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Abstract

We derive general pricing formulas for Rate of Return Guarantees in Regular Premium Unit Linked Insurance under stochastic
interest rates. Our main contribution focusses on the effect of stochastic interest rates. First, we show the effect of stochastic
interest rates can be interpreted as, what is known in the financial community as, a convexity correction. Second we link the
LIBOR Market Model to our model of the economy. This allows us to find guarantee prices consistent with observed cap and
swaption prices. Numerical results show the effect of this more sophisticated interest rate modelling is considerable. We also
consider ways of approximating Asian option values through tight bounds. We show that we can obtain accurate bounds in spite
of the high volatility induced by the long maturities of the guarantees.
© 2004 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Unit Linked (UL) insurance is a form of insurance where the policyholder bears the investment risk. The premiums
are invested in several investment funds which usually invest a large percentage of their money in stocks. Sometimes
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the policyholder is even allowed to invest directly in stocks. Rate of return guarantees in a UL context can therefore
be considered as some kind of stock option. Many insurance companies have given guarantees on UL contracts in
the beginning of the nineties, not realizing the risk attached to this product characteristic. With the current bearish
stock markets and Fair Value calculations at the center of attention it should be realized that these options are in or
at least at the money. The results in this paper can help quantify the risk attached to the guarantees and provide in
the need for market values of insurance liabilities.

A single premium UL contract with maturity guarantee can be viewed as a stock along with a put option on that
stock(Brennan and Schwartz, 1976). Bacinello and Ortu (1993)andNielsen and Sandmann (1995, 1996a,b, 2002b)
analyze the periodic premium contract with maturity guarantee from a fair premium principle perspective.

Our contribution to the existing literature is threefold. First we take a different approach to the insurance contract
as we let the cost and mortality deductions be exogenously given. This is the case in practice and differs from the
approach byNielsen and Sandmann (1995, 1996a, 2002b)as they derive the existence of Fair Premium principles
for the guarantee within the contract. The payment of multiple premiums makes the option payoff dependent on
the stock price at different time points, which leads to an analogy with Asian options. We show that for a generic
structure of the cost and mortality deductions the structure of the option payoff remains Asian like. In our approach
we take full account of all insurance aspects of the contract. We will apply option pricing techniques to the context
of UL products using Change of Numeraire methods. We derive a general pricing formula for the guarantee. It turns
out the guarantee can be expressed as a put option on a stochastically weighted average of the stock price at maturity.

Second, we make the analogy of the guarantee with Asian options explicit by proving equality between prices
of both contracts in a constant interest rate environment. This setup allows for stochastic (stationary) volatility
however the analogy brakes down when stochastic interest rates are introduced. We discuss the cause of the
differences that arise when interest rates become stochastic. This already gives some intuition on how these
contracts can best be hedged.

Third and most importantly, we argue for a more general setup of the randomness of the term structure. This is
done in the following steps. Choosing a convexity correction approach we specify a quite general lognormal model
of the economy. In this model we derive results for theLevy (1992)approximation to the price of the guarantee,
next to an upper and lower bound to this price extending work byRogers and Shi (1995), Nielsen and Sandmann
(2002a), Thompson (1998). It turns out the effect of stochastic interest rates can be interpreted as a convexity
correction. Then we show how our setup can be linked with the popular LIBOR Market Model (LMM). For long
term options, typically encountered in life insurance, the convexity correction effect of stochastic interest has a high
impact on the price of the option. Realizing this, we conjecture that it is of interest to use more sophisticated term
structure models. We provide in the need to have a stock option pricing model which has its term structure part in
accordance with the dominant term structure model in the option pricing literature, the LMM. Our results provide
the link between the standard Black–Scholes stock model and the Black pricing model for Caps (and Swaptions).
We provide approximate expressions for the forward bond volatility in a LMM. Building on arguments byBrace et
al. (2001)we show that forward bond prices are approximately lognormal in the LMM. It thus seems natural to use
the LMM not only for interest rate derivative purposes but also in pricing stock options. Numerical pricing results
using real data suggest that more general term structure models can produce non negligible price differences when
compared with single (and two) factor Hull–White models.

Finally we show, using an empirical example, the impact of our more general setup for the price of the guarantee.
Furthermore, we show that we can obtain a tight lower bound using the method byRogers and Shi (1995), recently
generalized byNielsen and Sandmann (2002a). A tight upper bound is obtained by generalizing the method by
Thompson (1998)to the case of rate of return guarantees. This is of independent interest since these methods have
not yet been tested for the maturities encountered in life insurance. It turns out the generalized Thompson upper
bound can be made extremely tight and hence can be used for pricing.

Convexity correction or convexity adjustment is frequently used in the financial industry to value payments
made “at the wrong time point” (e.g. an interest rate known at timeT is paid at a later timeS) or in a different
currency (e.g. a foreign interest rate paid in domestic currency). It is shown in a review article byPelsser (2003)
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that convexity correction has its basis in a change of measure associated with a change of numeraire. The advantage
of convexity correction is a product based pricing approach. It results in an analytical pricing formula and the
determinants of the price are apparent from the respective formulas instead of hidden in the equations/simulations
of some general pricing framework.

To arrive at our results we extensively use the Change of Numeraire techniques developed byGeman et al.
(1995). They extend the original ideas ofHarrison and Kreps (1979)andHarrison and Pliska (1981). Specifically,
they show that for any self-financing portfolio of assets with strict positive value (called a numeraire), there exists
an equivalent measure under which asset prices normalized by this portfolio are martingales. Hence this portfolio
can be used as numeraire. They also show how to derive the Radon-Nikodym derivative associated with any change
of numeraire. An introduction to changes of numeraire and convexity correction is given inAppendix A.

The remainder of the paper is organized as follows. First, inSection 2we describe the financial and insurance
aspects of the Regular Premium Unit Linked contract and derive our general pricing formula. InSection 3we make
the analogy of the UL guarantee with an Asian option explicit and discuss some hedging issues.Section 4derives the
Levy approximation and shows the interpretation of the effect of stochastic interest rates as a convexity correction.
To obtain prices consistent with the popular LMM we derive expressions for the forward bond volatility in terms
of LIBOR rate volatilities inSection 5. In Section 6, we discuss and generalize pricing bounds to the case of rate
of return guarantees. Results in a parameterized framework are given inSection 7. Numerical results showing the
effect of stochastic interest rates and implications of more general interest rate dynamics are given inSection 8.
Section 9concludes.

2. Contract definition and general pricing formula

The Unit Linked concept refers to the way the policy holders’ premiums are invested. The net premiums are
invested based on the choice of the policyholder. Common practice is to let the policyholder choose between
selected investment funds. Some insurers even give the possibility to invest in individual stocks. In this construction
the policyholder bears the investment risk. This means he also has to account for the losses. This type of insurance
has high potential profitability because profit is based on equity investments instead of fixed income. However, policy
holders are in for a disappointment in times of economic downfall. This is where the Rate of Return Guarantee
comes in.

Typical for a Unit Linked contract is that the reserve is not administered in money but in units of several investment
funds or stocks. The reserve in money terms is the number of units times the price of each unit. This reserve is
termed thefundvalue. A gross premium is paid at regular intervals until expiry of the insurance contract. After cost
deduction for investment and administration costs and mortality risk premiums, an investment premium results. For
each investment premium, units of each funds chosen by the policy holder are purchased at the prevailing price at
the payment date. In the presence of a guarantee, the fundvalue at expiry is compared to a guaranteed amount. This
amount is likely to be determined by factors like the height of the premium, guaranteed return and cost and mortality
deductions, but could as well be exogenous. In this paper we assume that the policyholder invests only in a single
investment fund or stock. In this way we can restrict ourselves to a single stock price process. This assumption is
not at all restrictive. Our results can be generalized in a straightforward manner to include investments in multiple
investment funds or stocks.1 After this introduction to UL insurance, let us fix some notation.

Let St be the price of a unit at timet. This should be thought of as a stock price or stock index. Let the start
of the contract be att0 = 0 and letti, i = 0, . . . , n− 1 be the time points at which a premiumPi is credited to

1 From our later results it can be seen that investing in multiple assets means the Guarantee turns into an Asian option on a basket of assets. The
techniques used to value basket options are similar to those used in Asian option pricing, hence the problem can be solved analogously. Since
the weights of each asset in the basket sum to one, it is interesting to note that considering multiple assets only changes the result inCorollary
4. Theorem 2remains unchanged. Pricing bounds can be obtained by generalization of the results inSection 6.
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the reserve.2 When writing premium, we meaninvestmentpremium, so costs and mortality charge are taken into
account. Since these cost deductions may depend on the fundvalue at each timeti (the investment premiumPi may
depend on the evolution ofSprior to ti), this meansPi is in general path dependent. We don’t make this dependence
explicit in our notation, as we will show we can remove it, under weak assumptions, later. Furthermore, letT = tn
be the expiry date of the contract andK be the guaranteed amount at expiry. Then, at timeti, i = 0,1, . . . , n− 1,
the policyholder purchasesPi/Sti units and each unit has valueST at expiry. The fundvalue at the expiry date is
FVn = ∑n−1

i=0 Pi(ST /Sti ). At each payment date,ti, prior to expiry the fundvalue is given by FVi = ∑i−1
j=0Pj(Sti/Stj ).

Since the policyholder is entitled to a minimum payment ofK, conditional upon survival of the insured until time
T the payoff of the contract at maturity equals,

max(FVn,K) = max

(
n−1∑
i=0

Pi
ST

Sti
, K

)
=

n−1∑
i=0

Pi
ST

Sti
+

(
K −

n−1∑
i=0

Pi
ST

Sti

)+
(1)

From this formula we can draw our first conclusion; the value of the guarantee is represented by a put option on∑n−1
i=0 Pi(ST /Sti ), which can be interpreted as some stochastically weighted average of the unit (i.e. stock) price at

expiry. Making use of the put-call parity the insurance contract can also be interpreted as a traditional endowment
insurance on the amountK, with an upside potential depending on the stochastically weighted average of the stock
price. The quantity ln(ST /Sti ) represents the logreturn of the investment fund over the period [ti, T ]. With a minimum
guaranteed rate of return of say,R, we are likely to find insurers calculate the guaranteed amount at timeTaccording
to,K = ∑n−1

i=0 Pi(R) eR(T−ti). Here off course thePi depend on the choice ofR through the cost deduction scheme,
hence we writePi(R).

Dependent on the insurer, the contract could also have a guarantee implicit if the insured dies before the end of
the contract. The convention is adopted that payments to the policyholder are made at the end of the period. If the
insured dies in the interval [ti−1, ti) and the guaranteed amount in that case isKi, then the payoff of the contract
equals,

max(FVi, Ki) = max

 i−1∑
j=0

Pj
Sti

Stj
, Ki

 =
i−1∑
j=0

Pj
Sti

Stj
+

Ki −
i−1∑
j=0

Pj
Sti

Stj

+

(2)

which results in a payoff of the guarantee of,Ki −
i−1∑
j=0

Pj
Sti

Stj

+

(3)

Again, a put option on a particular weighted average of the stock price at termination of the contract. The payoff is
similar to that of a guarantee at maturity in a contract with maturity at timeti. Valuation of this payoff is analogous
to that of(1). In case of a specified guaranteed rate of return, the value ofKi is also likely to be determined by an
algorithm similar to the one determiningK.

At this point we introduce our generic form of the investment premium. It is necessary to make some assumption
on the investment premiums since cost deductions could depend on the fundvalue and hence make the investment
premium stochastic. This would make the path dependency of the option even more complicated. Our assumption
makes the dependence on the fundvalue explicit and maintains the structure of the payoff.

2 We assume there are no possibilities to surrender. This means, conditional upon survival of the insured untilT, there is no insecurity about
premium payments.
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In practice these products have the following generic form of the investment premium3 as a function of gross
premium, GPi, fixed costs, FCi and fundvalue related cost deduction (including mortality charges),ci, here the
GPi’s, FCi’s andci’s are deterministic,4

Pi = GPi − FCi − ciFVi (4)

Pi = NPi − ci

i−1∑
j=0

Pj
Sti

Stj
(5)

and hence the payoff of the guarantee is given by,K −
n−1∑
i=0

NPi − ci

i−1∑
j=0

Pj
Sti

Stj

 ST

Sti

+

(6)

Since FV0 = 0 we have thatNP0 = GP0 − FC0 and henceP0 = NP0. In this form the path dependency of the
option seems to get out of control, however rewriting gives back the original structure,(

K −
n−1∑
i=0

P̃
(n)
i

ST

Sti

)+
(7)

whereP̃ (n)
i = NPi ·

∏n−i−1
j=1 (1 − cn−j) which is deterministic. The proof of this relation is given inAppendix B. If

ci ≡ c then,P̃i = NPi(1 − c)n−i−1. The effect that we see is that because of the way the investment premiums are
determined at each timeti we already know how much of the gross premium minus fixed costs in terms of value at
timeT is devoted to fundvalue related loadings. The interpretation of the guarantee is still that of a put option on a
particular stochastically weighted average of the stock price.

Recently, attempts have been made to include stochastic mortality rates and a market price of mortality risk
in the pricing of options embedded in life insurance products, seeMilevsky and Promislow (2001), Jiang et al.
(2001). We adopt this approach here and give results in terms of risk-neutral mortality probabilities.5 Furthermore,
we apply common practice and assume independence between mortality and the financial markets. This enables us
to consecutively take expectations with respect to mortality and financial risk. In case of a linear dependence on
mortality this results in treatment of mortality probabilities as known constants. We should off course distinguish
between risk-neutral mortality probabilities and those used to determine investment premiums and possibly the
guaranteed amount at any date. The latter probabilities are known and are part of the product. For the former, only
estimates can be used. They do not play a role in the product, only in the pricing formula.

LetMx denote the time of mortality of the policy holder, wherex is the age of the policyholder at the issue of the
contract andD(t, T ) be the price at timet of a zero coupon bond with maturity dateT. Furthermore letQT denote
theT -Forward measure. Throughout the paper we will useEX andEX

t for expectation and conditional expectation
with respect to some probability measureX. Using the aforementioned assumptions on mortality we can write for

3 The function we pose can always be considered as a first order approximation of the true investment premium (as a function of the fundvalue).
4 They can be considered to parameterize the contract together withti andKi, i = 0,1, . . . , n.
5 More formally, we give results in terms of expected mortality where expectation is taken under the risk neutral measure. Since we also assume

mortality is independent of the financial markets, for mortality, this equals expectation under theT -forward measure. If one then adopts the view
that mortality risk can be diverisfied by increasing the number of policies hence assume investors are risk-neutral with respect to mortality, risk
neutral mortality probabilities equal real world mortality probabilities.
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the, timet, priceGt of the guarantee at maturity,6

Gt = D(t, T )EQT

t

(
K −

n−1∑
i=0

P̃
(n)
i

ST

Sti

)+
I[Mx>T ]

 (8)

Gt = D(t, T )EQ
t [I[Mx>T ] ]E

QT

t

(
K −

n−1∑
i=0

P̃
(n)
i

ST

Sti

)+ (9)

Gt = T−tpx+tD(t, T )EQT

t

(
K −

n−1∑
i=0

P̃
(n)
i

ST

Sti

)+ (10)

whereI[·] is an indicator function. FurthermoreT−tpx+t ≡ E
Q
t [I[Mz>T ] ] is the T − t year risk-neutral survival

probability of anx + t year old. Formula (9) illustrates the effect of the independence assumption between mortality
and financial markets. In the remainder of the paper we assume only a guarantee at the maturity date of the contract
is given. Guarantees given upon termination of the contract at an earlier date, for instance because of death of the
insured, can be priced as follows. As before, let an amountKi be guaranteed when the insured dies in the interval
(ti−1, ti] then, again using the assumptions on mortality, the total price of the guarantee in the contract is,

G∗
t =

n∑
i=1

ti−1−tpx+t (ti−ti−1)q(x+ti−1)E
Qti

t

Ki −
i−1∑
j=0

P̃
(i)
j

Sti

Stj

+

+ T−tpx+tE
QT

t

K −
n−1∑
j=0

P̃
(n)
j

ST

Stj

+ (11)

Where(ti−ti−1)q(x+ti−1) = E
Q
t [Mx ∈ (ti−1, ti]|Mx > ti−1], the risk-neutral probability of mortality in the time inter-

val (ti−1, ti] given that the insured has survived until timeti−1.7 The elements in the sum correspond to guarantees
upon death and the lone term to the guarantee at maturity. Now the guarantee can be interpreted as a portfolio of
put options (with different maturities) on a stochastically weighted average of the stock price.

Formulas (10) and (11) give the general price of the guarantee in a Regular Premium Unit Linked contract. The
next section shows the similarity of this price with that of an Asian option. Hence, using the general pricing formula
(10) as a starting point, guarantee prices can be obtained by extending pricing methods for Asian options to include
UL Guarantees.

3. Relationship with Asian options

The dependency of the guarantee payoff on the stock price at different time points leads to an analogy with
Asian options. An average price Asian is an option on the average of the stock price at different time points.

6 Starting from the well-known risk neutral valuation formula, in which the money market account is the numeraire, we can use the Change
of Numeraire Theorem to find the price of the guarantee if the zero bond with maturityT is used as numeraire. These type of numeraire changes
were first introduced by ElKaroui and Rochet (1989), Jamshidian (1991).

7 This follows sinceEQ
t [I[Mx∈(ti−1,ti]] ] = E

Q
t [IMx∈(ti−1,ti] |Mx > ti−1]EQ

t [I[Mx>ti−1] ]. In a general model of mortality these probabilities are
time inhomogeneous functions. A simple case for example in which one can already see this effect is a model in which mortality exhibits a
decreasing trend. This is a simple model for the longevity effect. The one-year mortality probability of a sixty year old at this moment is not the
same as it will be in 30 years. The latter will (most likely) be lower.
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The strong relationship between an Asian option and the guarantee can be summarized in the following proposi-
tion,

Proposition 1. Assumemarkets are arbitrage free and complete. Also assume that the stock price follows a diffusion
process. Furthermore return volatility, σS , and the short rate, r, are constant. Consider the regular premium UL
contract withNPi = S0/n and ci = 0, ∀i, henceP̃ (n)

i = S0/n, and assume for simplicity, ti − ti−1 = 1. Then,
ignoring mortality, we have equality between the prices of an average price Asian Put, with strike K, and the Rate
of Return Guarantee of the UL contract with the same strike. More formally,

e−rTEQ

[(
K − 1

n

n∑
i=1

Sti

)+]
= e−rTEQ

(
K −

n−1∑
i=0

P̃
(n)
i

ST

Sti

)+ (12)

Proof. If we can establish equality in distribution underQ between 1/n
∑n

i=1 Sti and
∑n−1

i=0 P̃i(ST /Sti ) we are
done. We know the stock price is given by,

St = S0 exp([r − 1
2σ

2
S ]t + σSWt)

whereWt is a Brownian motion underQ. Consider the vectors of lognormal random variables,A = [St1/n . . . Stn/n]

and UL= [P̃ (n)
i (ST /Stn−1) . . . P̃ (n)

i (ST /St0)]. Equality in distribution ofAandUL implies equality in distribution of
A · 1and UL· 1, where1 is a (n× 1) vector of ones. Since these are lognormal r.v.’s we have equality in distribution
if we can show the first two moments are equal under the risk neutral measure. UsingP̃

(n)
i = S0/n and ti = i,

straightforward calculations give,

E(A)(i) = E(UL)(i) = S0

n
eri

whereE(A)(i) andE(UL)(i) denote the ith element of the first moment ofA and UL resp. which is a vector. For the
second moment we have,

E(A′ A)(i,j) = E([UL] ′ [UL]) (i,j) =
(
S0

n

)2

er(i+j)+σ2
S min(i,j)

whereE(A′ A)(i,j) andE([UL] ′ [UL]) (i,j) denote the element in theith row andjth column of the second (non
central) moment ofA andUL resp. This completes the proof. �

Proposition 1illustrates the strong similarities between Asian options and the UL Guarantee. It shows that in
this perfect Black–Scholes world there is exactly the same randomness in theith fixing of the stock price as there is
in the (n− i)th premium payment. We can generalize this result to allow for stationary stochastic volatility. It can
however not be generalized to allow for stochastic interest rates or for any non stationary time dependence in both
volatility or interest rates. The randomness in forward stock prices is complementary in the two contracts. The Asian
is sensitive for forward stock price movements over the intervals [0, ti] i = 1,2, . . . , n, whereas the guarantee is
sensitive over the intervals [ti, T ], i = 0,1, . . . , n− 1. We can say that, within the simplified setting of proposition
1, “time runs in opposite directions” for the two types of options. The UL Guarantee is an Asian which “starts at
timeT and expires at zero”. In the Asian option, the risk of each individual term in the summation,Sti , runs from
time zero toti. This is mainly stock price risk, represented through the choice of (sum of the stochastic parts of
the) forward stock return as conditioning variable. In our UL contract we can split the risk of each individual term,
ST /Sti , in interest rate risk, related to some forward bond price, from time zero toti and forward stock price risk
from timeti to T.
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This latter observation should also provide direction on how to hedge these type of options in a ’quick and
dirty’ way. At the start of the contract the risk is mainly interest rate related. This risk could be hedged by using
caps/floors. However as time progresses the risk becomes more and more stock related. The instruments that come
to mind are (forward starting) stock options. Especially forward starting options have the characteristics to be a good
hedge. It is shown in the next section that the implied volatility of these options also arises in the volatility of the
fundvalue. We have established close similarity between the guarantee and an Asian option. Next, we analyze the
effect of stochastic interest rates on the guarantee value using a well-known approximation method(Levy, 1992).
More accurate approximation methods are considered inSection 6.

4. Effect of stochastic interest rates

In this section we analyze the effect of stochastic interest rates on the guarantee value. This is done within the
context of theLevy (1992)approximation. This consists of approximating the distribution of

∑n−1
i=0 P̃

(n)
i ST /Sti by

a lognormal one with the same mean and variance. We choose the Levy approximation because it is simple and
allows for a nice financial economic interpretation of the effect of stochastic interest rates. Under the assumption
of lognormality of the weighted sum of stock prices, the effect of stochastic interest rates on the guarantee value
can be inferred from the effect of stochastic interest rates on the first two moments. For this purpose we derive
the first and second moment of

∑n−1
i=0 P̃

(n)
i ST /Sti under theT-Forward measure. This also gives us the variance of

ln(
∑n−1

i=0 P̃
(n)
i (ST /Sti )) since for a lognormal variableY we have that Var(lnY ) = ln(EY2/(EY )2). Since the first

moment doesn’t show the effect of stochastic interest rates explicitly, this implies it is isolated in the second moment.
This, off course, holds only under the assumption of lognormality. The Levy approximation is not very accurate for
the maturities typical for UL contracts. Therefore, we use our results in this section mainly for expositional purposes.
However, we have approximate lognormality and the effect is similar for the more accurate methods ofSection 6.
Note that we don’t restrict ourselves to formulas for the Levy approximation at the time of writing of the contract.
Approximate prices for the guarantee obtained through the Levy approximation during the time of the contract are

implicit in the expressions forµFV(t) ≡ E
QT

t [
∑n−1

i=0 P̃
(n)
i ST /Sti ] andσ2

FV ≡ VarQ
T

t [ln
∑n−1

i=0 P̃
(n)
i (ST /Sti )]. Results

on the first moment are presented inTheorem 2. Lemma 3andCorollary 4give the (partial) expressions for the
second moment. If we defineFT

t , theT-forward stock price process, as followsFT
t ≡ St/D(t, T ) then without any

modelling assumptions on stock or bond price dynamics from the general Change of Numeraire Theorem8 results:

Theorem 2. Let tj ≤ t < tj+1, j ∈ {0,1,2, . . . , n− 1}. Let the assumptions of the Change of Numeraire Theorem
hold. Then the time t conditional first moment of the fundvalue at maturity, µFV(t), is given by,

µFV(t) ≡ E
QT

t

[
n−1∑
i=0

P̃
(n)
i

ST

Sti

]
=

j∑
i=0

P̃
(n)
i

FT
t

Sti
+

n−1∑
i=j+1

P̃
(n)
i

D(t, ti)

D(t, T )
(13)

Proof. From the martingale property of numeraire adjusted asset prices and the Tower Law of conditional expec-
tation we have, fort ≤ ti

E
QT

t

[
ST

Sti

]
= E

QT

t

[
1

Sti
E

QT

ti

[
ST

D(T, T )

]]
= E

QT

t

[
1

Sti

Sti

D(ti, T )

]
= E

QT

t

[
1

D (ti, T )

]
= E

QT

t

[
D (ti, ti)

D(ti, T )

]
= D(t, ti)

D(t, T )
(14)

8 SeeAppendix A.
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and fort > ti,

E
QT

t

[
ST

Sti

]
= 1

Sti
E

QT

t

[
ST

D(T, T )

]
= 1

Sti
FT
t = St

StiD(t, T )
(15)

�
The interpretation of(14)is clear. The expectation, conditional on the information until timet, under theT-Forward

measure, of the return on the asset in the period [ti, T ], wheret ≤ ti, equals the continuously compounded forward rate

for that period. In a non stochastic interest rate environment we haveE
QT

t [ST /Sti ] = E
Q
t [ST /Sti ] = exp(

∫ T

ti
rs ds).

The interpretation of(15) is the following: the quantitySt/Sti represents the return which is already locked in at
time t, the quantity 1/D(t, T ) = D(t, t)/D(t, T ) has the same interpretation as(14).

For the second moment we need some assumptions on price dynamics. Because all observable volatilities in the
market are those of forward quantities, like forward stock prices, forward LIBOR and Swap rates, we start modelling
at this level. Furthermore, we assume the volatility of forward stock and bond prices to be a deterministic function of
time. In a parameterized model, this amounts to a lognormal stock price process and a Gaussian interest rate model.
We do not assume the volatilities to be constant to be able to adapt to variation in implied volatilities. Especially
since we make a connection between our lognormal model of the economy and the popular LIBOR Market Model
in the next section. We assume theT-Forward stock price,FT

t , and theT-Forward bond price with maturityU,
DT (t, U) ≡ D(t, U)/D(t, T ), to follow the dynamics,

dFT
t = σF (t)FT

t dWT
t (16)

dDT (t, U) = σU (t)DT (t, U) dWUT
t (17)

whereWT
t andWUT

t (for all relevantU) are Brownian Motions under theT-Forward measure9 andσF andσU are
deterministic functions of time. Correlations between those Brownian Motions are given by dWT

t dWUT
t = ρF,U (t) dt

and dWUT
t dWVT

t = ρUV (t) dt. In our notation we implicitly assume we are working under theT-Forward measure,
using the bond with maturityT as numeraire. When using time pointsti andtj we will write WiT , σi(t), ρF,i(t) and
ρij(t) for WtiT , σti (t), ρF,ti (t) andρtitj (t) respectively.

Start by writing the trivial result,

E
QT

t

(
n−1∑
i=0

P̃
(n)
i

ST

Sti

)2 =
n−1∑
i=0

(P̃ (n)
i )2EQT

t

[(
ST

Sti

)2
]

+ 2
n−2∑
i=0

∑
j>i

P̃
(n)
i P̃

(n)
j E

QT

t

[
S2
T

StiStj

]
(18)

now we have the following lemma (the proof is given inAppendix B),

Lemma 3. Let again the conditions of the Change of Numeraire Theorem hold. Then fort ≤ ti ≤ tj, we have

E
QT

t

[
S2
T

StiStj

]
= DT (t, ti)D

T (t, tj) · exp

(∫ ti

t

ρij(s)σi(s)σj(s) ds

)

× exp

(∫ tj

ti

ρF,j(s)σF (s)σj(s) ds +
∫ T

tj

σ2
F (u) du

)
(19)

We can split the long expression in (19) in three parts corresponding to the three integrals. The argument of each
integral is the instantaneous covariance of ln(ST / Sti ) and ln(ST / Stj ) in the relevant time intervals. The first integral,
ranging fromt to ti, corresponds to the correlation between the normalized bonds with maturityti andtj. This can

9 The martingale property ofFT
t andDT (t, S) follows from the Change of Numeraire Theorem in combination with the no-arbitrage condition.
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be explained by the fact that the uncertainty in the quantitiesST /Sti andST /Stj is driven by the corresponding

T-forward bond processes. Second,
∫ tj
ti
ρF,j(s)σF (s)σj(s) ds, represents the covariance between the forward asset

price andD(t, tj)/D(t, T ). Since afterti, Sti is fixed and the risk inST /Sti is now represented by theT-forward asset
price. The risk is now twofold and measured by the quadratic covariation of the forward stock and forward bond
price processes. Finally aftertj, we are left with pure equity risk, i.e. bothSti andStj are known, as

∫ T

tj
σ2
F (u) du

represents the implied volatility of a forward start option.
At this point the effect of stochastic interest rates is clear. When interest rates are deterministic, there’s no risk

in ST /Sti in the interval [0, ti] so the first and second integral in (19) should equal zero.10 These two integrals, the
quadratic covariation of two forward bond prices and the quadratic covariation of the forward stock price and a
forward bond price respectively, are precisely the effect of stochastic interest rates on the volatility of the fundvalue
and hence (in the lognormal approximation) on the guarantee value.

Lemma 3gives us the expression forEQT

t [S2
T /StiStj ] assumingt ≤ ti ≤ tj. Modifications of this result for e.g.

t > ti are easy to obtain. This gives us:

Corollary 4. Let tk ≤ t < tk+1. Then under the assumption of deterministic volatilities for the T-forward asset
price and T-forward bond prices we obtain for the second moment of

∑n−1
i=0 P̃

(n)
i ST /Sti ,

µFV,2(t) ≡ E
QT

t

(
n−1∑
i=0

P̃
(n)
i

ST

Sti

)2 =
k∑
i=0

(P̃ (n)
i )2

[
FT
t

Sti

]2

exp

(∫ T

t

σ2
F (u) du

)

+
n−1∑
i=k+1

(P̃ (n)
i )2[DT (t, ti)]

2 exp

(∫ ti

t

σ2
i (s) ds +

∫ T

ti

σ2
F (u) du

)

+ 2
k−1∑
i=0

k∑
j=i+1

P̃
(n)
i P̃

(n)
j

(FT
t )2

StiStj
exp

(∫ T

t

σ2
F (u) du

)

+ 2
k∑
i=0

n−1∑
j=k+1

P̃
(n)
i P̃

(n)
j

FT
t D

T (t, tj)

Sti
· exp

(∫ tj

t

ρF,j(s)σF (s)σj(s) ds +
∫ T

tj

σ2
F (u) du

)

+ 2
n−2∑
i=k+1

n−1∑
j=i+1

P̃
(n)
i P̃

(n)
j DT (t, ti)D

T (t, tj)

· exp

(∫ ti

t

ρij(s)σi(s)σj(s) ds +
∫ tj

ti

ρF,j(s)σF (s)σj(s) ds +
∫ T

tj

σ2
F (u) du

)
(20)

The expression for the second moment consists of five summations. The first summation consists of those terms
of the first summation in (18) for whicht ≥ ti, the second summation consists of the terms witht < ti.The third
to fifth terms correspond to parts of the double summations in (18), withti < tj ≤ t, ti ≤ t < tj and t < ti < tj
respectively.

Now, σ2
FV(t) = ln(µFV,2(t)/[µFV(t)]2), “the implied guarantee volatility”.Theorem 2andCorollary 4together

with the approximate lognormality of the fundvalue result in the following approximate pricing formula for the
guarantee (cf.Levy, 1992),

Gt ≈ D(t, T )[KΦ(−dt + σFV(t)) − µFV(t)Φ(−d)] (21)

10 This also follows from the fact that, when interest rates are deterministic, forward bond volatilities are zero.
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where,

dt = ln(µFV (t)/K) + 1/2σ2
FV(t)

σFV(t)
(22)

andΦ(·) is defined by the standard normal distribution.

4.1. Convexity correction interpretation of stochastic interest rates

We have isolated the effect of stochastic interest rates (in the Levy approximation it only shows up in the implied
guarantee volatility). Next we will show how it is related to change of measure and convexity correction. We give

an interpretation to the expectationsEQT

ti
[FT

tj
DT (tj, tj)] andEQT

[(D(ti, ti)/D(ti, T ))(D(ti, tj)/D(ti, T ))] (assume

again thati < j). With regard to the first expectation, we have, definingF̃ T
ti

= E
Q

tj

ti
[FT

tj
] and using the Change of

Numeraire Theorem,

E
QT

ti
[FT

tj
DT (tj, tj)] = D(ti, tj)

D(ti, T )
E

Q
tj

ti
[FT

tj
] = D(ti, tj)

D(ti, T )
F̃ T
ti

= D(ti, tj)

D(ti, T )
FT
ti

· Convexity Correction (23)

WhereF̃ T
ti

is the convexity corrected forward asset price and the convexity correction is given byF̃ T
ti
/FT

ti
. We see

(comparing (23) and (B.9) from the proof inAppendix C) that the expression exp(
∫ tj
ti
ρF,j(s)σF (s)σj(s) ds) is the

convexity correction arising from taking the expectation of theT-Forward Asset Price “under the wrong measure”
(i.e. not under the measure associated with the asset which is used to normalize the stock price). It is comparable
with a LIBOR-in-arrears payment. Instead of the value of a forward LIBOR rate paid at an “earlier” time point, we
have the value of a forward stock price paid at an “earlier” time point.

To interpret the second expectation, note that, conditional upon the information at timet, (D(ti, T )/
D(ti, tj))(D(t, tj)/D(t, T )) is the Radon-Nikodym derivative for a change of measure from theT-Forward mea-
sure to thetj-Forward measure. We can write,

E
QT

t [DT (ti, ti)D
T (ti, tj)] = E

QT

t

[
D(ti, ti)

D(ti, T )

D(ti, tj)

D(ti, T )

]
= D(t, tj)

D(t, T )
(1 + E

Q
tj

t [LtiT (ti)])

= D(t, tj)

D(t, T )
(1 + L̃tiT (ti)) = D(t, tj)

D(t, T )

D(t, ti)

D(t, T )
· Convexity Correction (24)

whereLtiT (t) = (D(t, ti) −D(t, T ))/D(t, T ), the forward LIBOR rate for the time period (ti, T ) andL̃tiT (ti) is the

convexity corrected forward LIBOR rate. Becausei < j and henceLtiT (ti) is known atti, D(t, tj)E
Q

tj

t [LtiT (ti)]
is the timet value of a payment ofLtiT (ti), at a later timetj. It can be seen from (24) and (B.11), from the proof
in Appendix B, that the expression exp(

∫ ti
t
ρij(s)σi(s)σj(s) ds) can then be explained as the convexity correction

arising from taking the expectation of the LIBOR payment “under the wrong measure”.11Note that with deterministic
interest rates there would not be “a wrong measure” since thenQT = Qti = Qtj = Q and hence there would not
be any convexity correction. This is in accordance with our previous claim that the effect of stochastic interest rates
coincides with the first two integrals in (19).

SinceσF (t) is the instantaneous volatility of the forward asset price at timet and
√∫ T

s
σ2
F (u) du/(T − s) can be

given the interpretation of the implied volatility of a forward start option with maturity dateT starting ats > t. This
motivates the use of forward starting options in hedging these contracts. We will illustrate the effect of the convexity
correction inSection 8. Up till now we have not yet specified how we envision the implementation of the model in
(16) and especially (17). This will be the subject of the next section.

11 This is mentioned only for interpretation, these kind of LIBOR payments are not traded in the market.
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5. Calibration of forward bond volatilities

Nowadays the LIBOR Market Model (LMM) is the dominant term structure model to price interest rate deriva-
tives. The ability to fit cap and swaption prices better than e.g. short rate models, is one of its advantages. Therefore,
it is of interest to obtain stock option prices (like the UL guarantee under consideration in this paper) which are
consistent with the LMM. We link the forward bond volatilities in (17) to LIBOR rate volatilities. To rewrite forward
bond volatility we use a method developed and tested by bothHull and White (2000), Brace et al. (2001). They
conclude that, although assuming both swap and LIBOR rates lognormal is mutually inconsistent, swap rates are
approximately lognormal in the LMM. Based upon their arguments we conclude that forward bond prices are also
approximately lognormal in the LMM. This gives us accurate approximations to the forward bond volatilities. We
can use these in our lognormal model to obtain guarantee prices consistent with observed cap and swaption prices.

The forward LIBOR rate at timet starting fromT with maturityS is defined as,

LTS(t) = 1

αTS

(
D(t, T ) −D(t, S)

D(t, S)

)
(25)

WhereαTS is the daycount fraction for the period (T, S). In the interest rate market only LIBOR rates with a specific
tenorS − T are traded. LetNbe the number of LIBOR rates under consideration and let the tenor be,LT , then we
defineLj(t) = LTLj T

L
j+1

(t) andαLj = αTLj T
L
j+1

, whereTL
j = j,LT , j = 0,1, . . . , N + 1 are the so calledreset dates.

Now anm-factor lognormal version of the LIBOR Market Model (LMM) developed independently byMiltersen et
al. (1997), Brace et al. (1997)poses the following dynamics for the forward LIBOR ratesLj,

dLj(t) =
m∑
q=1

σ
q
Lj

(t)Lj(t) dWj+1,q
t (26)

Where theWj+1,q ’s are Brownian Motions (which can be assumed uncorrelated, since we can rotate factors) under

Q
TLj+1, theTL

j+1-Forward measure. TheσqLj
(t)’s are deterministic functions of time. The popularity of the LMM

stems from the fact that the parameters of the model (theσ
q
Lj

(t)’s) can be chosen such that the model exactly matches
observed cap prices in the market.

A full factor LMM assumesm, the number of Brownian Motions, equalsN. Hence we can construct the model
such that each LIBOR rate is driven by its own Brownian Motion. Furthermore, assuming a stationary volatility
and correlation structure, we have,σ

q
Lj

(t) = σ(TL
j − t) anddWj+1

t dWi+1
t = ρ(TL

j − t, T L
i − t) dt. Summarizing

the model becomes,

dLj(t) = σ(TL
j − t)Lj(t) dWj+1

t , j = 1, . . . , N (27)

dWj+1
t dWk+1

t = ρ(TL
j − t, T L

k − t) dt

This is the model we use to obtain numerical results later. We will now discuss how to obtain approximate forward
bond volatilities in this model. Results for other parameterizations of the LMM can be obtained in a similar manner.

We assume the dates of the forward bond prices under consideration in the pricing of the guarantee coincide at
least partly with the reset dates of LIBOR rates.12 Definet̃ := {{ti}ni=1} andT̃L := {{TL

i }N+1
i=1 } then our assumption

12 Implicit in this assumption is that we consider pricing at payment dates only.
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boils down to assuming̃t ⊆ T̃L. Next define,Gj,i := {j : TL
j ∈ [ti, T )}. Then the relationship with bond prices is,13

DT (t, ti) = D(t, ti)

D(t, T )
=

∏
j∈Gj,i

[1 + αLj Lj(t)] (28)

Now we have,

1

DT (t, ti)

∂DT (t, ti)

∂Lj(t)
=

αLj

1 + αLj Lj(t)

Applying Itô’s Lemma to (28), bearing in mind (26) gives,14

dDT (t, ti) =


· · · dt +

∑
j∈Gj,i

1

DT (t, ti)

∂DT (t, ti)

∂Lj(t)
σ(TL

j − t)Lj(t)D
T (t, ti) dWj+1

t

· · · dt +
∑
j∈Gj,i

αLj σ(TL
j − t)Lj(t)

1 + αLj Lj(t)
DT (t, ti) dWj+1

t

(29)

This leads to a variance rateσ2
DT
i

of DT (t, ti) of,

σ2
DT
i

(t) =
∑
j∈Gj,i

(
αLj σ(TL

j − t)Lj(t)

1 + αLj Lj(t)

)2

+ 2
∑
j∈Gj,i

∑
k>j

ρ(TL
j − t, T L

k − t)

(
αLj σ(TL

j − t)Lj(t)

1 + αLj Lj(t)

)(
αLk σ(TL

k − t)Lk(t)

1 + αLk Lk(t)

)
(30)

Hull and White suggest to approximate (30), which is a stochastic quantity, by a constant, effectively replacing the
forward LIBOR rate by their time zero values. This leads to an approximate variance rate of,

σ̃2
DT
i

(t) =
∑
j∈Gj,i

(
αLj σ(TL

j − t)Lj(0)

1 + αLj Lj(0)

)2

+ 2
∑
j∈Gj,i

∑
k>j

ρ(TL
j − t, T L

k − t)

(
αLj σ(TL

j − t)Lj(0)

1 + αLj Lj(0)

)(
αLk σ(TL

k − t)Lk(0)

1 + αLk Lk(0)

)
(31)

This is in line with the approach ofBrace et al. (2001), Brace and Womersley (2000), who observe that

αLj Lj(t)/1 + αLj Lj(t) is a low varianceQTLj+1-martingale and use this to approximate swaption volatilities in
the LMM. We use it to approximate forward bond volatilities in the LMM. Expression (31) gives the variance rate
at timet. A frequent assumption in applications is that correlation and volatility are constant between reset dates.

13 We could do the exact same thing in the context of the Swap Market Model (SMM). However the LMM seems to be preferable over the
SMM in terms of out of sample pricing performance (seeDe Jong et al., 2001).
14 We do not calculate the drift term, or equivalently specify the Brownian Motion, since it is irrelevant for our purposes. We are interested in

the quadratic variation terms.
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For example we can approximate the variance ofDT (t, ti) over the interval [0, Tl] by:

∫ Tl

0
σ2
i (s) ds ≈

l−1∑
k=0

αLk σ̃
2
i (TL

k )

which is what we use inSection 8.
The literature on the subject of LMM calibration is rapidly growing. Ideally one would calibrate the model not

only to caps but also to swaption prices. This, and for example the inclusion of more factors, will give a better fit
to the correlation structure of the forward LIBOR rates. In general, to calibrate a LMM we must specify volatility
functions for the LIBOR rates and a correlation matrix for the Brownian Motions such that the option prices are
fitted by the model. Important with non-vanilla products, such as ours, is that the calibrated model fits the correlation
structure of the relevant rates well. Therefore, in our numerical examples we use calibration results for a multifactor
model. Also important in the calibration process are the users goals. Usually, traders prefer exact calibration since
they want their models to replicate observed prices exactly, whereas for risk management (or reserving) purposes
the user might want to protect against overfitting and use a parsimonious model and non-exact calibration for better
out of sample performance. The current state of the art LMM calibration is based on semidefinite programming
techniques, seeBrace and Womersley (2000), d’Aspremont (2002).

6. Bounds on the price of the guarantee

We have explored interpretation and more accurate modelling of the effect of stochastic interest rates in the
context of the Levy approximation. However, this method is not accurate enough to be used for pricing of contracts
with high maturity (such as guarantees). In this section, we will provide bounds tight enough to be used for actual
pricing. In the literature several techniques exist to bound the price of an arithmetic Asian option. A very accurate
lower bound to the price of an Asian option is the method ofRogers and Shi (1995), recently generalized to allow for
stochastic interest rates byNielsen and Sandmann (2002a)and applied to an Equity Linked contract inNielsen and
Sandmann (2002b). Results on pricing bounds are also derived inSimon et al. (2000)andDhaene et al. (2002a,b).
It is important to note the bounds derived in these papers are valid in a general setting, whereas the previously
mentioned authors only consider the particular case of lognormal prices. We provide additional results to adapt
existing methods to the case of guarantees in regular premium UL contracts in the model (16) and (17). The method
by Rogers and Shi only provides a tight lower bound. Therefore, we generalize the upper bound byThompson
(1998)to the case of the regular premium UL Guarantee at the same time allowing interest rates to be stochastic.
Besides the upper bound by Thompson we also discuss and compare some other well-known upper bounds. Results
on the tightness of these bounds are presented and discussed.

6.1. Lower bound

For ease of notation assumeP̃ (n)
i = 1. To obtain a price for the guarantee we are interested in the following

expectation and lower bound,

E
QT

t

(
K −

n−1∑
i=0

ST

Sti

)+ ≥ E
QT

t

(
E

QT

t

[
K −

n−1∑
i=0

ST

Sti
|Z

])+ (32)

The method uses a conditioning variable to derive a lower bound to the price which is extremely tight. The approach
by Rogers and Shi develops according to the following steps. First chooseZ to be a standard normal random
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variable. Then calculateEQT

t [K − ∑n−1
i=0 ST /Sti |Z] by summing individual expectations.15 This expectation will

be a convex function inZ (since sum of convex functions is itself convex and the individual expectations are convex
functions). Second, using the ideas ofJamshidian (1989)split the option on a sum into a portfolio of options by

solving,EQT

t [K − ∑n−1
i=0 ST /Sti |Z] = 0 for Z. For details, seeNielsen and Sandmann (2002a), Definition 1 and

Theorem 1.
In our case, the second step of the approach by Nielsen and Sandmann will be exactly the same. With the results

from the first step we will be able to do a Jamshidian decomposition on the conditioning variableZ. This simplifies
the pricing problem from one of an option on a sum to that of a sum of options. The first step is however a bit
different in this case.

To apply a Jamshidian decomposition we must calculateE
QT

t [
∑n−1

i=0 ST /Sti |Z]. At this point we introduce the
following shorthand notation,∫ T

t

σ̄i(s) dW̄i
s ≡

∫ max(t,ti)

t

σi(s) dWiT
s +

∫ T

max(t,ti)
σF (s) dWT

s (33)

E
QT

t

[
ST

Sti

]
≡ µ̄i(t) = D(t, ti)

D(t, T )
I[0,ti] (t) + St/D(t, T )

Sti
I[ti,T ] (t) (34)

This enables us to write the volatility terms we encounter in the remainder using a single integral. This also implies,∫ T

t

σ̄2
i (s) ds ≡

∫ max(t,ti)

t

σ2
i (s) ds +

∫ T

max(t,ti)
σ2
F (s) ds (35)

Using the developed notation, with the advantage becoming clear straight away, we can immediately write,

ST

Sti
= µ̄i(t) exp

(
−1

2

∫ T

t

σ̄2
i (s) ds +

∫ T

t

σ̄i(s) dW̄i
s

)
(36)

This gives, using well-known relations for the conditional expectation of normal random variables,16

E
QT

t

[
ST

Sti
|Z

]
= µ̄i(t) exp

(
−1

2

∫ T

t

σ̄2
i (s) ds + µi|Z(t)Z + 1

2
σ2
i|Z(t)

)
(37)

E
QT

t

[
ST

Sti
|Z

]
= µ̄i(t) exp

(
µi|Z(t)Z − 1

2
µi|Z(t)2

)
(38)

where,

µi|Z(t) = E
QT

t

[
Z

∫ T

t

σ̄i(s) dW̄i
s

]
(39)

σ2
i|Z(t) =

∫ T

t

σ̄2
i (s) ds − µi|Z(t)2 (40)

Notice that the randomness inST /Sti over the interval [t, ti] is given by
∫ max(t,ti)
t

σi(s) dWiT
s . So until the premium

is paid, the risk for the insurer is pure interest rate risk.

15 Since we are in the lognormal framework in these calculations one can use standard relations for conditional expectations of normally
distributed random variables.
16 E(X|Z) = E(X) + (Cov(X,Z)/Var(Z)) [Z − E(Z)] and Var(X|Z) = Var(X) − ([Cov(X,Z)]2/Var(Z)).
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6.2. Choice of conditioning variable

The approximate solution to the pricing problem, i.e. the lower bound in (32), depends on the choice ofZ. A
sensible choice, and indeed the one Rogers and Shi make, is that conditioning variable for which the variance of the
conditional payoff is “small”. In the Asian option the risk of each individual term in the summation,Sti , runs from
time zero toti. This is mainly stock price risk, represented through the choice of (sum of the stochastic parts of the)
forward stock return as conditioning variable (seeNielsen and Sandmann, 2002a). In our UL contract we can split
the risk of each individual term,ST /Sti , in interest rate risk, related to some forward bond price, from time zero
to ti and forward stock price risk from timeti to T. This is reflected by the choice of conditioning variable, which
is (the sum of the stochastic parts of) the forward bond return over the interval [0, ti] and the forward stock return
over [ti, T ]. Summarizing we have,

Z = 1

αt

n−1∑
i=0

{∫ T

t

σ̄i(s) dW̄i
s

}
(41)

where the relevant forward bond volatilities are taken zero ift > ti andαt is a normalizing constant. Observe that
our choice ofZamounts to conditioning on the stochastic parts of the “return” on the forward stock and bond prices.
We have,

αt =
n−1∑
j=0

CovQT

t

[∫ T

t

σ̄j(s) dW̄j
s ;

∫ T

t

σ̄j(s) dW̄j
s

]
+ 2

n−2∑
j=0

n−1∑
k=j+1

CovQT

t

[∫ T

t

σ̄k(s) dW̄k
s ;

∫ T

t

σ̄j(s) dW̄j
s

]
(42)

and, fori ≤ j

CovQT

t

[∫ T

t

σ̄i(s) dW̄i
s ;

∫ T

t

σ̄j(s) dW̄j
s

]
=

∫ max(t,ti)

t

ρij(s)σi(s)σj(s) ds +
∫ max(t,tj)

max(t,ti)
ρF,j(s)σF (s)σj(s) ds

+
∫ T

max(t,tj)
σ2
F (s) ds (43)

which is the (logarithm of the) convexity correction (first two terms) and the implied volatility of a forward starting
stock option (third term) present in the second moment of the fund value. Furthermore,

µi|Z(t) = E
QT

t

[
Z

∫ T

t

σ̄i(s) dW̄i
s

]
(44)

= 1

αt

 i∑
j=0

∫ max(t,tj)

t

ρij(s)σi(s)σj(s) ds +
∫ max(t,ti)

max(t,tj)
ρF,i(s)σF (s)σi(s) ds +

∫ T

max(t,ti)
σ2
F (s) ds


+ 1

αt

 n−1∑
j=i+1

∫ max(t,ti)

t

ρij(s)σi(s)σj(s) ds +
∫ max(t,tj)

max(t,ti)
ρFj(s)σF (s)σj(s) ds +

∫ T

max(t,tj)
σ2
F (s) ds

 (45)

which are again the expressions for the convexity correction and the implied volatility of a forward start option in
the second moment of the fund value at maturity.

It is important to note, that for reasonable correlation values (mainly for the correlation between forward stock
and forward bond processes) the coefficients ofZ are positive for alli. This results ina unique solutionto the
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equation,
∑n−1

i=0 E
QT

t [ST /Sti |Z] −K = 0. This simplifies the calculations of the lower bound.17 Let Z∗ be the

unique solution to
∑n−1

i=0 E
QT

t [ST /Sti |Z] −K = 0. The following lower bound to the price of the guarantee results,

Gt ≥ D(t, T )

{
KΦ(Z∗) −

n−1∑
i=0

[
µ̄i(t)Φ(Z∗ − µi|Z(t))

]}

see Theorem 1 inNielsen and Sandmann (2002a). We will refer to this lower bound as the Rogers and Shi Lower
Bound or RSLB.

6.3. Upper bound

Throughout the literature several candidate upper bounds exist for the price of Asian options and analogous rate
of return guarantees in premium paying contracts. Results inNielsen and Sandmann (2003)suggest no particular
bound clearly dominates the other although a refinement of the upper bound by Rogers and Shi has the best overall
performance for the maturity and volatility considered by these authors. Not much is known however about the
performance of these bounds in the case of the guarantees considered in this paper and especially the maturities
associated with these contracts. Besides the refinement of the Rogers and Shi upper bound, based onNielsen
and Sandmann (2002b, 2003), we consider here a slight generalization of the upper bound byThompson (1998).
Numerical results show that this latter bound outperforms most, if not all, other bounds in the literature. Extensive
results on the generalization and subsequent optimization of Thompson’s upper bound can be found inLord (2003).

6.3.1. Refinement of Rogers and Shi upper bound
For the refined Rogers and Shi upper bound (denoted by RSUB+) we have the following result which slightly

generalizes the result inNielsen and Sandmann (2002b)to our model (16) and (17). Define,

dt ≡
ln(K/n) − (1/n) ln

[∏n−1
i=0 P̃

(n)
i µ̄i(t) exp

(
−(1/2)

∫ T

t
σ̄2
i (s) ds

)]
(αt/n)

(46)

then the correctionεt on the Rogers and Shi lower bound which gives the refined upper bound is given by,

εt = 1

2
Φ(dt)

1/2

D(t, T )2
n−1∑
i=0

n−1∑
j=0

P̃
(n)
i P̃

(n)
j µ̄i(t)µ̄j(t) exp(µi|Z(t)µj|Z(t)){exp(σ2

i,j|Z(t)) − 1}

× Φ(dt − {µi|Z(t) + µj|Z(t)})
1/2

(47)

The original upper bound by Rogers and Shi (denoted by RSUB) corresponds to the situation wheredt = +∞. This
will lead to a correction on the lower bound which is independent of the strike.

17 Thompson (1998)derives an analytical solution to the equation,
∑n−1

i=0 E
QT

t [Sti |Z] −K = 0 in the case of an Asian option based on
interchanging exponentiation and summation. This doesn’t work in our case since the terms in the exponent are not small enough.
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6.3.2. Generalized Thompson upper bound
The upper bound Thompson proposed is based on the observation that,

E
QT

t

(
K −

n−1∑
i=0

P̃
(n)
i

ST

Sti

)+ ≤
n−1∑
i=0

E
QT

t

[(
fiK − P̃

(n)
i

ST

Sti

)+]
(48)

under the condition that
∑n−1

i=0 fi = 1 andf is some (stochastic) function ofi. Slightly generalizing the ideas in
Thompson (1998), seeLord (2003)for a full discussion, we propose to use,

fi = mi + β

∫ T

t

σ̄i(s) dW̄i
s − 1

n

n−1∑
j=0

∫ T

t

σ̄j(s) dW̄j
s

 (49)

The first part,mi, is deterministic. The second part represents the total return minus the individual return on a
premium paid at timeti. The original upper bound inThompson (1998)hasβ = 1 (denoted by THSTOCH). When
β = 0, the functionf becomes deterministic and the upper bound resulting from optimal choice off (denoted by
THDET) coincides with that of proposition 1 inNielsen and Sandmann (2003)and the comonotonic upper bound by
Simon et al. (2000). This upper bound has the interpretation of a portfolio of forward starting options with optimally

chosen strikes. A naive approach would be to chosefi = P̃i/
(∑n−1

j=0 P̃
(n)
j

)
(denoted by THNAIVE). The optimal

choice off is given by,

fi = P̃
(n)
i

K
µ̄i(t) exp

γ

√∫ T

t

σ̄2
i (s) ds − 1

2

∫ T

t

σ̄2
i (s) ds

 (50)

whereγ is set to satisfy
∑n−1

i=0 fi = 1.
The upper bound resulting from a general choice ofβ is the following summation of integrals (for a formal

derivation refer toThompson (1998)or Lord (2003)), whereφ(·) denotes the standard normal density,

Gt ≤
n−1∑
i=0

∫ ∞

−∞

{
a(i, Xi)Φ

(
a(i, Xi)

b(i, Xi)

)
+ b(i, Xi)φ

(
a(i, Xi)

b(i, Xi)

)}
1√∫ T

t
σ̄2
i (s) ds

φ

 Xi√∫ T

t
σ̄2
i (s) ds

 dXi

(51)

where,

a(i, Xi) = K

(
mi − β

n

µi|Z(t)∫ T

t
σ̄2
i (s) ds

Xi + βXi

)
− P̃

(n)
i µ̄i(t) exp

(
−1

2

∫ T

t

σ̄2
i (s) ds +Xi

)

b(i, Xi) = K

n
βαt

√
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t
σ̄2
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(n)
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σ̄2
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√
VarQ
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t [Ni]

)
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t [Ni] = c2
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i (s) ds + 2ciβ
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t
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ci = P̃
(n)
i µ̄i(t) exp

(
−1

2

∫ T

t

σ̄2
i (s) ds

)
− βK

γ =
K − ∑n−1

i=0 P̃
(n)
i µ̄i(t) exp

(
−(1/2)

∫ T

t
σ̄2
i (s) ds

)
∑n−1

i=0

√
VarQ

T
[Ni]

The integrals in (51) have to be solved numerically. For an indication of the computational times of the different
upper bounds refer toLord (2003). The tightness of the upper bound for a general choice ofβ is largely dependent
on the variance of the stochastic term. This variance must not be to large. Since variance increases with maturity
we naively setβ = 1/T and denote the resulting upper bound by (THSTOCH+). Numerical results show that this
approach already outperforms the other bounds we considered.

6.4. Accuracy of upper and lower bounds

Numerical results on the tightness of for rate of return guarantees in premium paying UL contracts are given
in Table 2. Pricing results for the Levy approximation and several pricing bounds are given for several contract
maturities and guarantee levels. The column headed MC price holds the price obtained by Monte Carlo simulation.
The Levy approximation for the guarantee prices behaves similar to that for Asian options. The quality deteriorates
with increasing volatility and the approximation is best for at the money options. Our results on pricing bounds
confirm the results inNielsen and Sandmann (2003)for Asian options. RSUB+ outperforms all other bounds
considered by Nielsen and Sandmann (RSUB, THDET, THNAIVE). We can see that THSTOCH, corresponding
to β = 1, is not tight at all. This is induced by the high volatility in the stochastic term off. The Thompson bound
corresponding toβ = 0 performs much better. However we see that when we reduce the volatility in the stochastic
term by settingβ = 1/T we already obtain an extremely tight upper bound, even outperforming RSUB+.18 Further
discussion on the optimal choice ofβ and other versions of Thompson’s upper bound can be found inLord (2003).

7. Results in a Black–Scholes Hull–White model

In this section we derive the results ofSections 4 and 6in the context of a combined Black–Scholes Hull–White
(BSHW) model. We assume the stock price has a constant volatility and the short rate follows a Hull–White(Hull
and White, 1990)process under the risk neutral measure. Furthermore we assume the (instantaneous) correlation
between the stock and the short rate equalsρ, i.e. CorrQ[d(ln St); drt ] = ρdt. Explicitly, we have the following
SDEs for the stockprice and the shortrate,

dSt = rtSt dt +
√

1 − ρ2σSSt dW1,t + ρσSSt dW2,t (52)

drt = (θt − art) dt + σr dW2,t

whereW1,t andW2,t are independent Brownian Motions under the risk neutral measure. Essential to all of our

preceding results is the covarianceEQT

t [
∫ T

t
σ̄i(s) dW̄i

s

∫ T

t
σ̄j(s) dW̄j

s ]. From this quantity all results inSections 4
and 6are derived.

18 We even obtain values below the MC price, this is due to simulation error. The upper bound values are well within the confidence band
around the MC price.
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Our result in this section extends the results ofNielsen and Sandmann (1996b)for Asian options to Guarantees
in Regular Premium UL insurance. But more importantly, using the results and ideas ofSection 4, their results can
quite easily be restated in terms of forward stock and forward bond volatilities. This enables us to interpret their
results in terms of convexity adjusted quantities and obtain additional insight in the determinants of the price of
Asian options. See alsoAppendix C.

In a Black–Scholes Hull–White model all volatilities of forward prices are a deterministic function of time.
We essentially parameterize our general lognormal model in (16) and (17). The convexity correction can then be
interpreted as parameterized convexity correction. We now proceed with the derivation.

It is not difficult to derive that under the stated assumptions of constant stock volatility and a correlation between
stock and short rate ofρ, theT-forward stock andT-forward bond price follow the dynamics,

dFT
t =

√
1 − ρ2σSF

T
t dWT

1,t + ρσSF
T
t dWT

2,t + σrB(t, T )FT
t dWT

2,t (53)

dDT (t, S) = −σr[B(t, S) − B(t, T )]DT (t, S) dWT
2,t (54)

whereWT
1,t andWT

2,t are independent Brownian Motions under theT-Forward measure andB(t, T ) = (1/a)[1 −
e−a(T−t)]. For (53) we can write equivalently (in weak SDE solution terms):

dFT
t =

√
σ2
S + 2ρσSσrB(t, T ) + σ2

r B(t, T )2FT
t dZT

t (55)

WhereZT
t is a Brownian Motion under theT-Forward Measure. This makes the forward asset price volatil-

ity direct. From lnEQT
[FT

t D
T (t, S)] = ∫ t

0 ρF,S(s)σF (s)σS(s)ds + ln(FT
0 D

T (0, S)), the instantaneous covariance
betweenFT

t andDT (t, S), can be shown to equal,

ρF,S(t)σF (t)σS(t) = −ρσSσr[B(t, S) − B(t, T )] + σ2
r B(t, T )2 − σ2

r B(t, T )B(t, S) (56)

Instead of inferring the volatilities of interest from market data we parameterize them according to the results
above. Then if we parameterize the forward stock price volatility and forward bond price volatility in (16) and (17)
according to (53) and (54) respectively, we obtain (also assuming thati < j andt < ti),

E
QT

t

[∫ T

t

σ̄i(s) dW̄i
s

∫ T

t

σ̄j(s) dW̄j
s

]
=

(
σ2
r

∫ ti

t

[B(s, T ) − B(s, ti)][B(s, T ) − B(s, tj)] ds

)
+

(
−ρσSσr

∫ tj

ti

B(s, tj) − B(s, T ) ds + σ2
r

∫ tj

ti

B(s, T )2 − B(s, T )B(s, tj) ds

)

+
(
σ2
S(T − tj) + 2ρσrσS

∫ T

tj

B(s, T ) ds + σ2
r

∫ T

tj

B(s, T )2 ds

)
(57)

We can split this long expression in three parts corresponding to the three integrals in (19), namely first
σ2
r

∫ ti
t

[B(s, T ) − B(s, ti)][B(s, T ) − B(s, tj)] ds corresponds to
∫ ti
t
ρij(s)σi(s)σj(s) ds, the correlation between the

bonds with maturityti and tj normalized by the bond with maturityT, since in a one factor model the cor-
relation between bonds (and hence forward bond prices) equals one. This expression is direct from (54), the
forward bond volatility. Second,−ρσSσr

∫ tj
ti

[B(s, tj) − B(s, T )] ds + σ2
r

∫ tj
ti
B(s, T )2 − B(s, T )B(s, tj) ds corre-

sponds to
∫ tj
ti
ρF,j(s)σF (s)σj(s) ds, the covariance between the forward asset price andD(t, tj)/D(t, T ). Finally,

σ2
S(T − tj) + 2ρσSσr

∫ T

tj
B(s, T ) ds + σ2

r

∫ T

tj
B(s, T )2 ds corresponds to

∫ T

tj
σ2
F (u) du, the implied volatility of a for-



D.F. Schrager, A.A.J. Pelsser / Insurance: Mathematics and Economics 35 (2004) 369–398 389

ward start option. The same approach can be followed for any other Gaussian interest rate model in combination
with a Geometric Brownian Motion for the stock.

8. Numerical results

This section provides numerical results for both the pricing approach discussed inSections 4 and 6as well as the
one based on the Black–Scholes Hull–White (HW) model. To obtain numerical results on the price of a guarantee
according to the approach inSection 5which have empirical relevance, we use the estimation results ofDe Jong et
al. (2002)on a full-factor LMM. A motivation for the use of this model can be found in their paper. We take the
S&P100 as the investment funds. We take the CBOE S&P100 implied volatility index as our forward stock volatility
estimate. We estimated, using sample estimates, the correlation between forward stock and bond prices using weekly
S&P100 and interest rate data for the same period over which the LMM parameters were estimated, namely January
1995 to June 1999. We assumed that,ρF,i(t) ≡ ρ(T − t, T − ti), only the remaining time to maturity of the relevant
zeros is taken into account. A time homogeneous correlation matrix results. To let the HW parameters, like the
LMM parameters, be representative for the whole sample we calibrated the HW parameters to a set of implied
‘at-the-money-forward’ swaption volatilities generated by the calibrated LMM using the term structure of the latest
observation in our sample. These swaption volatilities were calculated using the method described byHull and
White (2000). We minimized the sum of squared errors of the swaption volatility implied by HW model prices with
respect to the LMM implied swaption volatility. The following results for the parameters were obtained,a = 0.0349
andσr = 0.0116. To estimate correlation between short rate and stock price we used time series data on 3 month
interest rate and the S&P100. A correlation coefficient of−0.0200 resulted. For pricing we used an implied forward
stock volatility equal to the CBOE implied volatility index of the S&P100 (equal to 21.01%) and the term structure
corresponding to the latest observation in our sample. We can consider the results as prices at end of June 1999.

The following parameterization of the insurance contract is taken, GPi ≡ GP= 100, FCi = 5 + 25[i ≤ 3], ci ≡
c = 0.02 and yearly premium payments. Only a guaranteed amount at maturity is considered. The prices we
calculated do not take into account survival rates of the insured. These can be very different over countries, age and
gender.19 Furthermore in the light of our results inSection 2, no clear-cut way is known to us to determine risk
neutral survival probabilities.

We proceed as follows, first we visualize the effect of stochastic interest rates using the volatility of the fund-
value. Since the mean of the fundvalue is independent of modelparameters there’s a one-to-one correspondence
between the price and volatility in the lognormal approximation. Second, keeping in mind the importance of
stochastic interest rates, we look at differences between prices obtained using the LMM for the calculation of for-
ward bond volatility versus prices obtained using the BSHW model ofSection 7. Our results show this effect is non-
negligible.

Fig. 1shows the convexity correction effect on the volatility of the fundvalue at maturity in the BSHW model.
The effect of stochastic interest rates on the volatility (i.e. the convexity correction) increases with maturity. We see
that the volatility first decreases because of an averaging effect. The volatility is an average of the volatility of each
premium payment. This volatility is highest for the first payment and lowest for the last payment (see the result in
Lemma 3, stock volatility is greater than bond volatility). Then the volatility increases again due to a time effect. For
maturities typical in the context of pension funds this completely cancels out the averaging effect, partly because of
the effect of stochastic interest rates. This time effect is induced by the increasing number of cross correlations (at
a rate equal toT 2) between premium payments at longer maturities. The sudden fall in volatility after three years

19 A typical 10 year survival rate of a 35 year old male is 98%, for a 50 year old male this is 93%. These numbers are based on a Dutch
Mortality table over the years 1990–1995. So, for reasonable maturities and age below 50, mortality will not influence the prices shown here
dramatically. However for products like these in the context of pension funds the maturity of the contracts is a lot higher and the influence of
mortality increases. We can say though that in general the maturity of a contract like the one discussed here doesn’t go beyond age 65, which is
usually when years are starting to count in terms of survival probabilities.
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Fig. 1. Volatility for Rate of Return Guarantees calculated using the BS-HW model with and without the convexity correction effect. The
normal line shows the volatility whereas the boxed line shows the volatility without the convexity correction. As can be seen from the graph,
the convexity correction effect increases with maturity.

can be explained by the structure of the fixed cost deductions. For the first three years fixed costs are 30% of gross
premium. After that fixed costs are only 5% of gross premium. This is similar to reality where insurers let policy
holders pay for their acquisition costs. As the main part of the volatility is caused by forward stock volatility, the
premium payments in the first years are contributing most. Because of the acquisition costs therelativeeffect of the
earlier premium payments decreases and hence volatility decreases.

For a contract with a maturity of 10 years, in the BSHW model the convexity correction is 40 volatility basis
points on a volatility of 14.4%. For a contract with maturity 30 (very common in the context of pension funds) this
is even higher at 171 vol. bp. (1.71%) on a volatility of 19.7%. When we use the LMM, the convexity correction
is 29 vol. bp for a contract with a 10 year maturity. These numbers are not surprising since convexity correction is
a second order effect. It remains important however since insurers are working with large portfolios and the effect
increases with maturity. To illustrate this let us consider an insurance portfolio of 250,000 policies with an average
premium of $1000 a year and a maturity guarantee of 3%. Let the maturities (of 6 to 10 years) be equally distributed
over the policies. The convexity correction amounts to a difference in reserve/Fair Value of 3.2% or $2,600,000.–.

A comparison of implied volatilities for LMM and Hull–White results is given inFig. 2. On the horizontal
axis is the maturity of the contract. Although forward bond volatility is higher in the LMM, the effect of stochastic
interest rates is higher in the HW model. Due to faster decorrelation20 between forward LIBOR rates (see correlation
parameterization of LMM model), and hence forward bond prices, both forward bondcovariance and thecovariance
between forward bond and forward stock price are lower in the LMM based model for long maturities. This implies
considerable overpricing for long maturities by the HW model. This effect becomes more pronounced with increasing
maturity of the contract. However due to higher volatility of short term forward bonds we have underpricing of
the BSHW model for short maturities.Table 1shows the percentage difference of the convexity correction of the
BSHW model compared with LMM based results for different contract maturities. It shows that the BSHW model

20 This decorrelation is fast in comparison with the Hull–White setting in which all rates are perfectly correlated.
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Fig. 2. Volatility for guarantees, percentage points, in regular premium contract for different maturities. The straight line represents the implied
volatility with the convexity correction based on the LMM. The boxed line represents the volatility without the convexity correction. For
completeness, the line with plusses is the volatility based on the BS-HW model.

Table 1
Percentage differences between convexity corrections based on the BSHW model and the LMM

Maturity Percentage difference (%) Maturity Percentage difference (%)

3 −56 7 11
4 −39 8 22
5 −20 9 32
6 −3 10 38

For short maturities the BSHW model underestimates the effect of stochastic interest rates, for long maturities the effect is overestimated.

underprices contracts with short maturity, illustrated by the low convexity correction compared with LMM and
overprices long maturity contracts, illustrated by the high convexity correction compared with LMM.21

We stress that effects of using the LMM are similar for the pricing bounds both qualitatively and quantitatively (see
Table 3). However the advantage of the Levy approximation is that we can explain and interpret these differences. We
can directly see the effect of bond volatility and correlation in (19). Using the methods ofSection 6the explanation
is hidden behind an involved procedure.

In Table 2we present results for guarantee prices for the BSHW model in money terms and as a percentage
of discounted premiums for various contract lengths and guarantee levels, we letK = ∑n−1

i=0 P̃
(n)
i eR(T−ti). As we

would expect, prices increase with a higher guaranteed rate of return. The price of the guarantee increases with
maturity for guaranteed rate of 3% and 6%. For a guaranteed rate of 0% (essentially a “no-loss” guarantee) the price
decreases with maturity.

Results on the absolute and relative prices of the rate of return guarantee in the LMM framework discussed in
Section 6are presented inTable 3. We see that prices are lower than for the BSHW framework. This is due to reduced
convexity correction effect on the volatility. For contracts with a maturity of 10 years the percentage differences are,

21 We have experimented with a 2 factor Hull–White model but this leads to the same conclusions. The resulting model underprices short
maturity guarantees and overprices long maturity guarantees compared to the LMM.
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Table 2
Monte Carlo results, Levy approximation and price bounds for Rate of Return Guarantees in Regular Premium UL Insurance, BSHW model (1,000,000 paths,σs = 21.01%,
a = 0.0349,σr = 0.0116,ρ = −0.02)

Guarantee
level (%)

MC
price

MC s.e. % Net
Prem. (%)

Levy Levy error
(%)

RSLB RSLB error (%) THSTOCH THSTOCH+ THSTOCH+
error (%)

THDET THNAIVE RSUB RSUB+ RSUB+
error (%)

Contract maturity 5 years
0 13.10 0.03 3.89 13.60 3.86 12.94 −1.22 56.12 13.12 0.16 16.78 17.18 15.87 13.78 5.20
3 21.33 0.03 6.34 21.77 2.06 21.14 −0.91 73.15 21.30 −0.13 25.72 28.15 24.07 22.21 4.14
6 32.87 0.04 9.77 33.17 0.90 32.65 −0.68 93.12 32.81 −0.20 37.79 39.74 35.59 33.96 3.31

Contract maturity 10 years
0 19.42 0.04 3.17 21.79 12.18 19.00 −2.20 279.67 19.68 1.34 26.74 27.35 31.34 20.23 4.13
3 40.31 0.07 6.58 42.80 6.17 39.71 −1.50 379.11 40.34 0.06 50.19 51.30 52.05 41.53 3.03
6 76.27 0.10 12.45 78.30 2.66 75.48 −1.03 502.16 76.21 −0.08 88.11 90.69 87.83 78.08 2.38

Contract maturity 20 years
0 20.00 0.05 2.15 27.93 39.65 19.47 −2.65 855.07 21.49 7.42 28.75 29.82 91.31 20.89 4.44
3 60.19 0.10 6.46 71.13 18.16 59.03 −1.93 1363.86 60.74 0.90 74.85 80.27 130.87 62.30 3.50
6 156.50 0.18 16.80 168.03 7.37 154.36 −1.36 2130.18 157.44 0.60 176.77 194.61 226.20 162.38 3.76

Contract maturity 30 years
0 15.98 0.04 1.48 27.73 73.57 15.55 −2.69 1169.22 18.71 17.13 23.24 24.06 230.89 16.99 6.34
3 64.09 0.10 5.93 83.73 30.65 62.75 −2.09 2248.70 65.37 2.01 78.61 87.53 278.09 67.64 5.54
6 216.09 0.23 19.99 240.93 11.49 212.62 −1.61 4290.09 219.25 1.46 238.80 270.34 427.96 229.81 6.35
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Table 3
Levy approximation, Rogers and Shi lower and extended upper bound for Rate of Return Guarantees in Regular Premium UL insurance LMM
consistent pricing

Guarantee level (%) Levy (LMM) vs. BSHW (%) RSLB (LMM) (%) vs. BSHW RSUB+ (LMM) vs. BSHW (%)

Contract maturity 5 years
0 13.58 −0.19 12.95 0.11 13.78 −0.02
3 21.74 −0.14 21.15 0.05 22.20 −0.04
6 33.14 −0.10 32.66 0.02 33.94 −0.05

Contract maturity 10 years
0 20.61 −5.43 18.15 −4.45 19.33 −4.44
3 41.14 −3.88 38.42 −3.25 40.21 −3.18
6 76.22 −2.65 73.78 −2.26 76.39 −2.16

Table 4
Relative prices (as a percentage of discounted premiums) of rate of return guarantees for Single Premium contracts (rows 1 and 2) and regular
premium contracts with a guaranteed amount on every invested premium (rows 3 and 4)

Maturity (year) Guaranteed rate (%)

0 (%) 3 (%) 6 (%)

5 4.6 8.4 14.1
10 2.8 7.4 16.8
5 4.6 7.0 10.4

10 5.2 9.9 18.1

−5.43%,−3.88% and−2.65%, for guarantee levels of 0%, 3% and 6% respectively. In line with results inTable 1
the overpricing is highest for the lowest guarantee levels (which are of greater importance in practice).

To find out how these prices compare with those of other rate of return guarantees, we compared with single
premium contracts and regular premium contracts with a guaranteed amount on every invested premium. In the latter
case, the guarantee is a sum of forward starting put options. The prices of these forward starting put options can be
calculated using the techniques ofSection 4. We calculated prices using the convexity correction approach based
on the LMM. Since all prices are relative to the amount invested, we only present relative prices. The results are
shown inTable 4. We see that for both single premium contracts and regular premium contracts with a guaranteed
amount on every invested premium, prices are higher than for the contract analyzed in this paper. This is because
the possibility of averaging out losses over the lifetime of the contract is eliminated for the former two contracts.
For single premium contracts the price is higher because the total amount is subject to forward stock volatility for
the whole maturity. For regular premium contracts the invested premium is only subject to stock volatility for the
remaining maturity after premium payment.

We conclude that the convexity correction on the volatility derived inSection 4is important in the context of
pricing insurance liabilities. This effect is especially important for contracts with long maturities. Furthermore, it
seems that a one factor model interest rate model tends to overestimate prices. We recommend guarantee pricing
based on the LMM approach suggested inSection 5or some other multi-factor model.

9. Conclusion

In recent years Unit Linked insurance has become a more prominent part of life insurance business. Hence it is of
interest to be able to price guarantees in these products. Our results can be used to price and hedge guarantees without
making restrictive assumptions about the stochastic processes of the underlying instruments. We have derived, using
Change of Numeraire techniques, a general pricing formula for Rate of Return Guarantees in a Regular Premium
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Unit Linked Insurance contract. We show the guarantee is equivalent to a put option on some stochastically weighted
average of the stock price at maturity. Furthermore, we derive some results on and discuss the analogy of the guarantee
with Asian options. The main contribution of our paper focusses on the effect of stochastic interest rates. In the
context of the Levy approximation we derive general expressions for this effect and show it has the interpretation
of a convexity correction. We show how we can obtain guarantee prices in accordance with the popular LIBOR
Market Model. This enables one to find prices of the guarantee which are consistent with both observed stock
option prices and observed cap and swaption prices. We extend earlier results on pricing bounds of Asian options
to UL Guarantees and stochastic interest rates. Numerical results show non-negligible prices of guarantees. This
also illustrates the importance of the convexity correction arising from stochastic interest rates. We also find a one
factor interest rate model overestimates prices in comparison with LMM consistent pricing. Overpricing increases
with the maturity of the contract and is highest for guarantee levels most relevant to the industry.
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Appendix A. Change of Numeraire and convexity correction

In a complete and arbitrage-free market the unique value of any financial claim equals the expectation of the
payoff normalized by the money market account under some equivalent measure,Harrison and Kreps (1979),
Harrison and Pliska (1981). Since under this intended probability measure the expected return on all assets equals
the risk free rate, the probability measure is termed the Risk Neutral measure, denoted here byQ, and expectation
with respect to this measure is called Risk Neutral expectation. In this context, the normalizing asset (in these
papers the money market account) is called theNumeraire. Geman et al. (1995)show how not only the money
market account, but every strictly positive self-financing portfolio of traded assets, can be used as a numeraire.
Their Change of Numeraire theorem shows how an expectation under a probability measureQN associated with
numeraireN is related to an expectation under an equivalent probability measureQM associated with numeraireM.
As a by-product all normalized assets are martingales under the probability measure associated with the numeraire.
To be more specific their theorem states that in a complete and arbitrage-free market, for any numerairesN andM
with associated measuresQN andQM respectively, the following holds for the price of an assetH at timet,

H(t) = N(t)EN
t

[
H(T )

N(T )

]
= M(t)EM

t

[
H(T )

M(T )

]
(A.1)

WhereEN
t , EM

t denotes expectation conditional on the information available at timet underQN andQM respec-
tively. The Radon-Nikodym derivative associated with a Change of Measure fromQN to QM is given by,

dQM

dQN
= M(T )/M(t)

N(T )/N(t)
(A.2)

Hence if the price of an asset with payoffH(T ), known at timeT, can be calculated by taking a Risk-Neutral
expectation, it can be equivalently and sometimes more conveniently calculated by changing numeraires.

Many (particular interest rate) derivatives can be characterized asexoticEuropean options. This means that the
price of the option is determined by the joint distribution of a few relevant interest rates at one point in time. A
possible approach in the case of interest rates is to specify a full (multi-factor) model, estimate the parameters and
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calculate the price, possibly analytic or otherwise by numerical techniques like Monte Carlo simulation. The danger
of this approach is that it can lead to very unrealistic correlation structures between the relevant rates (seeRebonato,
1998Chapter 3 and 1999). Contrary to this approach convexity correction focuses the modelling as closely as
possible on the problem at hand. Of the joint distribution of the relevant rates, the marginal distributions are
almost always taken lognormal, hence the joint distribution is characterized by the marginals and some correlation
parameter(s). In this paper we use the idea of convexity correction to interpret our results on the pricing of Rate
of Return Guarantees. The application of this idea to stock options is a novelty in the literature. This leads (under
weak assumptions) to a very interpretable expression of the implied volatility to use in the Levy approximation
for which expressions are derived in section 5. An introductory example applying the ideas of convexity correction
to the pricing of a displaced LIBOR payment, the so called LIBOR in arrears payment, can be found inPelsser
(2003). An example of how convexity correction arises in the pricing of an Arithmetic Asian option is given in
Appendix C. This already hints at the approach we take to determine the value of the guarantee. For more on
convexity correction seePelsser (2003)and the references therein.

Appendix B. Proofs

First we show that:

n−1∑
i=0

Pi
ST

Sti
=

n−1∑
i=0

P̃
(n)
i

ST

Sti
(B.1)

where, Pi = GPi − FCi − ci
∑i−1

j=0PjSti/Stj , i > 1, P0 = GP0 − FC0 = NP0 and P̃
(n)
i = NPi ·

∏n−i−1
j=1 (1 −

cn−j), i = 0, . . . , n− 1. This implies in particular that̃P (n)
n−1 = NPn−1 andP̃ (n)

i = P̃
(n−1)
i (1 − cn−1), i = 0, . . . , n−

2.
To prove this we first show it holds forn = 1,

1−1∑
i=0

Pi
St1

Sti
= NP0

St1

Sti
=

1−1∑
i=0

P̃
(1)
i

St1

Sti
(B.2)

Now we show, given the relationship (B.1.) holds forn− 1, it holds forn. We have, usingPi = GPi − FCi −
ci

∑i−1
j=0PjSti/Stj ,

n−1∑
i=0

Pi
ST

Sti
=

n−1∑
i=0

Pi
Stn

Sti
= NPn−1

Stn

Stn−1

+ Stn

Stn−1

(1 − cn−1)
n−2∑
i=0

Pi
Stn−1

Sti
(B.3)

since, by assumption, (B.1.) holds forn− 1,
∑n−2

i=0 PiStn−1/Sti = ∑n−2
i=0 P̃

(n−1)
i Stn−1/Sti , hence,

n−1∑
i=0

Pi
Stn

Sti
= P̃

(n)
n−1

Stn

Stn−1

+
n−2∑
i=0

P̃
(n−1)
i (1 − cn−1)

Stn

Sti
(B.4)

n−1∑
i=0

Pi
Stn

Sti
= P̃

(n)
n−1

Stn

Stn−1

+
n−2∑
i=0

P̃
(n)
i

Stn

Sti
(B.5)

n−1∑
i=0

Pi
Stn

Sti
=

n−1∑
i=0

P̃
(n)
i

ST

Sti
(B.6)
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This proves (B.1.) by induction.
Second, we give the proof ofLemma 3.

Proof. For t ≤ ti ≤ tj, using the Tower Law of conditional expectation as inTheorem 2, we have

E
QT

t

[
S2
T

StiStj

]
= E

QT

t

[
1

Sti
E

QT

ti

[
1

Stj
E

QT

tj
[S2

T ]

]]
(B.7)

now from (16) we obtain for the last part of this expression,

E
QT

tj
[S2

T ] = E
QT

tj
[(FT

T )2] = (FT
tj

)2 exp

(∫ T

tj

σ2
F (u) du

)

Continuing we obtain,

E
QT

t

[
S2
T

StiStj

]
= exp

(∫ T

tj

σ2
F (u) du

)
E

QT

t

[
1

Sti
E

QT

ti

[
1

Stj
(FT

tj
)2
]]

= exp

(∫ T

tj

σ2
F (u) du

)
E

QT

t

[
1

Sti
E

QT

ti

[
FT
tj
DT (tj, tj)

]]
(B.8)

Now bothFT
t andDT (t, tj) are martingales under theT-forward measure, using the solutions to (16) and (17) gives,

E
QT

ti
[FT

tj
DT (tj, tj)] = FT

ti
DT (ti, tj) exp

(∫ tj

ti

ρF,j(s)σF (s)σj(s) ds

)
(B.9)

Plugging this expression in (B.8.) gives,

E
QT

t

[
S2
T

StiStj

]
= exp

(∫ T

tj

σ2
F (u) du

)
exp

(∫ tj

ti

ρF,j(s)σF (s)σj(s) ds

)
E

QT

t

[
1

Sti
FT
ti
DT (ti, tj)

]

= exp

(∫ T

tj

σ2
F (u) du

)
exp

(∫ tj

ti

ρF,j(s)σF (s)σj(s) ds

)
E

QT

t

[
DT (ti, ti)D

T (ti, tj)
]

(B.10)

Again using (17), we obtain,

E
QT

t [DT (ti, ti)D
T (ti, tj)] = DT (t, ti)D

T (t, tj) exp

(∫ ti

t

ρij(s)σi(s)σj(s) ds

)
(B.11)

This gives the desired result. �

Appendix C. Arithmetic stock price average

In this appendix we are concerned with the expectation of the arithmetic average of the stock price assuming
stochastic interest rates under theT-Forward measure. We encounter this in the calculation of the price of an Asian
option. The time zero price of an arithmetic Asian option maturing at timeT, strikeK, with the average taken over
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the time pointsti, i = 1, . . . , n, tn = T is given by,

VAsian(t) = D(t, T )EQT

t

[(
n∑
i=1

Sti −K

)+]
(C.1)

If one would use the Levy approximation to calculate this price one would first be interested inE
QT

t

∑n
i=1 Sti .

This problem is not more difficult than the calculation ofE
QT

t Sti for i < n. This is very similar to the problem
of pricing LIBOR in arrears, but in this case we are dealing with a ‘displaced’ stock price (a stock price at a
time point which doesn’t correspond to the forward measure under which the expectation is taken). Observe that
bothFti

t ≡ St/D(t, ti) andDti (t, T ) ≡ D(t, T )/D(t, ti) are martingales under theti-Forward measure. The convexity
correction approach to this valuation problem is to assume bothti-Forward stock andti-Forward bond prices with
maturityT have volatilities,σF andσT respectively, which are deterministic functions of time. This implies both
forward stock and forward bond prices are lognormal. Also assumeti-forward stock andti-forward bond (maturity
T) prices are correlated with correlationρF,T . Use the Change of Numeraire theorem, the martingale property and
the assumption of lognormality, in the given order, to obtain,

EQT

[Sti ] = D(0, ti)

D(0, T )
EQti

[
Sti

D(ti, T )

D(ti, ti)

]
= D(0, ti)

D(0, T )

S0

D(0, ti)

D(0, T )

D(0, ti)
exp

(∫ ti

0
ρF,T (s)σF (s)σT (s) ds

)
= F

ti
0 exp

(∫ ti

0
ρF,T (s)σF (s)σT (s) ds

)
(C.2)

or assuming volatilities and correlation constant,

EQT

[Sti ] = F
ti
0 exp(ρF,T σFσT ti) (C.3)

So the expected stock price is the forward stock price times some convexity correction. The advantages of using
convexity correction techniques are clear. The determinants of the price can be seen from the formulas in an eyesight
and the price can be written in terms of readily observable implied volatilities. The volatilities can be taken from
implied stock option volatility and cap or swaption volatility (as we have shown inSection 7). The correlation can
be obtained from timeseries data.

Now if we consider a Black–Scholes Hull–White model and observing that in a model in which the short rate
follows a Hull and White model the volatility ofDti (t, T ) equals−σr[B(t, T ) − B(t, ti)] (seeSection 6) it follows
that the expectation of the ‘displaced’ stock price equals,

EQT

[Sti ] = S0

D(0, ti)
exp

{
−σ2

r

∫ ti

0
B(s, T )B(s, ti) ds + σ2

r

∫ ti

0
B2(s, ti) ds

+ ρσSσr

∫ ti

0
B(s, ti) − B(s, T ) ds

}
(C.4)

Comparing with (C.2) and (C.3) we can interpret these integrals in (C.4) as the quadratic covariance of ln(F
ti
t ) and

ln(Dti (t, T )). This is completely in line with the results inNielsen and Sandmann (1996a,b).
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