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INSTANTANEOUS MEAN-VARIANCE HEDGING AND SHARPE RATIO

PRICING IN A REGIME-SWITCHING FINANCIAL MODEL

Łukasz Delong1 and Antoon Pelsser2
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� We study hedging and pricing of claims in a non-Markovian regime-switching financial model.
Our financial market consists of a bank account and a risky asset whose dynamics are driven by
a Brownian motion and a multivariate counting process with stochastic intensities. The counting
process is used to model the switching behavior for the states of the economy. We assume that the
trajectory of the risky asset is continuous between the transition times for the states of the economy
and that the value of the risky asset jumps at the time of the transition. We find the hedging strategy
that minimizes the instantaneous mean-variance risk of the hedger’s surplus, and we set the price
so that the instantaneous Sharpe ratio of the hedger’s surplus equals a predefined target. We discuss
key properties of our optimal price and optimal hedging strategy.

Keywords Backward stochastic differential equations; Counting process; Instantaneous
mean-variance risk; Instantaneous Sharpe ratio; Model ambiguity; No-good-deal pricing.

Mathematics Subject Classification 49N90; 60H30.

1. INTRODUCTION

Pricing and hedging in incomplete markets is the most important subject
in the financial literature. Despite numerous papers, there is still a need
to develop new pricing and hedging methods and to derive prices and
hedging strategies in realistic financial models. In this article, we focus on
instantaneous mean-variance hedging and Sharpe ratio pricing of claims in
a regime-switching financial model.

Empirical studies show that regime-switching models can explain em-
pirical behaviors of many economic and financial data, especially the long-
term behavior of these data; see Hamilton[18], Hardy[19], and Mamon and
Elliott[24]. The rationale behind the regime-switching framework is that the
financial market may switch between a low-volatility state and a high-volatility
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68 Delong and Pelsser

state, or even between more states representing the conditions of the econ-
omy. The switching behavior for the states of the financial market can be
attributed to structural changes in economic conditions and changes in
business environments. It is clear that there are significant fluctuations in
economic variables over a long period of time. Hence, the switching be-
havior of the states of the financial market (the states of the economy)
should be particulary incorporated in models used for valuation of long-
term derivatives. We point out that the use of regime-switching models has
been recommended by the American Academy of Actuaries and the Cana-
dian Institute of Actuaries for valuation of long-term financial guarantees
embedded in insurance contracts.

In this article, we consider a non-Markovian regime-switching financial
model. The dynamics of a bank account and a risky asset are driven by a
Brownian motion and a multivariate counting process with stochastic inten-
sities. The interest rate, drift, volatility, and intensities fluctuate over time,
and, in particular, they depend on the state (regime) of the economy, which
is modeled by the multivariate counting process. We assume that the tra-
jectory of the risky asset is continuous between the transition times for the
states of the economy and that the value of the risky asset jumps at the tran-
sition time. Such a dynamics of the risky asset clearly agrees with the idea
of the switching behavior for the financial market. Since we use stochastic
transition intensities, we can model an effect in which not only the stock
price is affected by the transitions between the states of the economy but
also the stock price determines the transition intensities; see Elliott et al.[17]

for a financial motivation of a so-called feedback effect. The goal is to price
and hedge unattainable contingent claims in our general regime-switching
financial model.

Pricing and hedging in regime-switching models have gained a lot of
interest in the literature; see Donnelly and Heunis[14], Elliott et al.[17],
Elliott et al.[16], Elliott et al.[15], Siu et al.[28], Siu[29], and Wu and Li[30],
where risk minimization, quadratic hedging, multi-period Markowitz opti-
mization, and the Esscher transform are applied. In this article we use a
different pricing and hedging objective, and we investigate instantaneous
mean-variance hedging and Sharpe ratio pricing. We should point out that
in this article we, in fact, consider three pricing and hedging approaches:
instantaneous mean-variance hedging and Sharpe ratio pricing, no-good-
deal pricing, and pricing and hedging under model ambiguity, which are
equivalent under proper specification.

Bayraktar and Young[2], Young[31], and Bayraktar et al.[3] were the first
to apply instantaneous variance hedging and Sharpe ratio pricing. They
find the hedging strategy that minimizes the instantaneous variance (the
quadratic variation) of the surplus (the difference between the hedging
portfolio and the price of a claim) and set the price so that the instan-
taneous Sharpe ratio of the surplus equals a predefined target. Bayraktar
and Young[2] use this approach to price and hedge claims contingent on a
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Regime-Switching Financial Model 69

non-tradeable financial risk, and Bayraktar et al.[3], and Young[31] use this
approach to price stochastic mortality risk in insurance models. Interestingly,
the authors show the equivalence between the local variance minimization
under the Sharpe ratio constraint and no-good-deal pricing, which was pop-
ularized by Cochrane and Saá-Requejo[8] and Björk and Slinko[6]. Leitner[22]

deals with an infinitesimal mean-variance risk measure of the surplus and
a robust expectation of the terminal surplus under model ambiguity. He
finds the hedging strategies that minimize both risk measures and the prices
that make the risk measures vanish. Leitner[22] shows that both strategies
and prices coincide in a diffusion model with a non-tradeable risk factor.
Finally, Delong[11] considers a general combined financial and insurance
model. He derives the optimal hedging strategy and the optimal price by
minimizing the infinitesimal mean-variance risk measure of the surplus and
by setting the infinitesimal Sharpe ratio of the surplus at a predefined level.
Delong[11] also shows that the optimal strategies coincide with the strategies
derived under no-good-deal pricing and pricing and hedging under model
ambiguity. We point out that none of the above papers covers the case of a
regime-switching financial market. We are aware that Donnelly[13] finds a no-
good-deal price of a contingent claim in a regime-switching financial model.
However, she considers a Markovian dynamics of the stock without jumps
and without the feedback effect of the stock on the transition intensities. She
also does not investigate the optimal hedging strategy that can be derived
by using instantaneous mean-variance hedging or hedging under model
ambiguity. Consequently, to the best of our knowledge the complete char-
acterization of the optimal price and the optimal hedging strategy under
instantaneous mean-variance hedging and Sharpe ratio pricing (no-good-
deal pricing and robust pricing and hedging under model ambiguity) in a
general non-Markovian regime-switching model is still missing. This article
fills this gap. We would like to point out that for the first time we derive
the optimal price and the optimal hedging strategy under the instantaneous
mean-variance hedging and the instantaneous Sharpe ratio pricing objective
in a general non-Markovian regime-switching financial model with the stock
the value of which changes in a discontinuous way at the transition times
and with the feedback effect under which the stock affects the transition
intensities.

We apply backward stochastic differential equations (BSDEs) to solve
our optimization problems. For a theory of BSDEs, we refer to Crépey[10]

and Delong[12]. We remark that our mathematical techniques are similar
to the one used in Delong[11]. However, some non-trivial modifications are
introduced since our stock price dynamics is not continuous. We characterize
the optimal price and the optimal hedging strategy with a unique solution
to a nonlinear, Lipschitz BSDE with jumps. It is known that a measure
solution (an arbitrage-free representation of the price) may not exist and a
comparison principle (monotonicity of the pricing operator) may fail for a
BSDE with jumps; see Barles et al.[1], Royer[27], Delong[11], and Delong[12].
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70 Delong and Pelsser

However, we provide a simple, new condition under which the optimal
price (the solution to the BSDE with jumps) is arbitrage-free and monotone
with respect to the terminal claim and the Sharpe ratio. We also interpret
the optimal hedging strategy as a delta-hedging strategy with a correction
term reflecting the use of the expected profit requirement in the hedging
objective.

This article is structured as follows. In Section 2, we introduce the regime-
switching financial model. In Section 3, we describe our pricing and hedging
approach, and we provide an additional motivation for the instantaneous
mean-variance hedging and Sharpe ratio pricing by giving a link to no-good-
deal pricing and robust pricing and hedging under model ambiguity. In
Section 4, we solve our optimization problem. Key properties of the optimal
hedging strategy and the optimal price are investigated in Section 5. A
numerical example is discussed in Section 6.

2. THE REGIME-SWITCHING FINANCIAL MODEL

We deal with a probability space (�,F,P) with a filtrationF = (Ft)0≤t≤T
and a finite time horizon T < ∞. We assume that F satisfies the usual
hypotheses of completeness (F0 contains all sets of P-measure zero) and
right continuity (Ft = Ft+). On the probability space (�,F,P), we define
an F -adapted Brownian motion W = (W (t), 0 ≤ t ≤ T) and an F -adapted
multivariate counting process N = (N1(t), ...,NI (t), 0 ≤ t ≤ T).

We consider an economy that can be in one of I states (regimes) and
switches between those states randomly. For i = 1, ..., I , the counting process
Ni counts the number of transitions of the economy into the state i. We
assume that

(A1) the counting process Ni has intensity λi (t) where λi : �× [0,T] →
[0,∞) is an F -predictable, bounded process.

Consequently, the compensated counting process

Ñi (t) = Ni (t) −
∫ t

0
λi (s)ds, 0 ≤ t ≤ T, i = 1, ..., I,

is an F -martingale; see Chapters XI.1 and XI.4 in He et al.[20]. We remark
that λi (t) is an intensity of the transition of the economy into state i at time t.
Furthermore, let J = (J (t), 0 ≤ t ≤ T) denote an F -adapted process which
indicates the current state of the economy. If the economy is in a regime
k ∈ {1, ..., I} at the initial point of time, then the dynamics of the process
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Regime-Switching Financial Model 71

J is given the stochastic differential equation

dJ (t) =
I∑

i=1

(i − J (t−))dNi(t), J (0) = k ∈ {1, ..., I}.

A time-homogeneous Markov process J arises if we choose λi (t) = λi (J (t−)).
The financial market consists of a risk-free bank account and a risky asset.

The dynamics of the risk-free bank account B = (B(t), 0 ≤ t ≤ T) is given
by the differential equation

dB(t)
B(t)

= r (t)dt, B(0) = 1, (2.1)

and the dynamics of the risky asset S = (S(t), 0 ≤ t ≤ T) is described by the
stochastic differential equation

dS(t)
S(t−)

= μ(t)dt + σ(t)dW (t) +
I∑

i=1

γi (t)dÑi (t), S(0) = 1. (2.2)

We assume that

(A2) r, μ, σ, (γi )i=1,...,I : �× [0,T] → R are F -predictable, bounded pro-
cesses such that there exists a unique solution S to (2.2). Moreover,

μ(t) ≥ r (t), 0 ≤ t ≤ T,

|δ(t)|2 = |σ(t)|2 +
I∑

i=1

|γi (t)|2λi (t) ≥ ε > 0, 0 ≤ t ≤ T,

γi (t) > −1, 0 ≤ t ≤ T, i = 1, ..., I .

These conditions are standard in financial modeling. The first condition
is clear. The second condition is a non-degeneracy condition for the volatil-
ity of the risky asset return. The third condition guarantees that the price
process S, which solves (2.2), is strictly positive; see Theorem 4.61 in Jacod
and Shiryaev[21]. We point out that we deal with a non-Markovian model.
All parameters of the model (2.1)–(2.2) are driven by the Brownian mo-
tion and the multivariate counting process. The interest rate, drift, volatility,
jump amplitudes, and intensities fluctuate, and they depend on the past and
current conditions of the economy and the financial market. Let us also
notice that if the economy remains in a state, then the dynamics of the risky
asset is continuous. However, if a transition into a different state occurs, then
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72 Delong and Pelsser

the value of the risky asset changes in a discontinuous way at the time of the
transition. In the sequel, we use the following notation for the instantaneous
variance of the risky asset return

|δ(t)|2 = |σ(t)|2 +
I∑

i=1

|γi (t)|2λi (t),

and for the instantaneous Sharpe ratio of the risky asset

θ(t) = μ(t) − r (t)
δ(t)

.

The most important and practically relevant example of the financial model
(2.1)–(2.2) arises when the coefficients r, μ, σ, γi depend only on the current
state of the economy and the intensities λi depend on the current state of the
economy and the current value of the risky asset. In that case we investigate
the dynamics

dB(t)
B(t)

= r (J (t−))dt,

dS(t)
S(t−)

= μ(J (t−))dt + σ(J (t−))dW (t) +
I∑

i=1

γi (J (t−))dÑi (t), (2.3)

where the counting process Ni has intensity λi (t) = λi (J (t−), S(t−)) and J
indicates the current state of the economy. Such a model is called a Markov-
regime-switching since (S, J ) is a Markov process. We remark that λi (t) =
λi (J (t−), S(t−)) denotes an intensity of the transition into state i at time t
given the economy is in state J (t−) and the stock price equals S(t−). The
dependence λi (t) = λi (J (t−), S(t−)) models the so-called feedback effect
in the market; see Elliott et al.[17] for a motivation. The complete probabilistic
description of regime-switching models can be found in Crépey[9].

3. INSTANTANEOUS MEAN-VARIANCE HEDGING AND SHARPE

RATIO PRICING

Let ξ be a contingent claim in the regime-switching financial market
(2.1)–(2.2) that has to be covered at time T . We are interested in finding a
hedging strategy and a price of the claim ξ .

Let π = (π(t), 0 ≤ t ≤ T) denote a hedging strategy, i.e., the amount of
wealth that is invested into the risky asset. We introduce the set of admissible
hedging strategies.
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Regime-Switching Financial Model 73

Definition 3.1. A strategy π := (π(t), 0 ≤ t ≤ T) is called admissible, written
π ∈ A, if it satisfies the conditions:

1. π : [0,T] ×� → R is an F -predictable process,
2. E

[ ∫ T
0

∣∣π(t)
∣∣2dt

]
< ∞.

The price of the claim is modeled as a solution to a BSDE. We assume
that the price process Y := (Y (t), 0 ≤ t ≤ T) of the claim ξ solves the BSDE

Y (t) = ξ +
∫ T

t

(− Y (s−)r (s) − f (s)
)
ds

−
∫ T

t
Z(s)dW (s) −

∫ T

t

I∑
i=1

Ui (s)dÑi (s), 0 ≤ t ≤ T, (3.1)

where f is the generator of the equation which has to be determined. The
assumption that the price solves a BSDE is reasonable. First of all, we can view
the price as a dynamic risk measure, so it should satisfy a BSDE; see Chapter
13 in Delong[12]. Second, if the price is calculated as the conditional expected
value of the discounted payoff under an equivalent probability measure, then
it satisfies a BSDE; see Chapters 3.3 and 3.4 in Delong[12]. Hence, our price
dynamics (3.1) with the generator f can be justified. If we decide on the form
of the generator f , then the price of the claim ξ can be defined. In order
to determine the generator f , we use instantaneous mean-variance hedging
and Sharpe ratio pricing.

First, we define the hedging portfolio. The dynamics of the hedging
portfolio X π := (X π(t), 0 ≤ t ≤ T) under an admissible hedging strategy
π ∈ A is given by the stochastic differential equation

dX π(t) = π(t)

(
μ(t)dt + σ(t)dW (t) +

I∑
i=1

γi (t)dÑi (t)

)

+(X π(t−) − π(t))r (t)dt,

X π(0) = x.

Next, we define the surplus process Sπ(t) = X π(t) − Y (t), 0 ≤ t ≤ T , which
models the profit or the loss of the hedger resulting from the past investment
and the future liability. The surplus process can also be called a hedging er-
ror. The dynamics of the surplus Sπ is described by the stochastic differential
equation

dSπ(t) = (π(t)(μ(t) − r (t)) + Sπ(t−)r (t)
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74 Delong and Pelsser

− f (t)
)
dt + (π(t)σ(t) − Z(t))dW (t)

+
I∑

i=1

(π(t)γi(t) − Ui (t))dÑi (t).

By standard properties of stochastic integrals—see Theorems II.20, 28, 29,
and 39 in Protter[26]—we can derive the expected infinitesimal return on
the surplus

E[dSπ(t) − Sπ(t−)r (t)dt |Ft−]

= π(t)(μ(t) − r (t))dt − f (t)dt, 0 < t ≤ T, (3.2)

and the expected infinitesimal quadratic variation of the surplus

E[d[Sπ , Sπ](t)|Ft−] = |π(t)σ(t) − Z(t)|2dt

+
I∑

i=1

|π(t)γi (t) − Ui (t)|2λi (t)dt, 0 < t ≤ T. (3.3)

Our goal is to find an admissible hedging strategy π ∈ A that minimizes the
instantaneous mean-variance risk of the surplus

ρ(Sπ) = L(t)
√

E
[
d[Sπ , Sπ](t)|Ft−

]
/dt

−(E[dSπ(t) − Sπ(t−)r (t)dt |Ft−
]
/dt
)
, (3.4)

for all t ∈ (0,T], and set the price of ξ (find the generator f of the BSDE
(3.1)) in such a way that the instantaneous Sharpe ratio of the surplus equals
a predefined target L, i.e.,

E
[
dSπ(t) − Sπ(t−)r (t)dt |Ft−

]
/dt√

E
[
d[Sπ , Sπ](t)|Ft−

]
/dt

= L(t), (3.5)

for all t ∈ (0,T]. As the result, the instantaneous mean-variance risk of the
surplus (3.4) under the optimal price and hedging strategy is set to zero.
The hedging and pricing objectives (3.4)–(3.5) are called the instantaneous
mean-variance hedging and Sharpe ratio pricing. We shall assume that

(A3) L is an F -predictable process such that L(t) ≥ θ(t) + ε, 0 ≤ t ≤ T, for
some ε > 0.
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Regime-Switching Financial Model 75

Since the Sharpe ratio of the surplus L is an F -predictable process, it
can depend on the economy and the financial market. In particular, the
hedger may use different Sharpe ratios in different states of the economy.
Such an assumption is important from the practical point of view since
investors have different profit expectations in a bull market and in a bear
market. We also require that the Sharpe ratio of the surplus is strictly greater
than the Sharpe ratio of the risky asset. Such an assumption is obvious since
the hedger trading ξ would require a Sharpe ratio L that is strictly greater
than the Sharpe ratio θ , which can be earned by simply investing in the
stock S.

Bayraktar and Young[2], Young[31], and Bayraktar et al.[3] have advo-
cated the instantaneous mean-variance hedging and Sharpe ratio pricing
for hedging and pricing financial and insurance risks. Let us remark that
the hedging and pricing objectives (3.4)–(3.5) are easy to communicate,
are based on the first two moments of the hedging error, are related to
the Markowitz portfolio selection problem, and involve a Sharpe ratio that
is well understood by investors. These four features already make the in-
stantaneous mean-variance hedging and Sharpe ratio pricing an appealing
method for pricing and hedging risks in incomplete markets. Interestingly,
the instantaneous mean-variance hedging and Sharpe ratio pricing can be
related to no-good-deal pricing and robust pricing and hedging under model
ambiguity.

It turns out that the price derived under the instantaneous Sharpe ratio
pricing (3.5) is equivalent to the price derived under no-good-deal pricing;
see Bayraktar et al.[3], Bayraktar and Young[2], Delong[11], and Young[31].
Hence, the theory of no-good-deal pricing gives us an additional justification
for the instantaneous mean-variance hedging and Sharpe ratio pricing. The
no-good-deal price of the claim ξ is defined as a solution to the following
optimization problem:

Y (t) = sup
(ψ,φ)∈Q

EQψ,φ[
e − ∫ T

t r (s)dsξ |Ft
]
, 0 ≤ t ≤ T, (3.6)

where Qψ,φ is an equivalent martingale measure. Under no-good-deal pric-
ing, we price a claim with a least favorable pricing measure from a set of
equivalent martingale measures. The set of equivalent martingale measures
is defined by the Radon-Nikodym derivative

dQψ,φ

dP

∣∣∣Ft = Mψ,φ(t), 0 ≤ t ≤ T, (ψ, φ) ∈ Q,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

aa
st

ri
ch

t]
 a

t 0
6:

14
 3

0 
Se

pt
em

be
r 

20
15

 



76 Delong and Pelsser

where

dMψ,φ(t)
Mψ,φ(t−)

= −ψ(t)dW (t) −
I∑

i=1

φi (t)dÑi (t), M(0) = 1, (ψ, φ) ∈ Q,

and

Q =
{
F − p r edic table p r oce s s e s (ψ, φ) = (ψ, φ1, ..., φI ) such that

|ψ(t)|2 +
I∑

i=1

|φi (t)|2λi (t) ≤ |L(t)|2,

ψ(t)σ(t) +
I∑

i=1

φi (t)γi (t)λi (t) = μ(t) − r (t),

φi (t) < 1, 0 ≤ t ≤ T, i = 1, ..., I
}
.

Let us briefly explain the conditions from the set Q. The third condition is
clear as it guarantees that Mψ,φ is strictly positive; see Theorem 4.61 in Jacod
and Shiryaev[21]. Recalling the Girsanov’s theorem—see Theorem 2.5.1 in
Delong[12]—we can derive the dynamics of the stock

dS(t)
S(t−)

= (μ(t) − ψ(t)σ(t) −
I∑

i=1

φi (t)γi (t)λi (t)
)
dt

+ σ(t)dW Qψ,φ

(t) +
I∑

i=1

γi (t)dÑ Qψ,φ

(t),

and we can observe that the second condition implies that the discounted
stock process is a Qψ,φ -martingale for any (φ,ψ) ∈ Q and Mφ,ψ defines a
set of equivalent martingale measures for the market (2.1)–(2.2). Finally, by
the Girsanov’s theorem and standard arguments for BSDEs—see Chapters
3.3 and 3.4 in Delong[12]—we deduce that any arbitrage-free price process
Y ψ,φ(t) = EQψ,φ

[e − ∫ T
t r (s)dsξ |Ft], 0 ≤ t ≤ T, (ψ, φ) ∈ Q, has the dynamics

dY ψ,φ(t) = Y ψ,φ(t−)r (t)dt + Zψ,φ(t)ψ(t)dt +
I∑

i=1

U ψ,φ

i (t)φi(t)λi (t)dt

+Zφ,ψ(t)dt +
I∑

i=1

U ψ,φ

i (t)dÑi (t),
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Regime-Switching Financial Model 77

Y ψ,φ(T) = ξ. (3.7)

We can derive the bound for the instantaneous Sharpe ratio of the arbitrage-
free price process Y ψ,φ of ξ :

∣∣∣∣∣E
[
dY ψ,φ(t) − Y ψ,φ(t−)r (t)dt |Ft−

]
/dt√

E
[
d[Y ψ,φ,Y ψ,φ](t)|Ft−

]
/dt

∣∣∣∣∣
=
∣∣Zψ,φ(t)ψ(t) +∑I

i=1 U ψ,φ

i (t)φi(t)λi (t)
∣∣√

|Zψ,φ(t)|2 +∑I
i=1 |U ψ,φ

i (t)|2λi (t)
,

≤
√√√√|ψ(t)|2 +

I∑
i=1

|φi (t)|2λi (t),

and we conclude that the first condition in Q implies that the instantaneous
Sharpe ratio of an arbitrage-free price process of the claim ξ is bounded
by L. The process L defines a so-called no-good-deal range in the financial
market, and it represents the bound on possible gains in the financial mar-
ket measured by the instantaneous Sharpe ratio. The existence of such a
maximal gain L is justified by empirical financial data; see Cochrane and
Saá-Requejo[8] and Björk and Slinko[6] for motivation. Hence, under the
no-good-deal pricing (3.6) we price the claim ξ with a least favorable pric-
ing measure under the Sharpe ratio constraint that excludes too high (and
unrealistic) gains that could be earned (but only theoretically) by writting
the contract with an arbitrary high price. We remark that by the least favor-
able pricing measure, we mean a measure that leads to the highest expected
payoff from the claim.

We solve the no-good-deal pricing problem (3.6) in Section 5.1, and we
observe the equivalence between (3.6) and the instantaneous Sharpe ratio
pricing (3.5).

The price and the hedging strategy derived under the instantaneous
mean-variance hedging and Sharpe ratio pricing (3.4)–(3.5) also coincide
with the price and the hedging strategy derived under robust pricing and
hedging under model ambiguity; see Leitner[22], Delong[11], and Pelsser[25].
The objective of robust pricing and hedging under model ambiguity gives us
another justification for using the objective of instantaneous mean-variance
hedging and Sharpe ratio pricing. Let us introduce a set that consists of
equivalent measures defined by the Radon-Nikodym derivative

dQψ,φ

dP

∣∣∣Ft = Mψ,φ(t), 0 ≤ t ≤ T, (ψ, φ) ∈ P,
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78 Delong and Pelsser

and

dMψ,φ(t)
Mψ,φ(t−)

= −ψ(t)dW (t) −
I∑

i=1

φi (t)dÑi (t), M(0) = 1, (ψ, φ) ∈ P,

P =
{
F − p r edic table p r oce s s e s (ψ, φ) = (ψ, φ1, ..., φI ) such that

|ψ(t)|2 +
I∑

i=1

|φi (t)|2λi (t) ≤ |L(t)|2,

φi (t) < 1, 0 ≤ t ≤ T, i = 1, ..., I
}
.

Clearly, Q ⊂ P . We now define the price and the hedging strategy as a
solution to the following robust optimization problem

Y (t) = inf
π∈A

sup
(ψ,φ)∈P

EQψ,φ
[

− (e − ∫ T
t r (s)ds X π(T) − X (t)

−e − ∫ T
t r (s)ds F

)∣∣Ft

]
, 0 ≤ t ≤ T. (3.8)

The set P represents different beliefs (different assumptions) about the
parameters or the evolution of the risk factors in our model. One way of
determining the set P for ambiguity modeling is to specify confidence sets
around the estimates of the parameters and to take for P the class of all
measures that are consistent with these confidence sets. Then the process
L can be interpreted as an estimation error. Alternatively, the elements of
P can be interpreted as prior models that describe probabilities of future
scenarios for the risk factors. Then the process L can define the range of
equivalent probabilities for every scenario. Hence, under the objective of
pricing and hedging under model ambiguity (3.8), we aim to find a hedging
strategy for the claim ξ that minimizes the expected shortfall in the terminal
surplus under a least favorable measure describing future scenarios, and we
price the claim ξ with a value that offsets this worst expected shortfall.

The equivalence between the instantaneous mean-variance hedging and
Sharpe ratio pricing (3.4)–(3.5) and the pricing and hedging under model
ambiguity (3.8) is not proved in this article. Details can be obtained from
the authors upon request. We remark that the proof of the equivalence
can be established by modifying the steps of the proofs from Becherer[5],
Delong[11], and Chapter 12.1 in Delong[12].

Let us point out that the theories of no-good-deal pricing and pricing and
hedging under model ambiguity provide us with additional interpretations
of the Sharpe ratio coefficient L that is used in our mean-variance objective.
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Regime-Switching Financial Model 79

4. THE OPTIMAL PRICE AND THE OPTIMAL HEDGING STRATEGY

We characterize the optimal hedging strategy and the optimal price pro-
cess that solve (3.4)–(3.5) with a solution to a BSDE. In order to use the
theory of BSDEs, we assume that the weak property of predictable repre-
sentation holds; see Proposition 7.5 in Crépey[9] and Chapter XIII.2 in He
et al.[20], i.e.,

(A4) every (P,F) local martingale M has the representation

M(t) = M(0) +
∫ t

0
Z(s)dW (s) +

∫ t

0

I∑
i=1

Ui (s)dÑi (s) 0 ≤ t ≤ T,

with F -predictable processes (Z,U1, ...,UI ) which are integrable in the Itô
sense.

This assumption is satisfied if we define the probability space and the
driving processes in an appropriate way; see Becherer[4] and Crépey[9].

We present the main theorem of this article.

Theorem 4.1. We investigate the instantaneous mean-variance hedging and
Sharpe ratio pricing (3.4)–(3.5) of the claim ξ . Let ξ be an F -measurable claim
such that E[|ξ |2] < ∞, and assume that (A1)–(A4) hold. Consider the BSDE

Y (t) = ξ +
∫ T

t

(
−Y (s)r (s) − Z(s)σ(s) +∑I

i=1 Ui (s)γi (s)λi (s)
δ(s)

θ(s)

+
√

|L(s)|2 − |θ(s)|2

×
√√√√|Z(s)|2 +

I∑
i=1

|Ui (s)|2λi (s) − |Z(s)σ(s) +∑I
i=1 Ui (s)γi (s)λi (s)|2
|δ(s)|2

⎞
⎠ ds

−
∫ T

t
Z(s)dW (s) −

∫ T

t

I∑
i=1

Ui (s)dÑi (s), 0 ≤ t ≤ T, (4.1)

with its unique solution (Y,Z ,U1, ...,UI ). The optimal admissible hedging strategy
π∗ ∈ A for ξ is of the form

π∗(t) = Z(t)σ(t) +∑I
i=1 Ui (t)γi (t)λi (t)

|δ(t)|2

+ θ(t)

δ(t)
√

|L(t)|2 − |θ(t)|2
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80 Delong and Pelsser

×
√√√√|Z(t)|2 +

I∑
i=1

|Ui (t)|2λi (t) − |Z(t)σ(t) +∑I
i=1 Ui (t)γi (t)λi(t)|2
|δ(t)|2 ,

0 ≤ t ≤ T, (4.2)

and the price process of ξ is given by Y.

Proof. Step 1) First, we find the optimal solution to our optimization problem
(3.4). By (3.2) and (3.3), we have to find a minimizer of the function

h(π) = L

√√√√|πσ − z|2 +
I∑

i=1

|πγi − ui |2λi − π(μ− r ).

Since (A3) holds, then limπ→+∞ h(π) = +∞ and limπ→−∞ h(π) = +∞.
Consequently, there exists an odd number of extreme points of h and at
least one minimizer of h. We can notice that the function h is differentiable
everywhere, except at π = z

σ
if z
σ

= ui
γi

. Hence, let us find stationary points of
h by solving the equation

0 = h′(π) = L
(πσ − z)σ +∑I

i=1(πγi − ui )γiλi√
|πσ − z|2 +∑I

i=1 |πγi − ui |2λi

− (μ− r ). (4.3)

Given that the stationary point π must satisfy

0 ≤ (πσ − z)σ +
I∑

i=1

(πγi − ui )γiλi = π

(
σ 2 +

I∑
i=1

γ 2
i λi

)
− zσ −

I∑
i=1

uiγiλi ,(4.4)

we end up with the quadratic equation

(μ− r )2

L2

(
|πσ − z|2 +

I∑
i=1

|πγi − ui |2λi

)
=
∣∣∣∣∣(πσ − z)σ +

I∑
i=1

(πγi − ui )γiλi

∣∣∣∣∣
2

,

which after easy, but tedious, calculations reduces to

π2
(
σ 2 +

I∑
i=1

γiλi

)((
μ− r

L

)2

− σ 2 −
I∑

i=1

γiλi

)

+2π

(
zσ +

I∑
i=1

uiγiλi

)(
σ 2 +

I∑
i=1

γiλi −
(
μ− r

L

)2
)
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Regime-Switching Financial Model 81

+
(
μ− r

L

)2
(

z2 +
I∑

i=1

u2
i λi

)
−
(

zσ +
I∑

i=1

uiγiλi

)2

= 0. (4.5)

We can calculate

� = 4

(
σ 2 +

I∑
i=1

γ 2
i λi −

(
μ− r

L

)2
)(

μ− r
L

)2
(
σ 2 +

I∑
i=1

γ 2
i λi

)
·

(
z2 +

I∑
i=1

u2
i λi − (zσ +∑I

i=1 uiγiλi )2

σ 2 +∑I
i=1 γ

2
i λi

)
,

and we obtain that the quadratic equation (4.5) has two roots

π∗
1 = zσ +∑I

i=1 uiγiλi

σ 2 +∑I
i=1 γ

2
i λi

+ μ− r(
σ 2 +∑I

i=1 γ
2
i λi
)√

L2 − (μ−r )2

σ 2+∑I
i=1 γ

2
i λi

√√√√√z2 +
I∑

i=1

u2
i λi −

(
zσ +∑I

i=1 uiγiλi

)2

σ 2 +∑I
i=1 γ

2
i λi

,

π∗
2 = zσ +∑I

i=1 uiγiλi

σ 2 +∑I
i=1 γ

2
i λi

− μ− r(
σ 2 +∑I

i=1 γ
2
i λi

)√
L2 − (μ−r )2

σ 2+∑I
i=1 γ

2
i λi

√√√√√z2 +
I∑

i=1

u2
i λi −

(
zσ +∑I

i=1 uiγiλi

)2

σ 2 +∑I
i=1 γ

2
i λi

.

It is straightforward to check that only π∗
1 satisfies (4.4). By the properties

of h, we can now conclude that π∗
1 is the unique minimizer of the function

h. From (3.5) we immediately deduce that the optimal generator f ∗ of the
BSDE is given by the formula

f ∗ = π∗
1 (μ− r ) − L

√√√√|π∗
1σ − z|2 +

I∑
i=1

|π∗
1γi − ui |2λi ,

and recalling (4.3), we derive

f ∗ = π∗
1 (μ− r ) − L2

μ− r

(
(π∗

1σ − z)σ +
I∑

i=1

(π∗
1γi − ui )γiλi

)
.

Substituting π∗
1 , we obtain the generator of our BSDE.
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82 Delong and Pelsser

Step 2) We prove the existence of a unique solution to the BSDE (4.1).
We can notice that the strategy

π̃∗(t,Z(t),U (t)) = Z(t)σ(t) +∑I
i=1 Ui (t)γi (t)λi (t)

|δ(t)|2 , (4.6)

is the unique minimizer of the quadratic variation of the surplus (3.3), and
we have

√√√√|π̃∗(t,Z(t),U (t))σ(t) − Z(t)|2 +
I∑

i=1

|π̃∗(t,Z(t),U (t))γi (t) − Ui (t)|2λi (t)

=
√√√√|Z(t)|2 +

I∑
i=1

|Ui (t)|2λi (t) − |Z(t)σ(t) +∑I
i=1 Ui (t)γi (t)λi (t)|2

|δ(t)|2 . (4.7)

We can now show that the generator f of the BSDE (4.1) is Lipschitz contin-
uous in the sense that

| f (t,Y (t),Z(t),U (t)) − f (t,Y ′(t),Z ′(t),U ′(t))|2

= ∣∣Y (t)r (t) − Y ′(t)r (t)

+π̃∗(t,Z(t),U (t))(μ(t) − r (t)) − π̃∗(t,Z ′(t),U ′(t))(μ(t) − r (t))

−
√

|L(t)|2 − |θ(t)|2

×
√√√√|π̃∗(t,Z(t),U (t))σ(t) − Z(t)|2 +

I∑
i=1

|π̃∗(t,Z(t),U (t))γi (t) − Ui (t)|2λi (t)

+
√

|L(t)|2 − |θ(t)|2

×
√√√√|π∗(t,Z ′(t),U ′(t))σ(t) − Z ′(t)|2 +

I∑
i=1

|π∗(t,Z ′(t),U ′(t))γi (t) − U ′
i (t)|2λi (t)

∣∣∣∣∣∣
2

≤ K
(

|π̃∗(t,Z(t),U (t)) − π̃∗(t,Z ′(t),U ′(t))|2

+|Y (t) − Y ′(t)|2 + |Z(t) − Z ′(t)|2 +
I∑

i=1

|Ui (t) − U ′
i (t)|2λi (t)

)

≤ K
(

|Y (t) − Y ′(t)|2 + |Z(t) − Z ′(t)|2 +
I∑

i=1

|Ui (t) − U ′
i (t)|2λi (t)

)
,

where we use the representation (4.7), the boundedness assumptions (A2),
and the inequality

|
√

x2 + a2 −
√

y 2 + b2|2 ≤ |x − y |2 + |a − b |2. (4.8)
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Regime-Switching Financial Model 83

Since the generator f is Lipschitz continuous and the terminal condition ξ
is square integrable, we can conclude that there exists a unique solution to
the BSDE (4.1); see Theorem 3.1.1 in Delong[12].

Step 3) We are left with showing the admissability of the optimal strat-
egy. The standard result on the solution to a BSDE—see Theorem 3.1.1
in Delong[12]—yields that the process Y is F -adapted, (Z ,U1, ...,UI ) are
F -predictable, and

E
[

sup
t∈[0,T]

|Y (t)|2] < ∞, E

[ ∫ T

0
|Z(s)|2ds

]
< ∞,

E

[ I∑
i=1

∫ T

0
|Ui (s)|2λi (s)ds

]
< ∞.

Hence, it is straightforward to deduce that π∗ ∈ A. �
We succeed in characterizing the optimal hedging strategy and the op-

timal price process with a unique solution to a nonlinear BSDE that has a
Lipschitz generator.

5. PROPERTIES OF THE PRICE AND THE HEDGING STRATEGY

In this section, we investigate some important properties of the price
process and the hedging strategy.

5.1. The Arbitrage-Free Representation of the Price and

No-Good-Deal Pricing

From the point of view of the arbitrage-free pricing theory, the crucial
point is to check whether the price process (4.1) can be represented in the
form

Y (t) = EQ
[
e − ∫ T

t r (s)dsξ |Ft

]
, 0 ≤ t ≤ T,

where Q is an equivalent martingale measure. Looking at the BSDE (4.1), it
is rather difficult to guess the form of the equivalent martingale measure and
prove the arbitrage-free representation. Since we expect that the no-good-
deal price coincides with the price (4.1) derived under the instantaneous
mean-variance hedging and Sharpe ratio pricing, we now solve the no-good-
deal pricing problem (3.6). As a by-product, we show the equivalence of the
two pricing approaches, and we obtain the arbitrage-free representation of
the price (4.1).
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84 Delong and Pelsser

Theorem 5.1.1. Let ξ be an F -measurable claim such that E[|ξ |2] < ∞, and
assume that (A1)–(A4) hold. Consider the BSDE (4.1) with its unique solution
(Y,Z ,U1, ...,UI ). Let

√
|L(t)|2 − |θ(t)|2 + |γi (t)|√λi (t)

δ(t)
θ(t) <

√
λi (t), 0 ≤ t ≤ T, i = 1, ..., I, (5.1)

on the set {λi (t) > 0}. The optimal equivalent martingale measure Qψ∗,φ∗
which

solves the optimization problem (3.6) is determined by the processes

ψ∗(t) = θ(t)1{∀i=1,...,Iλi (t) = 0}

+Z(t) − σ(t)K ∗
1 (t,Z(t),U (t))

2K ∗
2 (t,Z(t),U (t))

1{∃i=1,...,Iλi (t) > 0}, 0 ≤ t ≤ T,

φ∗
i (t) = Ui (t) − γi (t)K ∗

1 (t,Z(t),U (t))
2K ∗

2 (t,Z(t),U (t))
1{λi (t) > 0}, 0 ≤ t ≤ T, i = 1, ..., I, (5.2)

where

K ∗
2 (t,Z(t),U (t)) =

−1
2

√
|Z(t)|2 +∑I

i=1 |Ui (t)|2λi (t) − |Z(t)σ(t)+∑I
i=1 Ui (t)γi (t)λi (t)|2
|δ(t)|2√

|L(t)|2 − |θ(t)|2
,

K ∗
1 (t,Z(t),U (t)) = −θ(t)

δ(t)
2K ∗

2 (t,Z(t),U (t))

+Z(t)σ(t) +∑I
i=1 Ui (t)γi (t)λi (t)

|δ(t)|2 .

Moreover, the process Y coincides with the optimal value function of the optimization
problem (3.6), and we have

Y (t) = sup
(ψ,φ)∈Q

EQψ,φ[
e − ∫ T

t r (s)dsξ |Ft
] = EQψ∗,φ∗ [

e − ∫ T
t r (s)dsξ |Ft

]
0 ≤ t ≤ T.

Proof. Step 1) First, we solve the optimization problem

zψ +
I∑

i=1

uiφiλi →ψ,φ1,...,φI min

ψσ +
I∑

i=1

φiγiλi = μ− r,
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Regime-Switching Financial Model 85

|ψ |2 +
I∑

i=1

|φi |2λi ≤ L2. (5.3)

If λi = 0, i = 1, ..., I , then we immediately get the optimal solution. Let
us now assume w.l.o.g. that λi > 0, i = 1, ..., I . We can also assume that
uiλi �= 0, i = 1, ..., I . Indeed, if λi (t) > 0 and the terminal condition or
the generator of the BSDE (4.1) depends on regime i, which is the case
in the regime-switching economy, then Ui (t) �= 0. We can notice that ψ =

μ−r
σ 2+∑I

i=1 γ
2
i λi
σ, φi = μ−r

σ 2+∑I
i=1 γ

2
i λi
γi , i = 1, ..., I, are the non-regular point of the

constraints. The value of the objective function at the non-regular point is
equal to

zσ +∑I
i=1 uiγiλi

σ 2 +∑I
i=1 γ

2
i λi

(μ− r ). (5.4)

Let us now deal with regular points of the constraints. We introduce the
Lagrangian

F (ψ, φ,K1,K2) = zψ +
I∑

i=1

uiφiλi − K1

(
ψσ +

I∑
i=1

φiγiλi − μ− r

)

−K2

(
|ψ |2 +

I∑
i=1

|φi |2λi − L2

)
.

The first-order conditions yield the set of equations

z − K1σ − 2K2ψ = 0,

uiλi − K1γiλi − 2K2φiλi = 0, i = 1, · · · , I,

ψσ +
I∑

i=1

φiγiλi = μ− r,

|ψ |2 +
I∑

i=1

|φi |2λi = L2, (5.5)

and the second-order condition gives us that the minimum in (5.3) is attained
for K2 < 0. From (5.5), we easily obtain

ψ = z − K1σ

2K2
,
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86 Delong and Pelsser

φi = ui − K1γi

2K2
, i = 1, ..., I,

K1 = − μ− r

σ 2 +∑I
i=1 |γi |2λi

2K2 + zσ +∑I
i=1 uiγiλi

σ 2 +∑I
i=1 |γi |2λi

,

4K 2
2 =

∣∣∣ z − K1σ

L

∣∣∣2 +
I∑

i=1

∣∣∣ui − K1γi

L

∣∣∣2λi . (5.6)

Substituting the formula for K1 into the last equation in (5.6), we can derive
the quadratic equation

4K 2
2

(
L2 − (μ− r )2

σ 2 +∑I
i=1 |γi |2λi

)

=
∣∣∣∣∣z − σ

zσ +∑I
i=1 uiγiλi

σ 2 +∑I
i=1 |γi |2λi

∣∣∣∣∣
2

+
I∑

i=1

∣∣∣ui − γi
zσ +∑I

i=1 uiγiλi

σ 2 +∑I
i=1 |γi |2λi

∣∣∣∣∣
2

λi .

Recalling (4.6)–(4.7), we get the optimal K ∗
2 < 0. We calculate the value of

the objective function (5.3) at the regular point (ψ∗, φ∗). Using the formulas
from (5.6), we derive

zψ∗ +
I∑

i=1

φ∗
i uiλi = zσ +∑I

i=1 uiγiλi

σ 2 +∑I
i=1 |γi |2λi

(μ− r )

−

√√√√L2 −
(

μ− r

σ 2 +∑I
i=1 |γi |2λi

)2

×

√√√√√z2 +
I∑

i=1

|ui |2λi −
(

zσ +∑I
i=1 uiγiλi

)2

σ 2 +∑I
i=1 |γi |2λi

. (5.7)

Since (5.7) is less than (5.4), we conclude that (ψ∗, φ∗) is the optimal solution
to (5.3).

Step 2) We now find the optimal solution to our no-good-deal
optimization problem (3.6). We choose (ψ, φ) ∈ Q. Let Y ψ,φ(t) =
EQψ,φ[

e − ∫ T
t r (s)dsξ |Ft

]
, 0 ≤ t ≤ T . Recalling results on linear BSDEs—see

Propositions 3.3.1 and 3.4.1 in Delong[12]—we conclude that the process
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Regime-Switching Financial Model 87

Y ψ,φ can be characterized as a unique solution to the BSDE

dY ψ,φ(t) = Y ψ,φ(t)r (t)dt + Zψ,φ(t)ψ(t)dt +
I∑

i=1

U ψ,φ

i (t)φi(t)λi (t)dt

+Zφ,ψ(t)dW (t) +
I∑

i=1

U ψ,φ

i (t)dÑi (t),

Y ψ,φ(T) = ξ. (5.8)

Let us consider the process Y that solves the BSDE (4.1). The existence of
a unique solution Y to (4.1) is established in Theorem 4.1. By (5.4) we can
deal with the dynamics

dY (t) = Y (t)r (t)dt + Z(t)ψ∗(t)dt +
I∑

i=1

Ui (t)φ∗
i (t)λi (t)dt

+Z(t)dW (t) +
I∑

i=1

Ui (t)dÑi (t),

Y (T) = ξ, (5.9)

where (ψ∗, φ∗) are defined in (5.2). By the Girsanov’s theorem—see Theo-
rem 2.5.1 in Delong[12]—we derive

d(Y ψ,φ(t) − Y (t)) = (Y ψ,φ(t) − Y (t))r (t)dt

+(Z(t)ψ(t) +
I∑

i=1

Ui (t)φi(t)λi (t) − Z(t)ψ∗(t) +
I∑

i=1

Ui (t)φ∗
i (t)λi (t)

)
dt

+(Zψ,φ(t) − Z(t))dW Qψ,φ +
I∑

i=1

(U ψ,φ

i (t) − Ui (t))dÑ Qψ,φ

i (t),

Y ψ,φ(T) − Y (T) = 0,

where W Qψ,φ

and Ñ Qψ,φ

are the Qψ,φ -Brownian motion and the Qψ,φ -
compensated counting process. The result established in Step 1 and the
comparison principle for BSDEs—see Theorem 3.2.2 in Delong[12]—yield
that Y φ,ψ(t) ≤ Y (t), 0 ≤ t ≤ T . By (4.6), (4.7), and (5.6), we get

φ∗
i (t) =

Ui (t) − γi (t)
(− θ(t)

δ(t) 2K2(t,Z(t),U (t)) + π̃∗(t,Z(t),U (t))
)

2K2(t,Z(t),U (t))
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88 Delong and Pelsser

= γi (t)
δ(t)

θ(t)

−
(
Ui (t) − π̃∗(t,Z(t),U (t))γi (t)

)√|L(t)|2 − |θ(t)|2√
|π̃∗(t,Z(t),U (t))σ(t) − Z(t)|2 +∑I

i=1 |Ui (t) − π̃∗(t,Z(t),U (t))γi (t)|2λi

,

and our condition (5.1) implies that |φ∗
i (t)| < 1, 0 ≤ t ≤ T, i = 1, ..., I .

Hence, (φ∗, ψ∗) ∈ Q. Since there exists a unique solution to the BSDE
(5.8), we deduce that Y φ∗,ψ∗

(t) = Y (t), 0 ≤ t ≤ T , and we finally
conclude

sup
(φ,ψ)∈Qφ,ψ

Y φ,ψ(t) = Y φ∗,ψ∗
(t) = Y (t), 0 ≤ t ≤ T.

�
In Theorem 5.1, we formulate a condition that guarantees that our op-

timal price process (4.1) is arbitrage-free, and we provide its arbitrage-free
representation. We point out that in a general model with jumps, the in-
stantaneous Sharpe ratio pricing can lead to arbitrage prices, and some
conditions have to be introduced to exclude arbitrage prices; see Delong[11]

and Chapter 10.4 in Delong[12]. Such a condition is proposed in (5.1). From
the mathematical point of view, condition (5.1) guarantees that there exists
an equivalent martingale measure that solves the no-good-deal optimization
problem or that there exists a measure solution to the BSDE (4.1) that char-
acterizes the price. We are aware that (5.1) is not optimal, yet we believe
that it should be sufficient in many financial applications. One can notice
that our arbitrage-free pricing condition (5.1) is satisfied if the surplus’s
Sharpe ratios L is not too large (compared to θ), the stock’s Sharpe ratio
θ is not too large (only required if γ �= 0), and transition intensities λ are
not too small. Those assumptions should be fulfilled in many cases. Let us
remark that Lo[23] estimates monthly Sharpe ratios for different assets in
the range of (0.14, 1.26), and Hardy[19] estimates the intensity of transition
into a “bad” state at 0.5 and the intensity of transition into a “good” state at
6, whereas Hamilton[18] estimates those intensities at 0.5 and 1. With those
estimates of θ and λ, our condition (5.1) is satisfied for many values of L
and γ .

It should not be surprising that our Sharpe ratio pricing objective can
lead to arbitrage strategies. One could have expected that high values of the
Sharpe ratio L can lead to arbitrage prices since they intuitively lead to high
prices. Consequently, high values of the Sharpe ratio should be excluded
from considerations to guarantee arbitrage-free pricing. As already noted,
condition (5.1) excludes high values of the Sharpe ratio L. As an example
illustrating this remark, let us consider pricing of an insurance contract
that pays 1 if a policyholder survives a given period. If the insurer requires
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Regime-Switching Financial Model 89

a Sharpe ratio L, then this profit expectation has to be reflected in the
price—in this case, in the value of the death probability. If the insurer
requires a very high profit, then such a high profit can be realized only by
using zero death probability in pricing. Yet zero death probability is not an
equivalent death probability, and the arbitrage must arise.

5.2. Monotonicity of the Price

It is clear that a reasonable pricing operator should be monotone with
respect to the terminal claim, in the sense that a more severe claim should
be valued at a higher price. Moreover, since the process L appearing in (3.5)
is interpreted as a Sharpe ratio, we should also expect that the higher the
Sharpe ratio the hedger requires, the higher the price of the claim should
be. Such properties of our optimal price process (4.1) could be established
provided that we could apply a comparison principle for BSDEs. However,
it is well known that a comparison principle for BSDEs with jumps does not
always hold; see Barles et al.[1]. Consequently, the price process (4.1) may
not satisfy the monotonic properties in all cases. In the next theorem, we
prove a comparison principle for the BSDE (4.1) under which our optimal
price process fulfills the desirable monotonic properties.

Theorem 5.2.1. Let ξ, ξ ′ be F -measurable claims such that E[|ξ |2] <
∞, E[|ξ ′|2] < ∞. Assume that (A1)–(A4) hold and

√
|L(t)|2 − |θ(t)|2 + |γi (t)|√λi (t)

δ(t)
θ(t) <

√
λi (t), 0 ≤ t ≤ T,

i = 1, ..., I, (5.10)

on the set {λi (t) > 0}. Let Y and Y ′ denote the solutions to the BSDEs (4.1)
with terminal conditions ξ and ξ ′ and coefficients L and L′. If ξ ≤ ξ ′ and L(t) ≤
L′(t), 0 ≤ t ≤ T, then Y (t) ≤ Y ′(t), 0 ≤ t ≤ T.

Proof. Let f denote the generator of the BSDE (4.1). Recalling (4.6)–(4.7),
we can notice that

f (Y (t),Z(t),U1, (t), ...,UI (t)) − f (Y (t),Z(t),U ′
1(t), ...,U ′

I (t))

=
I∑

i=1

�i (t)
(Ui (t) − U ′

i (t))λi(t)
1{(Ui (t) − U ′

i (t))λi (t) �= 0}(Ui (t) − U ′
i (t))λi (t),

where

�i (t) = γi (t)θ(t)
δ(t)

(Ui (t) − U ′
i (t))λi(t)
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90 Delong and Pelsser

−
√

|L(t)|2 − |θ(t)|2

×
⎛
⎝
√√√√|π̃i (t)σ(t) − Z(t)|2 +

I∑
j=1

|π̃i (t)γ j (t) − U j,i (t)|2λ j (t)

−
√√√√|π̃i+1(t)σ(t)−Z(t)|2+

I∑
j=1

|π̃i+1(t)γ j (t)−U j,i+1(t)|2λ j (t)

⎞
⎠ , (5.11)

and we introduce

π̃i (t)

= Z(t)σ(t) + U ′
1(t)γ1(t)λ1(t) + · · · + U ′

i−1(t)γi−1(t)λi−1(t) + Ui (t)γi (t)λi (t) + · · · + UI (t)γI (t)λI (t)

|δ(t)|2 ,

U j,i (t) = Ui (t)1{ j ≥ i} + U ′
i (t)1{ j < i}.

In order to apply a comparison principle for BSDEs with jumps, we have to
control the coefficients �i (t)

(Ui (t)−U ′
i (t))λi (t) . We show that condition (5.10) implies

| �i (t)
(Ui (t)−U ′

i (t))λi (t) | < 1, 0 ≤ t ≤ T, i = 1, ..., I, which is a sufficient condition
for the application of the comparison principle from Theorem 3.2.2 in
Delong[12]; see also Royer[27]. It is straightforward to notice that

|�i (t)| ≤ |γi (t)|
δ(t)

θ(t)
∣∣Ui (t) − U ′

i (t)|λi (t)

+
√

|L(t)|2 − |θ(t)|2

×
∣∣∣∣∣∣
√√√√|π̃i (t)σ(t) − Z(t)|2 +

I∑
j=1

|π̃i (t)γ j (t) − U j,i (t)|2λ j (t)

−
√√√√|π̃i+1(t)σ(t) − Z(t)|2 +

I∑
j=1

|π̃i+1(t)γ j (t) − U j,i+1(t)|2λ j (t)

∣∣∣∣∣∣ . (5.12)

Using inequality (4.8) and the definitions of π̃i and Ui, j , we get

∣∣∣∣∣∣
√√√√|π̃i (t)σ(t) − Z(t)|2 +

I∑
j=1

|π̃i (t)γ j (t) − U j,i (t)|2λ j (t)

−
√√√√|π̃i+1(t)σ(t) − Z(t)|2 +

I∑
j=1

|π̃i+1(t)γ j (t) − U j,i+1(t)|2λ j (t)

∣∣∣∣∣∣
2
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Regime-Switching Financial Model 91

≤ |π̃i (t)σ(t) − π̃i+1(t)σ(t)|2

+
I∑

j=1

|π̃i (t)γ j (t) − π̃i+1(t)γ j (t) − U j,i (t) + U j,i+1(t)|2λ j (t)

=
∣∣∣(Ui (t) − U ′

i (t))γi(t)λi (t)
|δ(t)|2

∣∣∣2|σ(t)|2

+
∣∣∣(Ui (t) − U ′

i (t))γi(t)λi (t)
|δ(t)|2 γi (t) − Ui (t) + U ′

i (t)
∣∣∣2λi (t)

I∑
j=1, j �=i

∣∣∣(Ui (t) − U ′
i (t))γi (t)λi(t)

|δ(t)|2 γ j (t)
∣∣∣2λ j (t)

= |(Ui (t) − U ′
i (t))λi (t)|2 |σ(t)|2 +∑ j �=i |γ j (t)|2λ j (t)

δ2λi (t)

≤ |(Ui (t) − U ′
i (t))λi (t)|2 1

λi (t)
. (5.13)

Combining (5.12) with (5.13), we can derive

∣∣∣ �i (t)
(Ui (t) − U ′

i (t))λi (t)

∣∣∣ ≤ |γi (t)|
δ(t)

θ(t) +
√

|L(t)|2 − |θ(t)|2 1√
λi (t)

.

Hence, (5.10) implies | �i (t)
(Ui (t)−U ′

i (t))λi (t) | < 1, 0 ≤ t ≤ T, i = 1, · · · , I, and the

comparison now follows from Theorem 3.2.2 in Delong[12]. �
Let us remark that the comparison principle is proved under the same

assumption (5.10) that guarantees the arbitrage-free representation of the
price; see (5.1).

Even though our pricing operator (4.1) may lead to arbitrage opportu-
nities and may fail the monotonicity property in some cases, we still believe
that the instantaneous mean-variance hedging and Sharpe ratio pricing is
a financially sound pricing and hedging objective in view of the advantages
presented in Section 3. It should be pointed out that one of the goals of Theo-
rems 5.1.1 and 5.2.1 is to introduce a condition that guarantees arbitrage-free
instantaneous Sharpe ratio pricing, and the inevitability of such a condition
in our case agrees with the intuition as discussed at the end of Section 5.1.

5.3. The Markov-Regime-Switching Model

In practical applications we deal with Markovian models. In this section,
we establish the relation between the solution to the BSDE (4.1) and the
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92 Delong and Pelsser

solution to a partial integro-differential equation. Such a relation allows us
to interpret the optimal hedging strategy.

Theorem 5.3.1. Consider the Markov-regime-switching financial model (2.3) with
the payoff ξ = F (S(T), J (T)) and the Sharpe ratio L(t) = L(J (t−)). Assume that
E[|ξ |2] < ∞, and let (A1)–(A4) hold. If there exists a unique classical solution V
with a uniformly bounded derivative Vs (t, s, i) to the system of nonlinear PIDEs

Vt (t, s, i) + Vs (t, s, i)sμ(i) + 1
2

Vss (t, s, i)s2σ 2(i)

+
∑
j �=i

(
V (t, s + sγ j (i), j) − V (t, s, i) − Vs (t, s, i)sγ j (i)

)
λ j (i, s)

= V (t, s, i)r (i)

+Vs (t, s, i)sσ 2(i) +∑ j �=i

(
V (t, s + sγ j (i), j) − V (t, s, i))γ j (i)λ j (i, s)

δ(i)
θ(i)

−
√

L2(i) − θ2(i)
√

g(V (t, s, i)), (t, s) ∈ [0,T) × (0,∞), i = 1, ..., I,

V (T, s, i) = F (s, i), s ∈ (0,∞), i = 1, ..., I, (5.14)

where

g(V (t, s, i)) = |Vs (t, s, i)|2s2σ 2(i)

+
∑
j �=i

|V (t, s + sγ j (i), j) − V (t, s, i)|2λ j (i, s)

−
∣∣Vs (t, s, i)sσ 2(i) +∑ j �=i

(
V (t, s + sγ j (i), j) − V (t, s, i))γ j (i)λ j (i, s)

∣∣2
δ2(i)

,

then the solution to the BSDE (4.1) can be characterized as

Y (t) = V (t, S(t), J (t)), 0 ≤ t ≤ T,

Z(t) = Vs (t, S(t−), J (t−))S(t−)σ(J (t−)), 0 ≤ t ≤ T,

Ui (t) =
(

V (t, S(t−) + S(t−)γi (J (t−)), i)

−V (t, S(t−), J (t−))
)

1{i �= J (t−)} 0 ≤ t ≤ T, i = 1, ..., I .

Proof. From the Markov property of the system we can deduce that Y (t) =
V (t, S(t), J (t)), 0 ≤ t ≤ T, for some measurable function V ; see Corollary
2.3 and Remark 2.4 in Barles et al.[1]. Assuming that V is sufficiently smooth,
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Regime-Switching Financial Model 93

we can apply the Itô’s formula and we get the dynamics

dV (t, S(t), J (t)) = Vt(t, S(t−), J (t−))dt

+Vs (t, S(t−), J (t−))S(t−)μ(J (t−))dt

+Vs (t, S(t−), J (t−))S(t−)σ(J (t−))dW (t)

+1
2

Vss (t, S(t−), J (t−))S2(t−)σ 2(J (t−))

+
∑

j �=J (t−)

(
V (t, S(t−) + S(t−)γ j (J (t−)), j)

−V (t, S(t−), J (t−))
)

dÑ j (t)

+
∑

j �=J (t−)

(
V (t, S(t−) + S(t−)γ j (J (t−)), j)

−V (t, S(t−), J (t−))

−Vs (t, S(t−), J (t−))S(t−)

×γ j (J (t−))
)
λ j (J (t−), S(t−))dt. (5.15)

The result now follows by comparing the terms in (5.15) and (4.1). �
Since the process Y models the price of the claim, the function V deter-

mines the value of the claim given the current value of the underlying risk
factors. It is straightforward to notice that the optimal hedging strategy (4.2)
consists of two terms. In view of Theorem 5.3.1, the first term is based on
the change in the price of the claim that results from a continuous change
in the stock value (the interpretation of the control process Z) and on the
change in the price of the claim that results from a discontinuous change
in the stock value induced by a transition of the economy into a new state
(the interpretation of the control processes U ). Hence, the first term of the
optimal hedging strategy (5.4) is a delta-hedging strategy. The second term
of the optimal hedging strategy (4.2) can be seen as a correction factor for
the delta-hedging strategy. Recalling the interpretation of the strategy (4.6),
we can deduce that the correction term arises since the hedger optimizes
the mean-variance risk measure of the surplus instead of minimizing the
variance of the surplus. The correction term reflects the use of the expected
profit in the hedging objective. It leads to a higher expected profit of the
surplus and also to a higher variance of the surplus.

We could have used Hamilton-Jacobi-Bellman equations to solve our
optimization problems in a Markovian framework. However, it would be dif-
ficult to establish the existence of a unique classical (viscosity) solution V to
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94 Delong and Pelsser

TABLE 1 The parameters of the Markov-regime-switching model

State i r (i) μ(i) σ(i) γ.(i) λ.(i)

1 0.03 0.07 0.10 −0.10 2
2 0.01 0.02 0.25 0.05 5

the system of PIDEs (5.14), or the existence of a unique classical (viscosity)
solution would be established under very strong assumptions on the parame-
ters. Hence, we believe that our approach based on BSDEs is mathematically
more tractable. Moreover, solving the PIDE (5.14) numerically by a finite
difference method is generally less efficient than solving the BSDE (4.1) by
Monte Carlo methods. This remark points out an important advantage in
using BSDEs instead of PIDEs in solving our pricing and hedging problem.
Finally, in our general non-Markovian model we can only use the approach
based on BSDEs.

6. NUMERICAL EXAMPLE

In this last section we present some numerical results that show a pos-
sible application of our pricing method. We consider the Markov-regime-
switching model (2.3) with 2 states of economy and the parameters that are
specified in Table 1. In particular, the stock’s Sharpe ratios are equal to
θ(1) = 0.24 and θ(2) = 0.04.

We are interested in pricing 1-year call options with various strikes Q .
The initial price of the derivative is determined by the solution Y (0) to the
BSDE (4.1). The BSDE has to be solved numerically. We apply discrete-time
approximation and least squares Monte Carlo. In our example, the solution
to the BSDE (4.1) can be derived by using the backward recursion

Y (1) = (S(T) − Q)+,

Zi (tk) = 1
h

E
[
Y (tk+1)(W (tk+1) − W (tk))|S(tk) = s, J (tk) = i

]
, i = 1, 2,

U1(tk) = 1
λ1(2)h

E
[
Y (tk+1)(Ñ1(tk+1) − Ñ1(tk))|S(tk) = s, J (tk) = 2

]
,

U2(tk) = 1
λ2(1)h

E
[
Y (tk+1)(Ñ2(tk+1) − Ñ2(tk))|S(tk) = s, J (tk) = 1

]
,

Y1(tk) = 1
1 + r (1)h

⎧⎨
⎩E[Y (tk+1)|S(tk) = s, J (tk) = 1]

−
(

Z1(tk)σ(1) + U2(tk)γ2(1)λ2(1)
δ(1)

θ(1)
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Regime-Switching Financial Model 95

TABLE 2 The prices of the call options with strike Q and the Sharpe ratios L(1) = 0.4,L(2) = 0.2 in
the Markov-regime-switching model

The strike Q = 80 Q = 90 Q = 100 Q = 110 Q = 120

The price 24.561 16.677 10.381 5.857 2.928

−
√

|L(1)|2 − |θ(1)|2

·
√

|Z1(tk)|2 + |U2(tk)|2λ2(1) − |Z1(tk)σ(1) + U2(tk)γ2(1)λ2(1)|2
|δ(1)|2

⎞
⎠ h

⎫⎬
⎭,

Y2(tk) = 1
1 + r (2)h

⎧⎨
⎩E[Y (tk+1)|S(tk) = s, J (tk) = 2]

−
(

Z2(tk)σ(2) + U1(tk)γ1(2)λ1(2)
δ(2)

θ(2)

−
√

|L(2)|2 − |θ(2)|2

·
√

|Z2(tk)|2 + |U1(tk)|2λ1(2) − |Z2(tk)σ(2) + U1(tk)γ1(2)λ1(2)|2
|δ(i)|2

⎞
⎠ h

⎫⎬
⎭,

where 0 = t0 < t1 < ... < tk−1 < tk = 1 and h is a time-discretization step.
The processes Y,Z ,U are next approximated with regression functions; see
Bouchard and Elie[7].

The prices of the call options with various strikes for the Sharpe ratios
L(1) = 0.4,L(2) = 0.2 are given in Table 2. Monotonicity of the price with
respect to the strike can be observed. In Table 3 we also present the prices
of the call options in two classical Black-Scholes model with the parameters
(r (i), σ(i)) determined by the state 1 and 2. We might have expected that
the price in the regime-switching model should be between the prices in
the Black-Scholes models. However, under our pricing method the hedger
specifies his expected profit reflected by the Sharpe ratio L which increases

TABLE 3 The prices of the call options with strike Q in the complete Black-Scholes model with
parameters (r, σ)

The strike Q = 80 Q = 90 Q = 100 Q = 110 Q = 120

The BS price for (0.03, 0.10) 22.381 13.038 5.581 1.596 0.299
The BS price for (0.01, 0.25) 22.891 15.830 10.405 6.532 3.948
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TABLE 4 The prices of the call options with the strike Q = 100 and Sharpe ratios (L(1),L(2)) in the
Markov-regime-switching model

The Sharpe ratios L(1) = 0.24 L(1) = 0.3 L(1) = 0.5 L(1) = 0.7 L(1) = 1.2
L(2) = 0.04 L(2) = 0.1 L(2) = 0.3 L(2) = 0.5 L(2) = 1.2

The price 9.827 10.082 10.660 11.226 13.168

the price. Hence, our price can be between the Black-Scholes prices or
above the higher price. The relation between our prices in the regime-
switching model and the prices in the Black-Scholes models can be observed
by comparing the results in Table 2 and 3. In Table 4 we find the prices of the
call options with the strike Q = 100 for various Sharpe ratios. Monotonicity
of the price with respect to the hedger’s Sharpe ratio can be observed. We
remark that the pair (0.24, 0.04) is the lowest Sharpe ratio and (1.2, 1.2) is
the highest Sharpe ratio (assuming that L(1) ≥ L(2)), which can be used
under the assumptions of Theorems 4.1, 5.1.1, and 5.2.1. Consequently, in
our example for all reasonable values of the hedger’s Sharpe ratios, the
arbitrage-free condition (5.1) and the monotonicity condition (5.10) are
fulfilled.

7. CONCLUSION

We have studied hedging and pricing of contingent claims in a non-
Markovian regime-switching financial model. We have derived the hedging
strategy that minimizes the instantaneous mean-variance risk of the hedger’s
surplus and the price under which the instantaneous Sharpe ratio of the
hedger’s surplus equals a predefined target. The optimal hedging strategy
and the optimal price process have been characterized with a unique solution
to a nonlinear, Lipschitz BSDE with jumps. We have discussed key properties
of the price and the hedging strategy.

REFERENCES

1. Barles, G.; Buckdahn, R.; Pardoux, E. Backward stochastic differential equations and integral-partial
differential equations. Stochastic and Stochastic Reports 1997, 60, 57–83.

2. Bayraktar, E.; Young, V. Pricing options in incomplete equity markets via the instantaneous Sharpe
ratio. Ann. Finance 2008, 4, 399–429.

3. Bayraktar, E.; Milevsky, M.; Promislow, S.; Young, V. Valuation of mortality risk via the instantaneous
Sharpe ratio: applications to life annuities. J. Econ. Dynamic Control 2009, 33, 676–691.

4. Becherer, D. Bounded solutions to BSDE’s with jumps for utility optimization and indifference
hedging. Ann. Appl. Probab. 2006, 16, 2027–2054.

5. Becherer, D. From bounds on optimal growth towards a theory of good-deal hedging. In Advanced
Financial Modelling; Albecher, H.; Runggaldier, W.; Schachermayer, W., Eds.; Walter de Gruyter:
Berlin, 2009; 27–52.

6. Björk, T.; Slinko, I. Towards a general theory of good deal bounds. Rev. Finance 2006, 10, 221–260.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

aa
st

ri
ch

t]
 a

t 0
6:

14
 3

0 
Se

pt
em

be
r 

20
15

 



Regime-Switching Financial Model 97

7. Bouchard, B.; Elie, R. Discrete time approximation of decoupled forward backward SDE with jumps.
Stoch. Proc. Appl. 2008, 118, 53–75.
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