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Abstract 

Some recent results for frictionless economies show that popular dynamic portfolio strategies such as stop-loss and lock-in 
are inefficient. I.e. for each of these strategies there exists an alternative portfolio strategy that gives the same final payoff 
distribution at lower initial costs. However, the alternative strategies require considerably more active trading than the simple 
strategies. The results rely heavily on the assumption of no transaction costs. Under this assumption the initial investment 
required is a linear function of the prices of the contingent claims that build the final payoff distribution. In this paper 
we demonstrate that, even for modest levels of transaction costs, the efficient strategies are more costly than the simple 
strategies, i.e. a strategy that replicates the final payoff distribution of an efficient strategy is excessively costly due to the 
transaction costs and the heavy trading involved. Since the initial investment is no longer a linear function of the contingent 
claims, the optimization problems to find the most efficient strategy are complicated combinatorial optimization problems 
which can only be solved for trees with a small number of steps. In a world without transaction costs, options are redundant 
instuments, since all payoff distributions can be replicated by trading in stocks and bonds. In the second half of this paper 
we show that the use of options in a world with transaction costs enables investors to realize final value distributions at 
lower initial costs than would be possible with trades in stocks an bonds only. Hence, although in theory options do not 
give rise to other portfolio strategies, they do in a more restrictive setting with transaction costs. 

Keywords: Portfolio strategy; Transaction costs; Options 

1. Introduction 

In an economy without frictions, such as transac- 
tion costs, options are redundant instruments, because 
their payoffs  can be replicated by dynamic portfol io 
strategies with trading only in the underlying stock 
and riskless bonds. Therefore, the price o f  an option is 
equal to the initial value of  the portfol io strategy that 
replicates the option. In this setting the use of  options 
does not create any new portfol io strategies that give 
rise to the same final payoffs at lower initial costs. In 

* Corresponding author. 

a more realistic case where transaction costs are in- 
curred on trades in stocks, Leland (1985) has shown 
that the transaction costs in replicating an option are 
substantial and that large differences exist between ini- 
tial values of  portfolios replicating long and short po- 
sitions in options. In practice options are often priced 
according to the Black-Scholes model  which assumes 
no transaction,costs. Hence, in a world with transac- 
tion costs, options might enhance the feasible portfo- 
lio strategies since they give payoff  distributions that 
can only be obtained by a portfolio strategy in stocks 
and bonds at considerable transaction costs. 

A more recent result for frictionless economies,  es- 
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tablished by Dybvig (1988b), is that popular dynamic 
portfolio strategies, such as stop-loss and lock-in, are 
inefficient. This means that there exists a portfolio 
strategy that gives the same final payoff distribution 
as the stop-loss strategy but has lower initial costs. 
The same holds for the lock-in strategy. These re- 
sults depend heavily on the assumption of no transac- 
tion costs. The more efficient strategy generates more 
trading than the simple stop-loss strategy. Hence, in 
a world with transaction costs it is no longer obvious 
that the efficient strategies really command lower ini- 
tial investments. 

In this paper we investigate the following two is- 
s u e s i  

- Are simple dynamic portfolio strategies, such as 
stop-loss and lock-in, really inefficient if there are 
transaction costs on trades of stocks? 

- Does the use of options in dynamic portfolio strate- 
gies enable investors to realize final value distribu- 
tions at lower costs than would be possible with 
only trading in stocks and bonds? 

To analyze these issues we use the Cox-Ross-  
Rubinstein (1979) binomial tree model for the stock 
prices. In the next section, we briefly describe the 
results of Dybvig (1988a,b) pertaining to the inef- 
ficiency of stop-loss and lock-in strategies. In Sec- 
tion 3 we introduce transaction costs, formulate the 
concepts of efficient and strongly efficient dynamic 
self-financing portfolio strategies and formulate op- 
timization problems for dynamic portfolio strategies. 
Section 4 is devoted to the evaluation of efficient 
dynamic portfolio strategies when there are transac- 
tion costs, while Section 5 addresses the question of 
whether options enhance the possibilities of investors 
to achieve certain payoff distributions at low costs. 
The last section concludes the paper and offers some 
directions for further research. 

2. The Dybvig model 

In this section, we briefly outline the payoff distri- 
bution pricing model (PDPM) for the binomial asset 
pricing model as described in Dybvig (1988b). Fig. l 
represents a specific (4-period) example of the well- 
known binomial model of stock returns introduced by 
Cox, Ross and Rubinstein (1979). The initial stock 
price So is equal to 16, one plus the riskless interest 

rate is equal to one (hence, the riskless interest rate 
is zero) and the stock price doubles or halves each 
period, with probability 1/2. Since we are interested 
in both path-dependent trading strategies and transac- 
tion costs, we do not give the standard (recombined) 
binomial tree, but the expanded tree. In fact, the ex- 
panded tree properly shows the increasing sequence 
of o--algebras that describes the information structure 
of the model. 

The final states are numbered tOl . . . . .  o216. Since 
the binomial model is complete, each contingent claim 
that gives payoffs in the final period can be duplicated 
by a self-financing trading strategy. If  there are no ar- 
bitrage possibilities, the initial outlay for this strategy 
must be the price of the contingent claim. The price 
of a contingent claim that pays 1 in a given state and 0 
in all other states is called the state price of the given 
state. For a given contingent claim its price is the sum 
over all states of the payment in that state times the 
state price. In fact, the state price is equal to the proba- 
bility of the state under the unique martingale measure 
of the pricing model. 

Next, consider the stop-loss strategy where we ini- 
tially buy one stock and sell the stock for bonds as 
soon as the stock price drops to 8. From here onward 
we deal solely with bonds. In Fig. 2 this strategy is 
illustrated such that at each node in the tree the first 
number specifies the number of stocks in the portfolio 
and the second specifies the amount invested in bonds. 
Furthermore, the final value of the portlolio at matu- 
rity in each state is given. In Fig. 3 an alternative to 
the stop-loss strategy is given. At each node, we again 
specify the number of stocks in the portfolio, and the 
amount invested in bonds. The alternative strategy is 
self-financing and has the same payoff distribution as 
the stop-loss strategy. Both strategies give a payoff of 
8 with probability 10/16, a payoff of 16 with proba- 
bility 2/16, a payoff of 64 with probability 3/16 and 
a payoff of 256 with probability 1 / 16. However, the 
initial outlay of the alternative strategy is only 15-~, 
i.e. 0.938 x 16 = 15.01 for the stock plus 0.79 for the 
bond. The reduction in price of the alternative strat- 
egy is due to the fact that the payoffs in states 026 and 
to 9 are interchanged. The alternative strategy gives a 
higher payoff in a state with a lower state price and a 
lower payoff in a state with a higher price. The reduc- 
tion in price is equal to the product of the difference 
in payoffs multiplied by the difference in state prices: 
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16--  

So= 16, u=2,  d=0.5, r = l  
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32 u 

State State State 
probability price 

___~256 1/16 1/81 ~l 
- - ~  128 

64 1/16 2/81 ~z 
- -  64 

3 2 ~ - -  64 1/16 2/81 w3 

16 1/16 4/81 w4 

_ _ ~  64 1/16 2/81 w5 

16 1/16 4/81 ~6 
- -  16 

8 [ - - -  16 1/16 4/81 ~7 

-l__ 4 1/16 8/81 as 

_ _ ~  64 1/16 2/81 ~9 

16 1/16 4/81 ~lo 
- -  16 

8 [ ~  16 1/16 4/81 ~]J 

4 1/16 8/81 ~]2 

_ _ ~  16 1/16 4/81 wl3 

4 1/16 8/81 ~14 
- -  4 

2 ~  4 1/16 8/81 ~15 

Z _  1 1 / 1 6  1 6 / 8 1  w J 6  

8 - -  

Fig. 1. Expanded binomial tree. 

( 1 6 -  8) × (4/81 - 2 /81)  = 16/81. 
It is clear from the above example that an indi- 

vidual who maximizes expected utility of  terminal 
wealth with a strictly increasing utility function prefers 
the alternative strategy to the stop-loss strategy. Dy- 
bvig (1988a) proves that the following properties of  
portfolio strategies are equivalent: 
- T h e  portfolio strategy c is chosen by some 

agent who has strictly increasing yon Neuman- 
Morgenstern preferences over terminal wealth; 

- The final portfolio value is non-increasing in the 
terminal state-price, i 

Portfolio strategies that have the second property are 
called efficient, while other portfolio strategies will 
be called inefficient. I f  we compare the final portfolio 
values of  the alternative strategy with the state price, 
it is clear that this strategy is efficient. 

In Dybvig (1988b),  the simple example above is 
extended to a binomial model with more trading inter- 
vals and non-zero interest rates. Dybvig calculates that 
the inefficiency of  the stop-loss strategy might amount 
to 100 basispoints for an investment period of  1 year 
with a risk-free interest rate of  8%, a stock with an 
expected return of  16% and a volatility of  20% and 

I In fact, Dybvig's result is more general. The second property 
should be that the final portfolio value is non-increasing in the 
terminal state price density. The terminal state-price density can 
be obtained by dividing the state price by the state probability. 
The state price density is the likelihood ratio process or the risk 

adjustment process (see e.g. Dothan (1990) for an elaboration on 
the state price density). Since, in our case all terminal states have 
the same probability, state prices and state price densities only 
differ by a constant factor, 
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- -  ( 1 . 0 0 , 0 )  - -  

(1.00,o) - -  

- -  (0.00,8) - -  

Price of this strategy: 16 
&)= 16, u=2, d=0.5, r = l  
Portfolio's: (stocks, amount in bonds) 

Payoff State State 
price 

___~ 256 1/81 wl 
_ ~  (1.00,0) 

64 2/81 w2 
- -  ( 1 . 0 0 , 0 )  

~ - -  64 2/81 to3 
(1.00,0) 

16 4/81 w4 

64 2/81 to5 
_ ~  (1.oo, o) 

16 4/81 to6 
- -  ( 1 . 0 0 , 0 )  

y 8 4/81 to7 
L...._ (0.00,8) -q__ 

8 8/81 0,8 

_ _ ~  8 2/81 w9 
_ ~  (0.00,8) 

8 4/81 to to 
- -  (0.00,8) 

j 8 4/81 toll 
I _ . _  (0.00,8) 

l__ 8 8/81 wt2 

_ _ ~  8 4/81 tol3 
_ _ ~  (0.00,8) 

8 8/81 wl.~ 
- -  ( 0 . 0 0 ,  8 )  

8 8/81 wt5 
(0.00,8) 

8 16/81 0"16 

Fig. 2. Stop-loss strategy. 
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a binomial tree of 360 trading intervals. This means 
there exists an alternative portfolio strategy with the 
same final payoff distribution as the stop-loss strategy 
that requires an initial outlay that is 1% lower. 

In the binomial model, with upward and downward 
probability both equal to 1/2, the state price is a func- 
tion of the final stock price. If two final states have 
the same stock price they will also have the same state 
price. If the expected return on the stock is higher then 
the risk-free return, then this function is strictly de- 
creasing. Hence, a portfolio strategy is efficient if and 
only if the final portfolio value is a non-decreasing 
function of the final stock price. This implies that a 
portfolio that consists of only holding a put option is 
inefficient. However, a stock plus a put-option on that 
stock is an efficient strategy. A call option itself is also 
an efficient strategy and it is clear that lock-in strate- 

gies, where the stock is sold if its price rises to a given 
level, are inefficient. 

Nowadays, fund managers not only consider the risk 
and return of a portfolio strategy, but also compare 
the performance of their portfolio with a benchmark 
index (e.g. Roll, 1992). If we replace the stock with 
the index in the model above, this implies that effi- 
cient strategies will have a final portfolio value that is 
increasing in the value of the index. This can be in- 
terpreted as efficient strategies being those strategies 
with the lowest trading error given a final portfolio 
value distribution function. 
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- - ( 1 . 0 4 , - 2 . 3 7 ) - -  

--(0.07,7.70) 

Price of this strategy: 15.80 
&)= 16, u=2,  d=0.5, r=  I 
Portfolio's: (stocks, amount in bonds) 

--(l.OO, O) 

- -  ( 1.00, O) 

- -  (1.oo, o) 

Payoff State 
price 

_ _ ~ 2 5 6  1/81 

64 2/81 

__• 64 2/81 

16 4/81 

__• 64 2/81 
_ ~ ( 1 . 1 7 , - 1 0 . 6 7 )  

8 4/81 
--(0.78,1.78) 

S 8 4/81 
(0.00, 8) 

8 8/81 

__• J6 2/81 
_ ~ ( 0 . 1 7 , 5 . 3 3 )  

8 4/81 
--(0.11,7.11) 

S 8 4/81 
(0.00,8) 

2 _  8 8/81 

- - (0 .00,8)  

._• 8 4/81 
_~--(0.00,81 

8 8/81 

8 8/81 

8 16/81 

Fig. 3. Alternative stop-loss strategy. 

State 

0)1 

0)2 

0)3 

0)4 

0)5 

0)6 

0)7 

o)8 

0)9 

0)10 

0)II 

0)12 

0)13 

0)14 

0)15 

0)16 

3. T h e  i n f l u e n c e  o f  t r a n s a c t i o n  c o s t s  

I f  we compare Figs. 2 and 3, we see that although 
both strategies differ only in portfolio values in two 
states, the holdings in bonds and stocks differ sub- 
stantially between the two strategies. For the stop-loss 
strategy we only have to sell the stock and buy the 
bond in some cases. For the alternative strategy the 
portfolio must be adjusted in each period, whatever 
happens with the stock value. Hence, it is not unlikely 
that the alternative strategy generates higher transac- 
tion costs. In this section we model these transaction 
costs. To a large extent we follow the notation from 
Bensaid, Lesne, Pages and Scheinkman (1992).  

There are T + 1 dates, t = 0, 1 . . . . .  T. The state 
space /2 = {u, d} r is the set o f  paths in an expanded 
binomial tree, where u stands for an up-state move- 

ment and d for a down-state movement.  It is assumed 
that at each step the probability of  an up-state is 1/2. 
A path is denoted by oJ = (o~l . . . . .  oJt . . . . .  o # )  with 
wi C {u, d}. w t = (~1 . . . . .  o~t) will denote a path up 
to time t and 5t't is the o--algebra of  information up to 
time t. There is a risky asset called stock and a riskless 
asset called bond. The one-period return on the risk- 
less bond is constant over time and states. One plus 
the riskless return will be denoted by r. The value of  
the stock at time t and state o~ is denoted by S t ( w ) ,  
which is an adapted process. A dynamic portfolio strat- 
egy is defined by two ~-adapted  processes d and B. 
A t is the number of  stocks that is held between date 
t and t + 1 and Bt is the amount of  dollars invested 
in the riskless bond during the same period. Transac- 
tion costs are due on trades in stocks and as in Boyle 
and Vorst (1992) they are proportional to the amount 
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traded. Let k be the proportion of transaction costs. 
A dynamic portfolio strategy is called self-financing 
with transaction costs k (or shortly self-financing) if 
the following equation holds 

no other dynamic self-financing portfolio strategy 
(el', B t) such that: 

(i) G(el' ,  B ' )  stochastically dominates G(A,  B); 
(ii) el~oSo + B~o <. AoSo + Bo. 

(At-t (to) -- At( to))S t ( to)  q- rB t - i  (to) - Bt( to)  

= k l ~ , - ~  (~o) - A , ( t o ) l S , ( t o )  

Vt ~< T -  1, Vto E s2. (3.1) 

The final payoff V of a portfolio strategy is given by 
V(to) = Ar- tSr ( to)  + r B r - l ( t o ) ,  which is a real- 
valued random variable on £2. Let 

G(A,  B) ( x )  = Pr{to E $2 1AT-1ST(w) + r B r - i  (oo) 

<~ x} (3.2) 

be the probability distribution function of this random 
variable. We call G ( A, B) the payoff distribution func- 
tion. Note that A0 and B0 do not depend on to since 
(A, B) is adapted. AoS0 + B0 is called the initial cost 
of the strategy. 

Definition 1. Let the transaction costs be k. A dy- 
namic self-financing portfolio strategy (A, B) is effi- 
cient if there is no other dynamic self-financing port- 
folio strategy (d ' ,  B ~) such that: 
(i) G ( A ' , B ' ) = G ( A , B ) ;  

(ii) A~oSo + B~ < AoSo + Bo. 

In this terminology the stop-loss strategy of Sec- 
tion 2 is ineffÉcient if there are no transaction costs, 
since the alternative strategy has the same payoff dis- 
tribution function and has lower initial costs. 

With transaction costs one can define a stronger 
form of efficiency similar to the concepts in Ediris- 
inghe, Naik and Uppal (1993) and Bensaid, Lesne, 
Pages and Scheinkman (1992) for replicating portfo- 
lio strategies. According to Ingersoll (1987) a payoff 
distribution function G(A ~, B')  stochastically domi- 
nates another payoff distribution function G(A, B) if 
G( A', B ' )  ( x )  <~ G(A ,  B)  ( x )  for all x E ~ with strict 
inequality for at least one x E R. 

Definition 2. Let the transaction costs be k. A 
dynamic self-financing portfolio strategy ( A , B )  is 
strongly efficient if it is efficient and there exists 

Bensaid, Lesne, Pages and Scheinkman (1992) re- 
lax the self-financing condition (3.1) to 

(At_ 1 (to) -- A,(to))St(w) + rB,_l  (to) - B,(oJ) 

> / k l e l , - ~ ( t o )  - e l , ( t o ) l S t ( t o )  

V t ~ < T - I ,  VtoEO.  (3.3) 

This means that after each trade some non-negative 
payoff remains which can be used for consumption if 
positive. However, when these positive payoffs are in- 
vested in risk-less bonds until maturity, the final pay- 
off distribution stochastically dominates the final pay- 
off distribution where the positive payoffs are imme- 
diately consumed. Hence, if one is checking for strong 
efficiency and one finds a dynamic portfolio strategy 
(A' ,B ' )  that satisfies (3.3) and conditions (i) and 
(ii) of Definition 2, then there also exists a dynamic 
self-financing portfolio strategy that satisfies (i) and 
(ii). 

If there are no transaction costs then efficiency 
implies strong efficiency. Let (A,B) be an effi- 
cient strategy and assume there exists a strategy 
(A' ,B ' )  that satisfies (i) and (ii) of Definition 2. 
Both distribution functions G( A, B)  and G( A I, B ' )  
are stepfunctions, since there are only finitely many 
possible portfolio values. In Appendix A, it is shown 
that there exists a dynamic self-financing strategy 
( A " , B " )  that has non-negative payoffs in all states 
and a positive payoff in at least one state such that 
G( A , B )  = G( A ~ -- A" ,B '  -- B " ) .  Since there are no 
transaction costs ( A ~ -- A "  B' - B " )  is self-financing. 
By the no-arbitrage assumption A6tS0 + B6 I > 0 and 
hence (a  ~ -- A",B t -- B I') is more efficient than 
(A, B) in the sense of Definition 1, which gives the 
required contradiction. Essential in this argument is 
that the difference between two self financing strate- 
gies is again self-financing. This doesn't hold if there 
are transaction costs. 

To check whether a dynamic self-financing port- 
folio strategy with non-zero transaction costs is effi- 
cient there is no easy criterion such as the one de- 
scribed in the previous paragraph for the no transac- 
tion costs case. Let ( A, B) be a dynamic self-financing 
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(0.94,0.86)-- 

--(1.06,-7.09) - ~  

(1.00,0) 

Payoff 
_ _ ~ 2 5 6  

64 

(1.17,-10.67) - - ~  64 
8 

Price of this strategy: 15.88 
So= 16, u=2, d=0.5, r = l ,  k=0.0! 
Portfolio's: (stocks, amount in bonds) 

- -  (0.93, 1.23) - -  

- -  (0.08,7.70) - -  

- -  (0.99,0.11) 

__• 64 
q - -  (I.00,0) 

16 

8 
--  (0.00,8) 

L .__  8 

_ _ ~  16 
_ ~ - -  (0.17,5.33) 

8 

8 
- -  (0.00, 8) 

L _  8 

(0.00,8) 

- -  (0.11,7.11) 

- -  (0.00,8) 

(0.00, 8) 

8 

_ _ ~  8 

8 

Fig. 4. Strongly efficient stop-loss strategy with transaction costs. 

State 
o91 

092 

o93 

o~ 4 

(05 

o96 

o)7 

o98 

o99 

o91o 

o911 

o.;12 

(Ol3 

o)14 

o915 

o916 

portfolio-strategy. One might try to find the dynamic 
self-financing portfolio strategy (A', B') among those 
strategies for which the final payoff distribution dom- 
inates G(A, B) and that has the lowest initial costs. 
This problem can be formulated as a mixed-integer 
programming problem, as is shown in Appendix B, 
and its solution will be a strongly efficient dynamic 
portfolio strategy. However, the complexity of this 
problem allows one only to find solutions for small 
values of T. In Fig. 4 the optimal strategy in the 4 pe- 
riod case is given where transaction costs are I% and 
the strategy must dominate the final payoff distribu- 
tion of a stop-loss strategy with no transaction costs. 
Hence, the final payoff should be at least 256 with a 
probability of 1/16, 64 with a probability of 4/16, 16 
with a probability of 6/16, and always exceed 8. 

Fig. 5 gives the replicating portfolio for the alterna- 

tive strategy of  Fig. 3 with 1% transaction costs. Figs. 
4 and 5 have interchanged payoffs in states 0.) 4 and o)6. 
The strategy given in Fig. 5 has the cheapest initial 
costs of  all strategies that generate the payoff random 
variable of  Fig. 5. This will be seen more clearly in 
the next section, where it is shown that there exists a 
unique "cheapest" strategy that generates this payoff 
random variable. However, we see that the initial cost 
of  this strategy is higher. In the no transaction costs 
case both payoff schemes would have the same price, 
since we interchanged only the payoffs between states 
with the same state-price density. Hence, with trans- 
action costs we might not only have to change payoffs 
between states with different state-price densities, but 
also between states with the same state-price densi- 
ties. This illustrates the complexity of  the optimization 
problem with transaction costs. 
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(0.94,0.85) - -  

Plice of this strategy: 15.89 
So= 16, u=2,  d=0.5, r= 1, k=0.01 
Portfolio's: (stocks, amount in bonds) 

- -  ( 1 . 0 4 , - 2 . 2 1 )  - -  

Payoff 
___~ 256 .~-- ( I.O0, o) 64 

- -  (1.00,0) 
64 

- -  (I.OO,0) - - ~  
t _ _  16 

___~ 64 
(1.17,-10.67) 

8 
-- (0.78, 1.82) 

(0.00,8) _ _ ~  8 

8 

,6 
_ _ ~  (0.17, 5.33) 

8 
- -  (0.11,7.12) 

(0.00,8) _ _ ~  8 

8 

~ - -  (0.00,8) 
8 

- -  (0.00,8) 
8 

(0.00,8) 
[ _ _  8 

- -  (0.07, 7.70) 

Fig. 5. Alternative stop-loss strategy with transaction costs. 

State 
0) 1 

0)2 

0)3 

0)4 

0)5 

0) 6 

0)7 

0)8 

0)9 

0) I(I 

0)11 

0)12 

0)13 

o914 

0)15 

0)16 

4. D y b v i g ' s  e f f ic ient  s t r a t e g i e s  a n d  t r a n s a c t i o n  

costs 

In this section, we compare the efficient strategies 
as described in Section 2 with the inefficient stop- 
loss strategies in the presence of  transaction costs. Let 
(A, B) represent a dynamic portfolio strategy that is 
self-financing if there are no transaction costs. To eval- 
uate how this strategy is affected by transaction costs, 
we use the following result, based on the proof of  The- 
orem 4 of  Boyle and Vorst (1992),  for small values 
of  k. 

Theorem 3. If the transaction costs k on stocks sat- 
isfy the following condition 

(1 + k)d < (1 - k)u, (4.1) 

then there exists a unique dynamic portfolio strategy 
(A k, B k) that is self-financing for transaction costs k 
such that 

ar(,o)Sr(~o) + Br(a,) = A~(~o)Sr(~o) + B~(~o) 

Va, E /2. (4.2) 

Furthermore, ( ,:1 k, B k ) can be explicitly found by solv- 
ing equations (3.1) backwards through the expanded 
binomial tree. 

Proof. In each node of  the tree at time t, there are 
two equations (3.1), one for the upward-move and 
one for the downward move. The unknowns are 
At(w ) and Bt(to). It follows from the proof of  The- 
orem 4 of  Boyle and Vorst (1992) that these two 
equations with two unknowns have a unique solution 
if condition (4.1) is satisfied. These unique solu- 
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Payoff State 
_ _ ~ 2 5 6  wl _~--(l.oo, o) 

64 ~2 
--(1.oo, o) 

- - ( 1 . 0 0 , 0 ) - ~  64 ~3 

16 ~4 

(1 .00,0 .09)--  

--(1.00,0.07)-- 

Plice of this strategy: 16.07 
So= 16, u = 2 ,  d=0.5,  r = l ,  k=0.01 
Portfolio's: (stocks, amount in bonds) 

--(0.00,8) 

- ( 1 . 0 0 , 0 . 1 1 )  

y 64 w5 
(I.00,0) 

16 ~6 

( 0 . 0 0 , 8 ) - - ~  8 ~7 

8 o)8 

--(0.00,8) 

__• 8 ~9 
__~(0.00,8) 

8 wH) 

(0.00,8)-~ 8 wjl 
8 ~12 

--(0.00,8) 

_• 8 tol3 
_ ~  (0.00,8) 

8 °)14 

[ - -  8 wl5 
(0.00,8) -5__ 8 0)16 

Fig. 6. Stop-loss strategy with transaction costs. 

tions can be calculated backwards to find the strategy 
( Ak, Bk ) . [] 

This theorem allows us to calculate the price of the 
initial portfolio. This is necessary to be able to perform 
the strategy under transaction costs in order to obtain 
the final portfolio ( A t ,  B r ) .  Fig. 6 gives the strategy 
( A °° l  , B °'°j ) for the stop-loss strategy, while in Fig. 5 
the strategy (A °'°l, B °'°1) is given for the efficient 
strategy from Fig. 3. (Hence the transaction costs are 
1%.) We see that the efficient strategy from Fig. 3 has 
higher total transaction costs ( 15.89 - 15.80 = 0.09) 
than the stop-loss strategy (16.06 - 16.00 = 0.06). 

However, the efficient strategy still has lower ini- 
tial costs and is thus more efficient than the stop-loss 
strategy in this simple example. To investigate the in- 
fluence of transaction costs further, we have to ex- 

pand the model to more trading intervals, where the 
changes in stock prices are smaller. Since in each step 
the number of nodes is doubled in an expanded tree, 
one can only use a modest number of trading inter- 
vals. In Table 1 we give the initial costs and portfolio 
compositions both for the stop-loss strategy and the 
alternative efficient strategy for 18 trading intervals 
and for several levels of transaction costs. In this ex- 
ample, the values of the volatility, interest rates, time 
to maturity and expected return on the stock are equal 
to the values used in Dybvig (1988b). The stop-loss 
value is 14.4, which is 90% of the original portfolio 
value. Hence, if the stock price falls below the dis- 
counted value of 14.4, the stock is sold for bonds. We 
see from Table 1 that not only do the total transac- 
tion costs differ but also that the so-called efficient 
dynamic portfolio strategy now requires higher initial 
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Table I 
Prices of replicating strategies using stocks 

259 

Stop-loss at 14.4 Lock-in at 18.4 

k Normal Efficient Normal Efficient 

{ { , 1.0000 s 0.8849 s 16.00 ( 10:0000~ b 15.89 0% 16.00 0.0000 b 15.97 1.8119 b 

0.5% 16.02 f 0.9906 s 16.10 f 0.8726 s 16.06 J" 1.0188 s 16.10 
L 0.1732 b I, 2.1339 b ( -0.2420 b 

I% 16'06 { 0"9817 s0.3420 b 16"19 { 0"8622 s2.3965 b 16.12 { -0.45411"0362 Sb 16.34 

{ {0.8413 s { 1.0737 s 0.9656 s 16.53 16.28 16.92 
2% 16.11 0.6591 b 2.8902 b -0.8994 b 

0.5796 s 
6.6185 b 

0.5534 s 
7.2484 b 

0.5152 s 
8.0920 b 

0.3355 s 
11.5482 b 

.';o = 16. ~r = 20%, # = 16%, R = 8%, T= 1, 18 trading intervals. 

total costs than the simple stop-loss strategy, even if 
the transaction costs on stocks are as low as 0.5%. We 
conjecture that the effect is more pronounced if we 
extend to even more trading intervals. Hence, we can 
conclude that the so-called efficient dynamic portfolio 
strategy is less efficient than the stop-loss strategy in 
the presence of  transaction costs. 

The initial costs of  a lock-in strategy are also given 
in Table 1. If  an investor follows a lock-in strategy, 
he intially buys a stock and holds the stock until it 
reaches a certain pre-specified level (in our case the 
discounted value of  18.4). At that moment the stock 
is sold and the revenues are invested in riskless bonds. 
Hence, a lock-in strategy is similar to a stop-loss strat- 
egy, differing only in the pre-specified level. For the 
lock-in strategy the pre-specified level lies above the 
intial stock price, while for the stop-loss strategy, it 
lies below the initial stock-price. Without transaction 
costs the lock-in strategy is also inefficient and we 
see from Table 1 that there exists an efficient strategy 
that requires only an initial investment of  15.89. This 
strategy was also constructed using Dybvig 's  method 
described in Section 2. In the presence of  transaction 
costs we see that the efficient strategy becomes costly. 
Therefore it requires substantially higher initial invest- 
ments than the lock-in strategy and hence is no longer 
efficient. Thus, the general conclusion is the same for 
this strategy as for the stop-loss strategy. 

5. Options and cost reduction in portfolio 
strategies 

In the absence of  transaction costs the possibility to 
trade in options does not add extra opportunities in the 
binomial tree model. If  options are priced arbitrage- 
free then all portfolio strategies that can be executed 
with bonds, shares of  the stock and options on the 
stock, can also be executed with only bonds and shares, 
with the same costs. Hence, options are redundant as- 
sets. In this section we investigate whether options add 
extra possibilities or reduce costs in the case where 
transaction costs are present. 

We assume that options are priced at their Cox- 
Ross-Rubinstein (CRR)  binomial tree value, even in 
the case that there are transaction costs for trading in 
stocks. Therefore, we do not use the pricing method- 
ology of  Boyle and Vorst (1992),  which prices long 
and short option positions using a replicating strat- 
egy. We assume that there is an equilibrium between 
demand and supply in the option markets such that 
the price of  options is the no transaction costs repli- 
cating price. 2 This implies that we do not introduce 
arbitrage opportunities, since the costs of  replicating 
a long option with transaction costs are higher than 
the market price of  this option. For a short option, the 

2 Alternatively stated: all traders in the market use a CRR model 
to establish a fair price for options. 
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Table 2 
Prices of replicating strategies using options 

Stop-loss at 14.4 Lock-in at 18.4 

1 Normal Efficient Normal Efficient 

0% 

0.5% 

1% 

2% 

f 1.0064 c / 0.8906 c I -1.1035 p 16.00 10.1110 b 15.97 16.00 10.7594 b 21.9204 b 

,60,{,00 9c ,60 {0  90  ,60 {,,048  
10.1309 b 10.8139 b 21.9501 b 

16.01 { 1.0014 c 16.06 { 0.8874 c 16.05 {-1.1061 p 
10.1504 b 10.8629 b 21.9796 b 

f 

15.89 ~ -0.6369 p 
l 19.3241 b 

g 

15.98 ~ -0.6135 p 
L 19.2677 b 

g .  

16.06 ~ -0.5847 p 
I 19.1972 b 

{ { { { --0.5'34 p 16.02 0.9969 c 0.8843 c --1.1086 p 16.25 
10.1882 b 16.12 10.9478 b 16.09 22.0386 b 18.9999 b 

c: call option with exercise price 11 for stop-loss strategy. 
p: put option with exercise price 23 for lock-in strategy. 
So= 16, Cr =20%, # =  16%, R=8%, T= 1, 18 trading intervals. 

costs are lower. However, we assume that there are 
proportional transaction costs associated with trades 
in options. Let l be the proportionality factor, which 
can be different from k, the proportional transaction 
costs for trades in stocks. Let C t ( w )  be the price of  a 
specific option on the stock with expiration date T. A 
dynamic self-financing trading strategy in this option 
consists of  two ,Y-adapted processes F and B such 
that the following equation holds 

( F , - i  ( w )  -- F t ( w ) ) C t ( w )  + r B , _ l  ( t o )  - B t ( t o )  

= tlF,-  ( o J )  - 

Vt ~< T -  1, Vw C s'2. (5.1) 

Ft (~o) is the number of  options in the portfolio during 
the period from t to t + 1, while Bt(o9  ) is the amount 
invested in riskless bonds during the same period. One 
can define efficient and strongly efficient strategies for 
options similar to the concepts for stocks as defined 
in Section 2. However, to find optimal strategies one 
would run into the same complexity problems as in 
the case of  stocks. Therefore, our goal in this section 
is more modest. We want to investigate whether op- 
tions enable us to replicate the same payoff  schemes 
with lower initial costs. First, we need to investigate 
whether trading in the option allows us to attain ev- 
ery arbitrary payoff  function V ( o o )  as is the case for 

stocks if condition (4.1) is met. Similar to the proof 
of  the theorem of  Section 4, one can show that if 

(1 + l ) C t + l ( ~ o )  < ( 1 -  l ) C t + l ( W )  (5.2) 

for all t <~ T - 1 and all states ~o, 6J that are identical 
except for the period t + 1, where 6) is the state in 
which the stock price path moves downward during 
this period and o~ the the state in which the path moves 
upward 3, then all payoff  functions can be replicated. 

For most options, condition (5.2) will not be sat- 
isfied for all t ~< T - 1 and all states. For example, if 
the option is far out-of-the-money at some date and at 
some specific state (for a call option in one of  its lower 
states) it will have a zero value not only at that state, 
but also at the next period in both possible states. In 
that case, condition (5.2) is not fulfilled. Hence, with 
most options we cannot replicate all payoff  schemes. 
But condition (5.2) is only a sufficient condition to 
replicate all payoff schemes. It is therefore certainly 
possible that a specific payoff  scheme can be repli- 
cated by a specific option. For example, in the payoff  
scheme of  the stop-loss strategy in Fig. 2 all payoffs 
in the lower part of  the expanded tree are equal to 8. A 
call option with exercise price 16 will have value zero 

3 Using the notation introduced in Section 3 we can write 
OA = (wl . . . . .  wt ,u,  mt+2 . . . . .  o~r) and ~o = (wl . . . . .  wt ,d ,  
O A t + 2 ,  • • • , O A T ) .  
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at states w~3, o914, o)15, o916 at t = 2, 3 and 4. However, 
with this option one can still replicate the stop-loss 
scheme since in these states the final payments are the 
same and equations (5.1) can be solved by not chang- 
ing the portfolio at these instants. Therefore, we can 
always find a specific option that enables us to repli- 
cate a specific payoff scheme. 

In Table 2 we give the initial costs of  the dynamic 
self-financing portfolio strategies using a call option 
with an exercise price of  1 1 to replicate the stop-loss 
strategy and the alternative efficient strategy. Also, the 
initial costs of  the lock-in strategy and its efficient al- 
ternative are given when a put option with an exer- 
cise price of  23 is used to replicate the final payoffs. 
Table 2 demonstrates that the efficient strategies once 
again are no longer efficient even if transaction costs 
are only 0.5%. More importantly, if we compare Ta- 
bles I and 2 we see that for all strategies the use of  
options dramatically decreases the initial costs if the 
transaction costs on stocks and options are the same, 
i.e. if k = I. Often, the proportional transaction costs 
on stocks are lower than the proportional transaction 
costs on options and one would be inclined to use 
stocks instead of  options to replicate a payoff scheme. 
If we compare row l --- 2% from Table 2 with row 
k = I% from Table 1, we see that the row in Table 1 
has higher initial costs for all four strategies. Thus, 
even if transaction costs on single trades in options 
are twice as high as the transaction costs on single 
trades in stocks, it is still cheaper to use options for 
the replicating strategies. Hence, options really allow 
investors to reduce portfolio management costs. 

We have only used dynamic self-financing portfo- 
lio strategies that use just one option to lower the ini- 
tial costs and at the same time maintain the payoff 
distribution. In the real world however, one can use 
strategies involving not just one stock or one option, 
but one can replicate with stocks and several put and 
call options which differ in exercise price and maturity 
dates. Hence, the optimal strategy will not only have 
lower costs than the strategies based on stocks, but also 
than the strategies based on single options. Therefore, 
if there are transaction costs, options will enable in- 
vestors to implement dynamic self-financing portfolio 
strategies, that reduce initial costs while maintaining 
the payoff' distribution. For large transaction costs this 
would not be possible if only stocks were available to 
set up the strategy. 
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6. Conclusion 
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In this paper we investigated the effect of  transaction 
costs on dynamic portfolio strategies. We showed that 
even with a modest level of  transaction costs of  0.5%, 
simple trading strategies such as stop-loss and lock- 
in have a better return distribution than more complex 
strategies that would be efficient if there were no trans- 
action costs. Furthermore, we showed that the use of  
options considerably reduces the initial costs of  both 
simple and efficient strategies. This conclusion holds 
even if the transaction costs on options are twice as 
high as the transaction costs on stocks. Due to the fact 
that all calculations require the use of  an expanded bi- 
nomial tree we could only use the binomial model with 
18 trading intervals. In further research one should fo- 
cus on the same results for binomial models with more 
trading intervals or on similar results for the continu- 
ous time model, as was done by Leland (1985),  for 
the replication of  options. This will enable us to un- 
derstand the significance of  options for complicated 
dynamic portfolio strategies better. Especially, a clear 
view on the cost efficiency of  the use of  options in an 
environment with transaction costs is important. 

Appendix A 

The text of  this appendix illustrates that if a dy- 
namic self-financing strategy ( A t, B ' )  stochastically 
dominates another self-financing strategy (A, B) in 
the no-transaction costs case, then there exists a third 
dynamic self-financing strategy (A", B")  with non- 
negative payoffs in all states and a positive payoff  in at 
least one state, such that G( A, B) = G( A' - A", B' - 

B"). 
Let x0 = inf{y I G ( A , B ) ( y )  > G ( A ' , B ' ) ( y ) }  

and define Dif = 2" (G(A, B) (xo) - G(A' ,  B ' )  (x0)) ,  
with n being the number of  trading intervals in the 
binomial tree. Because we assumed that all states 
have the same probability, each of  the 2" final states 
has probability 2-" .  Therefore, Dif  is the number 
of  states that have payoff x0. Let x > xo be the 
next place where there is a jump in the step-function 
G(A' ,  B ~) and let 09 be one of  the states that causes 
this jump. Hence At(09)S(09) + B'(o~) = x. Now 
reduce the payoff function of  (A~,B ' )  in just this 
one state with x - xo to xo. Let the unique new 
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strategy be denoted by (zi,/~).  I f  Di f  > 1, then 
x0 = inf{y I G ( A , B ) ( y )  > G( A ' , B ' ) ( y )  }, but 
2 " ( G ( A , B ) ( x o )  - G ( / ~ , B ) ( x 0 ) )  = D i f -  1 and 
we can again apply the above procedure and up- 
date (,~,/~) once more until 2 " ( G ( A , B ) ( x o )  - 
G( zi,/~) (x0))  = 0. Then we find the next x~ = i nf{y ] 

G ( A , B ) ( y )  > G ( z ] , / ) ) ( y ) } .  It is easy to check 
that x~) > x0 and the x0's can only be final payoffs 
of  G(A, B) of  which there are finitely many. Hence 
after finitely many steps, we have reduced the pay- 
off  of  (A' ,  B ' )  in several states such that G ( A , B )  = 
G(,~, /~) .  Now let ( A " , B " )  = (A' - A ,B '  - B)  
which has all positive payoffs. [] 

Appendix B 
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t ! ! 
(Atj - A,+1.2j)St+l 2i + rBt~./ - Bt+z,2j 

>1 klA',j - a',+~,2fi,+~,2j 

( t = 0  . . . . .  T - 2 ;  j =  1 . . . . .  2t) ,  (B.2) 

m 

E Y i j  = 1 ( j  = 1 . . . . .  2 r ) ,  (B.3) 
i=1 

2 T 

Z Y i j  >~ ri ( i =  1 . . . . .  rn), (B.4) 
j=t 

m 

AtT_I,jST,2j-I + rB~_l,, i ~ E giYi,2j-I 
i=1 

( j  = 1 . . . . .  2 T - I ) ,  (B.5) 

In this appendix we show that the problem of  finding 
the dynamic self-financing trading strategy ( A ~, B t ) in 
a world with transaction costs that has the lowest initial 
costs among the stategies that dominate G(A,  B) can 
be formulated as a mixed-integer programming prob- 
lem. Let gi ( i  = 1 . . . . .  m) be the different possible 
payoffs of  G(A, B) in the final states and let r i be the 
number of  final states with payoffgi .  Let t = 0 . . . . .  T 
denote the steps in the tree, then we have j = 1 . . . . .  2 t 
states of  the world in step t. In the final step t = T, 
we have 2 r final states of  the world, hence ~i'=l ri = 

2 r. I f  we number the states in step t from top to bot- 
tom (as we did in Fig. 1 for the final states), then we 
can reach from state (t ,  j )  the state ( t  + 1 ,2 j  - 1) 
if we go one step up, and state ( t  + 1 ,2 j )  if we go 
one step down. Finally, the stock price is given by Stj 
( t  = 0 . . . . .  T ; j  = 1 . . . . .  2 t) in every state. 

Decision variables are the real v a r i a b l e s  Art.j, Bt~ (t  = 
0 . . . . .  T ; j  = 1 . . . . .  2 t) and the zero-one variables 
yij (i = 1 . . . . .  m; j  = 1 . . . . .  2T). The optimisation 
problem can be formulated as follows 

min d~j S01 + B~j 

s u b j e c t  to  

- A' ,+, .2. i_,)S,+, ,2.I_,  + rB; j  - B ;+ , . 2 j_ ,  

/> klA',i- 
( t = 0  . . . . .  T - 2 ; j = I  . . . . .  2t) ,  (B.1) 

f/! 

AIr-,,jST,2j + rB~'-l,j ) ~ giYi,zj 
i=1 

( j  = 1 . . . . .  2T-~),  (B.6) 

Yi,jE {0,1} ( i = 1  . . . . .  m; j = l  . . . . .  2T). (B.7) 

Conditions (B.1) and (B.2) are the self-financing 
conditions in state ( t , j )  for an up- and a down-move 
respectively (compare with (3 .3)) .  (B.3) assigns 
each of  the final states j to one of  the payoffs gi. 
(B.4) guarantees that there are at least ri states with 
this payoff. Finally, (B.5) and (B.6) require that 
the final portfolio's A~._I,j,B~_I,j) will match the 
required payoff  in the last period T after an up- and a 
down-move respectively. 
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