

b2π2
y θ

2

2
−
λσ 2θ2

2


(5.22)

which shows that the asymptotic distribution of the compound
Poisson process with coefficient 1/

√
1t is normal with mean

zero and variance λσ 2, where the zero mean was justified earlier
in (5.18). Hence, the convolution is normal with mean zero
and variance b2π2

y + λσ 2, and by using the scale invariance
property, the limit of the VaR term in (5.19) will be equal to
b2(t, y(t))π c2

y (t, y(t))+ λ(t, y(t))σ 2 × Φ−1(q). Finally (5.19)
gives the resulted PIDE as

rπ c(t, y(t)) = π c
t (t, y(t))+ a(t, y(t))π c

y (t, y(t))

+
1
2
b2(t, y(t))π c

yy(t, y(t))+ δΦ−1(q)

×


b2(t, y(t))π c2

y (t, y(t))+ λVar [π c(t, y(t)+ C(t))− π c(t, y(t))]

+ λE

π c(t, y(t)+ C(t))− π c(t, y(t))


, (5.23)

where taking Φ−1(q) = k and changing to integral notation, the
PIDE is:

π c
t + aπ c

y +
1
2
b2π c

yy − rπ c
+ λ

 
π s(y(t)+ c)− π s(y(t))


v(dc)

+ δk


b2π c2

y + λ


Var [π c(t, y(t)+ C(t))− π c(t, y(t))] v(dc)

= 0. (5.24)

Looking back at the derivation of the PIDE, it is clear that
the loading term of the premium (VaR term) is independent of
the expected premium jump. The PIDE also shows that if the
premium jump is normally distributed, the Cost-of-Capital price
is able to capture a quadratic jump effect on the price (i.e. the
variance of the premium jump size) that makes it very similar to
the Standard-Deviation price, which presents the second moment
of the premium jump. The rest of the terms for the Cost-of-Capital
and Standard-Deviation prices are the same. The quadratic driver
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of the PIDE is forced to be linearized by the square root function in
both of the Standard-Deviation and Cost-of-Capital principles. In
the non-jump case, the PIDE converges the PDE in (4.19).

The underlying distribution of the premium jump size is
effective on the Cost-of-Capital price of the insurance process with
jump. If we change the distribution of the premium jump, the
continuous-time limit of the Cost-of-Capital premium will result
in a different PIDE. For example, if the premium jump has an
exponential distribution with parameter α, then it will turn (5.20)
into

ψ M√
1t
(θ) = exp


−
(bπyθ)

2

2
+ λ1t


1 − i

θ
√
1t
α−1

−1

− 1



= exp

−
(bπyθ)

2

2
+ λ1t


iθ

λ
√
1t − iθ


(5.25)

and by taking the limit when1t → 0, the exponential part tends
to zero and we have

lim
1t→0

ψ M√
1t
(θ) = exp


−

b2π2
y θ

2

2


. (5.26)

This is the characteristic function of the normal distribution
withmean zero and variance b2π c2

y and bymeans of Eq. (5.19) gives
the PIDE as

π c
t + aπ c

y +
1
2
b2π c

yy + δk|bπ c
y | − rπ c

+ λ

 
π s(y(t)+ c)− π s(y(t))


v(dc) = 0. (5.27)

Weobserve a different PIDE in the sense that the quadratic jump
term has disappeared from the VaR perspective and only the jump
effect is captured via the expectation term of the Cost-of-Capital
premium principle. The non-jump case still converges to the Cost-
of-Capital PDE in (4.19).

6. Numerical example

In this section we apply the idea of time-consistent valuation to
price a simplified insurance contract to give a real-world example
of thismethod and its differences to the normal one-step valuation.
We apply the multi-step pricing operator to the time-consistent
version and divide any time period T − t into n steps with a length
of1t . We use the same backward iterationmethod to calculate the
value of the premium for an insurance risk. As wemodeled earlier,
the unhedgeable risk process can be described either by a simple
diffusion process in (3.1) or a jump–diffusion process in (5.1). In
time step (t, t +1t), we have the increment as below,

Simple Diffusion:1y(t) = µ(t, y(t))1t + σ(t, y(t))1W (t)
jump–diffusion:1y(t) = µ(t, y(t))1t

+ σ(t, y(t))1W (t)+ C(t, y(t))1N(t).

We are interested in the price of any contract at time t ≥ 0 that
offers a contingent payoff at T or any time depending on T . To price
the contract, we will use the premium principles that we used in
the time-consistent contexts in the previous sections. To imple-
ment the idea of time-consistent valuation, wewill use theMarkov
chain method to approximate the underlying process and payoff
function,where the pricing ruleswill be one of the previouslymen-
tioned premium principles. The Markov chain provides a straight-
forward method to apply the valuation task in each sub-period for
the payoff and calculate the price in a dynamic way. Thismethod is
frequently used to price path dependent derivatives such as Ameri-
can options, barrier options, etc. See for example Duan et al. (2003)
and Monoyios (2004).
6.1. Setting for a simple life insurance payoff

Suppose we have a stylized life-insurance contract for the
period of [0, T ]. We are monitoring the health of an individual as a
diffusion process, say y(t). The person is alive as long as y(t) > 0
and dies when y(t) hits zero. Therefore, the insurance contract has
a payoff 1 at time T (i.e. the survival benefit), if y(t) > 0 for all
0 < t < T . Another stylized contract pays the benefit 1 at T if y(t)
hits the level zero before T , where the individual dies. Let us define
the first hitting time at level x > 0 for the process y(t) as below,

τx = min{t ≥ 0; y(t) = x}.

If we assume y(t) = W (t) is a Brownian motion, it is not hard to
prove thatP(τx < ∞) = 1 butE(τx) = ∞. The health process can
offer a more realistic picture if we assume a negative drift µ < 0
as any individual’s health gradually deteriorates and the individual
comes closer to death. Naturally, the health quality of an individual
can fluctuate daily due to different factors like nutrition, exercise,
diseases etc., which means σ > 0.

Based on the above properties of the Brownian motion W (t),
such as ‘‘symmetry’’, for a constant µ and σ , the distribution
function of the first hitting time of the level zero by the process
y with the initial value of y(t) and the maturity time T is,

P ( τ0 < T − t| y(t)) = Φ


−y(t)− µ(T − t)

σ
√
T − t


+ exp


−2µy(t)
σ 2


Φ


−y(t)+ µ(T − t)

σ
√
T − t


. (6.1)

We will use this probability and the corresponding survival
function for the hitting time τ0 to calculate the analytical solution
of the PDEs obtained for each premium principle.

The physical setting for the value and payoff of the above styl-
ized product is basically a simple control problem for the underly-
ing stochastic process with constant boundary levels over time. It
is ideal andmore realistic, regarding the natural situation of any in-
dividual, that µ(t, y(t)) and σ(t, y(t)) be stochastic processes de-
pending on time and the health condition of the individual in the
previous time step. However, to keep our demonstration simple,
we assume a constant µ and σ in this paper.

6.2. Markov chain implementation

The Markov chain method has been used extensively as a
numerical tool for control problems, particularly in the dynamic
valuation of contingent payoffs such as American options. See for
example Kushner and Dupuis (2001) and Yin and Zhang (2012).
The backward iteration of the one step valuation can be applied
by means of the Markov chain method to the underlying (original)
health process, discretized by both time horizon and state space.
We define the approximating Markov chain on the related state
space by using a finite difference interval 1y such that the first
moments of the chain are matched to those of the original process
y(t), as 1y → 0. Note that 1y can also be interpreted as a
discrete time parameter of the Markov chain and can be defined
as a function of time step1t .

6.2.1. Pricing by simple diffusion health process
We start with a term life insurance for time horizon T that pays

benefit 1 at time T on the event of death if τ0 ∈ (0, T ) and pays
zero otherwise. This is in fact a path-dependent derivative similar
to a European style ‘‘down-and-in’’ barrier optionwith barrier level
zero. If the process hits zero before T , the beneficiaries make sure
they will receive a payoff with present value 1 × e−r(T−τ0) at τ0.

We use the Variance premium principle as the pricing rule. In
a continuous-time setting, recalling Eq. (3.16), the time-consistent
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valuation of the above contract will result in the following PDE,

π v
t + µπ v

y +
1
2
σ 2π v

yy +
1
2
α(σπ v

y )
2
− rπ v

= 0 (6.2)

with the domain {(t, y(t)); 0 ≤ t ≤ T , 0 ≤ y(t) < ∞} and the
boundary conditions

π v(t, 0) = 1 × e−r(T−t), 0 < t < T
π v(T , y) = 0, y > 0

(6.3)

and the terminal condition π v(T , y(T )) = 1{0≤τ0<T }. We implicitly
assume that, if for any t ≤ T , y(t) hits zero, the process will be
killed andwill remain zero till time T when the payoffwill bemade.

Basically, we use a Markov chain with a lattice structure of
approximation for y(t) in a discrete-time and finite state space.
Duan et al. (2003) have provided a generally applied frame for
the method used to price American option, by applying the
Black–Scholes model and GARCH option pricing model. The time
space consists of the number of time steps1t , and thepayoff can be
recursively defined as below for all s ∈ {t, t+1t, t+21t, . . . , T−

1t}:

π v(s, y(s)) = E

e−r1tπ v(s +1t, y(s +1t)) | Fs


+

1
2
αVar[e−r1tπ v(s +1t, y(s +1t))|Fs]. (6.4)

We repeat this valuation operation in the backward iteration
method to price the product at time zero, starting from B(T , y(T )).
As we mentioned before, we use constant interest rate, drift rate
and volatility.

To implement the Markov chain, we select a upper boundary
ymax as

= y(0)+ kσ
√
T , (6.5)

where σ
√
T is the standard deviation of y(t) over [0, T ]. This will

reduce the domain into [0, T ] × [0, ymax] and add extra boundary
condition π v(t, ymax) = 0, 0 < t < T to the ones in Eq.
(6.3) where ymax acts like a European style ‘‘up-and-out’’ barrier
option. Although the probability of hitting ymax will be negligible
for a reasonably large k and negative drift, we will later modify
the sample space in the calculation phase by conditioning the
probability on the over-ymax hits.

For a y(t)modeled by simple diffusion, the transitionmatrix can
be obtained via the method in Duan et al. (2003), which calculates
the transition probabilities over all states in the range (0, ymax).We
use the ‘‘adaptive recombining trinomial tree’’ technique, in which
themiddle tree node follows the local drift and the up/down nodes
follow the volatility for each time step. See for example, Tang and
Li (2007) for more details about the method. We match the local
mean and variance of the underlying process and the Markov state
space. The state difference interval will be constructed as

1y(t) =

1yd(t) = −σ
√
k1t,

1ym(t) = 0,
1yu(t) = σ

√
k1t

(6.6)

where a common value of k = 3 also can match the local kurtosis
and reduce the distribution error to speed up the convergence
of the chain. Similar method in Figlewski and Gao (1999) and
Baule and Wilkens (2004), produced the trinomial transition
probabilities as follows

pd = 1/6 −
µ

√
31t

6σ
,

pm = 2/3,

pu = 1/6 +
µ

√
31t

6σ

(6.7)
where pu ≥ 0, pm ≥ 0, pd ≥ 0 and pu + pm + pd = 1
and the state difference interval is constructed so that the local
kurtosiswill bematched and the distribution errorwill decline. For
any transition that leads to a state reaching the boundary levels
y = 0 and y = ymax, the process will be killed by setting the
corresponding transition probability equal to 1. The same is valid,
for the jump–diffusion case in the next subsection. The result for
the scope of our stylized example is consistent with the nature of
the health process, where for a negative drift µwe expect a larger
downward probability pd (and smaller upward probability pu), to
push the process closer to zero.

6.2.2. Pricing by jump–diffusion health process
We enter a simple jump component into the trinomial tree to

investigate its effect on the price of the product. Generally, most
of the methods for random-sized Poisson jump components are
studied with the aim of finding the tree probabilities so that the
discrete time Markov process including a jump matches the first
localmoments of the continuous-time jump–diffusion process. For
more about the applications of themethod to price the options, see
for example Amin (1993) and Yuen and Yang (2009).

Considering the same criteria, Hilliard and Schwartz (2005) in-
vestigated how to use a jump–diffusionmodel to price derivatives.
They used a bivariate tree approach to separate the diffusion and
jump parts and used the same methods to match the local mo-
ments. They assumed that the size of the jump in discrete time
also has a grid containing jump nodes constructed by the integer
product of the jump size’s finite difference interval. After that, the
jump–diffusion discrete time approximation will be the summa-
tion of the diffusion and jump parts.

We use a simplified version of the above techniques to separate
the jump and diffusion parts in the implemented Markov chain
setting. To keep the problem simple, we assume a constant jump
size J such that J
1y(s)


= K , (6.8)

where K ≥ 2. As the number of valuation steps increases, the
state difference1y(s) decreases and K increases so that J remains
constant.

We also implement the transition probabilities for a valuation
time step 1t , in the form of a skewed quadrinomial, by mixing
the arrival time rate of jump λ and trinomial tree transition
probabilities as below,

π(i, j,1t)

=



λ1t, j = K ;

(1 − λ1t)


pd = 1/6 −

µ
√
31t

6σ
, j = i − 1;

pm = 2/3, j = i;

pu = 1/6 +
µ

√
31t

6σ
, j = i + 1.

(6.9)

Based on this formulation, we assume that any jump event, will
be large enough to nullify the effect of the diffusion part for the
evolution of the underlying health process. If there is no jump, we
can reduce the sample space for the diffusion part and distort the
trinomial transition probabilities so that we can define the entire
process in one probability space. This can be considered as a very
simple and special case of the regime switching between the jump
and diffusion parts, so that there is only a possible jump in the first
regime and diffusion instead of a jump in the second regime.

6.3. Simulation

We apply the above method to calculate the time-consistent
price of the contract with both diffusion and jump–diffusion
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processes. To compare the time-consistent price obtained from
the diffusion and jump process, we also need to match the local
moments of the diffusion process with regard to those of jump
process. Therefore, we recall the locally matched processes for
constant drift, volatility and jump size as below,

Simple Diffusion: dy(t) = (µ+ λJ)dt + (

σ 2 + λJ)dW (t)

jump–diffusion: dy(t) = µ(t, y(t))dt + σdW (t)+ JdN(t).
(6.10)

In the above formulation we implicitly assume that no more than
one jump should be possible for a small time step. Using the
locally matched diffusion process above and (6.8), we update the
transition probabilities in (6.7) as

pd = 1/6 −
(µ+ λK1y)

√
31t

6

σ 2 + λK1y

,

pm = 2/3,

pu = 1/6 +
(µ+ λK1y)

√
31t

6

σ 2 + λK1y

.

(6.11)

The alternative transition probabilities for the jump case stays the
same as (6.9).

6.3.1. Variance price
We calculate the time-consistent Variance premium principle

for a T -year term life insurance. We do this for both the death and
survival benefits based on the stylized health process. Note that in
this numerical work, we do not solve the related Variance PDE, but
we directly calculate the Variance premium for the shorter time
steps starting with the terminal time T state space and apply the
backward iteration method to reach the time t < T price.

It is important to examine the convergence of the Markov
chain trinomial tree approximation to the analytical time-
consistent price. The time-consistent solution for the case of
the Variance price was derived in (3.17) as π v(t, y) =

X0ert

γ

lnE

exp


γ

X0erT
f (y(T ))

 y(t) = y

. According to the Markov

chain discretization, the payoff for the death benefit is 1 when
τ0 < T − t and 0 in all other cases. The apposite is valid for the
survival benefit where the payoff is 1 if τ0 ≥ T − t . If we assume
P(τ0 < T ) = p as the probability of a Bernoulli event, which can
be calculated by Eq. (6.1), the analytical price will be obtained as

π v(t, y) =
X0ert

γ
lnE


e

γ

X0erT
I{τ0<T−t}

 y(t) = y


=
X0ert

γ
ln

1 − p + pe

γ

X0erT


, (6.12)

where for α = γ /X0ert , the simpler notation is π v(t, y) =
1
α
ln

1 − p + p × exp(αer(T−t))


.

We calculate the time-consistent price approximation for both
types of coverage, based on the following set of sample parameters:
the drift µ = −0.2, the diffusion coefficient σ = 0.4, the initial
value at time t , y(t) = 1, the time duration T − t = 1, annual
discount rate r = 0.05, the relative risk aversion per benchmark
wealth level γX0 = 0.1, and the jump arrival time rate λ = 0.03, the
expected jump size K = 0.7y(t) = 0.7, and the upper bound of the
y(T ) state spacewill be driven as ymax = y(t)+3σ

√
(T − t) = 2.2.

The probability of the first hitting time of the level zero (lower
bound of the state space of y(T )), or equivalently the individual’s
death probability, can be calculated by (6.1) as P(τy(τ )=0 ≤ T −

t|y(t) = 1) = p = 0.03375. Similarly the alternative conditional
hitting time probabilitywhen taking into account the sample space
reduction by the upper bound ymax = 2.2 for k = 3 will be
P

τy(τ )=0 < T − t

 y(t) = 1, y(τ ) ≤ ymax


=
p

P(y(τ ) ≤ ymax)
=

0.03375
0.99967

= 0.033758,
where clearly the survival probability is q = 1 − p = 0.96624.
Using Eq. (6.12), the analytical time-consistent Variance price for
the life insurance coverage will be π v

Death(t, y) = 0.03363 and
π v
Survival(t, y) = 0.92055.
We provide a numerical approximation of the time-consistent

Variance price operator for both death and survival benefits using
simple diffusion and jump settings in discrete time. We use the
transition probabilities in Eqs. (6.7) and (6.9) and kill the process
for the transitions leading to the boundary conditions in Eq. (6.3).
We then implement the backward iteration method, whereby the
time steps 1t become smaller when increasing the number of
iterations, and we examine whether our approximation converges
to the analytical continuous-time limit of the price.

Fig. 1 represents the convergence of theMarkov chain trinomial
tree approximation to the analytical time-consistent Variance
premium for the diffusion case in which the number of time
steps (n) increases and the parameters are the same as above.
Although we have no analytical solution for the obtained PIDE in
the jump case in (5.6), the Variance price converges to the certain
levels of 0.0499 and 0.9057 for the death and survival coverage,
respectively. The difference in the price is reasonable as we have a
one-sided downward jump in the health process.

We still observe some perturbation in the Markov chain
approximation, but the level of the relative difference between
the values (i.e. the typical error) decreases when the number of
steps increase. Figlewski and Gao (1999) explain that the reason
for the typical errors is the lack of coincidence between the
theoretical boundary levels and the highest state in the Markov
chain. In our case, there is a lack of coincidence for the position
of the time t Markov chain premium in the lattice model with the
analytical price, which always cause over/under value. Applying
thismethod to the Standard-Deviation principle will give the same
convergence result for both the diffusion and jump cases.

6.3.2. Cost-of-Capital price
We also compute the Markov chain approximation of the

time-consistent Cost-of-Capital price for the above life insurance
contract. The analytical solution of the Cost-of-Capital PDE for
the diffusion case is given by Eq. (4.6) under the risk-adjusted
underlying process (4.20) as below,

π v(t, y) = E

e−r(T−t)f (y(T ))

 y(t) = y


= Et

e−r(T−t)

I{τ0<T−t}


= e−r(T−t)
× p, (6.13)

where p = P(τ0 < T ). There is no analytical solution for the
jump–diffusion case. For the parameter values, we use the cost of
capital δ = 0.1 instead of the relative risk aversion. In order to
give a better picture of the approximation evolution, we choose a
relatively high jump intensity λ = 0.1 and probability level of the
VaR, 1 − q = 0.999. The rest of the parameters are the same as
those that we used in Variance pricing.

We use (6.10) as the underlying process. Since the payoff for the
death benefit decreases monotonically in y, we use (a + λJ − δkb)
as the downward adjustment for the drift rate. The adjustment
calculates the upwind price of the insurance risk as the drift rate
decreases more by −δkb, pushing the process more towards the
zero level, which means a higher probability of death from the
insurer’s perspective. Using Eq. (6.1), the probability of the first
hitting timeof the level zero (death probability) is computed as p =

0.04342, where the conditional probability given the upper bound
ymax = 2.2, is P ( τ0 < 1| y(t) = 1, y(τ ) ≤ 2.2) = 0.043435. On
the other hand, since the survival benefit increases monotonically
in y, we have to use (a + λJ + δkb) as the upward adjustment
for the drift rate, which gives a lower probability of hitting zero.
This is interpreted as a higher price of the survival coverage for
the insurer. Therefore, we obtain, P ( τ0 ≥ 1| y(t) = 1, y(τ ) ≤ 2.2)
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Fig. 1. Markov chain simulation of the time-consistent variance premium for the stylized life insurance contract.
= 0.98976. By using the formulation in (6.13), we obtain the
analytical time-consistent value of the Cost-of-Capital premium
for the life insurance coverage as π c

Death(t, y(t)) = 0.04132 and
π c
Survival(t, y(t)) = 0.9416.
Fig. 2 illustrates the Markov chain approximation of the time-

consistent value of the Cost-of-Capital premium for different num-
ber of valuation steps in the backward iterationmethod. The upper
graph illustrates the premium of the death coverage under the dif-
fusion and jump–diffusion process, while the lower graph shows
the samepremium for the survival coverage.We start the valuation
with just n = 4 steps and add fourmore steps to n each time. In the
above parameter set, the horizontal line is the analytical value of
the time-consistent premium. In the case of death coverage mod-
eled by a simple diffusion process, which increases the number of
valuation steps, we observe a fast convergence of theMarkov chain
method to the analytical value.

However, for the jump–diffusion process, there is a downfall in
the Markov chain approximation of the Cost-of-Capital premium
on n = 100. The reason for this dramatic reduction of the premium
can be explained by the fact that, when the probability of the jump
event at any time interval (t, t+1t) is less than theVaRprobability
threshold in that period, λ1t < q, the VaR1−q function is not able
to capture the effect of the jump. Therefore, in the point where
λ1t = q and after that, the premium jump cannot be reflected in
VaR, and the Cost-of-Capital premium drops. This is a substantial
weakness in the Cost-of-Capital premium principle when dealing
with rare jump events and it fails to capture part of the premium
jump in the final value. In our example, for λ = 0.1 and q = 0.001,
this happens when n ≥ 100, λ1t ≤ 0.001. After the drop point,
theMarkov chain approximation converges to a special level of the
premium that is significantly higher than the premium resulted by
the simple diffusion process.
For the survival coverage, the Markov chain premium approx-
imation obtained by the diffusion processes converges to the
analytical value of the time-consistent Cost-of-Capital premium
(horizontal line). In the jump case, we observe a normal conver-
gence with a decreasing perturbation rate without any sudden in-
crease or decrease in the premium, while the number of valuation
steps increases. The reason for this is that we use a one-sided jump
in our example that moves downwards and is located on the left
hand side of the survival risk distribution. As a result, it is not able
to stimulate the VaR function by means of the jump probability
level λ1t . Nevertheless, part of the jump effect is always captured
by the expectation operator of the Cost-of-Capital principle and
when comparing this to the diffusion case, this justifies the lower
survival premium in the jump case in the second part of Fig. 2.

7. Summary and conclusions

In this paper we investigated a number of well-known actuarial
premium principles, such as the Variance and Standard-Deviation
principle, and studied their extension into a time-consistent di-
rection. We constructed these extensions using one-period valu-
ations, then we extended this to a multi-period setting by means
of the backward iteration method of Jobert and Rogers (2008)
for a given discrete time-step 1t , and finally we considered the
continuous-time limit for1t → 0. We showed that the extended
Variance premium principle converges to the non-linear exponen-
tial indifference valuation. Furthermore, we showed that the ex-
tended Standard-Deviation principle converges to an expectation
under an equivalent martingale measure. Finally, we showed that
the Cost-of-Capital principle, which is widely used by the insur-
ance industry, converges to the same limit as that of the Standard-
Deviation principle. In the above cases, we assumed that the
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Fig. 2. Markov chain simulation of the time-consistent Cost-of-Capital premium for the stylized life insurance contract.
underlying risk process is a simple diffusion process in which the
continuous-time limit of the time-consistent valuation results in a
semi-linear Partial Differential Equation (PDE) that can be solved
analytically with the Feynman–Kaç formula. To conduct a more
realistic valuation, we added a Poisson jump component to the
underlying risk process and obtained the time-consistent exten-
sion of the above premium principles in the form of different
Partial Integro-Differential Equations (PIDEs) that can be solved
numerically. There was no convergence in the price of the differ-
ent premium principles in the jump case, but the effect of the jump
component is reflected in the related PIDEs by different forms of
premium jumps. In the Cost-of-Capital principle, the VaR1−q op-
erator failed to reflect the effect of the jump on the extended price
where the probability of the jump in a single time step drops to less
than the probability level of the quantile, λ1t < q. This uncov-
ers an important weakness that the Cost-of-Capital principle has
in pricing the insurance risks containing the jump components in
the time-consistent extension. The end of the paper is dedicated
to using the Markov chain approximation to apply the backward
iteration method and calculate the time-consistent value of a sim-
ple life insurance payoff. Here we observed the convergence of the
numerical calculation to the analytical time-consistent solutions.
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