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CLINICAL AND POPULATION SCIENCES

Optimal Cerebral Perfusion Pressure and Brain 
Tissue Oxygen in Aneurysmal Subarachnoid 
Hemorrhage
Murad Megjhani , PhD*; Miriam Weiss , MD*; Jenna Ford , MD; Kalijah Terilli , BA; Nick Kastenholz, Cand Med;  
Daniel Nametz, BS; Soon Bin Kwon , PhD; Angela Velazquez, MD; Sachin Agarwal, MD, MPH; David J. Roh, MD;  
Catharina Conzen-Dilger , MD; Walid Albanna, MD; Michael Veldeman , MD, PhD; E. Sander Connolly, Jr, MD;  
Jan Claassen, MD; Marcel Aries , MD, PhD; Gerrit A. Schubert , MD; Soojin Park , MD

BACKGROUND: Targeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more 
attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient 
cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal 
subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be 
beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion.

METHODS: We performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal 
subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the 
cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of 
mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP−CPPopt) and PbtO2 was investigated using 
natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg.

RESULTS: One hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8–78.3) hourly 
CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) 
with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial 
individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These 
dynamics were similar in patients with or without DCI.

CONCLUSIONS: We found a nonlinear relationship between PbtO2 and deviation of patients’ CPP from CPPopt in aneurysmal 
subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower 
PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring 
with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the 
option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: brain ◼ brain injuries, traumatic ◼ hyperemia ◼ infarction ◼ partial pressure

Functional cerebral autoregulation is paramount to 
compensate for the pathological cascades occur-
ring after aneurysmal subarachnoid hemorrhage 

(aSAH). Impairment of cerebral autoregulation typically 

precedes delayed cerebral ischemia (DCI) in patients 
with aSAH1–3 and information on autoregulation may be 
used to predict DCI.4 It is yet unclear whether it can 
be used to direct therapy. Optimal cerebral perfusion 
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pressure (CPPopt) is the value of cerebral perfusion 
pressure (CPP) at which autoregulation is the best.5–8 
In studies on patients with traumatic brain injury (TBI), 
from where the concept of CPPopt was derived, the 
difference of CPP and CPPopt (deltaCPP) is an even 
better predictor of outcome than deviation from a uni-
versal guideline-driven CPP target range.8 Targeting 
CPPopt may also be beneficial in patients with aSAH to 
improve autoregulation and avoid both episodes of too 
low (hypoperfusion) and too high (hyperemia) cerebral 
blood flow (CBF). However, basic clinical research on 
the utility of CPPopt in aSAH is scarce.

Monitoring for complications such as DCI in coma-
tose patients with aSAH is currently based on several 
options of neuromonitoring, including the invasive mea-
surement of partial pressure of brain tissue oxygenation 
(PbtO2). Measuring PbtO2 is recommended in the cur-
rent consensus statement for multimodality neuromoni-
toring, and its implementation has been associated with 
improved clinical outcomes.9–11 Episodes with poor oxy-
genation can be associated with complications such 
as cerebral ischemia/infarction, breakdown of cellular 
metabolism, worsening of neurological outcome.12,13 The 
relationship of CPPopt and PbtO2 has not been docu-
mented to date. Characterizing their interplay is inter-
esting to better understand the impact of deviations 
from CPPopt on cerebral physiology and, in turn, the 
potential benefit of CPPopt based management strat-
egies. We hypothesized that PbtO2 correlates with the 
deviation from CPPopt, with (1) the lowest PbtO2 values 
(focal cerebral hypoxia) with large negative deviation, (2) 
higher PbtO2 values with actual CPP close to CPPopt, 
and (3) the highest PbtO2 values (focal cerebral hyper-
oxia) with large positive deviation, in correspondence to 
the suspected autoregulation curve. This relationship 

may differ between patients with and without DCI. In 
patients with DCI, where autoregulation is expected to 
be worse than in patients without DCI,2 PbtO2 may react 
more strongly to deviations from CPPopt.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Study Population
Two patient cohorts were combined (NewYork—Presbyterian 
Hospital—Columbia University Irving Medical Center [CUIMC], 
from 2007 to 202114 and Rheinisch-Westfälische Technische 
Hochschule Aachen [AU], Germany, from 2014 to 2021). 
Data collection for the prospective Subarachnoid Hemorrhage 
Outcomes Project at CUIMC has been described previously.14 
Relevant data on demography, clinical course, and high-fre-
quency vital signs from patients at AU were included into a 
prospective databank, including scheduled follow-up visits or 
telephone assessments of clinical outcome at 3, 6, and 12 
months after discharge.15 Prospective data collection was 
approved by institutional review boards in both centers and 
informed consent was given by all patients or their represen-
tatives before study inclusion. Patients with nonaneurysmal 
SAH, arteriovenous malformation-associated aneurysms, and 
patients <18 years of age were excluded. All patients with 
at least 12 hours of corresponding PbtO2 and CPPopt mea-
surements were included in analysis. The study was reported 
according to the STROBE criteria (Supplemental Material).16

Treatment Algorithm
Treatment followed the American Heart Association guide-
lines17 at CUIMC, while AU followed the European Stroke 
Organization guidelines,18 without major differences in stan-
dard operating procedures. All patients were treated in neu-
rological or neurosurgical intensive care units. Patients with 
Hunt and Hess grades 3 to 5 and Glasgow Coma Scale score 
<8 at CUIMC and patients with Hunt and Hess grades 3 to 
5 or modified Fisher scale score 3 to 4 at AU were consid-
ered at high risk for DCI and received invasive neuromonitor-
ing, unless early mortality was anticipated. At CUIMC, separate 
intracranial pressure (ICP) and PbtO2 probes (ICP: Camino 
System, Integra Neurosciences, Plainsboro, NJ, PbtO2: Licox, 
Integra, Plainsboro, NJ) were placed according to a previ-
ously published institutional protocol,19 while in patients at AU, 
a combined ICP-PbtO2-probe was placed (Neurovent PTO, 
Raumedic, Helmbrechts, Germany). Probes were placed uni-
laterally into the watershed zone between anterior and middle 
cerebral artery territories in the frontal lobe expected to be 
affected most (side of aneurysm or dominant blood distribu-
tion) or on the right side for midline aneurysms and symmetrical 
blood distribution. Monitoring was aligned to recommenda-
tions from the Neurocritical Care Society and the European 
Society of Intensive Care Medicine, and local guidelines.9,20,21 
All patients received arterial lines zeroed at the phlebostatic 
axis for arterial blood pressure (ABP) monitoring. Digital physi-
ologic data were from General Electric Solar 8000i monitors 

Nonstandard Abbreviations and Acronyms

ABP arterial blood pressure
aSAH aneurysmal subarachnoid hemorrhage
CBF cerebral blood flow
CPP cerebral perfusion pressure
CPPopt optimal cerebral perfusion pressure
CT computed tomography
CUIMC  Columbia University Irving Medical 

Center
DCI delayed cerebral ischemia
HIMALAIA  Hypertension Induction in the Manage-

ment of Aneurysmal Subarachnioid 
Hemorrhage With Secondary Ischemia

ICP intracranial pressure
PbtO2 brain tissue oxygenation
PRx pressure reactivity index
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(Milwaukee, WI) and acquired at a sampling frequency of 240 
Hz using data acquisition system (CUIMC: BedmasterEX [Excel 
Medical Electronics, Jupiter, FL], AU: Moberg Component 
Neuromonitoring Systems [Moberg Research, Inc, Ambler, PA]). 
From 2012 until 2021 at CUIMC, digital physiologic data were 
from Philips Intellivue monitors (Amsterdam, the Netherlands) 
and acquired at a sampling frequency of 125 Hz using data 
acquisition systems (BedmasterEX from 2012 until 2014, 
ICM+ [Cambridge Enterprise, United Kingdom] from 2014 until 
2019, Philips Data Warehouse Connect from 2019 until 2021).

Outcome Definition
The goal of the study was to assess the relationship between 
PbtO2 and deltaCPP, which was additionally split between 
patients with and without DCI. Brain tissue hypoxia (BTH) was 
defined as hourly measurements with PbtO2 <20 mmHg. DCI 
was defined in both centers as a ≥2-point change in Glasgow 
Coma Scale or new focal neurological deficit lasting for >1 
hour and not associated with surgical treatment, or a new 
cerebral infarct on brain imaging that is not attributable to any 
other causes.17 AU additionally defined a territorial or water-
shed deficit on computed tomography (CT) perfusion as DCI. 
CT perfusion was conducted when triggered by a worsening 
in neuromonitoring results or at individual elective time points 
in comatose patients. The large window for DCI onset or pre-
sentation makes direct comparison across patients over time 
challenging. To address this, we used the day of bleed as the 
temporal anchor to align the monitoring data and removed the 
data post-DCI diagnosis to compare the physiologic monitor-
ing values of 2 outcomes while avoiding potential influences of 
DCI treatment on the physiology. To avoid unbalanced or dispa-
rate data time frames of patients with and without DCI, data of 
patients without DCI were included only until the mean time of 
DCI diagnosis (ie, until day 7).

Data Processing and Analysis
The following baseline characteristics and grading scales 
were prospectively recorded at admission: age, sex, history 
of hypertension, Hunt and Hess grades, and modified Fisher 
scale. Clinical outcome was assessed 6 months after dis-
charge using the modified Rankin Scale via in-person and/
or telephone interviews. Artifact-free segments of PbtO2, 
ABP, and ICP data were manually identified at the 2 centers. 
The immediate time period following PbtO2 probe placement 
up until completed calibration was evaluated by 2 reviewers 
independently from each other, and excluded from analysis. 
Later, artifacts were noted to typically result from patient 
monitor disconnections for nursing care, malfunctioning 
equipment, or transport off the unit.

Calculation of Measures of Autoregulation
Cerebrovascular pressure reactivity was calculated using the 
pressure reactivity index (PRx).6,22 ICP and ABP were time-
averaged over 10-second intervals. The PRx was then com-
puted as a Pearson correlation coefficient calculated over a 
5-minute moving window (with 80% overlap) between slow 
changes in ICP and spontaneous fluctuations in ABP.5,22 The 
CPP value at which the lowest value of PRx is experienced in 
a period of time is considered the optimal CPP (CPPopt).5 To 

calculate CPPopt, 5-minute median CPP values were divided 
into 16 bins spanning 5 mmHg. A parabolic curve was applied 
and the CPP bin with the lowest PRx value was recorded as 
the CPPopt. This value was updated every minute and trended 
based on a moving 4-hour window. A threshold of 50% was 
set in order to generate a curve to calculate CPPopt (>50% 
PRx values within time window must be present). DeltaCPP 
was calculated as the patients’ actual CPP minus CPPopt 
every minute.

Statistical Analysis
We plotted PbtO2, CPP, PRx, and BTH over binned deltaCPP 
for all patients and patients with and without diagnosis of DCI 
in follow-up (Figure [B] through [D]). Because of the nonlin-
ear relationship between PbtO2 and deltaCPP, we modeled 
this relationship using nonlinear regression using natural 
splines (Figure [A]).23 For this, we used the generalized lin-
ear model and fit the natural splines using python statsmo-
del library.24 Wilcoxon rank sum test was used for comparing 
continuous variable and χ2 test was used for comparing cat-
egorical variables. Statistical significance was assumed at 
P<0.05. Data processing and analysis were performed using 
MATLAB (MATLAB and Statistics Toolbox Release 2015a, 
The Mathworks, Inc, Natick, MA), Python (Python Software 
Foundation, https://www.python.org/), and ICM+ (Cambridge 
Enterprise, Cambridge, United Kingdom).

RESULTS
There were 1233 (CUIMC: n=990; AU: n=243) patients 
with aSAH of which 265 (CUIMC: n=140; AU: n=125) 
had continuous neuromonitoring data available. One 
hundred thirty-one patients (CUIMC: n=52, AU: n=79) 
fit the inclusion criteria (n=134 excluded without data 
before DCI before day 7 (mean time of DCI occurrence) 
or with <12 combined CPPopt/ PbtO2 datapoints). 
The median age was 54 (IQR, 46.5–64.0) years, n=94 
(71.8%) female, median Hunt and Hess grades 4 (IQR, 
3–5) and median modified Fisher scale score 3 (IQR, 
2–4; Table 1). DCI was diagnosed in n=64 (48.9%) 
patients with invasive neuromonitoring in total, with n=16 
(30.8%) patients at CUIMC and n=48 (60.8%) patients 
at AU. DCI was diagnosed 7.2±3.3 days after hemor-
rhage. In 26 of 45 (57.8%) patients in the AU cohort 
who were diagnosed with DCI via CT perfusion, the ICP-
PbtO2-probe was located within the hypoperfused ter-
ritory at time of DCI diagnosis, according to previously 
established cut-offs.25 Age and modified Fisher scale 
were significantly different (P<0.05) between patients 
with and without DCI (Table 1). There were no statistical 
differences in physiological data values between patients 
with and without DCI (Table 2). Out of 16.614 hours of 
physiological data, both deltaCPP and PbtO2 were pres-
ent simulateously in 7806 (47.0%) hours, of which 4449 
(57.0%) hours were recorded within the first 7 days after 
hemorrhage and included for analysis (44.0 [20.6–78.3] 
per patient).
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Median CPPopt was 81.8 (76.8–90.5) mmHg, and 
median PbtO2 was 23.6 (18.7–31.8) mmHg. Spline 
regression demonstrated that there was a nonlinear 
relationship between PbtO2 and deltaCPP (P<0.001; 
Table S1). Visual inspection of the regression plot 
(Figure [A]) showed that the curve may be divided 
into (at least) 2 segments, with increase of PbtO2 
with increase of deltaCPP until deltaCPP approxi-
mates 0 mmHg and with relatively stable PbtO2 values 
with deltaCPP ≥0 mmHg. This dynamic was observed 
regardless of the occurrence of DCI later on. PbtO2 
with deltaCPP <0 mmHg (23.6 [16.5–32.7] mmHg) 
was significantly different to deltaCPP ≥0 mmHg 
(25.0 [17.9–33.84] mmHg, P<0.001). Mean PRx was 
significantly higher with deltaCPP <0 mmHg (0.11 
[−0.09 to 0.33]) than with ≥0 mmHg (0.06 [−0.13 to 
0.26]; P<0.0001).

BTH (PbtO2 <20 mmHg) was noted in n=1542 
(34.7%) measurements in total. Of these, n=843 (54.7%) 
and n=699 (45.3%) were observed with deltaCPP <0 or 
≥0 mmHg, respectively. When separating the proportion 
of BTH by 5 mmHg deltaCPP bins, BTH episodes were 
more frequent with decreasing deltaCPP (Figure [B]).

DISCUSSION
Cerebral autoregulation has historically been described 
as a triphasic relationship (Lassen’s curve), in which CBF 
is maintained stable between certain blood pressure lim-
its, but this concept has been challenged recently.26,27 A 
quadriphasic theory of autoregulation was recently pro-
posed by Klein et al27 from experimental data, who doc-
umented 2 upper limits of autoregulation, owing to the 
separate reactions of smaller and larger arterioles. Our 
hypothesis was that the reaction of cohort PbtO2 could 
delinate the functionality of autoregulation. Our results 
support a nonlinear relationship between PbtO2 and 
the deviation of actual patients’ CPP from CPPopt (del-
taCPP) in patients with aSAH. However, mainly 2 phases 
can be observed in our data: PbtO2 seems to be most 
stable when CPP is close to or above CPPopt, while 
CPP below CPPopt corresponds to decreasing PbtO2 
values. Mean PbtO2 was slightly but significantly lower 
with deltaCPP <0 mmHg. With very low deltaCPP (<−30 
mmHg), episodes of brain tissue hypoxia become more 
frequent. Conversely, positive deltaCPP does not lead to 
further increase of PbtO2. The natural spline regression 

Figure. The relationship between PbtO2 and deltaCPP.
A, Natural spline regression analysis of hourly deltaCPP and PbtO2 pairs. B, PbtO2, cerebral perfusion pressure (CPP), pressure reactivity index 
(PRx) values, and data availability separated by 5 mmHg deltaCPP bins. Black line indicates the proportion of brain tissue hypoxia (BTH) from all 
measurements within a bin. C and D, Data separated by patients without delayed cerebral ischemia (DCI; C) or with (D) DCI.
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model predicts this upward trend for deltaCPP values 
>+40mmHg. However, deltaCPP values in this range 
were rarely reached in our cohort, therefore this trend 
must be interpreted as a purely mathematical extrapola-
tion. A third (or fourth) phase of autoregulation therefore 
cannot be observed in our data.

A possible explanation is the effort to maintain physio-
logical CPP values in patients (observational study) while 
experimental settings can actively explore the reaction to 
more extreme pressure values.27 A CPP challenge would 
be necessary to determine individual limits of autoregu-
lation and therefore, the individual range that CPP may 
deviate from CPPopt before PbtO2 begins to decrease 
or increase more passively. Overall, the autoregulation 

curve may be shifted towards higher CPP values in 
patients with aSAH but with lower total CBF, increas-
ing the chance to encounter hypoxia at lower CPP val-
ues and to observe the lower limit of autoregulation in 
the PbtO2/deltaCPP relationship, but not the upper limit 
of autoregulation.25,28,29 Treatment phases with induced 
hypertension may depict a third phase more clearly, 
but were excluded from this analysis to avoid iatro-
genic influence on CPPopt calculations. In theory, CBF 
(and PbtO2 to some extent) may increase further dur-
ing hypertension, if the upper limit of autoregulation is 
exceeded. This represents the rationale for treating DCI 
with induced hypertension, for which conflicting data 
have been reported. Gathier et al. found that the overall 

Table 1. Comparison of Patient Characteristics

 n=131 

DCI+ DCI− 

P value* n=64 n=67

Age, median (IQR) 54.0 (46.5 to 64.0) 51.5 (44.0 to 60.0) 59.0 (49.0 to 66.0) 0.008

Female sex, n (%) 94 (71.76) 44 (72.1) 47 (72.3) 0.869

MFS, n (%) 0.047

 1 29 (23.02) 11 (17.19) 18 (26.87)  

 2 26 (20.63) 9 (14.06) 17 (25.37)  

 3 33 (26.19) 17 (26.56) 18 (26.87)  

 4 35 (27.78) 26 (40.63) 12 (17.91)  

HH, n (%) 0.589

 1 5 (3.82) 3 (4.92) 2 (2.99)  

 2 14 (10.69) 8 (13.11) 6 (8.96)  

 3 31 (23.66) 13 (21.31) 18 (26.87)  

 4 47 (35.88) 25 (40.98) 21 (31.34)  

 5 34 (25.95) 12 (19.67) 20 (29.85)  

mRS (3 mo), n (%) 0.075

 1 7 (5.34) 5 (7.46) 2 (3.13)  

 2 16 (12.21) 10 (14.93) 6 (9.38)  

 3 15 (11.45) 10 (14.93) 5 (7.81)  

 4 19 (14.5) 6 (8.96) 13 (20.31)  

 5 21 (16.03) 7 (10.45) 14 (21.88)  

 6 41 (31.3) 23 (34.33) 18 (28.13)  

DCI+ indicates patients with DCI; DCI−, patients without DCI; HH, Hunt and Hess grade; IQR, interquartile range; MFS, modified 
Fisher Scale; and mRS, modified Rankin Scale.

*Considered significant if P<0.05.

Table 2. Comparison of Physiological Data Within the First 7 Days After Hemorrhage

 All DCI+ DCI−  

PbtO2 24.12 (18.16 to 32.35) 23.41 (16.64 to 29.6) 24.62 (18.61 to 33.97) 0.325

ABP 92.53 (86.41 to 101.7) 93.99 (86.69 to 104.57) 90.33 (85.87 to 99.02) 0.263

ICP 7.89 (5.88 to 11.26) 8.66 (5.8 to 12.78) 7.61 (6.0 to 9.78) 0.338

CPP 82.69 (75.55 to 94.67) 82.62 (75.36 to 96.93) 83.03 (76.48 to 94.03) 0.680

CPPopt 82.69 (76.97 to 91.99) 81.85 (76.21 to 91.99) 83.73 (78.6 to 91.8) 0.667

deltaCPP −0.13 (−3.03 to 3.0) −0.13 (−3.04 to 3.83) −0.16 (−3.03 to 1.8) 0.474

PRx 0.07 (−0.06 to 0.21) 0.12 (0.0 to 0.24) 0.04 (−0.09 to 0.16) 0.086

ABP indicates arterial blood pressure; CPP, cerebral perfusion pressure; CPPopt, optimal cerebral perfusion pressure; deltaCPP, CPP-
CPPopt; DCI+, patients with DCI; DCI−, patients without DCI; ICP, intracranial pressure; and PRx, pressure reactivity index.
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CBF in the HIMALAIA trial (Hypertension Induction in 
the Management of Aneurysmal Subarachnioid Hemor-
rhage With Secondary Ischemia) did not increase dur-
ing induced hypertension, but the region of interest with 
the lowest pre-treatment CBF increased substantially, 
albeit not significantly (P=0.05).30,31 In contrast, in a set-
ting with induced hypertension and vasodilation together, 
we found that a higher pressure target (>180 mmHg 
systolic) corresponded to even lower PbtO2 values than 
a lower pressure target (>120 mmHg systolic).32 As a 
future prospect, analyzing the relationship of deltaCPP 
and PbtO2 during phases with induced hypertension may 
delineate an upper limit of autoregulation, and give insight 
into the oxygen-plus that can or cannot be expected by 
hypertensive treatment.

It must also be acknowledged that autoregulation 
refers to the relationship of perfusion pressure and cere-
bral flow, for which PbtO2 is only an imperfect surrogate 
and may therefore not reflect the autoregulation curve 
entirely. PbtO2 measurements are influenced by other 
factors beyond insufficient CBF such as oxygen diffu-
sion depending on arterial and venous oxygen tensions, 
oxygen consumption or capillary blood distribution, which 
may be severely disturbed after aSAH.33–37 Furthermore, 
PbtO2 is a local marker and may be noninformative for 
distal areas of impaired autoregulation or mismatched 
perfusion. Regional differences in autoregulation have 
recently been found in patients with malignant stroke; 
therefore, it is conceivable that both PbtO2 and CPPopt 
values (by the current method of calculation) may differ 
in areas with intact or disturbed autoregulation.38 These 
may be reasons that limits of autoregulation could not be 
detected as clearly in our data. Nevertheless, detecting 
episodes of brain tissue hypoxia remains interesting as 
an adjunctive parameter to monitoring of CPP/CPPopt, 
as it can aid the diagnosis of DCI and estimate the effi-
cacy of DCI treatment.32 Active measures to improve 
PbtO2 such as increasing CPP are also under investi-
gation as they may have a positive impact on long-term 
neurological outcome.39,40

Generally poorer autoregulation has been described 
in patients with DCI versus those without DCI and auto-
regulation may be used to predict DCI.41 We hypoth-
esized that patients with DCI could therefore be more 
strongly dependent on a deltaCPP close to zero to main-
tain good PbtO2. Our data did not support this hypoth-
esis. The 2-phasic PbtO2 development with increasing 
deltaCPP was similar between groups. Mean PbtO2 and 
PRx were comparable during the analyzed time frame. 
We have recently demonstrated that autoregulation may 
deteriorate significantly only several hours before DCI, 
similarly to PbtO2.

25,42 Such short-term differences may 
not be captured in our comparatively longer data time 
frame, while comparison of selected time frames around 
DCI to patients without DCI is difficult as there is no cor-
responding DCI event to match data to.

The range of CPP values, which is optimal as deter-
mined by PRx values has been discussed primarily in TBI 
patients with ICP monitoring. There is most consensus for 
a recommendation of maintaining deltaCPP ±5 mmHg 
which was the target of the COGITATE trial (Feasibility 
and Safety Trial to Guide Cerebral Perfusion Pressure 
According to CPPopt Goals in Traumatic Brain Injury).43 
It is not yet proven that CPPopt can be used for this pur-
pose in aSAH. CPPopt may be too blunt a target when 
regional differences in autoregulation impairment and/
or perfusion exist with DCI. Differences between TBI 
and aSAH may require a different strategy for CPPopt 
calculation and the resulting management, including a 
reinvestigation of the ±5 mmHg optimal range around 
the target in aSAH patients.44 If interpreting PbtO2 as a 
surrogate for adequate CBF and considering only PbtO2, 
our results would suggest that the range for CPPopt 
may be much wider in aSAH, as decrease of PbtO2 <20 
mmHg on cohort level was only observed with deltaCPP 
<−20 mmHg. However, our data also indicate that hyper-
perfusion with positive deltaCPP may be tolerated bet-
ter than hypoperfusion in patients wit aSAH. Besides a 
progressive decrease of PbtO2 with negative deltaCPP, 
worsening of PRx values was also more progressive with 
negative deltaCPP as compared with positive deltaCPP 
values. The U-shaped curve in TBI patients similarly 
depicts a steeper increase of PRx with deltaCPP below 
CPPopt than with positive deltaCPP,8 but the overall 
CPPopt recommendation in TBI patients is significantly 
lower and complications from hyperperfusion such as 
cerebral edema or seizures are feared more quickly in 
patients with TBI than with aSAH.43,45 Avoiding negative 
deltaCPP could be more important than avoiding posi-
tive deltaCPP in aSAH, which may have to be considered 
when a CPPopt target is defined in aSAH patients.

The CPP values that corresponded to low deltaCPP 
values and hypoxia were not necessarily pathologi-
cal according to the current empirical recommendation 
that only defines a treatment floor of CPP >60 to 70 
mmHg.46,47 Thus, if CPPopt is not calculated, many of 
these CPPs are accepted as normal and not intervened 
for despite the potential of improving PbtO2.

40 Simi-
lar relationships of CPPopt or optimal ABP and PbtO2 
were determined in patients with traumatic brain injury 
and hypoxic-ischemic brain injury.48,49 As we observed a 
large variability of absolute PbtO2 values in relation to 
deltaCPP, we recommend monitoring both CPP/CPPopt 
and PbtO2, as they give adjunctive information: CPP/
CPPopt may help determine an individual pressure tar-
get (range or lower limit), while PbtO2 is most valuable to 
detect hypoperfusion during DCI.

Limitations
The advantage of a larger case number achieved by com-
bining 2 cohorts was weighted against the disadvantage 
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of potential confounders. We are not aware of major dif-
ferences in diagnosis and treatment procedures between 
both centers, but unknown differences cannot be ruled 
out completely. DCI was defined differently in the 2 cen-
ters owing to the limitations of the current DCI defini-
tion, which is based primarily on the clinical diagnosis in 
awake patients.50 Both centers defined DCI according to 
Vergouwen et al51 as clinical deterioration with an addi-
tional imaging basis (cerebral infarction at CU; perfusion 
delay at AU). CT perfusion is frequently used as another 
basis for DCI diagnosis as most pathomechanisms 
assumed to be involved in DCI may result in hypoperfu-
sion measurable by CT perfusion. Assessment of brain 
tissue oxygen relied on local, invasive measurements, 
which are dependent on type of probe, location, and site 
of occurrence of DCI. CUIMC used Licox probes while 
AU placed Raumedic probes, which can be associated 
with slightly deviating measurements.52–54 Independent 
of probe type, potential differences between patients 
with and without DCI may be diluted by measurements 
from DCI patients in whom DCI occurred in territories not 
covered by the probe. Alternative methods of calculating 
autoregulation by transcranial doppler velocities or near-
infrared spectroscopy are under investigation but are not 
available for our cohort.55,56 Finally, the detection of auto-
regulatory thresholds were made on cohort level, which 
does not vice versa allow conclusions on an individual 
patient level.

Conclusions
PbtO2 and deltaCPP have a non-linear relationship with 
CPP close to or above CPPopt associated with stable 
PbtO2 values while CPP below CPPopt exhibits PbtO2 
decrease. Calculating CPPopt may be more informative 
than CPP alone, as it helps identify these alterations 
with CPP in normal boundaries. Owing to the high vari-
ability and the manifold influences on PbtO2, additional 
PbtO2 monitoring may yield complementary informa-
tion to detect hypoxia as part of DCI and guide rescue 
treatment.
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