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A B S T R A C T

This work focuses on detecting and localizing a wide range of dynamic textures in video sequences
captured by surveillance cameras. Their reliable and robust analysis constitutes a challenging task for
traditional computer vision methods, due to barriers like occlusions, the highly non-rigid nature of the
moving entities and the complex stochastic nature of their motions. In order to address these issues, a
novel hybrid framework is introduced, combining representations on both a local and global scale. A new,
handcrafted local binary pattern (LBP)-flow descriptor with Fisher encoding is initially used to effectively
capture low level texture dynamics, and a neural network (NN) is deployed after it to obtain a higher
level, deeper and more effective representation scheme, capable of robustly discriminating even
challenging dynamic texture classes. A novel localization scheme, based on multi-scale superpixel
clustering is introduced, in order to detect texture patterns on local and global scales, inside and
throughout sequential video frames. Experiments on various challenging benchmark datasets prove our
method's efficacy and generality, as remarkable recognition and localization accuracy rates are achieved
at a low computational cost, making it appropriate for real world outdoor applications.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic texture recognition, localization, and more generally
dynamic scene analysis in videos constitutes an intriguing topic
within the computer vision community, due to its wide
applicability in many scenarios. The term dynamic texture
typically refers to moving textures, i.e. visual entities undergoing
small, stochastic motions, encountered in real world indoor and
outdoor environments. Current work mainly focuses on outdoor
scenarios where a crisis event might occur (i.e. fire in a forest, a
flooded river etc.), so we mostly examine classes of this category,
even though, several instances of dynamic textures appearing in
indoors videos, are also examined so as to prove our algorithm's
efficacy and generalization The automatic recognition of such
textures has recently attracted attention, as it can provide a
significant contribution to many real-world outdoor applications
involving: scene analysis containing objects with high varying
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textures (e.g. water, smoke, trees), security applications for the
prevention of a possible terrorist act and surveillance systems,
responsible for the avoidance of natural disasters (e.g. fire in the
forest or floods).

The main challenges for the analysis of dynamic textures and
scenes, especially those taking place outdoors are: (a) illumination
changes, (b) complex and unpredictable motion patterns, (c)
occlusions, (d) the presence of rigid and non-rigid objects in the
same scene, (e) camera motion, and finally (f) significant intra-
class differences among patterns of the same category. Computa-
tional efficiency is an additional factor, as it has to be kept within
reasonable limits, so as to be used by real-world applications.

Even though several methods have been proposed in order to
discriminate and classify dynamic textures, they are usually
restricted to a global video classification approach, neglecting
the necessity of a local aspect, which may prove to be of vital
importance in an emergency situation (e.g. flood). In order to
address this issue, we introduce a novel hybrid framework
involving both dynamic texture recognition and localization in
outdoors videos captured by surveillance cameras. The LBP-flow
descriptor, introduced in our previous work [1], is further
investigated and applied to effectively capture textures’ motion
dynamics while a principal component analysis (PCA)-Fisher

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2018.02.007&domain=pdf
mailto:vagiakal@iti.gr
https://doi.org/10.1016/j.compind.2018.02.007
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http://www.sciencedirect.com/science/journal/01663615
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scheme is used to address the issues of efficient encoding and
handling of high dimensional data. A neural network (NN) is fed
with the outcome of Fisher encoding, providing a deeper
representation of the dynamic texture. Both binary and multi-
class classification models are acquired and are used in our novel
localization scheme, based on multi-scale superpixel clustering to
spatio-temporally detect dynamic textures in videos. The overall
recognition and localization framework is depicted in Fig. 1.

Our contribution to recognition and localization of texture
dynamics can be summarized as follows:

1 A multi-scale superpixel-based clustering scheme is introduced,
to achieve balance between local and global features. Local
characteristics are retained via the superpixels, and clustering
allows the capture of more global patterns. In this manner, our
method avoids overfitting to local noise and succeeds in
obtaining hybrid global-local descriptors for accurate texture
localization in unsegmented video samples.

2 Novel pre-trained hand crafted descriptors are developed,
leading to a near real-time recognition and localization
framework, appropriate for real world applications.

3 Neural networks are applied on our hand crafted descriptors,
resulting in improved higher level descriptors and increased
recognition accuracy.

2. Related work

Dynamic texture recognition methods can roughly be separated
into two main categories according to their adopted underlying
model. The first category refers to Generative models which involve
the extraction of global features throughout video sequences and
their modeling is based on some hidden parameters [2]. Recent
works such as Doretto et al. [3] use the spatio-temporal dynamics
to train a Gauss-Markov recognition model, while Chan et al. [4]
propose an expectation maximization (EM) algorithm to train the
parameters of a statistical model. In [5] a linear dynamic texture
(LDT) scheme is proposed in order to represent a stochastic model
of different appearance and motion dynamics. Lately, linear
dynamical systems (LDS) raised a lot of attention within this
Fig. 1. The overall recognition a
category, with the work of [6] being a representative example. In
their work, an hierarchical EM algorithm is deployed in order to
cluster and learn the statistical model of the motion dynamics. LDS
has recently been extended into a stabilized higher order LDS
(shLDS) in [7], who introduced Histograms of Grassmannian Points
(HoGP). However, despite its high accuracy rates the method is
computational costly, making it inappropriate for real-time
applications.

While generative models seem quite promising for represent-
ing dynamic textures, their application to classifying the wider set
of motion patterns found in dynamic scenes has been shown to
perform poorly [8]. The complex, stochastic character of dynamic
textures makes their precise modeling very challenging, so a
second category of dynamic texture representation, namely
Discriminative models has been considered. This category is based
on the extraction of local, spatio-temporal features to describe
moving texture dynamics by estimating local variations and
statistics of intensity and optical flow values. Early techniques
involved the accumulation of local spatio-temporal features using
appearance features like GIST [9], motion histograms, such as the
Histograms of Oriented Optical Flow (HOOF) [10], swarm-
intelligence [11], spatio-temporal oriented energy features (STOEF)
[12], and their successful and highly accurate Bag-of-Words(BoW)
extension proposed in [13], named spatial energies. However, the
coarse quantization of GIST and the rotation invariance of HOOF do
not allow them to detect dynamic textures with accuracy, while on
the other hand, the highly accurate STOEF, spatial energies and
swarm dynamics suffer from computational efficiency making
them inappropriate for real case implementations, such as
surveillance and security scenarios.

Accurate texture classification has been achieved in images
using local binary patterns (LBPs), whose promising results have
led to a number of its extensions as a dynamic texture descriptor.
Volume local binary patterns (VLBP) [14] and LBP-TOP [15] are
among the earlier methods, however they can easily reach a
dimensionality of 214–226, which is impractical in real-world
applications involving large amounts of data that are to be
processed in near real time. Mettes et al. [16] has recently
introduced a hybrid spatio-temporal extension of LBP, which
stacks the descriptor in time to obtain temporal information. Even
nd localization framework.
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though, the method achieved very high accuracy rates when
discriminating between water and non-water scenes, its highly
tailored character to exclusively water class, makes it inappropri-
ate for more general classification and localization scenarios.

In this work, we overcome the limitations of the SoA, by using
the proposed LBP-flow descriptor. Then, a PCA-Fisher scheme is
applied, reducing final descriptor's dimensionality, while increas-
ing its discriminative ability, and the outcome is fed into two
different learning models, with both shallow and deep schemes
used for validation, for binary and multi-class recognition
purposes. A superpixel clustering structure is then used for
dynamic texture localization and it is deployed in challenging real
world videos, including videos of high interest for outdoors
surveillance, to evaluate the efficacy and applicability of our
framework. The robustness and efficacy of the proposed frame-
work is proven in experiments on benchmark datasets, where high
accuracy is achieved in all tasks and at a low computational cost.

There exist several works in the literature that address the
problem of spatio-temporal segmentation of dynamic textures.
More specifically, in the work of Amiaz et al. [17] videos are split
into regions obeying different models based on brightness
constancy and brightness conservation, while Doretto et al. [3]
deploy Gauss-Markov models in order to represent region
dynamics and to group regions with similar spatiotemporal
signatures. A Markov Random Field based approach is adopted
in [18] to partition a video into disjointed regions with dynamic
textures, showing similar uniformity and consistency, while
appearance and motion information is used by [10] in a
distance-related framework to efficiently segment video sequen-
ces. Finally, a statistical model is proposed by Chan et al. [4] in
which each video sequence is modeled as a collection from a set of
underlying dynamic textures, resulting in efficient video clustering
and segmentation.

However, it should be noted that in all these works, dynamic
texture segmentation essentially refers to the extraction of regions
with a similar kind of motion, and not necessarily the same kind of
dynamic texture. For this reason, in our work, we prefer to use the
term “localization” instead of “segmentation”, in order to
emphasize our differentiation from the literature, where the term
“segmentation” is often used to describe motion-based methods.
Dynamic texture segmentation usually refers to the extraction of
regions with homogeneous dynamics, regardless of the texture
involved. However, the same dynamic texture class may feature
different motion characteristics in different parts of it. For
example, a scene with a fountain comprising of different water
dynamics would be split into several areas with homogeneous
motion characteristics. Our framework has a different goal: its aim
is to identify each dynamic texture class (or category, e.g. fire,
water etc) as a single cohesive area. Thus, instead of segmenting or
clustering the scenes into areas with similar spatio-temporal
properties, we focus on dynamic texture classification combined
with texture localization. In the literature on dynamic texture
segmentation, we have found a similar approach to ours only in
[16], however that approach is highly tailored to the water class for
both classification and localization tasks, and cannot be applied to
other types of dynamic textures.

The paper is organized as follows: Section 3 describes spatio-
temporal representation of dynamic scenes; Section 4 presents the
texture detection and localization framework; while a detailed
experimental evaluation is discussed in Section 5. Finally,
conclusions are summarized in Section 6.

3. Spatio-temporal representation of dynamic textures

In order to effectively deal with the challenging nature of videos
containing outdoors unconstrained environments, their
representation should be firstly carefully examined and deter-
mined. The stochastic movements of the ensembles comprising
dynamic textures in combination with their non-rigid nature,
require the adoption of general descriptors, capable of managing
highly unpredictable and ambiguous types of videos. To this end,
we adopt the new LBP-flow descriptor, which is then encoded by
Fisher vectors resulting in an informative mid-level descriptor. The
process is shown to be able to accurately classify dynamic scenes
whose complex motion patterns are difficult to separate otherwise.
LBP-flow and Fisher encoding used for dynamic texture represen-
tation are discussed in more detail in the sections that follow.

3.1. LBP-flow

The new descriptor LBP-flow introduced in our previous work
[1] was adapted and further investigated in order to accurately
describe videos’ underlying structure, as it has proven to effectively
encode both appearance and motion induced variations, present in
dynamic textures. LBP-flow constitutes an extension of the well
known LBP [19], which was chosen due to its successful
applicability in a variety of texture classification ([20,21,15,14])
and face recognition tasks ([22,23]). Thus, inspired by its success,
LBP-flow builds upon the original LBP and extends it over time
providing a powerful shallow spatio-temporal descriptor.

In classic LBP, the LBP value of a particular pixel r is computed by
comparing its intensity value with that of its neighboring pixels.
LBP-flow extends this definition to also include the values of the
optical flow around pixel r, so as to embed motion information.
More precisely, the new LBP-flow values of a pixel r are given by:

LBP � flowðrÞ ¼
XP�1

p¼0

sðf ðrÞ � f ðrpÞÞ2p ð1Þ

where f ðrÞ corresponds to either pixel's intensity or optical flow
value, P represents the number of neighbor pixels around each
sampled pixel r, and ðrpÞ stands for the neighbor points around
pixel r in radius R, at coordinates
rp ¼ ðrx þ R cos ð2pp=PÞ; ry � R sin ð2pp=PÞÞ.
The threshold function s(z) of LBP-flow is given by:

sðzÞ ¼ 0; z < 0
1; z � 0

�
ð2Þ

The novelty of LBP-flow is that it represents both intensity and
optical flow variations over space and time. In our LBP
representation, texture is spatially represented by calculating
local binary patterns in two directions, on the x � y axes, as in the
original LBP. A novel representation of motion as a temporal
texture is introduced by calculating LBP over the optical flow
values in the x and y directions, x � t and y � t respectively. This
inclusion of motion information in the LBP-flow representation
enriches the descriptor's spatio-temporal characteristics leading to
a more robust and efficient shallow representation. By this
procedure, we obtain the LBP-flow descriptors for appearance
and motion, namely LBPxy, LBPxt and LBPyt respectively.

The dimensionality of the resulting LBPxy, LBPxt and LBPyt is then
reduced by using a variation of the original LBP descriptor, the
uniform quantized LBP descriptor [15], which uses 58 bins to
describe a 3 � 3 area around each interest point instead of the 256
bins commonly used. To achieve this, uniform quantized LBP takes
into account that there is one quantized pattern for each LBP, with
exactly one transition from 0 to 1, and one from 1 to 0 when
scanned counter-clockwise. Thus, the uniform quantized LBP
represents the same pattern with a descriptor whose dimension is
equal to 1/4 of the original LBP.

The LBP-flow descriptor is finally constructed by accumulating
LBPxy, LBPxt and LBPyt over a time window of W frames, followed by
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their concatenation into a single vector. Thus, for a pixel r, the final
LBP-flow descriptor is given by:

fLBPr
xy1; . . . ; LBPr

xyW ; LBPr
xt1; . . . ; LBPr

xtW ; LBPr
yt1; . . . ; LBPr

ytWg ð3Þ

The representation framework of the LBP-Flow is depicted in
Fig. 2.

3.2. Fisher encoding

LBP-flow includes rich spatiotemporal information as a low-
level local representation, but also allows for redundancies, such as
intra-class pattern deviations and noise-induced artifacts. In order
to constrain this noise and subsequently increase the discrimina-
tive ability of our descriptor, the Fisher Vector representation is
adopted, transforming initial LBP-flow vectors of each video
sample into a mid-level single vector representation, based on the
detected most discriminating features (visual vocabulary) of the
overall video-samples. In this way, the size of our descriptor is
significantly reduced, while at the same time recognition accuracy
is increased. The computation of the most discriminating samples
is performed by applying unsupervised clustering (Gaussian
Mixture Model (GMM)) in the shallow representation hyperspace,
as formed by the LBP-flow feature collection of each dynamic
texture dataset. Let {mj, Sj, pj;j 2 RL} be the set of parameters for L
Gaussian models, with mj, Sj and pj standing respectively for the
mean, the covariance and the prior probability weights of the jth
Gaussian. Assuming that the D-dimensional LBP-flow descriptor is
represented as xi 2 RD; i ¼ f1; . . . ; Ng, with N denoting the total
number of descriptors, Fisher encoding is then built upon the first
and second order statistics:

f 1j ¼
1

N
ffiffiffiffiffi
pj

p
XN
i¼1

qijs
�1
j ðxi � mjÞ

f 2j ¼
1

N
ffiffiffiffiffiffiffiffi
2pj

p XN
i¼1

qij
ðxi � mjÞ2

s2
j

� 1

" # ð4Þ

where qij is the Gaussian soft assignment of descriptor xi to the
jth Gaussian and is given by:

qij ¼ exp
�1

2ðxi � mjÞTS
�1
j ðxi � mjÞ

h i
PL

t¼1 exp �1
2ðxi � mtÞTS

�1
j ðxi � mtÞ

h i ð5Þ

Distances as calculated by Eq. (4) are next concatenated to form
the final Fisher vector, FX = [f11, f21, . . . , f1L, f2L], characterizing the
dynamic texture of each video. A Hellinger kernel K(g, h) is then
chosen to be used for the normalization of the vectors, due to its
increased sensitivity to smaller bin values, leading to SoA results
[24]. Given two Fisher vectors g 2 R2LD and h 2 R2LD, K(g, h) is
Fig. 2. LBP-flow c
computed by:

Kðg; hÞ ¼
X2LD
j¼1

signðgjÞsignðhjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgjk�khjk

q
ð6Þ

where L is the number of Gaussians, D the dimensionality of the
descriptor and 2LD the final Fisher vector size.

4. Dynamic texture recognition and localization

Given the aforementioned powerful descriptor, a framework is
proposed for dynamic texture recognition and localization. Fisher
vectors either are used to train a binary/multi-class support vector
machine (SVM) classifier or a neural network (NN), in order to
learn to discriminate between two or more classes. The framework
including the NN can be characterized a hybrid representation
scheme, as it leverages both shallow and deep parameters to train a
final classification model. Dynamic texture localization follows, to
spatio-temporally localize the selected dynamic texture inside,
and throughout, sequential video samples. The proposed scheme
exploits the resulting binary model of the aforementioned
recognition process and based on a superpixel clustering proce-
dure leads to an accurate and computationally efficient localization
framework. Dynamic texture recognition and localization process-
es are discussed in more detail in the following subsections.

4.1. Dynamic texture recognition

Dynamic texture recognition requires an accurate sampling
process, so as to collect a sufficient number of informative feature
samples to train the discriminative model. In our framework,
activity areas (AA) [25] are used as an initial step to detect regions
of interest and to sample interest points in them to be used for
training purposes. AA are binary masks, extracted according to the
premise that flow estimates originate either from actual motion, or
noise, e.g. from the video capture or compression process. These
two hypotheses can be formulated as:

H0 : u0
k ¼ zkðrÞ

H1 : u1
k ¼ ukðrÞ þ zkðrÞ

ð7Þ

where r ¼ ðx; yÞ is the pixel under consideration, ukðrÞ its actual
motion value and zkðrÞ is induced by noise. As shown in [25], zkðrÞ
can be modeled by a Gaussian probability density function when
optical flow is taken into account for the computation of motion
vectors. Under the Gaussian assumption for the noisy flow values,
and accumulating these motion vectors over a temporal window
WAA, we can easily eliminate them by estimating their Kurtosis,
which is equal to zero for Gaussian data. Thus, the AA has zero
values at pixels where the kurtosis values tend to zero,
corresponding to noise induced cases, and finally resulting in a
omputation.



V. Kaltsa et al. / Computers in Industry 98 (2018) 1–13 5
binary mask that effectively separates background from fore-
ground areas.

AAðrÞ ¼ 0 if G2ðrÞ < thAA
1 else

�
ð8Þ

where thAA is statistically determined equal to 2 � 10e�2 based
on the experiments performed on Dyntex dynamic texture dataset.

LBP-flow as described in Section 3.1 is then calculated over a
block of 32 � 32 pixels, around each interest point. Subsequently,
Fisher encoding is deployed after a PCA dimensionality reduction
step and the total set of descriptors representing the whole
training corpus are led as an input into two different learning
models, for comparison reasons. The first one, concerns the classic
support vector machine (SVM) model which has proven to exhibit
good performance relatively to other machine learning methods,
while at the same time being fast to run and capable of handling
large data sequences, generally appearing in real life situations.
The second model, refers to the adoption of a neural network (NN)
scheme as inspired from the successful results presented in [26]
consisting of three hidden layers, each of which is followed by a
dimensionality reduction step. The statistical power that Fisher
vectors encapsulate in their scheme, passes in the NN as well and
leads to a highly discriminative vector as shown in Section 5.

The choice of NNs over deep learning features is justified by the
fact that even though deep learning features have proven to be
highly accurate for image recognition tasks, the current SoA is
turning its attention to more flexible hybrid patterns that leverage
low level representation schemes so as to improve their results and
provide a faster solution ([24,26]). As opposed to multi-layer deep
learning schemes, Neural Networks are smaller and simpler,
without losing their discrimination power. We thus deploy a novel
representation scheme that is based on shallow spatio-temporal
descriptors, encoded with a Fisher vector scheme and enhanced
with a neural network learning framework so as to classify
dynamic texture patterns.

The block diagram of the texture recognition framework is
depicted in Fig. 3.

4.2. Dynamic texture localization

Although the aforementioned descriptor can effectively capture
scene dynamics for video classification, the adoption of a local
approach is needed in order to achieve accurate localization of a
dynamic texture within a video frame. For this purpose, a multi-
scale superpixel scheme is proposed, as superpixels enable the
grouping of pixels into regions with a homogeneous appearance,
which are highly likely to correspond to the same object.
Furthermore, this process also eliminates redundant image
information, leading to the extraction of more accurate object
contours.
Fig. 3. Block diagram of the texture recognition framework: activity areas (AAs) are app
descriptors in the three spatio-temporal domains (x, y, t). LBP-flow final descriptors 

subsequently extracted for each video sample, based on this vocabulary. Results are gi
In our implementation, superpixels, extracted according to the
simple linear iterative clustering (SLIC) method in [27], are used to
segment the video frames. SLIC is based on a local version of K-
means algorithm, where the only parameter that needs to be
specified is k, which stands for the number of approximately
equally sized superpixels. Then, an iterative 2-step process begins
with each pixel being assigned to its nearest cluster center
followed by the computation of the residual error between the new
cluster center and previous cluster center locations as derived from
L2-norm. This process is repeated until convergence. The distance
measure used for the clustering is based on pixels’ color and
location and is given by:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c þ

ds
S

� �2

m2

s
ð9Þ

where dc and ds stand for color similarity and spatial proximity
respectively, S is the grid sampling interval and m constitutes a
relative importance weight between color and spatial proximity.
Thus, larger m favors spatial proximity leading to more compact
superpixels, while smaller values of the variable result into
superpixels with less regular size and shape, but boundaries that
are more close to the image itself. Finally, a post-processing step to
cluster some remaining individual “orphaned” pixels takes place
by using a connected components algorithm.

Superpixels are then deployed in a 2-layers scheme, with each
layer corresponding to a different scale, following a fine to coarse
structure. This way, both coarse and fine details are successfully
captured, and the influence of local noise is avoided. Next, we carry
out what we refer to in this work as superpixel clustering, which
relates each superpixel in the top coarser layer with multiple
superpixels of the finer bottom layer according to the overlap they
have with each other, and a final descriptor characterizing the
whole area covered by the superpixel of the top layer is extracted.

The superpixel clustering procedure is as follows: let s1 be the
superpixel of the top layer and s2, s3, . . . , sn be the superpixels of
the bottom layer that are related to s1, based on their regions’
overlap. LBP-flow is calculated in a block of 32 � 32 pixels around
all n superpixels’ centers, and all features are concatenated to form
the descriptor characterizing the area covered by s1. In order to
account for temporal variations, which are central in the dynamic
textures, the video sequence is also divided into non-overlapping
subsequences of W frames, as described in Section 3.1 and thus, the
descriptor for each area A1 covered by a top layer's superpixel s1 is
given by:

descrA1
¼

LBPs1
xyW ; LBPs1

xtW ; LBPs1
ytW

LBPs2
xyW ; LBPs2

xtW ; LBPs2
ytW

..

.

LBPsn
xyW ; LBPsn

xtW ; LBPsn
ytW

8>>>><
>>>>:

9>>>>=
>>>>;

ð10Þ
lied on each video frame and optical flow matrix, so as to sample and aggregate LBP
are then fed to a GMM to compute the visual vocabulary and Fisher vectors are
ven to a learning model responsible for their classification.



Fig. 4. Extraction of the final descriptor representing the area A1 corresponding to superpixel s1 of the top layer. LBP-flow is calculated in a block of 32 � 32 around the center
of each superpixel, for a time window of W frames. Then, LBP-flow descriptors of superpixel s1 and those of superpixels s2, s3, . . . , sn belonging to the bottom layer and found
in the range of s1, are concatenated. Fisher encoding is next applied to the concatenated features and the final descriptor corresponding to the area A1 is obtained.
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where LBPsn
xyW denotes the spatial dimension of LBP-flow for the

supervoxel corresponding to superpixel sn for W consecutive
frames, while LBPsn

xtW and LBPsn
ytW stand for the other two motion

dimensions of LBP-flow respectively, concerning the supervoxels
of the same superpixel sn, at a time window of W frames. PCA
dimensionality reduction and Fisher encoding is then applied in
the resulting LBP-flow, leading to the final descriptor characteriz-
ing the particular area in the frame. The overall procedure is shown
in Fig. 4. Our intuitive expectation is that the use of multiple
resolutions will result in more accurate localization while
excluding multiple miss-classifications, occurring in small areas.

After the extraction of area's descriptor, the discriminative
models that have been trained in the aforementioned binary
classification task, are used in order to localize the desired dynamic
texture in a spatio-temporal manner. The decision is conducted
locally for each area covered from superpixels of the top layer. The
complete localization scheme is depicted in Fig. 5.

5. Experiments

In order to evaluate the effectiveness of our method, we have
applied it on four challenging benchmark datasets, namely Dyntex
[28], MovingVistas [8], Yupenn [12] and videoWaterDatabase [29].
All datasets were split into 1/3 for testing and 2/3 for training,
creating 3 different train/test splits to assess the performance of
our algorithm. In all cases, our algorithm's accuracy was calculated
in multiple tasks and compared with the SoA, demonstrating
improved performance.
Fig. 5. Block diagram of the overall localization framework in case of the water class: Su
each area. Then, the same trained model formed from the detection task is applied to eac
5.1. Parameter estimation

For the classification task, a time window of WAA = 30 frames is
used for the calculation of activity areas, where motion is
estimated using Färneback optical flow [30], as it combines high
accuracy and computational efficiency, making our method
suitable for real world scenarios. In this implementation of optical
flow, local regions of each video frame are approximated by
polynomial expansion. The size of the neighborhood to be modeled
plays the role of a regularizer, as modeling over larger regions
results in smoother approximations, making singularities less
likely. In our work we used the typical parameters poly _ n = 5 and
poly _ s igma = 1.2, which were found to achieve the best trade off
between motion estimation accuracy and computational speed.
Our results, using these parameter values, were found to be
accurate over a range of videos, so they remain the same during all
experiments. Additionally, the choice of this algorithm was
empirically found to result in accurate foreground segmentation
in the form of Activity Areas, as well as capturing small motions,
which occur often in dynamic textures.

The temporal window used is also determined experimentally
so as to be maximally informative and at the same time achieve a
balance between retaining useful information and being robust to
noise. More specifically, the size of the temporal segments is
specified at 15 and 30 frames for recognition and localization tasks
respectively, so as to keep them as small as possible, which is
appropriate for real-world applications, but at the same time long
enough to capture texture dynamics. Experiments on even smaller
perpixel clustering is applied on each video frame and descriptors are calculated for
h descriptor and the localization process of the desired dynamic texture takes place.
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windows, such as 10 frames, were also conducted for the
localization task, to determine if this would lead to a faster
accurate approach. However, the results provided in Table 7
demonstrate that using a 10 frame time window leads to less
accurate results, but without a significant increase in algorithm's
speed. Therefore, we prefer to use a 30 frame window in practice
for the localization task, as better accuracy is achieved at only a
slightly higher computational cost, making it more appropriate for
reliable and accurate predictions.

Thus, the extraction of the LBP-flow descriptor in a window of
WLBP = 15 or WLBP = 30 frames, results in a feature vector of 2610 or
5220 bins respectively. These dimensions are much lower than
those of the latest SoA LBP [15], which reach dimensions of 214 and
226, having a positive impact in our algorithm's final speed. The
dimension of the initial vector LPB-flow is reduced via PCA to 80
and 32 cluster centers are chosen to represent the visual
vocabulary. Subsequently, two different learning models are
tested: (a) a multi-class linear SVM which constitutes the shallow
approach and (b) a neural network (NN) with 3 hidden layers, each
of which is followed by a dimensionality reduction step, and a
softmax output, constituting the hybrid method. For multi-class
classification we found that 512 neural nodes in the first, 256 and
128 nodes in the second and third layer respectively were sufficient
to create an accurate recognition model, while a dropout of 0.5 was
chosen in all cases. In order to validate the performance of our
proposed scheme, we provide the classification accuracy for both
models, as well as comparisons with SoA.

During the localization process, the size of the superpixels’ grid
is determined based on the trade off between capturing sufficiently
noise-free local information and keeping the computational cost of
the algorithm as low as possible. The addition of a 3rd layer
increased the computational cost to prohibitive levels, while the
use of a single layer was found to be inadequate for accurate
localization, making the option of two layers an ideal choice. The
determination of the grid in each layer was based on the same
concept: an 8 � 8 grid proved to be too coarse, as texture
boundaries were not well defined, while a finer grid of 64 � 64
led to many noise artifacts, with the run time also significantly
increasing. As a result, grids of 32 � 32 and 16 � 16 were deployed
for the bottom and top layer respectively. This way, both coarse and
fine details are successfully captured while at the same time local
noise is avoided.

It should be emphasized that in all the cases examined in our
work, irrespective of the datasets used, the above parameters
remain the same, reinforcing our claim about the generality of the
proposed algorithm.
Fig. 6. Instances of D
5.2. Evaluation criteria

In order to evaluate our method in dynamic texture recognition,
we conducted several experiments, providing confusion matrices
and the average accuracy rates, which are compared with the
corresponding SoA. In the localization task, we assess our method's
performance by using the metric from [16], where the detection fit
D of a binarized video V compared to a ground truth mask M is
given by:

DðV; MÞ ¼
PjVj

i¼1 dðVi; MÞ
jVj ð11Þ

where |V| denotes the number of frames in V, Vi stands for the
ith frame, and d(Vi, M) is defined as:

dðVi; MÞ ¼ 1 �
PW

x¼1
PH

y¼1 jViðx; yÞ � Mðx; yÞj
W�H ð12Þ

with W and H denoting frame's width and height respectively.

5.3. Dynamic texture recognition

5.3.1. DT Recognition:The DynTex dataset
Dyntex [28] is one of the earliest and most renowned

benchmark datasets for dynamic textures, containing a wide
variety of texture classes. In our experiments, we use the
benchmark classification split of DynTex dataset into three
subsets: alpha, beta and gamma. These subsets contain video
samples from 3, 10 and 10 different classes respectively, often
including high intra-class variance. Some instances of DynTex
dataset are shown in Fig. 6.

The overall average score of the method proposed is provided in
Table 1, where it can be seen that our work outperforms the SoA in
all 3 subsets. More specifically, our method is compared against 6
other SoA works including: the wavelet decomposition approaches
of [31] and [32], the use of dynamic fractal spectrum (DFS) of [33],
the deployment of LBP-TOP [15], the use of SIFT-like feature
descriptors of [34] and finally the wavelet-based multi-fractal
spectrum (WMFS) encoding of [35]. Our results for both shallow
(SVM) and hybrid (NN) schemes are presented, with the latter
achieving remarkably higher scores, exceeding 97% in all cases. The
confusion matrices for SVM and NN based classification are
provided in Fig. 7-a and-b, respectively. As shown, our descriptor
achieves high accuracy for all classes, while high accuracy, over
95% is reached for 8 out of 10 classes in our NN-framework. In the
lower-right part of Fig. 7, it can be seen that misclassifications of
water-related classes usually refer to other classes related to water
ynTex dataset.



Table 1
Comparisons with SoA in DynTex dataset for alpha, beta and gamma splits.

Dubois et al. [31] Smith et al. [32] DFS [33] LBP-TOP [15] OTF [34] WMFS [35] Ours SVM/NN

Alpha 88% 83% 85.2% 83.3% 83.6% 84.8% 95.0/100%
Beta 66% 67% 76.9% 73.4% 73.2% 75.2% 94.8/97.4%
Gamma 65% 65% 74.8% 72% 72.5% 73.3% 95.6/98.0%

Bold values indicate the highest score achieved in each case.

Fig. 7. Multi-class classification accuracy of LBP-flow in gamma split of DynTex Dataset when (a) SVM-based and (b) hybrid method is used.
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texture, showing that our proposed framework still detects water-
related dynamic scenes robustly. In general, it can be concluded
that our algorithm is capable of correctly classifying challenging
dynamic textures, distinguishing even between classes with highly
correlated dynamics, since it does not perform recognition based
only on motion characteristics.

Two additional categories of recognition experiments are
carried out for the Dyntex dataset: (a) binary classification between
water and non-water classes, to compare with corresponding
results provided in [16], (b) intra-class classification for water-
related dynamic textures, to compare with [7]. Specifically, we
compare the binary classification accuracy of our descriptor for the
water and non-water classes in Dyntex, with [14,15,36], and [16].
The results for this binary classification are provided in Table 5,
where we see that both of our proposed schemes, involving LBP-
flow, surpass the first three works [14,15,36], while giving
comparable results with that of Mettes et al. [16]. However, it
should be noted that in [16] the implementation is highly tailored
to water videos, through pre-processing of the data, justifying its
Table 2
Comparisons with SoA for water related classes in Dyntex dataset.

Method Fountain Calm water Sea Home water All

HOGP [7] 88.0% 81.0% 81.0% – –

LBP-flow 55.6% 85% 95.8% 88.0% 75.2%
LBP-flow + NN 77.8% 100% 100% 84.0% 88.8%

Bold values indicate the highest score achieved in each case.
high score in binary classification. Intra-class comparisons with the
work of [7] in exclusively water related multi-class recognition are
also shown in Table 2 and confirm our algorithm's high
performance, as it surpasses the recognition accuracy of [7] for
most categories of water-related dynamic textures. Even though,
during recognition tasks, feature extraction usually constitutes the
most time-consuming step, in our case, the extraction of LBP-flow
features for the DynTex database, required only about 2.65 fps.

5.3.2. DT recognition: the moving vistas dataset
Moving vistas was introduced in [8] and it is the most

challenging dataset of all, as it contains video samples of low
quality using a moving camera, different viewpoints and signifi-
cant illumination changes. The multi-class recognition accuracy of
LBP-flow was estimated and compared with the SoA on scene
recognition in [12] and [8]. The results, depicted in Table 3, show
that our hybrid scheme achieves significantly better recognition
rates compared to the SoA for the multi-classification task, with
detailed classification accuracy for each class provided in Fig. 8.

The binary classification performance of our method was also
validated on this dataset, for the water class, with its results
presented in Table 3. As seen, our proposed scheme achieves highly
accurate outcomes, with a rate of 73.1% and 84.6% for the SVM and
NN-based frameworks respectively. However, due to the lack of
relevant results in SoA for Moving vistas([12,8]), possibly due to
that dataset's limited size, we construct an approximate binary
classification metric to evaluate our binary model. More specifi-
cally, we isolate the water-related classes (Fountain, Iceberg



Table 3
Multi and binary recognition accuracy on moving vistas dataset.

Score Derpanis et al. [12] Shroff et al. [8] LBP-flow + SVM LBP-flow + NN

Multi-class 41.0% 52.0% 62.3% 67.7%
Binary – – 73.1% 84.6%
Approximate binary 32.0 % 52.0 % 72.0 % 72.0%

Bold values indicate the highest score achieved in each case.

Fig. 8. Multi-class classification accuracy of LBP-flow in movingVistas Dataset with (a) SVM and (b) NN-based classification. In both case, the average classification accuracy
for water-related classes is 72%.
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Collapse, Waterfall, Waves and Whirlpool) from the confusion
matrices provided in [12,8], as well as ours (Fig. 8) and we then
estimate their average accuracy, as an “approximate binary
accuracy”. As shown in the last row of Table 3, the average
water-classification accuracy in [12,8] is 32% and 52% respectively,
Table 4
Comparisons with SoA in YUPENN dataset for all classes.

Scene classes BoST [37] TSVQ [38] SOE [12] Color 

beach 83 63 87 50 

c. street 90 70 83 47 

elevator 100 73 67 83 

f. fire 100 80 83 47 

fountain 67 37 47 13 

highway 87 73 77 30 

l. storm 100 80 90 83 

ocean 90 80 100 73 

railway 80 73 87 43 

r. river 80 73 93 57 

sky 93 77 90 30 

snowing 83 77 33 53 

waterfall 67 53 43 30 

w. farm 77 57 57 57 

Avg.(%) 85 69 74 50 

Bold values indicate the highest score achieved in each case.
while both our SVM and NN-based schemes both reach 72%,
surpassing the SoA. It should be noted that the “average binary
accuracy” score achieved by our approach in this case is expected
to be lower than that derived from the application of direct binary
classification (73.1% for SVM based classification and 84.6% for NN
[39] GIST [9] HOF [40] Chaos [8] Ours SVM/NN

90 37 27 87.5/83.3
50 83 17 100/100
53 93 40 100/100
50 67 50 87.5/83.3
40 30 7 87.5/87.0
47 33 17 87.5/95.7
57 47 37 91.7/66.7
93 60 43 91.7/91.7
50 83 3 87.5/95.0
63 37 3 91.7/95.8
90 83 33 95.8/95.8
20 57 10 87.5/100
33 60 10 91.7/95.8
47 33 17 91.7/100

56 59 20 91.4/92.2
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based classification, respectively), as the constructed multi-class
model is more complex than the binary one. However, it is safe to
infer that since our algorithm outperforms the SoA on water-
related classes for the complex multi-classification process, it is
likely that its performance will be superior to SoA for the simpler
binary classification task as well.

Similarly to the Dyntex data, the cost of feature extraction in the
low resolution Moving vistas dataset is kept quite low, requiring
about 9.7 fps. This low computational cost makes proposed
method appropriate for near real time monitoring in surveillance
applications, where videos are often recorded at 7–8 fps.

5.3.3. DT recognition: the YUPENN dataset
YUPENN [12] comprises of 420 videos, mainly of low quality,

from 14 different classes. It constitutes a challenging dataset, as
each class is represented by a limited number of videos of short
duration, ranging from 37 up to 180 frames. Despite these
drawbacks, experiments on multi-classification tasks were con-
ducted for all classes, with the results depicted in Table 4. In these
experiments, our method is compared with many approaches from
the SoA, also reported in [37,12]. More precisely, we compare our
results to those of: the bag-of-systems Tree (BoST) representation
[37], the tree-structured vector quantization (TSVQ) [38], the
spatiotemporal oriented energy (SOE) features [12], the combined
use of oriented boundaries and surface color information [39], the
Spatial Envelope representation [9], the Histogram of Oriented
Flow descriptors [40] and finally the use of the theory of chaotic
systems [8] to capture scene dynamics. It is clear from Table 4 that
our proposed framework achieves remarkable accuracy rates for all
classes, near or above 90% for both shallow and hybrid
implementations, outperforming the SoA in all cases.

5.3.4. DT recognition: the VideoWaterDatabase dataset
The VideoWatetDatabase [16] is a very comprehensive database

of dynamic textures of the water/non-water classes. It contains a
large number of high resolution videos, with a sufficient amount of
training data, as well as ground truth for the water regions, in the
form of binary masks. Other benchmarking datasets for dynamic
textures do not contain as many training videos and ground truth,
making this dataset most appropriate for in depth evaluation of our
dynamic texture recognition and localization methods.

The VideoWaterDatabase introduced in [16] consists of 260 high
definition videos, where the presence of water needs to be
detected. This dataset contains water and non-water samples from
7 and 5 classes respectively. The patterns between the two classes
are quite similar and very difficult to model. Comparisons with
other dynamic texture modeling methods based on LBP are
provided in Table 5, where the method is compared against 4 other
SoA works, which use different approaches for texture represen-
tation. These include: Volume Local Binary Patterns (VLBP) used by
[14], LBP-TOP descriptors of [15], the transferred ConvNet Feature
(TCoF) of [36] and the LBP-Fourier descriptor applied in [16]. As
shown in Table 5, our approach leads to the highest accuracy, of
Table 5
Comparisons with SoA for water recognition.

Method VideoWaterDatabase Dyntex

LBP-Fourier [16] 98.4% 95.8%
VLBP [14] 93.8% 90.0%
LBP-TOP [15] 93.3% 87.5%
st-TCoF [36] 97.2% 90.0%

LBP-flow 98.3% 92.74%
LBP-flow +NN 98.8% 94.35%

Bold values indicate the highest score achieved in each case.
98.8%, providing robust recognition results in this case as well. For
the VideoWaterDatabase videos, the extraction of LBP-Flow
features required about 2.05 fps, showing that our method is
indeed computationally efficient.

5.4. Dynamic texture localization

The localization of dynamic textures is very challenging, due to
their highly non-rigid nature, the transparency that often
characterizes them, numerous occlusions and the complexity of
the motions in them. We have carried out experiments aiming to
localize dynamic textures, related to outdoors crisis scenarios, but
without tailoring our approach to a specific texture. Thus, in order
to reinforce our algorithm's general applicability, we avoided
applying any pre-processing and post-processing steps.

5.4.1. Water localization
We initially carried out the localization of water-related

dynamic textures on the challenging VideoWaterDatabase
(VWD) and DynTex datasets, where 32 � 32 and 16 � 16 grids of
superpixels have been deployed for the bottom and top layer
respectively. Results for VWD are provided in Table 6, where it can
be seen that our method reaches the remarkable accuracy of 96.7%
and 96.15% for the SVM and NN frameworks respectively,
significantly surpassing that of [16].

We also evaluate our algorithm's performance on the DynTex
dataset by first splitting the videos into water and non-water
categories, with 2/3 of them used for training. Our localization
score in this case was 86.1% comparable to that provided in [16],
despite DynTex's limited training size for water class. It should be
emphasized that, in contrast to our general framework, the
algorithm of [16] is designed for detecting and localizing
exclusively water-based dynamic textures. Specifically, they carry
out several preprocessing steps concerning water properties, such
as the removal of water reflections from water ripples, so as to
obtain water regions of a homogeneous appearance. They also add
a post-processing step, to further improve their accuracy. As a
result, they achieve accurate results for water detection, but their
method cannot be extended to the general case of texture
recognition.

We further investigate our proposed localization framework
and compare its results in the cases where: (1) a smaller window of
WLBP = 10 frames is used, and (2) Histogram of oriented gradients-
Histogram of optical flow (HOG/HOF) descriptor is applied instead
of the LBP-flow for a time window of WHOG/HOF = 10 and WHOG/HOF

= 30 frames respectively. Our results are depicted in Table 7. As
observed, LBP-flow descriptor outmatches the classic HOG/HOF
descriptor in the texture localization task, proving LBP-flow's
suitability for dynamic texture representation. Furthermore, even
a small window of WLBP = 10 seems to be adequate for our
algorithm's efficient performance, however a larger window of 30
frames is finally preferred, as it leads to more accurate results.

Instances of the localization process for VWD are provided in
Fig. 9. As it can be seen, our multi-resolution scheme succeeds in
capturing local non-water areas occupying only a small part of the
frame (a), (e), while at the same time challenging water scenes
containing shadows and running water (c), (h) are also correctly
Table 6
Water localization in VWD and DynTex.

LBP-Fourier [16] LBP-flow (SVM) LBP-flow (NN)

VWD 92.3% 96.7% 96.15%
DynTex 87.9% 83.4% 86.1%

Bold values indicate the highest score achieved in each case.



Table 7
Water localization in VWD for different temporal window sizes.

Method Score

LBP-flowW30 96.7%
LBP-flowW10 94.27%
HOG/HOFW10 91%
HOG/HOFW30 92.22%

Bold values indicate the highest score achieved in each case.
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localized. The minor errors of our algorithm can be attributed to its
general non-water based nature, and the omission of any post-
processing steps which would smooth the final results. Sample
videos, as derived from the direct application of the machine
learning model of the proposed localization framework, without
any pre-processing or post processing can be found in the
following link: https://vimeo.com/channels/1323363/. Transparent
blue and red color are used to depict the areas where each dynamic
texture of interest was detected by our algorithm. As seen, water
video sequences containing shadows (e.g. lake) or different motion
dynamics (e.g. fountain) are correctly localized as cohesive water
areas, in contrary to the segmentation that we would expect from
the SoA segmentation-based works, as discussed in Section 2.
Fig. 9. Instances of water localization in VideoWaterDatabase dataset. Blue color depicts t
non-water regions. (For interpretation of the references to color in this figure legend, t

Fig.10. Instances of fire localization in Yupenn dataset. Blue color depicts the region that 

this figure legend, the reader is referred to the web version of the article.)
The computational cost of the localization task is quite low, at
0.23 frames/sec, despite the fact that the algorithm is superpixel
oriented, meaning that it infers about each superpixel's texture
separately. It should also be noted that our algorithm is executed
online, with only the past 30 frames being taken into account,
making it appropriate for real world outdoor applications.

5.4.2. Fire localization
We also examine our method's efficacy in localization task for

the fire texture, using videos from the YUPENN dataset. The fire, a
texture of high interest for outdoors surveillance, constitutes a
challenging dynamic texture as the boundaries between fire and
smoke are often difficult to discern, even for human observers,
while the wind constantly changes the flames’ shape and direction.
Despite this fact, our method extracts a mask at every 30 frames,
which captures most of the fire and flames. In our experiments, the
dataset is split into fire and non-fire scenes, with the first category
containing exclusively the class Forest fire, as it is the only class
related to fire hazard, while the other 13 classes are classified as
non-fire. The large deviation between the number of videos
representing each category, with 30 videos of the fire class
compared to 390 videos of the non-fire class, hinder the proper
evaluation of our method in this task. Nonetheless, we still
he region that water was detected from our algorithm, while red color stands for the
he reader is referred to the web version of the article.)

fire was detected from our algorithm. (For interpretation of the references to color in
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examine these videos to assess our algorithm's generality, using 3/
4 of the fire videos for training, and random videos of all the other
classes for the non-fire category. We choose these videos in a 3
non-fire-to-1 fire ratio, so as to complete the training set.

Qualitative results of our algorithm's performance on the test
videos are presented in Fig. 10, where transparent blue color is
used to depict regions where fire was detected by our method. The
variations in fire texture and appearance are captured in most
cases, demonstrating that our method can be effectively applied on
different textures. Some false alarms are observed, however these
can be attributed to the lack of training data. There is still a lack of
complete benchmarking datasets for dynamic textures, with the
number of the available fire videos in our case being inadequate
and of short duration. Specifically, the training videos of fire
comprise of only 37 or 120 frames, which in many cases
significantly reduce the ability of our method to extract sufficient
descriptors. Video samples of fire localization may be found in
https://vimeo.com/channels/1323363/.

Results in the challenging fire class, prove that our algorithm
can efficiently cope with other types of dynamic textures, as
expected, since its design is not tailored to a specific category of
dynamic texture videos. Our framework is thus able to provide a
powerful model capable of discriminating between different
classes, despite their various dynamics and inter-class similarities.

6. Conclusion

In this work we propose a novel framework acting on both the
local and global scale for dynamic texture recognition and
localization. Informative regions, retaining details of the dynamic
textures, while avoiding overfitting to local noise, are extracted by
clustering superpixels, which accurately detail the boundaries of
dynamic textures. An LBP-flow descriptor is then combined with
Fisher encoding and a Neural Network, forming a novel, powerful
framework, capable of capturing and describing a wide range of
dynamic scenes. Its remarkable performance on several different
benchmark datasets, for binary and multiple classification, proves
our method's generality. Its excellent performance on water
localization, makes the proposed scheme suitable for real life
situations, where image details also count for the proper handling
of a potential hazard. Given its general applicability, by design, the
proposed method can be deployed for the detection and
localization of various types of dynamic textures that occur in
outdoor environments, while its low computational cost makes it
appropriate for a variety of real world applications.
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