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Abstract

In the context of claims problems, we formulate an invariance axiom of a rule with respect

to its “partial implementation”: having applied the rule to a problem and distributed their

awards to some of the claimants, we consider the problem obtained by setting the claims of

these claimants equal to zero and decreasing the endowment by the sum of their awards; we

require that in this problem the rule assigns to each remaining claimant the same amount as

it did initially. We formulate several variants of this requirement of “partial-implementation

invariance” and a “converse” of it. We investigate how it relates to known axioms and ask

whether it is preserved under certain “operators” that have been defined on the space of rules.

Our main result is a fixed-population characterization of a family of rules introduced and

characterized by Young (1987) in a variable-population framework, known as the “parametric

rules”.
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1 Introduction

In the context of the search for rules to adjudicate the conflicting claims that a group of agents

have on a resource, we introduce an invariance axiom that expresses the robustness of a rule to its

“partial implementation”. Specifically, once an awards vector has been calculated for some claims

problem by applying a chosen rule, let us imagine that some of the claimants involved pick up their

awards, and let us reassess the situation at this point. These claimants having been taken care of,

we set their claims equal to 0. Their accounts are closed, so to speak.1 We now face a problem

in which the claims of the other claimants have their original values – there is no reason to revise

them – but the endowment has been decreased by the sum of the awards to the claimants who have

received their awards. We require that in this problem, the rule assign to each remaining claimant

what it had initially assigned to them. Thus, the partial implementation of the rule does not create

the need for adjustments in their awards. We refer to the requirement as “partial-implementation

invariance”.

Our goal is to understand its implications. We formulate several variants of it, and define a

converse of it. We investigate how these axioms relate to known axioms. We investigate whether

the axiom is preserved by certain “operators” that have been defined on the space of rules.

Partial-implementation invariance is conceptually and mathematically related to the well-known

axiom of “consistency”. Consistency can be seen as an expression of the same robustness objective,

but in the scenario underlying it, after some claimants have received their awards, they leave, this

resulting in a problem with fewer claimants. The axiom we are considering here is a fixed-population

axiom. Consistency has played an important role in the theory concerning the adjudication of

conflicting claims. A central result in a paper that has played a key role in the development of

this theory is the first characterization of a rule that rationalizes the recommendation made in the

Talmud for some numerical examples presented there (Aumann and Maschler, 1985) – this rule is

now known as the Talmud rule. It is also the main requirement in a characterization due to Young

(1987) of a family of rules that he defined. We derive parallel characterizations of the Talmud

rule and of Young’s family in which our invariance axiom also plays a key role. However, there is

an important difference between the models in Aumann and Maschler (1985) and Young (1987)

and our setting. As we noted, consistency is a variable-population axiom. The option of varying

1We could also say that claimant i’s claim is “neutralized” by the operation underlying the definition.
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population in proofs is a powerful tool that is not available to us.

This paper is organized as follows. Section 2 introduces the model and the axioms that we will

invoke. Section 3 introduces partial-implementation invariance and its converse. Section 4 estab-

lishes characterizations of the Talmud rule and of Young’s rules by invoking partial-implementation

invariance. Section 5 concludes. Appendix A provides the complete proof of our characterization

of Young’s rules.

2 The model

A group of agents have claims on a resource that is insufficient to honor all of these claims. How

much should each agent receive? We search for systematic ways of coming up with a division. The

formal model is as follows. There is a finite population N of agents (|N | ≥ 2), called claimants,

having claims on a resource, called the endowment. The endowment is not sufficient to fully honor

all claims. A claims problem with claimant set N (O’Neill, 1982) is a pair (c, E) ∈ RN
+ ×R+ such

that
∑

i∈N ci ≥ E. Let CN be the class of all problems with claimant set N and CN
2 the subclass

of problems in which at most two claimants have a non-zero claim. A rule associates with each

problem a vector x ∈ RN satisfying the very natural and self-explanatory non-negativity and

claims boundedness requirements 0 ≦ x ≦ c, as well as the balance requirement
∑

i∈N xi = E.

Let X(c,E) denote the set of vectors satisfying these requirements. Our generic notation for a

rule is S. We may also denote by S a correspondence. In such a case, we explicitly state that we

are dealing with a correspondence.

We also work with a generalization of the model in which the population of claimants may vary.

Denoting by N the set of natural numbers, let N∗ ⊆ N be a non-empty set of “potential” claimants.

Let N be the class of finite subsets of N∗. Here, a rule is a mapping defined on C ≡
⋃

N∈N CN and

taking its values in
⋃

N∈N RN . The same requirements of non-negativity, claims boundedness, and

balance are imposed on rules. Given N ′ ⊆ N , we denote by 0N ′ the vector in RN ′
whose coordinates

are all equal to 0. Throughout the paper, unless explicitly stated, rules and correspondences are

defined on CN .
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Here are a number of axioms of rules. We start with the fairness requirement that two claimants

with equal claims be awarded equal amounts:

Equal treatment of equals: For each (c, E) ∈ CN and each pair i, j ∈ N such that ci = cj,

Si(c, E) = Sj(c, E).

A strengthening of this axiom is invariance with respect to the renaming of claimants:

Anonymity: For each (c, E) ∈ CN , each bijection π : N → N , and each i ∈ N ,

Si(c, E) = Sπ(i)

(
(cπ−1(j))j∈N , E

)
.

Another strengthening of equal treatment of equals is that of two claimants, (i) the larger one

should be assigned at least as much as the smaller one and (ii) the loss incurred by the larger one

should be at least as large as the loss incurred by the smaller one (Aumann and Maschler, 1985):

Order preservation: For each (c, E) ∈ CN and each pair i, j ∈ N such that ci ≤ cj,

Si(c, E) ≤ Sj(c, E) and ci − Si(c, E) ≤ cj − Sj(c, E).

A group version of this axiom can also be defined: of two groups of claimants, (i) the one with

the larger aggregate claim should be assigned in total at least as much as the one with the smaller

aggregate claim, and (ii) the loss incurred in total by the first group should be at least as large as

the loss incurred in total by the second group (Thomson, 1988):

Group order preservation: For each (c, E) ∈ CN and each pair N ′, N
′′ ⊆ N such that

∑
i∈N ′ ci ≤∑

i∈N ′′ ci, ∑
i∈N ′

Si(c, E) ≤
∑
i∈N ′′

Si(c, E) and
∑
i∈N ′

(ci − Si(c, E)) ≤
∑
i∈N ′′

(ci − Si(c, E)) .

Next, no claimant should ever be awarded less when the endowment increases.

Endowment monotonicity: For each pair (c, E), (c, E ′) ∈ CN such that E < E ′,

S(c, E) ≤ S(c, E ′).

4



We obtain a strict version of the axiom, strict endowment monotonicity, by requiring that

under the same hypotheses, the inequality appearing in the conclusion be strict for each claimant

whose claim is positive.

The following requirement is that small changes in problems not lead to large changes in the

chosen awards vector:

Continuity: For each (c, E) ∈ CN , S(c, E) is jointly continuous in c and E.

We now define various invariance axioms. The first requirement is that truncating claims at the

endowment not affect the chosen awards vector (Dagan and Volij, 1993):2

Claims truncation invariance: For each (c, E) ∈ CN ,

S(c, E) = S(t(c, E), E),

where t(c, E) ≡ (min{ci, E})i∈N .

The second requirement is that any problem be equivalently solved in either one of the following

two ways, (i) directly, or (ii) in two steps, as follows: first, each claimant receives their “minimal

right”, namely whatever is left over after all other claimants have been fully compensated if possible

and nothing otherwise; second, the amount awarded to them in the problem in which each claimant’s

claim has been revised down by the claimant’s minimal right and the endowment has been revised

down by the sum of everyone’s minimal rights (Curiel et al., 1987):3

Minimal rights first: For each (c, E) ∈ CN ,

S(c, E) = m(c, E) + S(c−m(c, E), E −
∑
i∈N

mi(c, E)),

where m(c, E) ≡ (max{E −
∑

j∈N\{i} cj, 0})i∈N .

2The idea of truncation is mentioned by Aumann and Maschler (1985) and developed by Curiel et al. (1987).
Dagan and Volij (1993) refer to this axiom as “independence of irrelevant claims”. The expression claims truncation
invariance appears in Thomson (2003).

3Curiel et al. (1987) refer to this axiom as the “minimal rights property”. This axiom is also known as “v-
separability” (Dagan, 1996) and “composition from minimal rights” (Herrero and Villar, 2001). Thomson (2003)
uses the expression minimal rights first.
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The next two invariance axioms are conceptually the closest to the new axioms introduced in

the next section. One is the requirement that the choice made for a problem by a rule should

be “confirmed” by the rule in each of the “reduced” problems that result when some claimants

have received their awards and left (Aumann and Maschler, 1985; Young, 1987). Because this is a

variable-population axiom, a formal statement requires that the model be generalized. Accordingly,

rules are now defined on C:

Consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊆ N ,

SN ′ (c, E) = S

cN ′ , E −
∑

i∈N\N ′

Si(c, E)

 .

We also define weaker variants of consistency. First is the version of consistency for which all but

two claimants leave the scene, bilateral consistency. Also, a very weak form of consistency is

that if some claimants’ claims are 0 and these claimants leave, in the resulting reduced problem,

each of the remaining claimants should be assigned what they were assigned initially, null claims

consistency (Axiom A4 in Appendix C of O’Neill, 1982).4 The following two requirements are of

intermediate strength between consistency and null claims consistency. First, if some claimants are

assigned 0, and whether or not their claims are 0, and they leave, in the resulting reduced problem

each remaining claimant should be assigned the same amount as initially, null-compensation

consistency (Thomson, 2019). Second, if some claimants are fully compensated, and they leave

with their awards, in the resulting reduced problem, each remaining claimant should be assigned

the same amount as initially, full-compensation consistency (Thomson, 2019).5

We also have a “converse” of consistency, which says the following: suppose that an awards vec-

tor for a problem is such that, for each two-claimant subset of the claimants it involves, it chooses

the restriction of the vector to that population for the associated reduced problem this population

faces; then the requirement is that it be chosen for the initial problem. Again, rules are defined on C:

4This axiom is also known as “dummy” (Chun, 1988), “zero out” (Dagan and Volij, 1993), “independence of
null demands” (Moulin, 2000), “null consistency” (Ju, 2003), and “limited consistency” (Thomson, 2003). Thomson
(2019) uses the expression null claims consistency.

5Null-compensation consistency and full-compensation consistency are also known as “zero-award-out-
consistency” and “full-award-out-consistency”, respectively (Ju and Moreno-Ternero, 2017).
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Converse consistency: For each N ∈ N , each (c, E) ∈ CN , and each x ∈ X(c, E), if for each

N ′ ⊆ N with |N ′| = 2, xN ′ = S(cN ′ , E −
∑

i∈N\N ′ xi), then x = S(c, E).

Weak converse consistency differs from converse consistency only in that the hypothesis is

written for each proper subset of N , as opposed to each subset of size two. An easy argument by

induction on population size shows that converse consistency and weak converse consistency are in

fact equivalent.

3 Partial-implementation invariance

A decision having been made on how to solve a claims problem, imagine that it is implemented in

two steps, some claimants collecting their awards first. These claimants having been accommodated,

we set their claims equal to 0. Accordingly, we adjust the endowment down by the sum of their

awards. This yields a well-defined revised problem. We apply the rule to it. By definition of a rule,

any claimant whose claim has been set equal to 0 is assigned 0. Our robustness requirement on the

rule is that it assign to each of the other claimants the same amount as it did initially.

Partial-implementation invariance: For each (c, E) ∈ CN and each N ′ ⊆ N ,

SN ′(c, E) = SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

Si(c, E)

 .

Partial-implementation invariance is vacuously satisfied if |N | ≤ 2.

The term “implementation” in the expression we chose to designate the axiom should be un-

derstood as in common language. It should not be given the technical meaning it has in the theory

of mechanism design à la Hurwicz-Maskin.

A weaker version of the axiom can be defined for situations in which all but two claimants have

been assigned their awards. Let us refer to it as bilateral partial-implementation invariance.

We could also meaningfully limit its applications to situations in which the claimants whose

accounts are settled are assigned nothing. Again, we would replace the claim of such a claimant
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by 0, but this time we would keep the endowment constant. We would then reapply the rule, and

require that each remaining claimant be assigned what they were assigned initially. Let us use the

expression null-compensation partial-implementation invariance for the requirement.

Alternatively, we could only consider the departure of claimants who have been fully compen-

sated. The expression full-compensation partial-implementation invariance seems appropri-

ate here.6

It is easy to see that partial-implementation invariance is satisfied by the following rules, in the

definitions of which (c, E) ∈ CN is an arbitrary problem and λ ∈ R+ is chosen so as to achieve

balance: the proportional rule, P , makes awards proportional to claims: P (c, E) ≡ λc; the

constrained equal awards rule, CEA, makes awards as equal as possible subject to no one

receiving more than their claim: CEA(c, E) ≡ (min{ci, λ})i∈N ; the constrained equal losses

rule, CEL, makes the losses claimants incur as equal as possible subject to no one receiving a

negative amount: CEL(c, E) ≡ (max{ci−λ, 0})i∈N . A hybrid of the constrained equal awards and

the constrained equal losses rules is the Talmud rule, T : if the endowment is no larger than the

half-sum of the claims, this rule selects the awards vector that the constrained equal awards rule

would select for the problem in which all claims are divided by two; otherwise, it selects the sum of

the vector of half-claims and the awards vector that the constrained equal losses rule would select

for the problem in which all claims are divided by two and the endowment is adjusted down by the

half-sum of the claims: for each (c, E) ∈ CN , if E ≤
∑

i∈N
ci
2
, then T (c, E) ≡ CEA( c

2
, E), and if

E >
∑

i∈N
ci
2
, then T (c, E) ≡ c

2
+CEL( c

2
, E−

∑
i∈N

ci
2
). Our final example consists of a family, the

sequential priority rules: to each order on the claimant set is associated such a rule; the claimant

who is first is assigned their claim if possible and the endowment otherwise; the claimant who is

second is assigned their claim if possible and the remainder otherwise, and so on: let ON be the set

of priority orders over N . Given ≺∈ ON , the sequential priority rule relative to ≺, SP≺, is

defined by setting for each (c, E) ∈ CN , SP≺(c, E) ≡ (min{ci,max{E −
∑

j∈N :j≺i cj, 0}})i∈N .
However, some rules violate partial-implementation invariance. An example is the random

arrival rule, RA, which selects the average of the awards vectors selected by the sequential

priority rules: for each (c, E) ∈ CN , RA(c, E) ≡ 1
|N |!(

∑
≺∈ON min{ci,max{E−

∑
j∈N :j≺i cj, 0}})i∈N .

6These variants should be seen as counterparts of variants of the axiom of consistency.
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Example 1. The random arrival rule violates partial-implementation invariance. We consider the

so-called Three-Wives problem of the Talmud (O’Neill, 1982) – their claims are c ≡ (100, 200, 300)

– when the endowment is E ≡ 200. We calculate that RA(c, E) = (331
3
, 831

3
, 831

3
). Let us assign

her award to wife 2, reduce her claim to 0 and adjust the endowment down by her award. In the

revised problem, the claims vector is (100, 0, 300) and the endowment 1162
3
. There are three orders

of arrival in which wife 1 is assigned a positive amount, namely 1-2-3, 1-3-2, and 2-1-3. In each case,

she is in fact fully compensated. That is obvious for the first two orders because the endowment

exceeds her claim; it is also true for the third one because wife 2’s claim is now 0 and she has been

assigned 0; thus, when wife 1 comes in, the endowment has its initial value. In each of the other

orderings, wife 1 comes after wife 3 and because wife 3’s claim exceeds the endowment, there is

nothing left for wife 1. Altogether, wife 1 receives 300
6

̸= 331
3
.

The minimal overlap rule, MO, is another rule that violates partial-implementation invari-

ance. For each problem in which the endowment is no larger than the largest claim – focusing on

that case will suffice for our purposes – the rule selects the awards vector that is defined as follows:

the smallest claimant receives 1
|N | of their claim; the second smallest claimant receives that amount

plus 1
|N |−1

of the difference between their claim and the smallest claim; the third smallest claimant

receives that amount plus 1
|N |−2

of the difference between their claim and the second smallest claim,

and so on. Thus, the awards vector is obtained by nesting claims and dividing equally among all

claimants claiming a particular part of the endowment that part of it, each claimant’s award being

calculated as a sum of the partial compensations the claimant receives for the various sections into

which the endowment is partitioned.

Example 2. The minimal overlap rule violates partial-implementation invariance. We consider

the same claims vector as in Example 1 but set E ≡ 300. Because the largest claim is equal to the

endowment, the awards vector is obtained by nesting claims: MO(c, E) = (331
3
, 331

3
+ 50, 331

3
+

50+100). Let us assign her award to wife 2, reduce her claim to 0 and adjust the endowment down

by her award. Of course, in the revised problem, the largest claim still exceeds the endowment, and

nesting claims is what is needed to obtain the awards vector. The revised endowment being larger

than wife 1’s claim, she gets 100
2

̸= 331
3
.

9



A strengthening of partial-implementation invariance is claims-and-endowment separabil-

ity (Chun, 1999), which says that if the data of a problem change but the claims of a subgroup N ′

of claimants remain the same (the claims of the members of N \N ′ and the endowment may change)

and in total, the members of N ′ still receive the same amount as initially, then each of them should

receive the same amount as initially.7 We obtain partial-implementation invariance by imposing

two restrictions on the changes in the parameters of a problem. First, the claims of the members

of N \N ′ are reduced to 0. Second, the endowment changes by the sum of their initial awards. It

follows from these restrictions that the sum of the awards to the members of N ′ remains the same,

an equality that does not have to be written out as a separate hypothesis then.

Although partial-implementation invariance can also be described as a “consistency” require-

ment, it is obviously not the same as what we called consistency. First, as already noted, it is a

fixed-population axiom whereas consistency is a variable-population axiom. A rule defined on C
may be partial-implementation invariant without being consistent. Indeed, partial-implementation

invariance imposes no cross-population restrictions whereas consistency is meant to discipline rules

as population varies. Consider for example the rule that coincides with the proportional rule for

all problems with at most three claimants and with the constrained equal awards rule for problems

involving at least four claimants. The rule satisfies the former but not the latter.

Because consistency is meant to relate the recommendations a rule makes across populations,

any possible logical relation between the two axioms has to be mediated by at least one variable-

population axiom. The following lemma confirms this observation. It involves null claims consis-

tency.

Lemma 1. Consider a rule defined on C. For such a rule, partial-implementation invariance and null

claims consistency together imply consistency. Also, consistency implies partial-implementation

invariance.

7The expression claims-and-endowment separability is due to Thomson (2019). Chun (1999) refers to this axiom
as “separability”. In the terminology of Thomson (2023), partial-implementation invariance, claims-and-endowment
separability, and consistency are “post-application” axioms. By contrast, the order-preservation axioms, endowment
monotonicity, and null claims consistency are “pre-application” axioms. The rule appears in the hypotheses of an
axiom of the first type, whereas the hypotheses of an axiom of the second type make no reference to the rule.
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Proof. For each assertion, let S be a rule satisfying the hypotheses. For the first assertion, let

N ∈ N , (c, E) ∈ CN , and N ′ ⊆ N . By partial-implementation invariance,

SN ′(c, E) = SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

Si(c, E)

 ,

and by null claims consistency,

SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

Si(c, E)

 = S

cN ′ , E −
∑

i∈N\N ′

Si(c, E)

 .

For the second assertion, let N ∈ N , (c, E) ∈ CN , and N ′ ⊆ N . By consistency,

SN ′(c, E) = S

cN ′ , E −
∑

j∈N\N ′

Sj(c, E)

 .

Also, by consistency, for each i ∈ N ′,

Si

cN ′ , E −
∑

j∈N\N ′

Sj(c, E)−
∑

j∈N\N ′

0

 = Si

(cN ′ , 0N\N ′), E −
∑

j∈N\N ′

Sj(c, E)

 .

Because on C, the proportional, constrained equal awards, and constrained equal losses rules

are consistent, we deduce from this lemma that for each N ∈ N , they are partial-implementation

invariant on CN , as we noted earlier.

One can define a converse of partial-implementation invariance in the obvious way: consider a

rule; given a problem (c, E) ∈ CN , let x be an awards vector for it; suppose that the restriction of x

to each two-claimant subgroup of N is chosen by the rule for the problem in which the claims of

the members of the complementary subgroup are set equal to 0 and the endowment is revised down

by the sum of their coordinates of x; then x should be chosen for (c, E).

11



Converse partial-implementation invariance: For each (c, E) ∈ CN and each x ∈ X(c, E), if

for each N ′ ⊆ N with |N ′| = 2, xN ′ = SN ′((cN ′ , 0N\N ′), E −
∑

i∈N\N ′ xi), then x = S(c, E).

A weak form of converse partial-implementation invariance can also be stated – let us call it

weak converse partial-implementation invariance – that differs only in that the hypotheses

are written for all proper subgroups of N as opposed to all subgroups of two claimants. These

two versions are parallel to converse consistency and weak converse consistency. Just like these

two axioms, weak converse partial-implementation invariance and converse partial-implementation

invariance are in fact equivalent.

The proportional, constrained equal awards, constrained equal losses, and Talmud rules, as well

as the sequential priority rules all satisfy converse partial-implementation invariance. On the other

hand, the random arrival and minimal overlap rules again violate the axiom:

Example 3. The random arrival rule violates converse partial-implementation invariance. Let

N ≡ {1, 2, 3} and (c, E) ∈ CN be equal to ((2, 4, 5), 5). Let x ≡ (1, 2, 2). Then for each N ′ ⊂ N

with |N ′| = 2, xN ′ = RAN ′((cN ′ , 0N\N ′), E −
∑

i∈N\N ′ xi). However, RA(c, E) = (5
6
, 11

6
, 14

6
) ̸= x.

Example 4. The minimal overlap rule violates converse partial-implementation invariance. We

consider the same problem as in Example 3. Since on CN
2 , the minimal overlap rule coincides

with the random arrival rule, the awards vector x also satisfies the hypotheses of converse partial-

implementation invariance for the minimal overlap rule. However, MO(c, E) = (2
3
, 2
3
+ 2

2
, 2
3
+ 2

2
+1) =

(2
3
, 5
3
, 8
3
) ̸= x.

Here is a logical relation between converse partial-implementation invariance and converse con-

sistency :

Lemma 2. Consider a rule defined on C. For such a rule, converse consistency and null claims

consistency together imply converse partial-implementation invariance.

Proof. Let S be a rule satisfying the hypothesis. Let N ∈ N , (c, E) ∈ CN , and x ∈ X(c, E) be

such that for each N ′ ⊆ N with |N ′| = 2, xN ′ = SN ′((cN ′ , 0N\N ′), E −
∑

i∈N\N ′ xi). By null claims

consistency, for each N ′ ⊆ N with |N ′| = 2, xN ′ = S(cN ′ , E−
∑

i∈N\N ′ xi). By converse consistency,

x = S(c, E).
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An operator on the space of rules is a mapping that associates with each rule another rule

(Thomson and Yeh, 2008). Central are the following: the duality operator associates with each

rule S the rule Sd defined by setting for each (c, E) ∈ CN , Sd(c, E) ≡ c− S(c,
∑

i∈N ci − E).

The claims truncation operator associates with each rule S the rule St defined by setting

for each (c, E) ∈ CN , St(c, E) ≡ S(t(c, E), E), where t(c, E) ≡ (min{ci, E})i∈N .
The attribution of minimal rights operator associates with each rule S the rule Sm defined

by setting for each (c, E) ∈ CN , Sm(c, E) ≡ m(c, E) + S(c − m(c, E), E −
∑

i∈N mi(c, E)), where

m(c, E) ≡ (max{E −
∑

j∈N\{i} cj, 0})i∈N .
The convexification operator associates with each list of rules (Sk)k∈K , where K is a non-

empty and finite set, and each list (λk)k∈K with λk ∈ R+ for each k ∈ K and
∑

k∈K λk = 1

the rule ω((Sk)k∈K , (λ
k)k∈K) defined by setting for each (c, E) ∈ CN , ω((Sk)k∈K , (λ

k)k∈K)(c, E) ≡∑
k∈K λkSk(c, E).

The composition of the claims truncation and attribution of minimal rights operators

associates with each rule S the rule Sm◦t defined by setting for each (c, E) ∈ CN , Sm◦t(c, E) ≡
m(c, E) + S(t(c−m(c, E), E −

∑
i∈N mi(c, E)), E −

∑
i∈N mi(c, E)).

The following lemma answers the question of whether partial-implementation invariance is pre-

served by these operators.

Lemma 3. Partial-implementation invariance is preserved by the duality operator. It is preserved

by none of the claims truncation, attribution of minimal rights, and convexification operators, nor

by the composition of the claims truncation and attribution of minimal rights operators.

Proof. • Duality operator.

Let (c, E) ∈ CN , N ′ ⊆ N , and i ∈ N . Showing that

Si(c, E) = Si

(cN ′ , 0N\N ′), E −
∑

j∈N\N ′

Sj(c, E)

 ,

is equivalent to showing that

ci − Sd
i (c,

∑
j∈N

cj − E) = ci − Sd
i

(cN ′ , 0N\N ′),
∑
j∈N ′

cj − (E −
∑

j∈N\N ′

(cj − Sd
j (c,

∑
k∈N

ck − E))

 ,

13



equivalently that

Sd
i (c,

∑
j∈N

cj − E) = Sd
i

(cN ′ , 0N\N ′),
∑
j∈N

cj − E −
∑

j∈N\N ′

Sd
j (c,

∑
k∈N

ck − E)

 ,

which, after setting F ≡
∑

j∈N cj − E, is equivalent to

Sd
i (c, F ) = Sd

i

(cN ′ , 0N\N ′), F −
∑

j∈N\N ′

Sd
j (c, F )

 ,

which is the statement that Sd satisfies partial-implementation invariance.

• Claims truncation operator.

The proportional rule satisfies partial-implementation invariance but when subjected to the claims

truncation operator, it does not. Indeed, let N ≡ {1, 2, 3} and (c, E) ∈ CN be equal to ((2, 4, 6), 6).

Then, P t(c, E) = P (c, E) = (1, 2, 3). We have that

P t
1((c{1,2}, 0), E − P t

3(c, E)) = P t
1((2, 4, 0), 3) = P1((2, 3, 0), 3) =

6

5
̸= 1 = P t

1((2, 4, 6), 6).

• Attribution of minimal rights operator.

The constrained equal awards rule satisfies partial-implementation invariance but when subjected

to the attribution of minimal rights first operator, it does not. Indeed, let N ≡ {1, 2, 3} and

(c, E) ∈ CN be equal to ((1, 2, 3), 4). Then CEAm(c, E) = (1, 1, 2). However,

CEAm
1

(
(c{1,3}, 0), E − CEAm

2 (c, E)
)
= CEAm

1 ((1, 0, 3), 3) =
1

2
̸= 1 = CEAm

1 (c, E).

14



• Convexification operator.

The constrained equal awards and the constrained equal losses rules satisfy partial-implementation

invariance but their simple average, Av, does not.8 Indeed, let N ≡ {1, 2, 3} and (c, E) ∈ CN be

equal to ((100, 200, 300), 240). Then

Av(c, E) =
(80, 80, 80) + (0, 70, 170)

2
= (40, 75, 125).

However,

Av1
(
(c{1,2}, 0), E − Av3(c, E)

)
=

57.5 + 7.5

2
= 32.5 ̸= 40 = Av1(c, E).

• Composition of the claims truncation and attribution of minimal rights operators.

We used the constrained equal awards rule to show that partial-implementation invariance is not

preserved under the attribution of minimal rights first operator. Now, note that the rule is claims

truncation invariant, so CEAm◦t = CEAm.

The next lemma addresses the issue of preservation of converse partial-implementation invari-

ance by the four operators encountered earlier.

Lemma 4. Converse partial-implementation invariance is preserved by the duality operator. It is

preserved by none of the claims truncation, attribution of minimal rights, and convexification oper-

ators, nor by the composition of the claims truncation and attribution of minimal rights operators.

Proof. • Duality operator.

Let (c, E) ∈ CN and x ∈ X(c, E). Suppose that for each N ′ ⊆ N with |N ′| = 2,

xN ′ = Sd
N ′((cN ′ , 0N\N ′), E −

∑
i∈N\N ′

xi).

8Here is the formal definition of the average of the constained equal awards and the constrained equal losses rules:
for each (c, E) ∈ CN ,

Av(c, E) ≡ CEA(c, E) + CEL(c, E)

2
.
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We prove that x = Sd(c, E). By definition of Sd, our hypothesis can be written as follows: For each

N ′ ⊂ N with |N ′| = 2,

xN ′ = cN ′ − S

(
(cN ′ , 0N\N ′),

∑
i∈N ′

ci −
∑
i∈N ′

xi

)
,

equivalently for each N ′ ⊂ N with |N ′| = 2,

(c− x)N ′ = S

(
(cN ′ , 0N\N ′),

∑
i∈N ′

(ci − xi)

)
.

The vector c − x satisfies the hypotheses of converse partial-implementation invariance for S and

the well-defined problem (c,
∑

i∈N(ci − xi)). Since S is converse partial-implementation invariant,

c− x = S

(
c,
∑
i∈N

(ci − xi)

)
.

Thus,

x = c− S

(
c,
∑
i∈N

ci −
∑
i∈N

xi

)
= c− S

(
c,
∑
i∈N

ci − E

)
= Sd(c, E).

• Claims truncation operator.

The proportional rule satisfies converse partial-implementation invariance but when subjected to

the claims truncation operator, it does not. Indeed, let N ≡ {1, 2, 3} and (c, E) ∈ CN be equal to

((2, 4, 6), 3). Let x ≡ (1, 1, 1). For each N ′ ⊂ N with |N ′| = 2,

xN ′ = P t
N ′

(cN ′ , 0N\N ′), E −
∑

k∈N\N ′

xk

 .

However,

x = (1, 1, 1) ̸=
(
6

8
,
9

8
,
9

8

)
= P t(c, E).
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• Attribution of minimal rights first operator.

The constrained equal awards rule satisfies converse partial-implementation invariance but when

subjected to the attribution of minimal rights first operator, it does not. Indeed, let N ≡ {1, 2, 3}
and (c, E) ∈ CN be equal to ((10, 10, 20), 25). Let x ≡ (5, 5, 15). Then

(x1, x2) = (5, 5) = m{1,2}((c{1,2}, 0), 10) + CEA{1,2} ((10, 10, 0), 10) ,

(x1, x3) = (5, 15) = m{1,3}((c{1,3}, 0), 20) + CEA{1,3} ((10, 0, 10), 10) ,

(x2, x3) = (5, 15) = m{2,3}((c{2,3}, 0), 20) + CEA{2,3} ((0, 10, 10), 10) .

However,

x = (5, 5, 15) ̸=
(
20

3
,
20

3
,
35

3

)
= m(c, E) + CEA ((10, 10, 15), 20) .

• Convexification operator.

The constrained equal awards and the constrained equal losses rules both satisfy converse partial-

implementation invariance but their simple average does not. Indeed, let N ≡ {1, 2, 3} and

(c, E) ∈ CN be equal to ((100, 100, 300), 325). Let x ≡ (65, 65, 195). Then

(x1, x2) = (65, 65) =
(65, 65) + (65, 65)

2
= Av{1,2}((c{1,2}, 0), 130),

(x1, x3) = (65, 195) =
(100, 160) + (30, 230)

2
= Av{1,3}((c{1,3}, 0), 260),

(x2, x3) = (65, 195) =
(100, 160) + (30, 230)

2
= Av{2,3}((c{2,3}, 0), 260).

However,

x = (65, 65, 195) ̸=
(
425

6
,
425

6
,
1100

6

)
=

(100, 100, 125) + (125
3
, 125

3
, 725

3
)

2
= Av(c, E).

• Composition of the claims truncation and attribution of minimal rights operators.

We used the constrained equal awards rule to show that converse partial-implementation invariance

is not preserved under the attribution of minimal rights first operator. Now, note that the rule is

claims truncation invariant, so CEAm◦t = CEAm.
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The definition of partial-implementation invariance and its converse can be directly applied to

correspondences.

Partial-implementation invariance for correspondences: For each (c, E) ∈ CN , eachN ′ ⊆ N ,

and each x ∈ S(c, E),

xN ′ ∈ SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

xi

 .

Converse partial-implementation invariance for correspondences: For each (c, E) ∈ CN

and each x ∈ X(c, E), if for each N ′ ⊆ N with |N ′| = 2, xN ′ ∈ SN ′((cN ′ , 0N\N ′), E −
∑

i∈N\N ′ xi),

then x ∈ S(c, E).

Consider now the correspondence that associates with each problem its set of awards vectors

satisfying the order preservation requirements and the correspondence that associates with each

problem its set of awards vectors satisfying the group order preservation requirements. Both of

these correspondences are partial-implementation invariant.

According to the next lemma, partial-implementation invariance and its converse are related

in a similar manner to the way in which consistency and its converse are related.9 Note that the

lemma is written for solution mappings that may or may not be single-valued.

Lemma 5. Let S be a solution satisfying partial-implementation invariance for correspondences

and S a solution satisfying converse partial-implementation invariance for correspondences. If on

CN
2 , S ⊆ S, this inclusion holds on the entire domain CN .

Proof. Let S and S be two solutions satisfying the hypotheses of the lemma. Let (c, E) ∈ CN

and x ∈ S(c, E). Since S satisfies partial-implementation invariance for correspondences, for each

N ′ ⊆ N with |N ′| = 2,

xN ′ ∈ SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

xi

 .

9The lemma relating these last axioms is called the Elevator Lemma in Thomson (2019), in reference to the fact
that consistency allows us to make a statement about problems on the basis on what is known about larger problems
and converse consistency allows statement pertaining to the enlargements of problems instead.
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Since on CN
2 , S ⊆ S, we deduce that for each N ′ ⊆ N with |N ′| = 2,

xN ′ ∈ SN ′

(cN ′ , 0N\N ′), E −
∑

i∈N\N ′

xi

 .

These are the hypotheses of converse partial-implementation invariance for correspondences for S.

Since S satisfies conversely partial-implementation invariance for correspondences, we conclude that

x ∈ S(c, E).

4 Characterizations

In this section, we turn to characterizations. Given a subdomain C ′ ⊆ CN , a rule S on CN is an

extension of a rule S ′ on C ′ if for each (c, E) ∈ C ′, S(c, E) = S ′(c, E). The first characterization

is a counterpart of one of the first characterizations in the theory, a characterization of the Talmud

rule. That result had been obtained by combining a characterization of the two-claimant version

of this rule, known as the “contested garment rule” (Aumann and Maschler, 1985) and “concede-

and-divide” (Thomson, 2003), and extending this two-claimant rule to the n-claimant case by

invoking consistency (Aumann and Maschler, 1985). Note that on CN , the Talmud rule satisfies

equal treatment of equals, claims truncation invariance, and minimal rights first.

Lemma 6. On CN
2 , the Talmud rule is the only rule satisfying equal treatment of equals, claims

truncation invariance, and minimal rights first.

Proof. We follow the argument in Dagan (1996). Let S be a rule on CN
2 satisfying the three axioms

of the lemma. Let ((c0, c
′
0, 0, . . . , 0), E) ∈ CN

2 . Without loss of generality, suppose that c0 ≤ c′0.

Case 1: E ≤ c0. Then

t(c, E) = (E,E, 0, . . . , 0).

By claims truncation invariance, S(c, E) = S((E,E, 0, . . . , 0), E). By equal treatment of equals,

S((E,E, 0, . . . , 0), E) =

(
E

2
,
E

2
, 0, . . . , 0

)
= T (c, E).
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Case 2: c0 < E ≤ c′0. Then

m(c, E) = (0, E − c0, 0, . . . , 0).

Consider ((c0, c
′
0 − (E − c0), 0, . . . , 0), E − (E − c0)) = ((c0, c

′
0 − (E − c0), 0, . . . , 0), c0) ∈ CN

2 . The

fact that c′0 − (E − c0) ≥ c0 together with claims truncation invariance implies that

S((c0, c
′
0 − (E − c0), 0, . . . , 0), c0) = S((c0, c0, 0, . . . , 0), c0).

By equal treatment of equals,

S((c0, c0, 0, . . . , 0), c0) =
(c0
2
,
c0
2
, 0, . . . , 0

)
.

By minimal rights first,

S(c, E) = (0, E − c0, 0, . . . , 0) +
(c0
2
,
c0
2
, 0, . . . , 0

)
=
(c0
2
, E − c0

2
, 0, . . . , 0

)
= T (c, E).

Case 3: c′0 < E. Then

m(c, E) = (E − c′0, E − c0, 0, . . . , 0).

Consider

(c′, E ′) ≡ ((c0 − (E − c′0), c
′
0 − (E − c0), 0 . . . , 0), E − (E − c′0)− (E − c0)) ∈ CN

2 ,

equivalently

(c′, E ′) = (((c0 + c′0)− E, (c0 + c′0)− E, 0, . . . , 0), (c0 + c′0)− E).

By equal treatment of equals,

S(c′, E ′) =

(
(c0 + c′0)− E

2
,
(c0 + c′0)− E

2
, 0, . . . , 0

)
.
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By minimal rights first,

S(c, E) = (E − c′0, E − c0, 0, . . . , 0) +

(
(c0 + c′0)− E

2
,
(c0 + c′0)− E

2
, 0, . . . , 0

)
=

(
E + c0 − c′0

2
,
E + c′0 − c0

2
, 0, . . . , 0

)
= T (c, E).

Thus, on CN
2 , S = T .

Lemma 7. Consider a rule S defined on CN
2 that is endowment monotonic and admits an extension

satisfying partial-implementation invariance. Then this extension is unique.

Proof. Let S be a rule on CN
2 . The proof is by contraposition. Let S ′ and S

′′
on CN be two

different extensions of S satisfying partial-implementation invariance. Let (c, E) ∈ CN be such that

S ′(c, E) ̸= S
′′
(c, E). Let x ≡ S ′(c, E) and y ≡ S

′′
(c, E). Since

∑
i∈N xi =

∑
i∈N yi and x ̸= y, there

are i, j ∈ N such that xi > yi and xj < yj. By partial-implementation invariance,

S ′((ci, cj, 0, . . . , 0), xi + xj) = (xi, xj, 0, . . . , 0)

and S
′′
((ci, cj, 0, . . . , 0), yi + yj) = (yi, yj, 0, . . . , 0).

Thus

S((ci, cj, 0, . . . , 0), xi + xj) = (xi, xj, 0, . . . , 0)

and S((ci, cj, 0, . . . , 0), yi + yj) = (yi, yj, 0, . . . , 0).

Thus S violates endowment monotonicity.

Using either (i) Lemmas 5 and 6 and the fact that the Talmud rule satisfies converse partial-

implementation invariance, or (ii) Lemmas 6 and 7 and the fact that the Talmud rule satisfies

endowment monotonicity, we establish the following characterization:

Theorem 1. The Talmud rule is the only rule satisfying equal treatment of equals, claims truncation

invariance, minimal rights first, and partial-implementation invariance.

21



Young’s rules (Young, 1987) were introduced in the study of the variable-population version

of the model.10 They are defined as follows. Let R be the extended reals. Given λ, λ ∈ R with

λ < λ, let f(·, ·) : R+ × [λ, λ] → R+ be continuous, nowhere decreasing in the second argument,

and such that for each c0 ∈ R+, f(c0, λ) = 0 and f(c0, λ) = c0. Let F be the family of all such

functions.

Young rule associated with f ∈ F , Sf : For each N ∈ N , each (c, E) ∈ CN , Sf (c, E) is the

awards vector x ∈ X(c, E) for which there is λ ∈ [λ, λ] such that for each i ∈ N , xi = f(ci, λ).

Young’s definition can of course be applied to a fixed-population model. In such a model,

any Young rule satisfies partial-implementation invariance. In generalizing the fixed-population

version of Young’s rules to the variable-population model, the function f can be allowed to depend

on the population of claimants. Any rule so defined will obviously satisfy partial-implementation

invariance, but in general will fail consistency.

One of the most powerful results in the theory concerning the adjudication of conflicting claims

is the characterization on C of Young’s family on the basis of equal treatment of equals, continuity,

and consistency (Young, 1987). The following is not an exact counterpart of this theorem because

it involves the additional axiom of endowment monotonicity. It follows Young’s argument in its

broad outlines but there are significant differences. The fact that it pertains to a fixed population of

claimants is the main reason for the complications that arise and the reason why the characterization

involves endowment monotonicity.

As is the case for Young’s characterization, as a stepping stone towards our main result, a

characterization in which strict endowment monotonicity is imposed can be given (Proposition 1).

For that purpose, we first establish the following lemma, which derives anonymity from the milder

requirement of equal treatment of equals.

Lemma 8. For |N | > 2, if a rule satisfies continuity, equal treatment of equals, and partial-

implementation invariance, then it satisfies anonymity on CN
2 .

Proof. Let S be a rule satisfying the hypotheses of the lemma. Let ((c0, c
′
0, 0, . . . , 0), E) ∈ CN

2 . Let

(x0, x
′
0, 0, . . . , 0) ≡ S((c0, c

′
0, 0, . . . , 0), E).

10These rules are also called “parametric”.
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Then E = x0 + x′
0. By continuity, there is E ′ ∈ R+ such that

S((c0, c
′
0, c

′
0, 0, . . . , 0), E

′) = (y0, y
′
0, y

′′
0 , 0, . . . , 0)

and y0 + y′0 = x0 + x′
0. By partial-implementation invariance, y0 = x0 and y′0 = x′

0. By equal

treatment of equals, y′′0 = y′0 = x′
0. Thus

S((c0, c
′
0, c

′
0, 0, . . . , 0), E

′) = (x0, x
′
0, x

′
0, 0, . . . , 0).

By partial-implementation invariance,

S((c0, 0, c
′
0, 0, . . . , 0), E) = (x0, 0, x

′
0, 0, . . . , 0).

Hence, S satisfies anonymity on CN
2 .

Proposition 1. For |N | > 2, the Young rules satisfying strict endowment monotonicity are the

only rules satisfying equal treatment of equals, continuity, strict endowment monotonicity, and

partial-implementation invariance.

Proof. Clearly, any strictly endowment monotonic Young rule satisfies all the axioms of the propo-

sition. Conversely, let S be a rule satisfying these axioms. Let f : R+ × [0, 1] → R+ be defined by

setting for each c0 ∈ R+ and each λ ∈ [0, 1],

f(c0, λ) = x0 if and only if S((c0, 1, 0, . . . , 0), x0 + λ) = (x0, λ, 0, . . . , 0).

By Lemma 8, f is well-defined. Moreover, f ∈ F .

We claim that f is a Young representation of S. Suppose otherwise. Then there is (c, E) ∈ CN

such that for each λ ∈ [0, 1],

S(c, E) ̸= (f(ci, λ))i∈N .

Let i ∈ N with ci > 0. By continuity, there is λ ∈ [0, 1] such that Si(c, E) = f(ci, λ). Let j ∈ N be

such that Sj(c, E) ̸= f(cj, λ). Let x ≡ S(c, E). By partial-implementation invariance,

S((ci, cj, 0, . . . , 0), xi + xj) = (xi, xj, 0, . . . , 0).

23



By continuity, there is E ′ ∈ R+ such that

Si((ci, cj, 1, 0, . . . , 0), E
′) + Sj((ci, cj, 1, 0, . . . , 0), E

′) = xi + xj.

By partial-implementation invariance,

Si((ci, cj, 1, 0, . . . , 0), E
′) = Si((ci, cj, 0, . . . , 0), xi + xj)

and Sj((ci, cj, 1, 0, . . . , 0), E
′) = Sj((ci, cj, 0, . . . , 0), xi + xj).

Thus

S((ci, cj, 1, 0, . . . , 0), E
′) = (xi, xj, E

′ − xi − xj, 0, . . . , 0).

Let λ′ ≡ E ′ − xi − xj. By Lemma 8 and partial-implementation invariance,

S((ci, 1, 0, . . . , 0), xi + λ′) = (xi, λ
′, 0, . . . , 0)

and S((cj, 1, 0, . . . , 0), xj + λ′) = (xj, λ
′, 0, . . . , 0).

This means that xi = f(ci, λ
′) and xj = f(cj, λ

′). By strict endowment monotonicity, λ′ = λ. Then

Sj(c, E) = f(cj, λ). This is a contradiction, so f is a Young representation of S. Hence, S is a

Young rule satisfying strict endowment monotonicity.

Here is our main theorem.

Theorem 2. For |N | > 2, Young’s rules are the only rules satisfying equal treatment of equals,

endowment monotonicity, continuity, and partial-implementation invariance.

Proof. Clearly, Young’s rules satisfy the four axioms of the theorem. Conversely, let S be a rule

satisfying these axioms.

For each γ ∈ R+, each c0 ∈ R+, and each x0 ∈ [0, c0], let

g(γ; c0, x0) ≡ max {χ ∈ [0, γ]|S((c0, γ, 0, . . . , 0), x0 + χ) = (x0, χ, 0, . . . , 0)} .

By Lemma 8 and continuity, g is well-defined.
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Step 1 For each c0 ∈ R+ and each x0 ∈ [0, c0], g(γ; c0, x0) is continuous in γ.

The proof of this step as well as those of the other steps are in the appendix.

Now, for each c0 ∈ R+ and each x0 ∈ [0, c0], let

h(c0, x0) ≡
∫
R+

g(γ; c0, x0)e
−γdγ.

By Step 1, h is well-defined. Moreover, for each c0 ∈ R+ and each x0 ∈ [0, c0], h(c0, x0) ∈ [0, 1].

Step 2 For each c0 ∈ R+, h(c0, x0) is increasing in x0.

For each c0 ∈ R+ and each x0 ∈ [0, c0], let

h−(c0, 0) ≡ 0, h−(c0, x0) ≡ lim
χ↑x0

h(c0, χ),

h+(c0, c0) ≡ 1, h+(c0, x0) ≡ lim
χ↓x0

h(c0, χ).

For each c0 ∈ R+ and each λ ∈ [0, 1], let f : R+ × [0, 1] → R+ be defined in such a way that

f(c0, λ) = x0 if and only if h−(c0, x0) ≤ λ ≤ h+(c0, x0).

By Step 2, f ∈ F . Let (c, E) ∈ CN . Let x ≡ S(c, E).

Step 3 For each γ ∈ R+, there is χ ∈ [0, γ] such that for each i ∈ N ,

S((γ, ci, 0, . . . , 0), χ+ xi) = (χ, xi, 0, . . . , 0).

Step 4 There is λ ∈ [0, 1] such that for each i ∈ N , h−(ci, xi) ≤ λ ≤ h+(ci, xi).

This means that f is a Young representation of S. Hence, S is a Young rule.

The domain of Young’s theorem includes two-claimant problems and the theorem implies that

the restriction to the two-claimant case of any rule satisfying his axioms on his domain has to

be a two-claimant Young rule. We have noted that partial-implementation invariance is silent in

the two-claimant case. The remaining axioms of Theorem 2, equal treatment of equals, endowment

monotonicity, and continuity, are satisfied by a large family of rules of which the two-claimant

Young rules constitute a small subfamily.
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The uniqueness parts of both theorems can be strengthened by weakening partial-implementation

invariance to bilateral partial-implementation invariance.

5 Concluding comments

Partial-implementation invariance has an “average” version, similar in spirit to the average version

of consistency proposed by Dagan and Volij (1997).11 Average partial-implementation invariance

can provide the basis for the definition of an operator on the space of rules: it associates with each

rule its average partial-implementation invariant variant. We will leave the study of this

operator to future work.

Claims problems are not the only class of problems to which partial-implementation invariance

can be applied. We chose to focus on one model but we are hopeful that the concept will be useful

in other contexts.

11It says that for each problem and each claimant, the award to that claimant should be equal to the average of
the awards to this claimant in the derived two-claimant problems in which the claims of all claimants other than
that claimant and one other claimant have been set equal to 0 and the endowment has been reduced by the sum of
the awards to the other claimants.
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A Proof of Theorem 2

Step 1. For each c0 ∈ R+ and each x0 ∈ [0, c0], g(γ; c0, x0) is continuous in γ.

Proof. Let c0 ∈ R+ and x0 ∈ [0, c0]. For each γ ∈ R+, let ĝ(γ) ≡ g(γ; c0, x0). We show that ĝ is

continuous. Let i ∈ N , ci ≡ c0, and xi ≡ x0. Then, for each γ ∈ R+,

ĝ(γ) = max {χ ∈ [0, γ]|S((ci, γ, 0, . . . , 0), xi + χ) = (xi, χ, 0, . . . , 0)} .

Let γ ∈ R+. Let j ∈ N \ {i} and cj ≡ γ. Let {cn}n∈N be a sequence in R+ converging to cj. Let

k ∈ N \ {i, j}. For each n ∈ N, let cnk ≡ cn. Let n ∈ N. Let

En ≡ max {E ∈ R+|Si((ci, cj, c
n
k , 0, . . . , 0), E) = xi} .

By continuity, En is well-defined. Let xj ≡ Sj((ci, cj, c
n
k , 0, . . . , 0), E

n). By partial-implementation

invariance,

S((ci, cj, 0, . . . , 0), xi + xj) = (xi, xj, 0, . . . , 0)

and S((ci, c
n
k , 0, . . . , 0), E

n − xj) = (xi, E
n − xi − xj, 0, . . . , 0).

Thus xj ≤ ĝ(cj) and En − xi − xj ≤ ĝ(cnk). Suppose that xj < ĝ(cj). By continuity and endowment

monotonicity, there is E > En such that

Si((ci, cj, c
n
k , 0, . . . , 0), E) + Sj((ci, cj, c

n
k , 0, . . . , 0), E) = xi + ĝ(cj).

Let x′ ≡ S((ci, cj, c
n
k , 0, . . . , 0), E). By partial-implementation invariance,

S((ci, cj, 0, . . . , 0), xi + ĝ(cj)) = (x′
i, x

′
j, 0, . . . , 0).

By definition of ĝ, x′
i = xi. This contradicts the definition of En, so xj = ĝ(cj). Similarly,

En − xi − xj = ĝ(cnk). Thus E
n = xi + ĝ(cj) + ĝ(cnk) and

S ((ci, cj, c
n
k , 0, . . . , 0), xi + ĝ(cj) + ĝ(cnk)) = (xi, ĝ(cj), ĝ(c

n
k), 0, . . . , 0) .
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By continuity,

S
((

ci, cj, lim
n→∞

cnk , 0, . . . , 0
)
, xi + ĝ(cj) + lim

n→∞
ĝ(cnk)

)
=
(
xi, ĝ(cj), lim

n→∞
ĝ(cnk), 0, . . . , 0

)
.

Thus

S
(
(ci, cj, cj, 0, . . . , 0) , xi + ĝ(cj) + lim

n→∞
ĝ(cnk)

)
=
(
xi, ĝ(cj), lim

n→∞
ĝ(cnk), 0, . . . , 0

)
.

By equal treatment of equals, limn→∞ ĝ(cnk) = ĝ(cj). Hence, ĝ is continuous.

Step 2. For each c0 ∈ R+, h(c0, x0) is increasing in x0.

Proof. Let c0 ∈ R+. By endowment monotonicity, g(γ; c0, x0) is nowhere decreasing in x0. Let

x0, x
′
0 ∈ [0, c0] be such that x0 < x′

0. Then

h(c0, x0) =

∫
R+

g(γ; c0, x0)e
−γdγ ≤

∫
R+

g(γ; c0, x
′
0)e

−γdγ = h(c0, x
′
0).

Suppose that h(c0, x0) = h(c0, x
′
0). Then each nondegenerate interval in R+ contains γ such that

g(γ; c0, x0) = g(γ; c0, x
′
0). Let {γn}n∈N be a sequence in R+ converging to c0 such that for each

n ∈ N, g(γn; c0, x0) = g(γn; c0, x
′
0). For each n ∈ N, let χn ≡ g(γn; c0, x0). By definition of g, for

each n ∈ N,

S ((c0, γ
n, 0, . . . , 0), x0 + χn) = (x0, χ

n, 0, . . . , 0)

and S ((c0, γ
n, 0, . . . , 0), x′

0 + χn) = (x′
0, χ

n, 0, . . . , 0) .

By continuity,

S
(
(c0, lim

n→∞
γn, 0, . . . , 0), x0 + lim

n→∞
χn
)
=
(
x0, lim

n→∞
χn, 0, . . . , 0

)
and S

(
(c0, lim

n→∞
γn, 0, . . . , 0), x′

0 + lim
n→∞

χn
)
=
(
x′
0, lim

n→∞
χn, 0, . . . , 0

)
.
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Thus

S
(
(c0, c0, 0, . . . , 0), x0 + lim

n→∞
χn
)
=
(
x0, lim

n→∞
χn, 0, . . . , 0

)
and S

(
(c0, c0, 0, . . . , 0), x

′
0 + lim

n→∞
χn
)
=
(
x′
0, lim

n→∞
χn, 0, . . . , 0

)
.

By equal treatment of equals, x0 = limn→∞ χn = x′
0. This is a contradiction, so h(c0, x0) < h(c0, x

′
0).

Hence, h(c0, x0) is increasing in x0.

Step 3. For each γ ∈ R+, there is χ ∈ [0, γ] such that for each i ∈ N ,

S((γ, ci, 0, . . . , 0), χ+ xi) = (χ, xi, 0, . . . , 0).

Proof. Let γ ∈ R+. For each i ∈ N , let

Ii ≡ {χ ∈ [0, γ] | S((γ, ci, 0, . . . , 0), χ+ xi) = (χ, xi, 0, . . . , 0)} .

By endowment monotonicity, Ii is an interval. We show that
⋂

i∈N Ii ̸= ∅.
For each i ∈ N , let c′i ≡ γ. For each pair i, j ∈ N , let

Iij ≡
⋃

k∈N\{i,j}

{x′
k ∈ [0, c′k] | S((ci, cj, c′k, 0, . . . , 0), xi + xj + x′

k) = (xi, xj, x
′
k, 0, . . . , 0)} .

Let i, j, k ∈ N . By continuity, there is x′
k ∈ [0, c′k] such that

Si((ci, cj, c
′
k, 0, . . . , 0), xi + xj + x′

k) + Sj((ci, cj, c
′
k, 0, . . . , 0), xi + xj + x′

k) = xi + xj.

By partial-implementation invariance,

S((ci, cj, c
′
k, 0, . . . , 0), xi + xj + x′

k) = (xi, xj, x
′
k, 0, . . . , 0).

Thus x′
k ∈ Iij. By Lemma 8 and partial-implementation invariance, x′

k ∈ Ii ∩ Ij. In other words,

for each pair i, j ∈ N , Ii ∩ Ij ̸= ∅. Hence,
⋂

i∈N Ii ̸= ∅.
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Step 4. There is λ ∈ [0, 1] such that for each i ∈ N , h−(ci, xi) ≤ λ ≤ h+(ci, xi).

Proof. By Step 3, for each γ ∈ R+, there is χ ∈ [0, γ] such that for each i ∈ N ,

S((γ, ci, 0, . . . , 0), χ+ xi) = (χ, xi, 0, . . . , 0).

For each γ ∈ R+, let m(γ) ≡ mini∈N g(γ; ci, xi). Then, for each γ ∈ R+ and each i ∈ N ,

S((γ, ci, 0, . . . , 0),m(γ) + xi) = (m(γ), xi, 0, . . . , 0).

By Step 1, m is continuous. Let λ ≡
∫
R+

m(γ)e−γdγ.

Let i ∈ N . Suppose that xi = 0. Then, for each γ ∈ R+, 0 ≤ m(γ) ≤ g(γ; ci, xi). Thus

h−(ci, xi) = 0 ≤ λ ≤
∫
R+

g(γ; ci, xi)e
−γdγ ≤ h+(ci, xi).

Now, suppose that xi > 0. By definition of g, for each x′
i ∈ [0, xi),

S((γ, ci, 0, . . . , 0), g(γ; ci, x
′
i) + x′

i) = (g(γ; ci, x
′
i), x

′
i, 0, . . . , 0).

By endowment monotonicity, for each x′
i ∈ [0, xi), g(γ; ci, x

′
i) ≤ m(γ) ≤ g(γ; ci, xi). This implies

that for each x′
i ∈ [0, xi),∫

R+

g(γ; ci, x
′
i)e

−γdγ ≤
∫
R+

m(γ)e−γdγ ≤
∫
R+

g(γ; ci, xi)e
−γdγ.

Hence, h−(ci, xi) ≤ λ ≤ h+(ci, xi).
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