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Abstract: Backward stochastic differential equations (BSDEs) appear inmany problems in stochastic optimal

control theory, mathematical finance, insurance and economics. This work deals with the numerical approx-

imation of the class of Markovian BSDEs where the terminal condition is a functional of a Brownian motion.

Using Hermite martingales, we show that the problem of solving a BSDE is identical to solving a countable

infinite-dimensional systemof ordinary differential equations (ODEs). The family of ODEs belongs to the class

of stiff ODEs, where the associated functional is one-sided Lipschitz. On this basis, we derive a numerical

scheme and provide numerical applications.

Keywords: Regression, BSDE, ODE, Hermite polynomials, martingale

MSC 2010: 65C05, 65C40, 60H10

1 Introduction
This paper dealswith the numerical approximation of the class ofMarkovian backward stochastic differential

equations (BSDEs) on the interval [0, T], where the terminal condition is a functional of a Brownian motion.

BSDEswere first introduced by Bismut [7] in the linear case and later developed by Pardoux and Peng [43]. In

the past decade, BSDEs have attracted a lot of attention and have been intensively studied in mathematical

finance, insurance and stochastic optimal control theory. For example, in a complete financial market, the

price of a standard European option can be seen as the solution of a linear BSDE. Moreover, the price of an

Americanoption canbe formulated as the solution of a reflectedBSDE. These equationshave also beenwidely

applied for portfolio optimization, indifference pricing, modeling of convex risk measures and the modeling

of ambiguity with respect to the stochastic drift and the volatility. See, for instance, [4, 5, 12, 14, 21, 32, 33].

In general, many of these equations do not have an explicit or closed form solution. Due to its importance,

some efforts have been made to provide numerical solutions. For instance, a four-step scheme has been pro-

posed by Ma, Protter and Yong in [38] to solve forward-backward SDEs. In [3], Bally has proposed a random

time discretization scheme. Discrete time approximation schemes have been also proposed by Bouchard and

Touzi in [8] and Chevance in [13], for instance. In Chevance’s work [13], strong regularity assumptions of the

coefficients of the BSDE are required for convergence results. In [15] a cubaturemethod for BSDEs with appli-

cation to nonlinear pricing was proposed. Gobet, Lemor andWarin [25] presented a discrete algorithm based
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on the Monte Carlo method to solve BSDEs. Fujii and Takahashi [22] proposed an analytical approximation

for nonlinear FBSDEs with perturbation scheme.

Recently, Fourier methods for solving forward-backward stochastic differential equations (FBSDEs) were

proposed in [29] and a convolution method in [31]. A new algorithm based on the regression-later approach

is also proposed in [24]. In [26], a numerical scheme for solving BSDE with Malliavin weights was designed.

Other recent references can be founded in [1, 6, 11, 23, 27, 35, 47], among others. In 2014, Briand and

Labart [9] presented an algorithm to solve BSDEs based on Wiener chaos expansion and Picard’s iterations.

In their approach, the regression coefficients are computedwith aweightedMonte Carlomethod byMalliavin

calculus. In our approach, the regression coefficients are determined exactly as solution of countable systems

of ordinary differential equations (ODEs).

Most of the above numerical algorithms are not explicit. One of the major difficulties is to solve dynamic

programming equations, which involves computing conditional expectations at each step across the time

interval. This computation can be very costly in high-dimensional problems. As introduced above, the pur-

pose of this paper is to develop a new probabilistic numerical scheme to solve Markovian forward-backward

SDEs.Wewill discuss theparticular casewhere the terminal condition is assumed tobe aGaussian functional.

In our class, by developing the solution of a Markovian BSDE as a Fourier–Hermite expansion, we show that

the problem of solving a BSDE is identical to solving an infinite countable system of ordinary differential

equations (CODEs). The family of ODEs belongs to the class of stiff ODEs, where the associated functional

is one-sided Lipschitz. On this basis, we derive a numerical algorithm for the BSDE via the standard Euler

scheme, with respect to the solution of the countable system of ordinary differential equations.

This paper is structured as follows. We will introduce the basic theory of BSDEs, the generalized Hermite

polynomials anddevelop the solution ofMarkovianBSDEs as a Fourier–Hermite expansion in aHilbert space.

We will show their connection to countable system of ODEs and derive a numerical algorithm to solve the

corresponding BSDE. Finally, we will propose two numerical experiments to illustrate the performance of the

scheme.

Notations and assumptions

Wewill use the notations of El Karoui, Hamadène andMatoussi [20]. We consider a filtered probability space

(Ω,F,ℙ,𝔽), withF = FT ,𝔽 = (Ft)0≤t≤T a complete natural filtration of a d-dimensional BrownianmotionW,

and T a fixed finite horizon. For all m ∈ ℕ∗ and x ∈ ℝm, |x| denotes the Euclidean norm of the vector x. For
the matrix A ∈ ℝm×d, we define its Frobenius norm by |A| := √Trace(AA∗). The matrix A can be considered

as an element of the spaceℝm×d .
∙ We introduce the sets

L2

m(Ft) := {(Xt)t∈[0,T] ∈ ℝm , Ft-measurable and ‖X‖L2 = 𝔼[|Xt|2]1/2 <∞},

S2(ℝm) := {(Yt)t∈[0,T] ∈ ℝm , continuous and adapted such that ‖Y‖2S2
= 𝔼[ sup

t∈[0,T]
|Yt|2] <∞},

H2(ℝm) := {(Zt)t∈[0,T] ∈ ℝm , continuous and adapted such that ‖Z‖2H2
= 𝔼[(

T

∫
0

|Zs|2 ds)] <∞}.

∙ All the equalities and inequalities between random variables are understood in the almost sure sense

unless explicitly stated otherwise.

∙ The space l2(ℕ) := {(xi)i∈ℕ : ∑i|xi|2 <∞}, equippedwith its natural inner product, is a Hilbert space.We

can identify each element of the space l2(ℕ) as an infinite-dimensional vector. We will use this identifi-

cation and clarify the cases unless explicitly stated otherwise.

∙ (x, y) denotes the usual inner product onℝm or on l2(ℕ).
∙ For x ∈ ℝm, we define the gradient operator

∇x := (
∂
∂x

1

, . . . ,

∂
∂xm
).
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2 Definitions and estimates
In this section, we introduce the general concept of backward stochastic differential equations (BSDEs) with

respect to a standard Brownian motion. In the last part of this section, we recall classical estimates from

the theory of BSDEs. In the filtered probability space (Ω,F,ℙ,𝔽), BSDEs are a special class of stochastic

differential equations. The main difference is that these equations are specified with a prescribed terminal

value as shown in the following equation:

{
−dYt = g(t, Yt , Zt)dt − Zt dWt , 0 ≤ t < T,
YT = ξ.

(2.1)

The latter system can be written equivalently as the following stochastic integral

Yt = ξ +
T

∫
t

g(s, Ys , Zs) ds −
T

∫
t

Zs dWs , (2.2)

where

∙ ξ is the terminal condition of equation (2.1) and is assumed to be an FT -measurable and a square-

integrable random variable,

∙ the mapping (t, y, z) → g(t, y, z) is generally called the generator of the driver of (2.1).
A solution of the backward stochastic differential equation (2.1) is a couple of progressively measurable

processes (Y, Z) such that:
(i) ∫

T
0

|Zs|2 ds <∞ and ∫
T
0

|g(s, Ys , Zs)| ds <∞,
(ii) (Yt , Zt) satisfies equation (2.1).
In general, we do not have a unique solution to equation (2.1). The existence and uniqueness of a solution

can be proved under the conditions given in [42], which involves the Lipschitz continuity of the generator

function g. In this case,
(Yt , Zt)0≤t≤T ∈ S2(ℝm) ×H2(ℝm×d).

Remark 2.1. If the generator function g is identically equal to zero, the BSDE (2.2) is reduced to the following
stochastic equation:

Yt = ξ −
T

∫
t

Zs dWs .

This preceding simplification can be associated with the martingale representation theorem in the filtration

generated by the Brownian motion. The process Y is a martingale and we have explicitly

Yt = 𝔼(ξ |Ft).

Proposition 2.2 ([41]). If the function g is continuous globally and Lipschitz in its second and third coordinate,
then the couple (Y, Z) satisfies

𝔼( sup
0≤t≤T
|Yt|2 +

T

∫
0

|Zs|2 ds) ≤ C𝔼(|ξ|2 +
T

∫
0

|g(s, 0, 0)|2 ds).

The preceding inequality shows how the solution of the BSDE is governed by the terminal condition ξ and
the generator function g.

3 BSDEs and Hermite polynomials
The purpose of this paper is to develop a numerical scheme to solve the below Markovian forward-backward

SDE (3.1), where the terminal condition is assumed to be a Gaussian functional. A forward backward stochas-

tic differential equation (FBSDE) is a systemwhich consists of two equations: the first is an Itô process and the
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second is a backward stochastic differential equation. The following BSDE is an example of a FBSDE where

the forward component is a standard Brownian motion:

{
−dYt = g(t,Wt , Yt , Zt)dt − Zt dWt , 0 ≤ t < T,
YT = ϕ(WT).

(3.1)

In this section, we will introduce Hermite polynomials, list some useful properties of these polynomials

and highlight their connection to BSDEs via the conditional expectation operator. We assume the following

general hypotheses:

(H1) There exists a positive constant K > 0 such that

|g(t
1
, x

1
, y

1
, z

1
) − g(t

2
, x

2
, y

2
, z

2
)| ≤ K(|x

1
− x

2
| + |y

1
− y

2
| + |z

1
− z

2
|)

and

sup

t∈[0,T]
|g(t, 0, 0, 0)| ≤ K.

(H2) The function ϕ is Lipschitz.

From [43], one can represent the couple of processes (Y, Z) by the solution u of the following parabolic partial
differential equation:

Yt = u(t,Wt) and Zt = (∇xu)(t,Wt), t ∈ [0, T], (3.2)

where the function u solves the equation

{{
{{
{

∂u
∂t
(t, x) + 1

2

∆u(t, x) + g(t, x, u, ∇xu) = 0,

u(T, x) = ϕ(x), with (t, x) ∈ [0, T] ×ℝd .
(3.3)

We recall that ∇xu denotes the gradient of u and the differential operator ∆ denotes the Laplacian operator

with respect to the space variable x. Explicitly,

∆u(t, x) =:
d
∑
i=1

∂2

∂x2i
u(t, x).

Under some regularity assumptions, it is known that the previous PDE (3.3) has a bounded unique solution u
with a bounded derivative in the space coordinate. This result establishes a direct connection between the

solution of equation (3.1) and the solution of the PDE (3.3).

3.1 Hermite polynomials and martingales

Hermite polynomials belong to the family of orthogonal polynomials and appear in many areas such as

physics, chemistry, mathematics, etc. These polynomials appear naturally in the study of the propagation of

the heat equation and in the study of quantum harmonic oscillator, for instance. The most famous applica-

tion of Hermite polynomials is in the Schrödinger theory of quantum physics. The system of the probabilists’

Hermite polynomials (Hn(x))n∈ℕ can be easily defined by Rodrigues’s formula. For x ∈ ℝ and every positive
integer n,

Hn(x) = (−1)nex
2/2 dn

dxn
e−x2/2, with n ≥ 1and H

0
(x) = 1.

The components of the sequence (Hn(x))n∈ℕ are orthogonal polynomials with respect to the Gaussian weight

function

ϕ(x) = 1

√2π
e−x2/2, x ∈ ℝ.

Hence, for (n,m) ∈ ℕ2, any pair (Hn(x), Hm(x)) satisfies the orthogonality relationship
∞

∫
−∞

Hn(x)Hm(x)ϕ(x) dx = n!δnm ,
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where δnm denotes the Kronecker symbol. The first few Hermite polynomials are:

H
0
(x) = 1,

H
1
(x) = x,

H
2
(x) = x2 − 1,

H
3
(x) = x3 − 3x,

H
4
(x) = x4 − 6x2 + 3.

In general, Hermite polynomials satisfy the following recursion relation:

Hn+1(x) = xHn(x) − nHn−1(x). (3.4)

This recursion relationship is very useful for generating values ofHn(x) for a given x in a fastway. Ifwe assume

that Hn has the following representation:

Hn(x) =
n
∑
k=0

an,kxk ,

where an,k ∈ ℝ, then one can deduce immediately from (3.4) the individual coefficients an,k by identification.
One can also integrate Hermite polynomials analytically against any Gaussian density. For this reason, we

introduce the non-central moments of a Gaussian random variable Z ∼ N(μ, σ), which are given by
∞

∫
−∞

zn e
− 1
2

( z−μσ )2
√
2πσ2

dz = 𝔼[Zn] = (iσ)nHn(
μ
iσ )

for all n ≥ 0, (3.5)

and i2 = −1. Although the last expression involves the imaginary unit i, the outcome is always a real num-

ber since the complex numbers cancel out for each integer value of n. We introduce a new notation for a

“generalized” Hermite polynomial, that is,

H[θ]n (x) := θ
n
2 Hn(

x
√θ
), (3.6)

which gives (as stated above) also a real value for any θ > 0. Taking the limit as θ → 0, we obtain the result

H[0]n (x) = xn . (3.7)

The “generalized” Hermite polynomials satisfy the orthogonality relationship

∞

∫
−∞

H[θ]n (x)H
[θ]
m (x)

e− 12 x2
θ

√
2πθ

dx = θnn! δnm ,

with respect to the Gaussian densitywithmean0 and variance θ.We can use formula (3.5) for the non-central

moments to derive the result

∞

∫
−∞

Hn(z)
e− 12 (

z−μ
σ )

2

√
2πσ2

dz = 𝔼[
n
∑
k=0

ankZk] =
n
∑
k=0

an,kH[−σ
2]

k (μ).

In the last inequality, we have extended and used definition (3.6) for imaginary numbers. The last expression

can be simplified by using the umbral composition formula for (generalized) Hermite polynomials

n
∑
k=0

ankH[−σ
2]

k (μ) = (H
[1]
n ∘ H[−σ

2])(μ) = H[1−σ
2]

n (μ).

We point out that the last expression also yields the correct answer for σ2 > 1. Using the same type of deriva-

tion, one can generalize this result to

∞

∫
−∞

H[θ]n (z)
e− 12 (

z−μ
σ )

2

√
2πσ2

dz = H[θ−σ
2]

n (μ). (3.8)
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For the generalized Hermite polynomials, we have the following addition formula:

H[θ]n (x + y) =
n
∑
k=0
(
n
k)

yn−kH[θ]k (x). (3.9)

The last formula can be proven directly via a Taylor expansion of H[θ]n (x + y). From the generalized Her-

mite polynomials expression, it is easy to see that H[t]n (Wt) defines a sequence of martingales. Applying

formula (3.8), we obtain immediately that

𝔼[H[T]n (WT) |Ft] = H[t]n (Wt), 0 ≤ t ≤ T.

We will call these Hermite martingales. For each Hermite martingale, we obtain the explicit martingale rep-

resentation formula

H[T]n (WT) − H[t]n (Wt) =
T

∫
t

nH[s]n−1(Ws) dWs ,

where we have used the fact that ∂H[t]n (Wt)/∂x = nH[t]n−1(Wt). For a positive θ, we introduce below the nor-

malized system (H̄θ)θ>0. Each element H̄[θ]n of the system (H̄θ)θ>0 is defined by the following normalization:

H̄[θ]n (x) :=
1

√θnn!
H[θ]n (x), θ > 0.

This system of generalized and normalized Hermite polynomials satisfies

∞

∫
−∞

H̄[θ]n (x)H̄θ
m(x)

e− 12 x2
θ

√
2πθ

dx = δnm , m, n ∈ ℕ, θ > 0,

and we have the martingale equality

𝔼[H̄[T]n (WT) |Ft] = (
t
T )

n/2
H̄[t]n (Wt), 0 ≤ t ≤ T. (3.10)

It is not natural to obtain the preceding equality when t is equal to zero. In fact, we have

(
t
T )

n/2
H̄[t]n (Wt) = (

1

Tn!)
n/2

H[t]n (Wt),

and the right side of the preceding equality iswell definedwhen t goes to zero due to relation (3.7). The partial
derivative with respect to the space variable of the normalized polynomials is given by

∂xH̄[θ]n (x) = (
n
θ )

1/2
H̄[θ]n−1(x), θ > 0.

As we are in a Hilbert space, we can express the Gaussian functional random variable Y(T,WT) as

Y(T,WT) =
∞
∑
k=0

αk(T)H̄[T]k (WT),

where

αk(T) := 𝔼[Y(T,WT)H̄[T]k (WT)H[T]k (WT)]

and α belongs to the space l2(ℕ). We also remark that the above series converges in the 𝕃2
1

(FT) sense. If we
define Y(t,Wt) as the conditional expectation of Y(T,WT), we obtain, due to the martingale equality (3.10),

Y(t,Wt) = 𝔼[
∞
∑
k=0

αk(T)H̄[T]k (WT)
 Ft] =

∞
∑
k=0
(
t
T )

K/2
αk(T)H̄[t]k (Wt)

and the relation

αk(t) = (
t
T )

k/2
αk(T) for every t ∈ (0, T].

One can interpret this result as follows: for all t ∈ (0, T] the coefficients αk(t) of the conditional expectation
process Y(t,Wt) trace a deterministic path in our “Hermite space”. Even though the random variable Y(t,Wt)
is stochastic, the coefficients αk(t) are deterministic functions of time.
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3.2 BSDEs in Hermite spaces

In this section and later on, we will consider the solution of the BSDE (3.1) in a one-dimensional framework.

Each process of the couple (Y, Z) is Markovian in the state (t,Wt). In the normalized Hermite basis system

(H̄ t)t∈[0,T], we represent the solution of the BSDE (3.1) as the following series, for a fixed time instance t in
the interval [0, T]:

Yt = ∑
k≥0

αk(t)H̄[t]k (Wt), Zt = ∑
k≥0

βk(t)H̄[t]k (Wt) = ∑
k≥0
(
k + 1
t )

1/2
αk+1(t)H̄[t]k (Wt), (3.11)

where

α, β ∈ l2(ℕ), αk(t) = 𝔼[YtH̄[t]k (Wt)] and βk(t) = (
k + 1
t )

1/2
αk+1(t).

Wewill analyze the removable singularity problem (at t = 0) in Section4.2.2. The expression of βk comes from

equality (3.2), where the process Z is given by the spatial derivative of the function u in (3.2). Furthermore,

g(t,Wt , Yt , Zt) can also be decomposed as

g(t,Wt , Yt , Zt) =
∞
∑
k=0

γk(t)H̄[t]k (Wt),

where γk(t) := 𝔼[g(t,Wt , Yt , Zt)H̄[t]k (Wt)]. For each t ∈ [0, T], the coefficients γk(t) are deterministic func-

tions (via Yt and Zt) of the α(t). Wewill denote these functions by γk(t, α(t)) to highlight the dependencewith
respect to the coefficients α(t). By integrating equation (3.1) on the interval [t, T] and taking the conditional
expectation, we have

𝔼(YT |Ft) − Yt + 𝔼(
T

∫
t

g(s,Ws , Ys , Zs) ds Ft) = 0.

By the preceding decomposition of Y, Z and g in the Hermite space, we have

∞
∑
k=0
(
αk(T)
√Tkk!
−

αk(t)
√tkk!
+

T

∫
t

γk(s)
√skk!

ds)H[t]k (Wt) = 0.

This equation can only be equal to zero for all H[t]k , k ∈ ℕ, if each of the coefficients in front of the Hermite

basis-functions is equal to zero. Therefore, we obtain the result that the αk(t) must be the solution to the

following deterministic integral equation:

(
t
T )

k/2
αk(T) − αk(t) +

T

∫
t

(
t
s )

k/2
γk(s, α(s)) ds = 0, k = 0, 1, 2, . . . . (3.12)

This system can also be expressed as a (countably infinite) system of ordinary differential equations by the

partial differentiation of the latter equality. We then have

tα̇k(t) −
k
2

αk(t) + tγk(t, α(t)) = 0, with k = 0, 1, 2, . . . . (3.13)

The function α̇k denotes the time-derivative of the function αk. System (3.12) is defined on the whole interval

t ∈ [0, T] with the boundary condition (αk(T))k∈ℕ at the horizon time T when system (3.13) introduces a

removable singularity time instance at zero. We will show in Lemma 4.5 that this singular point is removable

for system (3.13). Furthermore,weuse the notation γk(t, α(t)) to emphasize that the γk are functions of the αk.
The couple (Y, g) can be represented by (αk(t), γk(t))k∈ℕ at the time instance t ∈ [0, T]. The solution (Yt , Zt)
exists if and only if the countable differential system (3.12) has a solution. Countable systems of ordinary

differential equations have been studied extensively. For early references, see [28, 37, 46].¹ For more recent

texts, we refer to [18, 45]. The next section will illustrate and clarify our methodology with two examples.

1 It is interesting to note that [37, Part III] studies the existence and uniqueness of solutions of semilinear partial differential

equations ut = uxx + g(t, x, u, ux), which we would now identify with BSDEs. Lewis considers the Fourier basis to express the

solution in terms of a CODE.
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3.3 Preliminaries examples

3.3.1 Quadratic case

In the spirit of [36], let us consider the example of the BSDE (3.1), where the driver is given by the quadratic

function

g(t, x, y, z) = az2, a ∈ ℝ.

The preceding work is rich enough to consider this example. The couple (Y, Z) solves the BSDE

Yt = ϕ(WT) + a
T

∫
t

Z2s ds −
T

∫
t

Zs dWs .

By the change of variable Ȳt = exp(2aYt), there exists a process Z̄ such that

Ȳt = exp(2aϕ(WT)) −
T

∫
t

Z̄s dWs .

The solution (Ȳt , Z̄t)t∈[0,T] of the corresponding BSDE can be represented in the system the normalized Her-

mite basis (H̄ t)t∈(0,T]. Therefore, the countable systems of ordinary differential equations to solve are linear

and given by

α̇k(t) =
k
2t
αk(t), k = 0, 1, 2, . . . ,

with the terminal boundary condition (αk(T))k∈ℕ at T. By solving the above linear CODEs, we can represent Ȳ
on the whole time interval [0, T] as

Ȳt =
∞
∑
k=0

αk(T)(
t
T )

k/2
H̄[t]j (Wt), t ∈ [0, T].

By the martingale equality (3.10),

Ȳt = 𝔼[exp(2aϕ(WT)) |Ft].

By the change of variable Ȳt = exp(2aYt), Yt defines a super-martingale and we finally obtain

Yt =
1

2a
log(𝔼[exp(2aϕ(WT)) |Ft]), t ∈ [0, T].

3.3.2 Linear case

Let us consider the example of the BSDE (3.1) where the driver function is given by the linear function

g(t, x, y, z) = ay + bz,where a, b ∈ ℝ. The solution (Yt , Zt)t∈[0,T] of the correspondingBSDE canbe expressed
in the system the normalized Hermite basis (H̄ t)t∈(0,T]. From (3.11), we obtain the following representation

of γk(t):

γk(t) = aαk(t) + b(
k + 1
t )

1/2
αk+1(t), t ∈ (0, T].

From (3.13), the countable system of ODEs to solve is given by

α̇k(t) = (a −
k
2t )

αk(t) + b(
k + 1
t )

1/2
αk+1(t), t ∈ (0, T], k = 0, 1, 2, . . . ,

with the terminal boundary condition (αk(T))k∈ℕ at the horizon time T. This system of linear CODEs is row-

infinite.

Let us consider the truncated systemof ordinary differential equationswith onlyN equations (N > 1). The
(N + 1)-dimensional vector of functions αN(t) solves the following finite system of linear ordinary differential

equations:

α̇Nk (t) = (a −
k
2t )

αNk (t) + b(
k + 1
t )

1/2
αNk+1(t), k = 0, 1, 2, . . . , N, (3.14)
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with αNN+1 ≡ 0. We solve this system backwardly from k = N to k = 0 and obtain an explicit solution.We know

that αk(T) = 𝔼[YT H̄[T]k (WT)].
∙ For k = N, we solve the corresponding ODE and obtain explicitly

αNN(t) = (
t
T )

N/2
exp{a(T − t)}αN(T), 0 < t ≤ T.

∙ For k = N − 1, the corresponding ordinary differential equation is given by

α̇NN−1(t) = (a −
N − 1
2t )

αNN−1(t) + b(
N
t )

1/2
αNN(t), 0 < t ≤ T.

By themethod of variation of parameter, the explicit solution of the preceding ordinary differential equa-

tion is given by the following equality, for t ∈ (0, T]:

αNN−1(t) = (
t
T )
(N−1)/2

exp{a(T − t)}αN−1(T) + N(
t
T )

N/2
exp{a(T − t)}αN(T).

We continue to solve system (3.14) backwardly and obtain the explicit solution

αNj (t) =
N
∑
k=j

αk(T)(
k
j)(

t
T )

k/2
(b(T − t))k−j exp{a(T − t)}, j = 0, 1, 2, . . . , N.

Based on this truncated system, we obtain the following representation for Y(N)t (the approximated solution

of the corresponding BSDE):

Y(N)t =
N
∑
j=0
(

N
∑
k=j

αk(T)(
k
j)(

t
T )

k/2
(b(T − t))k−j exp{a(T − t)})H̄[t]j (Wt).

From the addition formula (3.9) and interchanging the order of summation,

Y(N)t = exp{a(T − t)}
N
∑
k=0

αk(T)(
t
T )

k/2
H̄[t]k (Wt + b(T − t)).

When N goes to infinity, with the aid of Parseval’s identity, it suffices to observe that

sup

t∈[0,T]
(
t
T )

j
αj(T)2 ≤ αj(T)2, where

∞
∑
j=0

αj(T)2 <∞,

to conclude that the truncated solution Y(N)t converges to the true solution Yt via a suitable change of proba-
bility measure. The convergence is understood in the 𝕃2

1

(Ft) sense. For these examples, we can remark that

the singular time instance t = 0 is in fact a removable singular point of system (3.13). We will analyze this

singularity problem in Section 4.2.2.

4 Uniqueness, existence and convergence
The existence and the uniqueness of the solution of the BSDE (3.1) is guaranteed by assumptions (H1)–(H2).

The books [18] and [45] give sufficient conditions to study the existence of solutions of countable systems of

ordinary differential equations (4.1) below or equivalently to system (3.12). In this part, we study the unique-

ness of the solution of the countable systems of ordinary differential equations (4.1) below and its truncated

solution in a finite-dimensional subspace which defines the Galerkin approximation of the solution of (4.1).

In the system of the generalized orthonormal Hermite polynomials (H̄ t)t∈(0,T], we formulate the following

countable backward problem:

{
α̇(t) = f(t, α(t)), 0 ≤ t < T,
α(T) is the terminal condition,

(4.1)
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where α(T) = (αk(T))k≥0 and f(t, α(t)) denotes an infinite-dimensional vector where each coordinate is

defined by fk(t, α(t)) = − k
2t αk(t) + γk(t, α(t)) for each k ∈ ℕ. The same definition is applied to α(t). The study

of regular ODEs is well documented and developed in the case of a finite dimension. The classical Lipschitz

condition and the Nagumo condition (see, e.g., [40, 44]) are the most known conditions of their studies. In

an infinite-dimensional space, the problem of existence and uniqueness of ODEs are more delicate to obtain.

4.1 Uniqueness of solutions

The study of the uniqueness or the existence of the solution of (4.1) is equivalent to the study of the unique-

ness or the existence of the solution of system (3.12) introduced previously.

Proposition 4.1. If the solution of problem (4.1) exists, then the solution is unique on the time interval [0, T].

Proof. We remind that the uniqueness of the solution of system (4.1) is equivalent to the uniqueness of the

solution of system (3.12). Let us consider two solutions (αi(t))i=1,2 of the previous system, with t ∈ [0, T] and
α1(T) = α2(T). We associate to each αi(t), the solution Y i

t of the BSDE (3.1) at the time instance t. Let us define

∆α1,2k (t) = α
1

k(t) − α
2

k(t), ∆β1,2k (t) = (
k + 1
t )

1/2
∆α1,2k+1(t).

From system (3.12),

|∆α1,2k (t)| =


T

∫
t

(
t
s )

k/2
(γ1k(s) − γ

2

k(s)) ds

=


T

∫
t

(
t
s )

k/2
𝔼[(g(s,Ws , Y1

s , Z1s ) − g(s,Ws , Y2

s , Z2s ))H̄
[t]
k (Ws)] ds


.

By the Lipschitz property of the function g,

|∆α1,2k (t)| ≤ K
T

∫
t

(
t
s )

k/2
|∆α1,2k (s)| ds + K

T

∫
t

|∆β1,2k (s)| ds.

From Lemma A.3 and the Cauchy–Schwartz inequality,

|∆α1,2k (t)|
2 ≤ K2T exp2(T − t) ×

T

∫
t

|∆β1,2k (s)|
2 ds. (4.2)

By Itô’s formula applied to ∆Y1,2

t = |Y1

t − Y2

t | and the Lipschitz property of g,

𝔼(|∆Y1,2

t |
2 +

T

∫
t

|∆Z1,2s |2 ds) ≤ 2K
T

∫
t

𝔼|∆Y1,2

s |2 ds + 2K
T

∫
t

𝔼|∆Y1,2

s ||∆Z
1,2

s | ds,

where ∆Z1,2t = |Z1t − Z2t |. From the latter inequality and Young’s inequality (2ab ≤ 1

ϵ a
2 + ϵb2, a, b ∈ ℝ), there

exists a constant C > 0 such that

(1 − ϵK)
T

∫
t

𝔼|∆Z1,2s |2 ds ≤ K(2 +
1

ϵ )
T

∫
t

𝔼|∆Y1,2

s |2 ds for any ϵ > 0.

By choosing ϵ = 2/K in the preceding inequality, there exists a positive constant C > 0 such that

∑
k≥0

T

∫
t

|∆β1,2k (s)|
2 ds ≤ C

T

∫
t

∑
k≥0
|∆α1,2k (s)|

2 ds.

By inserting the latter inequality into (4.2), with summation over the variable k, we obtain the estimate

∑
k≥0
|∆α1,2k (t)|

2 ≤ CK2T exp2(T − t) ×
T

∫
t

∑
k≥0
|∆α1,2k (s)|

2 ds.
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Applying Lemma A.3 to the preceding inequality yields

∑
k≥0
|∆α1,2k (t)|

2 = 0.

The latter equality implies that α1k(t) = α
2

k(t), k = 0, 1, 2, . . . . The preceding inequality concludes.

4.2 Existence and convergence of the truncated solutions

As highlighted above, the study of ODEs is well documented in the case of a finite-dimensional system. In

an infinite-dimensional system, the problems of existence and uniqueness of ODEs are more challenging. In

the case of a Banach space, the study of CODEs is discussed in [28, 37, 46]. With the system (H̄ t)t∈[0,T], let us
consider the family of orthogonal projection operators (Pn)n≥1 in the span of the first n first normalized basis

functions of (H̄ t)t∈[0,T]. We formulate the following n-dimensional problem:

{
α̇n(t) = Pn f(t, αn(t)), 0 ≤ t < T,
αn(T) = Pnα(T),

(4.3)

where α(T) = (αk(T))k≥1. For every t ∈ [0, T], αn(t) ∈ ℝn. The result of the following lemma is the corner-

stone of the existence result of the truncation solution of the countable system of ordinary differential

equations (4.1). The convergence result is based on [18, Theorem 7.1].

In a finite-dimensional space, let us introduce the following existence theorem.

Theorem 4.2 ([16]). Let I = [t
0
, T + t

0
] be an interval of ℝ and f a continuous function,

f : I ×ℝm → ℝm , (t, x) → f(t, x).

We assume also that there exists an integrable function ζ on I such that the function f satisfies

(f(t, x), x) ≤ ζ(t)(1 + ‖x‖2) for all (t, x) ∈ I ×ℝm .

Then there exists a global solution of the following Cauchy problem:

{
ẏ(t) = f(t, y(t)), where (t, y(t)) ∈ I ×ℝm ,
y(t

0
) = y

0
, y

0
∈ ℝm .

4.2.1 Existence results

The following lemma provides a quadratic inequality of the functional f . This inequality is a key ingredient
to study the countable ordinary differential equation problem (4.3) or (4.1) .

Lemma 4.3. On the set [0, T] × l2(ℕ) and for α, β ∈ l2(ℕ), the functional f satisfies the following inequality:

(f(t, α) − f(t, β), α − β) ≤ K(1 + K
2

)|α − β|2 for all t ∈ [0, T]. (4.4)

Proof. For α, β ∈ l2(ℕ), we define the system

{{{{
{{{{
{

∆Yα,β
t = Y

α
t − Y

β
t ,

∆Zα,βt = Z
α
t − Z

β
t ,

∆gα,βt = g(t,Wt , Yα
t , Z

α
t ) − g(t,Wt , Y

β
t , Z

β
t ),

where

Yα
t = ∑

k≥0
αk(t)H̄[t]k (Wt) and Zαt = ∑

k≥0
(
k + 1
t )

1/2
αk+1(t)H̄[t]k (Wt).
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The same definition is applied to the couple (Yβ
t , Z

β
t ). By the orthogonality property of (H

[t]
k )k∈ℕ, we have

(f(t, α) − f(t, β), α − β) = −1
2

𝔼(∆Zα,βt )
2 + 𝔼(∆gα,βt ∆Yα,β

t ). (4.5)

Using the Lipschitz property of the function g, we obtain

𝔼∆gα,βt ∆Yα,β
t ≤ K𝔼|∆Y

α,β
t |

2 + K𝔼(|∆Zα,βt | × |∆Y
α,β
t |).

By Young’s inequality, we have

𝔼(∆gα,βt ∆Yα,β
t ) −

1

2

𝔼|∆Zα,βt |
2 ≤ K(1 + K

2

)𝔼|∆Yα,β
t |

2

.

From the previous inequality and (4.5), we obtain

(f(t, α) − f(t, β), α − β) ≤ K(1 + K
2

)|α − β|2.

The proof is complete.

The inequality of the preceding lemma is similar to the monotonicity condition in [17]. In the theory of

ODEs, from the quadratic inequality (4.4), we say that the functional f is one-sided Lipschitz with a positive
coefficient K(1 + K

2

). The Lipschitz property implies the one-sided Lipschitz property by Cauchy–Schwartz’s

inequality. The converse is not true in general.

Proposition 4.4. The solution of problem (4.3) exists on the time interval [0, T].

Proof. The result is a direct application of Theorem 4.2. By adding and subtracting the term (f(t, 0), α) to the
inner product (f(t, α), α), we have

(f(t, α), α) = (f(t, α), α) − (f(t, 0), α) + (f(t, 0), α).

As the functional f is one-sided Lipschitz,

(f(t, α), α) ≤ K(1 + K
2

)|α|2 + |(f(t, 0), α)|, α ∈ l2(ℕ).

By Cauchy–Schwartz’s inequality and assumption (H1),

(f(t, α), α) ≤ K(1 + K
2

)|α|2 + K|α|.

Thus, we have

(f(t, α), α) ≤ (2K + K
2

2

)|α|2 + K.

We conclude the result directly from Theorem 4.2.

4.2.2 Convergence of the truncated solution

In order to analyze the convergence of the truncated solution of problem (4.1), we provide below a lemma and

two key definitions (from Deimling [18]) to analyze the convergence result of the solution of problem (4.3). It

is important to point out that the solution of the BSDE (3.1) is deterministic for t = 0. From Section 3, we can

represent the solution of the BSDE (3.1) as Yt = u(t,Wt) for t ∈ [0, T], where u solves the PDE (3.3). Recall

that problem (4.1) or (4.3) introduces a singularity problem at the time instance t = 0. In order to solve this

singularity problem, we introduce the following Lemma.

Lemma 4.5. Under assumptions (H1)–(H2), the function αk( ⋅ ) solves the following ordinary differential equa-
tion, for all (k, t) ∈ ℕ × [0, T]:

α̇k(t) = fk(t, α(t)) = −𝔼(∂tFk(t,Wt) +
1

2

∂2xxFk(t,Wt)),

where Fk(t, x) = u(t, x)H̄[t]k (x) and u is the unique solution of the PDE (3.3).
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Proof. The result of the lemma is an immediate consequence of Itô’s formula. In linewith the precedingwork,

by convention, we have

α̇k(t) = lim
h →0

1

h
(αk(t − h) − αk(t)) = lim

h →0

1

h
𝔼[u(t − h,Wt−h)H̄[t−h]k (Wt−h) − u(t,Wt)H̄[t]k (Wt)].

By Ito’s formula,

α̇k(t) = − lim
h →0

1

h
𝔼(

t

∫
t−h

∂sFk(s,Ws) +
1

2

∂2xxFk(s,Ws) ds +
t

∫
t−h

∂xFk(s,Ws) dWs).

As a martingale, the above stochastic integral vanishes with the expectation and we have

α̇k(t) = fk(t, α(t)) = −𝔼(∂tFk(t,Wt) +
1

2

∂2xxFk(t,Wt)).

The proof is complete

When t is different from zero, we know that the random variable (Wt/√t) and the standard Gaussian random
variable N(0, 1) has the same probability distribution. It is enough to repeat the arguments in the proof of

Lemma 4.5 to obtain

lim

t→0
α̇k(t) = −

1

√k!
lim

t→0
𝔼[(∂tu(t,Wt) +

1

2

∂2xxu(t,Wt))Hk(N(0, 1))].

From Section 3, we know that u solves the PDE (3.3). Hence,

lim

t→0
α̇k(t) = limt→0𝔼(

Hk(N(0, 1))
√k!

g(t,Wt , Yt , Zt)).

By the continuity of γk, we have
lim

t→0
fk(t, α(t)) = γk(0, α(0)).

In conclusion, the singular time instance 0 is in fact a regular singular point.

Definition 4.6 (Class U). A function ω : (0, a] ×ℝ+ → ℝ is said to be of “class U” (or ω ∈ U in short) if for

each ϵ, there exist δ > 0, a sequence ti → 0

+
and a sequence of continuous functions ρi : [ti , a]→ ℝ+ with

ρi(ti) ≥ δti , D−ρi(t) > ω(t, ρi(t)), 0 < ρi(t) ≤ ϵ in (ti , a],

where

D−ρi(t) = lim

τ→0+ sup

h∈(0,τ]

1

h
(ρi(t) − ρi(t − h)).

The supremum in the preceding equality is taken on the variable h.

Definition 4.7 (Class U
1
). A function ω : (0, a] ×ℝ+ → ℝ is said to be of “class U

1
” (or ω ∈ U

1
in short) if

ω ∈ U and the function ρi from the previous definition satisfy the additional condition

D−ρi(t) ≥ ω(t, ρi(t)) + δi for some δi > 0.

From [18], the Lipschitz casewhereω(t, x) = Lx, L > 0, and the Nagumo conditionω(t, x) = x
t are of the class

U and U
1
. The following theorem provides a convergence result of the solution of problem (4.3).

Theorem 4.8. Let us consider the previous family of the orthogonal projection operators (Pn)n≥1 in the span of
the first n basis functions of Section 3.1. The truncated solution αn of system (4.3) converges punctually to the
true solution on the interval [0, T] when n goes to infinity.

Proof. The proof of the result is based on [18, Theorem 7.1]. Let us make the change of variable t = T − t,
where t ∈ [0, T]. We know from Lemma 4.3 that f satisfies the inequality

(f(t, α) − f(t, β), α − β) ≤ ω(t, |α − β|)|α − β|, t ∈ [0, T] and α, β ∈ l2(ℕ).
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The linear function (t, ρ) → ω(t, ρ) = K(1 + K
2

)ρ is of the classU
1
. Let us define the function αPn(t)=Pnα(t),

the error term ϵPn(t) = αn(t) − αPn(t) and the absolute error ϕn(t) = |ϵPn(t)|. As the projection operator Pn is

Lipschitz with the Lipschitz constant equal to 1, the preceding quadratic inequality is also satisfied for Pn f .
We then have

(Pn f(t, α) − Pn f(t, β), α − β) ≤ ω(t, |α − β|)|α − β|.

By the linearity of the inner product, for h > 0 and small enough, we have

(ϵPn(t) − ϵPn(t − h), ϵPn(t)) = |ϵPn(t)|2 − (ϵPn(t − h), ϵPn(t)).

Using Cauchy–Schwartz’s inequality, we obtain

|ϵPn(t)|2 − (ϵPn(t − h), ϵPn(t)) ≥ |ϕn(t)|2 − ϕn(t − h)ϕn(t).

Dividing by h the previous inequality and letting h → 0

+
, we have

ϕn(t)D−ϕn(t) ≤ (
.⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(ϵPn(t)), ϵPn(t)),

where

.⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(ϵPn(t)) denotes the derivative with respect to t of the error term ϵPn(t). From the latter inequality, we

obtain

ϕn(t)D−ϕn(t) ≤ (Pn f(t, αn(t)) − Pn f(t, αPn(t)), ϵPn(t)) + |(f(t, αPn(t)) − f(t, α(t))|ϕn(t)

and

ϕn(t)D−ϕn(t) ≤ (f(t, αn(t)) − f(t, αPn(t)), ϵPn(t)) + |(f(t, αPn(t)) − f(t, α(t))|ϕn(t).

Clearly,

ϕn(t)D−ϕn(t) ≤ ω(t, ϕn(t))ϕn(t) + |(f(t, αPn(t)) − f(t, α(t))|ϕn(t). (4.6)

Moreover, the function fk can be extended to the function ̂fk by continuity as follows:

̂fk(t) = fk(t)𝟙{t ̸=0} + γk(0, α(0))𝟙{t=0}, t ∈ [0, T].

By using the function
̂fk and noticing that αPn(t)→ α(t) as n →∞, we have |(f(t, αPn(t)) − f(t, α(t))|→ 0

as n goes to∞ punctually on (0, T]. The following convergence holds:

ϕn(t)
t
→ Pn f(T,Pnα(T)) − Pn f(T, α(T)) as t → 0

+
. (4.7)

Furthermore, |Pn f(T,Pnα(T)) − Pn f(T, α(T))|→ 0 as n goes to ∞. From the evaluation of the latter result

and (4.7), for any μ > 0, there exist nμ and tμ > 0 such that for all n > nμ,

ϕn(t) ≤ (
1

n
+ μ)t for t ∈ [0, tμ].

We know that ω ∈ U
1
. For a given ϵ > 0, we choose the constant δ > 0, the sequence ti, where ti < tμ, the

sequence ρi from Definition 4.7 such that ( 1n + μ) ≤
δ
2

, for some n
0
such that n > n

0
. This result implies that

ϕn(t) ≤
δ
2

t for t ≤ tμ .

For ti < tμ, by considering the function ρi form Definition 4.7, we have

ϕn(ti) < ρi(ti) for t ≤ tμ .

Let us consider the time instance

t∗ = inf{s > ti , ϕn(s) = ρi(s)}.
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The continuity of ϕn and the fact that ϕn(ti) < ρi(ti) imply that ϕn(t∗) > 0. From the result (4.6), we have the

inequality

D−ϕn(t∗) ≤ ω(t∗, ϕn(t∗)) + δ.

As ω ∈ U
1
, given the parameter δi > 0 from Definition 4.7, we have, by choosing δ ≤ δi,

D−ϕn(t∗) ≤ ω(t∗, ϕn(t∗)) + δi < D−ϕn(t∗).

The previous double inequality is impossible. Furthermore, before the time instance t∗, ϕn(s) < ρi(s) for
s ∈ [ti , t∗). Therefore,ϕn(t) ≤ ϵ for every ϵ > 0. Hence, the sequence ϵPn(t) converges to0 as n goes to infinity.
Since αPn(t))→ α(t) when n →∞, we conclude that αn converges to α punctually on [0, T].

Solving BSDEs can be a challenging task. Theses equations appear in many mathematical problems. Unfor-

tunately, as highlighted in the introduction, for a large class of BSDEs, we do not have an explicit solution.

Due to their importance, we need robust approximation schemes to solve these equations. The following

section describes in detail our numerical algorithm and provides two numerical experiments to illustrate its

performance.

5 Euler scheme and numerical illustrations
Let us consider the unidimensional discrete-time approximation of equation (3.1). We build a partition π of

the interval [0, T], defined as follows:

π : 0 = t
0
< ⋅ ⋅ ⋅ < tN = T,

with ∆i := ti+1 − ti and |π| := max{∆i : 0 ≤ i ≤ N − 1}. We will use decomposition (3.11) in order to solve the

BSDE (3.1) and assume that we have at our disposal the trajectories of the Brownian motion W on the dis-

cretization grids of the partition π.

5.1 Euler scheme

We denote (Ȳ , Z̄) the numerical approximation of the exact solution (Y, Z), deduced from the Euler approxi-

mation of the countable system of ODEs (3.13). In the Hermite basis, the couple (Y, Z) is represented by the
couple (α, β) and its numerical approximation (Ȳ , Z̄) by (ᾱ, β̄). Following the work of Section 3.2, we have

the following decomposition of the couple (Ȳti , Z̄ti )ti∈π:

Ȳti = ∑
k≥0

ᾱk(ti)H̄[ti]k (Wti ), Z̄ti = ∑
k≥0

β̄k(ti)H̄[ti]k (Wti ), with β̄k(ti) = (
k + 1
ti
)
1/2

ᾱk+1(ti).

We also define

γ̄ti = ∑
k≥0

γ̄k(ti)H̄[ti]k (Wti ), where γ̄k(ti) = 𝔼[g(ti ,Wti , Ȳti , Z̄ti )H̄
[t]
k (Wt)].

The decomposition of the couple (Yti , Zti ) follows the same structure as in Section 3.2. Let us remark that by

decomposition (3.11), the computation of β̄ is completely determined by ᾱ. Integrating equality (3.12) from
ti to ti+1, we have

αk(ti) = (
ti
ti+1
)
k/2

αk(ti+1) +
ti+1
∫
ti

(
ti
s )

k/2
γk(s, α(s)) ds = 0, k = 0, 1, 2, . . . ,

where [ti , ti+1] ⊂ [0, T]. It will be enough to compute the couple (ᾱ, γ̄) on the discretization grid to have the

Euler approximation of the couple (Y, Z). We remark that the computation of Z is completely determined by

the computation of Y and its terminal condition.
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Description of the algorithm.
∙ Initialization: Approximate ȲT = ϕ(WT) and for k = 0, 1, 2, . . . , compute the coefficients

ᾱk(T) = αk(T), β̄k(T) = βk(T) = αk+1(T)(
k + 1
T )

1/2
.

∙ For i = (N − 1) to 0, on each sub-interval [ti , ti+1] ⊂ [0, T], with ti , ti+1 ∈ π,
– compute γ̄⋆ti+1 by the following optimization problem: find

γ̄⋆ti+1 = (γ̄1(ti+1), γ̄2(ti+1), γ̄2(ti+1), γ̄3(ti+1), . . . )
such that

J(γ̄⋆ti+1 ) = infξ 𝔼ξ H̄i(Wti+1 ) − g(ti+1,Wti+1 , Ȳti+1 , Z̄ti+1 )2,
where H̄i := (H̄[ti+1]

0

, H̄[ti+1]
1

, H̄[ti+1]
2

, . . .),
– for k = 0, 1, 2, . . . , compute

ᾱk(ti) = (
ti
ti+1
)
k/2

ᾱk(ti+1) + ∆i(
ti
ti+1
)
k/2

γ̄k(ti+1) = 0, β̄k(ti) = ᾱk+1(ti)(
k + 1
ti
)
1/2

,

– compute

Ȳti = ∑
k≥0

ᾱk(ti)H̄[ti]k (Wti ) and Z̄ti = ∑
k≥0

β̄k(ti)H̄[ti]k (Wti ).

The couple of coefficients (ᾱ, γ̄) denotes the Euler approximation of the couple (α, γ).

5.2 Convergence result

From Lemma 4.3, we recall that the functional f is not Lipschitz and satisfies only the quadratic inequal-

ity (4.4). We will analyze the convergence results via the corresponding CODEs by combining standard

probabilistic techniques.

Theorem 5.1. Under assumptions (H1)–(H2) and considering the previous subdivision π of the interval [0, T],
there exists a positive constant C, independent of the partition π, such that

max

0≤i<N
𝔼|Yti − Ȳti |2 + 𝔼

N−1
∑
i=0

ti+1

∫
ti

|Zt − Z̄ti |2 ds ≤ C|π|.

Proof. The proof of the theorem is deduced from the couples (α, β) and (ᾱ, β̄), which represent, respectively,
the couples (Y, Z) and (Ȳ , Z̄). During the proof, the strictly positive constant Cmay take different values from

line to line, but independent of the partition π. With 0 ≤ i ≤ N − 1, we define for every ti ∈ π and s ∈ [ti , ti+1],
the quantities

∆αk(ti) = αk(ti) − ᾱk(ti),
∆βk(s, ti) = βk(s) − β̄k(ti),
∆γ(s, ti) = γk(s) − γ̄k(ti),

where β̄k(ti) = ( k+1ti )
1/2ᾱk+1(ti) and βk(t) = ( k+1t )

1/2αk+1(t). We also define the positive quantity

Ui = ∑
k≥0
|∆αk(ti)|2 +

ti+1
∫
ti

|∆βk(s, ti)|2 ds.

From the following system:

{{{{{{
{{{{{{
{

αk(ti) = (
ti
ti+1
)
k/2

αk(ti+1) +
ti+1
∫
ti

(
ti
s )

k/2
γk(s) ds,

ᾱk(ti) = (
ti
ti+1
)
k/2

ᾱk(ti+1) + ∆(
ti
ti+1
)
k/2

γ̄k(ti+1),
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we deduced that

αk(ti) − ᾱk(ti) = (αk(ti+1) − ᾱk(ti+1))(
ti
ti+1
)
k/2
+

ti+1
∫
ti

((
ti
s )

k/2
γk(s) − (

ti
ti+1
)
k/2

γ̄k(ti+1)) ds.

By adding and subtracting in the integral termof the above equality the term ( tis )
k/2 γ̄k(ti+1) andusing Jensen’s

inequality, we get

|∆αk(ti)| ≤ |∆αk(ti+1)| +
ti+1
∫
ti

(
ti
s )

k/2
|(γk(s) − γ̄k(ti+1))| ds +

ti+1
∫
ti


(
ti
s )

k/2
− (

ti
ti+1
)
k/2
|γ̄k(ti+1)| ds.

By the inequality ab ≤ 1

2ϵ a
2 + 1

2

ϵb2, ϵ > 0, we have

|∆αk(ti)|2 +
ti+1
∫
ti

|∆βk(s, ti)|2 ds ≤ (1 +
∆i
ϵ )
|∆αk(ti+1)|2 + 2∆i|∆βk(ti , ti)|2

+ (1 +
ϵ
∆i
)(

ti+1
∫
ti

(
ti
s )

k/2
(γk(s) − γ̄k(ti+1))

 ds

+

ti+1
∫
ti

(
ti
s )

k/2
− (

ti
ti+1
)
k/2|γ̄k(ti+1)| ds)

2

+ 2

ti+1
∫
ti

|βk(s) − βk(ti)|2 ds.

By noticing that γk(s) − γ̄k(ti+1) = γk(s) − γk(s + ∆i) + ∆γk(s + ∆i , ti+1) and using the Hölder inequality, there
exists a positive generic constant C such that for every ϵ > 0,

|∆αk(ti)|2 +
ti+1
∫
ti

|∆βk(s, ti)|2 ds ≤ (1 +
∆i
ϵ )
|∆αk(ti+1)|2 + 2∆i|∆βk(ti , ti)|2

+ 2

ti+1
∫
ti

|βk(s) − βk(ti)|2 ds + (C∆i + Cϵ)(
ti+1
∫
ti

|γk(s) − γk(s + ∆i)|2 ds)

+ (C∆i + Cϵ)(
ti+1
∫
ti

|∆γk(s + ∆i , ti+1)|2 ds + ∆2i |γ̄k(ti+1)|
2). (5.1)

Remark 5.2. The following hold:
ti+1
∫
ti

|∆γk(s + ∆i , ti+1)|2 ds =
ti+2
∫
ti+1 |∆γk(s, ti+1)|

2 ds, (5.2)

|γk(s) − γ̄k(ti+1)| ≤ K(|αk(s) − αk(ti+1)| + |∆αk(ti+1)| + |∆βk(s, ti+1)|). (5.3)

Equation (5.2) is obtained from the Lipschitz property of the driver function g. Inserting (5.2) and (5.3) into
inequality (5.1), there exists a positive constant C such that for every ϵ > 0 and ∆i small enough, we have

|∆αk(ti)|2 +
ti+1
∫
ti

|∆βk(s, ti)|2 ds

≤ ci,ϵ
1

|∆αk(ti+1)|2 + 2∆i|∆βk(ti , ti)|2 + 2
ti+1
∫
ti

|βk(s) − βk(ti)|2 ds + ci,ϵ
2

(

ti+1
∫
ti

|γk(s) − γk(s + ∆i)|2 ds)

+ ci,ϵ
2

(

ti+2
∫
ti+1 |αk(s) − αk(ti+1)|

2 ds +
ti+2
∫
ti+1 |∆βk(s, ti+1)|

2 ds + ∆2i |γ̄k(ti+1)|
2), (5.4)

where ci,ϵ
1

= (1 + ∆i/ϵ + C∆i(∆i + ϵ)) and ci,ϵ
2

= (C∆i + Cϵ).
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From inequality (5.4), taking ϵ = 1

C and π small enough, there exists a positive constant C, independent
of π, such that

Ui ≤ (1 + ∆iC)Ui+1 + (C|π| + 1)∑
k≥0

ti+1
∫
ti

|γk(s) − γk(s + ∆i)|2 ds + 2∑
k≥0

∆i|∆βk(ti , ti)|2

+ 2∑
k≥0

ti+1
∫
ti

|βk(s) − βk(ti)|2 ds + (C|π| + 1)∑
k≥0
(

ti+2
∫
ti+1 |αk(s) − αk(ti+1)|

2 ds + ∆2i |γ̄k(ti+1)|
2).

By the Lipschitz property of g, we deduced the following decomposition:

|γk(s) − γk(s + ∆i)| ≤ K(|αk(s) − αk(s + ∆i)| + |βk(s) − βk(s + ∆i)|).

We then have

Ui ≤ (1 + ∆iC)Ui+1 + C(|π| + 1)∑
k≥0

ti+1
∫
ti

|βk(s) − βk(s + ∆i)|2 ds + |αk(s) − αk(s + ∆i)|2 ds

+ 2∑
k≥0

∆i|∆βk(ti , ti)|2 + 2∑
k≥0

ti+1
∫
ti

|βk(s) − βk(ti)|2 ds

+ (C|π| + 1)∑
k≥0
(

ti+2
∫
ti+1 |αk(s) − αk(ti+1)|

2 ds + ∆2i |γ̄k(ti+1)|
2).

ByLemmaA.2applied to thepreceding inequality, there exists a constant C > 0 such that for |π| small enough,

max

0≤i≤N
Ui ≤ ∑

k≥0
|αk(T) − ᾱk(T)|2 +

N−1
∑
i=0

Ati (α) + Bti (β) + 2|π|
N−1
∑
i=0
∑
k≥0
|∆βk(ti , ti)|2, (5.5)

where

Bti (β) = C(|π| + 1)∑
k≥0

ti+1
∫
ti

|βk(s) − βk(s + ∆i)|2 ds + 2∑
k≥0

ti+1
∫
ti

|βk(s) − βk(ti)|2 ds

and

Ati (α) = C(|π| + 1)∑
k≥0

ti+1
∫
ti

|αk(s) − αk(s + ∆i)|2 ds + (C|π| + 1)∑
k≥0
(

ti+1
∫
ti

|αk(s) − αk(ti+1)|2 ds + ∆2i |γ̄k(ti+1)|
2).

Remark 5.3. ∙ By Bessel’s inequality and with the aid of [48, Lemma 3.2], there exists a constant C > 0
such that for |π| small enough,

N−1
∑
i=0

Ati (α) ≤ C|π|.

∙ Using the L
2
-regularity result (see [48, Lemma 3.1]), there exists C > 0 such that for |π| small enough,

N−1
∑
i=0

Bti (β) ≤ C|π|.

From the previous remark and Lemma A.2, we derive from (5.5)

max

0≤i≤N
∑
k≥0
|αk(ti) − ᾱk(ti)|2 ≤ C ∑

k≥0
|αk(T) − ᾱk(T)|2 + C|π| + 2|π|

N−1
∑
i=0
∑
k≥0
|∆βk(ti , ti)|2.
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From inequality (5.1) and choosing ϵ = 1

2C , there exists a positive constant C such that

Ui−1 +
1

2

∑
k≥0

ti+1
∫
ti

|βk(s) − β̄k(ti)|2 ds ≤ (1 + C∆i)Ui + 2∑
k≥0

ti

∫
ti−1 |βk(s) − βk(ti−1)|

2 ds

+ ci(
ti

∫
ti−1 |γk(s) − γk(s + ∆i)|

2 ds) + ∑
k≥0

∆i|∆βk(ti−1, ti−1)|2

+ ci( ∑
k≥0

ti+1
∫
ti

|αk(s) − αk(ti)|2 ds + ∆2i |γ̄k(ti)|
2),

where ci = (C∆i + 1).
Summing both sides of the preceding inequality over the variable i from 1 to N − 1 and from Remark 5.2,

there exists a positive constant C > 0 such that

N−1
∑
i=1

Ui−1 +
1

2

N−1
∑
i=1
∑
k≥0

ti+1
∫
ti

|βk(s) − β̄k(ti)|2 ds ≤
N−1
∑
i=1
(1 + C∆i)Ui + 2|π|

N−1
∑
i=1
∑
k≥0
|∆βk(ti−1, ti−1)|2 + C|π|.

Applying inequality (5.5) to the latter inequality, there exists a constant C > 0, independent of π, such that

N−1
∑
i=1
∑
k≥0

ti+1
∫
ti

|βk(s) − β̄k(ti)|2 ds ≤ C|π| + C ∑
k≥0
|αk(T) − ᾱk(T)|2 + 2|π|

N−1
∑
i=1
∑
k≥0
|∆βk(ti−1, ti−1)|2. (5.6)

From (5.6) and (5.5), the theorem follows.

5.3 Applications and numerical illustrations

In this section,we illustrate our schemewith two examples. Ashighlighted above, several problems infinance

or in insurance can be formulated as a solution of BSDEs. For realistic applications in finance and insurance,

we refer to [19, 21] and the references therein for further details.

5.3.1 Application 1

The solution of problem (4.1) in Section 4, dwells in the infinite-dimensional space. For numerical purposes,

it is desirable to consider the solution into a finite-dimensional space. In our numerical implementation, we

consider the orthogonal projection operator (Pk)k≥1 in the span of the k first orthonormal basis functions as

introduced in Section 3.2.

Let us consider the unidimensional discrete-time approximation of equation (3.1). We build a partition

π of the interval [0, T] defines as follows:

0 = t
0
< t

1
< . . . < tN = T, ∆i := ti+1 − ti and |π| = max{∆i : 0 ≤ i ≤ N − 1}.

For our numerical simulation, we define the following parameters:

∙ k is the number of the basis functions,

∙ M is the number of simulated paths of the Brownian motion,

∙ N is the number of the discretization instances on π.
Due the propagation of the error during the backward approximation of the solution of the BSDE, we will be

interested in the initial value of the solution. We will assume that we have at our disposal all the trajectories

of the Brownian motion at the time instances of the partition π.
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Figure 1: Error curve on (Y0 , Z0), with k = 7, M = 10000.

The first example is defined by the following BSDE, inspired from the work of Ruijter and Oosterlee [29].

The underlying process is the Brownian motion (Wt)0≤t≤T . We consider the system

{
−dYt = g(t,Wt , Yt , Zt) dt − Zt dWt , 0 ≤ t < 1,
Y
1
= ϕ(W

1
),

where the functions g and ϕ are defined as follows;

ϕ(x) = cos(x + 1), x ∈ ℝ,

g(t, Xt , Yt , Zt) = Zt(Yt + 1) −
1

2

(Yt − sin(2(t +Wt)) + cos(t +Wt)).

The exact unique solution of the above BSDE is defined almost surely by the couple

(Yt , Zt) = (cos(Wt + t), − sin(Wt + t)).

The exact value of the couple (Y, Z) at zero is (Y
0
, Z

0
) = (1, 0). By the comparison theorem of BSDEs, the

couple of processes (Yt , Zt) is included in the bounded domain [−1, 1] × [−1, 1]. Figure 1 shows the log-

representation of the relative error curve induced by the numerical approximation of (Y
0
, Z

0
).

5.3.2 Application 2

The second example is defined by the following BSDE. As in the first example, the underlying process is a

Wiener processW and the terminal condition is a functional ofW. We consider

{
−dYt = g(t,Wt , Yt , Zt)dt − Zt dWt , 0 ≤ t < 1,
Y
1
= ϕ(W

1
),
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Figure 2: Error curve on (Y0 , Z0) with k = 6, M = 10000.

where the terminal condition and the driver functions are defined as follows:

ϕ(x) = x arctan(x) − ln(√1 + x2),

g(t,Wt , Yt , Zt) = −
1

2(1 + tan2(Zt))
.

It is easy to check that the solution of the above system is

(Yt , Zt) = (−
1

2

ln(1 +W2

t ) +Wt arctan(Wt), arctan(Wt)).

By noticing that the function x → ln(x) satisfies the linear growth condition and the function x → arctan(x)
is bounded, one has

(Yt , Zt)0≤t≤T ∈ S2(ℝ) ×H2(ℝ).

Figure 2 shows the log-representation of the relative error curve induced by the numerical approximation of

the couple (Y
0
, Z

0
). Modulo the choice of |π| and the number of basis functions k, the numerical illustra-

tions show a stable convergence order regarding the approximation of the couple (Y
0
, Z

0
). Nonetheless, the

convergence regarding the estimation of the initial value Y
0
is more stable and quicker than the approxima-

tion of Z
0
in the first example. The convergence of the method could be accelerated by two-step schemes or

Runge–Kutta methods (cf., e.g., [2, 10, 30, 34]).

6 Conclusion
This paper covers the numerical approximation of the class of Markovian backward stochastic differential

equations (BSDEs),wherein the terminal condition is a functional of Brownianmotion. BSDEs appear inmany

problems in finance, insurance, and their numerical solutions can be challenging to compute especially in
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high dimensions when several risk factors are involved. The main difficulty is to solve a dynamic program-

ming problem, which involves computing conditional expectations at each step across the time interval. This

computation can be very costly especially in high-dimensional problems. In our class, by developing the solu-

tion of a Markovian BSDE as a Fourier–Hermite expansion, we show that the problem of solving the BSDE is

identical to solving a countable infinite-dimensional system of ordinary differential equations (CODEs). The

family of ODEs belongs to the class of stiff ODEs, where the associated functional is one-sided Lipschitz. The

use of Hermite polynomials is very useful for calculating the conditional expectations in an exact way during

each time-step, thereby eliminating a potential source of error in our algorithm. On this basis, we derive a

numerical algorithm for the BSDE via the standard Euler scheme with respect to the solution of the count-

able system of ordinary differential equations. It is interesting to note the simplicity of our algorithm. The two

examples show a stable convergence regarding the computation of the solution of the BSDE. This research

could be developed further by investigating non-Markovian cases with applications to pricing problems and

risk management issues.

A Appendix
Lemma A.1. For any α > 0 and for any a, b ∈ ℝ,

(a + b)2 ≤ (1 + α)a2 + (1 + 1α )
b2.

Proof. The result is a direct consequence of Young’s inequality.

Let us recall the classical discrete Gronwall lemma (see, e.g., [48] or [39]) .

Lemma A.2 (Gronwall inequality (1)). Let us consider the partition

π : 0 = t
0
< ⋅ ⋅ ⋅ < tN = T

of the interval [0, T], and let ∆i be its mesh. We consider the families (ak)0≤k≤N and (bk)0≤k≤N , assumed to be
non-negative, such that for some positive constant γ > 0, we have

ak−1 ≤ (1 + γ∆i)ak + bk , k = 1, . . . , N.

Then

max

0≤i≤N
ai ≤ eγT(aN +

N
∑
i=1

bi).

Lemma A.3 (Gronwall inequality (2)). Let y, b, a : ℝ+ → ℝ be three continuous functions such that b is non-
negative and

y(t) ≤ a(t) +
t

∫
0

b(s)y(s) ds.

Then

y(t) ≤ a(t) +
t

∫
0

a(s)b(s) exp(
t

∫
s

b(u) du) ds.

Moreover, if the function a is non-decreasing or monotone, we have

y(t) ≤ a(t) exp(
t

∫
0

b(s) ds).
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