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a b s t r a c t

Life insurance products have profit sharing features in combination with guarantees. These so-called
embeddedoptions are often dependent on or approximatedby forward swap rates. In practice, these kinds
of options are mostly valued by Monte Carlo simulations. However, for risk management calculations
and reporting processes, lots of valuations are needed. Therefore, a more efficient method to value these
options would be helpful. In this paper analytical approximations are derived for these kinds of options,
based on an underlying multi-factor Gaussian interest rate model. The analytical approximation for
options with direct payment is almost exact while the approximation for compounding options is also
satisfactory. In addition, the proposed analytical approximation can be used as a control variate in Monte
Carlo valuation of options for which no analytical approximation is available, such as similar options with
management actions. Furthermore, it’s also possible to construct analytical approximations when returns
on additional assets (such as equities) are part of the profit sharing rate.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years there has been an increasing amount of attention
of the insurance industry for market valuation of insurance
liabilities. Important drivers of this development are IFRS 4 Phase
2 and Solvency 2, that both are expected to be implemented
around 2011. IFRS 4 Phase 2 will define an accounting model
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for insurance contracts. In the document ‘‘Preliminary Views on
Insurance Contracts’’ (May 2007, discussion paper) the IASB states
that ‘‘..the Board’s preliminary view is that the inputs used to
develop estimates of cash flows should, as far as possible, be
consistent with observed market prices..’’. At this moment, most
insurers are reporting their liabilities on a book value basis, where
the economic assumptions are often not directly linked to the
financial market.
Solvency 2 will lead to a change in the regulatory required sol-

vency capital for insurers. At this moment this capital requirement
is a fixed percentage of themathematical reserve or the risk capital.
Under Solvency 2 these solvency requirements will be risk-based,
andmarket values of assets and liabilitieswill be the basis for these
calculations.
An important part of the market valuation of liabilities is the

valuation of embedded options. Embedded options are options
that have been sold to the policyholders and are often the more
complex features in insurance products. An embedded option that
is very common in insurance products in Europe, is a profit sharing
rule based on a (moving average) fixed income rate, in combination
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with aminimumguarantee. This fixed income rate is either froman
external source or could be the book value return on a fixed income
portfolio. For example, in the Netherlands the profit sharing is
often based on the so-called u-yield, which is more or less an
average return of several treasury rates. In other parts of Europe,
the book value return on the fixed income portfolio is often the
basis for the profit sharing. In practice the exact rates are difficult
to determine and to project forward, and implied volatilities from
themarket are not available. Therefore, often the Euro swap rate is
used as a proxy. So what remains is the valuation of an option on a
moving or weighted average of forward and historic swap rates.
Most insurers use Monte Carlo simulations for the valuation

of their embedded options. The advantage of this is that many
kinds of options can be valuedwith it (including themore complex
ones) and that it gives one uniform simulation framework that is
applicable for various embedded options. However, an important
disadvantage is the computational time it requires. Embedded
option calculations are required for Fair Value reporting, Market
Consistent Embedded Value, Asset Liability Management, product
development and pricing, Economic Capital calculations and
Mergers & Acquisitions. For most of these purposes several
calculations are required. For the calculation of Economic Capital
for example 20,000 or more simulations are used and in each
of these scenario’s the market value of liabilities (and thus the
value of embedded options) has to be calculated. Also for other
purposes, often sensitivities and analysis of changes are necessary.
If an insurer then also exists of several business units or legal
entities, the total computational time can be significant. Therefore,
analytical solutions for the valuation of embedded options would
be very helpful.
In this paper analytical approximations are derived for the

above mentioned swap rate dependent embedded options. The
underlying interest rate model is a multi-factor Gaussian model.
This model is very appealing because of its analytical tractability.
Also, the model implicitly accounts for the volatility skew to some
extent, what is important for these kind of options because those
are in most cases not at-the-money. Because of this the model
is often used in practice (in most cases the 1-factor or 2-factor
hull-white variant). Analytical approximations are derived for the
case of direct payment of profit sharing, as well as for the case
of compounding profit sharing. In case of (very) complex options
with management actions, the analytical approximation for the
direct payment case can be used as a control variate in combination
with Monte Carlo simulation, reducing the computational time to
a great extent.
It could well be that an insurance company has other kinds

of embedded options for which no analytical approximations are
available. These embedded options probably have to be valued
using Monte Carlo simulation. Since the multi-factor Gaussian
models are often used in practice, the analytical approximation
for the swap rate dependent options can in that case be used
in conjunction with the simulation model that may be required
for the valuation of other embedded options. This results in a
consistent underlying interest rate model for the valuation of
embedded options, despite the fact that perhaps some of the
options are valued with Monte Carlo simulations and others with
analytical formulas.
The basis for the analytical approximation is the result of

Schrager and Pelsser (2006), who have developed an approxima-
tion for swaption prices for affine term structure models (of which
themulti-factor Gaussianmodels are a subset). They determine the
dynamics of the swap rate under the relevant swap measure and
these dynamics are approximated by replacing some low-variance
martingales by their time zero values. This technique is already
used extensively in the context of Libor Market Models and given
the results of Schrager and Pelsser, it also proves to workwell in an
affine setting. By use of the Change of Numeraire techniques devel-
oped by Geman et al. (1995),1 the result of Schrager and Pelsser can
be used to derive analytical approximations for swap rate depen-
dent options.
Most of the existing literature on valuation of embedded op-

tions in insurance products focuses on Unit Linked products, with-
profits products or Guaranteed Annuity Options. For example,
Grosen and Jorgensen (2000), Schrager and Pelsser (2004) and
Castellani et al. (2007) developed analytical approximations for
Unit Linked type products with guarantees.Wilkie et al. (2003) use
numerical techniques to value Guaranteed Annuity Options, while
Sheldon and Smith (2004) developed analytical formulas for these
products. Nielsen and Sandmann (2002) and Prieul et al. (2001) use
numerical techniques for valuation of With-Profits contracts.
However, to our knowledge there has been little focus on profit

sharing based on (moving average) fixed income rates, despite
this being one of the most common types of profit sharing in
Europe. Our contribution to the existing literature is that we
provide analytical approximations for these kinds of profit sharing.
Analytical approximations for direct payment of profit sharing and
for compounding profit sharing are given, while a combination
with returns on other assets (such as equities) is also possible. In
addition, the proposed analytical approximation can be used as
a control variate in Monte Carlo valuation of options for which
no analytical approximation is available, such as similar options
with management actions. This potentially reduces the number of
simulations required to a great extent.
Some of the techniques proposed in this paper can also be used

for financial products, such as options on an average of Constant
Maturity Swap (CMS) rates, (callable) CMS accrual swaps and
(callable) CMS range notes.
The remainder of the paper is organized as follows. First, in

Section 2 the characteristics of the swap rate dependent embedded
options are described. In Section 3 the underlyingGaussian interest
model is given. In Section 4 the Schrager–Pelsser result for
swaptions is repeated and this is applied to the direct payment case
in Section 5. In Section 6 possibilities are given for more complex
embedded options. Then numerical examples are worked out in
Section 7 and conclusions are given in Section 8.

2. Swap rate dependent embedded options

Traditional non-linked life insurance products often guarantee
a certain insured amount. Common practice was (and often still is)
to calculate the price of this insurance by discounting the expected
cash flows with a relatively low interest rate, called the technical
interest rate. Often this is combined with profit sharing, where
some reference return is paid out to the policyholder if this exceeds
the technical interest rate, possibly under subtraction of a margin.
There exist various types of profit sharing, such as:

– Profit sharing based on an external reference index
– Profit sharing based on the (book ormarket value) return on the
underlying investment portfolio

– Profit sharing based on the performance and profits of the
insurance company

– Profit sharing of the so-called with-profits products, where
regular and terminal bonuses are given though the life
of the product, based on the return of the underlying
investment portfolios. The terms of these policies often contain
management actions that allow the insurance companies to
reduce the risks of these products.

1 Formore information about this subject, see for example Pelsser (2004) or Brigo
and Mercurio (2006).
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Inmost caseswhere the profit sharing rate depends on a certain
fixed income rate, the exact profit sharing rate is either very
complex or not fully known, or implied volatilities from themarket
are not available. In practice, these kinds of options are often valued
using an (average) forward swap rate as an approximation for the
profit sharing rate. The profit sharing payoff PS(t) in year t is in
that case:

PS(t) = L(t)Max{c(R(t)− K(t)), 0} (2.1)

where L(t) is the profit sharing basis, c is the percentage that is
distributed to the policyholder and K(t) is the strike of the option.
The strike equals the sum of the technical interest rate TR(t) and
a margin. In most cases, either the margin or the c is used for
the benefits of the insurer. R(t) is the profit sharing rate and is a
(weighted) average of historic and forward swap rates.
The profit sharing as described in (2.1) is a call option on a rate

R(t) and has to be valued using option valuation techniques. The
profit sharing is either paid directly or is being compounded and
paid at the end of the contract.
Note that it depends on the specific profit sharing ruleswhether

the swap rate is a good approximation for the profit sharing rate.
This has to be verified for each specific profit sharing arrangement.
Below two examples are given of profit sharing arrangements
where the swap rate is often used as approximation in practice.

2.1. Example 1 — book value return on underlying portfolio

One of the most common forms of profit sharing across
the European life insurance business is the one where the
profit sharing rate is based on the book value return of the
underlying fixed income portfolio.2 To be able to value this option,
assumptions have to be made about the reinvestment strategy.
An example of how this problem is often tackled in practice is to
assume:

– a certain average turnover rate δ
– a reinvestment strategy favoringm-year maturity assets.
– the m-year swap rate being an approximation for the yield on
them-year maturity assets

Given these assumptions the book value return of the portfolio
can be modeled as follows:

R(t) = (1− δ)R(t − 1)+ δyt,t+m(t) (2.2)

where yt,t+m(t) is the m-year swap rate at time t . The book value
return on time t can also be expressed in terms of the current book
value return R(0), leading to an exponentially weighted moving
average:

R(t) = (1− δ)tR(0)+
t∑
i=0

yi,i+m(i)(1− δ)t−iδ (2.3)

being a weighted combination of forward swap rates and the
current book value return.
Another approach that is often used is approximating the book

value return by a moving average of swap rates:

R(t) =
1
n

t∑
i=t−n+1

yi,i+m(i) (2.4)

where n (=1/δ) is the number of fixings of the moving average.

2 This is common practice in for example France, Germany, Italy, Czech,
Switzerland and Norway.
2.2. Example 2 — ‘‘u-rate’’ profit sharing in the Netherlands

In the Netherlands, the most common form of profit sharing is
based on amoving average of the so-called u-rate. The u-rate is the
3-months average of u-rate-parts, where the subsequent u-rate-
parts are weighted averages of an effective return on a basket of
government bonds. This leads to a complicated expression, and no
implied volatilities are available for government bonds. Therefore,
it is common practice in the Netherlands to approximate the u-
rate or the u-yield parts by a swap-rate.3 Thatmeans that the profit
sharing rate is approximated by amoving average of swap rates, as
in (2.4).
Besides the direct payment and compounding versions of (2.1),

other variants of this profit sharing exist, such as:

(1) Profit sharing including the return on an additional asset
(2) (Compounding) profit sharing with additional management
actions or other complex features.

In case of (1), the underlying investment portfolio also contains
additional non-fixed income assets. This means that the profit
sharing rate is a combination of a (weighted) moving average of
swap rates and the return on additional assets. The profit sharing
rate could then be expressed as:

R∗(Ti) =
Ti∑

k=Ti−s

wFIk yk,k+τ (k)+
∑
j

wSj rSj (2.5)

where wSj is the weight in additional asset Sj, rSj is the return on
that asset and

∑
wFIk +

∑
wSl = 1.

In case of (2), the insurer has added management actions or
other complexities to the profit sharing rules, mainly to lower the
risk exposure for the insurer.
In the following sections analytical approximations are devel-

oped for prices of embedded options where the profit sharing rate
depends on or is approximated by forward swap rates. Note that
the developed formulas are approximating swap rate dependent
embedded options. When considering the results or using the for-
mulas one always has to be aware of the fact that the first error
is introduced when the swap rate is being used as a proxy for the
profit sharing rate.

3. The underlying interest rate model

The analytical approximations in this paper are based on an
underlying multi-factor Gaussian interest rate model. This model
is described in paragraph 3.1. Paragraph 3.2 gives a discussion
whether similar techniques as developed in this paper can be used
for analytical valuation of the options described in Section 2 given
other underlying interest rate models.

3.1. Multi-factor Gaussian models

The underlying interest rate model for the valuation is the
class of multi-factor Gaussian models. Special cases of this class of
models are the 1-factor and 2-factor Hull–White model, which are
often used in practice. These models are very appealing because of
their analytical tractability.
In the swaption market, the observed implied Black volatility is

varying for different strike levels, leading to the so-called volatility
skew. This volatility skew exists because the market apparently
does not believe in lognormally distributed swap rates. Instead,

3 Historical data that shows that u-rate parts have behaved similarly as swap
rates in the past, is available upon request.
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the volatility skew seems to indicate a distribution that is closer to
thenormal distribution.4 Therefore, theGaussianmodels implicitly
account for the volatility skew to a certain extent. This is also an
appealing property of these models in the context of embedded
options in insurance products, since these options are inmost cases
not at-the-money.
It is very well possible that insurance companies are going to

use Monte Carlo simulations as well as analytical formulas for
the pricing of their embedded options. This could be the case for
example when the insurer also wrote embedded options that are
too complex to value analytically. When using both techniques, it
is important that the underlying stochastic interest rate model is
consistent, so that the pricing of the various embedded options is
consistent. Since the Gaussian models are often used in practice
formore complex options, the analytical approximation developed
in this paper can be used in conjunction with the Monte Carlo
simulation model that may be required for the valuation of other
embedded options.
The Gaussian interest ratemodels are a special case of the affine

term structure models introduced by Duffie and Kan (1996). The
m-factor Gaussian model describes the stochastic process for the
instantaneous short rate as follows5:

r(t) = 1′Y (t)+ α(t) (3.1)

dY (t) = −AY (t)dt +
∑
dWQ (t) (3.2)

whereWQ (t) is am-dimensional Brownianmotion under the risk-
neutral measure and A and Σ are m × mmatrices. A is a diagonal
matrix.
The function α(t) is chosen is such a way that the fit with the

initial term structure is perfect. The covariance matrix of the Y -
variables is equal toΣΣ ′.
The analytical tractability of this model makes it possible to

obtain bond prices analytically, from which swap and zero rates
can be derived. The price at time t of a zero bond maturing at time
T is given by:

D(t, T ) = exp

(
C(t, T )−

m∑
i=1

B(i)(t, T )Y (i)(t)

)
(3.3)

where B(i)(t, T ) = 1/A(ii)
(
1− exp(−A(ii)(T − t))

)
.

The expression for C(t, T ) is given in for example Brigo and
Mercurio (2006) for the 1-factor and 2-factor case. However, since
it is not used for the remaining part of the paper, we do not repeat
it here.
The analytical tractability of the model and the implicit

accounting for the skewmake the Gaussian models relatively easy
to implement, while there are also more possibilities for analytical
approximations (or solutions) for embedded options.

3.2. Valuation for other interest rate models

This paragraph gives a discussion whether similar techniques
as developed in this paper can be used for analytical valuation of
the options described in Section 2 given other underlying interest
rate models.

4 See Levin (2004) for a discussion on this issue.
5 See Brigo and Mercurio (2006) for an extensive explanation of and pricing
formulas for the 2-factor Gaussian model.
3.2.1. General affine models
Schrager and Pelsser (2006) developed approximations for

swaption prices for general affine interest rate models. For non-
Gaussian affine models they come to an approximate solution
for swaption prices for which only a numerical integration is
necessary. An approximation for the characteristic function of the
swap rate under the swap measure and the method of Carr and
Madan (1999) is used for this. As a first step in this process they
derive approximate dynamics for the swap rate in similar fashion
as described in Section 4. With an additional approximation a
square-root process for the swap rate results.
Dassios and Nagaradjasarma (2006) develop explicit prices for

Asian options, given an underlying square root process. They also
obtain distributional results concerning the square-root process
and its average over time, including analytic formulae for their
joint density and moments.
For the embedded options discussed in this paper a suggested

approach would be to use the approximate dynamics for the swap
rate from Schrager and Pelsser (2006) and combine this with the
techniques in Dassios and Nagaradjasarma (2006).

3.2.2. Libor market model (LMM)
Asmentioned in Section 4, the approximation technique used in

this paper is alreadyused extensively in the context of LiborMarket
Models. For example, Brigo andMercurio (2006) use the technique
for approximation of swaption prices in the LMM model. Gatarek
(2003) uses it to approximate prices of Constant Maturity Swaps.
Nowwhenusing this technique, the resulting distribution of the

approximate swap rate in the LMMmodel is lognormal. However,
for the valuation of the embedded options in this paper the
distribution of the average swap rate is needed. In case the swap
rate is lognormally distributed, the distribution of the average
swap rate is unknown. This is a well known problem in the context
of valuation of Asian options. Methods for approximate analytical
valuation of options on the average of lognormally distributed
variables are proposed in, amongst others, Levy (1992), Curran
(1994) and Rogers and Shi (1995). Lord (2006) gives an overview
of existingmethods, compares the quality of those numerically and
develops approximations that outperform the other methods.

3.2.3. Swap market model (SMM)
In a standard SMMas proposed by Jamshidian (1998) each swap

rate is modeled in its own swap measure, making it hard to apply
for pricing of most exotic interest rate products. This could be one
of the reasons that the SMM has not been discussed extensively
in financial literature. The co-sliding SMM proposed by, amongst
others, Pietersz and van Regenmortel (2006) seems promising
though and is applicable especially for Constant Maturity Swap
(CMS) and swap rate products.
In the SMM the swap rate is modeled directly in a lognormal

setting, so no approximation of the distribution of the swap rate
in the swap measure is necessary. A price for the profit sharing
options discussed in this paper can be obtained by applying the
relevant convexity and timing adjustments and using one of the
above mentioned techniques for approximate analytical valuation
of Asian options.

4. The Schrager–Pelsser result for swaptions

Schrager and Pelsser (2006) developed an approximation for
swaption prices for affine interest rate models. In this section their
main result for the Gaussian models is repeated.
The swap rate yn,N is the par swap rate at which a personwould

like to enter into a swap contract with a value of 0, starting at time



128 R. Plat, A. Pelsser / Insurance: Mathematics and Economics 44 (2009) 124–134
Tn (first payout at time Tn+1) and lasting until TN . The swap rate at
time t is given by:

yn,N(t) =
D(t, Tn)− D(t, TN)
N∑

k=n+1
∆Yk−1D(t, Tk)

=
D(t, Tn)− D(t, TN)

Pn+1,N(t)
(4.1)

where ∆Yk−1 is the market convention for the calculation of
the daycount fraction for the swap payment at Tk. When using
Pn+1,N(t) as a numéraire, all Pn+1,N(t) rebased values must be
martingales under the measure Q n+1,N , associated with this
numéraire. That means that yn,N is a martingale under this so-
called swap measure, which is introduced by Jamshidian (1998).
When applying Ito’s Lemma to the model defined in (3.1) and (3.2)
the following dynamics for the swap rate yn,N(t) under the swap
measure result:

dyn,N(t) =
∂yn,N(t)
∂Y (t)

ΣdW n+1,N(t) (4.2)

where dW n+1,N is a m-dimensional Brownian motion under the
swap measure Q n+1,N corresponding to the numéraire Pn+1,N(t).
Schrager and Pelsser (2006) determine the partial derivatives in
(4.2), which are stochastic, and approximate these by replacing
low-variancemartingales by their time zero values. This technique
is already used extensively in the context of Libor Market Models6
and given the results of Schrager and Pelsser, it also proves towork
well in an affine setting. This approximation makes the swap rate
volatility deterministic and thus leads to a normally distributed
forward swap rate. The approach described leads to an analytical
approximation for the integrated variance of yn,N (associated with
a Tn × TN swaption) over the interval [0, Tn] (for the proof, see
Appendix A):

σ 2n,N ≈

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N C̃

(j)
n,N

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
(4.3)

where Σ̂(ij) is the element (i, j) ofΣΣ ′ and

C̃ (i)n,N =
1
A(ii)

[
e−A(ii)TnDP(0, Tn)− e−A(ii)TNDP(0, TN)

− yn,N(0)
N∑

k=n+1

∆Yk−1e
−A(ii)TkDP(0, Tk)

]
(4.4)

where DP(t, Tn) = D(t, Tn)/Pn+1,N(t), the bond price normalized
by the numéraire.
The result is an easy to implement analytical approach to

calibrate Gaussian models to the swaption market. A nice by-
product of the approach (as opposed to other approaches for
approximating swaption prices) is that the dynamics of the swap
rates are approximated. These approximate dynamics can be used
for approximating prices of other swap-rate dependent options.

5. Analytical approximation — direct payment

Assume that the profit sharing rate at time Ti is a weighted
average of τ -year maturity swap rates with weights wk and the
averaging period is from time Ti−s to time Ti:

R(Ti) =
Ti∑

k=Ti−s

wkyk,k+τ (k) (5.1)

whereΣwk = 1.

6 See Andersen and Andreasen (1998), Gatarek (2003) and Brigo and Mercurio
(2006).
In case of direct payment of profit sharing, the embedded option
is in fact a strip of options that mature at time Ti (i = 1, 2, . . .)
and lead to a direct payment of an option payoff on R(Ti) on these
dates. Since the individual yk,k+τ (k)’s are approximately normally
distributed (see Section 4), R(Ti) is also approximately normally
distributed. So to value the option the expectation and the variance
of R(Ti) have to be approximated under the Ti-forward measure
and feed into a Gaussian option formula for each time Ti. For
determining the variance of R(Ti) the covariance’s of the yk,k+τ (k)’s
with the yl,l+τ (k)’s have to be specified.

5.1. Determining the expectation of R(Ti)

The abovemeans that each individual option has to be priced in
the Ti-forwardmeasure. To come to the expectations of R(Ti) under
the right measure the following steps are necessary:

(a) For each (forward) swap rate yn,N a change of measure has
to be done from the swap measure Q n+1,N to the Tn-forward
measure Q Tn.

(b) If the payoff of the option on the average of the swap rates is
at time Ti, for each of the individual swap rates observed at
time (Ti−s), a change of measure has to be done from the (Ti−s)-
forward measure to the Ti-forward measure.

The corrections mentioned above can be interpreted as convexity
corrections (a) and timing corrections (b). The formulas for these
corrections are given in (5.2) and (5.3), of which the proofs are
given in Appendix B. Note that due to the changes of measure it’s
not guaranteed that the quality of the approximation will remain.
Therefore, this will be tested in Section 7.
The convexity correction CCn,N(Tn) for time Tn > 0 for the swap

rate yn,N is:

CCn,N(Tn) ≈
m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N G̃

(j)
n,N

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
(5.2)

where G̃(j)n,N =
1
A(jj)

[
e−A(jj)Tn −

N∑
k=n+1

∆Yk−1e
−A(jj)TkDP(0, Tk)

]
.

The timing correction TCn,N(Tn, Tn+u) representing a change of
measure from time Tn > 0 to Tn+u is:

TCn,N(Tn, Tn+u)

≈

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N H̃

(j)
Tn,Tn+u

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
(5.3)

where H̃(j)Tn,Tn+u =
1
A(jj)

[
e−A(jj)(Tn+u) − e−A(jj)Tn

]
.

For Tn < 0, the convexity corrections and the timing corrections
are 0. Note that in the derivation of (5.2) also stochastic terms
are replaced by their time zero values, leading to a deterministic
convexity correction.
The expectation µR(Ti) of R(Ti) becomes:

µR(Ti) ≈

Ti∑
k=Ti−s

wk
[
yk,k+τ (0)+ CCk,k+τ (k)+ TCk,k+τ (k, Ti)

]
. (5.4)

The convexity correction is positive and the timing correction is
negative, so they are partly offsetting each other. The formulas (5.2)
and (5.3) have the same structure as in case of the swaptions in
Section 4, so the implementation is not much more complicated
than that.
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5.2. Determining the variance of R(Ti)

Given that the drift term is deterministic, the change ofmeasure
has no impact on the volatility, so expression (4.3) can be used to
determine the variance of R(Ti). The variance σ 2R(Ti) of R(Ti) is:

σ 2R(Ti) =

Ti∑
k=Ti−s

Ti∑
l=Ti−s

wkwlCov[yk,k+τ (k), yl,l+τ (l)] (5.5)

where Cov(.) is the covariance between the swap rates. From
stochastic calculus we know:

Cov
[∫ t

0
f (u)dWu,

∫ s

0
g(u)dWu

]
=

∫ s

0
f (u)g(u)du. (5.6)

Using this and expression (4.3) the covariance between swap
rates is

Cov[ yk,k+τ (k), yl,l+τ (l)]

≈

∫ k∧l

0
eAs
′

diag(C̃k,k+τ )ΣΣ ′diag(C̃l,l+τ )eAsds

=

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
k,k+τ C̃

(j)
l,l+τ

[
e[A(ii)+A(jj)](kΛl) − 1
A(ii) + A(jj)

]
(5.7)

where k ∧ l = min(k, l).

5.3. Pricing formulas

The total value of the embedded option is the sum of the values
of the strip of options that mature at time Ti (i = 1, 2, . . .).
The profit sharing specified in (2.1) is in fact a call option on the
normally distributed rate R(Ti)with expectation (5.4) and variance
(5.5) under the Ti-forward measure.
Let ϕµ,σ (·) be the density of a Gaussian random variable

with mean µ and standard deviation σ , Φµ,σ the corresponding
distribution function andΦ = Φ0,1.
The value at time 0 of the profit sharing payoff PS(Ti) at time Ti

is7:

V [PS(Ti)] = D(0, Ti)L(Ti)cETi [Max{R(Ti)− K(Ti), 0}]

= D(0, Ti)L(Ti)c
∫
∞

K(Ti)
(x− K(Ti))ϕµR(Ti),σR(Ti)(x)dx

= D(0, Ti)L(Ti)c
[
(µR(Ti) − K(Ti))Φ

(
µR(Ti) − K(Ti)

σR(Ti)

)
+ σR(Ti)ϕ

(
K(Ti)− µR(Ti)

σR(Ti)

)]
. (5.8)

The total value of the profit sharing at time 0 is then:

V [PS] =
∑
i

V [PS(Ti)] . (5.9)

When the profit sharing payoff at a time > 0 is dependent on
observations at a time < 0, a slight adjustment has to be done. In
that case the expectation to be valued is:

V [PS(Ti)] = D(0, Ti)L(Ti)ETi [Max{R(Ti)− K(t), 0}]
= D(0, Ti)L(Ti)ETi [Max{R(Ti)t>0 + R(Ti)t>0 − K(t), 0}]
= D(0, Ti)L(Ti)ETi

[
Max{R(Ti)t>0 − K ∗(t), 0}

]

7 These results can be derived in a similar fashion in case of a put-option on rate
R(Ti).
where R(Ti)t≤0 =
Tj=0∑
k=Ti−s

wkyk,k+τ (k), R(Ti)t>0

=

Ti∑
k=Tj

wkyk,k+τ (k) and K ∗(t) = K(t)− R(Ti)t≤0. (5.10)

So these profit sharing options can be priced with a relatively
simple and relatively easy to implement Gaussian option formula.

6. Valuation for more complex profit sharing rules

In Section 5 an analytical approximation is derived for the case
of direct payment of the profit sharing payoff specified in (2.1).
However, in practice other variants of this profit sharing exist, such
as:

(1) Compounding variant of the profit sharing in (2.1)
(2) Profit sharing including the return on an additional asset
(3) (Compounding) profit sharing with additional management
actions or other complex features

For (1) and (2), an analytical approximation can be derived in
line with the approximation developed in Section 5. For (3), either
volatility scaling or Monte Carlo simulation will be necessary. In
case of Monte Carlo simulation, the approximation in (5.8) can
be used as a control variate, potentially reducing the amount of
simulations necessary to a great extent.

6.1. Compounding profit sharing

It is also common that profit sharing is not paid directly, but
is compounded and paid out at the end of the contract term.
Valuation of this option with Monte Carlo simulation often takes
a significant amount of time. The reason for this is the dependency
of the profit sharing rates with the future cash flows, resulting in
the need to use the original liability cash flowmodel in a stochastic
way. An analytical approximation would significantly (even more
than in the direct payment case) reduce computational time, since
these formulas can beused as input for the liability cash flowmodel
without the need to run these stochastically.
Let the maturity of the product be Tn and total payoff L(Tn) be

of the form:

L(Tn) = L(0)
n∏
i=0

s(Ti)

× [1+ TR(Ti)+Max{c(R(Ti)− K(Ti)), 0}] (6.1)

where the definition of the variables is as in (2.1) and s(Ti) is the
probability that the policyholder stays in the portfolio.
The distribution of the right term of (6.1) is unknown so

there is no analytical expression for this payoff. However, if we
assume that theR(Ti)’s are independent (which is obviously a crude
assumption in this case), the expectation of L(Tn) under the Tn-
forward measure is:

ETn [L(Tn)]

= ETn
[
L(0)

n∏
i=0

s(Ti) [1+ TR(t)+Max{c(R(Ti)− K(Ti)), 0}]

]

≈ L(0)
n∏
i=0

s(Ti) [1+ TR(Ti)

+ ETn (Max{c(R(Ti)− K(Ti)), 0})
]

(6.2)

where the latter expectations can be calculated with (5.8),
excluding the term D(0, Ti)L(Ti).
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Note that this expectation has to be determined under the Tn-
forward measure by making a timing correction to time Tn using
formula (5.3).
The value of the compounding profit sharing optionwould then

be:

V [PS] = D(0, Tn)
[
ETn [L(Tn)]− K

]
where K =

n∏
i=1

[1+ TR(Ti)] .
(6.3)

Despite the crude assumption on independence, the analytical
approximation could still work well. When the expected R(Ti)’s
are low, the impact of the compounding effect is relatively low,
resulting in a relatively good approximation of the time value
of the option. When the expected R(Ti)’s are high, the impact of
the compounding effect is relatively high and the quality of the
approximation will be less (in terms of time value). However, in
this case the total value of the option will also be high and the
impact of approximation errors in the time value on the total value
will be less. This reasoning is being tested in Section 7.
Instead of using this analytical approximation, it is also possible

to use Monte Carlo simulation with the analytical approximation
of (5.8) as a control variate, reducing the amount of simulations
needed significantly. This technique is further described in
paragraph 6.3.

6.2. Profit sharing including the return on an additional asset

In some cases the underlying investment portfolio also contains
additional non-fixed income assets. The profit sharing rate could
then be expressed as in (2.5).
Assume that the additional asset class Sj follows a standard

geometric Brownian motion under the risk neutral measure Q :

dSj(t) = Sj(t)
[
r(t)dt + σSjdW

Q
Sj
(t)
]
. (6.4)

In this case there is an analytical expression for the distribution
of rSj and the covariance’s with yk,k+τ , under normally distributed
stochastic interest rates in a T -forward measure. The analytical
expression for the distribution of rSj is worked out in Brigo
and Mercurio (2006) for the 1-factor model and the result is
similar for multi-factor models. The covariance’s with yk,k+τ can
be determined using (5.6) and the formulas in Brigo and Mercurio
(2006).
In practice, often rSj is a book value return. The specification of

this book value return can be complex andpossibly differs for every
insurance company. Often, Monte Carlo simulations are necessary.
However, an alternative is the approach described above, where
the volatility parameters σSj can be calibrated to results of Monte
Carlo simulation or derived from historical patterns of book value
returns relative to total returns.

6.3. Additional management actions or other complex features

In some cases the insurer has added management actions or
other complexities to the profit sharing rules, mainly to lower the
risk exposure for the insurer. In most cases, it’s not possible to
properly value these options analytically. Other possibilitieswould
then be:

(a) Use a volatility scaling factor that is calibrated to results
obtained with Monte Carlo simulation and use this as input for
the analytical approximation in (5.8) and (6.3).

(b) Value the option with Monte Carlo simulation, using the
analytical approximation in (5.8) as a control variate.

Both possibilities are described below.
6.3.1. Volatility scaling factor
When the impact of the management actions or complexities

is expected to be low or in cases where it is sufficient to use an
approximation, one could use a volatility scaling factor f (Ti), such
that:

σ
Adj
R(Ti)
= [1+ f (Ti)] σR(Ti). (6.5)

The factor f (Ti) can be calibrated for each time Ti to output from
Monte Carlo simulation. This approach can be useful when lots of
valuations are needed, for example for Economic Capital or Asset
Liability Management calculations.

6.3.2. Control variate technique
When the impact of the management actions or complexities

is significant and exact valuation is necessary, Monte Carlo
simulation can be used in conjunction with a control variate
algorithm. For a thorough description of the control variate
technique, see for example Glasserman (2004). When using the
control variate algorithm, the value of the profit sharing is:

V [PS] = V [PS]sim − b
(
X sim − E [X]

)
(6.6)

where V [PS]sim is the simulated value of the profit sharing option,
X sim is the simulated value of another asset and E[X] is the
expected value of X , which is assumed to be known. When
choosing the proper control variate, the standard error of the
Monte Carlo estimate can be reduced significantly. Thismeans that
significantly less simulations are needed to come to an estimate
with the same quality as an ordinary Monte Carlo estimation.
The coefficient b thatminimizes the standard error of theMonte

Carlo estimation is given by:

b =
Cov (PS, X)
Var(X)

. (6.7)

The control variate algorithm is most effective when the correla-
tion between PS and X is high.
Therefore, a suitable choice for the control variate would be a

carefully selected combination of payer swaptions or CMS caplets.8
An alternative can be the use of the direct payment option

of Section 5 as control variate. Since the management actions or
complexities are added to aprofit sharing as in (2.1), the correlation
between this profit sharing and the direct payment variant of
(2.1) is probably very high. Therefore, using the direct payment
option of Section 5 as a control variate would significantly reduce
the number of simulations necessary. This can be implemented
by adding the approximate dynamics (A.4) to the simulations to
determine X sim and using (5.8) to determine E[X].
An example of the benefits of this technique is the following.

In Section 7 the quality of the approximation (5.8) is assessed. For
testing this quality, the option values coming from (5.8) were in
first instance compared with the result of 1 000000 Monte Carlo
simulations. The result from the simulations is seen as the ‘‘true’’
value, since the standard error of the estimation is sufficiently
low for this number of simulations. Now when we use the same
option (valued under the approximate dynamics) as a control
variate and (5.8) as its expected value, only 1000 simulations are
needed to come to the same standard error. Of course in this case
the correlation between the option to be valued and the control
variate is almost maximal, but one could imagine that in case of
more complex options the reduction of the number of simulations
needed would still be substantial.
Whether the carefully selected combination of payer swap-

tion/CMS caplets or the direct payment option of Section 5 per-
forms better as a control variate, will be subject for future research.
An advantage of the selection of simpler instruments is that the
market price of these instruments is usually available, so nomodel
assumption has to be used for the valuation of this part.

8 The authors thank the anonymous referee for this suggestion.
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Table 1
Comparison analytical/Monte Carlo approach, example 1.

Total option value Analytical Monte Carlo Error %

Base scenario 103.32 103.19 0.12 0.12
Interest rates:+1.5% 207.41 207.20 0.21 0.10
Interest rates:−1.5% 37.10 36.88 0.22 0.59
Volatiles:+0.15% 131.36 130.96 0.40 0.31
Volatiles:−0.15% 76.08 75.99 0.08 0.11
Mean reversion:+1.5% 93.16 93.03 0.13 0.14
Mean reversion:−1.5% 116.26 116.00 0.26 0.22
Strike:+1% 35.82 36.00 −0.18 −0.49
Strike:−1% 238.18 237.73 0.46 0.19

7. Numerical examples

In this section the results of the approximation formulas will
be shown for 2 example products and compared with the ‘‘true’’
values resulting from Monte Carlo simulation. When considering
the results one has to be aware of the fact that before using the
approximation already ‘‘errors’’ are introduced in the valuation,
for example in the calibration of the interest rate model to market
prices and by using the swap rate as a proxy for the profit sharing
rate.

7.1. Example 1: 10-year average of 7-year swap rate, direct payment

This example is a specification of (2.1) and (2.4) with direct
payment. This specification is for example commonly applied in
pricing the u-rate profit sharing in the Netherlands, where the 7-
year swap rate is often used as a proxy for the u-rate. Also, as in
(2.4) it can be interpreted as a proxy for profit sharing based on the
book value return on a underlying fixed income portfolio with an
assumed turnover rate of 10% and a reinvestment strategy favoring
7-year maturity assets (on average). The underlying interest rate
model used is a 2-factor Gaussian interest rate model.
The data used for the profit sharing basis and the technical

interest rates are based on an example portfolio of a long term
pension insurance portfolio, with cash flows up to 50 years ahead.
This data is given in Appendix C, alongwith the yield curve, implied
volatility matrix and the specific parameter setting of the 2-factor
Gaussian interest rate model. A margin of 0.5% is applied and c is
assumed to be 1.
The analytical approximation described in Section 5 is tested

with Monte Carlo simulation, where 5000 (antithetic) simulations
are used in combination with the control variate technique
described in paragraph 6.3.9 The results are given in Table 1,
where the total value of the option is given for both approaches
and for different yield curve, volatility, mean reversion and strike
sensitivities.
The table shows that the quality of the analytical approximation

is excellent for all calculated scenarios. Note that the error as a

9 Note, as described in paragraph 6.3, that 1000 simulations in combination with
the described control variate technique leads to a similar standard error as 1 000000
simulation without the control variate technique. For this example b = 1 is used.
percentage of the total value of the insurance liabilities would be
around 0.01% in most cases.
The analytical approximation is potentially more exact than

Monte Carlo simulation (without using a control variate algo-
rithm), since the number of simulations used in practice is usually
less than 1000000.
In Table 2 a comparison between the analytical approximation

and Monte Carlo simulation is given for different swap rate
maturities and averaging periods. The table shows that the quality
of the analytical approximation is also excellent for these product
variants.

7.2. Example 2: 10-year average of 7-year swap rate, compounding
option

In this example the value of compounded profit sharing
is calculated for a savings product with maturity 20. The
compounding profit sharing is of form (6.1), where again the 10-
year average of 7-year swap rates is used as the profit sharing rate.
The assumed technical interest rate is 3.5%, s(Ti) is assumed to be
1 and a margin of 0.5% is applied. The fund value at the start of the
projection is 1000.
The analytical approximation described in paragraph 6.1 is

tested with Monte Carlo simulation, where 100000 (antithetic)
simulations are used. The results are given in Table 3, where
again the total value of the option is given for both approaches
and for different yield curve, volatility, mean reversion and strike
sensitivities. Also results are included for differentmaturities of the
insurance product.
The table shows that the quality of the analytical approximation

is reasonable for all calculated scenarios. Note that the error as a
percentage of the initial fund value is less than 0.5% in most cases.
The assumption of independent profit sharing rates over time
introduces an additional error. However, considering the ‘‘errors’’
made earlier in the process (calibration of interest rate model,
approximation with swap rate) and the quality of the assumptions
usuallymade for non-economic parameters (mortality, lapses), the
error could still be considered as being acceptable.
The results for different maturities indicate that the quality of

the approximation decreases when the maturity of the product
exceeds 20 years.
Asmentioned in paragraph 6.1 the quality of the approximation

(in terms of time value of the option) is less when the impact of the
compounding is relatively high. However, since the total value of
the option is higher in this case, the error will still be reasonable in
terms of the total value of the option (as shown in the table above).
This effect is also shown in Fig. 1, where the results of the analytical
and the Monte Carlo approach are given for different yield curve
sensitivities.
In Table 4 a comparison for different swap rate maturities and

averaging periods is given. The table shows that the quality of
the analytical approximation is increasing (decreasing) when the
averaging period is longer (shorter).
Table 2
Comparison analytical/Monte Carlo — sensitivities.

Error of approximation Averaging period
Swap rate maturity 5 10 15

5 112.48 112.33 102.50 102.39 86.26 86.14
−0.13% −0.11% −0.14%

10 114.22 113.99 104.65 104.38 92.10 91.89
−0.20% −0.27% −0.23%

15 117.81 117.35 106.89 106.52 95.18 94.83
−0.39% −0.35% −0.38%

In each cell, top left: Analytical price, top right: Monte Carlo, bottom: Percentage error.
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Fig. 1. Comparison analytical/Monte Carlo approach, example 2.
Table 3
Comparison analytical/Monte Carlo approach, example 2.

Total option value Analytical Monte Carlo Error %

Base scenario 115.37 117.47 −2.10 −1.78
Interest rates:+1.5% 228.08 234.12 −6.05 −2.58
Interest rates:−1.5% 38.95 39.57 −0.62 −1.56
Volatiles:+0.15% 136.24 140.19 −3.96 −2.82
Volatiles:−0.15% 94.83 96.19 −1.36 −1.41
Mean reversion:+1.5% 109.01 110.83 −1.82 −1.65
Mean reversion:−1.5% 122.81 125.80 −2.99 −2.38
Strike:+1% 32.03 32.21 −0.17 −0.54
Strike:−1% 276.14 282.00 −5.86 −2.08
Maturity product: 15 80.69 80.78 −0.09 −0.11
Maturity product: 25 147.38 154.10 −6.73 −4.37

8. Conclusions

In this paper analytical approximations are derived for prices
of swap rate dependent embedded options in insurance products.
In practice these options are often valued using Monte Carlo
simulations. However, for risk management calculations and
reporting processes, lots of valuations are needed and therefore a
more efficientmethod to value these optionswould be helpful. The
basis for the approximations is the result of Schrager and Pelsser
(2006), who derived an approximate distribution for the forward
swap rates under the relevant swap measure. After some changes
of measure, this result is used to derive analytical approximations
for swap rate dependent embedded options, given an underlying
multi-factor Gaussian interest rate model.
The analytical approximation for options with direct payment

is almost exact while the approximation for compounding
options is also satisfactory. For similar options with additional
management actions that significantly impact the option value, no
analytical approximation is possible. However, using the analytical
approximation for an option with direct payment as a control
variate, the number of Monte Carlo simulations can be reduced
significantly for these kinds of options. Furthermore, it’s also
possible to construct analytical approximations when returns
on additional assets (such as equities) are part of the profit
sharing rate.

Appendix A. Proof of (4.3)

Each element of the vector of derivatives of (4.2) can be written
as:
∂yn,N(t)
∂Y (i)(t)

= −B(i)(t, Tn)DP(t, Tn)+ B(i)(t, TN)DP(t, TN)

+ yn,N(t)
N∑

k=n+1

∆Yk−1B
(i)(t, Tk)DP(t, Tk) (A.1)

where DP(t, Tn) = D(t, Tn)/Pn+1,N(t), the bond price normalized
by the numéraire.
Note that since bond prices in this model are stochastic, the

volatility of the swap rate is stochastic as well. The approximation
of Schrager and Pelsser consists of replacing the stochastic terms
DP(t, Ti) by their time zero values DP(0, Ti). This results in:

∂yn,N(t)
∂Y (i)(t)

≈ −B(i)(t, Tn)DP(0, Tn)+ B(i)(t, TN)DP(0, TN)

+ yn,N(0)
N∑

k=n+1

∆Yk−1B
(i)(t, Tk)DP(0, Tk)

=
∂yn,N(t)
∂Y (i)(t)

. (A.2)

This approximation makes the swap rate volatility deterministic
and thus leads to a normally distributed forward swap rate.
Furthermore, we can rewrite

B(i)(t, T ) =
1
A(ii)
−
e−A(ii)T

A(ii)
eA(ii)t . (A.3)
Table 4
Comparison analytical/Monte Carlo — sensitivities.

Error of approximation Averaging period
Swap rate maturity 5 10 15

5 123.80 128.20 113.52 115.91 126.43 126.12
−3.43% −2.06% 0.25%

10 125.88 129.88 117.31 119.86 131.15 130.42
−3.08% −2.13% 0.56%

15 124.55 127.68 117.59 119.50 132.52 131.98
−2.45% −1.60% 0.41%

In each cell, top left: Analytical price, top right: Monte Carlo, bottom: Percentage error.
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Using this, (A.2) canbe split in a timedependent part and a constant
part:

∂yn,N(t)
∂Y (i)(t)

=
1
A(ii)
eA(ii)t

[
e−A(ii)TnDP(0, Tn)− e−A(ii)TNDP(0, TN)

− yn,N(0)
N∑

k=n+1

∆Yk−1e
−A(ii)TkDP(0, Tk)

]
= eA(ii)t C̃ (i)n,N . (A.4)

So in the approximate model, the swap rate at time Tn is given by:∫ Tn

0
dyn,N(s) =

∫ Tn

0

∂yn,N(t)
∂Y (t)

ΣdW n+1,N(t)

≈

∫ Tn

0

∂yn,N(t)
∂Y (t)

ΣdW n+1,N(t)

=

∫ Tn

0
eAs
′

diag(C̃n,N)ΣdW n+1,N(t) (A.5)

where eAs =

 e
A(11)s

...

eA(mm)s

 and

diag(C̃n,N) =

C̃
(1)
n,N · · · 0
...

. . .
...

0 · · · C̃ (m)n,N

 .
By using Ito’s Isometry, this leads to an analytical expression for
the integrated variance of yn,N (associatedwith a Tn×TN swaption)
over the interval [0, Tn]:

σ 2n,N ≈

∫ Tn

0
eAs
′

diag(C̃n,N)ΣΣ ′diag(C̃n,N)eAsds

=

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N C̃

(j)
n,N

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
. (A.6)

Appendix B. Proofs of (5.2) and (5.3)

Proof of (5.2). A change of measure has to be done from the swap
measure Q n+1,N to the Tn-forward measure Q Tn. In this case the
Radon–Nikodym derivative is:

dQ Tn

dQ n+1,N
= ρ(t) =

D(t, Tn)/D(0, Tn)
N∑

k=n+1
∆Yk−1D(t, Tk)/

N∑
k=n+1

∆Yk−1D(0, Tk)
. (B.1)

Then using Ito’s Lemma leads to:

dρ(t) = κ(t)ρ(t)dW Tn (B.2)

where κ(t) is an 1×m vector with for each element κ (i)(t):

κ (i)(t) = −B(i)(t, Tn)+
N∑

k=n+1

∆Yk−1B
(i)(t, Tk)DP(t, Tk). (B.3)

Now like in Appendix A replacing the stochastic terms DP(t, Ti) by
their time zero values DP(0, Ti) and using (A.3) results in:

κ (i)(t) ≈
1
A(ii)
eA(ii)t

[
e−A(ii)Tn −

N∑
k=n+1

∆Yk−1e
−A(ii)TkDP(0, Tk)

]
= eA(ii)t G̃(i)n,N . (B.4)
Table 5
Used data for profit sharing basis and technical interest rate.

Time TR(t) (%) L(t) Time TR(t) (%) L(t)

0 3.8 1000 25 3.6 655
1 3.7 1043 26 3.6 625
2 3.7 1066 27 3.5 594
3 3.7 1060 28 3.5 563
4 3.7 1054 29 3.5 532
5 3.7 1046 30 3.5 501
6 3.7 1038 31 3.5 470
7 3.7 1028 32 3.5 440
8 3.7 1016 33 3.5 410
9 3.7 1004 34 3.5 381
10 3.7 991 35 3.5 353
11 3.7 976 36 3.5 326
12 3.7 961 37 3.5 300
13 3.7 944 38 3.5 275
14 3.6 926 39 3.5 251
15 3.6 907 40 3.4 228
16 3.6 887 41 3.4 206
17 3.6 865 42 3.4 186
18 3.6 842 43 3.4 167
19 3.6 819 44 3.4 149
20 3.6 794 45 3.4 132
21 3.6 768 46 3.4 116
22 3.6 741 47 3.4 102
23 3.6 713 48 3.4 89
24 3.6 684 49 3.4 77

Using (A.4) and integrating dyn,N leads to the following formula for
the convexity correction CCn,N(Tn) for time Tn > 0 for the swap
rate yn,N::

CCn,N(Tn) ≈
∫ Tn

0
eAs
′

diag(C̃n,N)ΣΣ ′diag(G̃n,N)eAsds

=

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N G̃

(j)
n,N

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
(B.5)

where G̃(j)n,N

=
1
A(jj)

[
e−A(jj)Tn −

N∑
k=n+1

∆Yk−1e
−A(jj)TkDP(0, Tk)

]
. �

Proof of (5.3). In this case the Radon–Nikodym derivative is:

dQ Tn+u

dQ Tn
= ρ(t) =

D(t, Tn+u)/D(0, Tn+u)
D(t, Tn)/D(0, Tn)

=
D(0, Tn)
D(0, Tn+u)

exp

[
A(t, Tn+u)− A(t, Tn)

−

(
m∑
i=1

B(i)(t, Tn+u)−
m∑
i=1

B(i)(t, Tn)

)
Y (i)(t)

]
. (B.6)

Then using the same procedure as above:

κ (i)(t) = B(i)(t, Tn)− B(i)(t, Tn+u)

=
1
A(ii)
eA(ii)t

[
e−A(ii)Tn+u − e−A(ii)Tn

]
= eA(ii)t H̃(i)n,n+u. (B.7)

Using (A.4) and integrating dyn,N leads the following formula for
the timing correction TCn,N(Tn, Tn+u) representing a change of
measure from time Tn > 0 to Tn+u:

TCn,N(Tn, Tn+u)

≈

∫ Tn

0
eAs
′

diag(C̃n,N)ΣΣ ′diag(H̃Tn,Tn+u)e
Asds
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Table 6
Swap curve, implied volatility surface and parameters 2F Gaussian model.

Swaption ATMF volatility surface
Expiry/Tenor 1Y (%) 2Y (%) 3Y (%) 4Y (%) 5Y (%) 7Y (%) 10Y (%) 15Y (%) 20Y (%) 25Y (%) 30Y (%)

1Y 14.3 14.0 14.4 14.5 14.5 14.3 14.0 13.5 13.0 13.0 12.9
2Y 14.6 14.9 15.0 14.9 14.8 14.6 14.2 13.6 13.2 13.0 12.9
3Y 15.1 15.0 15.1 15.0 14.8 14.5 14.1 13.6 13.2 13.1 12.9
4Y 15.1 15.0 15.0 14.8 14.6 14.2 13.9 13.4 13.1 13.0 12.8
5Y 14.8 14.8 14.7 14.5 14.3 14.0 13.6 13.2 12.9 12.8 12.6
7Y 14.0 14.0 14.0 13.9 13.6 13.4 13.1 12.9 12.4 12.4 12.2
10Y 13.0 13.1 13.1 13.0 12.8 12.7 12.5 12.1 11.8 11.6 11.4
15Y 12.0 12.0 12.0 12.0 12.0 12.0 12.0 11.6 11.2 11.0 10.9
20Y 11.6 11.6 11.6 11.7 11.8 11.8 11.8 11.2 10.8 10.5 10.5
30Y 11.1 11.1 11.2 11.3 11.3 11.3 11.3 10.7 10.6 10.7 10.7

Time Swap rate (%) Parameters

1 4.08 σ 0.51%
2 4.14 a 2.75%
3 4.12 η 0.28%
4 4.12 b 2.75%
5 4.13 rho 0.497
6 4.14
7 4.15
8 4.16
9 4.18
10 4.20
15 4.28
20 4.31
30 4.29
40 4.25
50 4.20
=

m∑
i=1

m∑
j=1

Σ̂(ij)C̃
(i)
n,N H̃

(j)
Tn,Tn+u

[
e[A(ii)+A(jj)]Tn − 1
A(ii) + A(jj)

]
(B.8)

where H̃(j)Tn,Tn+u =
1
A(jj)

[
e−A(jj)(Tn+u) − e−A(jj)Tn

]
. �

Appendix C. Input example 1

In this appendix the data and assumptions are given that are
used for example 1. The data used for the profit sharing basis L(t)
and the technical interest rates TR(t) are based on an example
portfolio of a long term pension insurance portfolio and are given
in Table 5.
The swap curve used is from ultimo 2006 and the parameters

of the 2 factor Gaussian interest rate model are calibrated to
the swaption implied volatility surface at the same date. This
information is given in Table 6 (where σ and a belong to factor 1
and η and b to factor 2).
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