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1 Prologue 

Nearly a century ago, in the late 1920s, Hans Berger successfully demonstrated that brain 

activity can be recorded using electrodes placed on a participant’s head (Berger, 1929). In 

the decades that followed, the idea emerged that recorded brain activity could be used as a 

communication channel or for controlling the environment without the need to engage the 

normal intermediaries of peripheral nerves and muscles. In his seminal paper, Vidal (1973) 

detailed a comprehensive theoretical and technical plan for direct brain-computer 

communication. In this work, he coined the term “brain-computer interface” (BCI) and 

described that “to provide a direct link between the inductive mental processes used in 

solving problem and the symbol-manipulating, deductive capabilities of the computer, is, in 

a sense, the ultimate goal in man-machine communication” and envisioned that BCIs 

“would indeed elevate the computer to a genuine prosthetic extension of the brain”. He also 

predicted that “to achieve that goal with adequate generality is a formidable task that will 

require considerable advances in neurophysiology, in signal analysis, and in computer 

science.” While Vidal’s vision influenced the development of BCIs, it would take several 

decades and technological advancements for that vision to materialize. 

A BCI may be defined as a system that measures and converts brain activity into artificial 

output. This output replaces, restores or enhances outputs produced by the central nervous 

system, thereby enabling interactions with the external environment in the absence of motor 

output (Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012). Since BCI technology augments 

human capabilities by providing a new motor-independent interactive link with the outside 

world, it constitutes a particularly relevant tool for patients suffering from neuronal damage 

such as brainstem stroke (Bauer et al., 1979), traumatic brain injury (Carrai et al., 2009), 

central pontine myelinolysis or end-stage amyotrophic lateral sclerosis (Birbaumer et al., 

1999; León-Carrión et al., 2002; Bruno et al., 2008). These conditions can result in a so-

called ‘locked-in’ state, which lacks voluntary muscle control abilities. For patients with 

such conditions, replacing (lost) motor functions through communication BCIs (Birbaumer 

et al., 1999; Nijboer et al., 2008; Sellers et al., 2010) and control systems such as 

wheelchairs, robotic body-parts or robotic agents (Galan et al., 2008; Muller-Putz and 

Pfurtscheller, 2008; Iturrate et al., 2009; Rebsamen et al., 2011; Tumanov et al., 2015; 

Murphy et al., 2017) are specially relevant. 
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BCIs have also been applied to a wide range of other applications: changing brain activation 

and associated behavior voluntarily through neurofeedback (Subramanian et al., 2011; 

Scharnowski et al., 2012; Shereena et al., 2018); mental state monitoring, namely alertness, 

workload and pain (Gagnon et al., 2012a; Shibata et al., 2014; Afergan et al., 2015; Khan 

and Hong, 2015; Myrden and Chau, 2015; Hu et al., 2019); entertainment purposes such as 

gaming (Tangermann et al., 2008; Congedo et al., 2011; Coyle et al., 2011; Maby et al., 

2012; Vourvopoulos et al., 2016) and for artistic expression such as Multimodal Brain 

Orchestra (Le Groux et al., 2010) or Brain Painting (Kübler and Botrel, 2019). 

With technological development, the number of BCI-related publications has increased 

almost exponentially. However, the number of real-life applications benefiting potential 

end-users has not grown as quickly (Shih et al., 2012). This could be due to substantial 

challenges associated with using BCIs in everyday situations, namely home-use or hospital 

settings. This ultimate goal of improving the lives of patients is a demanding endeavor since 

a BCI should be efficient, accurate and reliable but also easy to use, intuitive, and simple to 

set up. In this dissertation, we identify and address key factors hindering the translational 

potential of BCIs. 

 

2 Components of brain-computer interfaces 

BCIs aim to detect and extract meaningful information from brain signals that indicate what 

the user wants the BCI to do. BCIs then translate this information in real-time to an 

appropriate form for device control while providing feedback to the user about the intended 

act. 

2.1 Measuring brain signals 

Several functional neuroimaging modalities exist to measure brain activity for BCI 

applications. They can be divided into two categories: electrophysiological methods, which 

measure electrical potentials arising from neural activity directly, and hemodynamic (or 

metabolic) methods, which measure the vascular or metabolic response to neural activity 

and thus constitute an indirect measure of neural activity (see Figure 1.1).  
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Figure 1.1. Summary of functional neuroimaging modalities used for BCI purposes. 

Electrophysiological methods (top, left) include electroencephalography (EEG), 

magnetoencephalography (MEG) and invasive electrocorticography (ECoG) and intracortical recordings 

(Utah electrode arrays, UAE). Hemodynamic imaging methods (bottom, left) include functional magnetic 

resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). The size of the rectangles 

in the cortex provide a qualitative reference for the relative spatial resolutions of the various imaging 

technologies. Figure adapted with permission from (Sitaram et al., 2017). Right. Temporal (x-axis) and 

spatial resolution (y-axis) of the different functional neuroimaging methods. Figure adapted with 

permission from Hong and Lieber (2019). 

 

2.1.1 Electrophysiological methods 

The billions of neurons in the brain communicate with each other by transmitting neural 

signal across their synapses (Herculano-Houzel, 2009; Rothwell, 2009). 

Electroencephalography (EEG) measures ensembles of neurons that generate measurable 

potentials at the scalp surface when transmitting such signals synchronously (Min et al., 

2010; Jackson and Bolger, 2014). The generated electric potentials in the brain are 

conducted through the cerebrospinal fluid, skull and scalp. Conductance through these 

tissues smears the electrical potentials recorded in the scalp, making the localization of brain 

activity in EEG challenging (Jackson and Bolger, 2014; Herff, 2016). Additionally, EEG is 

very susceptible to motion artifacts, particularly from head movements since EEG is very 

sensitive electrical activity from muscle movement (Yilmaz et al., 2014). Modern EEG 

devices are very easy to set up and can be used out of the lab easily (Debener et al., 2015). 

The only cumbersome aspect of an EEG setup is the electrode gel which is required to lower 

impedance between scalp and electrodes (Herff, 2016). Nonetheless, EEG is the most widely 

used functional neuroimaging method for BCI purposes due to its excellent temporal 
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resolution (milliseconds or below), good portability and cost-effectiveness (Min et al., 

2010).  

Electrocorticography (ECoG) measures the same neural signals as EEG, but records them 

using grid electrodes placed above (epidural) or below (subdural) the dura mater (Schalk 

and Leuthardt, 2011; Buzsáki et al., 2012). ECoG enjoys higher spatial resolution than EEG 

because it does not suffer the same volume conduction effects (Chauveau et al., 2004). 

ECoG measures neural ensemble activity directly below each electrode, effectively 

combining the advantageous temporal resolution of EEG with improved spatial resolution. 

However, ECoG is an invasive technique that requires a craniotomy (or at least minimally 

invasive procedures, depending on the size of the grid) to implant electrodes, limiting its 

usage to clinical populations (Schalk and Leuthardt, 2011).  

Intracortical measurements use penetrating electrode arrays to record action potentials 

from a small population of neurons in close proximity to the electrode tip (Brandman et al., 

2017). While there are multiple intracortical recording devices available, the Utah electrode 

array (Maynard et al., 1997) is the only intracortical electrode array with FDA approval for 

long-term human (clinical) studies. It consists of 100 silicon micro-needles (1.5mm long) 

arranged on a square grid (Fernández et al., 2014). Despite its high temporal resolution and 

spatial specificity, the Utah electrode array is limited by its ability to target deep neural 

structures (Choi et al., 2018) and can lead to surgical complications due to the craniotomy 

required for microarray placement (Szostak et al., 2017; Herff et al., 2020). 

The neuronal activity measured by the abovementioned methods also induces magnetic field 

changes that can be detected by magnetometers placed around the head. Magnetic fields are 

less affected by the conductance properties of the skull and scalp than electric fields (Min 

et al., 2010). This gives Magnetoencephalography (MEG) better spatial resolution than 

EEG while remaining non-invasive (Hari et al., 2010; Sitaram et al., 2017). However, 

magnetic-field changes induced by neuronal activity are very weak (Hari et al., 2010; Singh, 

2014) and thus require very sensitive and costly magnetometers to measure such signal (Min 

et al., 2010). Further, magnetometers require dedicated shielding from electromagnetic 

interference (Kobayashi et al., 2017), making the method less portable and less affordable 

than EEG. Finally, similar to EEG, MEG is also sensitive to strong contamination by motion 

artifacts (Muthukumaraswamy, 2013). 



Chapter 1 | General introduction 

6 

 

2.1.2 Hemodynamic methods 

Oxygen is transported in the blood via hemoglobin. Based on its saturation state, 

hemoglobin can be oxygenated (i.e., HbO) or deoxygenated (i.e., deoxyhemoglobin, HbR). 

Neuronal activity increases oxygen metabolism, resulting in decreases in oxygen 

concentration in local capillary beds (Uludağ et al., 2015). This process triggers an increase 

in local cerebral blood flow and blood volume, which in turn supplies more oxygen than 

consumed to the area. This temporary oversupply of oxygen in regional cerebral blood flow 

results in relative increases in HbO concentration and a concurrent relative decrease in HbR. 

HbO and HbR have different magnetic properties and functional magnetic resonance 

imaging (fMRI) utilizes this local blood oxygenation level dependency (termed the BOLD 

effect) to non-invasively measure neuronal activation (Ogawa et al., 1990; Bandettini et al., 

1992; Kwong et al., 1992; Ogawa et al., 1992). Using fMRI, neuronal signals across the 

entire brain can be measured with relatively high spatial resolution (see Figure 1.1). 

However, hemodynamic responses build up much slower than electrical or magnetic 

changes caused by neuronal activity, which results in lower effective temporal resolution 

than all electrophysiological methods. Additionally, there are several practical constraints 

that limit the ecological validity of fMRI as a method for BCI applications. These include 

an unnatural supine subject position, noise produced by the scanner, contraindications to 

being in a magnetic field and potential patient claustrophobia. fMRI can also be strongly 

affected by motion artifacts. Thus, participants’ movements are highly restricted during 

measurements (Scarapicchia et al., 2017). 

In addition to having different magnetic properties, HbO and HbR also differ in their optical 

properties in the near-infrared (NIR) range  of the electromagnetic spectrum (~650–950 nm 

(Scholkmann et al., 2014)). Light in the NIR range can propagate relatively deep (a few 

centimeters) into most biological tissue but is absorbed predominantly by hemoglobin 

molecules. In functional near-infrared spectroscopy (fNIRS), optical sensors (‘optodes’) are 

placed on the scalp, which can be classified into sources (emitters) and detectors (receivers), 

depending on their function. Light emitted from a source is propagated through extracerebral 

and cerebral tissues up to a few centimeters, where some photons are scattered and absorbed 

before light reaches the detectors (Machado et al., 2014). Common fNIRS systems use at 

least two different wavelengths as to be sensitive to both HbO and HbR. The shorter 
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wavelength (650–700 nm) is predominantly absorbed by HbR, while the longer wavelength 

(800–850 nm) is predominantly absorbed by HbO (Nishiyori, 2016). By emitting NIR light 

at different wavelengths and measuring absorption at detector sites, fNIRS can detect 

changes in concentrations of both HbO and HbR (here on referred to as Δ[HbO] and 

Δ[HbR], respectively) caused by neuronal activation. 

Modern fNIRS systems are compact, portable, cost-effective, safe, user friendly and more 

robust against motion artifacts than most of other functional neuroimaging modalities (Boas 

et al., 2004; Lloyd-Fox et al., 2010; Pinti et al., 2018). These features make fNIRS a 

powerful technique for use in BCIs aimed at communication and control. In many ways, 

fNIRS can be regarded as an effective compromise between the high temporal resolution of 

EEG (Irani et al., 2007) and the robustness of the hemodynamic response in fMRI. Its 

mobility and cost are comparable to EEG, which is currently the most widely used modality 

for BCIs. FNIRS, however, has higher spatial resolution than EEG (although lower than 

fMRI (Lloyd-Fox et al., 2010). Penetration depth is shallow, similar to EEG, but this does 

not impose a limiting factor for BCI applications since measurable brain signals can be 

acquired from superficial cortical areas (Naseer and Hong, 2015a). 

The work presented in this dissertation focuses on fNIRS-based BCIs due to the 

abovementioned features of fNIRS, which offer distinct advantages for developing practical, 

portable and robust BCIs. The remainder of this section describes the components 

constituting a BCI with an emphasis on fNIRS. 

2.2 Encoding user intentions 

Brain signals used in fNIRS (and fMRI) BCIs can be generated by moving a body part to 

activate the motor cortex, i.e., by performing a motor-execution task, or by covertly 

performing a task (Naseer and Hong, 2015a). Examples of covert tasks include:  

 Motor imagery - imagining one’s own body part moving without muscular activity 

 Mental calculation/arithmetic - performing calculations in one’s head 

 Mental singing - reproducing a song in one’s head without any external music input 
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 Mental talking or inner speech - reciting a text or having a monologue in one’s head 

 Object rotation - imagining a rotating object 

 Spatial navigation –imagining walking through and visualizing a (changing) three-

dimensional scene 

Covert tasks hold potential in BCI applications since they act as a non-muscular 

communication channel for generating commands. Further, these covert tasks engage 

superficial cortical areas, such as the prefrontal or motor cortices (Naseer and Hong, 2015a), 

which are easily measured using fNIRS. 

2.3 Detecting and extracting relevant information 

Regardless of the employed functional neuroimaging modality, measured brain signals are 

often weak, containing physiological and instrumental noise, and motion artifacts 

(Krusienski et al., 2012; Naseer and Hong, 2015a). The aim of data preprocessing pipelines 

is to correct or remove these noise sources. Next, information present in the preprocessed 

time-series is summarized in trials, blocks or epochs using a summary measure or feature. 

For fNIRS-BCIs, examples include temporal averages, slope or peak value in a predefined 

window (Naseer and Hong, 2015a; Hong et al., 2018) or the resulting beta or t-value after 

fitting a General Linear Model on the time points associated with a given trial (Valente et 

al., 2019). 

2.4 Translating information and providing feedback to the user 

User’s intentions are indirectly measured by recording brain activity and must be translated 

into appropriate device commands to convey user intent. A model known as classifier must 

be trained to translate features of brain activity to one of a pre-defined set of user intentions 

(McFarland and Krusienski, 2012). Importantly, as BCIs preferably operate in real-time, 

this translation must occur as new observations come in, thus requiring generalization to 

new, unseen data. 

The translated output of BCI applications serves a dual purpose. First, it serves as a 

command for the control device or communication system. For example, if the goal of the 

BCI is to establish a communication channel for the user, then the model would map brain 

activity onto a word or an answer to a question (see Figure 1.2). Alternatively, if the goal is 
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to control a robotic arm so that the user can, e.g., grab a coffee mug, then the brain activity 

would be mapped to joint movements of the robotic arm to accomplish the user’s intents. 

Second, the translated output serves as feedback to the user about the success or failure of 

the intended act (Leeb et al., 2007). fNIRS-based BCI systems that rely on computer 

screens/displays for proving the output, most commonly use 2D visual displays/interfaces, 

such as pictures (Luu and Chau, 2009), geometrical figures (Coyle et al., 2004; Weyand and 

Chau, 2015), cartoon-like stimuli (Power et al., 2012) or auditory stimuli such as questions 

in communication paradigms (Naito et al., 2007; Gallegos-Ayala et al., 2014; Abdalmalak 

et al., 2017; Nagels-Coune et al., 2017; Abdalmalak et al., 2020; Nagels-Coune et al., 2020). 

In recent years, Augmented and Virtual Reality (AR/VR) technology has matured to enable 

complex and immersive interfaces (Putze, 2019; Putze et al., 2020). Virtual reality is an 

immersive system that provides users with a sense of presence through potential interactions 

with a simulated virtual world, rendered in real-time (Lécuyer et al., 2008). Augmented 

reality enhances the user’s perception by overlaying virtual objects onto the user’s 

environment (Si-Mohammed et al., 2017). These technologies enable multisensory display 

integration and have the potential to increase engagement and motivation in users (Chin et 

al., 2010).  
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Figure 1.2. Schematic representation of an fNIRS-BCI system for communication. In this example, 

the participant is asked different sets of questions and encodes the answer YES via mental drawing 

(symbolized in red), where the participant imagines drawing simple geometric figures such as a star, 

while (s)he encodes the answer NO using spatial navigation (depicted in blue), which involves to imagine 

walking through and visualizing a (changing) three-dimensional scene. The neural activity is recorded 

through fNIRS channels (black and yellow lines) located on the motor and parietal cortex. The recorded 

noisy signal is processed before a general linear model is fitted onto the time points, after which t-values 

are estimated per channel. Here, channel 1 (yellow) is more sensitive to the spatial navigation task, while 

channel 2 (black) is more sensitive to mental drawing. A classification line that best distinguishes the two 

tasks is defined based on the training data across channels. During the real-time experiment, the 

participant’s intention is decoded based on which side of the line in the feature space the current trial 

falls. For the current trial, the participant performed the spatial navigation task to indicate (s)he was not 

thirsty. 

 

3 Challenges associated with fNIRS BCIs 

The complex, interconnected processes that constitute a BCI pose numerous challenges to 

establishing communication and control interfaces using brain signals. While some 

obstacles are independent of the chosen functional brain-imaging modality, others are 

modality-specific. Here, we describe a number of challenges facing fNIRS-based BCIs. 
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3.1 Measuring brain signals: the problem of optode layout design 

The spatial resolution of fNIRS depends on how source-detector pairs (or ‘channels’) are 

arranged on the scalp (Culver et al., 2001). The distance between a source and detector pair, 

along with the anatomical tissues between them, determines how deep light will travel and 

the sensitivity to underlying cortex physiology (Brigadoi et al., 2018). Therefore, fNIRS 

signal quality can differ dramatically between optode layouts.  

Researchers often define a region of interest (ROI) in line with their research question and 

consequently design an optode layout in a grid-like fashion to target that ROI (Brigadoi et 

al., 2018). The simplest and most common optode layout design assigns source and detector 

locations on the scalp to cover a given cortical ROI according to the standardized 10-20 

EEG system or its extended versions (Oostenveld and Praamstra, 2001). These locations can 

relate to underlying assumed cortical structure (Koessler et al., 2009; Giacometti et al., 

2014) to standard Montreal Neurological Institute (MNI) stereotactic coordinates (Okamoto 

et al., 2004; Jurcak et al., 2007; Tsuzuki et al., 2007; Tsuzuki and Dan, 2014). Sometimes 

this approach results in a setup consisting of many optodes, resulting in increasing user 

discomfort over time. This approach may also lead to a suboptimal sampling of the active 

area. This is because fNIRS interrogates tissue located between a given source-detector pair 

and thus regions between a source-source and a detector-detector cannot be sampled or are 

not sampled optimally (see Figure 1.3).  

 

Figure 1.3. Schematic representation of the influence of optode placement on the coverage of the 

target ROI. This figure shows the top view of the international 10-5 EEG layout and an optode setup 

that covers the frontal cortex. The arrangement on the left does not properly cover the target ROI, but as 

indicated in the arrangement on the right, swapping optodes in the second row solves the issue.
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To overcome this problem, one could design a given optode layout based on the approach 

described above, perform fNIRS measurements on a real subject and subsequently assess 

the quality of measured signals. This layout could then be iteratively modified until the 

researcher identifies the channels that best capture the signal of the target ROI. However, 

this is an unfeasible procedure that would require lengthy measurements.  

Instead, models can describe the probability that a given photon transmitted from a source 

to a detector has traveled through a given tissue (Aasted et al., 2015). These models, also 

called light-sensitivity profiles, require the diffusion approximation of the radiative transport 

equation to be solved (Boas et al., 2002). However, finding an analytical solution is difficult 

because light propagation through scattering media with heterogeneous structure (such as 

the head) is inherently complex (Boas et al., 2002; Strangman et al., 2013). In the absence 

of analytical solutions, sensitivity-profile computations rely on numerical approaches, such 

as Monte Carlo Simulations (Strangman et al., 2013). Light-sensitivity profiles computed 

with Monte Carlo Simulations have been used by the fNIRS community as an objective 

measure to assess optode layout designs and a number of toolboxes, software and pipelines 

have been developed specifically for that purpose (Tadel et al., 2011; Machado et al., 2014; 

Aasted et al., 2015; Wijeakumar et al., 2015; Brigadoi et al., 2018; Zimeo Morais et al., 

2018).  

Monte Carlo simulations of photon migration use a set of rules to describe consecutive 

absorption and scattering events that the photons experience when traveling through the 

head. Simulations require three-dimensional tissue geometry (an anatomical MRI image), 

segmented into voxels of different tissue types. A common head model consists of five 

tissues – white matter, gray matter, cerebrospinal fluid, skull and scalp. Every voxel is 

assigned a set of optical properties (absorption and scattering coefficients, among others) 

depending on the tissue type they belong to. To begin, an initial position (source location) 

and direction of the photon is defined, together with an initial surviving weight set to 1. A 

scattering length L is probabilistically calculated from an exponential distribution, and the 

photon is moved through the voxels by this length. The photon's weight is incrementally 

decreased by an exponential factor that takes into account the length L and the absorption 

coefficient assigned to the voxel the photon had landed. A scattering angle is then calculated 

using a probability distribution and a new scattering length is determined from an 
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exponential distribution. The photon is moved the new distance in the updated direction 

defined by the scattering angle. This process continues until the photon exits the medium or 

has traveled longer than a predefined period of time, after which a new photon is launched. 

Millions of photons are typically launched in this process.   

One of the outputs of the simulations is the accumulation of all photon weights within each 

voxel in the tissue, also known as the 2-point Green's function. The light sensitivity can be 

computed by multiplying the 2-point function obtained from the source location by the 2-

point function from the detector location, voxel by voxel (Strangman et al., 2013)1. Although 

Monte Carlo simulations are computationally intensive, the resulting sensitivity profiles 

offer a way to design optode layouts that maximize sensitivity for an ROI prior to any 

experiment, thus promising increased signal quality and coverage. This becomes 

particularly relevant for fNIRS-based BCIs, where developing robust systems that use 

limited number of optodes is crucial to remain practical and comfortable for clinical 

applications. 

Although Monte Carlo simulations follow a clearly predefined set of rules, approaches to 

optode layout design that use them allow for certain degree of individualization in their input 

parameters, such as the type of anatomical head model used (atlas based MRI vs. subject-

specific models) or how the target ROIs are defined (anatomically or functionally). 

Importantly, the final choice will often depend on the temporal/monetary/material resources 

available to the researcher since collecting additional individualized data has always an 

associated cost. Therefore, it is important to elucidate the amount of individual MRI-derived 

information worth to include for designing optode layouts, more so when these resources 

are limited.  

                                                 

1 This is true in continuous-wave fNIRS measurements. There are three types of fNIRS systems, namely 

continuous-wave, frequency-domain and time-domain instruments. The continuous-wave (cw) fNIRS systems 

emit light at a constant intensity and then only measure the changes in the intensity of the light that passed 

through the tissue at the detector site. Meanwhile, frequency- and time-domain systems, besides the change in 

light intensity, they measure the arrival times of the photons that emerge from the tissue (Scholkmann et al., 

2014). In this dissertation, a cw-fNIRS system was used.  
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3.2 Detecting and extracting meaningful information: the presence of physiological 

noise 

The fNIRS signal is susceptible to physiological fNIRS noise originating from global 

systemic and local regulatory processes of intra- and extra-cerebral origins (Kirilina et al., 

2013). These noise sources can compromise sensitivity to brain activation measured by 

fNIRS BCIs, particularly when insufficiently preprocessed single-trial data feeds back noise 

instead of brain activity (Klein and Kranczioch, 2019).The main sources of physiological 

noise are heart rate (~1 Hz), respiration (~0.3 Hz) and blood pressure-related variations. 

These variations mainly come from so-called Mayer waves (~0.1 Hz) and very low 

frequency oscillations (<0.04 Hz), as outlined in Figure 1.4 (Boas et al., 2004; Scholkmann 

et al., 2014; Tachtsidis and Scholkmann, 2016; Tong et al., 2019). Mayer waves occur 

spontaneously in conscious subjects and are thought to be tightly coupled with synchronous 

oscillations of sympathetic nervous activity (Julien, 2006; Sassaroli et al., 2012). Very low-

frequency oscillations are thought to be related to neurogenic activity of vessels and with 

vascular endothelial function (Stefanovska, 2007). 

The most common approach to reduce the impact of these noise components is to remove 

specific frequency bands in fNIRS signals by means of digital filters (low-, high- or band-

pass filters). The frequency of heart rate is relatively high with respect to the typical fNIRS 

responses and thus can be can be easily and effectively removed by low-pass filtering. 

However, the remaining noise sources are more difficult to remove due to their spectral 

proximity and potential for synchronization with BCI-task activity. If not correctly 

accounted for, these noise sources can be falsely interpreted as functional brain activity 

(Tachtsidis and Scholkmann, 2016) or can hinder the recovery of hemodynamic responses 

from the brain signal of interest (Yücel et al., 2016). 
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Figure 1.4. Schematic representation of physiological fluctuations present in the fNIRS signal (in 

black). Physiological processes, which contribute to the physiological noise in fNIRS, operate at different 

time scales:  heartbeat (~1 Hz) in blue, respiration (~0.3 Hz ) in orange, Mayer waves (~0.1 Hz) in red, 

and very low frequency oscillations ( usually under  0.04 Hz and in this example depicted at  ~0.003 Hz), 

in green. 

A number of methods have been proposed for separating physiological noise from cerebral 

activation other than digital filtering. Some methods assume that systemic physiology is 

globally (spatially) uniform and thus aim to remove global covariance from the signal with 

multivariate techniques such as principal component analysis (Zhang et al., 2005), 

independent component analysis (Satoru et al., 2007) or global averaging (Batula et al., 

2017). Others use auxiliary physiological measurements such as blood-pressure monitors, 

pulse oximeters, electrocardiograms, chest-band respirometers, spirometers or capnographs 

(Diamond et al., 2006; Kirilina et al., 2013; Scholkmann et al., 2013) to filter the fNIRS 

time course. State-space models based on Kalman filters have also been used (Kolehmainen 

et al., 2003; Prince et al., 2003; Diamond et al., 2006).  

Another approach that is particularly powerful for real-time BCI applications relies on the 

idea that systemic physiological noise present in extracerebral regions can be locally 

measured using channels with short source-detector separations (<1 cm usually, here on 
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referred to as short-distance channels or SDCs). Since this approach assumes that the same 

systemic physiological noise present in the longer distance channels dominates the signal 

acquired with SDCs (Saager and Berger, 2005; Saager et al., 2011), they can be used to 

minimize/reduce unwanted physiological noise from the longer distance channels (usually 

>2.5 cm). SDCs constitute a versatile approach to account for the influence of physiological 

noise. Among others, they have been used as regressors using a general linear model (Saager 

et al., 2011; Goodwin et al., 2014; Sato et al., 2016) and in combination with state-space 

modeling (Gagnon et al., 2011; Gagnon et al., 2012b; Gagnon et al., 2014). 

Although systemic interference is thought to be a global process, previous work reported a 

non-homogeneous distribution of physiological noise components present in fNIRS 

channels (Kirilina et al., 2012; Yücel et al., 2016). Further, it has been suggested that the 

contribution of certain components, such as Mayer's waves, may be different at 

measurements collected at different sites because of heterogeneity in blood vessel sizes, 

location, or geometry (Zhang et al., 2009; Gagnon et al., 2011). Therefore, understanding 

whether fNIRS channels capture physiological noise differently depending on their location 

is crucial to design physiological noise correction strategies. 

3.3 Translating information: low information transfer rate  

Information transfer rate (ITR) shows the amount of information transmitted per unit of 

time. ITR is measured in bits per second (or minute) and is a standard measure of BCIs 

systems that takes into account the number of possible selections, accuracy and the trial 

duration (McFarland et al., 2003; Allison et al., 2012): 

𝐼𝑇𝑅 = (𝑙𝑜𝑔2𝑁 +  𝑃 ∗ 𝑙𝑜𝑔2𝑃 +  (1 − 𝑃) ∗ 𝑙𝑜𝑔2 (
1 − 𝑃

𝑁 − 1
)) ∗

60

𝜏
 

 

(1.1) 

where N is the number of classes, P is the classification accuracy and 𝜏 is the duration of the 

trial period, in seconds. 

The performance of fMRI-BCIs using motor/mental imagery tasks ranges between 0.463 

and 2.30 bits/min (Lee et al., 2009a; Sorger et al., 2009; Bardin et al., 2011; Sorger et al., 

2012) in healthy participants, while reaching 0.07 bits/min in the patient with traumatic brain 
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injury (Patient 23, reported in Monti et al. (2010)). fNIRS-BCI applications that use 

motor/mental imagery tasks range between 0.02 and 1.5 bits/min in healthy participants 

(Sitaram et al., 2007; Batula et al., 2014; Naseer et al., 2014; Hong et al., 2015; Weyand and 

Chau, 2015; Naseer and Hong, 2015b; Nagels-Coune et al., 2017; Sereshkeh et al., 2018; 

Nagels-Coune et al., 2020) while reaching 0.47 bits/min in a case studies with an ALS 

patient (Gallegos-Ayala et al., 2014) and 0.18 bits/min in a patient with Guillain–Barré 

syndrome (Abdalmalak et al., 2017). Given the immobility of fMRI hardware, the studies 

mentioned above show great potential of mobile setups employing fNIRS, thereby enabling 

ecological BCI applications. To put this into perspective, normal speech rate ranges between 

110 and 175 words per minute (Tikofsky, 2000) or 550 to 875 bits/min2. Keyboard typing 

rates range between 20.9 and 89.5 words per minute (Dhakal et al., 2018) or 104.5 to 447.8 

bits/min1. Clearly, current hemodynamic-BCI systems convey considerably less information 

in healthy and clinical populations. However, it is important to note that even low ITR values 

have the potential to improve significantly the quality of life of someone who relies on these 

systems for communicating with the outer world. 

A number of interconnected factors influence information rates for hemodynamic BCI 

systems. Shorter trials (τ) can increase performance of the BCI by allowing a greater number 

of selections per unit time. However, performance may decrease due to less information, 

thereby decreasing the information transfer of the system. The number of selections per unit 

time is dependent on the temporal resolution of the brain imaging method used. Unlike 

electrophysiological recordings, the lower temporal resolution of fNIRS constitutes a major 

limiting factor when used for BCI applications. The hemodynamic response to neuronal 

activation shows a small initial dip, followed by a tall peak around 5-10s after neuronal 

activation, subsequently followed by a variable post-stimulus undershoot. The total duration 

of a hemodynamic response is between 20 and 30s. For this reason, the biggest body of 

hemodynamic BCI applications has used a trial duration of 10s (Herff et al., 2013; Naseer 

and Hong, 2013; 2015b; Hong and Santosa, 2016; Nagels-Coune et al., 2017; Shin et al., 

2017). Only a few studies have used trial durations under 10s. For example, Lee et al. 

(2009b) used a task duration of 5s and Shin and Jeong (2014) and Sorger et al. (2009) used 

                                                 
2 Considering that the average English word is 5 characters long (Norvig, 2012) and that Shannon determined 

that the information content of typical written English was around 1.0 bit per letter (Shannon, 1951). 
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variable task durations of 6/8/10/15 s and 5/10/15 s, respectively. In addition, effort has been 

made reduce trial length and cope with the sluggishness of the hemodynamic response by 

focusing on the detection of the initial-dip (Zafar and Hong, 2016; Zafar et al., 2018). 

The performance of a BCI (P) also depends on how well a classifier can discriminate the 

user’s intentions. This in turn depends on the quantity and quality of data used for model 

training and the type of classification algorithm used to translate user’s intention to output 

commands. The hemodynamic BCI community has adopted a number of multivariate 

classification techniques, including Linear Discriminant Analysis, Support Vector Machines 

and Artificial Neural Networks. All of these algorithms exploit the spatial features of fNIRS 

signals evoked by performing different mental-imagery tasks (Naseer and Hong, 2015a; 

Hong et al., 2018). In addition to training data, which may require several acquisition 

sessions to collect, multivariate approaches require multiple channels, which may increase 

optode setup time. Alternatively, BCI commands can be generated (encoded) and translated 

(decoded) by exploiting the temporal (onset, offset and/or duration) as well as spatial aspects 

of a set of mental tasks (Sorger et al., 2009; Bardin et al., 2011; Sorger et al., 2012; Nagels-

Coune et al., 2017; Nagels-Coune et al., 2020). For example, up to four commands can be 

generated by assigning a unique encoding time for each command, e.g., commands would 

be generated in 0-10, 10-20, 20-30 and 30-40s time windows within a particular 

information-encoding trial. This temporal information approach is serial in nature, so it will 

have longer trial durations than multivariate approaches. Advantageously though, the 

temporal information approach can be implemented in a single measurement channel if only 

temporal encoding is pursued. It can also be combined with spatial encoding using two 

channels, each coding for a distinct mental imagery task, thus minimizing setup time and 

while increasing user comfort.  

A greater number of possible selections or targets (N) could increase performance of a BCI 

system, since more targets convey more information. The majority of hemodynamic studies 

using motor/mental imagery tasks have focused on binary classification (Sitaram et al., 

2007; Monti et al., 2010; Naseer and Hong, 2013; Stangl et al., 2013; Gallegos-Ayala et al., 

2014; Naseer et al., 2016; Abdalmalak et al., 2017; Nagels-Coune et al., 2017; Abdalmalak 

et al., 2020; Nagels-Coune et al., 2020) and to a lower extent in  multi-class problems. 

Studies on multi-class BCI applications have used three (Power et al., 2012; Hong et al., 
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2015; Weyand and Chau, 2015; Sereshkeh et al., 2018; Shin et al., 2018), four (Sorger et 

al., 2009; Bardin et al., 2011; Batula et al., 2014; Weyand and Chau, 2015; Naseer and Hong, 

2015b), five (Weyand and Chau, 2015), twenty-seven (Sorger et al., 2012) or thirty 

(Borgheai et al., 2019) targets. The primary reason why multi-class fNIRS-BCIs have not 

been elaborately studied relative to binary BCIs is that more targets will make trials longer 

when using (spatio)temporal encoding paradigms and may require longer training sessions 

or complex channel configurations for multivariate classification procedures. However, 

efficient stimulation paradigms design (as in Sorger et al. (2012) and Borgheai et al. (2019)) 

show the utility of using a high number of possible targets.  

Improving ITR is important for hemodynamic BCIs, particularly for fNIRS-BCIs. 

Improvements have the potential to enable convenient BCI-based communication and 

control functionalities of patients in ecological settings. Thus, working towards lowering 

trial durations, increasing the number of targets while simultaneously maximizing 

classification accuracy is crucial to reach this goal. 

3.4 Providing feedback to users: unnatural interfaces for communication and 

control 

The interaction between the user and the BCI systems need to be simple and meaningful in 

clinical settings. In communication BCIs, letters or answer options to be encoded can be 

presented acoustically or visually. The output is usually a word or answer option recited out 

loud by the computer program or by the experimenter and no other sophisticated forms of 

output are necessary. In control BCIs, the interaction between the patient and the BCI system 

should result in a visible change in their environment. Thus, an ideal interface should be 

embedded in the environment itself. Interfaces such as robots and wheelchairs are a clear 

example of that. Importantly, other interfaces, such as the ones based on AR, allow for such 

scenarios too, since AR technology enables projecting virtual objects, such as control 

menus, as overlays into the real world. 
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4 Outline of this thesis 

The principal rationale for BCI development has been that such systems could ultimately 

restore communication and control in the absence of words/gestures to people with severe 

neuromuscular disabilities (Shih et al., 2012). Although the number of BCI-related 

publications has increased almost exponentially, there have been fewer applications 

including end-users affected by disease, despite historically being the primary target 

population for BCI systems (Kübler, 2020). This dissertation addresses the limitations 

described above to ultimately reduce the translational challenges that fNIRS-BCIs face. 

In Chapter 2, we aim to develop an fNIRS-BCI for communication and control purposes 

that is more integrated in the environment. To do so, 12 healthy participants used AR 

technology, a single mental task and fNIRS channel to communicate their intentions by 

navigating through an adaptive, six-choice menu. This work conveys fundamental steps 

toward developing fNIRS-based AR-BCI systems for bedside applications. 

Designing optode layouts is an essential step when preparing an fNIRS-BCI setup as the 

quality of the measured signal and the sensitivity to cortical regions of interest depend on 

how sources and detectors are arranged on the scalp. Different amount of MRI-derived 

individualized data can be used for designing optode layouts and available resources often 

dictate the approach researchers will use. In Chapter 3, we investigate whether guiding 

layout design using different amounts of individual (f)MRI data affects the fNIRS signal 

quality and sensitivity to brain activation when healthy participants perform mental-imagery 

tasks typically used in fNIRS-BCI experiments. Based on insights gained as part of this 

work, we give preliminary advice to efficiently using resources for developing robust and 

convenient optode layouts for fNIRS-based communication/control and neurofeedback 

applications. 

fNIRS is susceptible to extra-cerebral physiological noise, potentially compromising its 

sensitivity to detect task-related brain activation. Several studies have speculated that the 

presence of some physiological noise components in the fNIRS signal may be related to the 

position of optodes relative to the location, size and geometry of blood vessels. In Chapter 

4, we first verify that physiological noise amplitude varies across channels in our optode 

layout. We then investigate whether fNIRS channels capture physiological noise differently 
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depending on their proximity to vessels in the scalp and brain and how this dependency 

affects physiological noise correction approaches. This chapter thus extends our 

understanding of the relationship between vasculature features, the fNIRS signal quality and 

methods designed to increase its applicability of fNIRS (and BCIs) for accurately detect 

brain activity.   
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2 
An Augmented-Reality fNIRS-Based  

Brain-Computer Interface:  

A Proof-of-Concept Study 

A. Benitez-Andonegui, R. Burden, R. Benning, R. Möckel, M. Lührs, B. Sorger4 

Abstract  

Augmented reality (AR) enhances the user’s environment by projecting virtual objects into the real world 

in real-time. Brain-computer interfaces (BCIs) are systems that enable users to control external devices 

with their brain signals. BCIs can exploit AR technology to interact with the physical and virtual world 

and to explore new ways of displaying feedback. This is important for users to perceive and regulate their 

brain activity or shape their communication intentions while operating in the physical world. In this study, 

twelve healthy participants were introduced to and asked to choose between two motor-imagery tasks: 

mental drawing and interacting with a virtual cube. Participants first performed a functional localizer run, 

which was used to select a single fNIRS channel for decoding their intentions in eight subsequent choice-

encoding runs. In each run participants were asked to select one choice of a six-item list. A rotating AR 

cube was displayed on a computer screen as the main stimulus, where each face of the cube was presented 

for 6 s and represented one choice of the six-item list. For five consecutive trials, participants were 

instructed to perform the motor-imagery task when the face of the cube that represented their choice was 

facing them (therewith temporally encoding the selected choice). In the end of each run, participants were 

provided with the decoded choice based on a joint analysis of all five trials. If the decoded choice was 

incorrect, an active error-correction procedure was applied by the participant. The choice list provided in 

each run was based on the decoded choice of the previous run. The experimental design allowed 

participants to navigate twice through a virtual menu that consisted of four levels if all choices were 

correctly decoded. Here we demonstrate for the first time that by using AR feedback and flexible choice 

encoding in form of search trees, we can increase the degrees of freedom of a BCI system. We also show 

that participants can successfully navigate through a nested menu and achieve a mean accuracy of 74% 

using a single motor-imagery task and a single fNIRS channel.  

                                                 

4Based on: A. Benitez-Andonegui, R. Burden, R. Benning, R. Möckel, M. Lührs, B. Sorger (2020). An 

Augmented-Reality fNIRS-Based Brain-Computer Interface: A Proof-of-Concept Study. Frontiers in 

Neuroscience 
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1 Introduction 

A brain-computer interface (BCI) is a system that enables users to send commands to the 

external world through brain signals in the absence of motor output (Wolpaw et al., 2002). 

BCI research has mainly focused on developing applications for (1) changing brain 

activation and associated behavior voluntarily through neurofeedback (Subramanian et al., 

2011; Scharnowski et al., 2012; Shereena et al., 2018) and for (2) replacing (lost) motor 

functions through communication BCIs (Birbaumer et al., 1999; Nijboer et al., 2008; Sellers 

et al., 2010) and (e.g., wheelchair/robotic body-part) control systems (Galan et al., 2008; 

Muller-Putz and Pfurtscheller, 2008; Iturrate et al., 2009; Rebsamen et al., 2011; Murphy et 

al., 2017). Independent of the application, information is fed back to users about the success 

or failure of the intended act (Leeb et al., 2007). In communication and control BCIs, 

feedback may allow the BCI user to adapt the communication content (of a next encoding 

trial) in a sense of “back-and-forth communication”, which enables users to communicate 

with or control a specific component of the external world. 

The most common approach to provide feedback to users is through simplified unimodal 

(visual or auditory) representations of brain activation, such as bars or single tones (Sulzer 

et al., 2013). Alternative ways have emerged in the past years due to new technological 

developments in the areas of multimedia and entertainment, such as virtual reality (VR). VR 

is an immersive system that provides users with a sense of presence through potential 

interactions with a simulated virtual world rendered in real-time (Lécuyer et al., 2008). It 

has been suggested that VR environments can improve the BCI experience as it offers a 

richer and potentially more motivating feedback (Chin et al., 2010; Allison et al., 2012). 

Recent advances in VR research enabled the development of augmented reality (AR) 

systems. Unlike VR systems, AR enhances the environment the user is in by projecting 

virtual objects as overlays into the real world. This projection is called registration and it 

can be carried out using a camera that detects a number of fiducial markers placed in the 

real environment (Si-Mohammed et al., 2017). AR can be displayed using systems worn on 

the head (also known as head mounted displays, HMD) or visualized through a dedicated 

screen that the participant is not wearing (phone, computer screen, etc.). Depending on the 

augmentation type, AR systems can be divided into visual see-through (VST) and optical 

see-through (OST) systems. In VST-AR, real images are recorded in real-time by the camera 

of a device (tablet, phone, etc.) before being visualized through a screen, augmented with 
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virtual information. In OST-AR, the virtual content is directly displayed in front of the user’s 

eyes onto a semi-transparent screen. 

The number of studies exploring the use of BCIs in AR applications remains relatively small 

(Si-Mohammed et al., 2017). Up until now, the majority of the AR-BCI literature has 

focused on electroencephalography (EEG)-based evoked potentials applied to a wide range 

of fields, namely robotics (Lenhardt and Ritter, 2010), medicine (Blum et al., 2012), home 

automation (Takano et al., 2011; Park et al., 2019), navigation (Faller et al., 2010), and 

neurofeedback (Chin et al., 2010; Mercier-Ganady et al., 2014). Importantly, some of these 

studies have assessed the impact of AR feedback in mental workload and engagement 

compared to traditional forms of feedback. For example, Chin et al. (2010) compared 3D-

AR displays vs. traditional 2D feedback (both displayed on a computer screen) and found 

that despite the higher mental load experienced by the participants during the 3D-AR 

feedback, participants reported the 3D-AR feedback being more engaging and motivating. 

AR-BCIs based on hemodynamic signals have also been explored, but to a smaller extent 

(Si-Mohammed et al., 2017). One way of measuring hemodynamic signals is using 

functional near-infrared spectroscopy (fNIRS), a portable, silent, and affordable counterpart 

to functional magnetic resonance imaging (fMRI) (Scarapicchia et al., 2017). Both EEG and 

fNIRS make use of sensors [electrodes and optode pairs (sources and detectors), 

respectively] placed on the scalp to measure signals which correlate with neural activity 

(Allison et al., 2012). While EEG measures the postsynaptic potentials of ensembles of 

neurons, fNIRS is based on the optical measurement of the hemodynamic response of both 

oxy- and deoxyhemoglobin (∆[HbO] and ∆[HbR], respectively) to neural activity (Lloyd-

Fox et al., 2010). Although EEG offers a higher temporal resolution than fNIRS, the latter 

represents an interesting option as it provides higher spatial resolution and is less vulnerable 

to motion artifacts (Lloyd-Fox et al., 2010). 

To our knowledge, only three fNIRS-based AR-BCIs have been reported. Hu et al. (2019) 

used an fNIRS-based AR-BCI in a simulated real-time environment aimed at clinicians to 

measure and visualize in real-time the ongoing cortical activity to determine when and 

where the patients were suffering from pain. For that, they placed fNIRS optodes over the 

patients’ bilateral prefrontal cortex and primary somatosensory area and monitored brain 

activity while volunteers with hypersensitive teeth underwent a thermal stimulation session. 
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The cortical activity was superimposed onto a participant’s head in the real world in real-

time through an OST-HMD (HoloLens) device the clinician was wearing. Afergan et al. 

(2015) developed an fNIRS-based BCI using OST-HMD called Phylter. They developed a 

control system connected to Google Glass that helped preventing the user from getting 

flooded by notifications. By monitoring users’ mental workload in real-time with an fNIRS 

device, their system would only show notifications to the user if the mental workload was 

low enough. In the context of mental workload monitoring, McKendrick et al. (2016) 

assessed the cognitive differences between a wearable AR display (Google Glass) and a 

handheld display (smartphone) using a mobile fNIRS system covering the lateral PFC 

during an outdoor navigation task. They complimented it with two separate secondary tasks 

to assess differences in mental workload and situation awareness during navigation. They 

concluded that navigating with an AR wearable display produced the least workload during 

one of the working-memory task, and reported a trend for improved situational awareness 

in their measures of prefrontal hemodynamics. In this proof-of-concept study we tested 

whether healthy participants can use an AR fNIRS-based BCI paradigm motivated by the 

successful implementation in fNIRS-based BCIs, the increased engagement associated to 

the use of AR reported in previous studies (Chin et al., 2010) and its ability to preserve the 

real world while blending digital components to it. 

Generally speaking, the hemodynamic response to a given task execution/stimulus shows a 

specific and reproducible temporal behavior (Menon and Kim, 1999). Previous fMRI-based 

BCI work exploited this property and demonstrated that up to four distinctive BCI 

commands could be encoded/decoded by varying the temporal aspects (onset, offset and/or 

duration) of a (set of) mental task(s) (Sorger et al., 2009; Bardin et al., 2011; Sorger et al., 

2012). Despite its simplicity, so far no fNIRS-based BCI has implemented this temporal 

information encoding approach. This is probably because the temporal encoding approach 

is serial in its nature, which can make the encoding process lengthy depending on the 

experimental design. In addition, it has been used in combination with univariate 

information decoding approaches, while the hemodynamic BCI community has mostly 

adopted multivariate classification techniques such as Linear Discriminant Analysis, 

Support Vector Machines or Artificial Neural Networks that have been used to exploit the 

spatial features of fNIRS signals evoked by performing different mental-imagery tasks 

(Naseer and Hong, 2015a; Hong et al., 2018). However, with appropriate experimental 
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designs, the temporal encoding approach offers a way to increase the degrees of freedom of 

a BCI using a single mental task. With this in mind, the present study aimed at transferring 

the fMRI-based temporal encoding approach mentioned above to fNIRS. For that, we used 

a selection paradigm where participants had to sift through a multi-leveled menu using a 

motor-imagery task. This menu consisted of four levels, in such a way that the choice 

options provided in each level (always six) were based on the decoded choice of the previous 

level. Thus, here we expanded the traditional four-choice temporal information encoding 

approach to include six options for choice selection in each of the levels comprising the 

menu, where an AR object guided the temporal encoding approach. We then used a 

univariate procedure for decoding participants’ intention and used the same AR object to 

back-communicate the decoded answer. Additionally, to account for potential mistakes 

during the decoding process, we implemented an active error-correction procedure to be 

applied by the participants. Importantly, this specific combination of temporal encoding and 

univariate decoding approaches allows participants’ intentions to be decoded based on the 

information recorded from even a single fNIRS channel provided that this channel has 

enough signal quality. With this in mind, in the present study we used a single channel for 

decoding participants’ choices. 

Although the application of BCIs has been limited primarily to a laboratory setting, some of 

the studies mentioned above have examined the possibility of using BCIs in everyday-life 

settings in different contexts (Takano et al., 2011; Blum et al., 2012; Afergan et al., 2015; 

Hu et al., 2019; Park et al., 2019). However, ecologically valid approaches are challenging 

to develop as, among other reasons, they should be as efficient, accurate and reliable as 

possible, but also easy to use, intuitive, and simple to (dis)assemble. This is probably the 

reason why most BCI research has focused predominantly on improving the technology 

(Liberati et al., 2015). There is a relevant body of work addressing that BCI design and 

development should become more user-centered in order to achieve successful everyday-

life applications (Kübler et al., 2014; Liberati et al., 2015; Nijboer, 2015). Effort has been 

made to incorporate this aspect into various applications (Weyand and Chau, 2015; Weyand 

et al., 2015; Nagels-Coune et al., 2017; Weyand and Chau, 2017; Si-Mohammed et al., 

2018). While still in a laboratory setting, in the present study we worked toward a user-

centered communication system by letting participants choose their preferred motor-

imagery task and by selecting participant-specific (single) most-informative fNIRS channel 
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for decoding their choices. Using a single channel constitutes the simplest setup to 

(dis)assemble. In addition, it should make the setup comfortable and thus prevent 

participants from withdrawing from fNIRS recordings due to setup-related discomfort 

(Suzuki et al., 2010; Cui et al., 2011; Rezazadeh Sereshkeh et al., 2018). 

It is important to note that fNIRS measurements are contaminated by systemic interference 

of especially (but not limited to) extracerebral regions, which is mainly caused by cardiac 

pulsations, respiration, and blood-pressure variations (Boas et al., 2004; Tachtsidis and 

Scholkmann, 2016). Several approaches have been reported in the literature to reduce these 

noises: conventional band-pass filtering (Hocke et al., 2018; Pinti et al., 2019); modeling 

physiological noises as a sum of sinusoidal functions with known frequencies where their 

amplitudes are estimated by using the extended Kalman filter and regressed out using a 

general linear model (Prince et al., 2003); global signal-covariance removal by either 

principal/independent component analysis (Zhang et al., 2005; Aarabi and Huppert, 2016) 

or global average procedures (Batula et al., 2017); adaptive filters that use recursive least-

squares estimation methods (Nguyen et al., 2018) or short-distance channel (SDC) 

regression (Saager and Berger, 2005; Saager et al., 2011; Goodwin et al., 2014). In fNIRS 

measurements these SDCs are channels that have reduced inter-optode separations such that 

the interrogated volume is confined primarily to extracerebral regions (Goodwin et al., 

2014). The main assumption underlying their usability is that the same systemic 

physiological noise present in the normal-distance channels (NDCs) dominates the signal 

acquired with SDCs (Gagnon et al., 2012). Intuitively, SDCs can then be used to 

minimize/reduce unwanted physiological noise from the normal-distance channels. So far, 

not many fNIRS-based BCIs have employed them (but see (Shin et al., 2017)). This is 

partially because fNIRS equipment that allows such measurements has only recently 

become widely available. Here, SDC correction was used for the selection of the most-

informative fNIRS channel as well as during the decoding process. 

In this preliminary study participants achieved mean accuracy level of 74% (with a chance-

level of 37.5% for six answer options), which shows that the temporal features of the fNIRS 

signal can be exploited in a temporal encoding paradigm to increase the degrees of freedom 

of a BCI using a single mental task. These accuracies also indicate that the proposed fNIRS-

based AR-BCI setup can be successfully controlled, on average, by participants. 



 

Chapter 2 | An augmented-reality fNIRS-based brain-computer interface 

43 

 

Importantly, this work conveys the fundamental steps toward developing the first fNIRS-

based AR-BCI system to be used as a communication device for bedside applications in a 

clinical setting. 

2 Materials and Methods 

2.1 Participants 

Twelve healthy volunteers [five males; mean age (SD) = 27.1 years (3.2 years)] with varying 

previous BCI/fNIRS/task experience participated in this study (see Table 2.1). Participants 

did not have a history of neurological disease and had a normal or corrected-to-normal 

vision. The experiment conformed to the Declaration of Helsinki and was approved by the 

ethics committee of the Faculty of Psychology and Neuroscience, Maastricht University. 

Informed consent was obtained from each participant before starting the measurements. 

Participants received financial compensation after the session. 

Table 2.1. Participant characteristics 

   

Age 

range 

 

fNIRS 

Cap 

Size (cm) 

Previous experience 

   

BCI 

 

fNIRS 

Task 

  Mental 

drawing 

Interacting with 

cube 

P01 20-25 56 First time < 5 times < 5 times First time 

P02 20-25 56 < 5 times 5 to 10 

times 

5 to 10 times First time 

P03 20-25 56 < 5 times < 5 times < 5 times First time 

P04 25-30 56 > 10 times > 10 times > 10 times First time 

P05 35-40 58 First time First time First time First time 

P06 25-30 56 < 5 times < 5 times 5 to 10 times First time 

P07 25-30 58 < 5 times 5 to 10 

times 

< 5 times First time 

P08 25-30 58 First time First time First time First time 

P09 25-30 56 < 5 times < 5 times < 5 times First time 

P10 25-30 56 5 to 10 

times 

5 to 10 

times 

5 to 10 times First time 

P11 25-30 56 > 10 times > 10 times > 10 times First time 

P12 25-30 58 First time < 5 times < 5 times First time 
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2.2 Experimental Design and Stimulus Display 

2.2.1 General Structure 

The experiment consisted of a training session and an immediately following experimental 

fNIRS session. The training session was self-paced and ranged between 15 and 35 min 

across participants: we only switched to the experimental fNIRS session when participants 

felt comfortable with the stimuli and the motor-task performance. 

In an attempt to follow a user-centered approach, participants were introduced to two motor 

imagery tasks during the training session and asked to choose between them: (option 1) 

mental drawing [of small geometrical figures (a square, circle, etc.) or contour drawings (a 

star, flower, boat, etc.) and (option 2) imagine to interact with the virtually presented AR 

cube (by, e.g., to imagine to hit/squeeze it)]. Participants were asked to choose the mental 

task (mental drawing or imagining interacting with the cube), the specific strategy (drawing 

a square or imagining hitting the cube) they expected would work best and would interfere 

the least with the stimuli and to perform the motor-imagery task with their right hands. They 

were instructed to keep their eyes open throughout the experiment and to look at the 

computer screen while staying as still as possible during the runs. 

The experimental fNIRS session lasted around 1.5 h. Participants first performed a 

functional localizer run, during which the participants were presented with a gray AR cube 

that contained specific symbols (5/6 = crosses, 1/6 = checkmark). For twelve consecutive 

times, they performed the selected motor imagery task when the checkmark was facing them 

(for 6 s) and had to rest for the remaining faces (for 30 s, see Figure 2.1). There was an 

initial baseline period of 36 s indicated by a blue rotating cube, in which participants rested. 

We chose a baseline period of 36 s to guarantee a stable baseline measure for real-time 

conversion of raw data into hemoglobin (Hb) concentration changes. After the twelve trials, 

the cube stopped rotating and became blue again, indicating the end of the run. This run was 

used to select a user-specific most-informative (“best”) fNIRS channel to decode 

participants’ choices in the eight subsequent choice-encoding runs (here on referred to as 

choice runs). 
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Figure 2.1. Experimental design. During the training session participants chose between two motor 

imagery tasks. Then, during the functional localizer run, participants performed the chosen task for twelve 

consecutive trials when the checkmark was facing them (indicated in yellow, below the face showing a 

checkmark) and had to rest for the remaining faces. There was an initial baseline (BL) period indicated 

by a blue rotating cube, in which participants rested. After the twelve trials the cube stopped rotating and 

became blue again, signaling the end of the run (indicated with the word stop in the figure). The user-

specific most-informative channel from this run was used to decode participants’ choices during the 

choice runs. Participants were asked to perform the mental task when the number corresponding to their 

choice was facing them (temporal information encoding), for five consecutive trials (in this example it 

corresponded to choice number 6, again underlined in yellow). After each run the feedback period started 

(indicated by the red square), during which the cube unfolded and the decoded choice was highlighted in 

red (for visualization purposes, we added a black thick square in this schematic representation). After the 

choice runs, participants were asked to fill in several questionnaires. 

Each choice run aimed at selecting one option from a six-item list (menu). These runs 

differed from the functional localizer run in (1) the number of active motor imagery trials 

[five trials (choice runs) vs. twelve (functional localizer run)] and (2) the fact that the AR 

cube was color-coded and numbered (choice runs) vs. the AR cube was gray and contained 

geometrical shapes (functional localizer run). Importantly, the task duration remained at 6 s 

during the choice runs. During each choice run, participants selected one choice from a six-

item list provided before the start of the run and performed the motor imagery task only 

when the number corresponding to their choice was facing them (temporal information 

encoding), for five consecutive times. There was an additional baseline period of 18 s after 

the last trial to ensure that the hemodynamic response goes back to baseline. After the run, 

the cube unfolded and the decoded choice (based on real-time analysis of the fNIRS data) 

was highlighted in red (see Figure 2.1).  

2.2.2 AR Stimulus Display 

In this experiment, we used a variation of a VST-AR system, where a rotating AR cube 
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displayed on a computer screen embodied the menu and each face of the cube represented 

one choice of the list (see Figure 2.2A for an example of a user’s view). In the presented AR 

system, a white A4 cardboard was used to represent the real-world stimulus that also served 

as a spatial point of reference necessary for the visualization of the AR cube. The A4 

cardboard was placed on the desk, between the computer screen and the participants. The 

left half of the board was wrapped in transparent wrapping paper and served as a whiteboard, 

where choice options were handwritten (and modified after each run). The right half of the 

board contained a marker (a 2D-image, see hand-icon in top-left image of Figure 2.2A) that, 

when detected by the HD webcam (Logitech C270 HD, which was fixated on the 

participant’s forehead using an elastic band and recording the cardboard), triggered the 

visualization of the AR cube on a standard computer screen. The AR cube was placed 

relative to the marker as seen in the camera image (see top-left image in Figure 2.2A) with 

the help of Vuforia (v7.1.34), an AR software development kit (SDK) that was running in 

Unity3D. This SDK makes it possible to detect the marker and to place the virtual cube on 

it, creating the effect of augmented reality. The marker was motor imagery task-specific and 

reminded participants of the task to be performed (mental drawing or virtual interaction with 

the cube). After each run, an unfolded AR cube was displayed on the computer screen 

highlighting the decoded choice of the participant (see top-right image, Figure 2.2A). 

Figure 2.2. AR display and example of a full cycle of the nested menu (next page). (A) A task-specific 

marker in the right-side of the A4 cardboard served as the spatial point of reference necessary for the 

visualization of the AR cube. This cube was used to navigate through a four-level nested menu with six 

options in each level. The choice options encoded by the participant are written in blue, while the decoded 

answers are written in black and highlighted in red with a black thick square in the schematic 

representation of the unfolded cube. The choice options provided in each level were based on the decoded 

choice of the previous run. (B) If the decoded choice was incorrect, they were asked to choose the “Error” 

option in the next run. If “Error” was decoded, they were provided with the same option list they saw 

before the error occurred. In this example, the participant chose to perform a mental drawing task, as 

indicated by the markers under “Navigating through the nested menu”. In the first level, we provided 

participants with keywords that responded to the question “What would you like to do?” Since the 

decoded choice [Listen to] Music (highlighted in red only in the actual run; highlighted in red and with a 

black thick square in the schematic view) was correct, the next run summarized music-genre options 

(Level 2). Here, the participant chose “Rock” [music] but the decoded choice was “Jazz”. Thus, the 

participant was provided with Jazz-band options in the next run (Level 3), where (s)he encoded the 

“Error” option. Since the “Error” option was correctly decoded (see displayed choice after Run 3), the 

participant was provided again with Level 2 choice options. The procedure went on until the participant 

reached the last level of the nested menu. At the end of the run, we played the decoded song (“Under 

pressure” in this example) to the participant and (s)he was directed back to the first level of the menu.
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2.2.3 Nested Menu and Error-Correction Approach 

The menu presented during choice runs consisted of four levels that were interconnected in 

such a way that the choice options provided in each level were based on the decoded choice 

of the previous run. The provided answer options became more specific throughout the 

levels. An example transition of provided options from level one to level four would be: 

listen to music > choose a genre > choose a band/artist > choose a song. Displaying the 

selected choice of the fourth level (a song, a picture, a movie, etc., depending on the choice 

in the first level) indicated the end of the navigation round, and participants were directed 

back to the first level of the menu (see Figure 2.2A). This structure allowed participants to 

go through a four-level nested menu twice if all choices were correctly decoded. 

Importantly, it could be that the decoded choice of any given level of the nested menu did 

not match the encoded option by the participant. To account for such decoding mistakes and 

in a first attempt to correct for it, participants were instructed to choose the “Error” option 

in the next run. This “Error” option was part of the choice list in levels > 1 and the position 

this option appeared on the menu list was balanced across the different levels. If “Error” 

was decoded, they were provided with the same option lists they saw before the decoding 

mistake was made (see first Level 2 trial in Figure 2.2B). 

2.3 fNIRS Data Acquisition 

fNIRS data was recorded using a continuous-wave system (NIRScout-816, NIRx, 

Medizintechnik GmbH, Berlin, Germany). The optode setup consisted of nine sources and 

eight detectors which were placed on the left hemisphere that cover areas commonly 

associated with motor imagery, i.e., premotor cortex and part of the supplementary motor 

area, primary motor cortex, somatosensory motor cortex and part of the parietal cortex 

following the extended 10/10 EEG system (see Figure 2.3; (Sorger et al., 2012; Abdalmalak 

et al., 2016; Batula et al., 2017; Erdogan et al., 2019; Klein and Kranczioch, 2019). An in-

house SDC was created by placing source S9 as close as the optodes would allow (∼13 mm 

away) to detector D5 on the same sagittal plane that connects D5 and source S6 (see Figure 

2.3). The signal measured by the SDC should be influenced by the mid-sagittal sinus and 

other large vascular structures commonly found in this region (Duvernoy et al., 1981), which 

have been shown to be affected by low frequency oscillations and cardiac signals (Tong and 

Frederick, 2012). We used this information as a proxy to account for physiological noise in 
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the region covered by the optode setup. 

 

Figure 2.3. 3D view of the fNIRS-optode arrangement. The setup consisted of nine sources (in red), 

and eight detectors (in blue) placed over the left-hemipsheric motor and premotor regions. In total the 

setup contained one SDC (S9-D5) and 24 NDC. For the 3D representation we used NIRSite v1.0 software 

(NIRx Medizitechnik GmbH, Berlin, Germany; RRID: SCR_002491). 

In total, the setup contained 24 NDCs and one SDC. The mean inter-optode distance of the 

standard channels spanned from 26.1 to 36.5 mm. Sources emitted light at wavelengths 760 

and 850 nm, and the light intensity acquired at the detector side was sampled at 6.94 Hz. 

Besides the standard cap fixation (using the chin band), the fNIRS cap (EasyCap 128Ch 

ActiCap, EasyCap GmbH, Herrsching, Germany) was fixated onto the participants’ head 

with three medical tape stripes (connecting the cap and the participant’s forehead) to assure 

the cap would not shift during the measurements. In addition, a black, plastic overcap was 

placed on top of the fNIRS cap to additionally prevent the light in the room from reaching 

the optodes. 

2.4 Apparatus 

The session took place in a lab that consisted of two rooms, i.e., an inner and an outer room, 

where the hardware and materials comprising the setup were distributed (see Figure 2.4). 

We used NIRStar 15.2 (NIRx, Medizintechnik GmbH, Berlin, Germany) for recording the 

data and Turbo-Satori (TSI) 1.4.2 (BrainInnovation B.V., Maastricht, the 
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Netherlands;(Lührs and Goebel, 2017)) and Matlab 2017a (The MathWorks Inc., Natick, 

Massachusetts, United States) for real-time preprocessing and decoding the participants’ 

choices, respectively (see Data Analysis section). The three programs ran on the data-

recording and -analysis laptop (depicted with number 6 in Figure 2.4). NIRStar 15.2 was 

connected to the NIRScout system via USB and to TSI via Lab Streaming Layer (LSL). TSI 

and Matlab were connected via the TSI-Matlab interface, a self-designed network interface 

enabling real-time access to raw and preprocessed fNIRS data as well as protocol and 

statistical information (Lührs and Goebel (2017); BrainInnovationSupport, 2019). In 

addition, Matlab was used to log the different experimental conditions by sending triggers 

to the fNIRS system via LSL and to control the stimulus display that was running in Unity 

3D software (v2018.3.2.f1, Unity Technologies, San Francisco, California, United States), 

which was running in the stimulus laptop (number 5 in Figure 2.4). During choice-encoding 

runs Matlab sent to Unity3D the following commands via TCP/IP: (“a”) start of the run, 

which initiated the rotation of the inactive (blue) AR cube; (“b”), start of the encoding 

period, which turned the inactive cube into an active one by changing the blue-colored faces 

into color-coded faces; (“c”) last rest period, which turned the face of the AR cube back to 

blue, indicating the last rest period of the run; (“1–6”) decoded choice, which unfolded the 

cube and highlighted in red the decoded choice. All commands except for those pertaining 

to the decoded choice were used for the functional localizer run. The computer screen in the 

inner room was connected to the stimulus laptop through an HDMI cable. The HD webcam 

in the inner room (number 3 in Figure 2.4) was connected to the stimulus laptop via USB. 
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Figure 2.4. Summary of the technical setup and connections between its different components. (A) 

Setup. The inner room, where participants were measured while seated (see (3) and enlarged picture), 

contained the fNIRS system (4), a computer screen (1), an HD webcam (3), the A4 cardboard (2) and a 

desk (7). The outer room, where the experimenter was located, hosted the two laptops, i.e., the data-

recording and -analysis laptop (6) and the stimulus laptop (5). Physical connections (wires) are depicted 

with continuous lines, while non-physical connections [Lab Stream Layer (LSL), TCP/IP] connections 

are depicted with dashed lines. (B) Information flow. NIRStar 15.2 was connected to the NIRScout 

system via USB and to Turbo-Satori (TSI) via LSL. TSI and Matlab were connected via the TSI-Matlab 

interface. Matlab was used to send triggers back to the fNIRS system via LSL and to control the stimulus 

display in Unity3D software (via TCP/IP). 

2.5 Subjective Ratings and Previous Experience Report 

After the completion of the experiment, participants first rated how comfortable the setup 

(optodes and webcam) felt throughout the session according to a Likert-scale ranging from 

0 (extremely uncomfortable) to 10 (extremely comfortable). We predicted that 

comfortability ratings would decrease over time due to the presence of local pressure on the 

head surface caused by optodes (Nagels-Coune et al., 2017) and the webcam. Then 

participants rated the general easiness, pleasantness and vividness of the two motor imagery 

tasks they were trained on using another Likert-scale ranging from 0 (extremely 

difficult/unpleasant/not vivid at all) to 10 (extremely easy/pleasant/very vivid). In addition, 

participants were asked to report on their previous motor imagery task, fNIRS and BCI 

experience (first time, less than five, five to ten times or more than ten experiments). 



 

Chapter 2 | An augmented-reality fNIRS-based brain-computer interface 

52 

 

2.6 Data Analysis 

2.6.1 Real-Time Analysis 

2.6.1.1 Data preprocessing 

Raw fNIRS data were first converted into optical-density data and then into changes in Hb 

concentration through the modified Beer-Lambert law in real-time, using differential path-

length factors of λ760 = 6.40 and λ850 = 5.85 (Essenpreis et al., 1993) and a baseline 

calculation period of 15 s (10–25 s after run onset). Data were filtered using a first-order 

moving-average high-pass filter with a cutoff of 0.01 Hz and a second-order moving-

average low-pass filter with a cutoff of 0.25 Hz. No motion correction was applied. 

2.6.1.2 Channel selection 

The channel and Hb-type selection per participant was based on the result of the general 

linear model (GLM) analysis. Specifically, the selection was based on the chromophore and 

channel that led to the highest t-statistic of the task vs. rest contrast in the functional localizer 

run. The design matrix included one task predictor convolved with a standard hemodynamic 

response function (HRF). The default HRF from SPM12 was used (two Gamma HRF, the 

onset of response and undershoot 6 and 16 s, respectively, dispersion 1 s, response to 

undershot ratio 6) and the same amplitudes were used for the ∆[HbO] and ∆[HbR] task 

predictors. In addition, a constant term and the SDC time course were used as confound 

predictors should the latter satisfy the coefficient of variation criterion (CV < 7.5%, which 

was the case for all participants). The pre-whitening approach implemented in TSI was used 

to remove serial correlations (Lührs and Goebel, 2017). 

2.6.1.3 Temporal decoding 

During choice runs the time course of the selected channel was read in real-time in Matlab 

using the TSI-Matlab interface. Participants’ choices were decoded by fitting a GLM in 

Matlab using glmfit to all five trials in each choice run (see Figure 2.5). The design matrix 

differed from the functional localizer run in that it included six task predictors (one for each 

choice option, i.e., choice period) instead of one convolved with the HRF. Importantly, the 

SDC time course was used as a confound predictor during choice runs only if it was used as 

a confound predictor during the channel selection process. No pre-whitening was applied. 

The condition that led to the highest t-estimate of the task vs. rest contrast was considered 

the selected choice (see Figure 2.5). It should be noted that this analysis was re-computed 
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offline using a simulated real-time approach for participants P01–P07 due to a technical 

mistake during these sessions. 

 

Figure 2.5. Temporal-decoding approach. A GLM was fitted to the Δ[HbX] data (from five 

repeated trials) to decode the participants’ intentions. In this example, the participant encoded option 

#6 (represented by the black, thick line) and ∆[HbO] signal was used for decoding. Each colored area 

represents the encoding time (the period where participants were instructed to perform the mental task) 

for each of the cube faces. Each colored HRF represents the expected fNIRS response for each of the 

options. After the run the cube unfolded and feedback was provided by highlighting in red the decoded 

intention (which was the condition that led to the highest t-statistic [option 6, t-value = 8.21]). For 

visualization purposes, we added a black thick square in this schematic representation). 

2.6.2 Offline Analysis 

2.6.2.1 Channel-selection assessment 

We evaluated the effect (on choice-decoding accuracies) of using a predefined Hb type for 

the channel selection vs. selecting the most informative Δ[HbX] channel (where Δ[HbX] 

ϵ{∆[HbO], ∆[HbR]}). Importantly, and despite following a single-channel decoding 

approach, we kept all channels in place to carry out this assessment. 

Besides, we evaluated the effect (on choice-decoding accuracies) of using the SDC as 

confound predictor in the channel-selection process. Differences across Hb-type and usage 

of SDC were tested for significance using a two-way ANOVA with factors SDC (with SDC, 

without SDC) × Hb-type (Δ[HbX], ∆[HbO], ∆[HbR]), followed by paired t-tests. 

2.6.2.2 Effect of the number of trials in the decoding process 

We used the same univariate choice-decoding approach as described in section Temporal 

decoding to evaluate the effect of the number of trials in a given run on decoding accuracies 
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(based on the most informative Δ[HbX] channel). For that, we computed the accuracies of 

all consecutive trial combinations for every trial number (1:n trials, where n={1,2,3,4,5}). 

For example, to compute the decoding accuracy of three trials, trial combinations 1-2-3, 2-

3-4, and 3-4-5 were used. We then quantified the effect of the number of repetitions in the 

decoding accuracy at the group level using Spearman’s rho correlation coefficient. The 

effect of number of trials was additionally evaluated using information transfer rate (ITR), 

defined as in (Allison et al., 2012): 

𝐼𝑇𝑅 = (𝑙𝑜𝑔2𝑁 +  𝑃 ∗ 𝑙𝑜𝑔2𝑃 +  (1 − 𝑃) ∗ 𝑙𝑜𝑔2 (
1 − 𝑃

𝑁 − 1
)) ∗

60

𝜏
 

 

(2.1) 

where N is the number of classes, P is the classification accuracy and τ is the duration of 

task and rest period, in seconds. 

2.6.2.3 Decoding accuracy of error-correction trials 

We incorporated an error-correction mechanism in our decoding process by including an 

“Error” option in levels > 1 of the menu. We assessed the accuracy of the error-correction 

approach with a confusion matrix. For that, we pooled all encoded answers across 

participants and divided them into “Error” and “Non-Error” instances, depending on 

whether the participant intended to encode “Error” or not, respectively. The encoded choices 

were then compared to the decoded ones. Four measures were extracted from the confusion 

matrix, namely accuracy, recall, precision and specificity, which were calculated as follows: 

• Accuracy = (TP + TN)/(TP + TN + FP + FN) 

• Recall = TP/(TP + FN) 

• Precision = TP/(TP + FP) 

• Specificity = TN/(TN + FP) 
 

where TP = True positive or correctly detected “Error” trials; TN = True negative or 

correctly detected “Non-Error” trials; FP = False Positive or incorrectly detected “Error” 

trials; FN = False negative or incorrectly undetected “Error” trial. 

2.6.2.4 Chance-level definition 

A quantile function of a multinomial distribution was used to define the upper bound of the 
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chance-level (37.5% for N = eight runs, c = six classes and a p < 0.05). 

2.6.2.5 Subjective ratings 

Mean and SE of normalized subjective comfortability ratings was computed by calculating 

the mean (of eight runs) for each subject and subtracting the subject’s mean to each item. 

The effect of the duration of the experiment (number of runs) on the comfortability score 

was quantified using Pearson’s correlation. In addition, the relation between previous 

BCI/fNIRS/task experience on task accuracies reached by each participant was assessed 

using Spearman’s correlation coefficient. Finally, to evaluate the perceptual differences the 

mental tasks elicit on each participant, normalized absolute mean differences between the 

preferred and non-preferred mental task ratings were assessed. First, each item was 

normalized following the same approach as for the comfortability ratings. Next, the three 

scores (easiness, pleasantness and vividness) were averaged for each mental task and 

participant. Then, absolute differences between mental tasks were computed and a right-

tailed t-test was used in Matlab. 

 

3 Results 

3.1 Choice-Decoding Results Obtained in (Simulated) Real-Time 

Figure 2.6 shows the individual and group accuracies achieved in the experiment. In 

addition, it shows that half of the participants chose to perform the mental-drawing task and 

that ∆[HbR] was selected for seven out of twelve participants. All participants but P04 

exceeded the upper bound of the chance-level (37.50%, orange dashed line). It should be 

noted that accuracies from participants P01-P07 were computed offline using a simulated 

real-time approach due to a technical mistake during these sessions, while accuracies from 

participants P08-P12 were calculated online based on real-time results. On average, 

participants reached an accuracy of 73.96% (SD = 20.96), as depicted by the left-most gray 

bar of the group plots. Mean decoding accuracies with different grouping factors were also 

computed and descriptively did not differ substantially within each group (see Figure 2.6).
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3.2 Evaluation of Error-Correction Procedure 

In total, participants had to encode the “Error” option 22 times (see Figures 2.7A,B). Out of 

the 22 instances, the error option was correctly detected 14 times, missed eight times, and 

incorrectly labeled once, as indicated in the confusion matrix (Figure 2.7A). Overall, the 

accuracy of the error-correction trials was 90.6% (upper bound of the chance level was 

58.88%, assessed by the quantile function of a multinomial distribution with n = 96 trials, c 

= 2 classes and alpha = 0.05). 

 

Figure 2.7. Evaluation of error-correction procedure. (A) Confusion matrix. Participants reached an 

accuracy of 90.62% (72/96 trials were correctly labeled as “Error” or “NoError”) and a recall level of 

65.22% (out of 22 error trials, 8 trials were missed). (B) Summary matrix of when participants encoded 

the “Error” option (marked in dark gray). Green (red) cells represent trials where the “Error” option was 

correctly (incorrectly) detected. The beige cell indicate a false positive trial. 

 

3.3 Assessment of the Effect of Number of Trial Repetitions 

To assess how the number of trial repetitions affects the decoding process, we sequentially 

reduced the number of trial repetitions we used for decoding. Table 2.2 summarizes the 

individual and group decoding accuracies for a decreasing number of repetitions and Figure 

2.8A shows that the number of repetitions used to decode each run influences the decoding 

process. Specifically, we observed a significant negative correlation between the accuracies 

and the number of repetitions, as assessed by Spearman’s rho correlation coefficient  
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(ρ = −0.639, p < 0.0001). Importantly, mean- and several single-subject accuracies (7 out of 

12 participants) remained above chance level even when using a single trial. As for the ITR 

computation, Figure 2.8B indicates that slightly higher ITR values can be reached, on 

average, when using four trials (0.34 bits/min) instead of five (0.29 bits/min). 

 

Figure 2.8. Effect of the number of trial repetitions on obtained decoding accuracy (individual and 

group results). (A) The box-plot shading depicts the number of repetitions used for decoding: from five 

trials (black) to a single trial (light gray). Median values are represented by the white circles, while the 

mean values are indicated with the horizontal lines. The y-axis represents the accuracy (%) achieved by 

the participant. The red, dashed line shows the chance-level defined by the cumulative multinomial 

distribution. The number of trials used to decode each run influences the decoding process, but mean- 

and several single-subject accuracies remain above chance level even with a single trial. (B) Average 

(gray-scale markers) and single-subject (red markers) ITR values (bits/min) for different number of trials 

as a function of achieved classification accuracies. Lines represent the theoretical values the ITR can take 

as a function of the number of classes, trial duration and accuracy.  
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Table 2.2. Individual and group decoding accuracies over decreasing number of repetitions 

 
Accuracies (%) 

 
5 trials 4 trials 3 trials 2 trials 1 trials 

P01 87.50 81.25 70.83 65.63 47.50 

P02 100.00 81.25 70.83 59.38 57.50 

P03 62.50 75.00 54.17 56.25 45.00 

P04 37.50 50.00 54.17 43.75 37.50 

P05 75.00 50.00 50.00 50.00 42.50 

P06 62.50 68.75 41.67 46.88 27.50 

P07 87.50 87.50 79.17 65.63 57.50 

P08 50.00 56.25 45.83 40.63 32.50 

P09 87.50 81.25 75.00 43.75 35.00 

P10 87.50 87.50 83.33 62.50 52.50 

P11 100.00 87.50 62.50 46.88 42.50 

P12 50.00 68.75 70.83 40.63 25.00 

Group [SD] 73.96 [20.96] 72.92 [14.19] 63.19 [13.74] 51.82 [9.56] 41.88 [11.83] 

      

3.4 Assessment of Channel Selection 

Although our channel selection approach was based on selecting the most informative 

Δ[HbX] channel for each participant, it is not uncommon to have a predefined Hb-type 

before the data acquisition (Naseer and Hong, 2015a). In this context, we looked at whether 

the selected channel would change had we decided to focus on only one chromophore. In 

addition, since we used the SDC time course as a confound predictor, we assessed whether 

applying SDC correction (or not) influences the channel selection. Table 2.3 shows that for 

some participants, the channel selection approach does not affect the selected channel (see 

P01, P02, P07 and P11 across all columns), while for other participants it does. Descriptively 

speaking, SDC correction slightly reduced the mean accuracy for the most-informative 

Δ[HbX]-channel approach. The reason behind this observation is that the increased accuracy 

for some participants (P03, P06, P09, P11, and P12) was smaller than the decrease in 

accuracies for other participants (P04, P05, P08, and P10). The mean decoding accuracy 

increased for the most-informative ∆[HbO] and ∆[HbR] channel approaches (although to a 

considerably lesser extent for the latter).  
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Table 2.3. Most informative channel for different channel selection approaches and (individual and 

mean) accuracies reached with each approach 

 
Accuracies (%) 

 
Best Δ[HbX] Best ∆[HbO] Best ∆[HbR] 

 
SDC no SDC SDC no SDC SDC no SDC 

P01 S3-D2 87.5 (=) S3-D2 87.5 S3-D2 75.0 (↑) S3-D2 25.0 S3-D2 87.5 (=) S3-D2 87.5 

P02 S9-D6 100 (=) S9-D6 100 S9-D6 100 (=) S9-D6 100 S9-D6 87.5 (=) S9-D6 87.5 

P03 S6-D5 62.5 (↑) S2-D6 37.5 S6-D5 62.5 (↑) S9-D6 25.0 S2-D6 62.5 (↑) S2-D6 37.5 

P04 S1-D3 37.5 (↓) S9-D6 100 S1-D3 25.0 (↓) S9-D6 100 S1-D3 37.5 (↓) S5-D6 75.0 

P05 S2-D4 75.0 (↓) S2-D4 87.5 S7-D8 25.0 (↑) S6-D7 12.5 S2-D4 75.0 (↓) S2-D4 87.5 

P06 S2-D6 62.5 (↑) S3-D2 25.0 S2-D6 62.5 (↑) S2-D6 12.5 S2-D6 62.5 (↑) S3-D2 25.0 

P07 S2-D4 87.5 (=) S2-D4 87.5 S2-D4 75.0 (↑) S2-D4 37.5 S2-D4 87.5 (=) S2-D4 87.5 

P08 S1-D2 50.0 (↓) S2-D2 100 S1-D2 50.0 (↓) S1-D2 62.5 S2-D2 100 (=) S2-D2 100 

P09 S2-D3 87.5 (↑) S2-D3 75.0 S2-D3 87.5 (↑) S2-D3 75.0 S1-D3 75.0 (=) S5-D6 75.0 

P10 S1-D2 87.5 (↓) S1-D2 100 S1-D2 87.5 (↑) S3-D2 75.0 S1-D2 87.5 (↓) S1-D2 100 

P11 S1-D3 100 (↑) S1-D3 62.5 S1-D3 50.0 (↑) S1-D3 37.5 S1-D3 100 (↑) S1-D3 62.5 

P12 S5-D5 50.0 (↑) S2-D4 37.5 S5-D5 50.0 (↑) S2-D4 37.5 S2-D3 12.5 (↓) S2-D4 37.5 

Group 

(SD) 

               73.96 

(20.96) (↓) 

                75.00 

              (27.70) 

                62.50 

(23.84) (↑) 

              50.00 

              (31.53) 

                72.92 

(26.02) (↑) 

               71.88 

             (25.63) 

Note 1: Red (blue) cells indicate that the selected chromophore was ∆[HbO] (∆[HbR]) 

Note 2: The different symbols summarize the effect in decoding accuracy (↑ [increased], ↓ [decreased], = 

[maintained]) when SDC was used as a confound predictor vs. when it was not 

 

A repeated measures 2-way ANOVA with factors SDC (with SDC, without SDC) × Hb-

type (Δ[HbX], ∆[HbO], ∆[HbR]) showed that the mean accuracies were different across Hb-

types [main effect of Hb-types; F(2,66) = 3.494, p = 0.036; no significant interaction], but 

not across SDC. Subsequent paired t-tests showed that Δ[HbX] and ∆[HbR] performed 

better than ∆[HbO] [t(23) = 3.83; p(FDR [q = 0.05]) = 0.001, and t(23) = 2.736; p(FDR [q 

= 0.05]) = 0.008]. 

3.5 Previous Experience and Subjective Reports 

Due to the (novel) AR component, the participants were enthusiastic about the research 

study. Independent of the achieved accuracies participants rated the setup positively and 

considered the experiment as “fun,” “engaging,” and “motivating.” The setup became 

uncomfortable over the runs as indicated by a significant negative correlation (r = -0.991, p 
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< 0.0001). Participants reported the main source of discomfort to be the pressure caused by 

the webcam on their foreheads and to a lesser extent the optodes on the head surface. We 

observed that the preferred motor imagery task was rated significantly higher than the non-

preferred task [t(11) = 5.240, p < 0.001]. In addition, we observed that previous 

BCI/fNIRS/task experience correlated positively with individual accuracies, but none of 

them reached significance (ρtask = 0.429, ρBCI = 0.360, ρfNIRS = 0.566, p > 0.05). 

 

4 Discussion 

The present proof-of-concept study combined AR technology and an fNIRS-based BCI to 

apply it in a communication context, where twelve healthy participants were asked to 

navigate in real-time through a nested six-choice menu while following a temporal 

information encoding approach. The decoded choice was defined for each participant based 

on the time course of the most-informative channel in the setup. In case the decoded choice 

was incorrect, an active error correction procedure was used. We achieved mean accuracy 

levels of 73.96% (with a chance-level of 37.5% for six answer options) and error detection 

accuracies of 90.6%. The following sections discuss the general implications of this study, 

together with its limitations and prospects for the future. 

The Temporal Information Encoding Approach – A Powerful Paradigm for fNIRS-Based 

BCIs 

In this experiment, we applied for the first time a temporal information encoding approach 

and a GLM-based decoding scheme previously reported in fMRI-based BCIs (Sorger et al., 

2009; Bardin et al., 2011; Sorger et al., 2012) to an fNIRS-based BCI system to distinguish 

between six options using a single channel and mental task. An advantage of using this 

procedure is that a single channel may be sufficient for decoding participants’ intentions 

without hampering our decoding ability. Intuitively, using a single channel should also make 

the setup more comfortable. It should be mentioned that although we assessed the feasibility 

of the single-channel approach and recorded participants’ comfortability scores over time, 

we kept all channels in place for post hoc analyses. Another advantage is that, theoretically, 

this approach could allow including a considerably high number of conditions. In the present 

work we have further advanced previous applications by going from four (Sorger et al., 

2009; Bardin et al., 2011) to now six temporally different but still differentiable encoding 
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phases. Importantly, future work should explore the upper limit of the included number of 

conditions that would yield a sufficiently high decoding accuracy. In any case, increasing 

the number of conditions would inevitably rise the duration of the run, but this could be 

solved by reducing the task duration to a certain extent. Until now the biggest body of 

hemodynamic BCI applications has used a task duration of 10 s (Herff et al., 2013; Naseer 

and Hong, 2013; Hong and Santosa, 2016; Nagels-Coune et al., 2017; Shin et al., 2017) or 

longer (Bardin et al., 2011; Bauernfeind et al., 2011; Batula et al., 2017), and very few 

studies have used task durations under 10 s: for example, (Sorger et al., 2009)and (Shin and 

Jeong, 2014) used variable task durations of 5/10/15 s and 6/8/10/15 s, respectively. To 

maintain the single-trial duration as low as possible without hindering the ability to 

distinguish between conditions, we opted to use 6 s task duration per condition for our 

experiment. However, the considerable inter-subject variability in accuracies suggests that 

user-tailored task durations should be considered in future studies. 

Using a Single fNIRS Channel – A Promising Approach in the Context of Temporal 

Information Encoding 

Selected Feature 

Feature selection varies across studies, but in general, previous work has focused on either 

using only ∆[HbO] signal (Stangl et al., 2013; Erdoğan et al., 2014; Hong et al., 2015; Koo 

et al., 2015; Hong and Santosa, 2016; Lapborisuth et al., 2017; Noori et al., 2017; Liu et al., 

2018) or the combination of different chromophores (computing the mean or the difference 

of ∆[HbO] and ∆[HbR], Naseer and Hong, 2015b). A few fNIRS-BCI applications have 

used/explored ∆[HbR] on its own (Cui et al., 2010; Naseer and Hong, 2015b; Hwang et al., 

2016). The main reason is that ∆[HbO] is considered to exhibit larger and more pronounced 

concentration changes than ∆[HbR] in response to mental tasks (Stangl et al., 2013; Sato et 

al., 2016). Besides, it has been reported that ∆[HbO] signals are more discriminative and 

perform more robustly than ∆[HbR] signals (Mihara et al., 2012; Naseer and Hong, 2015b). 

However, Cui et al. (2010) and Hwang et al. (2016) found that ∆[HbO] and ∆[HbR] 

performed similarly in terms of accuracy. In the present work the channel selection approach 

led to selecting ∆[HbR] for 7/12 participants. In addition, our post hoc analysis revealed that 

at the group level channel selection using either Δ[HbX] approach or ∆[HbR] performed 

better than only ∆[HbO] channel selection. Despite having lower SNR, these results point 

at the usefulness of the ∆[HbR] signal for the classification of motor imagery (at least) in a 
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GLM-based decoding approach. 

SDC Correction 

SDCs are used to minimize/reduce unwanted physiological noise contained in NDCs 

(Goodwin et al., 2014). In the current work, a custom-built SDC was used as a GLM 

confound predictor during both, the selection of the most informative channel and the 

decoding process. Offline, we evaluated the effect of using SDC for channel selection and 

choice decoding. As derivable from Table 2.3, when using the Δ[HbX] approach, SDC 

correction did not affect the channel selection in seven out of twelve participants (P01, P02, 

P05, P07, P09, P10, and P11). The selected channels for the remaining participants differed 

either in location only (P06) or in location and Hb-type (P03, P04, P08, and P12). This 

suggests that the former group of participants had a relatively stable signal compared to the 

latter ones. Interestingly, the mean accuracies were higher for the former group, too [89.29% 

(SD = 8.63) vs. 58.33% (17.08)]. Although the accuracy did not significantly change on 

average when SDC correction was used vs. when it was not, a clear divergence between 

both approaches was observed in some participants. For example, the accuracy reached by 

P04 and P08 was considerably reduced after SDC correction (100–37.5% and 100–50%, 

respectively), while it improved for P06 and P11 (25–62.5% and 62.5–100%, respectively). 

It is not straightforward to attribute this opposing and seemingly irregular effect across 

participants to an isolated cause. Instead, it may be the result of an interaction between the 

spatial relation of the SDC and the selected channel, which suggests that the location of the 

SDC matters even in a relatively small setup. In addition, the selected chromophore (whether 

it is ∆[HbO] or ∆[HbR]) may influence the effect of SDC correction. Indeed, unlike for the 

Δ[HbX] (and the ∆[HbR]) approach, we observed a clear improvement before/after SDC 

correction when selecting channels based on Δ[HbO] (see Table 2.3, “Best ∆[HbO]”). 

Specifically, the mean decoded accuracy increased from 50 to 62.5% after SDC correction. 

This is expected, as ∆[HbO] signal is more affected by global systemic artifacts in both 

extracerebral and intracerebral compartments than ∆[HbR] (Kirilina et al., 2012). 

t-Statistic for Channel Selection and Decoding 

Different approaches for channel selection have been reported in the literature. Hu et al., 

(2013) compared the difference between the maximum value during the task and rest 

periods, and considered the channel to be active if the difference was positive. Hong and 
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Naseer (2016) and Khan and Hong (2017) suggested selecting channels where the initial dip 

could be reliably detected. For that, a vector-based phase analysis with a threshold circle as 

a decision criterion was employed. Previous fNIRS studies have also followed a t-value 

(Hong and Santosa, 2016; Nagels-Coune et al., 2017) or beta-value criterion (Klein and 

Kranczioch, 2019) between the measured and expected hemodynamic response by the given 

stimulation for channel selection. 

In the present study we selected the most informative channel and Hb-type combination 

based on the highest t-statistic of the task vs. rest contrast of the functional localizer data. 

We ensured correct t-value estimation during channel selection by removing serial 

correlations generally present in the fNIRS data (Huppert, 2016). The decoded answer 

option was based on the choice that led to the highest t-statistic of the choice i vs. rest 

contrasts, where i = {1,2,3,4,5,6}. No pre-whitening was used during decoding since the 

ranking of the t-estimate should not change across choices. The reason for this is that, as a 

single channel was used for decoding, each t-estimate was affected by the same amount of 

serial correlations (Lührs et al., 2019). 

Necessity of Trial Repetition 

Sorger et al. (2009) and Bardin et al. (2011) used an fMRI-based temporal-encoding and 

decoding approach to carry out five and two communication runs (respectively) with four 

answer options; while Sorger et al. (2012) used it in a letter speller context with 27 letter 

options to encode words between 7 and 13 characters. They reached single-trial mean 

accuracies of 94.9% (Sorger et al., 2009), 100% (Bardin et al., 2011), and 82% (Sorger et 

al., 2012) in healthy participants. As for fNIRS-based BCIs, previous work has addressed 

classification problems using multivariate approaches that maximally distinguished between 

five mental tasks with an average single-trial accuracy of 37.2% (Weyand and Chau, 2015), 

or four commands involving motor-execution (Shin and Jeong, 2014) and motor imagery 

tasks(Batula et al., 2014; Weyand and Chau, 2015; Naseer and Hong, 2015b) that reached 

mean single-trial accuracies of 82.46, 45.6, 73.3, and 46.7%, respectively. In the present 

work, participants encoded the same choice five consecutive times in each of the eight 

choice runs, and we achieved mean (multi-trial/repetition) accuracy levels of 74%. 

To assess whether five consecutive trials were actually necessary to successfully decode 
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their choice, the effect of reducing the repetitions on the decoding accuracy was evaluated 

post hoc. We observed a significant negative correlation between the accuracies and 

decreasing the number of repetitions (ρ = −0.639, p < 0.0001). Interestingly, encoding the 

same choice only once maintained the mean group accuracies above chance level although 

with considerably lower values than with five trials (73.96% vs. 41.88%). In line with the 

observed accuracies, the mean ITR value was considerably reduced when a single trial is 

used (ITRl = 0.17 bits/min) compared to when five trials were used (ITR5 = 0.30 bits/min). 

In addition, we observed that reducing the number of repetitions to four slightly improves 

the mean ITR, with 0.34 bits/min. To put these values in a broader context, the average ITR 

of the studies mentioned above were calculated and can be compared to the present study in 

Figure 2.9. This figure shows that the ITR1 is closely related to the ITR values from Batula 

et al. (2014) and Weyand and Chau (2015) and that with the approach employed in this 

study (ITR5) considerably higher accuracies are reached, while maintaining the ITR value. 

This figure also depicts that ITR5 is considerably lower than in Shin and Jeong (2014) and 

Naseer and Hong (2015b). 
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Figure 2.9. Average ITR values from relevant hemodynamic-BCI literature. Square markers 

represent fMRI-based BCIs, while circular markers represent fNIRS-based BCIs. Lines depict the 

theoretical values the ITR (bits/min) can take as a function of the number of classes (c), trial duration and 

accuracy. 

Lower decoding accuracies compared to fMRI studies are expected since fMRI has a higher 

spatial resolution (Valente et al., 2019), fMRI signals have stronger signal-to-noise ratio 

(Cui et al., 2011) and because unlike fMRI, the brain signal measured with fNIRS also 

contains (unwanted) superficial scalp information (Erdoğan et al., 2014). This is because 

light traveling from a source to a detector to reach the brain must pass through scalp and 

skull tissues twice (Brigadoi and Cooper, 2015). Lower decoding accuracies compared to 

fNIRS-BCI studies employing multivariate approaches may require further explanation. 

Multivariate approaches are pattern-classification algorithms used to decode the information 

that is represented in a given pattern of activity (Norman et al., 2006). They integrate 

information of multiple voxels/electrodes/channels by optimizing their weights and 

theoretically should provide higher sensitivity to disentangle overlapping distributed 

activation patterns than univariate approaches (Valente et al., 2019). The fundamental steps 
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comprising multivariate approaches are, generally speaking, feature extraction, feature 

selection, model learning and validation (Norman et al., 2006). The available number of 

trials/examples for model learning and feature extraction influences the performance of 

multivariate approaches, as estimating a model based on few examples may not be 

sufficiently reliable or may not capture the differences between classes in a relatively high-

dimensional space (Valente et al., 2019). Thus, it is expected that a model trained on a 

sufficient number of examples should be able to accurately classify examples never seen by 

the model. Naseer and Hong (2015b) and Shin and Jeong (2014) employed multivariate 

approaches and both used > 100 trials to train their models, collected over four separate 

sessions and a single session, respectively. In addition, their classification problem aimed at 

distinguishing between different task patterns, which we suspect may elicit more discernible 

patterns than classification problems aimed at detecting the presence or absence of a task-

related information (i.e., task vs. rest scenario). It should be noted that Batula et al. (2014) 

and Weyand and Chau (2015) also applied multivariate approaches that aimed at 

distinguishing between different motor imagery tasks, but employed less total number of 

trials to address the classification problem, which can partially explain the lower accuracies 

reported in these studies. The temporal approach employed in this study did not require any 

model learning, but relied on a time course extracted from a single channel with certain 

degree of trial-to-trial variability that was not constant across participants. Indeed, in some 

participants (see P03, P04, P06, P08, or P12), we did not observe a linear decrease in the 

decoding performance with reducing the number of repetitions as in the group results, which 

suggests that for some participants the inter-trial variability is higher than for others. 

Altogether, we believe these are the main reasons that could explain the divergence in the 

mean single-trial accuracies observed in the present study and in the literature. 

In the future, a multivariate temporal approach could be tested that would also only require 

a single localizer run. Specifically, instead of selecting and using a single (most-informative) 

channel for decoding participants’ intentions, a task-specific activation pattern would be 

defined after the localizer session (based on a univariate approach over each channel 

comprising the setup), here called as “base-pattern.” For each of the communication runs a 

new activation pattern for each condition would be calculated and compared to the base-

pattern as in Monti et al. (2010). The answer option leading to the highest correlation or the 

smallest distance between the patterns would be the selected option. Importantly, the 
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number of optodes comprising the setup should be optimized to guarantee participants’ 

comfort and a good accuracy level. In addition, due to the existing trial-to-trial variability 

within and across participants, a subject-specific number of trials could be considered 

instead of seeking a group-based criterion. This could be achieved, for example, by 

implementing an evidence accumulation process with a stopping criterion that trades speed 

and accuracy for each participant (Mattout et al., 2015). 

Feasibility of Error-Correction Approach 

Automatic recognition of error potentials has been successfully used in EEG-based BCIs 

that focus on sensorimotor rhythms and event-related potentials, since evoked responses by 

the feedback differ depending on whether the feedback is correct or not (Chavarriaga et al., 

2014; Mattout et al., 2015). Hemodynamic signals do not show such distinct patterns, which 

makes direct forms of error-correction mechanisms more challenging to implement. Here 

we developed an active error-correction approach where participants were asked to indicate 

a decoding error by encoding the “Error” option in the next choice run if the decoded choice 

they received did not correspond to what they intended to encode. This approach assumes 

that we can correctly detect the “Error” option when participants encode it. We built a 

confusion matrix by pooling all encoded answers across participants to evaluate the 

performance of our proposed error detection approach. In an ideal scenario, the number of 

“Error” trials comprising this matrix should be zero or close to zero, which would indicate 

that no decoding mistakes were made. The fact that participants reached an average of ∼74% 

accuracy indicates that participants had to encode “Error” several times, but importantly, 

this number differed across participants. Figure 2.7B shows that for example, P06 had to 

encode “Error” 5/8 times, while P02 did not have to encode any. The figure also indicates 

that the number of “Error” trials was lower than “not Error” trials (thus making the confusion 

matrix unbalanced). The confusion matrix shows that we reached an accuracy of 90.62% 

(72/96 trials were correctly labeled as “Error” or “not Error”). However, we only reached a 

recall level of 63.63% (out of 22 error trials, 8 trials were missed), which indicates that this 

approach did not always work. 

It is also important to note that the number of encoded errors does not directly represent the 

accuracy of the BCI setup. This is due to three reasons: first of all, owing to a technical 

mistake, data from P01-P07 were reanalyzed offline. In turn, some trials that were 
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incorrectly decoded in real-time were correctly decoded offline (and vice versa), which 

misplaced the presence of “Error” encoding runs (and disrupted the semantic link between 

the encoded and decoded choices). This means that in the former case (after offline analysis 

the choice was correctly decoded), a subsequent error-encoding run became unnecessary, 

while for the latter case (after offline analysis the choice run was incorrectly decoded) a 

following “Error” encoding run should have occurred (see Supplementary Material). 

Second, our experimental design did not include an error option in the first level of the 

nested menu. This implies that if choices were wrongly decoded in the fourth level of the 

menu, participants were no longer able to encode the “Error” option in the next run. Third, 

and similarly, if a decoding error occurred in the last run of the experiment (run number 

eight), participants were no longer able to encode the “Error” option. These two scenarios 

could be addressed in the future by using additional short runs (under a minute) where the 

participant would verify if the decoded answer was correct or not. The run would consist of 

an initial and final baseline periods of 20 and 10 s, respectively, with a single full rotation 

of the AR cube presented in between. Specifically, the AR cube would show faces 

corresponding to yes/no answers, alternated with rest periods, i.e., YES-NO-REST-YES-

NO-REST (6 s per face, 36 s in total). This would allow participants to encode twice whether 

the decoding option was correct or not in 66 s, while leaving enough time for the 

hemodynamic response to get back to baseline. 

In this experiment participants navigated through a four-level, nested menu. After 

completing one full round (i.e., reaching level four), participants were directed back to the 

first level of the menu. Since participants performed eight choice runs, this structure allowed 

them to maximally go through the menu twice. Due to the technical mistake mentioned 

above, the following lines will only discuss results pertaining P08–P12: P11 completed two 

full rounds (100% accuracy), while P09 and P10 completed one full round (both participants 

reached a 87.5% accuracy); P08 and P12 did not manage to complete a single round (the 

decoding accuracy for both participants was 50%). These results clearly show that 

statistically significant accuracy is a necessary but not sufficient prerequisite to achieve a 

functionally significant accuracy. Indeed, the accuracy that would be necessary to use the 

system in a convenient way requires the accuracy to be much higher. Future work should 

include the “Error” option in each level of the nested menu. It should also consider an 

additional measure besides the magnitude of the t-statistic for decoding participants’ 
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choices, such as a confidence measure based on the absolute differences in the t-estimate 

across conditions. We expect that a more informed decision helps improving the decoding 

and the error-detection processes. 

Task Selection Based on Participants’ Preference and Previous Experience 

In the present study, we first trained participants to perform two different motor imagery 

tasks and subsequently let them choose their preferred option. However, unlike previous 

work, we did not test whether user preference leads to better performance compared to an 

experimenter-based task selection approach (Weyand and Chau, 2017). 

Intuitively, experienced BCI users may have a more realistic idea of which mental strategy 

works best for them and thus choose the task that has worked well in the past. Although we 

asked participants to choose the task they felt most comfortable with in the given setup 

independent of their previous experience, P02, P04, P05, and P11 chose to use mental 

drawing for this very reason. In contrast, participants P07 and P10, who also reported being 

familiar with the mental drawing task (and unfamiliar to the interacting with the cube task), 

chose to use interacting with the cube as it felt more natural for them given the AR stimuli. 

Previous experience with the mental task, BCI setups and fNIRS systems did not show 

significant correlation with obtained accuracies. However, differences in decoding 

accuracies between (1) novices and (2) average and more experienced BCI/fNIRS users 

were considerably high [65.63% vs. 80% (average) and 75% (more experienced) for BCI 

and 62.5% vs. 70% (average) and 82.5% (more experienced) for fNIRS]. Similarly, we 

observed differences between the same groups but to a lower extent regarding previous task 

experience. Specifically, novices reached a mean accuracy of 71.73%, while average and 

more experienced users reached 75 and 79.17%, respectively. These observations suggest 

that participants with a certain level of experience with a BCI/fNIRS system or a given 

mental task may have enough introspective information to make an adequate and informed 

decision on their preferred task after a single training session. 

Using AR in BCIs Offers a Great Flexibility 

Recent work has shown that EEG-based BCIs can successfully be used in combination with 

new technological developments such as AR to improve real-world practicality by offering 
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a richer, more direct, and intuitive interface (Kansaku et al., 2010; Takano et al., 2011; 

Borges et al., 2016; Faller et al., 2017). However, very few fNIRS applications have 

explored this option (Afergan et al., 2015; McKendrick et al., 2016; Si-Mohammed et al., 

2018; Hu et al., 2019). In the present study, we employed an AR cube to guide the temporal-

encoding approach and to display the decoded answer of participants’ intentions. For that, 

we used a relatively simple and flexible setup from the hardware point of view: we made 

use of two laptops, one additional computer screen, an HD webcam, and home-made A4 

cardboards. The home-made A4 cardboards served as whiteboards and triggered the display 

of the AR cube in Unity3D on an additional computer screen. Importantly, a whiteboard 

offers a high degree of flexibility and individuality as anyone (a caretaker, family member, 

experimenter, etc.) could write potential choice options based on previous knowledge of the 

user and/or the social context (although we used the same choice options for all participants 

in this experiment, see Supplementary Material). Also, a whiteboard provides a degree of 

proximity to the setup and interaction between the user and the experimenter as new choice 

options need to be written down after each run. Besides, handwriting may offer a sense of 

familiarity to the user. It is important to note that participants were instructed to look at the 

computer screen at all times throughout the runs, which makes the chosen location of the 

cardboard (on the desk, between the computer screen and the participant) not intuitive from 

a pure AR setup perspective. Indeed, the cardboard could have been placed in a different 

location (behind the screen, for example) as long as the webcam’s placement would change 

accordingly. However, we chose consciously to place the cardboard between the screen and 

the participants exclusively to exploit the cardboards’ interactive and proximity features 

mentioned above. 

Altogether, this relatively simple setup has the potential to be successfully implemented in 

a more ecologically valid environment such as a hospital room or a rehab center. From the 

setup point of view, we picture a situation where the user would be placed comfortably in a 

Fowler’s position (head is placed at a 45-degree angle), while wearing the optodes, fNIRS 

cap and overcap. The fNIRS system would be located next to the bed. A removable desk 

would be attached to the structure of the bed, above the user’s thighs, slightly tilted toward 

the user’s head. A tablet fixated almost perpendicular to the desk could be used instead of 

the additional computer screen to display the AR cube. To maximize comfort, the rotation 

of the desk would be adjusted to ensure the tablet was placed at the same height as the user’s 
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eye gaze. The webcam would be integrated into the tablet or a separate camera would be 

placed on a stable structure such as a tripod located right next to the participant and it would 

be recording the contents of the whiteboard. Alternatively, smart glasses with an integrated 

camera could be used. These glasses would then also replace the tablet and could display 

the cube directly on the glasses. 

From the data analysis point of view, the current decoding process could be improved to 

increase the performance of the BCI (as discussed in previous sections). Importantly, as the 

majority of the analysis steps have been streamlined (through scripts written in Matlab and 

Unity3D), a single BCI operator would be sufficient to perform the measurements. 

However, to assure that the channel selection procedure is properly done (i.e., the selected 

channel is sufficiently informative and not corrupted extensively by noise), an experienced 

researcher or a trained medical professional in understanding the fNIRS signal would be 

necessary. Of course, caretakers and family members should be encouraged at all times to 

assist the experimenter in selecting the most appropriate options to be presented to the user 

through the whiteboard. 

 

5 Conclusions 

In the present study, we showed that fNIRS-based BCIs can be successfully combined with 

AR technology to address a six-class problem using a single mental task and fNIRS channel. 

AR technology allows for a seamless real-world interaction that future studies should 

explore in more detail. The high inter-subject variability observed in this study not only in 

achieved accuracies but also in task preference and channel selection, points at the need of 

shifting the BCI field toward a true user-centered approach. Future studies should consider 

pursuing individualized approaches to bridge the gap from research to real-world 

applications.
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6 Supplementary Material 

6.1 Encoded and decoded answers 

This section compiles all encoded (by participants) and decoded choices (based on the 

temporal decoding approach) for each participant. It is important to note that, the data from 

P01 to P07 were reanalyzed offline due to a technical mistake. Thus, some trials that were 

incorrectly decoded in real time were correctly decoded offline (and vice versa), which 

misplaced the presence of “Error” encoding runs (and disrupted the semantic link between 

the encoded and decoded choices). This is clearly observed in participants P03 (Table S2.3) 

to P07 (Table S2.7).  Choices in green indicate a successful completion of the (four-level) 

navigation round, while choices in red indicate an unsuccessful completion of the navigation 

round. 

Table S2.1. Encoded and decoded choices for P01 
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Table S2.2. Encoded and decoded choices for P02 

 

Table S2.3. Encoded and decoded choices for P03 
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Table S2.4. Encoded and decoded choices for P04 

 

Table S2.5. Encoded and decoded choices for P05 
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Table S2.6. Encoded and decoded choices for P06 

 

Table S2.7. Encoded and decoded choices for P07 
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Table S2.8. Encoded and decoded choices for P08 

 

Table S2.9. Encoded and decoded choices for P09 
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Table S2.10. Encoded and decoded choices for P10 

 

Table S2.11. Encoded and decoded choices for P11 
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Table S2.12. Encoded and decoded choices for P12 

 

6.2 Choices presented to participants 

Participants were presented with the same set of choices, which can be viewed here (select 

Data Sheet 2).   

  

https://www.frontiersin.org/articles/10.3389/fnins.2020.00346/full#supplementary-material
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3 
Guiding functional near-infrared 

spectroscopy optode-layout design           

using individual (f)MRI data:                            

Effects on signal quality and sensitivity 

A. Benitez-Andonegui, M. Lührs, L. Nagels-Coune, D. Ivanov, R. Goebel, B. Sorger6 
 

Abstract 

Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS) 

experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest 

depend on how optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-

based brain-computer interfaces (BCIs), where developing robust systems with few optodes is 

crucial for clinical applications. Available resources often dictate the approach researchers use for 

optode-layout design. Here we compared four approaches that incrementally incorporated subject-

specific magnetic resonance imaging (MRI) information while participants performed mental-

calculation, mental-rotation and inner-speech tasks. The literature-based approach (LIT) used a 

literature review to guide the optode layout design. The probabilistic approach (PROB), employed 

individual anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an 

independent dataset. The individual fMRI (iFMRI) approach used individual anatomical and fMRI 

data, and the fourth approach used individual anatomical, functional and vascular information of the 

same subject (fVASC). The four approaches resulted in different optode layouts and the more 

informed approaches outperformed the minimally informed approach (LIT) in terms of signal quality 

and sensitivity. Further, PROB, iFMRI and fVASC approaches resulted in a similar outcome. We 

conclude that additional individual MRI data leads to a better outcome, but that not all the modalities 

tested here are required to achieve a robust setup. Finally, we give preliminary advice to efficiently 

using resources for developing robust optode layouts for BCI and neurofeedback applications.  

                                                 

6 Based on: A. Benitez-Andonegui, M. Lührs, L. Nagels-Coune, D. Ivanov, R. Goebel, B. Sorger (2020). 

Guiding functional near-infrared spectroscopy optode-layout design using individual (f)MRI data: Effects on 

signal quality and sensitivity. bioRxiv, 2020.2009.2027.315390 
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1 Introduction 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable optical imaging 

method used to measure brain activity via hemodynamic responses involving increased 

oxygen consumption and cerebral blood flow (Scholkmann et al., 2014; Scarapicchia et al., 

2017; Brigadoi et al., 2018). These physiological changes lead to local changes in the 

concentrations of oxy- (Δ[HbO]) and deoxy-hemoglobin (Δ[HbR]), which can be detected 

because near-infrared light is absorbed by hemoglobin located in blood vessels (Scholkmann 

et al., 2014; Quaresima and Ferrari, 2016).  

When setting up an fNIRS experiment, optical sensors (‘optodes’) are placed on the scalp, 

which can be classified into sources (emitters) and detectors (receivers). Light emitted from 

a source is propagated through extracerebral and cerebral tissues up to a few centimeters, 

where some photons are scattered and absorbed before light reaches the detectors (Machado 

et al., 2014). The spatial resolution of fNIRS is therefore in the range of 5-10mm (Quaresima 

and Ferrari, 2016) depending on the way source-detector pairs (or ‘channels’) are arranged 

on the scalp (Culver et al., 2001). The distance between a source and detector pair, along 

with the anatomical tissues between them determines the depth of light penetration and the 

sensitivity to underlying cortex (Brigadoi et al., 2018). Therefore, the quality of the fNIRS 

signal can differ dramatically between optode layouts.  

This effect of optode layout is particularly relevant for applications requiring sparse optode 

layouts, such as brain-computer interfaces (BCIs). BCIs provide an alternative means of 

motor-independent communication for clinical populations suffering from severe motor 

disabilities (Naseer and Hong, 2015a) by enabling users to send commands via brain activity 

in the absence of motor output (Wolpaw et al., 2002; Naseer and Hong, 2015a). FNIRS is a 

promising choice for implementing BCIs due to its portability, safety and relatively low cost 

(Sorger et al., 2009; Shin et al., 2017). However, it remains a challenging undertaking to 

develop efficient, accurate and robust systems using the limited number of optodes required 

for fNIRS-BCI systems to remain portable and comfortable for clinical applications. Indeed, 

a number of fNIRS-based BCI studies using small optode layouts (Naito et al., 2007; Power 

et al., 2012; Weyand et al., 2015; Nagels-Coune et al., 2017; Benitez-Andonegui et al., 2020; 

Nagels-Coune et al., 2020) have reported variability in the number of participants able to 

reach the minimum accuracy (70% in a two-class BCI) required for practical BCI use 
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(Kübler et al., 2001). This variability may originate from individual anatomical (Coyle et 

al., 2005; Allison and Neuper, 2010) or functional differences (Weyand et al., 2015) that 

affect fNIRS signal quality/sensitivity and therefore might be improved by designing optode 

layouts for individual users that account for such differences. 

Researchers often define a region of interest (ROI) in line with their research question and 

design an optode layout in a grid-like fashion to target a specific brain area (Brigadoi et al., 

2018). The simplest and most common optode-layout design is to assign source and detector 

locations on the head to cover a given cortical ROI according to the standardized 10-20 

electroencephalography (EEG) system or its extended versions (Oostenveld and Praamstra, 

2001). These locations can be related to the underlying assumed cortical structure (Koessler 

et al., 2009; Giacometti et al., 2014) or to the standard Montreal Neurological Institute 

(MNI) stereotactic coordinates (Okamoto et al., 2004; Jurcak et al., 2007; Tsuzuki et al., 

2007; Tsuzuki and Dan, 2014). This procedure has proven effective for many applications 

but may be suboptimal for use in BCIs. In this study, we were interested in whether 

incorporating additional neuroimaging data such as anatomical or functional magnetic 

resonance imaging (MRI or fMRI) can improve optode-layout design for use in BCIs.  

The selection of the ROIs in the procedure described above are commonly based on 

anatomically defined coordinates only. However, ROIs derived from functional 

neuroimaging techniques such as fMRI could increase the spatial specificity of ROI 

definition by accounting for individual local differences in elicited brain activity for a given 

task. Once an ROI is defined, the fNIRS community has developed several approaches to 

optimize optode-layout designs using light-sensitivity profiles (Brigadoi et al., 2018). Light-

sensitivity profiles are probabilistic models of photon absorption based on the tissues found 

between source and detector optodes (Aasted et al., 2015). Software packages, toolboxes 

and pipelines compute these profiles using Monte Carlo simulations to optimize optode 

layouts (Tadel et al., 2011; Machado et al., 2014; Aasted et al., 2015; Wijeakumar et al., 

2015; Brigadoi et al., 2018; Zimeo Morais et al., 2018), thus promising an increase on signal 

quality and sensitivity for BCI applications. However, light sensitivity profile models 

require anatomical head data, either from an MRI-derived atlas or from subject-specific MRI 

data. MRI atlases are an appealing option for computing profiles, as they do not require 

additional MRI measurements, which may be expensive, time-consuming or generally 
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unavailable. That said, subject-specific MRI data better capture specific anatomical and 

vascular features and therefore could improve the robustness of fNIRS setups across 

individuals. Considering subject-specific vascular information may be particularly relevant 

as vascular structures are highly scattering and absorbing media (Bosschaart et al., 2014) 

and can influence the estimates of light sensitivity profiles (Perdue et al., 2012). 

Naturally, available resources for collecting additional data must dictate the approach 

researchers use to design optode layouts. We therefore asked the following question: What 

is the potential gain of incorporating (anatomical, functional, vascular) MRI data when 

optimizing optode-layout designs for fNIRS-based BCIs? With this question in mind, we 

selected four approaches that incrementally incorporated the amount of individual 

information from the same participant to design subject-specific optode layouts. The first 

layout was the literature-based approach (hereinafter referred to as LIT), where optodes 

were selected based on a literature review. LIT represents the scenario where no additional 

individual MRI information is available. The second setup was the probabilistic approach 

(referred to as PROB), which employed individual anatomical data together with a 

probabilistic functional map derived from an independent dataset to inform optode 

placement. PROB illustrates a situation where individual fMRI data is not available, but 

subject-specific anatomical information and functional data from other individuals is 

accessible. The third setup was the individual fMRI approach, which used anatomical data 

and functional activation maps of the same individual (referred to as iFMRI). Finally, the 

fourth setup was the vascular approach, which used individual anatomical, functional and 

vascular information of the same subject (referred to as fVASC). 

We assessed whether different approaches resulted in distinct optode layouts and assessed 

whether the quality of the fNIRS signal and the detected task-related activation (fNIRS 

sensitivity) differed across optode layouts. Participants were asked to perform three mental-

imagery tasks commonly used for hemodynamic BCIs: mental-calculation, mental-rotation 

and inner-speech (see Table S3.3). We designed approach-specific optode layouts using 

Monte Carlo simulations and an algorithmic procedure that used two main constraints: 1) 

the inter-optode distance did not exceed the 25-40mm range in order to provide a reasonable 

signal-to-noise ratio (Mansouri et al., 2010) and 2) the optode layout for each approach 

consisted of two channels that shared a common source. Importantly, the second constraint 
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allowed us to compare the four approaches within the same functional fNIRS run. We 

hypothesized that each approach would lead to different optode-layout designs and that the 

signal-to-noise ratio of resulting fNIRS signal would improve with more individualized 

approaches. Our results show that the four approaches indeed result in different optode 

layouts and that the more individualized approaches (PROB, iFMRI, and fVASC) 

outperform the minimally informed approach (LIT) in terms of fNIRS signal quality and 

sensitivity. Further, we find that PROB, iFMRI, and fVASC approaches produce similar 

signal quality and sensitivity. Finally, we give preliminary recommendations to help 

researchers efficiently use resources for developing robust and convenient optode layouts 

for fNIRS-BCIs. 

 

2 Materials and Methods 

This experiment consisted of three separate sessions that took place in the following order: 

one f/MRI session, a neuronavigation session and an fNIRS session. The first two sessions 

aimed at gathering necessary information for designing optode layouts, while the fNIRS 

session aimed at acquiring data to assess/compare the designed optode layouts (see Figure 

3.1). 
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Figure 3.1. Overview of the present study. The study consisted of three separate sessions: one 

f/MRI, one neuronavigation and one fNIRS session. The first two sessions aimed at collecting 

necessary information to create the different optode layouts for each participant. Specifically, the LIT 

approach used a literature review to design the optode layout. The PROB approach used probabilistic 

functional MRI maps, individual anatomical data and head-anatomy information for channel selection. 

The iFMRI approach used individual anatomical data and individual functional activation maps, together 

with head-anatomy information for channel selection. Finally, the fVASC approach used individual 

anatomical, functional and vascular data, together with head-anatomy information for channel selection. 

Monte Carlo simulations were used to select the best channel pair for each approach, mental-imagery 

task and participant. The selected channels were used during the fNIRS session to obtain information on 

signal quality and to measure functional activity elicited by the mental-imagery tasks.

Twenty-one participants (eleven females) were recruited for the f/MRI session. From these 

participants, seventeen (eleven females) took part in the neuronavigation session and sixteen 

(ten females) participated in the fNIRS session (see Table 3.1 for a summary) as some 

participants became unavailable over the sessions. Participants did not have a history of 

neurological disease and had a normal or corrected-to-normal vision. The experiment 

conformed to the Declaration of Helsinki and was approved by the ethics committee of the 

Faculty of Psychology and Neuroscience, Maastricht University. Informed consent was 

obtained from each participant before starting the experiment. Participants received 

financial compensation after each session. 



 

Chapter 3 | Guiding fNIRS optode-layout design using individual (f)MRI data 

 

97 

Table 3.1. Summary of participants’ characteristics and involvement of different experimental sessions. 

Participant ID f/MRI 

(N=21) 

Neuronavigation 

(N=17) 

fNIRS 

(N=16) 

 

Gender Age range Handedness 

P01 YES YES YES Female 25-30 Left 

P02 YES YES YES Female 25-30 Right 

P03 YES YES YES Male 25-30 Left 

P04 YES YES YES Female 25-30 Right 

P05 YES YES YES Female 25-30 Right 

P06 YES YES YES Female 40-45 Right 

P07 YES NO NO Male 25-30 Right 

P08 YES NO NO Male 30-35 Right 

P09 YES YES YES Male 25-30 Right 

P10 YES YES YES Female 25-30 Left 

P11 YES YES YES Female 25-30 Right 

P12 YES YES NO Female 25-30 Right 

P13 YES NO NO Male 20-25 Right 

P14 YES YES YES Male 30-35 Right 

P15 YES YES YES Male 30-35 Right 

P16 YES YES YES Male 25-30 Right 

P17 YES YES YES Female 20-25 Right 

P18 YES NO NO Male 25-30 Right 

P19 YES YES YES Female 20-25 Left 

P20 YES YES YES Female 20-25 Right 

P21 YES YES YES Female 25-30 Right 

 

2.1 f/MRI session 

2.1.1 Data acquisition 

In this one-hour long session, anatomical, functional and (brain- and scalp) vascular data 

were acquired at a Siemens Magnetom Prisma Fit 3 Tesla (T) scanner at the Maastricht 

Brain Imaging Center, Maastricht, The Netherlands (see Figure 3.2). 

We used a magnetization prepared-rapid gradient echo (MPRAGE) sequence to collect 

structural T1-weighted MRI data, with the following parameters: repetition time 

(TR)=2250ms, echo time (TE)=2.21ms, inversion time (TI)=900ms, flip angle (FA)=9°, 
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number of slices=192, 1-mm isotropic resolution, duration=5:05min. 2D Gradient Echo 

echo­planar imaging sequence with a TR=1s, number of slices=36, and 3-mm isotropic 

resolution was used to acquire functional data. Cerebral and pial vascular data was collected 

using 2D­ and 3D­ Time-of-Flight (TOF) sequences (FA=60º/18º, TR=21ms/20ms, 

TE=4.83/3.3ms, number of slabs=1/5, number of slices in slab=75/40, with distance factor=-

33/-20%, 0.7-mm isotropic resolution, duration=9:11/4:56min). Finally, scalp-vascular data 

was obtained with a Multi­Echo Gradient Echo (GE) sequence with four different echoes 

(TR=34ms, TE1/TE2/TE3/TE4=3.02/8.56/15.11/23.91ms, number of slices=192, 0.7-mm 

isotropic resolution, duration= 8:06min). 

2.1.2 Experimental design 

Participants performed one ~13-min long functional run, where they were acoustically cued 

to rest (“Rest”) or perform one of the three mental-imagery tasks, namely inner- (covert) 

speech (“Speech”), mental-calculation (“Calculate”) or mental-rotation (“Rotate”). The 

order of the task trials (eight per mental task) was randomized. They were instructed to 

covertly recite a text they knew by heart (e.g., a poem) when they heard “Speech”. 

Participants were asked to calculate multiplication tables of multiples of 7, 8, or 9 up to the 

decuple when they heard “Calculate”. When they heard “Rotate”, participants had to 

imagine a diver jumping from a tower into the water while he spins around several times in 

the air. Participants were trained on the tasks for approximately 10min before entering the 

MRI scanner. During training, they had to recite overtly the chosen text and the 

multiplication tables for the inner-speech and mental-calculation tasks, respectively to 

ensure the speed was consistent, and to repeat the same procedure covertly until they felt 

comfortable with the tasks. As for the mental-rotation task, participants watched short clips 

of a jumping diver until they could comfortably imagine the movement. We instructed 

participants to perform the mental-imagery tasks, which lasted 10s, until they heard the 

instruction “Rest”. During resting period, participants were requested not to do any specific 

mental activity and not to do/think about anything in particular for 20s (see Figure 3.2 for a 

visualization of the run). Participants were asked to keep their eyes closed throughout the 

functional run. After the session, participants’ strategies were noted down and saved for the 

fNIRS session. BrainStim v1.1.0.1 stimuli presentation software (Gijsen, S., Maastricht 

University, The Netherlands) was used for both, the f/MRI and fNIRS sessions. 
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Figure 3.2. Schematic representation of session 1. Twenty-one participants underwent a one-hour long 

experiment in the MRI scanner, during which individual anatomical, functional and vascular data were 

collected.  During the functional run, participants had to perform inner-speech, mental-calculation or 

mental-rotation for 10s each with interleaved resting periods of 20s. Task order was randomized. 

 

2.1.3 Data analysis 

Unless stated otherwise, all f/MRI data analyses were performed in BrainVoyager QX v2.8 

(Brain Innovation B.V., Maastricht, Netherlands). 

2.1.3.1 Structural data 

Structural images were aligned to the plane containing the anterior and posterior 

commissures, corrected for spatial-intensity inhomogeneities and brain-masked. The 

white/grey matter (WM/GM) and grey matter/cerebrospinal (GM/CSF) boundaries were 

detected using automatic segmentation tools. These images were inspected, manually 

corrected when necessary and used to create WM and GM reconstructions of the cortical 

surface. In addition, the (head) skin surface was automatically segmented and reconstructed. 

These reconstructions were used for the neuronavigation session (see below). 

Cortex-based alignment (CBA) is a whole-cortex alignment scheme (Fischl et al., 1999; 

Goebel et al., 2006; Fischl et al., 2007; Frost and Goebel, 2012) which uses curvature 

information of the cortical surface to iteratively reduce misalignment across participants and 

in turn increase functional overlap on the group level (Duecker et al., 2014). We used this 

approach to define our probabilistic functional maps. For that, individual WM 

reconstructions of each hemisphere were aligned to a dynamically generated group average 

(N=21). 
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2.1.3.1.1 Functional data 

Data were pre-processed using inter-scan slice-time correction, 3D rigid-body motion 

correction (applying Trilinear interpolation for detection/sinc interpolation, for correction), 

and temporal high-pass filtering with a general linear model (GLM) Fourier basis set of 3 

cycles/run. Functional data of 3-mm iso-voxel resolution were spatially co-registered to the 

structural image by using a gradient-based intensity-driven fine-tuning alignment. 

2.1.3.1.2 Generation of individual functional maps 

We first calculated a voxel-wise GLM. The model contained a separate boxcar predictor for 

each of the mental-imagery task conditions convolved with a standard double-gamma 

hemodynamic response function (onset time=0s, response undershoot ratio/time to response 

peak=6s/6s, time to undershoot peak=16s, response/undershoot dispersion=1s/1s), and six 

additional predictors estimated from the motion-estimation procedure in BrainVoyager QX 

(translation and rotation in x, y and z direction). Individual functional maps were created in 

volume space by contrasting the particular mental-imagery task predictor vs. the rest 

condition (for each of the three tasks separately) in the voxels that were part of the fNIRS-

coverage mask. This mask was created to mask out active voxels from deeper regions, as 

we did not expect the fNIRS signal to be sensitive to these regions (Strangman et al., 2013), 

see supplementary materials Sec. A.1 and Figure S3.1 for details. Activation maps were 

corrected using a cluster threshold that allowed for a 5% loss of active voxels. These 

functional maps were then sampled to surface activation maps (from -1mm to +3mm from 

the GM/WM segmentation boundary).  

2.1.3.1.3 Generation of probabilistic maps 

While it is not uncommon for researchers to have previously acquired anatomical MRI data 

of the same participant (Duecker et al., 2014; Perdue and Diamond, 2014), having individual 

anatomical and functional data of the same participant represents a less likely scenario 

(Duecker et al., 2014). In the absence of individual functional data, probabilistic functional 

maps can be generated from other individuals whose functional data are available.  

Probabilistic functional maps were created separately for each participant and mental-

imagery task following a leave-one-subject-out procedure (Rosenke et al., 2018). For each 

participant, surface activation maps from the remaining participants were aligned using 
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individual transformation files derived from the CBA approach. It should be noted that MR 

vs. Rest map from P08 was excluded from subsequent analyses as the participant reported 

not being able to perform the mental-imagery task correctly and having used an alternative 

cognitive strategy instead. Thus, the probabilistic maps for each participant were created 

based on N=20 participants for the IS and MC tasks and based on N=19 participants for the 

MR task. We discarded mesh vertices that were active in less than 20% of the sample size 

for each task and hemisphere. The resulting probabilistic maps for each hemisphere were 

transformed back into individual volume space (by interpolating from -1mm to +3mm from 

the GM/WM segmentation boundary) and smoothed with a 2mm full-width-half-maximum 

kernel. The final maps (three per participant) were used as region of interests for Monte 

Carlo simulations (see Sec. 2.3.2). Examples of probabilistic maps are shown in Fig S2. 

2.1.3.2 Vascular data 

2.1.3.2.1 Cerebral and Pial vasculature 

2D and 3D TOF data were aligned individually to an up-sampled version (0.7-mm isotropic 

resolution) of the anatomical data of the same session for each participant, following the 

same co-registration approach as for functional maps described above. Vascular data were 

segmented with automatic segmentation tools in BrainVoyager QX (intensity-based 

segmentation) and the software Segmentator (intensity gradient-based segmentation 

(Gulban et al., 2018)) and manually corrected when necessary. The latter was done using 

ITK-snap (Yushkevich et al., 2006) and BrainVoyager QX. The segmented vascular 

structures from 2D and 3D TOF data were then combined and were down-sampled to 1-mm 

isotropic resolution. The analyses procedures are summarized in a flow-chart diagram 

(Figure S3.3) and an example reconstruction is shown in Figure S3.4. 

2.1.3.2.2 Scalp vasculature 

All four echo images derived from the multi-echo GE protocol were first aligned to the 0.7-

mm isotropic resolution anatomical images for each participant. We then isolated the 

extracerebral tissues by masking out the brain using FSL BET v5.0 (Jenkinson et al., 2012). 

Depending on which image(s) showed higher contrast for vascular structures, segmentation 

was performed manually in BrainVoyager QX using a combination of the four echoes or 

using the later echo images, i.e., TE3=15ms and TE4=23ms, which showed higher contrast 

for vascular structures than earlier echoes. The segmented vascular structures were then 



 

Chapter 3 | Guiding fNIRS optode-layout design using individual (f)MRI data

   

102 

 

down-sampled to 1-mm isotropic resolution. The analyses procedures are also summarized 

in the flow-chart diagram provided in Figure S3.3.and an example reconstruction is shown 

in Figure S3.4.  

2.2 Neuronavigation session 

Seventeen of the originally included 21 participants underwent this session, as P07, P08, 

P13 and P18 dropped out of the study. A neuronavigation system (Zebris CMS20 ultrasound 

system, Zebris Medical GmbH, Isny, Germany) in combination with BrainVoyager QX 2.1 

TMS Neuronavigator software (Brain Innovation, Maastricht, Netherlands) was used to 

acquire the coordinates of 130 EEG positions for each participant (see Figure 3.3). These 

130 locations were determined based on the layout of EasyCap 128Ch ActiCap (EasyCap 

GmbH, Herrsching, Germany) whose size was selected based on individual head sizes. First, 

the head circumference for each participant was measured using a measuring tape. The cap 

was placed on and was secured using a chin band. Next, its position was adjusted so that the 

Cz location would be exactly half the nasion-inion distance. The inion was defined as the 

top part of the pronounced structure in the occipital region. In order to ensure that the cap 

was not tilted or shifted to one side, the distance between the left and right pre-auricular 

points was measured and the cap was gently moved in this virtual coronal plane until Cz 

was located half this distance. The preauricular points were defined as the location where 

the mandibular bone moves with the opening and closing of the mouth. Finally, the cap was 

secured with medical tape on the forehead to prevent any unwanted cap shift. The Cz 

location details (in terms of nasion-inion and pre-auricular distance) together with the cap 

size were noted down for the fNIRS session.  

Single ultrasound markers (three in total) were attached to the participant’s head using 

adhesive stickers. Next, three reference points (inion and left and right preauricular points) 

defined on the participant’s head were used for the co-registration of the structural MRI 

image with the participant’s head in the external (real) world. Once these steps were 

completed, the 130 EEG locations marked on the cap were digitized. The session lasted 

approximately 1h.  
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Figure 3.3. Schematic (left) and reconstructed (right) locations recorded during the 

Neuronavigation session. This layout is an extension of the international 10-20 system, it contains 130 

locations and the nomenclature is based on (Oostenveld and Praamstra, 2001). The Cz location is 

indicated with a red circle. The schematic representation is based on the NIRx montage editor template, 

while the reconstructed locations belong to participant P04. 

 

2.3 fNIRS session 

2.3.1 Participants 

P12 dropped out of the study. Thus, 16 of the 17 participants that participated in the fMRI 

and neuronavigation sessions took part in this session, out of which ten were female (mean 

age=29.81±5.22).  

2.3.2 Designing approach-specific optode layouts 

This process can be divided into three main stages: channel sensitivity computation, channel 

selection and building a participant-specific layout (see Figure 3.4 for a summary). The first 
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stage aimed at computing the channel-sensitivity profiles using Monte Carlo simulations. 

Each of the four approaches had a unique combination of ROI definition/type, software and 

brain model used to compute the simulations. During the second stage, the most-informative 

channels were selected for each of the four approaches, based on the solution to an 

optimization problem subject to a set of constraints.  The first and second stages were 

repeated until approach- and task-specific optode layouts were created (twelve per 

participant, since there were three tasks and four approaches). The last stage aimed at 

combining all optode layouts into a single one individually for each participant.  

2.3.2.1 Channel sensitivity to ROI computation 

All four approaches (LIT, PROB, iFMRI, fVASC) were based on the light sensitivity 

profiles to a given ROI, but they differed in the following aspects (see Table 3.2 for a 

summary):  

1. Software for Monte Carlo simulations  

The LIT approach represents a scenario where no individual MRI anatomical data is 

available and the target ROI is selected based on a literature review. Given such 

scenario, FOLD toolbox (Zimeo Morais et al., 2018) provides an easy way to compute 

the sensitivity profiles to the selected ROIs. This is because FOLD uses atlas head 

models as inputs to the Monte Carlo simulation and offers different brain parcellation 

atlases for ROI definition in the target head-model space. In addition, it is freely 

available, easy to install and has a user-friendly graphical interface. FOLD uses MCX 

package (Fang and Boas, 2009) to compute the light sensitivity profiles of optodes 

placed in pre-defined locations on the scalp, namely points corresponding to the 

extended 10-10 and 10-5 systems (130 points in total). It then provides a list of 

channels with the highest sensitivity to the ROI that can be exported for subsequent 

computations. PROB, iFMRI and fVASC approaches represent scenarios where 

individual MRI anatomical data are accessible. Since FOLD does not offer the option 

of using individual head models to compute Monte Carlo simulations, these were 

computed using the MCX package directly through its MATLAB interface (v2015b, 

The MathWorks, Inc., Natick, Massachusetts, United States).  
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2. Head models and tissue segmentations 

Monte Carlo simulations require the anatomical head models to be segmented into 

different tissues. This is necessary for photon-transport simulations as different tissues 

of the human head present different optical properties (absorption, scattering, 

anisotropy and refraction). For the LIT approach, we used the MNI Colin27 head atlas 

(the default atlas available in FOLD). FOLD uses a five-layer segmentation of the 

MNI Colin27, which consists of scalp, skull, CSF, GM and WM tissues. For the 

remaining approaches, a five-layered model was created from the individual 

anatomical images using a hybrid segmentation algorithm (Perdue and Diamond, 

2014). This algorithm, developed in MATLAB and available upon request from the 

authors, takes as input the standard GM and WM segmentations of a T1-weighted 

image from FreeSurfer and applies sequential morphological operations implemented 

in iso2mesh tools to accurately reconstruct skull, scalp, and CSF layer thickness. The 

GM and WM segmentation images were created in FreeSurfer v06 (Fischl, 2012) 

using the standard processing stream (recon –all, which took ~10 h per participant). 

The resulting tissues from the hybrid segmentation algorithm were converted into 

compatible BrainVoyager QX files to visually inspect and manually correct them if 

necessary. Although GM and WM segmentation files had been created in 

BrainVoyager QX in a previous step (see Sec. 2.1.3.1), the automatic segmentation in 

BrainVoyager usually disregards the cerebellum. We thus used the segmentations 

from FreeSurfer to create a head model for Monte Carlo simulations. From the 

corrected segmentation files, a single image file was created by assigning integer 

values ranging from 1 to 5 to the different tissues (as in FOLD). Specifically, voxels 

corresponding to scalp were assigned the value 1, voxels corresponding to skull were 

assigned value 2, CSF 3, GM 4 and WM 5. The remaining voxels were assigned value 

0 (air). We ensured that voxels inside the head were not assigned the value 0 by first 

identifying them and subsequently assigning the value dictated by their direct 

neighbors.  

The fVASC approach differed from the PROB-based and the iFMRI-based 

approaches in that vascular structures were included in the head model. For that, both 

pial/brain and scalp vasculature segmentations were combined and included as the 

sixth layer. To prevent voxels being assigned to two different tissues simultaneously, 
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all voxels considered as vascular tissue were removed from the remaining five tissues. 

Importantly, our segmentations could not distinguish veins from arteries and all voxels 

were treated as veins. Both, five- and six-layered models are shown in Figure S3.5. 

3. Optical properties 

For comparability purposes across approaches, we used the average optical properties 

across four NIRS wavelengths (690, 750, 780 and 830nm) as in FOLD. We defined 

the optical properties of vascular structures based on the scattering, absorption and 

anisotropy values provided by Bosschaart et al. (2014). We refer the reader to the 

Supplementary Tables S3.1 and S3.2 for computation details and Table 3.2 summary 

table of the optical properties used in the present study.  

4. ROI selection and definition 

The ROIs for the LIT approach were selected based on a literature review of the three 

mental-imagery tasks used in this study (we refer the reader to the Supplementary 

Material section 6.1.2 and Tables S3.3 and S3.4 for a summary of the reviewed studies 

and the selected ROIs, respectively). These ROIs were defined in the MNI Colin27 

brain based on the Jülich histological atlas available in FOLD. The selected ROIs for 

the PROB-based approach were the active regions of the individual probabilistic 

mental-imagery maps. For iFMRI and the fVASC approaches, individual mental-

imagery contrast maps were used as ROIs (as described in section. 2.1.3.2).  

5. Inter-optode distance  

FOLD performs the Monte Carlo simulations on neighboring optical positions of 10-

10/10-5 systems only (that have a median inter-optode distance of 36mm) to avoid too 

long distances that cannot provide measurements with a proper signal-to-noise ratio 

(Zimeo Morais et al., 2018). For PROB, iFMRI and fVASC approaches, we only 

considered channels whose inter-optode distance was in the range of 25-40mm for 

Monte Carlo simulations. The number of channels differed across participants as the 

inter-optode distance could differ with varying head size/shapes across participants 

(see Table 3.3 for participant’s cap size). 
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6. Computation of the sensitivity of a channel to a given ROI 

Monte Carlo simulations are used to calculate the fluence distribution produced by a 

source transmitting light into a highly scattering medium (Strangman et al., 2013). By 

taking the product of the source and detector fluence distributions (also known as 

adjoint field), the photon measurement density function can be calculated (Boas et al., 

2002). This is equivalent to the light sensitivity profiles mentioned earlier. FOLD 

calculates channel-wise normalized sensitivity profiles from the adjoint field by 

scaling the adjoint field with the sum of sensitivity of all voxels, so that each voxel 

represents percentage sensitivity to the whole volume.  Then, the sensitivity of a 

channel to a given ROI is computed as a weighted mean of the voxels within the ROI 

to the sensitivity of voxels corresponding to the brain (GM and WM):  

chanSensch = 100 · ∑
sensch,k · wk

brainSensch · w′

𝑛𝑉𝑜𝑥𝑅𝑂𝐼

𝑘=1

 
(3.1) 

where nVoxROI corresponds to the number of voxels comprising the target ROI, 

sensch,k is the normalized sensitivity value for channel ch and voxel k, brainSensch is 

the normalized sensitivity of channel ch of all GM and WM voxels, and w corresponds 

to the value (weight) of the voxel k in the target ROI (adapted from Zimeo Morais et 

al. (2018)).  

The four approaches differed in the nVoxROI and the w parameters. The LIT approach 

assumed that all voxels belonging to a particular (anatomical) ROI contributed equally 

to the computation of the sensitivity of a channel to a given ROI and thus all weights 

were set to one. The PROB approach used probabilistic functional maps that represent 

the percent overlap of voxels across participants and thus weights ranged between 0 

and 100%. As for iFMRI and fVASC, they relied on individual functional activation 

maps whose weights represent t-statistic values and ranged between 0 and 15. 

For the LIT approach, channel sensitivity to a given ROI was computed separately for 10-

10 and 10-5 systems as they cannot be computed simultaneously in FOLD. FOLD allows 

choosing the minimum value of the channel sensitivity to a given ROI to select/discard 

channels. We set this threshold to 0% in order to select all channels that were somewhat 
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sensitive to the target ROI and combined the list of output channels for every ROIs that was 

used for each mental-imagery task. If a channel appeared multiple times for a task, we 

selected the highest sensitivity value among all instances. As for the remaining three 

approaches, all channels that were considered for the Monte Carlo simulations together with 

their associated sensitivity values were selected as input to the next step.  

Table 3.2. Comparison between Monte Carlo simulation approaches. 

 FOLD DIRECT MCX 

Approach where 

software is used 

LIT PROB, iFMRI, fVASC 

Number of simulated 

photons 

108 

Source modelling Pencil source 

Detector modelling Pencil source 

Source/detector locations 130 points according to extended 10-20 

EEG systems  (defined using 

Mesh2EEG1) 

130 points according to extended 10-

20 EEG system + subject-tailored 

(derived from Neuronavigation 

session) 

Channel definition 

criterion 

Neighboring optical positions on 10-10 / 

10-5 systems (median inter-optode 

distance of 36mm) 

Inter optode distance range of 20-

45mm 

Anatomical model MNI Colin 27 Individual anatomy (Individual space) 

Number of tissues 5 5-6 

Wavelength (nm) mean(690, 750, 780 830) 

Optical properties Used? Tissue µs (mm-1) g µa (mm-1) n Used? 

 Yes Scalp 0.72 0.01 0.017275 1 Yes 

 Yes Skull 0.92 0.01 0.011925 1 Yes 

 Yes CSF 0.01 0.01 0.002500 1 Yes 

 Yes Gray matter 1.10 0.01 0.019500 1 Yes 

 Yes White matter 1.35 0.01 0.016900 1 Yes 

 no Vasculature 1.35 0.01 0.016900 1 Yes 

Resolution 2x2x2 mm 1x1x1mm 

ROI type Anatomical (Literature review + Juelich 

brain parcellation) 

Functionally derived 

Output type Anatomical sensitivity (in %) to a given 

ROI 

Anatomical sensitivity (in %) to a 

given ROI 

Platform for MCX 

simulations 

Ubuntu 16.04.02 LTS (Xenial Xeurs) 

with Intel Xeon E52650 v3 2.3 GHz, 

GeForce Gtx 770 and CUDA 8.0 

Ubuntu 16.04.4 LTS, Intel(R) Xeon(R) 

CPU E5-2697 v2 @ 2.70GHz, 256 GB 

RAM, Tesla K20Xm and CUDA 

9.1.85 

1Multimodal Neuroimaging Laboratory; µs/g/µa/n: scattering/anisotropy/absorption/refraction parameters.  
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2.3.2.2 Optimization of the optode layout 

We determined the most informative set of channels (separately for each approach and 

mental-imagery tasks) by maximizing their total sensitivity to the target ROI. The 

maximization problem was subject to two constraints:  

1. The inter-optode distance was limited to the 25-40mm range. We used individual 

inter-optode distance measures derived from the neuronavigation session for this step. 

It is important to note that this was applied to all four layouts layouts (thus including 

the layout based on the LIT approach). The FOLD toolbox (used for LIT approach) 

uses near-neighbor channels with a median inter-optode distance of all channels to be 

36mm, in MNI space(Zimeo Morais et al., 2018). We used this additional information 

to ensure that (1) all channels were in the 25-40mm range in the subject-specific space, 

and that (2) the signal quality standards for all approaches were as similar as possible.  

2. The optode layout for each approach consisted of two channels that shared a common 

detector (thus including three optodes per approach). Since we did not distinguish 

between sources and detectors in the Monte Carlo simulations, it is important to realize 

that the sensitivity of the channel will remain the same whether one considers optode 

X a source and optode Y a detector, or vice-versa. However, due to the second 

constraint, the algorithm may select a different channel pair that maximizes the total 

sensitivity to the ROI depending on which optode is considered a source or a detector. 

To ensure that as many candidate channels as possible were considered during the 

optimization approach, the optimization problem was solved twice: (1) using the 

original channel pool that consisted of all optode pairs that were considered for the 

Monte Carlo simulations (on average, there were 633.25 channels [SD=44.13] across 

participants); (2) considering their swapped versions (sources were considered 

detectors and vice-versa).  

We followed an iterative approach to address the optimization problem. It begins with the 

construction of an empty solution, where no optode pair is selected. The algorithm then 

prunes the optode pairs that do not satisfy the inter-optode distance range constraint. Next, 

the algorithm ranks all possible optode pairs according to their contribution to the total 

sensitivity and selects one pair as the seed in each iteration. The algorithm then transfers the 

selected optode pair to the solution matrix and it removes from the list the channels that do 
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not share the same detector. Next, it selects the first channel from this list (i.e., the one with 

the highest sensitivity). Since the target number of channels (=2) has been reached after this 

step, the accumulated total sensitivity of the selected two channels and the source-detector 

indices are stored in the solution matrix. These steps are repeated until all optode pairs are 

used as seeds. Finally, the two channels that lead to the highest total sensitivity for either 

constraint set constitute the selected channels for creating the setup. 

2.3.2.3 Creating the setup 

2.3.2.3.1 Mental-imagery task selection 

Two out of the three mental-imagery tasks that participants performed during the f/MRI 

session were selected for the fNIRS session. This measure was necessary as pilot 

measurements performed with optode layouts designed to account for all three tasks elicited 

high discomfort in participants. This decision ensured that the optode setup would 

maximally consist of 24 optodes (3 optodes per layout × 4 approaches × 2 motor-imagery 

tasks), which should constitute a reasonably comfortable setup for participants and thus 

should prevent them from withdrawing from fNIRS recordings due to setup-related 

discomfort (Suzuki et al., 2010; Cui et al., 2011; Sereshkeh et al., 2018). This selection was 

carried out at the individual subject level. For that, we first calculated the number of 

overlapping channels across all four layouts for each mental-imagery task, and selected the 

two tasks with the least number of overlapping channels. An additional step was used in 

case this approach was not sufficient to select the two tasks, where we computed the center 

of gravity (COG) for all four layouts per mental-imagery task and calculated the distance 

between COGs. The tasks with the least number of overlapping channels and highest 

distance between them were the selected tasks. See Supplementary Table S3.5 for a 

summary of the mental-imagery task selection procedure and Table 3.3 for the resulting 

selected task pair per participant. 

2.3.2.3.2 Combining all channels into a single layout 

The eight layouts (four per task) were combined manually into a single one. This was first 

carried out digitally to simulate the final arrangement using schematic representations of 

source and detector positions. It consisted of two steps: an initial step combined all four 

layouts for each mental-imagery tasks and both layouts were combined into one in the 

second step. It could be that the source-detector arrangement was not compatible across 
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layouts (within or across mental tasks), since a source in a given channel cannot be a detector 

in another one (or vice versa). To account for such possibility, we first swapped sources for 

detectors in the problematic spots. This step solved the compatibility problem in all but four 

participants (P05, P16, P17 and P19). For these participants, using a different mental-

imagery task combination solved the issue (see Supplementary Table S3.5). Since the fNIRS 

system used in this study uses lighter wires for sources than for detectors, we rearranged 

sources and detector positions in all participants (when possible) to maximize the number 

of sources while preserving the channels defined in the optimization step. It is important to 

note that each participant ended up with a unique optode layout, with a varying number of 

optodes (see Table 3.3 and Figure S3.6).  

 

Figure 3.4. Summary of the key steps involved in optode-layout design for each of the four 

approaches evaluated in the present study. The process was divided into three main stages: (1) channel 

sensitivity to ROI computation, (2) channel selection and (3) building a subject-specific layout. For the 

first stage, each of the four approaches had a unique combination of ROI definition/type, software and 

brain model used to compute the Monte Carlo simulations. During the second stage, the most-informative 

channels were selected for each of the four approaches and two mental-imagery tasks. The last stage 

combined all the layouts into one. LOO = leave-one-out; COG = center of gravity; NN = neuronavigation. 

2.3.3 Experimental design 

The fNIRS experiment consisted of one session that lasted approximately 1.5h. During this 

time, participants performed six, around 8-min long functional runs. In each of the runs, 

participants were acoustically cued to perform one of the two mental-imagery tasks selected 
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for them or to rest. Six, 10-s long trials were presented for each mental-imagery task, 

interleaved with a jittered rest condition with mean duration of 22s (jittering was of ± 2s), 

see Figure 3.5. Thus, participants performed 60 trials for each mental-imagery task across 

the six runs. Trials were pseudo-randomized across runs. Participants were instructed to use 

the same strategy they used in the scanner (first session). For that, participants were given a 

document prior to the fNIRS experiment where their strategies had been noted down. 

Participants were asked to avoid any potential jaw movements during the functional runs 

and to keep their eyes closed throughout the run.  

 

Figure 3.5. Schematic representation of a functional run during the fNIRS session. During each 

mental-task period, participants were acoustically cued to perform one of the two mental-imagery tasks 

for 10s while keeping their eyes closed. When participants heard “rest”, they were asked to stop the task 

and await the next instruction. Abbreviations: IS= inner-speech; MC = mental-calculation; MR= mental-

rotation. 

2.3.4 fNIRS signal acquisition 

fNIRS data were recorded using a continuous-wave system (NIRScout-816, NIRx, 

Medizintechnik GmbH, Berlin, Germany). The optode setup varied across participants, but 

they had some features in common: all setups contained eight sources and eight short-

distance channels (SDC). The SDCs were formed by short-distance detectors placed at 8mm 

from a given source. The inter-optode distance of the standard channels (here on called 

normal-distance channels, NDC) ranged from 25-40mm. Sources emitted light at 

wavelengths 760nm and 850nm, and the light intensity acquired at the detector side was 

sampled at 7.8125Hz. The fNIRS cap was placed for each participant according to the 

measurements taken during the neuronavigation session. Besides the standard cap fixation 

(using the chin band), the fNIRS cap (EasyCap 128Ch ActiCap, EasyCap GmbH, 
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Herrsching, Germany) was fixated onto the participant’s head with three medical tape stripes 

(connecting the cap and the participant’s forehead) to assure the cap would not shift during 

the measurements. In addition, a black, plastic overcap was placed on top of the fNIRS cap 

to additionally prevent ambient light from reaching the spring-loaded optodes.  

Table 3.3. Subject-specific fNIRS-session summary and optode-layout information. 

Participant 

ID 

Cap Size 

(cm) 

Mental 

tasks 

#  Runs #  Optodes               

S | D 

#  NDC channels IOD  (mm) 

Mean (SD) 

SD 
P01 56 MC MR 6 8 7 13 29,92 (2,60) 

2,60 
P02 56 IS MC 6 8 9 16 29,00 (3,48) 

3,48 
P03* 58 IS MR 6 8 6 16 34,06 (6,84) 

6,84 
P04 56 MC MR 6 8 10 15 31,60 (4,79) 

4,79 
P05 60 IS MC 6 8 4 12 30,67 (4,52) 

4,52 
P06 56 MC MR 6 8 9 14 31,07 (4,20) 

4,20 
P09 60 MC MR 6 8 5 9 29,33 (4,42) 

4,42 
P10 56 MC MR 6 8 7 10 30,40 (4,12) 

4,12 
P11 56 MC MR 6 8 4 12 30,17 (3,19) 

3,19 
P14 58 MC MR 5 8 6 11 31,09 (3,14) 

3,14 
P15 58 MC MR 5 8 5 10 31,70 (4,64) 

4,64 
P16 58 MC MR 6 8 8 12 31,58 (3,42) 

3,42 
P17 56 MC MR 6 8 5 11 30,18 (4,33) 

4,33 
P19 56 MC MR 6 8 7 12 29,83 (2,79) 

2,79 
P20 56 MC MR 6 8 10 15 31,13 (4,50) 

4,50 
P21* 54 IS MR 6 8 10 14 29,07 (3,25) 

3,25 

 

Note: P03 and P21 were excluded from data analysis (see participant exclusion criteria) 

Abbreviations: NDC= normal distance channels; IOD= inter-optode distance; MC = mental calculation; 

MR= mental rotation.   

 

2.3.5 fNIRS data analysis 

2.3.5.1 Participant exclusion criteria 

Two of the sixteen participants, P03 and P21, were excluded from subsequent analysis for 

different reasons. The optode layout for P03 was created based on a different inter-optode 

distance range criterion than the rest of the participants (25-45mm vs. 25-40mm). This is 

because P03 was the first participant who participated in the fNIRS session and the original 

inter-optode distance range was expected to provide reasonable signal quality. However, 



 

Chapter 3 | Guiding fNIRS optode-layout design using individual (f)MRI data

   

114 

 

this range proved to be suboptimal as four NDC and three SDC did not survive the 

coefficient of variation threshold (CV < 7.5%), a metric used to estimate the signal-to-noise 

ratio for each channel (Piper et al., 2014). Given the restricted number of channels 

comprising each layout, we created the layouts for the rest of the participants using a more 

conservative inter-optode distance range criterion (25-40mm range, see first constraint in 

Sec. 2.3.3) to ensure that all (or as many as possible) channels survive the CV threshold. 

Thus, P03 was excluded for comparability reasons. As for P21, the data was corrupted and 

could not be retrieved.  

2.3.5.2 Preprocessing 

For every subject and run, the raw optical intensity data series were converted into changes 

in optical density (OD) values using Homer2 (Huppert et al., 2009).  CV values were 

calculated for the entire run for each channel and those with a CV >=7.5% were discarded 

from the analysis (see Figure S3.7). Next, the motion detection algorithm 

hmrMotionArtifactByChannel was applied to the OD time-series to identify motion artifacts 

in each channel. We used the following parameters: AMPThresh=0.15, tMotion=0.5 and 

tMask=2. The SDThresh parameter ranged between 8 and 10 across participants. Motion 

artifact identification was visually assessed by experimenter AB and was manually corrected 

in case it was necessary. Motion artifacts were divided into spikes and baseline shifts. 

Baseline shifts were corrected using hmrSplineInterp algorithm in Homer2 (p=0.99), while 

hmrMotionCorrectWavelet algorithm in Homer2 (iqr=0.5) was used to correct for the spike 

artifacts only in the channels where motion artifacts had been detected (Figure S3.8 

summarizes the detected number of motion events per participant). Then, motion-corrected 

OD data were transformed to change in concentration values through the modified Beer-

Lambert law with an age-specific differential path length factor for each participant 

(Scholkmann and Wolf, 2013).  

2.3.5.3 Assessment of degree of layout (dis)similarity across approaches 

The first goal of this study was to assess whether the resulting optode layouts differed across 

approaches. To do so, for each pair of approach-specific layouts we calculated the number 

of overlapping channels and the Euclidian distance between their centers of gravity. These 

calculations were carried out for each mental-imagery task at the single-subject level and 
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were averaged across participants afterwards. In addition, frequency maps for each approach 

were computed. 

2.3.5.4 Single-run estimates calculation 

The Short Separation Regression approach (SSR (Goodwin et al., 2014)) was applied on the 

unfiltered Δ[HbO]- and Δ[HbR]-NDC data to remove signal from extra-cerebral layers of 

the head. This was done for each NDC and chromophore by using the SDC closest to the 

NDC as the regressor. The SDC-corrected time course was used as input for the ar_irls 

algorithm in NIRS Brain AnalyzIR Toolbox (Santosa et al., 2018). This algorithm uses an 

autoregressive (AR) model for correcting motion and serially correlated errors in fNIRS. 

The function was adapted to use the ordinary least squares method instead of the robustfit 

approach. The maximum AR model order to be considered was set to four times the 

sampling rate. The design matrix included the two task predictors convolved with a standard 

hemodynamic response function. The default hemodynamic response function from SPM12 

was used (double gamma function, the onset of response and undershoot 6s and 16s, 

respectively, dispersion 1s, response to undershot ratio 6). The task predictor for Δ[HbR] 

was -1/3 of the Δ[HbO] amplitude.  In addition, a set of low frequency discrete cosine terms 

were defined as confound predictors using the dctmtx function in NIRS Brain AnalyzIR 

Toolbox with a cut-off frequency of 0.009Hz.  

2.3.5.5 Multi-run ROI analysis 

We combined the information from both channels comprising each layout to run an ROI 

analysis as described in Santosa et al. (2018) and expanded their procedure to account for 

multiple runs: 

𝛽𝑅𝑂𝐼 = 𝑐𝛽𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (3.2) 

𝐶𝑜𝑣𝑅𝑂𝐼 = 𝑐𝐶𝑜𝑣𝛽𝑐𝑇 (3.3) 

where in this study βchannel is the multi-run beta estimate and the Covβroi is the multi-run 

covariance matrix estimated from the concatenated residual time courses and the design 

matrix. Finally, c is the contrast vector whose coefficients are 0 if the channel does not 

belong to the ROI and is 0.5 in the two channels that belong to the ROI. 
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2.3.5.6 Multi-run block averages and contrast-to-noise ratio 

The SDC-corrected and unfiltered Δ[HbO] and Δ[HbR] time courses were filtered using a 

zero-phase, band-pass finite impulse response filter of order 1000, with cutoff frequencies 

of [0.008, 0.25Hz]. Block averages were computed for each channel and mental-imagery 

task by taking the average of all trials and runs 4s before the onset of the task until 15s after 

the offset of the task.  

The Contrast-to-Noise Ratio (CNR) as was calculated for each channel, ROI and 

chromophore using the formula described by Cui et al. (2011): 

|𝑚𝑒𝑎𝑛(𝑑𝑢𝑟) − 𝑚𝑒𝑎𝑛(𝑝𝑟𝑒)|

√𝑣𝑎𝑟(𝑑𝑢𝑟) + 𝑣𝑎𝑟(𝑝𝑟𝑒)
 

(3.4) 

where pre represents the rest period from 4s before onset of task to 0s; and dur represents 

the task period from 5-15s post task-onset, as in Hocke et al. (2018).  

2.3.5.7 Statistical analysis 

The second goal of this study was to compare the fNIRS-signal quality and sensitivity 

obtained from the optodes placed according to the four different approaches. Group 

differences across approaches in terms of CNR and ROI t-estimates were assessed using a 

non-parametric ANOVA (Friedman test) and follow-up Wilcoxon paired signed rank tests, 

one-sided and corrected for multiple comparison with the Benjamini-Hochberg method. 

Group differences were computed considering: (1) each mental-imagery task separately and 

(2) all mental-imagery tasks together. In addition, we quantified the number of participants 

that showed significant increase in the ROI activation. 

2.3.5.8 fNIRS data projection onto cortical surface and comparison with fMRI data 

We used the inverse distance weighting (IDW) method described in (Aihara et al., 2012) to 

interpolate fNIRS data on the cortical surface.  In short, each fNIRS channel position was 

defined as the point in the scalp half way between the corresponding source and detector 

position. The cortical projection of each channel was determined by taking the point in the 

brain reconstruction closest to the channel position in the scalp. A sphere of radius r was 

centered in the projected cortical point and the voxels inside the sphere that were labeled as 

GM were assigned a weight depending on how far from the center they were located. The 
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weight (w) was calculated as 1/d2, where d is the Euclidian distance between the projected 

point (center of the sphere) and a given voxel inside the sphere. At each cortical vertex k 

inside the sphere, the interpolated fNIRS data was computed as: 

𝑠(𝑘) =  
∑ 𝑤𝑖 ∗ 𝑓𝑖 

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 
(3.5) 

where n is the number of  cortical projection points and f is the amplitude of  the fNIRS 

channel value. Here we used two cortical projection points as two channels comprised a 

given layout. The channel-specific amplitude was calculated as the average value of the 

normalized fNIRS signal (computed as the channel time course divided by its peak value) 

in the range of 3s after task onset to 5s after task offset. In total, four spheres with varying 

radii (r = {10, 15, 20, 25} mm) were used. 

We used channel-specific projection weights and projection spheres to compute spatially 

weighted fMRI block averages to assess the temporal correlation between fNIRS and fMRI 

signals. First, voxels inside the sphere of radius r that were labeled as GM were selected and 

mental imagery-specific events were extracted from each voxel’s time courses. Task-

specific ROI averages were computed by weighting the contribution of each voxel according 

to the projection weights. The standard error of the weighted average was estimated using 

bootstrapping (with 100 resamples and sample size equal to 60% of the initial number of 

voxels).  These steps were repeated for every channel across all layouts in each participant. 

Finally, the temporal correlations of fNIRS and fMRI block averages were computed using 

Spearman’s correlation. Next to channel-specific projection weights, layout-specific 

projection weights were also calculated. Their computation differed in that for the latter we 

used the center of gravity of each layout on the scalp to determine the cortical projection 

point. Layout projection weights were used to extract the peak and spatially weighted mean 

t-estimates of individual fMRI activation of the voxels labeled as GM to assess how well 

the fNIRS ROIs targeted individual activation maps. 
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3 Results  

3.1 Using different information sources for optode placement results in different 

optode-layout designs 

Figure 3.6 shows the mean percent overlap (top panel) and mean Euclidian distance between 

the COGs of each pair of optode layouts across participants (bottom panel). The color of 

each cell indicates the standard error of the mean. The LIT approach contained no channels 

that overlapped with the remaining approaches for neither mental-calculation (MC) nor 

mental-rotation (MR) tasks. Channels placed according to the PROB approach partially 

overlapped with those from iFMRI and fVASC approaches for MC task. Channels from 

iFMRI and fVASC approaches overlapped the most, with an average 85.71% [SE = 8.17] 

for MC and 41.67% [SE = 14.86] for MR. Regarding IS task, P05 showed an overlapping 

channel between PROB and fVASC layouts (P02 had none).  The mean Euclidian distance 

between the COGs was considerably high (>55mm) for almost all pair of layouts, which 

indicates that layouts were located in spatially separated areas. IFMRI and fVASC layouts 

were located, on average, in close proximity for the MC task (6.45mm [SE = 5.64]) and to 

a lesser extent for MR (42.22 mm [SE = 13.32]). Similarly, the frequency maps shown in 

the Figure S3.9 indicate that (1) the selected channels vary considerably across participants 

for PROB, iFMRI and fVASC approaches; and (2) iFMRI and fVASC show the highest and 

most similar spatial extension for MC and MR tasks. As for inner-speech (IS) task, the 

Euclidean distance ranged between 9.08 mm (PROB- fVASC) and 100.19 mm (LIT- 

iFMRI) for P05 and between 26.83 mm (LIT-PROB) and 75.98 mm (LIT- iFMRI) for P02 

(not shown in Figure 3.6).  
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Figure 3.6. Assessment of degree of layout (dis)similarity across approaches. (a) Average number of 

overlapping channels for each pair of approach-specific layouts for MC (left) and MR (right) tasks. The 

numbers in each cell represent the average number of overlapping channels (a) or the average Euclidian 

distance between COG (b) for each pair of approach-specific layouts for MC (left) and MR (right) tasks. 

Colors represent the standard error of the mean. Abbreviations: MC = mental calculation; MR= mental 

rotation. 

3.2 Significant differences in fNIRS-signal quality across the four optode-placement 

approaches  

The Friedman test was computed separately for each chromophore (Δ[HbO] and Δ[HbR]) 

and considering (1) all mental-imagery tasks together and (2) each mental-imagery task 

separately. For Δ[HbO], CNR significantly differed across layouts (Fr = 41.63, df 4,14, p < 

0.0001) when all mental imagery tasks were considered together. CNR also differed 

significantly across layouts for MC (Fr = 24.67, df 3,14 p<0.0001) and MR (Fr = 25.72, df 

3,12 p<0.0001). Post-hoc pairwise comparison results with the Wilcoxon signed-rank test 

and the Benjamini-Hochberg correction method are summarized in Figure 3.7. These tests 

revealed significant differences when all mental-imagery tasks were considered together. 

Specifically, optodes placed using the LIT approach measured significantly lower CNR 
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values compared to the other three approaches (1) when all mental-imagery tasks were 

considered together (q[FDR]<0.001), (2) for MC only (q[FDR]LIT-PROB <0.01, q[FDR]LIT-

iFMRI <0.001 and q[FDR]LIT-fVASC <0.05) and (3) for MR only (q[FDR] <0.001). In addition, 

channels placed according to the PROB-derived layout reached significantly lower CNR 

values than those from the fMRI (q[FDR]PROB-iFMRI <0.001) and fVASC (q[FDR] PROB-fVASC 

<0.05) approaches. 

As for Δ[HbR], CNR significantly differed across layouts (Fr = 18.32, df 4,14, p < 0.001) 

when all mental imagery tasks were considered together. CNR also differed significantly 

across layouts for MC (Fr = 7.98, df 3,14, p<0.05) and MR (Fr = 8.23, df 3,12, p<0.05). 

Post-hoc pairwise comparisons revealed that the LIT approach reached significantly lower 

CNR values when all tasks were considered together for all other layouts (q[FDR]LIT-

PROB<0.05, q[FDR]LIT-iFMRI <0.001 and q[FDR]LIT-fVASC <0.01). It also reached significantly 

lower CNR values compared to the iFMRI layout for the MR task (q[FDR]LIT-iFMRI <0.01). 

 

Figure 3.7. CNR-based group comparison across layouts. Results were evaluated separately for 

Δ[HbO] (a) and Δ[HbR] (b), when all three mental-imagery tasks were considered together as well as 

separately for MC and MR tasks (left, middle and right column, respectively). LIT performed 

significantly worse than the PROB, iFMRI and fVASC approaches for both chromophores when all tasks 

were considered together. A similar pattern was observed for MC and MR tasks for Δ[HbO]. Gray dots 

represent single-subject CNR values for a given mental-imagery task. Whiskers represent the 1.5 times 

the inter-quartile range. Significant parwise differences (calculated using Wilcoxon signed-rank test, one-

sided and corrected for multiple comparisons) are indicated with asterisks: ***  =  q[FDR] < 0.001; ** 

q[FDR] < 0.01;* q[FDR] < 0.05. Abbreviations: MC = mental calculation; MR= mental rotation.
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3.3 Significant differences in fNIRS-sensitivity across the four optode-placement 

approaches  

3.3.1 t-statistics 

For Δ[HbO], ROI t-statistics significantly differed across layouts (Fr = 31.66, df 3,14, p < 

0.0001) when all mental-imagery tasks were considered together (see Figure 3.8). It also 

differed significantly across layouts for MC (Fr = 23.18, df 3,14 p<0.0001) and MR (Fr = 

14.06, df 3,12 p<0.005). Post-hoc pairwise comparisons (signed-rank tests, one-sided) 

revealed that optodes placed using LIT approach measured significantly lower t-statistics 

compared to the other three approaches (1) when all mental-imagery tasks were considered 

together (q[FDR]<0.001), (2) for MC only (q[FDR]LIT-PROB <0.01 and q[FDR]LIT-iFMRI; LIT-

fVASC <0.001) and (3) for MR only (q[FDR] <0.01).  

Δ[HbR] ROI t-statistics significantly differed across layouts (Fr = 27.48, df 3,14, p < 0.0001) 

when all mental imagery tasks were considered together. It also differed significantly across 

layouts for MC (Fr = 15.46, df 3,14, p<0.01) and MR (Fr = 10.56, df 3,12, p<0.05). Post-

hoc pairwise comparisons showed a similar trend as HbO: LIT approach measured 

significantly lower t-values compared to the other three approaches for almost all 

comparisons. In addition, the optodes placed according to the PROB approach measured 

significantly lower t-values than iFMRI (q[FDR]PROB-iFMRI <0.01) and fVASC (q[FDR]PROB-

fVASC <0.05). 
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Figure 3.8. t-statistic based group comparison across layouts. Results were evaluated separately for 

Δ[HbO] (a)  and Δ[HbR] (b), when all three mental-imagery tasks were considered together as well as 

separately for MC and MR tasks (left, middle and right column, respectively). LIT performed 

significantly worse than the PROB, iFMRI and fVASC approaches for both chromophores when all tasks 

were considered together. A similar pattern was observed for MC and MR tasks for both chromophores. 

Gray dots represent single-subject t-values for a given mental-imagery task. Whiskers represent the 1.5 

times the inter-quartile range. Significant parwise differences (calculated using Wilcoxon signed-rank 

test, one-sided and corrected for multiple comparisons) are indicated with asterisks: ***  =  q[FDR] < 

0.001; ** q[FDR] < 0.01; *q[FDR] < 0.05. Abbreviations: MC = mental-calculation; MR= mental-

rotation.  

3.3.2 Percent of participants with significantly active ROIs 

Figure 3.9 shows the percent of participants that resulted in significant activation for each 

mental-imagery task. For both chromophores, the percent of participants with significant 

ROI activation increased with increasing the amount of individualized information, and 

plateaued after including individualized functional maps (for MC task) or was slightly 

reduced after including vascular information (MR task). For the IS task, PROB and fVASC 

approaches and PROB and iFMRI approaches contained significant ROI activation for both 

participants (100%) regarding Δ[HbO] and Δ[HbR], respectively. As for MC and MR tasks, 

the number of participants with significant activation was higher for more individualized 

approaches than the LIT approach. Specifically, for the MC task, the LIT approach 

contained significant ROI activation in 7% (one) participant for both chromophores, while 

the PROB approach reached significant ROI activation in 57% (eight) and 43% (six) 

participants for Δ[HbO] and Δ[HbR], respectively. IFMRI and fVASC approaches 
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contained significant ROI activation in 79% (eleven) participants for both chromophores. 

For the MR task, the LIT approach reached significant activation in 0% and 17% (two) 

participants, while the PROB approach reached significant activation in 42% (five) and 33% 

(four) of the participants, while iFMRI and fVASC approaches contained significant ROI 

activation in 33% (four) and 42% (five) participants for both chromophores, respectively. 

Figure S3.10 (a) shows examples of participants with typical hemodynamic responses (a 

positive deflection in Δ[HbO] and a negative deflection in Δ[HbR]) for the four approach-

specific optode layouts, while Figure S3.10 (b) shows examples of participants with 

weak/inverted hemodynamic responses for the four approach-specific layouts.  

 

Figure 3.9. Percent of participants that resulted in significant activation for each mental-imagery 

task, optode layout and chromophore. For both chromophores, the percent of participants with 

significant ROI activation increased with increasing the amount of individualized information used to 

create optode layouts until a certain point: it plateaued after including individualized functional maps (for 

MC task) or was slightly reduced after including vascular information (MR task). Abbreviations: IS= 

inner-speech; MC = mental-calculation; MR= mental-rotation.  

3.4 Spatial specificity of fNIRS-ROIs 

To assess how well the fNIRS ROIs targeted individual fMRI activation maps, we computed 

weighted average and peak fMRI responses within the regions of the cortex interrogated by 

fNIRS channels. The two plots in Figure 3.10 (a) show results for sphere with r=20mm that 

both the average and peak responses for LIT are significantly lower than the other 

approaches (significance assessed by signed rank test, one-sided FDR corrected). Using 

different sphere sizes did not affect the results (data not shown). The temporal correlation 



 

Chapter 3 | Guiding fNIRS optode-layout design using individual (f)MRI data

   

124 

 

between fNIRS and fMRI time courses (bottom plots in Figure 3.10 (b)) showed a similar 

tendency but with smaller differences for Δ[HbO] (and examples of both fNIRS and fMRI 

time courses are shown in Figure S3.11). 

 

Figure 3.10. Assessment of layout specificity to fMRI activation maps (a) and of the temporal 

correlation between fNIRS and fMRI time courses (b). Peak and average values extracted from fMRI 

activation maps were highest for channels placed according to iFMRI and fVASC approaches and lowest 

for the LIT approach, independent of the size of projection spheres used to extract the values (data not 

shown). Times courses of channels placed according to the LIT approach showed significantly lower 

temporal correlations with fMRI-signal time courses than following the iFMRI and fVASC approaches. 

Significance was assessed with Wilcoxon paired signed tests (one-tailed) and was corrected for multiple 

comparisons. *** q[FDR] <0.001; ** q[FDR]<0.01; *q[FDR]<0.05. 
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4 Discussion 

Designing optode layouts is an essential but challenging step in the preparation of an fNIRS 

experiment as the quality of the measured signal and the sensitivity to underlying cortex 

depends on how sources and detectors are arranged on the scalp. This becomes particularly 

relevant for fNIRS-based BCI and neurofeedback applications, where developing robust 

systems that use limited number of optodes is crucial to remain practical and comfortable 

for clinical applications. From the many approaches and tools currently available to optimize 

optode-layout design, we selected and compared four approaches that incrementally 

incorporated individual information of participants (LIT, PROB, iFMRI and fVASC) while 

participants performed mental-imagery tasks typically used in fNIRS-BCI experiments. Our 

results show that the four approaches resulted in different optode layouts and that the degree 

of overlap varied across approaches, with the highest overlap and smallest distance between 

iFMRI and fVASC layouts. Further, time course data of channels placed according to the 

LIT approach showed significantly lower CNR and t-values than those of the channels 

placed according to the remaining approaches. In addition, we observed no significant 

difference between PROB, iFMRI and fVASC approaches when all three mental tasks were 

considered together. 

Understanding the difference in performance across layouts 

Lower performance of the LIT approach 

Concurrent fNIRS-fMRI studies show agreement in the hemodynamic signal measured by 

both modalities (at least in the motor cortex), both temporally (Cui et al., 2011) and spatially 

(Huppert et al., 2017), but inferior in spatial resolution when assessed with fNIRS. To assess 

how well the fNIRS ROIs targeted individual fMRI activation maps, we computed weighted 

average and peak fMRI responses within the regions of the cortex interrogated by fNIRS 

channels. As shown in Figure 3.10, the average and peak responses for LIT were 

significantly lower than the remaining approaches. The temporal correlation between fNIRS 

and fMRI time courses showed a similar tendency. These observations were expected since 

PROB, iFMRI and fVASC approaches were based on fMRI information. However, if the 

individual fMRI map is used as the ground-truth measure of cerebral activity due to its 

superior resolution and higher SNR, Figure 3.10 shows that the LIT approach could not 

capture the underlying signal as good as the other approaches.   
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Several factors may have contributed to that. First, the head model used for Monte Carlo 

simulations for LIT differed from the other three approaches (Colin27 head atlas vs. subject-

specific anatomical model, respectively). Although head atlases are good approximations, 

the tissue geometries may significantly differ from other adult individuals (Strangman et al., 

2013). Second, the ROI selection procedure for LIT differed from the PROB, iFMRI and 

fVASC approaches in that the ROI selection for LIT was based on a literature review, while 

the other three approaches relied on functional contrast maps. Due to the small number of 

participants for the IS task (N=2), the following lines will focus only on MC and MR tasks. 

The mental-imagery instructions used in this study differed from the reviewed studies, 

which may have contributed to a suboptimal selection of the ROIs for the LIT approach. 

Indeed, the majority of reviewed papers that reported using mental arithmetic used strategies 

that aimed at increasing the working memory demand and thus mainly measured brain 

activation in the frontal lobe. Examples of tasks used in these studies are subtraction to 

visually presented 3-digit or 2-digit numbers, or addition or multiplication of visually 

presented single or double digits to/with single or double digits (Rickard et al., 2000; 

Kawashima et al., 2004; Yoo et al., 2004; Naito et al., 2007; Ogata et al., 2007; Utsugi et 

al., 2007; Bauernfeind et al., 2008; Pfurtscheller et al., 2010; Ang et al., 2012; Power et al., 

2012; Herff et al., 2013; Schudlo and Chau, 2013; Schudlo et al., 2013; Verner et al., 2013; 

Weyand and Chau, 2015; Shin et al., 2016). Here, we asked participants to recite common 

multiplication tables, which is considered an easy task and thus may have elicited lower 

responses in frontal and parietal areas when compared to more complex multiplication 

problems (Ischebeck et al., 2009). Regarding mental rotation, most of the reviewed work 

used visually presented cues that had to be mentally rotated, such as geometric object, 

alphanumeric character or hand rotations (Alivisatos and Petrides, 1997; Tagaris et al., 1998; 

Harris and Miniussi, 2003; Roberts and Bell, 2003; Kawamichi et al., 2007; Shimoda et al., 

2008; Friedrich et al., 2013; Herff et al., 2013; Hwang et al., 2014; Khan and Hong, 2017; 

Hamada et al., 2018; Khalaf et al., 2018). In this study, we did not visually present the object 

to be mentally rotated, as participants were asked to imagine a diver spinning in the air while 

keeping their eyes closed. In addition, unlike the reported studies, there was no reference 

object to compare to the rotated object. The lack of visual support and a reference object 

could cause the recruitment of the areas involved in the task to be slightly different or to be 

recruited to a lesser extent. However, we would like to note that since we did not test the 

performance of approaches that use anatomical ROIs defined on individual head models, 
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we cannot disentangle if the lower performance of the LIT approach is due to the head model 

used or whether it is due to the nature of the ROI.  

No significant difference between fVASC and iFMRI layouts 

The fVASC and the iFMRI approaches only differed in the number of tissues used during 

Monte Carlo simulations: the fVASC condition included an additional participant-specific 

vascular information. Including an additional vascular information did not result in a 

significant difference compared to the iFMRI layout at the group level. This is mainly 

because the generated layouts were very similar between them, as indicated by the channel 

overlap across layouts and the Euclidian distance (Figure 3.6). This high similarity seems to 

be driven by the functional ROIs, which was the same for both approaches. Our decision to 

use a small number of optodes for each layout, the constraints to select them, and 

segmentation-related factors (see the limitations section below) may have also limited the 

improvements expected from the fVASC approach. 

PROB performs similar to iFMRI and fVASC 

Here we defined probabilistic functional activation maps for each participant and task from 

an independent dataset using a leave-one-subject-out scheme. This approach resulted in an 

improved sensitivity that is comparable with the improvement observed when using 

individual data of a given participant. Specifically, we observed that CNR and t-statistics 

performed similarly for the PROB approach compared to the iFMRI and fVASC 

approaches. Further, Figure 3.10 also shows that, descriptively speaking, the peak and 

average values captured by channels defined based on the PROB approach are closer to 

those of iFMRI and fVASC approaches than the LIT approach is. This is because PROB 

approach-based activation maps show high spatial correspondence when compared to the 

reference fMRI maps for each participant and mental task. Indeed, the average spatial 

correlation (assessed by Spearman correlation) between probabilistic maps and individual 

activation was 0.63 when all tasks are considered together and of 0.63 for MC and 0.64 for 

MR tasks. For IS the values ranged between 0.52 and 0.66. These values, together with the 

results presented in this study, suggest that using probabilistic maps based on a reasonable 

number of participants and defined on individual anatomical space can be used for any new 

participant (as long as the functional maps used to create the probabilistic maps are based 

on the same task or are closely related to it).  
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Optode-layout design and its limitations 

Cost function, constraints and optimization problem 

The optode layout for each of the four approaches consisted of two channels that shared one 

optode and that maximized the total sensitivity to the preselected ROI. The cost function to 

be maximized was the same as in Machado et al. (2014), but the algorithmic approach to 

solve the optimization problem was tailored to account for the constraints imposed by our 

particular research question(s) and experimental design. This entails that our algorithmic 

approach may not be (and was not designed to be) generalizable to other experimental 

designs. Importantly, although the approach by Machado et al. (2014) is very effective in 

covering focal ROIs, it fails to provide an appropriate solution when the ROI is extended or 

consists of multiple noncontiguous regions (Machado et al., 2014; Brigadoi et al., 2018), as 

was the case in this study.  

Mental-imagery task selection 

From the three mental-imagery tasks participants had to perform inside the MRI scanner, 

each participant performed two tasks during the fNIRS session. The selection of these two 

tasks was subject-specific and followed several pre-defined criteria. Combining approach-

specific layouts for both mental-imagery tasks caused incompatible source and detector 

placements in some participants. The decisions taken to overcome these problems, together 

with the subject-specific task selection led to an unequal number of participants for each 

task (NIS = 2, NMC = 14, NMR =12), which made the group analysis for IS task unfeasible. 

To overcome the incompatibility problem, future studies could test the performance of 

different layouts in different runs/sessions (by using a given layout at a time), whose order 

could be counter-balanced to account for run/session effects. In addition, a single mental-

imagery task could be studied at a time (instead of multiple tasks as in this study).  

Monte Carlo simulations  

Our light sensitivity profiles may contain estimation errors due to a number of 

simplifications. First, the head models used in this study did not consider that the skull can 

contain cancellous and cortical bone, and the soft tissue may contain fat and muscle that 

have different optical properties (Herrera-Vega et al., 2017). Second, both sources and 

detectors were modeled as pencil sources instead of separately being modelled according to 
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their function (they emit or detect light) and technical characteristics. Third, we did not 

distinguish between arteries and veins when defining the head model. Even if our decision 

can be justified by the relatively small difference in optical properties between veins and 

arteries compared to the remaining tissues, we cannot discard potential divergence in the 

results if arteries and veins had been distinguished. Optical properties also differ depending 

on the diameter of blood vessels (Rajaram et al., 2010), which we did not take into account 

in the current study. Finally, our vascular maps depended on manual segmentation 

procedures, which may have introduced variability. Future studies may overcome these 

limitations by mapping superficial (scalp/skull) vasculature with more optimized MRI 

sequences (Rhéaume et al., 2017), and by distinguishing between arteries and veins and their 

diameters (Bizeau et al., 2017; Bernier et al., 2018).  

Implications for BCI applications 

In fNIRS-BCI applications for motor-independent communication and control, brain 

responses from a set of tasks are discriminated by exploiting information in distributed 

patterns of brain activity using multi-channel pattern analysis (the equivalent to multi-voxel 

pattern analysis in fMRI studies). Alternatively, univariate analysis in combination with 

temporal encoding paradigms can be used, where participants perform a (number of) task(s) 

in a specific time window and evoke brain activation in a single (distinct) brain location(s) 

(Sorger et al., 2009; Bardin et al., 2011; Sorger et al., 2012; Nagels-Coune et al., 2017; 

Benitez-Andonegui et al., 2020; Nagels-Coune et al., 2020). For either approach, it is 

important to ensure there is a set of channels that contains sufficient task-related information 

to discriminate responses.  

The present study constitutes a relevant pre-step for these BCI applications as it compared 

approaches that used different amount of individualized information to design task-specific, 

optimized optode layouts that should result in informative channels. Neurofeedback 

applications can also benefit from layouts that ensure sufficient task-related information and 

improved spatial specificity. Our results show that the percent of participants with 

significant ROI activation increased when expanding the amount of individualized 

information to create the optode setup, but only until a certain point. Indeed, adding 

vasculature information did not increase the percent of participants for MC and reduced this 

number for MR. Although all participants showed significant activation levels for every 
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mental task during the fMRI run, none of the approaches using fMRI information managed 

to get all participants to have significant ROIs for MC and MR tasks. It is unclear whether 

a given level of fMRI activation is enough to guarantee the detection of task-related fNIRS 

signal. Even if both neuroimaging methods measure the hemodynamic response to neural 

activity, fNIRS is highly dependent on the individual anatomical features, such as the scalp-

brain distance (which differs across the head) ), the presence of hair, etc. (Coyle et al., 2005). 

In addition, our fNIRS results might have been affected by the discrete spatial locations used 

in this study (130 EEG positions). Spatially unrestricted optode placement would likely 

improve the results substantially (Machado et al., 2018).  

Recommendations for optode placement and the way forward  

Effective optode-layout design balances a number of potential tradeoffs. The extended 

layouts based on the international 10-20 system or its extensions can be used to study 

functional network dynamics and are adequate when target ROIs are not easy to define 

(Machado et al., 2018). In addition, although the target ROI may not be optimally sampled 

(due to unavoidable “blind spots”, i.e., regions not covered by a source-detector pair, when 

creating optode layouts and the lower spatial resolution associated to fNIRS compared to 

fMRI), the chance of completely missing it is relatively low. That said, smaller setups are 

preferred in fNIRS-BCI applications due to their superior practicability and patient comfort. 

However, they run a much higher risk of missing signal from the target ROI due to 

anatomical or functional differences between individuals. As a result, small BCI setups are 

likely to benefit from supplementary f/MRI data investigated in the present work. The 

recommendations and conclusions presented here therefore focus on this particular fNIRS 

application.  

Considering that any additional individualized information has an associated 

acquisition/analysis cost, it is worth asking, especially when temporal/monetary/material 

resources are limited: how much individual information is worth to include for designing 

optode layouts? Figure 3.11 shows the predicted percent improvement in performance (in 

terms of t-statistics [top] and CNR [bottom]) vs. the additional time required to 

acquire/analyze the data relative to the LIT layout, here considered the “baseline” approach. 

Points above the line indicate that the percent improvement of a given performance measure 

is higher than the temporal resources spent to achieve that gain. The figure suggests that 
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including individual anatomical data (PROB layout) or including both, individual 

anatomical and functional data (iFMRI layout), improves the performance while efficiently 

using temporal resources. It also suggests that the fVASC approach in its current form is not 

as cost-effective.  

 

Figure 3.11. Percent improvement in performance (in terms of t-statistics (a) and CNR (b)) vs. the 

additional time required to acquire/analyze the data (in hours). All values are relative to the LIT 

approach (in light pink), here considered the “baseline”. The bigger white circles represent the median of 

the percent improvement in t-statistics/CNR values for each layout when all three tasks are considered 

together. The dashed line represents the predicted percent improvement in performance for a given 

processing time. Points above/below the line indicate that the percent improvement of a given 

performance measure is higher/lower than the temporal resources spent to achieve that gain. 

The analysis described above focused only on a small part of the multi-dimensional problem 

related to cost-effectiveness. Naturally, costs and benefits of including more individualized 

information for creating clinically practical layouts should be assessed in that very context. 

For example, in certain (rare) cases such as long-term BCIs in ‘locked-in’ patients, using 

individual (f)MRI data may result in increased ability to communicate, i.e., provide 
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considerable benefit. In that case, even though using individual (f)MRI is more resource-

demanding, the benefits could outweigh the costs.   

In view of these observations, we encourage researchers to use individual functional and 

anatomical data for designing optode layouts when possible, but when anatomical data is 

available and functional data is not, probabilistic functional maps constitute a promising and 

economic alternative. FMRI-based probabilistic functional maps of the human ventral 

occipital cortex (Rosenke et al., 2020), human motion complex (Huang et al., 2019), face 

selective areas (Tahmasebi et al., 2012; Zhen et al., 2015), finger dominance in the primary 

somatosensory cortex (O’Neill et al., 2020) or across the whole cortex (Frost and Goebel, 

2012) are freely available or available on demand. However, we could not find any 

published work on probabilistic mental-imagery maps, which could be beneficial for optode 

placement in BCI research. To improve this situation, the probabilistic functional maps of 

the three mental-imagery tasks used in this study (in MNI space) are available upon request. 

Finally, in the absence of functional and anatomical information, ROI selection should be 

guided by relevant body of work or meta-analyses that describe tasks closely related to the 

ones to be used during the fNIRS session. In parallel, a larger setup could be initially 

employed in a “localizer” run to determine the most informative channels which could be 

subsequently scaled down to consider only the most informative channels. In the present 

study, once the target ROIs were selected, we used FOLD (Zimeo Morais et al., 2018) for 

designing our optode layout due to its user-friendly features. However, other toolboxes such 

as Array Designer (Brigadoi et al., 2018) and software, such as NIRStorm (a BrainStorm 

plugin for fNIRS analysis (Tadel et al., 2011)), also offer promising and flexible tools that 

were not explored in the present study.  

 

5 Conclusions 

In this paper, we compared four approaches to design small fNIRS optode layouts that 

represent various scenarios research groups may encounter when planning fNIRS-BCI 

experiments. By providing the insights of such comparisons, we hope to have offered an 

informative framework so that researchers can efficiently use resources for developing 

robust and convenient fNIRS-BCI systems for clinical use.  
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6 Supplementary Material 

6.1 Materials and Methods 

6.1.1 Preprocessing and analysis of functional MRI data 

fNIRS coverage mask definition 

A whole-head mask was created for each participant from the bias-corrected structural 

image. Each mask was iteratively eroded 50 times and all voxels that did not belong to this 

eroded mask were selected and intersected with the original head mask. The ‘surviving’ 

voxels were used to mask out active voxels from deeper regions, as we did not expect the 

fNIRS signal to be sensitive to these regions (Strangman et al., 2013).  

 

Figure S3.1. fNIRS-coverage mask definition and application. An fNIRS-coverage mask was created 

by the intersection of the eroded head mask and the brain mask, and it was used to mask out the active 

voxels from deeper regions. The activation map depicted in this figure resulted from the MR vs. Rest 

contrast for a representative participant. The activation map was corrected using a cluster-extent threshold 

at 5%.
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Probabilistic functional maps 

We defined subject-specific probabilistic functional maps based on an independent sample, 

i.e., the functional data from the remaining individuals. Figure S3.2 depicts an example of 

probabilistic functional maps for each of the mental-imagery task, from a left, top and right 

view. Colors represent the percent overlap of significant activation across participants for a 

task vs. rest contrast (corrected with a cluster threshold that allowed for a 5% loss of active 

voxels). 

Vascular segmentations and reconstructions 

Figure S3.3 summarizes the steps carried out for segmenting cerebral, pial and scalp vessels 

and Figure S3.4 depicts the resulting vascular reconstruction for a sample participant. 

Cerebral/pial vessels are shown in blue, while scalp vessels are shown in red. Scalp 

vasculature segmentation required more manual corrections than the cerebral/pial 

vasculature segmentation. 
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Figure S3.4. Example of vascular reconstructions (P16). Left. Cortical reconstruction (left 

hemisphere). Middle. Pial/cerebral vasculature reconstruction (in blue) overlaid onto the cortical mesh. 

Right. Scalp vasculature reconstruction (in red) overlaid onto the cortical mesh and the pial/cerebral 

vasculature reconstruction. 

6.1.2 Optode layout creation 

Monte Carlo simulations 

Head models 

Figure S3.5 shows the head models used for PROB (left figure), iFMRI (left figure) and 

fVASC (right figure) during Monte Carlo simulations. Both figures differ in the amount of 

tissues included: while the left figure represents a five-tissue model, the right figure includes 

a sixth tissue (vascular structures). Importantly, we did not distinguish between arteries and 

veins. 

 

Figure S3.5. Example head model (P01) used for Monte Carlo simulations. (Left) Five-tissue model 

used for PROB and iFMRI. (Right) Six-tissue model used for fVASC.
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Optical properties for vascular structures 

The oxygen saturation of blood (SO2) is defined as the ratio of the HbO2 concentration to 

the total hemoglobin concentration, where SO2[Arteries] ~ 97.5% and SO2[Veins] ~ 75%. 

Bosschaart et al. (2014) reported optical coefficients for a range of wavelengths and SO2 of 

98% and SO2 of 0%.  SO2=98% can be considered an approximation of the arterial blood 

and a combination of both (SO2=98% and SO2=0%) can be used to approximate the venous 

blood: 

                            SO2[Veins] = 0.75 x SO2[98%] + 0.25 x SO2[0%]                                       (3.6) 

Table S3.1. Optical values reported in Bosschaart et al. (2014) for the four wavelengths used in the 

present study.  

 proposed model empirical data 

λ (nm) 

µs 

SO2  

(98%) 

µs SO2 

(0%) 

µs SO2  

(75%) 

g SO2 

 (98%) 

g SO2 

(0%) 

g SO2 

 (75%) 

µa 

SO2 

(98%) 

µa SO2 

(0%) 

µa SO2 

(75%) 

690 85,84 75,63 83,2875 0,9843 0,9852 0,9845 0,13 1,17 0,39 

750 77,04 67,62 74,685 0,9827 0,9836 0,9829 0,24 0,81 0,3825 

780 72,59 63,73 70,375 0,9819 0,9827 0,9821 0,33 0,59 0,395 

830 66,96 58,72 64,9 0,9804 0,9812 0,9806 0,46 0,43 0,4525 

Note: The scattering (µs) and anisotropy (g) parameters were based on a mathematical model (proposed model, 

column 1 in the present table), while the absorption parameters (µa) based on empirical data (column 2). The 

columns in grey correspond to optical values for venous blood which was calculated based on a weighted sum 

of SO2 98% and 0% values (equation 1). 

 

Table S3.2. Optical properties of arterial and venous blood based on the optical values reported 

in Bosschaart et al. (2014).  

 µa µs g 

Arterial blood (SO2 98%) 0,29 75,6075 0,982325 

Venous blood  (SO2 75%) 0,405 73,311875 0,982525 

Note: Values were computed as the average of four wavelengths used in the present study. 
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LIT approach: ROI definition 

Studies included in the literature review 

We used the PubMed database and  keywords for the search included: ‘inner speech’, ‘covert 

speech’, ‘mental talking’ and ‘overt speech’ for inner speech (overt speech was also 

included as both covert and overt speech share common networks, see, e.g., Martin et al. 

(2014)); ‘mental calculation’ and ‘mental arithmetic’ for mental calculation; and ‘mental 

rotation’ for mental rotation. We included every work that reported using such mental-

imagery tasks, independent of the neuroimaging modality and the population under study 

(see Table S3.3). Note that in the table, WG and WA stand for word generation and word 

association, respectively. 

Selected ROIs 

ROIs for each mental-imagery task were selected based on the most-frequent regions 

reported across studies. This number different across the three tasks (see Table S3.4). 

Table S3.3. Selected regions of interest for the LIT-based approach.   

Inner Speech (IS) Mental Calculation (MC) Mental Rotation (MR) 

L | Inferior Frontal Gyrus  

      (p. Opercularis) 
L-R | Middle Frontal Gyrus L-R | Superior Parietal Lobule  

L | Inferior Frontal Gyrus  

      (p. Triangularis) 
R | Angular Gyrus L-R | Inferior Parietal Lobule  

L | Superior Temporal Gyrus L | Superior Frontal Gyrus L | Precentral Gyrus 

L | Supramarginal Gyrus   L-R  | Middle Frontal Gyrus 

L | Rolandic Operculum   L-R | Middle Occipital Gyrus 

L | Precentral Gyrus     
   Note: L = left hemisphere; R = right hemisphere 
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Mental-imagery task-pair selection process for fNIRS session 

We carried out the task-pair selection at the individual subject level. For that, we first 

calculated the number of overlapping channels across all four layouts for each mental-

imagery task, and selected the two tasks with the least number of overlapping channels. We 

computed the center of gravity (COG) for all four layouts per mental-imagery task in case 

this approach was not sufficient to select the two tasks (indicated with ? in Table S3.5). The 

mental tasks with the least number of overlapping channels and highest distance between 

them were the selected tasks. 

Table S3.5. Summary of the steps involved in selected the task-pair for each participant. 

 

1st criterion: min # of 
overlapping channels 

between  tasks 

      Result       2nd criterion: max distance  

between tasks 

Result      

 

Change selected task 

pair if original 
combination proofs 

incompatible 

  
Overlapping 

channels Selected task pair Distance between COGs (mm) Selected 

task pair 
Conflict? 

Selected 

task pair 
  IS MC MR IS MC MR 

P01 2 2 0 ? MR 27,50 45,50 137,35 MC MR No MC MR 

P02 0 0 2 IS MC 136,18 173,11 106,48 IS MC No IS MC 

P03 1 2 1 IS MR 68,60 157,62 193,71 IS MR No IS MR 

P04 2 1 0 MC MR 107,60 187,46 195,29 MC MR No MC MR 

P05 1 2 0 IS MR 132,13 59,89 87,30 IS MR YES IS MC 

P06 2 2 0 ? MR 71,25 120,98 206,58 MC MR No MC MR 

P09 2 2 0 ? MR 143,84 152,83 212,09 MC MR No MC MR 

P10 2 2 2 ? ? 81,36 192,21 175,89 MC MR No MC MR 

P11 3 2 2 MC MR 75,69 74,12 123,46 MC MR No MC MR 

P14 2 2 0 ? MR 65,48 145,50 226,89 MC MR No MC MR 

P15 2 2 2 ? ? 72,95 155,34 154,82 MC MR No MC MR 

P16 1 1 2 IS MC 107,86 220,43 164,65 IS MC YES MC MR 

P17 0 2 0 IS MR 112,77 163,57 237,51 IS MR YES MC MR 

P19 1 2 2 IS ? 213,88 147,34 150,48 IS MR YES MC MR 

P20 3 2 0 MC MR 48,38 138,12 189,18 MC MR No MC MR 

P21 2 2 1 ? MR 201,47 139,88 207,34 IS MR No IS MR 

 

Subject-specific optode layout for the selected mental-imagery task pair 

Figure S3.6 illustrates schematically the selected optode layout for each participant (top 

view). The optode layouts for each mental-imagery task have been separated in these plots 

for clarity. 
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6.1.3 Data analysis 

Data quality and presence of motion artifacts assessment 

We computed the coefficient of variation (CV) to quantify the signal quality in each channel. 

Channels with CV >=7.5% were discarded from subsequent analyses. Figure S3.7 shows 

the percent of channels that fulfilled the CV criterion for each participant. 

 

Figure S3.7. This figure shows the percent of channels (y-axis) across runs and participants (x-axis) 

that survived the CV threshold of 7.5%. Almost all channels met the CV criterion across participants. 

The top panel of Figure S3.8 summarizes the detected motion events per channel and run 

for each participant. The bottom panel provides cumulative motion events across channels 

and runs for participant P14. 
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Figure S3.8. Motion artifacts. Top. Presence of motion artifacts across channels (x-axis in subplot), 

runs (y-axis in subplot) across participants. The color in each cell indicates the frequency of detected 

motion artifacts within a run for a given channel. Note that the number of channels and runs were different 

across participants. Bottom. Closer look into the motion artifacts in participant P14. The top histogram 

shows the cumulative number of motion events across runs for a given channel, while the histogram on 

the left shows the cumulative motion events over channels for a given run. 

 

6.2 Results 

6.2.1 Frequency maps 

We computed frequency maps for each mental-imagery task and approach to assess the 

spatial agreement of the selected channels across participants. The frequency maps shown 

in Figure S3.9 indicate that the selected channels varied considerably across subjects for 

PROB, iFMRI and fVASC approaches. In addition, iFMRI and fVASC approaches (the two 

most individualized ones) show the highest and most similar spatial extension for MC and 

MR. It is important to note that the (low) variability observed in the LIT approach is due to 
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the use of the minimal individual anatomical information during the channel selection step 

(see Section 2.3.2.2). 

6.2.2 Examples of typical and weak/inverted hemodynamic responses 

Figure S3.10 (a) shows examples of four participants with typical hemodynamic responses 

(a positive deflection in Δ[HbO] and a negative deflection in Δ[HbR]) for a given approach, 

together with the projected activation on individual cortex reconstructions. Figure S3.10 (b) 

shows examples of four participants with weak/inverted hemodynamic responses.  

6.3 Discussion 

6.3.1 Correspondence between fMRI and fNIRS block averages  

Figure S3.11 shows the correspondence between fMRI and fNIRS block averages calculated 

from channels placed according to the four approaches, for participants P01 and P16 during 

MR and MC tasks, respectively. We used channel-specific projection weights and projection 

spheres to compute spatially weighted fMRI block averages of the regions where the fNIRS 

signal most likely originated (see section 2.3.5.8 for details). The figure shows that channels 

placed based on approaches that use more individualized information show a better 

agreement with fMRI block averages. In addition, channels in close proximity can capture 

considerably different responses (see P01). 
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4 
The influence of extra-cerebral 

vasculature on the efficacy of the 

short-separation regression approach 

applied to fNIRS data 
A. Benitez-Andonegui, A. Turšič, S. Dumitrescu, D. Ivanov, R. Goebel, M. Lührs, B. Sorger8

Abstract 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and inexpensive optical 

neuroimaging technique with respectable spatial and temporal resolution. fNIRS is, however, 

susceptible to extra-cerebral physiological noise, potentially compromising its sensitivity to detect 

task-related brain activation. Previous studies have addressed this issue by correcting fNIRS signals 

with additional information recorded exclusively from extra-cerebral regions using short-distance 

channels (SDCs). This method, termed short-separation regression (SSR), can improve fNIRS-signal 

quality and the sensitivity to detect task-related brain activation. However, it is unclear whether the 

efficacy of SSR depends on factors such as the presence of blood vessels in the channel’s vicinity. 

Here, we combined anatomical, functional and angiographic magnetic resonance imaging data with 

continuous-wave fNIRS data to quantify the impact of SSR on the fNIRS-signal quality and 

sensitivity and investigated how vascular proximity/density contributes to SSR efficacy. Our 

investigation verifies that SSR improves fNIRS-signal quality and the sensitivity to detect task-

related brain activation considerably and shows that signals obtained via SDCs are affected by close 

vascular structures. The present study extends our understanding of the relationship between 

vasculature features, the fNIRS signal quality, and methods (e.g., SSR) designed to increase fNIRS 

applicability to accurately detect brain activity. 

8Based on: A. Benitez-Andonegui, A. Turšič, S. Dumitrescu, D. Ivanov, R. Goebel, M. Lührs, B. Sorger (Under 

review). The influence of extra-cerebral vasculature on the efficacy of the short-separation regression approach 

applied to fNIRS data analysis. 
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The principal rationale for the development of BCIs has been to ultimately restore 

communication and control in the absence of words/gestures/other motor actions to people 

with severe neuromuscular disabilities (Shih et al., 2012). Despite being the historically 

main target, the body of literature involving end-users with disease has lagged behind the 

nearly exponentially growth of general BCI-related literature (Kübler, 2020). fNIRS is a 

promising neuroimaging modality to measure brain signals for controlling BCIs. However, 

fNIRS-BCI systems suffer from a number of limitations that has hindered its translational 

potential. This dissertation aimed to address some of these limitations. In Chapter 2, we 

evaluated factors that could improve the feasibility of ecologically-friendly fNIRS-based 

BCIs, namely short task duration periods, the usage of single optode pairs and the use of 

augmented-reality (AR) technology for a more immersive experience. In Chapter 3, we 

investigated the effect of different strategies for optode placement on the fNIRS signal 

quality and sensitivity to detect brain activation. Finally, in Chapter 4, we assessed if the 

amount of unwanted physiological noise present in the fNIRS signal depends on the 

proximity and density of vascular structures around the optodes. 

After summarizing the results from each study, we will discuss the implications of the work 

presented in this dissertation. Subsequently, we describe the limitations and challenges of 

the current work and suggest the directions research should take to assure the realization of 

the translational potential of fNIRS-based BCIs.  

1 Summary 

In Chapter 2, we aimed to improve the feasibility of ecologically-friendly fNIRS-based 

BCIs for communication and control purposes in healthy participants. We tested the 

feasibility of using AR technology to navigate a through a virtual control menu that 

consisted of four levels and six options in each level. Additionally, we evaluated the 

feasibility of using a single mental-imagery task and fNIRS channel to select an option in 

each level. This was possible by using a temporal en- and decoding approach, previously 

implemented in fMRI-BCIs but never tested in fNIRS. Participants could successfully 

navigate through the nested control menu and achieved a mean accuracy of 74%. With this 

work, we showed that fNIRS-based BCIs can be successfully combined with AR technology 

and flexible choice encoding in form of search trees, to increase the degrees of freedom of 

a BCI system using a single mental task and fNIRS channel. 
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In Chapter 3, we aimed to answer the following questions: does additional individual 

(f)MRI data help optimizing the proper placement of fNIRS sensors? If so, how much 

individual data is needed? To do so, we selected and compared four approaches that 

incrementally incorporated individual (f)MRI information. The first approach was the 

literature-based approach (LIT), which uses a literature review to guide the optode layout 

design. The second approach, the probabilistic approach (PROB), employed individual 

anatomical data and probabilistic maps of functional MRI (fMRI)-activation derived from 

an independent dataset. The third approach used individual anatomical and fMRI data 

(iFMRI approach) and, the fourth approach used individual anatomical, functional and 

vascular information of the same subject (fVASC). We observed that the four approaches 

produced different optode layouts and that the more informed approaches (PROB, iFMRI, 

and fVASC) outperformed the minimally informed LIT approach in terms of signal quality 

and sensitivity. Further, the three more informed approaches (PROB, iFMRI and fVASC) 

resulted in similar outcome. We thus conclude that acquiring additional individual MRI data 

leads to a better signal quality, but that not all the modalities tested are required to achieve 

a robust setup. 

In Chapter 4, we investigated whether fNIRS channels capture physiological noise 

differently and whether potential differences depend on the density and proximity of vessels 

in the vicinity of channels. We looked into three physiological noise types: Mayer waves, 

respiration and heartbeat. Our analyses showed variability in the amount of noise captured 

by fNIRS channels, but no relation between the amplitude of physiological noise and 

vascular proximity/density in normal-distance channels (NDCs). One way for correcting 

physiological noise in NDCs is to use short-distance channels (SDCs) that record 

exclusively from extra-cerebral regions. This method assumes that the systemic 

physiological noise present in the NDCs is present in SDC signals as well (Gagnon et al., 

2012) but that SDCs do not have the penetration power to access brain activity. Our analyses 

indicated that the Mayer-wave amplitude captured by SDCs was related to the presence and 

density of vascular structures in their vicinity, but only for ∆[HbO]. Since the Short-

separation regression (SSR) approach reduces the presence of physiological noise in NDCs 

data, we investigated whether this reduction depended on the presence of vascular 

structures. If that were the case, it would help researchers to shape the physiological noise 

correction approaches. However, we did not find any evidence for this dependence. 



Chapter 5 | General Discussion 

230  

 

Nevertheless, this chapter extends considerably our understanding of the relationship 

between the vasculature features and the presence of physiological noise in fNIRS channels. 

Taken together, the empirical studies presented as part of this dissertation address a number 

of challenges affecting different stages of and fNIRS-BCI setup. The studies describe a 

temporal en-/decoding paradigm previously used in fMRI-BCIs and successfully transferred 

to fNIRS-BCI research, offer guidance to efficiently using resources for developing robust 

and convenient optode layouts and provide insights on a number of factors affecting the 

presence of physiological noise in the fNIRS signal. The knowledge gained in these studies 

can therefore improve data-acquisition and analysis strategies in fNIRS-BCI research. 

2 Implications and challenges of the presented work, and the way forward 

2.1 Optode-layout design 

How many optodes should the optode layout contain? How should they be arranged? These 

are important questions impacting fNIRS signal quality and sensitivity to cortical regions of 

interest (Culver et al., 2001). Additionally, the coverage and number of optodes in a layout 

affect the comfort of the participant. The fNIRS community has developed several tools and 

pipelines that aim to optimize solutions to this problem. Using 3D visualization tools, 

researchers have proposed methods to design optode layouts “manually” and interactively 

that target specific cortical regions based on light sensitivity profiles (Aasted et al., 2015; 

Wijeakumar et al., 2015). Machado et al. (2014) proposed a mathematical optimization 

strategy to address the problem and combined it with light-sensitivity profiles from 

individual anatomical head models. In 2018 they improved their work by allowing optodes 

to take any position along the scalp surface (using water-resistant adhesive [e.g., collodion] 

to glue the optodes on the scalp), instead of using fixed discrete positions along an EEG cap 

(Machado et al., 2018). The same year, two toolboxes were published to automatically 

design optimized fNIRS arrays given a user-defined ROI, FOLD (Zimeo Morais et al., 2018) 

and Array Designer (Brigadoi et al., 2018). Each of the above-mentioned approaches allows 

for variable user-defined and system-tailored restrictions. These include the maximum 

channels/optodes comprising the layout and the coverage and solution space of the layout, 

to name just a few.  
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Optimal solutions to the optode-layout-design problem depend on the restrictions the 

problem is subject to. This in turn depends on a number of factors, including the research 

question or application, the available technical and financial resources, as well as the 

researcher’s available time. Data availability are included in these resources and the tools 

presented above, with the exception of the FOLD method, have partially considered them. 

This is because they all enable creating layouts based on individual subject MRI data or 

using an MRI atlas. In Chapter 3, we defined four scenarios by varying the available 

resources a researcher could have and assessed the potential gain of incorporating not only 

individual anatomical data, but also functional and vascular MRI data when optimizing 

optode-layout designs. Based on our results, we suggested that researchers should use 

individual functional and anatomical data for designing optode layouts when possible. When 

anatomical data are available and functional data are not, probabilistic functional maps are 

a promising alternative.  

So far, existing tools for optode-layout design do not provide an option for defining target 

regions of interest based on individual or probabilistic functional activation maps derived 

from fMRI. In Chapter 3 we observed that using these information sources can benefit the 

optode layout design process. We hope that future iterations of these tools will consider 

incorporating this functionality. One obvious challenge is acquiring such data. Fortunately, 

freely available (or available upon request) fMRI probabilistic maps constitute a feasible 

solution. However, we could not find any published work on probabilistic mental-imagery 

maps, which could be particularly beneficial for fNIRS-BCI research. We have attempted 

to improve this situation by making inner-speech, mental-calculation and mental-rotation 

probabilistic functional maps available to the fNIRS community. We hope that more 

research groups follow these efforts. 

2.2 Physiological noise in fNIRS 

Accounting for and removing physiological noise from the fNIRS signal is important for 

developing effective and efficient BCI applications. Physiological noise can compromise 

sensitivity to brain activation measured by fNIRS channels and can feed back noise to a 

participant instead of brain activity. Among the many choices for physiological noise 

correction, we opted for the short-separation regression (SSR) approach. Short-separation 

regression requires additional channels that are easily integrated in a real-time experiment, 
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making them suitable for fNIRS-BCI applications. In Chapter 2, we created an in house-

made single SDC, while in Chapters 3 and 4 we used short-distance bundles from a certified 

fNIRS provider. We did not actively assess the effect of SDC correction in Chapter 3, so 

the following discussion will focus on Chapters 2 and 4.  

In Chapter 2, we observed that applying the SSR approach increases the accuracy of the 

BCI system more for ∆[HbO]than for ∆[HbR]. In Chapter 4, SSR improved sensitivity to 

brain activation, and again this was more for ∆[HbO]than for ∆[HbR]. These improvements 

were independent of  the task employed, as we used a motor-imagery task in Chapter 2 and 

an overt and inner-speech task in Chapter 4. It was also independent of the number of SDCs 

in the setup, as a single SDC was used for the whole setup in Chapter 2 and one was used 

for each source in Chapter 4. Further, the improvements did not depend on the inter-optode 

distance constituting the SDC, as ~13mm for Chapter 2 and 8mm for all SDCs in Chapter 

4 was used. An important outcome was that when SDC bundles are not available, the 

improved accuracies after SDC correction for ∆[HbO] (and to a lower extent for ∆[HbR]) 

suggest that using a single in house-made SDC located relatively close to its respective NDC 

is already beneficial.  

In Chapter 4 we observed that physiological noise amplitude is higher in ∆[HbO]channels 

than in ∆[HbR] channels, as previously reported (Lina et al., 2008; Gagnon et al., 2011; 

Kirilina et al., 2013). In BCI studies it is more common to use ∆[HbO]-based features, as 

∆[HbO]usually exhibits larger and more pronounced concentration changes than ∆[HbR]in 

response to mental tasks (Stangl et al., 2013; Sato et al., 2016). Therefore, strategies 

accounting for physiological noise are particularly advisable.  

2.3 Vasculature mapping 

In this dissertation, subject-specific vasculature maps were used to study the potential 

impact on physiological noise (Chapter 4) and on optode layout design (Chapter 3), 

because, similar to fMRI signals, fNIRS signals are influenced by the underlying 

vasculature. In Chapter 4, we observed a positive, non-linear relation between most 

superficial vessels and the presence in Mayer waves in short distance channels. This finding 

suggests that adding vasculature information can be useful to design strategies to mitigate 

the effect of physiological noise in fNIRS signals. In Chapter 3, we concluded that, 
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although including individual vascular information improved signal quality and sensitivity 

to the brain, the experimental resources spent to include such information was not efficient. 

This is mainly because whole brain vascular segmentations can be tedious and time 

consuming. Further, it is not common practice for fNIRS-based BCI studies or fNIRS 

studies in general to acquire vascular data at the MRI scanner.  

Similar to functional activation maps, probabilistic vascular atlases of individual arteries 

(Forkert et al., 2012; Viviani, 2016; Dunås et al., 2017), veins (Ward et al., 2018) or both 

(Bernier et al., 2018) have been reported. It should be noted even though there is 

considerable inter-subject variability especially in smaller vessels (Nowinski et al., 2011; 

Bernier et al., 2018), effort to minimize this variability using nonlinear registration has been 

made (Viviani, 2016; Dunås et al., 2017; Bernier et al., 2018; Ward et al., 2018). 

Incorporating probabilistic maps at different thresholds into the anatomical models for 

Monte Carlo simulations would help to have (even) more accurate models without the need 

of costly and lengthy acquisition and preprocessing times. However, the maps mentioned 

above are “limited” to the brain. Unlike fMRI, vessels located between the skin and CSF 

influence the fNIRS signal, because light traveling from a source to a detector needs to travel 

twice through superficial tissues (Brigadoi and Cooper, 2015). To our knowledge, no openly 

available superficial vascular atlas exists10. This is because these vessels are not as relevant 

to the fMRI community as cerebral vessels are. After all, non-cerebral signals are not 

expected to be associated with fMRI activation (Uludag et al., 2005). Additionally, these 

types of vessels are generally smaller and in our own experience, highly variable across 

participants. We believe a large-scale effort to map both, scalp and cerebral vasculature 

would be highly beneficial for fNIRS studies.  

2.4 Comfort-performance tradeoff 

In this dissertation, we successfully transferred the temporal information encoding approach 

and a GLM-based decoding scheme previously reported in fMRI-based BCIs (Sorger et al., 

2009; Bardin et al., 2011; Sorger et al., 2012) to an fNIRS-based BCI system. Further, we 

advanced previous applications by extending the four-choice paradigm (Sorger et al., 2009; 

                                                 

10 Technically speaking, an atlas that includes scalp/skull vessels exists (Nowinski, et al. 2011). However, 

this atlas is based on a single participant and according to the authors data cannot be exported in a way that 

could be incorporated into, among other applications, Monte Carlo simulations. 
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Bardin et al., 2011) to six temporally unique (yet still differentiable) encoding phases. An 

advantage of using this procedure is that a single channel may be sufficient for decoding 

participants’ intentions without hampering our decoding ability. In Chapter 2, a joint 

analysis of five trials from a single channel showed promising results, as eleven of the twelve 

participants reached above-chance level (37.5%) accuracies, with an average accuracy of 

74%. Even seven of the twelve participants reached above-chance level accuracy when the 

number of trials was reduced to one (average accuracy was 42%).  

While temporal encoding/decoding approach may work well when combining multiple 

trials, decoding on a single trial basis needs to be improved for real-world BCI applications. 

One way forward is to include more channels, since in general, having more (informative) 

channels increases SNR, as task information is coupled in channels but noise is often 

independent between channels (Shlens, 2014), at least after accounting for physiological 

noise. However, increasing the number of channels will most likely affect the comfort of 

participants. Whether there is an optimum number of channels to ensure participant comfort 

and maximize the performance of a BCI system remains an open question. Despite its 

relevance for fNIRS-BCIs, to our knowledge no study has systematically investigated the 

tradeoff between BCI performance and participant comfort by varying the number of 

channels comprising the layout, while recording comfort scores.  

2.5 The potential of augmented reality  

Comfort is closely linked to participant motivation and engagement: an uncomfortable setup 

will hinder the engagement and motivation of the participant, which can lead to lower 

performance. On the other hand, a highly engaged and motivated participant will probably 

have more tolerance to less comfortable setups or longer measurements. The BCI paradigm 

and interface can affect the engagement and motivation of the participant. In Chapter 2, we 

utilized AR technology, as it allowed participants to act on the environment using the BCI 

system while still being present in it. While still in a laboratory setting and using a in house-

made, simple setup, participants indicated that AR was engaging and motivating. Still, 

augmented reality technology requires additional elements to be incorporated into a BCI 

system and thus asks for careful consideration to ensure the system remains ergonomic and 

feasible. One possible modification to increase usability would be to incorporate smart 

glasses into the BCI design. Proof-of-concept fNIRS-based BCIs have assessed the potential 
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of smart glasses. These include Phylter (Afergan et al., 2015) and Zero Shutter Camera 

(Shibata et al., 2014), which adaptively determine whether a user can receive notifications 

or trigger a photo based on the cognitive load. Importantly, these applications rely on users’ 

visual abilities to control BCI systems. However, some individuals such as those with acute 

motor disabilities may suffer from severe visual impairments and/or disability to control eye 

movements (Käthner et al., 2015). Thus, BCIs based on other sensory modalities such as 

auditory and tactile stimulation have been proposed (Riccio et al., 2012; Kaufmann et al., 

2013). Most of the AR applications have focused on visually integrating virtual objects into 

real environments, including those in this dissertation. Instead, researchers could explore 

auditory AR, in which virtual acoustic objects are integrated into the real world. This 

approach has been proposed (in a non-BCI context) for visually impaired users (Ribeiro et 

al., 2012). Future work could therefore explore its feasibility for BCI applications using 

fNIRS measurements. Overall, these promising studies suggest that AR-based fNIRS-BCIs 

are worth further investigation to develop practical real-world applications. 

2.6 Beyond the technical improvements of fNIRS BCIs 

The work presented in this thesis examined a number of factors affecting fNIRS-BCI 

performance. These include optode placement, physiological noise and BCI-paradigm 

parameters such as encoding time and the nature of the interface. Importantly, we examined 

each of these elements in isolation to best determine their potential effects on BCI systems. 

Future work focusing on improving technological aspects of fNIRS-BCI systems should 

aim to validate these factors jointly in real-world experiments. All empirical chapters of this 

dissertation were limited to a well-controlled laboratory setting, in healthy young 

participants with differing acquaintance of and experience with neuroscience and/or BCI 

technology. However, in practice, BCIs for communication and control are used in hospital 

rooms or at home and the profiles of end-users are likely to differ compared to healthy young 

adults. Focus groups with end-users and other stakeholders such as their family members, 

caregivers, doctors and other professionals will provide BCI developers a more practical 

perspective of the needs and expectations of BCI systems. Additionally, understanding the 

technical limitations of user environments, such as available measurement space, whether 

there is internet connection, level of noise, etc., would help to shape the design of BCI 

systems.  
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One key advantage of fNIRS is that combining it with other modalities such as EEG is 

relatively easy. Combined EEG and fNIRS BCI systems, also known as hybrid systems 

(hBCIs), consist a promising way forward. They have demonstrated higher performances 

compared to unimodal BCIs in terms of classification accuracy and information transfer rate 

(Fazli et al., 2011; Khan et al., 2014; Khan and Hong, 2017; Shin et al., 2018a; Rezazadeh 

Sereshkeh et al., 2019). These advantages are intuitive given their increase in available 

information for BCI use since there is no significant interference between the EEG and 

fNIRS signals (Shin et al., 2018a; Shin et al., 2018b). That said, future work using hybrid 

systems should balance setup size and user comfort, similar to the work in this dissertation.  

3 Conclusion 

The work presented in this dissertation focused on addressing some of the challenges faced 

by fNIRS-BCIs under well-controlled laboratory conditions. These examinations were able 

to advance our understanding of the fNIRS signal used in BCI applications. We hope that 

future communication and control fNIRS-BCI studies will be able to combine the novel BCI 

paradigm developed in Chapter 2, the improved optode-placement schemes introduced in 

Chapter 3 and the better understanding of the role of physiological noise in fNIRS signal 

correction methods obtained in Chapter 4. We believe that the way forward not only 

involves technical advancements of BCIs but also requires active collaboration between BCI 

researchers and end-user groups. With this joint effort in place, we will be able to materialize 

the translational potential of fNIRS-BCI applications to improve the lives of patients that 

would benefit from computer assistance for communication or motor control.  
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Summary 
b 

A brain-computer interface (BCI) is a system that measures and converts brain activity into 

artificial output that replaces, restores or enhances natural central nervous system output. 

Thus, BCIs have the potential to ultimately restore communication and control in the 

absence of words/gestures and other motor actions to people with severe neuromuscular 

disabilities. Functional near-infrared spectroscopy (fNIRS) is a promising functional-

neuroimaging modality for this objective that has been used for BCIs in healthy participants 

and in few occasions, in clinical settings. This is because there are substantial challenges 

associated with fNIRS-based BCIs in everyday situations, such as home-use or hospital 

settings. This dissertation outlined progress to overcome some of these obstacles. In 

Chapter 2, we evaluated factors that can improve the feasibility of ecologically-friendly 

fNIRS-based BCIs. We evaluated short task-duration periods alongside augmented-reality 

(AR) technology that enables a more immersive setup. Further, we evaluated the feasibility 

of using a single mental-imagery task and fNIRS channel to select an option in each level. 

For that, we used a temporal en- and decoding approach. This proof-of-concept study 

revealed that participants can successfully control the BCI system with a single fNIRS 

channel and motor-imagery task when using a relatively short task duration (6s) while 

achieving a promising mean classification accuracy of 74%. Positive reports from study 

participants suggest that AR is a promising and feasible technology to enhance user 

experience for fNIRS-BCI applications. This work conveys fundamental steps towards 

developing fNIRS-based AR-BCI systems to be used as communication and control devices 

in a clinical setting or for home-use. In Chapter 3, we investigated how different quantities 

of individualized MRI-based data influence the optode placement and in turn, fNIRS signal 

quality and sensitivity to detect brain activation. This work revealed that acquiring 

additional individual MRI data leads to better outcomes and that not all the modalities tested 

are necessary to achieve a robust setup. Finally, in Chapter 4 we assessed whether the 

quantity of unwanted physiological noise present in the fNIRS signal depends on the 

proximity and density of vascular structures around optodes. Further, we tested if this 

relationship affects one particular physiological noise-correction approach: short-separation 

regression (SSR). This approach uses short-distance fNIRS channels (SDCs) to regress out 

physiological noise from normal-distance channels (NDCs). We examined three sources of 
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physiological noise: Mayer waves, respiration and heartbeat. Our analyses indicated that the 

Mayer-wave amplitude captured by SDCs was related to the presence and density of 

vascular structures in their vicinity for oxyhemoglobin data only. We did not find any 

evidence that the reduction of physiological noise in NDCs after SSR is related to the 

presence of vascular structures. This chapter therefore extends our knowledge of the 

relationship between the vasculature features and the presence of physiological noise in 

fNIRS channels. Taken together, the three empirical studies provide insights that can 

contribute to the advancement of data acquisition and analysis strategies to improve the 

applicability of fNIRS-BCIs to everyday situations.
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Knowledge Valorization 
c 

The principal motivation for the development of BCIs is to restore communication and 

control in the absence of words, gestures and other motor actions to people with severe 

neuromuscular disabilities (Shih et al., 2012). FNIRS is a promising functional-

neuroimaging modality for this objective that has been used for BCIs in healthy participants 

(Naseer and Hong, 2013; Weyand and Chau, 2015; Batula et al., 2017; Nagels-Coune et al., 

2017; Weyand and Chau, 2017; Sereshkeh et al., 2018; Rezazadeh Sereshkeh et al., 2019; 

Abdalmalak et al., 2020; Nagels-Coune et al., 2020) and in patients (Gallegos-Ayala et al., 

2014; Abdalmalak et al., 2017). However, clinical applications of fNIRS-BCI systems suffer 

from a number of limitations that have slowed its translational potential. This dissertation 

outlined progress to overcome some of these limitations. First, we evaluated factors that 

could improve the feasibility of real-life fNIRS-based BCIs (Chapter 2). There we saw that 

participants can successfully control the BCI system by imagining doing a short task (mental 

imagery) and using a single pair of measurement sensors. Further, positive reports from 

participants suggest that augmented reality is a promising technology to enhance user 

experience for fNIRS-BCI applications. In the next chapters, we evaluated factors that can 

compromise fNIRS signal quality and its sensitivity to detect task-related brain activation, 

which is crucial to ensure a correct functioning of BCI systems. The way fNIRS sensors are 

arranged on the participant’s head is one of such factors, and in this context, we investigated 

how different sensor placement strategies affect the fNIRS signal in Chapter 3. This study 

revealed that using gradually more individualized information obtained from the MRI 

scanner led to a better outcome, but that not all the information acquired at the scanner was 

required to achieve a robust setup. Another factor strongly influencing the fNIRS signal is 

the physiological noise such as heartbeat and breathing, to name a few. This physiological 

noise is measured at the same time as task-related brain signal by the fNIRS sensors, and it 

is not straightforward to tear them apart, which compromises our sensitivity to detect task-

related brain activation. It has been suggested that the presence of vessels around fNIRS 

sensors can influence the amount of unwanted physiological noise, and in Chapter 4, we 

investigated precisely that. In addition, we tested whether the effectiveness of a 

physiological noise correction method named short-separation regression (SSR), which uses 

additional sensors placed on the participant’s head, also depends on the proximity and 
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density of vessels. The study verified that SSR improves fNIRS-signal quality and the 

sensitivity to detect task-related brain activation considerably and shows that signals 

obtained via these additional channels are affected by close vascular structures.  

Short- and long-term impact 

Although the presented work was framed in a communication and control BCI context, the 

knowledge gained here can be extended to other BCI applications. As indicated in Figure 

KV1, the most immediate beneficiaries of the work presented in this dissertation are other 

research groups working directly on fNIRS-based BCI for communication and control as 

well as neurofeedback. This is because all empirical chapters addressed challenges shared 

amongst these applications. Moreover, the findings from Chapters 3 and 4 are applicable 

to research that focuses on the study of other (if not all) neural processes using fNIRS. These 

chapters provide insight to factors influencing signal quality and sensitivity to brain 

activation which is relevant to any fNIRS study. Specifically, the knowledge gained in 

Chapter 3 will help researchers to efficiently utilize resources when designing fNIRS 

experiments. Meanwhile, basic methodological investigations like the one presented in 

Chapter 4 will form the basis of fNIRS physiological noise-removal strategies in the future. 

These two chapters are further relevant for those developing tools to optimize optode layout 

design and fNIRS data analyses. In addition, we have purposely made the dataset from 

Chapter 2 and probabilistic maps from Chapter 3 available to support this progress.  

Within the realm of BCIs, our work contributes to ongoing development of brain-robot 

interfaces and their extended range of potential applications in the many domains where 

robots are used. Examples include disaster management (e.g. remote control of robots that 

inspect dangerous or contaminated areas), industrial manufacturing (e.g. training robots to 

determine what is defective on a conveyor belt and remove it automatically based on a 

human inspector’s brain signals), entertainment (e.g. games with robotic agents) and 

healthcare (e.g. support for people with severe motor impairments completing daily-life 

activities or regaining functionality through neuroprosthetic devices). 
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Figure KV1. Contribution of this dissertation and its immediate beneficiaries. The knowledge 

obtained in this thesis contributes to the advancement of data analysis and acquisition techniques to 

ultimately make fNIRS-BCIs applicable to everyday situations. The main contributions were divided into 

three categories, namely components constituting a BCI system, qualities of a BCI system and 

participant’s perception. The polar diagram illustrates the contribution of this work regarding each 

subcategory. The concentric circles represent the immediate beneficiaries of this thesis: other fNIRS-

based BCI researchers focusing on communication and control applications (in black), fNIRS-based 

neurofeedback applications (in beige) and other fNIRS-based cognitive studies (in blue).    

 

The work presented in this dissertation can also benefit those with brain injuries and mental 

disorders. For example, patients with severe motor impairment (such as those with locked-

in syndrome) have limited behavioral capabilities, yet it should be possible to express 

thoughts using preserved mental abilities (Sorger et al., 2012). Here, we worked to improve 

signal acquisition and analyses approaches while almost exclusively using mental tasks. 



Knowledge Valorization 

250 

 

Together with the small optode setups featured in this thesis, we have set realistic 

foundations for applying our work in this and other patient groups sharing similar 

symptoms. Additionally, in Chapter 2 we showed that AR technology can be successfully 

combined with fNIRS-BCI setups in the context of communication and control. Beyond 

these applications, AR technology can be used in neurofeedback therapy in patients 

suffering from anxiety disorders such as phobias to facilitate anxiety regulation. This is 

particularly interesting since AR provides a unique scenario where a realistic, anxiety-

inducing stimulus can be presented in a controlled manner by imposing virtual stimuli, such 

as personalized threatening spider, over real objects and environments, such as the patient’s 

arm (Gamito et al., 2011).  

Future directions 

A community effort 

The ever-growing fNIRS community is well aware of the limitations of fNIRS technology 

and it has made collaborative effort to minimize and account for these. For example, several 

tools have been developed for designing informed and optimized optode setups that 

guarantee good signal quality and coverage (Machado et al., 2014; Aasted et al., 2015; 

Wijeakumar et al., 2015; Brigadoi et al., 2018; Machado et al., 2018; Zimeo Morais et al., 

2018).  A wide range of methods have been developed and implemented in analysis software 

to correct for the physiological and non-physiological noise sources, both offline (Homer 2 

and Homer 3 (Huppert et al., 2009); Nirs toolbox (Santosa et al., 2018) and Nirstorm (Tadel 

et al., 2011)) and in real time (Lührs and Goebel, 2017). Further, validation and 

standardization efforts of these tools have promoted reproducibility. We hope that this 

collaborative effort will remain in the years to come. 

Miniaturization of technology 

Monitoring brain activity using fNIRS in real life situations has become increasingly 

accessible over recent years thanks to the development of miniaturized and wearable fNIRS 

devices. These systems do not use fiber optic bundles, making them more lightweight and 

more resistant to movement artifacts (Pinti et al., 2018). These are highly desirable features 

for real-life, fNIRS-based BCI applications, and we expect this progress to continue over 

the next years. Further, with the miniaturization of the technology and the improvement of 
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neuronavigation systems and auxiliary measurement devices, we expect to see a more 

streamlined integration of these tools and fNIRS systems. Of particular interest for the future 

of BCI applications is the development of hybrid BCIs that combine EEG and fNIRS 

measurements. Previous work has shown that they can achieve better performance than with 

unimodal BCIs (Fazli et al., 2011; Khan et al., 2014; Khan and Hong, 2017; Shin et al., 

2018; Rezazadeh Sereshkeh et al., 2019). However, these systems are not frequently used 

in practical applications because the amount of hardware needed to capture two different 

types of signals simultaneously results in bulky and complex systems. We hope that the 

progress in miniaturization happening separately for fNIRS and EEG systems is extended 

to their integration. 

Need for user-centered designs 

It is important to emphasize that more work is required to realize these goals since the 

knowledge gained in this dissertation reflects basic scientific investigations that will 

consequently benefit these target patient groups. We addressed some of the limitations 

currently faced by fNIRS-BCI applications that hinder the translational potential of BCIs. 

We did so in ideal laboratory conditions, measuring healthy, young, motivated individuals 

and having minimal technical and temporal constraints. Naturally, BCI researchers will need 

to seek collaboration in the future with end-users and, when applicable, with their immediate 

caretakers, family members and medical staff. Interviews, surveys and focus groups will 

help researchers and developers understand and identify the needs and reality of the users. 

Further, direct contact with end-users will enable researchers to iteratively validate the 

methodological developments. This user-centered design approach has the potential to yield 

higher user satisfaction and better system adoption (Sujatha Ravindran et al., 2020).  
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Our contribution as researchers 

Since their inception, BCIs have inspired countless science fiction novels and movies and 

have attracted substantial media coverage and attention. This can be a good thing, 

particularly when BCI applications are represented positively. Such coverage draws 

attention to struggles faced by individuals that would benefit from this technology, thereby 

creating a social awareness and interest in technological advancements. It can also serve as 

a platform for publicizing opportunities for participation in research studies. However, the 

image of BCI technology portrayed in these platforms can reflect dystopian views. These 

scenarios rarely contain technological limitations such as low information transfer rates or 

signal quality-related problems, and largely ignore end-user discomfort. Importantly though, 

dystopian scenarios stimulate open discussions about ethical concerns raised by BCI 

technology.  

Simultaneously, unrealistic descriptions of BCI technology can inflate hopes of potential 

and future end-users. BCI researchers are therefore instrumental, having the expertise to 

educate end-users and their immediate social circle (when dealing with clinical populations), 

as well as the responsibility to help them manage their expectations about the technology. 

This can be done in a localized manner (e.g. in the aforementioned focus groups and 

interviews), or in bigger settings (e.g. science communication events or media platforms). 

Regardless of the chosen output channel, it is important to find a good balance between 

exhibiting enthusiasm about progress and potential of BCI applications and openly 

describing the current limitations and state of the technology. It is equally important to 

consider primary users (end-users) and a variety of secondary users when applicable, as their 

contribution is essential to move toward mature BCI technologies.  
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