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We deal with discretization schemes for the simulation of the Heston stochastic volatility
model. These simulation methods yield a popular and flexible pricing alternative for
pricing and managing a book of exotic derivatives which cannot be valued using closed-
form expressions. For the Heston dynamics an exact simulation method was developed by
Broadie and Kaya (2006), however we argue why its practical use is limited. Instead we
focus on efficient approximations of the exact scheme, aimed to resolve the disadvantages
of this method; one of the main bottlenecks in the exact scheme is the simulation of the
Non-central Chi-squared distributed variance process, for which we suggest an efficient
caching technique. At first sight the creation of a cache containing the inverses of this
distribution might seem straightforward, however as the parameter space of the inverse
Non-central Chi-squared distribution is three-dimensional, the design of such a direct
cache is rather complicated, as pointed out by Broadie and Andersen. Nonetheless, for
the case of the Heston model we are able to tackle this dimensionality problem and
show that the three-dimensional inverse of the non-central chi-squared distribution can
effectively be reduced to a one dimensional cache. The performed analysis hence leads
to the development of three new efficient simulation methods (the NCI, NCI-QE and
BK-DI scheme). Finally, we conclude with a comprehensive numerical study of these
new schemes and the exact scheme of Broadie and Kaya, the almost exact scheme of
Smith, the Kahl-Jäckel scheme, the FT scheme of Lord et al. and the QE-M scheme

of Andersen. From these results, we find that the QE-M scheme is the most efficient,
followed closely by the NCI-M, NCI-QE-M and BK-DI-M schemes, whilst we observe
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that all other considered schemes perform a factor 6 to 70 times less efficient than the
latter four methods.

Keywords: Stochastic volatility; simulation; Heston; non-central chi-squared inversion;
control variate.

1. Introduction

The behavior of financial derivatives is usually modeled by stochastic differen-
tial equations that (jointly) describe the movements of the underlying financial
assets such as the stock prices, stock variances, interest rates or currencies. Though
some models yield closed-form solutions for certain derivatives, the fast majority of
the exotic options cannot be priced in closed-form. Especially for (forward) path-
dependent options, the Monte Carlo approach yields a popular and flexible pricing
alternative. Because of the increasingly computational power combined with the use
of modern day variance reduction techniques, Monte Carlo techniques are expected
to become even more widely applicable in the near future.

Since the introduction of the Black and Scholes [7] model and in particular since
the equity crash of the late eighties a battery of complex models has been proposed
to relax some misspecifications of the model. Though the Black and Scholes [7]
model has theoretical and practical appealing properties, most of its assumptions,
like constant volatility or constant interest rates, do not find justification in the
financial markets; one class of models relaxes the constant volatility assumption
and incorporates a financial phenomena know as volatility clustering, i.e. they make
volatility stochastic. Within this class are the stochastic volatility models of Hull and
White [15], the Stein and Stein [30] and the Schöbel and Zhu [28] model. However
by far the most popular model stochastic volatility model is the Heston [14] model,
mainly caused by the fact that this model, until the introduction of the Schöbel and
Zhu [28] model, was the only stochastic volatility model that allowed for flexibility
over the leverage effect, yet also yielded a closed-form solution for call/put options in
terms of one numerical integral.1 With such a closed-form solution the computation
of vanilla European option prices can be done in fast and stable fashion, hence
allowing for efficient calibrations to market option data.

1.1. Literature review

Despite the fact that the Heston model was already introduced in 1993, there has
been relatively little research on efficient discretization methods of its continuous
time dynamics. This is in particularly remarkable if one considers that most practi-
cal applications of such models, e.g. the pricing and hedging of path-dependent
derivatives, practically always involve Monte carlo methods. Only recently a

1The method of the original Heston paper required the calculation of two numerical integrals,
whereas some more recent methods require only the evaluation of one numerical integral, e.g. see
Carr and Madan [9], Lord and Kahl [23] or Lee [22].
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few papers on efficient discretization methods appeared; first of all a bias-free
(discretization) method was introduced in Broadie and Kaya [8], who developed
a scheme that could simulate the Heston process (i.e. stock and variance) from its
exact distribution. Though the paper is elegant, it’s practical use is limited: first of
all, the algorithm requires Fourier inversion of the conditional characteristic function
of the integrated variance process. Next to the fact the inversion is time-consuming,
it is also complex and can lead to numerical errors (e.g. truncation). Secondly, the
variance process has to be simulated using an acceptance and rejection technique,
which will scramble random paths when parameters are perturbated, resulting in
a low correlation in pre- and post perturbation paths and hence introduces a large
Monte Carlo bias in sensitivity analysis (e.g. see Glasserman [13]). For the same
reason also low-discrepancy numbers cannot not be applied in conjunction with the
Broadie and Kaya [8] (BK) scheme.

Several Euler schemes are considered in Lord et al. [24], in particular they inves-
tigate how to deal with negative values of the variance process that occur when one
uses a direct discretization. The fix that empirically seems to work best is denoted
by the Full Truncation (FT) scheme. Though the fix is highly heuristic and uses
no known analytical properties of the variance process, the scheme seems to work
surprisingly well in comparison to other more complicated schemes. Nonetheless it
should be noted that for many relevant parameter configurations2 the discretization
error is still quite high for a practical number of time steps. For practical cases, the
discretization grid therefore still needs to be rather small to obtain an accurate
scheme without significant bias. Approximations to the exact schemes are consid-
ered in Smith [29] and Andersen [4]. Smith [29] approximates the Fourier inversions
required to simulate the integrated variance process, where Andersen [4] focuses on
the variance process and develops two efficient schemes based on moment-matching
techniques.

Though we are aware of the fact that the schemes presented so far certainly do
not contain a comprehensive list of the all the available schemes, we feel that the
schemes mentioned so far stand out for particular reasons: the BK scheme for its
exactness, the Euler scheme with FT fix for its simplicity and the QE-M scheme for
its efficiency. For some alternative schemes we refer to Andersen and Brotherton-
Ratcliffe [5] and Glasserman [13] and the references therein.

As noted by Mark Broadie, one way to overcome the acceptance and rejection
sampling method of the BK scheme (which seems to be the most important bottle-
neck of the scheme) would be to use a direct inversion of the non-central chi-squared
distribution to generate a sample of the variance process. Unfortunately, however,
no analytical expression exists for this inverse and one has to use a (time-consuming)
root finding procedure to numerical invert the distribution. As direct inversion is too

2Heston models which are calibrated to main derivative markets, usually have parameter configu-
rations such that variance process has a relatively high probability of reaching the origin. This is
often needed to incorporate the level of skew or kurtosis that is present in market option prices.
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slow for practical purposes, Broadie and Andersen note that another solution could
be to create a large three-dimensional3 cache of the inverse from the non-centrally
chi-squared distribution function for all conceivable values of the number of degrees
of freedom and the non-centrality parameters. However, as the parameter-space
is potentially very large, Andersen [4] comments that such “brute-force” caching
would have its own challenges (e.g. the dimensioning of the cache and design of
inter- and extrapolation rules). Using a conditioning argument, we will however
show that the three-dimensional inverse of the Non-central Chi-squared distribu-
tion can effectively be reduced to a one dimensional search space for the case of the
Heston [14] model.

The setup of the paper as follows. In Sec. 2 we first discuss Euler and Mil-
stein schemes after which we explain the exact scheme of Broadie and Kaya [8] as
well as its bottlenecks. In Sec. 3 we discuss the projection of the three-dimensional
inverse of non-central chi-squared distribution onto a one dimensional cache for
the case of the Heston [14] model and we go into the details on how to apply the
caching technique as efficiently as possible. This analysis hence results in three new
schemes (NCI, NCI-QE and BK-DI), for which we derive martingale properties and
regularity conditions of the discretized asset price in Sec. 4. In Sec. 5 we perform
an extensive numerical study involving these new schemes and the exact scheme
of Broadie and Kaya [8], the almost exact scheme of Smith [29], the Kahl-Jäckel
scheme, the Full Truncation scheme of Lord et al. [24] and the Quadratic Expo-
nential scheme of Andersen [4]. To strengthen this numerical analysis we use four
different test cases (including European-style and path-dependent options) and a
high number of sample paths in conjunction a variance reduction technique, which
enables us to obtain highly accurate results. Using this setup, we are able to make
a comprehensive (and differentiated) numerical comparison about the efficiency of
the considered schemes, leading to the conclusion of the paper in Sec. 6.

2. Heston Simulation Schemes: Euler, Milstein and Exact Method

To be clear about notations, we shortly formulate the Heston dynamics:

dS(t)
S(t)

= r(t)dt +
√
v(t)dWS(t), S(0) := S0 ≥ 0, (2.1)

dv(t) = κ(θ − v(t))dt+ ξ
√
v(t)dWV (t), v(0) := v0 ≥ 0, (2.2)

with (W1,W2) a two-dimensional Brownian motion under the risk-neutral measure
Q with instantaneous correlation ρ, i.e.

dWS(t)dWV (t) = ρdt. (2.3)

3In principle a three-dimensional cache is needed as the inverse of the non-central chi-squared
distribution has three variables: its functions value, the number of degrees of freedom and the
non-centrality parameter.
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Hence the model parameters are the initial variance v0 > 0, the long run variance
θ ≥ 0, the mean reversion rate κ ≥ 0, the volatility of the variance ξ ≥ 0 and the
leverage parameter |ρSv| ≤ 1. Typically, one finds −1.0 < ρSV < −0.6 implying that
the Heston dynamics correlate a down move in the stock with an up move in the
volatility (a phenomenon known as leverage effect). For simplicity we here assume
that r(t) is non-stochastic, hence from now on we will write r(t) ≡ r.

Since the characteristic function of the log-asset price is known in closed-form for
the Heston model, the calibration to vanilla call options can be done efficiently using
Fourier inversion, e.g. see Carr and Madan [9]. Please note that in the literature
there exists two (theoretically equivalent) formulations of the Heston characteristic
function, however as shown in Albrecher et al. [3] one formulation (as in Heston [14])
leads to a numerical difficulty called branch cutting, while the other formulation
does not have this problem.

2.1. Analytical properties of the variance process

The square root variance dynamics of the Heston was first introduced in a finance
(i.e. interest rates) context in Cox et al. [10]; there exist several analytical results
for the Feller/CIR/square-root process of (2.2), for example the variance process is
guaranteed to always be greater or equal to zero. Specifically, if 2κθ ≥ ξ the Feller
condition states that the process can never reach zero (a condition which is however
hardly ever satisfied in calibrations to real market data) and for 2κθ < ξ we have
that the origin is accessible and strongly reflecting.

The distribution of the variance process is also known; conditional on v(s)
(s < t), we have that the variance process is distributed as a constant C0 times
a non-central chi-squared distribution with d degrees of freedom and non-centrality
parameter λ, i.e.

P(v(t) ≤ x|v(s)) = Fχ2
d(λ)

(
x

C0

)
, (2.4)

where Fχ2
d(λ)(

x
C0

) represents the cumulative distribution of the non-central chi-
squared distribution, i.e.

Fχ2
d(λ)(z) =

∞∑
i=0

e−
λ
2 (λ

2 )i

i!

∫ z

0
z

d
2 e−

u
2 du

Γ(i+ k
2 )

, (2.5)

with

C0 :=
ξ2(1 − e−κ∆t)

4κ
, d :=

4κθ
ξ2

, λ :=
4κe−κ∆tv(s)
ξ2(1 − e−κ∆t)

and: ∆t := t− s. (2.6)

Hence not from (2.5) that the non-central chi-squared distribution is equivalent to
an ordinary chi-squared G with d+ 2N degrees of freedom, where N is a Poisson-
distribution with mean 1

2λ. The cumulative distribution of (2.5) thus can be written
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in the following form

Fχ2
d(λ)(z) =

∞∑
i=0

P(N = i)Gχ2(z, d+ 2i), (2.7)

which will be an important expression in the remainder of this paper. From known
properties of the non-central chi-squared distribution (e.g. see Cox et al. [10] or
Abramowitz and Stegun [1]) we then have that the mean m and variance s2 of v(t)
conditional on v(s) are given by

m := θ + (v(s) − θ)e−κ∆t, (2.8)

s2 :=
v(s)ξ2e−κ∆t

κ
(1 − e−κ∆t) +

θξ2

2κ
(1 − e−κ∆t)2. (2.9)

While some discretization schemes of the Heston dynamics heavily rely on these
properties (e.g. see Broadie and Kaya [8], Andersen [4] and Smith [29]), other
schemes do not incorporate the specific distributional properties (e.g. see the Euler
and Milstein schemes of Lord et al. [24] and Kahl and Jäckel [19]).

2.2. (Log-)Euler scheme

Probably the simplest way to discretize the variance dynamics is by using a first-
order Euler scheme. One should however take care on how to fix negative values
of the variance process; the handling negative values in the wrong way leads to
extremely biased schemes, whereas using the right fix leads to an Euler scheme that
outperforms almost all existing schemes in terms of computational efficiency, e.g. see
Lord et al. [24]. Since not all literature sources use the proper fix when comparing
their scheme with an Euler scheme and the scheme provides a good intuition behind
the difficulties of the simulation of the Heston model, we explicitly discuss the Euler
scheme here.

Conditional on time s a naive Euler discretization of the variance process for
t > s (with ∆t := t− s) reads

v(t) = v(s) + κ∆t(θ − v(s)) + ξ
√
v(s)Zv

√
∆t, (2.10)

with Zv standard normal distributed. The main source of difficulty in above scheme
is that the variance can become negative, explicitly the probability of v(t) becoming
negative is

P(v(t) < 0) = P

(
Zv <

−v(s) − κ∆t(θ − v(s))
ξ
√
v(s)

√
∆t

)

= Φ

(
−v(s) − κ∆t(θ − v(s))

ξ
√
v(s)∆t

)
. (2.11)

Notice that though this probability decays to zero as ∆t becomes smaller, it will be
strictly positive for any choice of the time step ∆t (unless ξ = 0). Hence if one does
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not want the variance process to cross over to the imaginary domain, one has to
decide what to do if the variance process turns negative in an Euler scheme. Several
ad-hoc fixes for this exist in the literature, for example by making zero an absorbing
or reflecting boundary for the variance process. Lord et al. [24] unify several Euler
schemes in the following framework:

v(t) = f1(v(s)) + κ∆t(θ − f2(v(s))) + ξ
√
f3(v(s))Zv

√
∆t, (2.12)

where all schemes should satisfy fi(x) = x for x ≥ 0 and f3(x) ≥ 0 for all x ∈ R.
This translates into the natural conditions that for positive values of the variance
the regular Euler scheme should be employed and that strictly negative values
hereof are transformed into positive ones. The most sensible choices for fi(x) are
the identity function (f(x) = x), absorption (f(x) = x+) or reflection (f(x) = |x|).
Since all schemes coincide and are be bias-free as ∆t → 0, the choice of the fix
seems innocent and almost indifferent. The contrary is true: while some schemes are
extremely biased for practical sizes of the time step, others turn out to be almost
bias-free not too extreme parameter configurations. The fix that seems to work
the best is produced by the so-called Full Truncation (2007) scheme and chooses
f1(x) := x, f2(x) = f3(x) := max(x, 0) = x+, see Lord et al. [24]. The resulting
Euler scheme reads

v(t) = v(s) + κ∆t(θ − v(s)+) + ξ
√
v(s)+ZV

√
∆t. (2.13)

Hence provided with a discretization scheme for the variance process, we also need to
specify the simulation schemes of the corresponding asset price process. The most
straightforward choices would be to either directly apply an Euler discretization
scheme to the stock price process of equation (2.1) or to simulate the stock price
from its exact (conditional) distribution. Direct discretization yields the following
Euler scheme

S(t) = S(s)(1 + r∆t+
√
f5(v(t))ZS

√
∆t) (2.14)

and does entails some discretization error of the exact process. Here ZS is a normal
distributed random variable (with correlation ρ to ZV ) and f5(x) should be chosen
non-negative.

Alternatively one can also use the exact solution of the stock price dynamics
(2.1), which by an application of Ito’s lemma is given by

S(t) = S(s) exp
[∫ t

s

[
r − 1

2
v(u)

]
du+

∫ t

s

√
v(u)dWS(u)

]
. (2.15)

Hence taking logarithms and discretizing in an Eulerly fashion, one obtains the
following log-Euler scheme

log(S(t)) = log(S(s)) +
[
r − 1

2
f4(v(s))

]
∆t+

√
f5(v(s))ZS

√
∆t. (2.16)

The above described log-Euler scheme does not entail any discretization error in
the stock price direction, of course the scheme usually does show biases in the Euler
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discretization the variance process (and thus in resulting stock prices). Following
Lord et al. [24] we choose to set f3(x) = f4(x) = f5(x) = x+, which seem to
be the most logical choices, since the Ito correction term of equation (2.16) is then
consistent with the corresponding the volatility of the stock price, hence this implies
the martingale condition of the stock price process is preserved in the discretization.
In an implementation the correlated standard normal random variables ZV and ZS

can (for example) be generated with the use of a Cholesky decomposition: with a
(instantaneous) correlation of ρ between the driving Brownian motions this can be
done by setting ZV := Z1 and ZS := ρZV +

√
1 − ρ2Z2, where Z1 and Z2 are two

independent draws from the standard normal distribution.
Note that the pure Euler scheme (2.14) can be seen as a first order approximation

of above log-Euler scheme. Since the log-Euler scheme entails no discretization error
in the stock price direction, we prefer to work under this log transformation when
employing an Euler scheme, e.g. see also Lord et al. [24]). Additionally since the
full truncation scheme seems to have the smallest bias among all Euler schemes,
we adopt this fix for possible negative values of the variance process when using an
Euler scheme. The main advantage of the Euler scheme lies its simplicity and speed:
little code and computing time is needed to compute one iteration in the scheme.
Additionally the use of the scheme is not restricted to the Heston model, but can
also be applied to all kind models, for example to the family of CEV-processes, see
Lord et al. [24]. Its generality also implies its weakness: the Euler scheme doesn’t use
any information of known analytical properties of the square root variance process.

2.2.1. Full truncation algorithm

Using a log-Euler scheme for the stock price process, the full truncation scheme for
the Heston can be summarized by the following algorithm:

(1) Generate a random sample Z1 from the standard normal distribution4 and set
Zv := Z1.

(2) Given v(s), compute v(t) from equation (2.13).
(3) Generate a random sample Z2 from the standard normal distribution and set

ZS := ρSVZV +
√

1 − ρ2
SVZ2. (2.17)

(4) Given log(S(s)), compute log(S(t)) using equation (2.16).

2.3. Kahl-Jäckel scheme

A generic implicit Milstein scheme for the variance process in combination with an
alternative discretization for the stock price was suggested in Kahl and Jäckel [19],

4It may be advisable to use an inversion method for generating of normal samples, since then also
a quasi random generator can be used. This inversion over an uniform random variable with the
(“approximated”) inverse standard normal distribution function can for example be done using
Wichura’s method, see Wichura [31].
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i.e. the following discretization scheme was proposed:

v(t) =
v(s) + κθ∆t+ ξ

√
v(s)ZV

√
∆t+ 1

4ξ
2∆t(Z2

V − 1)
1 + κ∆t

(2.18)

log(S(t)) = log(S(s)) +
[
r − (v(s) + v(t))

4

]
∆t+ ρ

√
v(s)ZV

√
∆t

+
1
2
(
√
v(s) +

√
v(t))(ZS + ρZV )

√
∆t+

ρξ∆t
2

(Z2
V − 1) (2.19)

Kahl-Jäckel show that this scheme results in positive paths for the variance process
for 2κθ > ξ, a condition which is hard to meet in practice. Hence in many practical
implementations of the above dynamics, one has to decide on how to fix negative
values of the variance process. Since Kahl and Jäckel [19] do not specifically tackle
this issue, we follow Andersen [4] who adopts the same fix as Lord et al. [24] use
in the full truncation Euler scheme. That is, whenever the variance process drops
below zero, we use (2.13) rather than (2.18) and take v(s)+ and v(t)+ rather than
using v(s) and v(t) in (2.19). The resulting algorithm is similar to the ft-algorithm
in Sec. 2.2.1: one just replaces the variance and asset process from (2.2) and (2.4)
with the above defined discretizations for the variance and asset process.

2.4. Exact scheme of Broadie and Kaya

In an elegant paper, Broadie and Kaya [8] worked out an exact simulation scheme
for the Heston model. Though theoretically the method is exact, its practical use
is limited; the scheme suffers from a lack of speed, it is complex and sensitivity
calculations (often used for risk management) are hard since the scheme relies on
acceptance and rejection sampling techniques. For example, the numerical tests in
Lord et al. [24] show that for most practical situations even a simple Euler scheme
outperforms the exact scheme in terms of computational efficiency.5

Though in most practical situations a direct implementation of the exact scheme
is probably not the best available option (see Sec. 2.5), there are some approxima-
tions or computational tricks that can be made to improve upon the computational
efficiency. For example, Andersen [4] and Smith [29] both use the exact scheme as
starting point and from there on try to improve upon some of the incorporated
bottlenecks.

5Note that in the numerical results of Broadie and Kaya [8] and Smith [29], an Euler scheme is
used that handles negative values of the variance in a suboptimal way. However as shown in Lord
et al. [24] the choice on how to cope with negative values of the variance process is extremely
important for the quality (i.e. bias) of the scheme. Because the (semi-)exact schemes in Broadie
and Kaya [8] and Smith [29] are benchmarked against a suboptimal Euler scheme, this leads them
to a false conclusion in comparing their schemes against “the” Euler scheme. This was point was
first noted in Lord et al. [24] and later on in Andersen [4]. From their results in can for example be
seen that the Euler scheme (with the “right” fix) outperforms the exact and Kahl-Jäckel scheme
in terms of computational efficiency, whereas in Broadie and Kaya [8] and in Smith [29] (who use
suboptimal fixes) this is just the other way around.
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We will first discuss the exact method and its incorporated difficulties: by using
the explicit solution (2.15) of the asset price process and consecutively using Ito’s
lemma and using a Cholesky decomposition one obtains

log(S(t)) = log(S(s)) − 1
2

∫ t

s

v(u)du

+ ρ

∫ t

s

√
v(u)dWv(u) +

√
1 − ρ2

∫ t

s

√
v(u)dW (u), (2.20)

where W (u) is a Brownian motion independent of Wv(u). Integrating the square-
root variance process of equation (2.2) gives the following solution:

v(t) = v(s) +
∫ t

s

κ(θ − v(u))du + ξ

∫ t

s

√
v(u)dWv(u), (2.21)

or equivalently∫ t

s

√
v(u)dWv(u) = ξ−1

(
v(t) − v(s) − κθ∆t+ κ

∫ t

s

v(u)du
)
. (2.22)

In Broadie and Kaya [8], it is then noticed that one can substitute equation (2.22)
into the solution (2.20) to arrive at

log(S(t)) = log(S(s)) +
κρ

ξ

∫ t

s

v(u)du− 1
2

∫ t

s

v(u)du

+
ρ

ξ
(v(t) − v(s) − κθ∆t) +

√
1 − ρ2

∫ t

s

√
v(u)dW (u), (2.23)

hence an exact simulation involves sampling from the following three stochastic
quantities:

(1) v(t)|v(s): from (2.4) and (2.6) one use that v(t)|v(s) is distributed as a constant
C0 times a non-central chi-squared distribution with d degrees of freedom and
non-centrality parameter λ.

(2)
∫ t

s v(u)du|v(s), v(t): Broadie and Kaya [8] derive the characteristic function

Ψ(a, v(s), v(t))

= E

[
exp

(
ia

∫ t

s

v(u)du
)∣∣∣∣ v(s), v(t)]

=
γ(a)e

1
2 (γ(a)−κ)(t−s))(1 − exp(−κ(t− s))

κ(1 − e−γ(a)(t−s))

× exp
[
v(s) + v(t)

ξ2

(
κ(1 + e−κ(t−s))

1 − e−κ(t−s)
− γ(a)(1 + e−γ(a)(t−s))

1 − e−γ(a)(t−s)

)]

× I 1
2 d−1[

√
v(s)v(t)4γ(a)e−

γ(a)
2 (t−s)/ξ2(1 − e−γ(a)(t−s))]

I 1
2 d−1[

√
v(s)v(t)4γ(a)e−

κ
2 (t−s)/ξ2(1 − e−κ(t−s))]

, (2.24)



March 25, 2010 15:4 WSPC/S0219-0249 104-IJTAF SPI-J071
S0219024910005668

Efficient, Almost Exact Simulation of the Heston Stochastic Volatility Model 11

with γ(a) :=
√
κ2 − 2ξ2ia, d := 4κθ

ξ2 and where Iν(x) is the modified Bessel
function of the first kind. Hence the characteristic function (2.24) can numer-
ically be inverted to obtain the value of the distribution function G(x) for a
certain point x ∈ Ω, i.e.

G(x, v(s), v(t)) =
2
π

∫ ∞

0

sin(ax)
x

Re[Ψ(a, v(s), v(t))]da. (2.25)

Finally to generate sample from
∫ t

s
v(u)du|v(s), v(t) one can use

G

(∫ t

s

v(u)du|v(s), v(t)
)

= U, (2.26)

and invert G over a uniform random sample U to find xi : xi = G−1(U, v(s),
v(t)), e.g. by a Newton-Raphson root search of G(xi, v(s), v(t)) − U = 0. Note
that such a root finding procedure involves multiple Fourier inversions: one for
each evaluation of G(xi, v(s), v(t)).

(3)
∫ t

s

√
v(u)dW (u)| ∫ t

s v(u)du: since v(u) is independent ofW (u), it directly follows
that the this expression is distributed as N(0,

∫ t

s v(u)). Hence this sampling can
be done easily and efficient by sampling from a normal distribution.

2.4.1. Broadie and Kaya algorithm

Exact simulation of (2.23) is feasible and can be performed by the following algo-
rithm:

(1) Conditional on v(s), use the definitions of (2.6) to generate a sample of v(t) by
sampling from a constant times a non-central chi-squared distribution with d

degrees of freedom and non-centrality parameter λ.
(2) Conditional on v(s) and v(t), generate a sample of

∫ t

s
v(u)du by a numerical

inversion of the distribution function G of (
∫ t

s v(u)du | v(s), v(t)) over a uniform
sample U , for example by a root search G(xi, v(s), v(t)) − U = 0. Since the
distribution function G is not known is closed form, G(xi, v(s), v(t)) has to be
obtained by Fourier inverting the characteristic function of

∫ t

s v(u)du|v(s), v(t).
(3) Use (2.22) to set:∫ t

s

√
v(u)dWv(u) = ξ−1

(
v(t) − v(s) − κθ∆t+ κ

∫ t

s

v(u)du
)

(2.27)

(4) Generate an independent random sample ZS from the standard normal dis-
tribution and use the fact that

∫ t

s

√
V (u)dW (u) is normally distributed with

mean zero and variance
∫ t

s
V (u)du and thus can be generated as∫ t

s

√
V (u)dW (u) ∼ ZS

√
∆t
∫ t

s

V (u)du, (2.28)

(5) Given log(S(s)),
∫ t

s

√
v(u)dWv(u),

∫ t

s

√
V (u)dW (u) and

∫ t

s
V (u)du use (2.23)

to compute log(S(t)).
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2.5. Disadvantages of the exact scheme

Though the Broadie and Kaya scheme is theoretically appealing (and this was
probably also the primary objective of their paper), we will discuss in the following
section why its practical use might be limited. That is, we discuss some practical
implementation issues that incorporated with the use of the exact scheme; first of
all, Sec. 2.4.1 step (1) requires that the variance process v(t)|v(s) has to be sampled
from a constant C0 times a non-central chi-squared distribution with d degrees of
freedom and non-centrality parameter λ (see ):

v(t) d= C0χ
2
d(λ), (2.29)

For simulation purposes one can use the following representations of the non-central
chi-squared distribution (see Johnson et al. [18] and Glasserman [13]):

χ2
d(λ) d=

{
(Z +

√
λ)2 + χ2

d−1 for d > 1,

χ2
d+2N for d > 0,

(2.30)

with Z ∼ N(0, 1), χ2
ν an ordinary chi-squared distribution with ν degrees of free-

dom and where N is Poisson distributed with mean µ := 1
2λ. Since in most practical

applications d� 1, one is usually forced to work with the second representation of
the non central chi-squared distribution;6 hence exact sampling from the variance
process can be done by first conditioning on a Poisson variate and consecutively
generating a sample from a chi-squared or gamma distribution.7 Since direct inver-
sion of the gamma distribution is relatively slow, Broadie and Kaya [8] suggest to
use an acceptance and rejection method to generate gamma variates. Though such
sampling can be done fairly quick (e.g. by making use of some recent advances of
Marsaglia and Tsang [26]), the methods are still relatively slow in comparison to
sampling methods for normal variates.

Moreover the main disadvantage of acceptance and rejection techniques is that
the (number of) samples depend on the specific Heston parameters. As a conse-
quence the total drawings of random numbers cannot be predetermined and sam-
ple paths will show a rather small correlation coefficient for different parameter
inputs. These properties are usually inconvenient in financial applications, since
both perturbation analysis8 (to calculate model sensitivities with respect to dif-
ferent parameters) as well as the use of quasi random numbers generator becomes
extremely hard, not to say practically almost impossible.

Another practical difficulty of the scheme lies in Sec. 2.4.1 step (2), where one has
to generate a sample of

∫ t

s v(u)du|v(s), v(t) by numerically inverting the distribution

6Otherwise, if d > 1, one might want to use the first representation, since sampling from the
normal distribution is usually more efficient than sampling from a Poisson distribution.
7The Chi-squared distribution is a special case of the gamma distribution, χ2

ν
d
= gamma( ν

2
, 2),

where gamma(k, θ) is a gamma distribution with shape k and scale θ.
8The efficiency in the calculation of model sensitivities crucially depends on the size of the corre-
lation coefficient between pre- and post perturbation paths.
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function of (
∫ t

s
v(u)du|v(s), v(t)) over an uniform random variable u, by a root search

of G(xi, v(s), v(t)) − U = 0. However because the distribution function G is not
known is closed form, it has to be obtained by Fourier inverting the characteristic
function (2.24), which contains two modified Bessel functions that each represent
an infinite series. The root-finding procedure (and the involved Fourier inversions)
has to repeated several times until a tolerance level ε is reached for a guess xi, such
that G(xi, v(s), v(t))−U < ε. Next to the fact that both in the evaluation of (2.24)
as well as the required Fourier inversions require a great computational effort, the
implementation of this step also has to be done with great care to avoid noticeable
biases from the numerical inversions.

3. Approximations to the Exact Scheme

As elaborated in Sec. 2.5 the exact scheme has some practical disadvantages. How-
ever it does provide an extremely well base to construct some approximate schemes
which might be more practically and computationally more efficient. A few authors
have already tried to improve the bottlenecks in simulating the variance and/or
integrated variance process, e.g. see Andersen [4] and Smith [29]. In the remainder
of this section we will unify and discuss the two methodologies that can improve
upon the performance of the Broadie and Kaya scheme. That is, we consider approx-
imations of:

(1) The integrated variance process.
(2) The variance process itself.

Moreover we will look at schemes that combine the latter approximations.

Approximating the integrated variance distribution

As elaborated in Sec. 2.5, a huge bottle neck of the simulation scheme is the sampling
of the conditional integrated variance process. There are however several ways to
approximate a sample from the integrated variance process

∫ t

s
v(u)du | v(s), v(t).

(1) Drift interpolation: Without using any specific information of the integrated
variance process, one can use a drift interpolation method to approximate the
integrated variance process, i.e.∫ t

s

v(u)du | v(s), v(t) ≈ γ1v(s) + γ2v(t), (3.1)

for some constants γ1, γ2, which can be set in several ways: an Euler-like setting
would read γ1 = 1, γ2 = 0 (e.g. see Kloeden and Platen [20] or Lord et al. [24]),
while a mid-point rule corresponds to the predictor-corrector setting γ1 = γ2 =
1
2 (e.g. see Hunter et al. [16] or Andersen [4]).

(2) Approximate the Fourier inversion: One can also try to approximate
the Fourier inverted sampling of the integrated variance process. For example
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Smith [29] tries to speed up the inversion of the characteristic function (2.24)
by caching values of a projected version hereof. Though such a method might
speed the inversion, one still has to use a rather time-consuming Fourier inver-
sion combined with a root finding procedure to draw a sample of the integrated
process. Alternatively one can try to use the first moments of the conditional
integrated variance process [which can be obtained by differentiating the cf. of
(2.24)] to develop a moment-matched sampling method.

Approximating the variance process

Another (practical) disadvantage of the exact scheme is the use of acceptance rejec-
tion sampling method for the non-central chi-squared distributed variance process
(see Sec. 2.5). Hence we consider two methods that can be used to approximate the
variance distribution.

(1) Moment-matching: Andersen [4] suggests to approximate the variance pro-
cess by related distributions whose first two moments are (locally) matched
with those of the true variance distribution. Moreover, since the distributions
can be analytically inverted, the methods can be directly used in conjunction
with perturbation and low-discrepancy methods by straightforward inversions
a uniform random variates.

(2) Direct inversion: To overcome the acceptance and rejection sampling method,
one can also use direct inversion of the non-central chi-squared distribution to
generate a sample of the variance process. Unfortunately, however, no analytical
expression exists for this inverse and one has to use a (time-consuming) root
finding procedure to numerical invert the distribution. As direct inversion is too
slow for practical purposes, another solution is to design a three-dimensional
(i.e. with its functions value, the degrees of freedom and the non-centrality
parameters) cache of the inverse from the non-centrally chi-squared distribution
function. This suggestion was initially put forward by Broadie and Andersen
(see Andersen [4]), but these authors commented that the cache would be of
too a high dimension to be practical, hence other directions are undertaken.

In Sec. 3.4 we will however tackle this dimensionality problem and show that
the initial three-dimensional parameter space of the inverses of the non-central
chi-squared distribution can effectively be projected onto a one dimensional
search space for the case of the Heston [14] model. The key insights behind this
projection is discussed in Sec. 3.4, where we also go into the details on how to
apply the caching technique as efficiently as possible. The analysis of the exact
martingale property and the regularity conditions of the schemes applying a
direct inversion can be found in Sec. 4.1.

3.1. Broadie and Kaya drift interpolation scheme

Probably the easiest way to give the exact scheme a performance boost is to approxi-
mate the Fourier inverted sampling of the integrated variance process by the simple
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drift interpolation method of Eq. (3.1). Moreover since the sampling of the inte-
grated variance process is most time-consuming step of the exact scheme, one can
expect a large efficiency gain. The simulation of the Broadie and Kaya Drift Inter-
polation (BK-DI) scheme is straightforward; in the exact scheme of Sec. 2.4, one
only has to replace the sampling of the integrated variance process in step 2 by the
drift interpolation rule (3.1).

Hence though the resulting method is simple and reasonable efficient, sampling
from the variance process is still performed by an acceptance-rejection method,
which (as discussed in Sec. 2.5) is rather inconvenient for most financial appli-
cations. We also like to note that though for reasonable time-spacings the drift
approximation error is usually rather small, one does slightly violate the discrete-
time no-arbitrage condition, i.e. the discretized stock price is not exactly a mar-
tingale. In Sec. 4.1 we show how one can enforce this condition with the above
discussed discretization method.

3.2. Almost exact Fourier inversion scheme

Smith [29] tries to speed up the inversion of the characteristic function (2.24) by
caching values of a projected version hereof. The core of the almost exact simula-
tion method (AESM) in Smith [29] is to project the exact characteristic function
Ψ(a, v(s), v(t)), which depends on v(s) and v(t) via the arithmetic and geometric
mean 1

2 (v(s)+v(t)) and
√
v(s)v(t), onto a function Ψ̃(a, z) in which the dependency

on the means is approximated by the combination

z = ω
1
2
(v(s) + v(t)) + (1 − ω)

√
v(s)v(t), 0 ≤ ω ≤ 1, (3.2)

for a suitable choice of ω. Hence the arithmetic and geometric mean, which are
similar in expectation, are replaced by a weighted average of the two. In this way the
three-dimensional function Ψ(a, v(s), v(t)) is approximated by the two-dimensional
function

Ψ̃(a, z) =
γ(a)e

1
2 (γ(a)−κ)(t−s))(1 − exp(−κ(t− s))

κ(1 − e−γ(a)(t−s))

× exp
[
2z
ξ2

(
κ(1 + e−κ(t−s))

1 − e−κ(t−s)
− γ(a)(1 + e−γ(a)(t−s))

1 − e−γ(a)(t−s)

)]

×
I 1

2 d−1[z4γ(a)e−
γ(a)

2 (t−s)/(ξ2(1 − e−γ(a)(t−s)))]

I 1
2 d−1[z4γ(a)e−

κ
2 (t−s)/(ξ2(1 − e−κ(t−s)))]

, (3.3)

which can then be cached on a sufficiently small discrete (two-dimensional) grid
of a and z-points. Though Smith claims that the approximation works well, the
implementation still requires a time-consuming root search of Fourier inversions for
each time step. Hence though the evaluation of the characteristic can be approx-
imated in an computationally efficient way, the root search and inversion are still
rather time-consuming in comparison with a simple drift interpolation method.
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Additionally the total algorithm has to be implemented with great care to avoid
numerical truncation and discretization errors.

3.3. Quadratic Exponential scheme

In the Quadratic Exponential (QE) scheme, Andersen [4] suggests to approximate
the sampling from the non-central chi-squared distribution is approximated by a
draw from a related distribution, which is moment-matched with the first two (con-
ditional) moment of non-central chi-squared distribution. The choice of distribution
is split up into two parts, which are based on the following observations with respect
to the size of the non-centrality parameter (e.g. see Abramowitz and Stegun [1]):

(1) For a moderate of high non-centrality parameter the non-central chi-squared
can be well represented by a power function applied to a Gaussian variable
(which is equivalent to a non-central chi-squared distribution with one degree
of freedom). For sufficiently high values of v(s), a sample of v(t) hence can be
generated by

v(t) = a(b+ Zv)2, (3.4)

where Zv is standard normal distributed random variable and a and b are
constants to be determined by moment-matching.

(2) For sufficiently low values of v(s), the density of v(t) can (asymptotically) be
approximated by

P(v(t) ∈ [x, x + dx]) ≈ (pδ(0) + β(1 − p)e−βx)dx, x ≥ 0, (3.5)

where δ represents Dirac’s delta function, and p and β are non-negative
constants.

The constants a, b, p, β can (locally) be chosen such that the first two moments of the
approximate distribution matches those of the exact one. These constants depend
on the size of the time-step ∆t, v(s), as well as on Heston’s model parameters.
Sampling from these distributions can be done in a simple and efficient way:

• From the first distribution one only has to draw a standard normal random
variable and apply the quadratic transformation of equation (3.4).

• Sampling according to equation (3.5) can be done by inversion of the distribution
function; The distribution function is obtained by integrating the probability
density function, and can consecutively be inverted to obtain the following inverse
distribution function:

L−1(u) =


0 if 0 ≤ u ≤ p,

β−1 log
(

1 − p

1 − u

)
if p < u ≤ 1.

(3.6)

Using the inverse distribution function sampling method, one obtains an easy and
efficient sampling scheme by first generating a uniform random number Uv and
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then setting

v(t) = L−1(Uv) (3.7)

Together, the equations (3.4) and (3.7) define the Quadratic Exponential (QE) dis-
cretization scheme. What yet remains is the determination of the moment-matching
constants a, b, p and β, as well as a rule that defines “high and low values” of the
non-centrality parameter, i.e. a rule that determines when to switch from (3.4) and
(3.7). We first discuss the latter: recalling that the conditional mean and variance
of the square-root process are given by m and s2 as defined in equations (2.8) and
(2.9). Andersen then bases the switching rule on the value of ψ

ψ :=
s2

m2
=

v(s)ξ2e−κ∆t

κ (1 − e−κ∆t) + θξ2

2κ (1 − e−κ∆t)2

(θ + (v(s) − θ)e−κ∆t)2
=

C1v(s) + C2

(C3v(s) + C4)2
, (3.8)

with

C1 =
ξ2e−κ∆t

κ
(1 − e−κ∆t), C2 =

θξ2

2κ
(1 − e−κ∆t)2,

C3 = e−κ∆t, C4 = θ(1 − e−κ∆t).

Note that ψ is inversely related to the size of the non-centrality parameter. It can be
shown that for ψ ≤ 2 the quadratic transformation (3.4) can be moment-matched
with the exact distribution and for ψ ≥ 1 the exponential one of (3.7). Thus for
ψ ≤ 2, we can moment match the quadratic sampling scheme (3.4) and for ψ ≥ 1 and
we can moment match the exponential scheme (3.7). Since these domains overlap, at
least one of the two methods is applicable. A natural procedure is then to introduce
some critical level ψc ∈ [1, 2], and use (3.4) if ψ ≤ ψc and (3.7) otherwise. Following
Andersen, who notes that the exact choice of ψc has a relatively small impact on
the quality of the overall simulation scheme, we use ψc = 1.5 in the numerical tests.

Notice though ψ (locally) has to be calculated for every step in a simulation and
contains “computational expensive” components (e.g. the exponent exp(−κ∆t))
many of these terms only depend on the size of time step. From efficiency consider-
ations it is therefore advisable to pre-cache the static constants C1, . . . , C4 before the
Monte Carlo simulation starts. In the case one uses a non-equidistant time grid dif-
ferent constants of course need to be cached for every applicable size of the time step.

The moment-matching constants a, b, p and β of the just defined sampling
schemes still have to be specified, and should be chosen such that the first two
(conditional) moments are matched with the first and second central moment m
and s2 of the exact non-central chi-squared distribution. The following statements
hold regarding the conditional moments of the schemes (3.4) and (3.7)

(1) For ψ ≤ 2, setting

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0, (3.9)

a =
m

1 + b2
, (3.10)
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assures that the first two moments of the sampling scheme (3.4) are matched
with the exact moments non-central chi-squared distribution, see Andersen
[4, Proposition 5, p. 14].

(2) For ψ ≥ 1, setting

p =
ψ − 1
ψ + 1

∈ [0, 1), (3.11)

β =
1 − p

m
=

2
m(ψ + 1)

> 0, (3.12)

assures that the first two moments of the sampling scheme (3.7) are matched
with the exact moments non-central chi-squared distribution, see Andersen
[4, Proposition 6, p. 15].

3.3.1. QE algorithm

Assuming that some critical switching level ψc ∈ [1, 2] and values for γ1, γ2 ∈ [0, 1]
have been selected, the Quadratic Exponential variance sampling can be summa-
rized by the following algorithm:

(1) Given v(s), compute m and s2 and ψ = m2

s2 using equations (2.8) and (2.9).
(2) If ψ ≤ ψc:

(a) Compute a and b from equations (3.10) and (3.9).
(b) Generate a random sample Zv from the standard normal distribution.
(c) Use (3.4), i.e. set v(t) = a(b+ Zv)2.

Otherwise, if ψ > ψc:

(a) Compute β and p according to equations (3.11) and (3.12).
(b) Draw a uniform random number Uv.
(c) Use (3.7), i.e. set v(t) = L−1(Uv) where L−1 is given in (3.6).

3.4. Non-central Chi-squared inversion scheme

Instead of using moment-matched schemes, another way to circumvent the accep-
tance and rejection technique is to use a direct inversion of the Non-central Chi-
Squared distribution. We will call this new scheme the Non-central Chi-squared
Inversion (NCI) scheme; since direct inversion is too slow, another solution could
be to design a three-dimensional cache over the parameter space of the inverses
from the non-centrally chi-squared distribution function F−1(x, d, λ), which can be
created by a root finding procedure of the distribution function. This suggestion was
already put forward by Broadie and Andersen (e.g. see Andersen [4], however these
authors commented that the parameter space is of too high dimension (i.e. three) to
create a cache. Such a three-dimensional caching, even referred to as “brute-force”
by Andersen [4], will have its own challenges, like its dimension and the design of
inter- and extrapolation rules. For this reason, the idea of the cache is not pursues
further.
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In the following, however, we explain an important insight which enables us to
project the three-dimensional parameter space onto an effectively one dimensional
search space. As a one-dimensional cache is of such a low dimension, the computa-
tional overhead of its creation is small, whilst the simulation of the variance process
can be done fast and by simple interpolation method of two values of the cache
over an uniform random variable. Moreover, as the total number of uniform draws
is fixed (and independent of the Heston parameters), the caching technique can
be applied directly in conjunction with perturbation analysis and low-discrepancy
numbers, which are important techniques for the pricing and risk management of a
book with exotic derivatives.

3.4.1. A Poisson conditioned caching method

Recall from (2.5) and (2.6) that the exact distribution of the variance process is
a constant times a non-central chi-squared distribution, for which representation
(2.30) can be used, i.e.

v(t)|v(s) d= C0χ
2
d+2N for d > 0, (3.13)

with and N a Poisson distribution9 with mean µ = 1
2λ and with (see (2.6)):

d =
4κθ
ξ2

, µ =
1
2
C5 v(s), and C5 :=

2κe−κ∆t

ξ2(1 − e−κ∆t)
. (3.14)

Thus sampling from the non-centrally chi-squared distributed variance process
is equivalent to sampling from a “Poisson-conditioned” chi-squared distribution.
Though this observation was already being used in the Broadie and Kaya scheme,
our (yet to be described) sampling method is different. We claim our method is
more efficient and better applicable in financial applications; moreover our sam-
pling method for the variance scheme can either be used on its own or can be
used as drop in for the variance sampling of the exact or almost exact scheme of
Broadie and Kaya [8] or Smith [29]. In the following sections we first describe the
Poisson-sampling method and consecutively show how one can exploit a property of
this distribution, which enables us to create an efficient cache (and corresponding
sampling method) of the non-central chi-squared distribution.

3.4.2. Poisson sampling

Notice that the mean µ of the Poisson distribution depends on the size of the
time step (through C5) as well as on the current state of the variance process
v(s); for almost all practical model configurations one finds E[µ] � 10, for which
the corresponding Poisson-distribution decays quite rapidly and has rather “thin”
tails.10 This implies that we can (efficiently) draw a sample Nj from a Poisson

9Recall: P(N = n) = µne−µ

n!
, n = 0, 1, 2, . . ..

10For all µ < 10, P(N > 35) < 4.462 · 10−11.
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distribution with a relatively small mean µ by just inverting its distribution function
over an uniform random variable (e.g. see Knuth [21] and Ahrens and Dieter [2]):

(1) Draw a uniform random number UP , set Nj = 0 and PNj = PC = exp(−µ).
(2) While PC ≤ UP :

Nj → Nj + 1, PNj → PNj · µ
Nj

and PC → PC + PNj .

Hence for small µ the above inversion algorithm is very efficient, since most of
probability mass lies within the first values of the distribution, i.e. see Fig. 1.

Next to the fact that the thin tail of the Poisson distribution enables us to
efficiently invert the Poisson distribution, it implies that we can create a cache for
the non-central chi-squared distribution by precomputing chi-squared distributions
for a truncated set Poisson-outcomes; since there is a little probability mass in
the tail of the Poisson-distributions that one encounters during a simulation, the
truncation error usually is negligible.

3.4.3. Caching the Chi-squared distributions

We first introduce some notation: let Nmax represent a certain threshold level (e.g.
such that P(N > Nmax) < ε) and let

N := {0, . . . , Nj, . . . , Nmax} (3.15)
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Fig. 1. Poisson probability density functions for different µ.
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represent the set of Poisson-values for which we will cache the inverse of the corre-
sponding conditional chi-squared distributions [i.e. according to (3.13)]. Since the
inverse lives on the uniform domain, we let UNj represent a corresponding sorted
set of uniform variables for which we the inverse (χ2

d+2Nj
)−1(·) is calculated,11 i.e.

UNj := {0, . . . , 1 − δ}. (3.16)

Thus we suggest to create a cache of the values of the inverse of the non-central
chi-squared distribution function by means of conditioning on a truncated range of
Poisson-values and precomputing the corresponding chi-squared distribution func-
tions, i.e. we precompute

H−1
Nj

(Ui) := G−1
χ2

d+2Nj

(Ui), ∀Nj ∈ N ∀Ui ∈ UNj , (3.17)

with G−1
χ2

d+2Nj

the inverse chi-squared distribution with d+ 2Nj degrees of freedom.

3.4.4. Generating a sample from the variance process

From (2.6) we know that v(t)|v(s) is distributed as a constant C0 times a non-
central chi-squared distribution, we can use the results of the previous subsection
and sample from the variance process by first conditioning on a Poisson variable Nj

and consecutively inverting the corresponding chi-squared distribution. To invert
the chi-squared distribution for Nj ≤ Nmax, we just draw a uniform variate and
interpolate between the two values of the inverse distribution cache that surround
the uniform numbers. In case Nj > Nmax we use the distribution corresponding to
Nmax and moment-matching techniques which we explain below.

The caching method (3.17) and the following sampling rule form the core of the
NCI scheme. That is, draw a Poisson number Nj and a uniform random number
UV (e.g. Ui < UV < Ui+1) then a sample of v(t)|v(s) is generated by

v(t) = F−1
Nj

(UV ), (3.18)

with

F−1
Nj

(UV ) :=

C0J(UV ) for Nj ≤ Nmax,

C0F
−1
χ2

d+2Nj

(UV ) for Nj > Nmax,
(3.19)

with C0 as defined in (2.6) and where J(·) represents an interpolation rule. The
NCI sampling scheme thus consists of an inversion of the non-central chi-squared
distribution for the low and most frequent Poisson-outcomes and of a moment-
matching scheme based on the chi-squared distribution for the rare and high Poisson

11Since limU→1 G−1

χ2
d+2Nj

(U) = ∞, one should use 1−δ instead of 1 to avoid numerical difficulties.

Here δ is defined as a small machine number: in C one can for example set δ = DBL EPSILON which
is defined in the header float.h.
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outcomes: though the probability of {N > Nmax} is usually small, it will be strictly
greater than zero for all Nmax and we decide to use direct inversion.12

3.4.5. Design of the cache: a practical example

As example we will work out a way to implement the Non-Central Chi-Squared
Inversion (NCI) scheme, specifically we will explore how to design the cache. A few
details still has to be filled in: which value should be chosen for Nmax in (3.15), how
should the uniform numbers for a UNj in (3.16) be aligned and which interpolation
rule J should be chosen to interpolate between two values of the inverse chi-squared
distribution.

For expositional purposes we use the parameter values v(0) = 0.09, θ = 0.09,
κ = 1.0, ξ = 1.0 for the variance process and we use an equidistant time grid with
∆t = 0.25 and maturity T = 5. Using (3.13), (3.14) and (3.18) this then implies
that the exact distribution of the variance process equals a constant C0 ordinary
chi-squared distribution with d + 2N = 4κθ

ξ2 + 2N = 0.36 + 2N degrees of free-
dom, where N [cf. (3.14)] is Poisson distributed with mean v(s)C5 = v(s)7.042.
Using this setting as example we comment on the choice of Nmax. As shown in
Table 1, this choice mainly depends on the mean of Poisson distribution: for the
case s = 0, we have v(0) = 0.09, hence the scheme implies that we need to sam-
ple from a Poisson-distribution with mean µ = 0.634 and we could easily use this
mean to set a bound for Nmax. Unfortunately one then ignores the randomness of
the mean: even though the means of the stationary and non-stationary distribu-
tion can be approximately equal, the randomness significantly increase the mass in
the tails of non-stationary distribution function (i.e. based on all Poisson-draws in
the simulation) when compared to the “stationary” Poisson-distribution at time 0.
An example of this behavior can be seen in the empirical distribution function as
reported in Table 1.

Table 1. Empirical distribution function based on the Poisson samples that
were drawn in 107 simulations with the parameters: v(0) = 0.09, θ = 0.09,
κ = 1.0, ξ = 1.0, ∆t = 0.25 and maturity T = 5.

n P(N > n) n P(N > n) n P(N > n)

−1 1 4 0.0361 9 0.0075
0 0.2585 5 0.0253 10 0.0058
1 0.1362 6 0.0182 20 0.0007
2 0.0816 7 0.0133 40 1.26 · 10−5

3 0.0530 8 0.0099 80 9.00 · 10−7

12Since for most parameter configurations and a reasonable choice of Nmax, the probability of
Nmax we only need to use a direct inversion a very limited amount of times, the computational
overhead of direct inversion will be relatively small. Alternatively one can also opt to use an
approximation for a chi-squared distribution with moderate to large degrees of freedom, e.g. see
Abramowitz and Stegun [1].
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One then has to decide which size, alignment and interpolation rule one uses
on the grid of uniform numbers in the cache(s) of the inverse of the chi-squared
distribution with d+2Nj degrees of freedom; first notice that, as shown in Table 1,
the number of draws from the corresponding chi-squared distributions differs signif-
icantly across the bins, e.g. in the example more than 74% of the drawings end up
in the first bin. Another point to take into account for interpolation rule, is that the
inverse distribution function is a monotone function, hence we would like the inter-
polation rule to preserve the monotonicity in the cached data points. A third point
might be that some areas (i.e. in the tails of the distribution) are “more difficult”
to interpolate, which might plea for using a non-equidistant alignment. To keep the
mapping of a uniform sample to the corresponding cached value straightforward,
we simply opt to use a equidistant grid. Hence given a uniform drawing UV and
say 1, . . . ,K-values in the cache, we the lower index i can then be easily located by
evaluating l := floor(UV ∗K).

For the interpolation rules, we suggest two rules that preserve the monotonicity
of the date and are relatively easy to implement. The first one is linear interpolation:
given Ui < UV < Ui+1 the linear interpolation rule J(·) is given by

J(UV ) :=
Ui+1 − UV

Ui+1 − Ui
H−1

j (Ui) +
UV − Ui

Ui+1 − Ui
H−1

j (Ui+1). (3.20)

This rule has the advantage that is fast to execute, but in our experience some
more points has to be cached in comparison to higher order interpolation rules to
obtain full accuracy. Hence it might depend on the situation (e.g. on the number
of paths) whether linear interpolation is suited. Alternatively we therefore suggest
a monotone cubic Hermite spline interpolation which rule is defined as follows.

J(UV ) := h00(t)H−1
j (Ui) + h01(t)H−1

j (Ui+1) + ∆i(mih10(t) +mi+1h11(t)),

(3.21)

with t := UV −Ui

Ui+1−Ui
and where the corresponding definitions of the Hermite polyno-

mials h00, h01, h10, h11 and the weights mi are given in Appendix 6. Though the
spline interpolation rule requires a few more (elementary) operations in each step,
one can significantly reduce the required number of points in the cache. Finally a
suitable number of points and the choice of Nmax is both case (e.g. the number of
simulations) as well as parameter dependent and basically constitutes a efficiency
weigh-off between bias and variance. We do mind the reader to be careful with too
coarse grids, since E[N ] = Var[N ] → ∞ as ∆t → 0 and one might end up with
many exceedings of Nmax implying a loose of efficiency since in such case direct
inversion13 instead of a look-up value from the cache is being used. It is not very

13Since χ2
d+2Nj

d
= γ ν

2 ,2
d
= 2γ ν

2 ,1, the inverse of a chi-squared distribution with ν degrees of freedom

can be obtained by taking twice the inverse of gamma distribution with shape k = ν
2

and scale
1. For the inversion of the gamma distribution we use an implementation of Maddock et al. [25].
Their (root search) algorithm first uses the method of Didonato and Morris [11] to find an initial
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likely that this will cause a problem, since from the numerical results of Sec. 5.2 it
follows that using only a few steps per year already produces schemes which have
a negligible bias. As for a certain product small time steps (e.g. weekly steps) are
required and one can for example retain the efficiency of the cache by using the
modification as described in Sec. 5.3.

3.4.6. NCI algorithm

Assuming that a certain threshold level Nmax, an alignment of the grid UNj (3.16)
and interpolation rule J(·) (3.19) has been chosen, the Non-central Chi-Squared
Inversion (NCI) algorithm can be summarized by the following algorithm:

(1) For Nj = 0, . . . , Nmax, use (3.17) to precompute the inverses of the chi-squared
distribution on the grid UNj and compute d using (3.14).

(2) Given v(s) and µ using (3.14).
(3) Generate a sample from a Poisson distribution with mean µ according to

Sec. 3.4:

(a) Draw a uniform random number UP .
(b) Set Nj = 0 and PNj = PC = exp(−µ).
(c) While PC ≤ UP

14:
Set Nj = Nj + 1, PNj = PNj · µ

Nj
and PC = PC + PNj .

(4) Generate a sample from a chi-squared distribution with d + 2Nj degrees of
freedom:

(a) Draw a uniform random variable UV .
(b) Use (3.18), i.e. set v(t) = F−1

Nj
(UV ) where F−1

Nj
is defined in (3.19).

3.5. The NCI-QE scheme

An alternative sampling method for the non-central chi-squared distributed variance
process can be to combine the NCI and QE approximations of Secs. 3.4 and 3.3.
This combination is motivated by the fact that while NCI-scheme is particularly
efficient for small non-centrality parameters [i.e. implying a small Poisson-mean
and hence a small cache, e.g. see (3.14)], the QE-scheme works especially well for
moderate to high non-centrality parameters (i.e. corresponding to the quadratic
normal-like approximation (3.4), see Abramowitz and Stegun [1] or Andersen [4]).
To see which circumstances correspond to low/high non-centrality parameters, we
use the parameter settings of Table 2 and show the impact of instantaneous variance
and the size of the time step on the value of λ (2.6). The results are given in Fig. 2.

approximation for the inverse and consecutively applies a few Halley iterations to cut off some
extra digits. In many cases only a few iterations are needed for the complete algorithm, i.e. in the
evaluation of the function 2.0*gamma p inv(k,u).
14To avoid eventual numerical errors, one might define a maximum number of loops for safety.
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Table 2. Test cases for the Heston schemes, in all cases S(0) = 100.

Example Type κ ξ ρ v(0) θ r

Case I Call-10Y 0.5 1.0 −0.9 0.04 0.04 0.00
Case II Call-5Y 1.0 1.0 −0.3 0.09 0.09 0.05
Case III Call-15Y 0.3 0.9 −0.5 0.04 0.04 0.00
Case IV Asian-4Y 1.0407 0.5196 −0.6747 0.0194 0.0586 0.00
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Fig. 2. The non-centrality parameter λ (2.6) as function of the instantaneous variance and the size
of the time step for the parameter settings of Table 2. In the left graph we fixed the number of
time steps at 8 steps per year.

From Eq. (2.6) and the figure and we can hence see that the non-centrality
parameter grows linearly as function of the instantaneous variance and (almost)
linear as function of the number of time steps. Hence recalling that the NCI/QE
works particularly well for low/high non-centrality, a logical switching rule would
try to combine the best of both worlds by using a critical switching value λc of the
non-centrality parameter. That is, for λ ≤ λc one uses the NCI sampling scheme
and else the quadratic moment-matched approximation (3.4) of the QE scheme.
The exact choice of the switching value λc [provided that the moment-matching
condition (3.8) is satisfied] appears to have a relatively small effect on the quality of
the simulation scheme, indicating that the transition between both schemes is rather
smooth for moderate degrees of freedom. In our numerical test we use λc = 4 as
critical switching value between the schemes; first, for λ > 4 the quadratic moment-
matched scheme is always applicable since then ψ < 2 and secondly, λ < 4 implies
for the NCI scheme that we need to draw a sample from a Poisson-conditioned chi-
squared distribution with mean µ = 1

2λ < 2. Since there is little probability mass
in the Poisson distribution for small µ15 we only need to cache a small number of
chi-squared distributions [e.g. see (3.16) and (3.19)], and at the same time the use of

15For all µ < 2 one has P(N > 10) < 8.3 · 10−6.
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the direct inversion (i.e. when the Poisson-draw exceeds the maximum cache size)
will be limited.

By using λc = 4 as critical value, Fig. 2 implies that for the considered parameter
configurations, the scheme uses the NCI part the majority of the time for a number
of time steps that is smaller than 20–50 steps per year. The other way around: for
larger values of the instantaneous variance and a smaller time-grid the QE scheme
will used more extensively. Since in practice 4–8 time steps a year is already sufficient
to produce a scheme with a negligible bias (see Sec. 5), one will probably apply NCI
part the majority of the time. Do note that as we make the size of the time step
smaller and smaller, the use of the NCI becomes more and more remote.

The simulation algorithm for the NCI-QE scheme works straightforward: in
step (2) of the NCI-algorithm (Sec. 3.4) one evaluates µ: if µ < 1

2λc, one applies
(2.3)–(2.4) or else one uses the quadratic approximation in step (2) of the QE-
algorithm (Sec. 3.3).

4. Asset Price Sampling in Combination with Drift Interpolation

Though a sample of the integrated variance process can be generated using the exact
method of Broadie and Kaya, or the almost exact method of Smith, it is probably
computationally more efficient to use the simple drift interpolation method of (3.1),
for example with the corrector-predictor setting γ1 = γ2 = 0.5. Hence by applying
the drift interpolation method for the integrated variance process, one can modify
the “Broadie and Kaya” asset price sampling scheme of (2.23) as follows:

log(S(t)) = log(S(s)) + r∆t+
κρ

ξ
(γ1v(s) + γ2v(t))∆t − 1

2
(γ1v(s) + γ2v(t))∆t

+
ρ

ξ
(v(t) − v(s) − κθ∆t) +

√
1 − ρ2

√
γ1v(s) + γ2v(t) · Zs

√
∆t,

= log(S(s)) + r∆t+K0 +K1v(s) +K2v(t) +
√
K3v(s) +K4v(t) · ZS

(4.1)

where Zs is a standard normal distributed random variable, independent of v, and
with

K0 = −ρκθ
ξ

∆t, K1 = γ1∆t
(
κρ

ξ
− 1

2

)
− ρ

ξ
, K2 = γ2∆t

(
κρ

ξ
− 1

2

)
+
ρ

ξ
,

K3 = γ1∆t(1 − ρ2), K4 = γ2∆t(1 − ρ2).

Hence this asset price sampling scheme can be used in conjunction with different
methods to simulate the variance process. One can for example use this method in
conjunction with variance sampling that we have previously considered, that is with
the BK-DI, the QE, the NCI and the NCI-QE scheme of Secs. 3.1–3.5. Please note
that the above discretization scheme usually is not completely arbitrage-free, though
the bias induced from this approximation is usually rather small and controllable by
reducing the size of the time step. However with little effort one can also (locally)
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enforce an exact no-arbitrage condition, leading to the martingale corrected BK-
DI-M, QE-M, NCI-M and NCI-QE-M schemes, see Andersen [4] and Sec. 4.1.

Asset price sampling scheme

The stock price discretization scheme of the previous section can be summarized as
follows:

(1) Conditional on v(s), use the BK-DI scheme (Sec. 3.1), the QE scheme (Sec. 3.3),
the NCI scheme (Sec. 3.4) or the NCI-QE scheme of Sec. 3.5 to generate a sample
for v(t).

(2) Generate a random sample ZS from the standard normal distribution.16

(3) Given log(S(s)), v(s), v(t) and ZS , compute log(S(t)) from (4.1).

4.1. Martingale correction

As discussed in Andersen and Piterbarg [6], the continuous-time asset price process
S(t) might not have finite higher moments, but the discounted stock price will
always be a martingale under the risk-neutral measure, i.e.

E
Q[e−r∆tS(t)|Fs] = S(s) <∞. (4.2)

If we however takes the exponent of the scheme (4.1), one usually has that the
discretized stock price process (from here on denoted by S̃(t))

S̃(t) = S̃(s) exp[r∆t+K0 +K1v(s) +K2v(t) +
√
K3v(s) +K4v(t) · ZS ],

(4.3)

does not satisfy the martingale condition, i.e.

E
Q[e−r∆tS̃(t)|Fs] = S̃(s). (4.4)

As noted by Andersen [4] the practical relevance of this is often minor, because the
net drift away from the martingale is typically very small and controllable by reduc-
ing the size of the time step. Moreover the ability to hit the mean of the distribution
does not necessarily leads to better option prices. Following Glasserman [13] and
Andersen [4], we do discuss the martingale correction method, that is we investigate
whether it is possible to modify the NCI scheme such that the discretized option
price becomes martingale. Additionally we look at the regularity of the discretiza-
tion scheme, e.g. we look whether there might parameter values where the S̃-process
might blow up in the sense that E[S̃(t)|S(s)] = ∞.

16It might be advisable to use an inversion method to generate normal samples, since then a
quasi random generator is also applicable. The algorithm described in Wichura [31] gives an
approximation eΨ−1 of Ψ−1 with a relative error of

|eΨ−1 − Ψ−1|
1 − |Ψ−1| < 10−15.
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By the tower law of conditional expectations, we have

E
Q[e−r∆tS̃(t)|Fs] = E[EQ(e−r∆tS̃(t)|Fs, v(t))], (4.5)

hence for the martingale condition (4.2) to hold, we need S̃(s) to equal the above
expectation. Using the moment-generating function of the normal distribution, we
can write the following for the discretized stock price S̃(t):

S̃(t) = S̃(s) exp[K∗
0 +K1v(s)]E[exp[K2v(t)]EQ

× (exp[
√
K3v(s) +K4v(t) · ZS ]|Fs, v(t))]

= S̃(s) exp[K∗
0 +K1v(s)]E

[
exp

[
K2v(t) +

1
2
(K3v(s) +K4v(t))

]]
= S̃(s) exp

[
K∗

0 +
(
K1 +

1
2
K3

)
v(s)

]
Ψv(t)(A) (4.6)

with

A := K2 +
1
2
K4, (4.7)

and where Ψv(t)(x) denotes the moment-generating function of the (discretized)
variance process v(t) evaluated in the point x. Hence for the martingale condition
to hold we need

exp
(
K∗

0 +
(
K1 +

1
2
K2

)
v(s)

)
Ψv(t)(A) = 1, (4.8)

which (assuming the regularity condition Ψv(t)(A) < ∞) is satisfied by replacing
the constant K0 in (4.1) by

K∗
0 := − log(Ψv(t)(A)) −

(
K1 +

1
2
K2

)
v(s). (4.9)

Hence what remains is to determine the moment-generating function of the sim-
ulated variance processes. Additionally we look at the regularity of the schemes:
we check whether there might be parameter configurations for which the moment-
generating function of the simulated variance process does not exist.

4.2. Moment generating function of v(t), regularity

4.2.1. QE(-M) scheme

Using properties of the non-centrally chi-squared distribution with one degrees of
freedom on (3.4) and direct integration on (3.7), Andersen [4] derives the moment-
generating functions of his variance schemes. For the regularity conditions to hold
and the moment-generating functions to exist, the conditions aA < 1

2 and A < β

have be satisfied. As motivated in Andersen [4] these conditions are often (but not
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always) satisfied in practice: the most restrictive condition is that for ρ > 0 the size
of the time step has to be sufficiently small. Assuming regularity, one can define

K∗
0 =


− Ab2a

1 − 2Aa
+

1
2

log(1 − 2Aa) −
(
K1 +

1
2
K3

)
v(s) if ψ ≤ ψc,

− log
(
p+

β(1 − p)
β −A

)
−
(
K1 +

1
2
K3

)
v(s) if ψ > ψc.

(4.10)

and replace K0 by K∗
0 in the QE scheme of (4.1) to obtain the martingale-

corrected QE(-M) scheme for the discretized stock price process S (see Andersen
[4, Proposition 9, pp. 21–22]).

4.2.2. NCI(-M) and BK-DI(-M) scheme

Since we know from (2.6) that the variance process v(t) is distributed as a con-
stant C0 times a non-central chi-squared distribution with d degrees of freedom and
non-centrality parameter λ, we find following expression for Ψv(t)(A) for the exact
variance process17 v(t)

Ψv(t)(A) = E[exp(Av(t))] =
exp

(
C0Aλ

1 − 2C0A

)
(1 − 2C0A)

d
2

. (4.11)

For this expectation to exist we need C0A < 1
2 , i.e.:

ρ

ξ
(1 + κγ2∆t) − 1

2
γ2∆Tρ2 <

2κ
ξ2(1 − e−κ∆T )

. (4.12)

To get a grasp at the restrictiveness of this condition, notice that the right hand
side is always positive; hence it follows that for ρ ≤ 0 the condition will always be
satisfied. In contrast, for ρ > 0, Eq. (4.12) imposes a limit on the size of the time
step ∆T , roughly ρξ∆T < 2. Assuming that the regularity conditions are satisfied,
we can apply (4.9) and set

K∗
0 = − C0Aλ

1 − 2C0A
+
d

2
log(1 − 2C0A) −

(
K1 +

1
2
K3

)
v(s)

=: C6λ+ C7 + C8v(s) (4.13)

to enforce the martingale in the NCI(-M) and BK-DI(-M) discretization scheme.
Note that the constants

C6 = − C0A

1 − 2C0A
, C7 =

d

2
log(1 − 2C0A), C8 = −

(
K1 +

1
2
K3

)
, (4.14)

can be precomputed before the Monte Carlo run.

17Since by setting Nmax sufficiently large we can come as close as we want to the true inverse of
the variance process by the inverse as defined in (3.19), we use the above expression as moment
generating function of the NCI variance process v(t).
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5. Numerical Results

To test our new scheme we consider the pricing of an Asian and European call
options in the Heston model. Since European call prices belong to the vanilla options
and can be calculated with a great accuracy (e.g. see Carr and Madan [9]), they
form a standard test case. Additionally we use an Asian option as test case for a
more path-dependent option.

To investigate the efficiency and discretization bias of the NCI scheme, we bench-
mark it to the full truncation Lord et al. [24] and the QE-M scheme Andersen [4].
These schemes are to our knowledge the most efficient scheme in most practical
situations. Note that we do not incorporate the Broadie and Kaya [8] scheme in
our comparison; first, by definition, the Broadie and Kaya scheme is exact and thus
free of discretization bias. Therefore theoretically, Monte Carlo simulations are not
needed to test the quality of the Broadie and Kaya scheme. However in practice,
some numerical error will certainly be introduced in the required numerical inver-
sions of the algorithm (see Sec. 2.4.1); moreover Lord et al. even show [24, p. 16,
Table 5] that for equal computational budgets18 both the right Euler scheme (i.e.
the full truncation scheme) as well as a moment-matched scheme completely out-
perform the exact scheme. Thus besides being theoretically sound, practical use
and quality of the Broadie and Kaya scheme might be limited and we decide to not
include it our comparison. Though the almost exact simulation scheme of Smith [29]
without doubt delivers a speed to the exact scheme, we still argue that a moment-
matched scheme and the full truncation Euler scheme are more efficient in most
situations.19

Though our benchmark setup is similar to Lord et al. [24] and Andersen [4],
we add a control variate to get rid of some extra Monte Carlo noise20: both in the
analysis of Lord et al. [24] as well as in Andersen [4] the “finite sample noise” of the
Monte Carlo plays still plays such a big role, that even a number of 106 paths in some
cases sometimes is not enough to draw a good comparison both schemes, let alone

18With computational budget we mean CPU time. Note that because different schemes require
different computational effort for the same time grid, fixing the computational budget implies that
the size time step of the required schemes is adjusted to match the computational budget. Since for
a fixed time step an Euler and moment-matched scheme require a smaller computational budget
than the exact Broadie and Kaya scheme (that requires two numerical inversion procedures), this
implies that with a equal budget, smaller time steps can be taken in the Euler and moment-matched
schemes in comparison with the exact scheme.
19For example compare the performance of the almost exact scheme with the Kahl-Jäckel scheme
in Smith [29] to the Kahl-Jäckel scheme in Andersen [4] or Lord et al. [24]. Whereas the almost
exact scheme in Smith [29] performs comparable to the Kahl-Jäckel scheme Kahl and Jäckel [19],
the full truncation scheme as well as the QE-M scheme outperform this scheme in Lord et al. [24]
and Andersen [4].
20For an overview of other variance reduction techniques we refer to Jäckel [17] and Glasser-
man [13]. For stochastic volatility models the method of Willard [32], which entirely eliminates
the noise of the stock price, can be rather attractive for options that have a closed form solution
under the Black and Scholes [7] model. We do not use the latter method since we are interested
in the bias of the joint simulation of stock and variance.
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say something about the true quality and bias of the schemes. Though this certainly
says something about the overall quality of the full truncation and QE schemes,
the produced estimates still seem somewhat inconsistent and this motivates the
use of the control variate. With this simple variance reduction technique we are
then able to draw stronger conclusions about the overall and the relative quality
of the schemes. Though low-discrepancy numbers also form a natural candidate
for faster convergence behavior, we do not use them in the benchmark to keep the
comparability with the numerical results in the existing literature. We do want to
emphasize that in practice, all the three schemes can be used in conjunction with
low-discrepancy numbers, e.g. with the Sobol numbers as described in Jäckel [17]
and Press and Flannery [27].

5.1. Benchmark setup

To test our discretization schemes, we consider the parameter configurations of
Table 2. These settings correspond to some different parameter settings which are
likely to be encountered in equity, FX or interest rate markets.

Notice that for all cases we have ξ2 >> 2κθ, implying that the origin is accessi-
ble. The first and third example are taken from Andersen [4] and serve to represent
long-dated FX options. We can expect that such a setting is difficult, since the
corresponding parameters combine a low mean-reversion κ with a high volatility of
the variance process ξ; hence the variance process has a relatively high probability
of reaching the troubled region near zero. The second case stems from Broadie and
Kaya [8] and can correspond to an equity setting. The last setting is taken from
Smith [29] who considers an Asian option with yearly fixings to test some models
for a path-dependent equity option.

In the test cases we consider the pricing of a (vanilla/asian) call option maturing
at time T and with strike K. Hence we are interested in a Monte Carlo valuation
of the call option price C and Asian option price A, i.e.

C = e−rT
E[(S(T ) −K)+], and: A = e−rT

E

 N∑
j=1

S(Tj)
N

−K

+ (5.1)

Hence with a discretization scheme for the stock price S(t), we can use Monte
Carlo methods to approximate these prices by Ĉ and Â. Due to errors introduced
by discretization and the Monte Carlo one in general finds that the estimated values
are not equal the theoretical values. Hence we define the bias b̂ of the discretization
scheme as this difference, i.e.

b̂ := C − Ĉ. (5.2)

In the following subsection we hence specify how the Monte Carlo estimates for Ĉ
and Â can be obtained.
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5.1.1. Control variate estimators

The ordinary Monte Carlo estimator would consist of simulating n independent
samples of the required (discounted) payoff(s) and averaging over all paths, which
assuming (by the strong law of large numbers) converges to the expected option
price E[Ĉ] of the discretized asset price dynamics. Though this estimator is
generic and simple, there exist various other estimators (e.g. see Glasserman [13]
or Jäckel [17]) which are more efficient, c.q. which have a lower variance. To
obtain some variance reduction over the ordinary estimator, we therefore suggest
to use a control variate estimator which is also quite generic and involves little
computational overhead; For i = 1, . . . , n we generate Monte Carlo samples of
the stock price(s) Si and the corresponding option prices Ci. We can then use
the following control variate estimates to estimate the vanilla/Asian call option
prices:

C(bC) =
1
n

n∑
i=1

(Ci − bC(Si − E[S])), Ci = e−rT (Si(T ) −K)+, (5.3)

A(bA) =
1
n

n∑
i=1

(Ai − bA(Si − E[S])), Ai = e−rT

 N∑
j=1

Si(Tj)
N

−K

+

, (5.4)

which estimators (again by the strong law of large numbers) also converge with
probability one to the expected option prices. To see the effectiveness, i.e. vari-
ance reductions, of these control variate estimators over the ordinary Monte Carlo
estimators we refer to Appendix 6. To get more reliable estimates, we use the
control variate estimators rather than the ordinary Monte Carlo estimator for the
first three test cases. Though the technique is also quite effective for the consid-
ered Asian option (as can be seen from Table A.1), we use rather use the ordi-
nary Monte Carlo estimator to make our numeric results comparable with those
of Smith [29].

5.2. Numerical tests

For the numerical results of the first three test cases we use the following dis-
cretization schemes: the Euler-FT scheme of (2.13)–(2.16), the Kahl-Jäckel “IM-
IJK” scheme of (2.18)–(2.19), the QE-M scheme of Sec. 3.3, the NCI-M scheme of
Sec. 3.4, the combined NCI-QEM scheme of Sec. 3.5 and the Broadie and Kaya
“drift interpolated-martingale corrected” scheme (denoted by “BK-DI-M”). For
the latter four schemes we use the corrector-predictor scheme of (4.1) with the
a mid-point rule (i.e. γ1 = γ2 = 1

2 ) combined with the martingale corrections of
Sec. 4.1 for the discretized stock price. Then in the fourth test case we compare the
results of the Euler-FT, the IM-IJK, the QE-M, the NCI-M, the NCI-QE-M and
the BK-DI-M scheme against the results of the exact and almost exact scheme for
a path-dependent option that can be found in Smith [29].
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To obtain accurate estimates we performed all tests using 106 Monte Carlo21

paths. Moreover in the first three tests we use control variate estimators of (5.3), for
all the schemes for which the control variate is applicable, to reduce the standard
error even further. That is, for all the schemes that satisfy the discrete time mar-
tingale condition, i.e. all schemes except the IM-IJK. Please note that the control
variate only affects the variance and not the (expected) bias of the Monte Carlo
estimates. To keep our test comparable with the results in Smith [29] we just use
an ordinary Monte Carlo estimator for the fourth test case, i.e. the Asian option.

In Tables 3–6 we then report the biases of the Monte Carlo estimates and the
corresponding standard errors. We star the biases that are statistically insignifi-
cant at a 99% confidence level. That is, when the exact price lies within the 99%
confidence window of the Monte Carlo price:

exact value ∈
[
C − z

σC√
n
,C + z

σC√
n

]
, (5.5)

with z = 2.576 = Φ−1(1 − 0.01
2 ) the corresponding quantile-point.

5.2.1. Results for case I–III

The results for the estimated call option price bias of case I can be found in Table 3:
we report the Monte Carlo estimates of the bias (5.2) as function of the time step ∆t,
for an at-, out- and in-the-money strike. The first thing to notice are the enormous
differences in the magnitude of the biases between the schemes: whilst the first
and second order discretization schemes (Euler/IM-IJK) are still quite biased for
a 32 time steps a year, all the schemes that are based on approximating the non-
central chi-squared distribution are already bias-free for a time-spacing of just 4
steps a year: that is, the biases of QE-M, NCI-M, NCI-QE-M and the BK-DI-M
scheme are not significantly different from zero at a 99% confidence level on using 4
time steps a year. When we consider the bias over various strike levels, we see that
the bias of the Euler and the martingale-corrected scheme decreases if the strikes
goes more into the money. This is expected since all these schemes are constructed
to be bias-free for K = 0 (i.e. by the martingale construction).

All in all, we can conclude from the table that for practical sizes of the time
step, the biases of the QE-M, the NCI-M, the NCI-QE-M and the BK-DI-M are
substantially lower than those of the Euler and especially the IM-IJK scheme. Before
we can conclude that the former schemes are also more efficient that the latter
ones, we of course also need to look at the required computational effort of each
discretization schemes, which will be addressed in Sec. 5.3.

21We use the Mersenne Twister as pseudo random number generator in combination with incre-
mental path generations.
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5.2.2. Results for case II and case III

The numerical results for case II and case III can be found in Tables 4 and 5.
The results are similar to those of case III, but a little less severe. Still the almost
exact variance schemes by far outperform the considered Euler (FT) and Milstein
(KJ) scheme.

For case II and case III, Table 4 and 5 list the Monte Carlo estimates of
the bias (5.2) as function of the time step ∆t varying from 1/32 year to 1 year
and for the strikes K = 100, 140, 60. Numbers in parentheses are the widths of the
confidence interval (5.5) at a 99% confidence level: we starred the biases that were
not significantly different from zero.

5.3. Results for case IV and computational times

In the fourth test case we consider a path-dependent (Asian) option; to make the
results comparable with the results as reported by Smith [29, Table 3] we consider
the same parameter settings (see Table 2) and use the root mean square error
(RMSE) as error measure for our estimates. Moreover since Smith [29] also considers
an Euler-scheme (Reflection), we can use the computational time from this scheme
to scale our computational times with the ones as reported in Smith [29]. Hence we
are in particular interested in the relative efficiency of the AESM in comparison to
the schemes considered here; we are in particular interested in the time it takes the
different schemes to reach a certain RMSE. Supported by the previous numerical
results, we use 8 steps a year for the considered drift interpolation schemes and 100
time steps a year for the Euler and Milstein schemes. To obtain accurate estimates
for standard Monte Carlo estimates, we use a high number of 2 560 000 paths (using
pseudo-random Mersenne-Twister numbers). The results are given in Table 6.

The first thing to notice from Table 6 are the enormous differences in the required
computational budgets; though the AESM method only requires a single step per
year and we choose to use 100 time steps per year for the Euler schemes, the latter
schemes are still approximately 7 times faster! This difference is even more stunning,
if we compare the results for the drift interpolation schemes with the AESM method;
Whilst the drift interpolation schemes show statistically indifferent RMSEs as the
AESM method, they obtain this result approximately 40 to 70 times faster.

Secondly we would like to comment on the differences between the considered
Euler schemes; in Broadie and Kaya [8] and Smith [29] some benchmarks are per-
formed against a Euler scheme which fixes negative values in a non-optimal way
(i.e. by absorbing of reflection negative values). As shown above (and extensively
discussed in Lord et al. [24]) the choice of the fix is extremely important for the
overall quality of the simulation scheme. Hence when using such a non-optimal
fix, one cannot conclude that “the” Euler schemes are less efficient than for exam-
ple the AESM method: in Smith [29] the Euler-R scheme is outperformed by the
AESM method, while we can see from the above result that the Euler-FT by far
outperforms the AESM method in terms of computational efficiency.
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Table 6. Root mean squared errors (RMSE) for case IV. “Exact” price 9.712: we starred the root
mean squared errors with biases that were not significantly different from zero at a 99%-level.
Results for the AESM are taken from Smith [29, Table 3.].

Euler-R Euler-FT IM-IJK AESM QE-M NCI-M NCI-QE-M BK-DI-M
∆t 1/100 1/100 1/100 1 1/8 1/8 1/8 1/8

RMSE 0.237 0.010∗ 0.018∗ 0.008∗ 0.009∗ 0.009∗ 0.009∗ 0.011∗
Time (in sec.) 158.3 157.5 178.6 1134.4 16.3 22.7 17.2 25.6
Relative time 9.7 9.7 11.0 69.7 1.0 1.4 1.1 1.6

From a efficiency viewpoint we conclude that the QE-M scheme performs the
best in the above test, followed closely by the other drift-interpolation schemes. The
Euler-FT and the IM-IJK scheme follow on some distance, though these schemes
share the advantage that they are simpler and more generically applicable, e.g. in
other CEV models. The Euler-R scheme (though frequently used in the literature)
performs extremely worse, with a large RMSE. Though the RMSE of the AESM
is small and indifferent from the drift-interpolation schemes, the time required to
obtain this estimate is by far the largest and except for the heavily biased non-
optimal Euler-R scheme, the AESM scheme is outperformed by all the considered
schemes.

6. Conclusion

Though the exact simulation method of Broadie and Kaya [8] is theoretically appeal-
ing, its practical use might be limited due to its complexity and lack of speed.
Moreover the suggested acceptance and rejection technique for the variance process
hinders perturbation analysis, let alone the use low-discrepancy numbers. Never-
theless the method also provides an excellent starting point for the development of
some more efficient approximate schemes. In fact, several quite different methods
can be considered to approximate the the sampling methods of the variance and
integrated variance process.

Almost in line with the exact method, Smith [29] recently suggested to speed
up the sampling of the integrated variance with the AESM method. His results
indeed indicate a significant speed up with respect to the exact scheme, nonetheless
one still has to perform a Fourier inversion in each simulation step which is time-
consuming. Moreover in the numerical analysis in the other discretization methods,
we found that the largest variations were caused by biases in the simulation of
the variance process, rather than the integrated variance process. For instance, we
found with the new BK-DI scheme that it is more efficient to just use a simple drift
interpolation method for the variance integral instead of an (approximate) Fourier
inversion. However the prime disadvantage for financial applications for all the just
mentioned schemes is the inconvenient acceptance and rejection sampling of the
variance process, which heavily troubles sensitivity analysis and does not allow for
the use of low-discrepancy number.
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To this end, instead of an exact joint simulation of the variance and the inte-
grated variance process, we looked at methods that approximate the variance
process and just use a simple drift approximation for its integral. The simplest
scheme in this category is the Euler Full Truncation22 scheme of Lord et al. [24]:
rather remarkable, we found in our numerical that this scheme by far outperforms
many more complex schemes like the Kahl and Jäckel [19] scheme and the AESM
scheme of Smith [29] in terms of computational efficiency. Though the Euler Full
Truncation method is simple and straightforward to implement, it unfortunately
still produces rather biased estimates for the moderate sizes of the time step: for
our parameter settings we found that one at least has to use 32 time steps per
year to obtain reasonable small biases. In a way this does not come as a surprise
since the Euler scheme uses no analytical properties of the non-central chi-squared
distribution variance process.

Last we considered a category of discretization methods which explicitly relies
on the analytical properties of the variance process, whilst using sampling methods
which are based on inversion methods rather than on acceptance rejection tech-
niques, making the methods straightforward use in sensitivity analysis and low-
discrepancy numbers. For instance, Andersen [4] uses moment-matching techniques
to approximate the Non-central Chi-squared distributed variance process in the
Quadratic Exponential (QE) scheme, where we suggested to use a one dimensional
caching technique of the latter distribution in the NCI and NCI-QE schemes; though
at first sight creating a cache with the inverses of this distribution might seem
straightforward, this is in fact rather complicated as the parameter space of the
inverse of the Non-central Chi-squared distribution is in fact three-dimensional and
one has to design a potentially extremely large cache for all conceivable values of the
number of degrees of freedom and non-centrality parameters, i.e. as pointed out by
Broadie and Andersen (see Andersen [4]). However, we tackled this dimensionality
problem and showed that the inverses of the non-central chi-squared distribution can
effectively be reduced to a one dimensional cache for the case of the Heston model.
The crucial insight underlying this dimensionality reduction is that the variance
process can be represented by chi-squared distribution whose degrees of freedom
are given by a shifted Poisson random variable which decays extremely fast for
typical Heston parameters. By conditioning on this shifted Poisson distribution, we
have demonstrated that one can create an efficient cache of the variance process
at relatively small computational costs, which results in the new NCI (Non-Central
Chi-squared Inversion) and NCI-QE schemes. In a further analysis of these schemes,
we investigated the regularity conditions and the enforcement of a local martingale
property for discretized asset price, which hence lead to the NCI-M and NCI-QE-M
schemes.

22As motivated in Lord et al. [24] (and supported by our own findings) one should apply the Euler
scheme with the full truncation fix for negative values that occur in discretizing the variance,
and hence not the reflection/absorption fix that are being applied by Smith [29] and Broadie and
Kaya [8].
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In the last section we performed a extensive numerical study with these new
schemes and the exact scheme of Broadie and Kaya [8], the almost exact scheme of
Smith [29], the Kahl-Jäckel scheme, the Full Truncation scheme of Lord et al. [24]
and the QE-M scheme of Andersen [4]. To strengthen this numerical analysis we
used four different test cases (including European-style and a path-dependent Asian
option) and a high number of sample paths in conjunction a variance reduction
technique, which enables us to obtain highly accurate results. Due to this extensive
setup, we were able to make a comprehensive (and differentiated) numerical com-
parison about the efficiency of the considered schemes; we found that the schemes
based on drift-interpolation in combination with an approximation based on ana-
lytical properties of the variance process, in terms of computational efficiency, by
far outperformed the Euler, the Kahl-Jäckel, the (almost) exact simulation method.
For the martingale corrected QE-M, NCI-M, NCI-QE-M and BK-DI-M schemes, we
found that 2–8 time steps a year already produces negligible biases, whereas the
Euler and the Kahl-Jäckel Milstein scheme are still heavily biased even for 32 steps
a year. Though the exact and AESM method are able to produce small biases, they
show a lack of speed and are even outperformed by a simple Euler(-Full Truncation)
scheme. Finally, we conclude that the QE scheme performed most efficiently, fol-
lowed closely by the NCI-M, NCI-QE-M and BK-DI-M schemes, whilst we observe
that all the other schemes perform significantly worse and are a factor 6 to 70 times
less efficient than the latter four schemes.

Appendix A

A.1. Monotone cubic Hermite spline interpolation

In this appendix we show how to arrange the data in order to use monotone cubic
Hermite spline interpolation on a monotone data set [e.g. in (3.21)] according the
algorithm of Fritsch and Carlson Fritsch and Carlson [12]: first, the four Hermite
splines that form the basis of the interpolation rule are defined as:

h00(t) = 2t3 − 3t2 + 1.0, (A.1)

h10(t) = t3 − 2t2 + t, (A.2)

h01(t) = −2t3 − 3t2, (A.3)

h11(t) = t3 − t2. (A.4)

Then given two input vectors of x and y-values xi, yi : i = 0, . . . , n− 1 (i.e. the Ui’s
and the H−1

i (Ui)’s), the weights mi, i = 0, . . . , n− 1 can be found by the following
algorithm:

(1) Set m0 := y1−y0
x1−x0

, mn−1 := yn−1−yn−2
xn−1−xn−2

and ∆0 := y1−y0
x1−x0

.
(2) For k = 1 and while k < n− 1:

(a) Set mk := 1
2 ( yk−yk−1

xk−xk−1
+ yk+1−yk

xk+1−xk
).

(b) Set ∆k := yk+1−yk

xk+1−xk
.

(c) Let k = k + 1.
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(3) For k = 0 and while k < n− 1:

(a) If ∆k = 0, set mk := mk+1 := 0.
(b) Let k = k + 1.

(4) For k = 0 and while k < n− 1:

(a) Let ak = mk

∆k
and bk = mk+1

∆k
.

(b) If a2
k + b2k ≤ 9, define tk = ∆k

3√
a2

k+b2k
and set mk := tkak, mk+1 := tkbk.

(c) Let k = k + 1.

To use the interpolation rule (3.21), this data preparation of course only has to be
done once (i.e. before running the Monte Carlo).

A.2. Effectiveness of the control variate

Roughly, the control variate estimators exploit information about the observed
errors in the stock prices S(T ) − E[S(T )] (which should be zero by definition) to
reduce the errors in the estimate of the vanilla or Asian call option prices (e.g. see
Glasserman [13]). Hence the stock price serves as a control in estimating the vanilla
and Asian call option price. If bC , bA = 0 the control variate estimates fall back
to the ordinary Monte Carlo estimates, which usually is not the optimal choice;
specifically, in the case of a vanilla call option, the control variate estimator has
variance

Var[Ci(bC)] = Var[Ci − bC(Si − E[S])] = σ2
C − 2bCσCσS + b2σ2

S , (A.5)

which, if b2Cσ
2
S < 2bCσCσS , has smaller variance than the ordinary estimator. Min-

imizing the variance (A.5) over bC then yields that optimal variance reduction is
achieved with coefficient

b∗C =
σC

σS
ρCS =

Cov(C, S)
Var(S)

. (A.6)

Substituting this optimal coefficient23 into (A.5) one finds that the control variate is
expected to reduce the variance of the ordinary Monte Carlo estimator by a factor

Var[C]
Var[C − b∗(S − E[S])]

=
1

1 − ρ2
CS

. (A.7)

Notice hereby that the effectiveness of a control variate (crucially) depends on the
correlation between the estimated quantity and the used control.

23If the optimal coefficient cannot be calculated in closed-form, it can be estimated by estimating
the sample covariance and variance estimators in (A.6), e.g. with

cbC =

Pn
i=1(Ci − C)(Si − S)Pn

i=1(Si − S)2

One can then replace b∗C by its estimate cbC , which estimation procedure might cause some efficiency
loss in the quality of the control variate estimator, see Glasserman [13].
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Table A.1. Variance reductions for the full truncation scheme for the cases of
Table 2. Reported is the fraction between the variance of the control variate
(5.3) and the standard Monte Carlo estimator.

50 60 70 80 90 100 110 120 130 140

Case I 101.6 58.8 37.1 24.9 17.6 13.0 9.9 7.8 6.3 5.3
Case II 31.1 18.3 11.8 8.1 5.9 4.4 3.4 2.8 2.3 1.9

Case III 54.5 31.7 20.5 14.3 10.6 8.2 6.5 5.4 4.6 3.9
Case IV 97.4 38.4 17.8 9.3 5.4 3.4 2.3 1.7 1.4 1.2

Since the price of call option with a strike of K = 0 equals the current stock
price (or future discounted stock price) we have ρCS = 1 for a strike call option with
strike K = 0 and hence one finds a perfect control variate estimator. The other way
around, since for higher strikes the correlation between stock and call option price
decreases, we will find less effective control variates. This behavior is confirmed
by Table A.1 where we report the variance reduction factors when comparing the
control variate estimates with the ordinary Monte Carlo estimates for the price of
the call options.

Table A.1 is organized as follows: on the first row one can find equally spaced
strikes varying from 50 to 130 and on the first column are the corresponding equally
spaced maturities varying from 1 to 5 years. The Monte Carlo results are obtained
by using the NCI scheme24 with 8 time steps a year and 106 Monte Carlo paths.
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