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Chapter 1 Thesis Introduction

Introduction

Cancer refers to any one of many diseases characterized by the development of abnormal
cells that divide uncontrollably. These cells continue to divide and grow and, at long last,
overrun the healthy cells gaining the ability to infiltrate and destroy normal body tissue and
sometimes spread to other parts of the body different from where they originated. These
overgrown cells do not develop into healthy tissue and do not function normally. This
uncontrollable growth gives rise to tumors that interfere with the human system’s normal
functioning, which can be lethal. Today, millions of people live with cancer or have had
cancer at some point in their life, making the disease the second-leading cause of death
worldwide for years (1–4), and since 2005, the preeminent cause of death in the Netherlands1

(5). Figure 1.1 depicts the annual (2017) number of deaths by cause in the Netherlands (6),
which shows cancer burden on the human population.

Figure 1.1. The number of deaths by cause, the Netherlands, 2017.

Over the past several decades, a whole field of research has opened up with a primary focus
on understanding and finding the optimal treatment for this deadly disease challenging hu-
mans’ health worldwide. In the 2002 – 2003 fiscal year, 1.43 billion euros was spent on cancer
research in Europe (7) from public funding alone, and just ten years later, this figure stands
at approximately 7.6 billion euros (8). These figures are even higher in the United States (7, 9).

The rest of this chapter is organized into five sections as follows. First, a brief introduction
of the origin of radiation oncology and the science behind its therapeutic nature is discussed.
The preceding two sections introduce Big Data in radiation oncology and machine learning

1Statistics Netherlands (CBS)
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Chapter 1 Thesis Introduction

with clinical applicability. The penultimate section describes model explainability and
interpretability to highlight the difference, while the last section gives the structure and
blueprint of this thesis.

Radiation Oncology

The word oncology holds two meanings and has its roots in ancient Greek. The
prefix “onco-” came from the Greek word "ogkos" which means lump, bulk, mass or
tumor in modern Latin. The suffix “-logy” means study from the Greek word "logos".
Therefore the term oncology means the study of tumors, i.e., the branch of science
that deals with the study of tumors and cancers. Radiation, on the other hand, is the
emission or transmission of energy in the form of particles via space or material medium,
which can either be ionizing or non-ionizing depending on the characteristics of the particles.

Ionization is a process where electrons are being removed from atoms or molecules’ orbitals
by high-energy radiations such as Gamma rays, X-rays, and the higher ultraviolet part
of the electromagnetic spectrum. This ionization causes chemical bonds between atoms
or molecules to be broken, leaving them with unpaired electrons, called (free) radicals
(10). These free radicals are very reactive and cause DNA damage which induces cellular
senescence and stops cell division and proliferation processes. Generally, cells can recover
from this kind of damage via cellular repair mechanisms, and their ability to recover from
radiation damage largely depends on the cell type, with healthy cells recovering faster than
cancerous cells (11). However, when the severity of the damage exceeds the cell’s ability to
repair itself, it ceases to carry out its biological functions and eventually dies (12).

This characteristic difference between normal and cancerous cells is being utilized in radia-
tion oncology as a therapeutic option by administering a calculated amount of radiation
dose to regions of the body where cancerous cells are targeted in multiple fractions over
several days. The administered radiation dose is focused so that the cancerous cells receive
most of the radiation dose, high enough to damage their DNA leading to cellular death
or stopping them from further growing, but low enough for the healthy tissues far from
the cancerous cell to avoid any complications such as radiation toxicity or sickness (13).
Radiation is used as a therapy to get rid of all the cancerous cells (“curative treatment intent”)
and prevent them from recurrence or delaying their growth, and ease symptoms (“palliative
treatment intent”). Radiation therapy is often given in combination with other treatments
such as surgery, chemotherapy, hormone therapy, immunotherapy, or some mixture of these
therapies depending on the tumor type, location, stage, and general health of the patient
(14, 15).
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Chapter 1 Thesis Introduction

Big Data

More than 50% of people diagnosed with cancer receive radiation therapy at some point in
their treatment, either as a monotherapy or in combination with other therapies (13). Over
the past several years, a continuous effort has been employed to improve and automate
the cancer treatment process using information technology (IT) (16). The standard process
of modern radiation treatment generates an abundance of data electronically stored across
various disciplines such as radiation oncology, radiology, and other disciplines involved in
the patient’s care path. Patient information is mainly stored on platforms like the electronic
medical record (EMR) system, picture archiving and communication system (PACS), and
departmental information systems such as oncology information systems (OIS) or treatment
planning systems (TPS). It usually comes in a variety of (un)structured formats such as the
Digital Imaging and Communications in Medicine (DICOM) standard, relational databases,
and free text. This sea of patient information has led to oncology’s revolutionary Big Data
era.

Machine learning

The digitalization of healthcare has significantly advanced the healthcare industry within
the last decades. Innovations in this domain have led to a large volume of patient diagnosis,
planning, and treatment data to be captured and stored in (un)structured electronic formats
worldwide. Ideally, caregivers, stakeholders, and patients need these data to be translated
into knowledge to assist them in their decision-making process (17, 18). The quest for
evidence-based decision-making has encouraged the utilization of machine learning algo-
rithms in healthcare (19). Machine learning, a sub-field of artificial intelligence (AI), studies
the design of algorithms and their ability to learn from data and improve its performance
through experience without being explicitly programmed (19, 20). Machine learning uses
the theoretical knowledge from statistics to build mathematical models capable of detecting
patterns within a dataset. In radiation oncology, machine learning can be employed on
routine clinical data or images to elucidate us about a disease or system of interest. This
insightful and actionable information provided by these models, makes them very valuable
in cancer treatment and management.

Prediction models

Prediction models are mathematical formulas that can be used to forecast future outcomes.
They are developed by processing large volumes of historical information in order for
the model to learn how the different variables of data are related to each other and their
association with the outcome of interest. The process of developing these models involves
four main steps. First, the data is collected, explored using exploratory data analysis
techniques, and cleaned for data inconsistency, outliers, and missing information (21, 22).
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Secondly, the model is trained on part of the collected data using statistical methods. Thirdly,
the model is tested on the other part of the data not used to train the model, though in some
cases, like in cross-validation, the training and testing datasets are changed to determine
model robustness. Lastly, the model is validated on an external dataset to estimate the
model’s performance in a new setting and, as such, an essential step before using a model
in clinical practice (23). In radiation oncology, prediction models are used to calculate the
probability of a given patient experiencing a particular outcome or event (survival, disease
recurrence, adverse treatment effects...) of interest depending on the patient-specific values
of the model’s predictive variables. They are also used to select patients who might not
benefit from a specific treatment like proton therapy (24–26). Such insights from these
prediction models could guide the selection of the most appropriate treatment for a patient
or modify their treatment options to improve outcomes (27).

Regression models

Over the last decade, regression methods have become an indispensable component of
predictive modeling tasks in most fields. They are concerned with describing the relationship
between a response variable (also called output, outcome, or dependent variables) and one
or more explanatory variables (also called independent, predictor, or input variables). For
example, equation 1.1 is a typical representation of a regression model where the variable(s)
on the right-hand side of the equation is said to have an (causal) effect on the outcome
variable on the left-hand side of the equation (28–30).

Outcome = β0 + β1 ∗ V ariable1 + β2 ∗ V ariable2 + · · ·+ βn ∗ V ariablen + ε (1.1)

The β values are multiplicative factors called regression coefficients, and they indicate the
magnitude of influence the normalized predictor or variable has on the outcome (31). These
β values can serve as a means to create risk groups for the outcome variable of interest, as
implemented in chapters 4 and 5 (32, 33). The outcome variable is often continuous, discrete,
or a count, which might slightly modify the representation of equation 1.1. Generally, there
are several regression models, but this thesis is limited to the regression method applied to
time-to-event data. The time-to-event data format is essential, especially in healthcare, since
caregivers may wish to know the probability of a patient developing an event of interest and
when that said event will occur. Therefore, unlike popular regression methods like linear
and logistic, the outcome of interest in time-to-event analysis has two unique parameters:
the time and event factor. The Cox proportional hazard regression model is the go-to model
for analyzing time-to-event data in most fields, especially medical research. However, other
non-parametric methods like decision trees are being used lately see chapter 7.
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Decision Trees

A decision tree is a tree-like (roots up) graphical structure that depicts a set of decisions and
every potential outcome or result of making those decisions. Decision trees are non-linear
methods that iteratively use the independent variable, which has the strongest association
with the dependent variable, to split a population into progressively smaller subgroups
according to some specific criterion (34). The root node is the most important variable on
the tree, and is positioned at the top of the tree, from where the rest of the nodes on the
tree are linked. The intermediate nodes are all the subsequent variable(s) splits, and the
leaf node is the tree’s final node, which holds the prediction or insights needed. The tree
branches link the nodes and provide the different options or courses of action available
when making a particular decision.

Decision trees can be developed in various situations, from something simple and personal
such as “should I go to the beach today?” to a more significant and complex scientific
undertaking. An example is the decision tree deployed during the coronavirus disease
2019 (COVID -19) pandemic to support parents and childcare workers determine when
a child is allowed/fit to attend school as long as corona measures apply ( Figure S1.3
supplemental material2). Decision trees are less challenging to explain to end-users since
they take a problem with multiple outcomes and display the solutions in a graphical,
easy-to-understand, and straightforward format that shows the relationship between
different decisions and their outcomes. By displaying a sequence of steps, this structured
model enables the end-users to visualize and understand how and why each potential
decision may lead to the next, using the "IF-THEN" mutually exclusive options given on the
branches. In other words, end-users observe every conceivable outcome on the tree and
weigh each course of action against the decision’s risks and reward.

However, one crucial dilemma when building a decision tree is deciding when to stop
growing the tree (no further splitting of the node) and use a specific tree as the final model.
When the tree size is too big, there is a high probability that the tree will overfit the data
and thus fail to generalize on an external population. If too small, some essential branches
and intermediate nodes will be absent, leading to poor performance of the tree. Generally,
most researchers either build a huge tree and select an appropriate subtree by pruning
off branches or use a stopping rule during training to circumvent this dilemma (35, 36).
In recent years, much attention has been given to an ensemble method called random
forest, which combines several base decision trees to produce an optimal model with better
predictive performance. However, this method defeats one of the desired characteristics
of decision trees, which is to provide insights into the data by graphically displaying the
results in a manner readily understood and interpreted by end-users.

2https://www.boink.info/beslisboom
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Bayesian Network

Bayesian Networks (BN) are probabilistic graphical models (PGM) or structured proba-
bilistic models that can represent and reason in uncertain domains such as healthcare. This
hybrid model from probability and graph theory visually describes the relationship between
a set of random variables and their conditional dependencies. These relationships are
represented in a directed acyclic graph (DAG), where each node in the network represents a
variable (discrete or continuous), and directed edges, arcs, links, connections, or arrows
denote causal relationships or dependencies between these variables (37). For exam-
ple, an edge from variable A to B may represent a causal effect relationship of variable A on B.

Bayesian networks are very appealing in medicine because of their ability to make
predictions with incomplete information and inference on any variable in the structure.
Their graphical nature also enables the incorporation of prior knowledge and causal
intervention, making them suitable decision-making tools with clear and understandable
reasoning in their decision process (38, 39). Generally, the directed edges within Bayesian
networks structures are generated by an algorithm using a statistical test to ascertain
that variable A is probabilistically independent of variable B conditional on its parents
(40, 41). However, this method does not always produce valid structures, especially in
healthcare, since it might include relationships between variables where the direction of
influence between variables is impossible. For example, having a variable being influenced
by a variable that is collected later in the future (e.g., recurrence after two years causing
neo-adjuvant chemotherapy yes/no) or having two unrelated variables influencing each
other (e.g., age and gender).

Another option is to request a domain expert to specify the Bayesian network structure,
which is also not optimal since the expert might be biased based on their knowledge and
experience of the domain. One way to improve this expert-specified structure limitation
is by surveying opinions from multiple experts with the assumption that arcs specified
by most experts will likely be the ground truth or accurate representation of the domain
(majority voting theory as implemented in chapter 8).

Explainability and Interpretability

The use of machine learning models as decision support tools has been steadily rising in
different sectors. With the arrival of the General Data Protection Regulation (GDPR), which
grants end-users the “right to explanation” of algorithmic decisions (42–44), an indirect
burden is placed on prediction models emphasizing accountability and transparency.
End-users can, therefore, be interested in both the predicted outcome and the interpretability
of the prediction model. Trusting the system powered by these machine learning models

8



Chapter 1 Thesis Introduction

will require a better understanding of how the system arrived at a particular prediction.
However, the extent of one’s understanding of these systems largely depends on whether
the model is interpretable or explainable. Though explainability and interpretability are
different, in the context of machine learning, they are separated by a thin line, with most
authors using the terms interchangeably (45, 46). While they might be closely related, they
are defined differently.

"The interpretability of a model relates to how a human can observe the cause and effect
within a system. To rephrase, it is the degree to which one can consistently understand
the cause of the model’s decision. That is seeing what happens when the parameters of
the model change" (46–49).

"The explainability of a model, on the other hand, is the extent to which the model’s
internal mechanics can be explained in human terms. That is if the developers of
the model can explain why the model arrived at a specific decision and can pass the
interpretation down to users" (45, 46, 50)

The subtle difference between interpretability and explainability could easily be missed. In
two words, interpretability is model discernment, and explainability is model explication.
Let’s take a simple chemistry experiment on titration to illuminate this difference further.
The steps taken until the color change in the solution is observed can be considered inter-
pretability. However, the chemistry behind the experiment (reaction between the reactants)
is the definition of explainability. Model explainability is not discussed further beyond this
point because this thesis’s primary focus is model interpretability. Figure 1.2 shows some
commonly used machine learning models in radiation oncology (51) in order of increased
interpretability.

Figure 1.2. Commonly used machine learning models in radiation oncology in order of increased
interpretability.
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Regardless of whether or not there is any regulation or restriction on prediction models
in terms of accountability and transparency, it is pivotal for prediction models to have a
certain level of interpretability to build trust with end-users and ease communication of
their workings to stakeholders. By definition, interpretable models should be inherently
easier to translate to a less technical audience than non-interpretable models.

Regression is one technique that produces very interpretable models, though they might
sometimes lose their interpretability, especially when they contain splines or interplay
of explanatory variables. Informative graphical tools which translate complex models
to a visual form are often used in such situations to assist end-users and stakeholders in
understanding the rationale and results of the model’s predictions. Nomograms are often
the go-to translational tool used to accommodate models with increased complexity and
provide visuals to facilitate comprehension. Other methods like decision trees, which do not
need translation since they are graphical structures with an IF-THEN flowchart form, are
also interpretable. Though they can become cumbersome to interpret when grown too big,
pruning off some branches helps keep them interpretable and straightforward.

In healthcare and especially radiation oncology, where machine learning models are
significant assets for better cancer care, deployed models need to have some level of
interpretability. Deployed models that lack interpretability face plenty of challenges with
their potential and impact greatly limited due to lack of trust and fairness (52, 53), given
that accountability and transparency are pivotal for end-users. Interpretable models like
Bayesian networks can elevate trust and fairness amongst end-users since they can be
elicited by domain experts (54, 55), who are also the end-user in most cases. Their graphical
nature, which captures the conditional dependency between the variables, makes them
transparent.

Irrespective of model choice, understanding how a machine learning model works and
including end-users throughout the model-building process helps align the researcher’s
activities with the end-users’ vital questions and the organization’s needs. Therefore, this
thesis aims to contribute to scientific knowledge of Big Data and interpretable machine
learning models for outcome prediction in radiation oncology.

Structure of the thesis

This thesis contains four main sections, as described in table 1.1. Section 1 provided a general
introduction to this thesis. Section 2 provides some basic theory on Big Data concepts, while
the analyses section contains original research on prediction models in radiation oncology.
The last section concludes this thesis with future perspectives and recommendations for
building interpretable machine learning models in healthcare.

10
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Table 1.1. Summary of the topics and characteristics of the studies presented in the different chapters.

The part dedicated to Big Data, a literature review section, comprises two chapters. Chapter
2 paints a picture of Big Data in healthcare and its benefits for better cancer care. Chapter 3
describes the use of Big Data in radiation oncology and provides some of the challenges
involved in bringing Big Data technology into practice and some solutions.

Section 3 is split into three parts based on the analytical technique, with each part having
two chapters. In the regression part, chapter 4 describes the development and validation
of a multivariable Cox proportional hazard regression model to predict overall and
progression-free survival for cervical cancer patients receiving chemoradiation. Chapter 5
translates a multivariable Cox proportional hazard regression model with an interaction
term to a nomogram. The nomogram can predict 1, 2, and 6 months’ overall survival for
patients with metastatic spinal tumors, and its visual form could serve as a decision support
tool for the personalized management of these patients.

Chapter 6 in the decision tree part describes the development of a decision tree to predict
radiotherapy compliance for elderly cancer patients. Chapter 7 extends the decision tree

11
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methodology to survival data to predict overall survival for stage IIB-IVA cervical cancer
patients with squamous cell carcinomas.

The last part of section 3 concerns Bayesian network models. In chapter 8, an expert elicited
Bayesian network to predict tumor recurrence in rectal cancer patients was compared with
an algorithmic Bayesian network on a cohort of 6754 patients from 14 different international
clinical trials in Europe. In chapter 9, we used knowledge from chapter 8 (expert structures
are more interpretable but less predictive while algorithmic networks are more predictive
but less interpretable) to develop a hybrid Bayesian network that involves the interplay
between expert knowledge and a hill-climbing algorithm to predict two-year survival in
non-small cell lung cancer patients.

Section 4 contains a single chapter (Chapter 10) that discusses the importance and challenges
of interpretable machine learning prediction models in radiation oncology and concludes
this thesis.

12
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Supplemental materials

Figure 1.3. The decision tree deployed during the coronavirus disease 2019 (COVID -19) pandemic
to support parents and childcare workers determine when a child is allowed to attend school as long
as corona measures apply in the Netherlands.
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Chapter 2 Big Data

Abstract

This editorial seeks to paint a clearer picture of Big Data in healthcare and the benefits for better
cancer care. It gives a simple and widely used definition of Big Data and explains some of its pertinent
characteristics (volume, velocity, variety, veracity) with respect to healthcare. A brief discussion of
some solutions provided by Big Data for healthcare challenges together with a vivid examples where
Big Data have been implemented to improve operational efficiency and clinical excellence for hospitals.
Big Data has been gradually changing the face of healthcare, with the promise to improve cancer care,
decision making in real time via decision support systems(DSS) and better operations in healthcare
institutions. However, making Big Data Findable Accessible Interoperable and Reusable (FAIR) in
healthcare would be an essential improvement not only to circumvent the data sharing problem, but
also open up the possibility to use and reuse healthcare Big Data and trust the conclusions drawn
from Big Data.
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Introduction

Cancer is defined by the abnormal and uncontrollable growth of cells and is the
second leading cause of death worldwide (1). The heterogeneity in disease manifesta-
tions, various treatment options, patients’ preferences and deciding which treatment
is optimal for an individual patient are some of the most significant challenges in health care.

To make reliable decisions, we need large amounts of data. According to IBM, approxi-
mately 2.5 quintillion bytes of digital data are generated from humans’ daily activities (e.g.
from groceries, demographic and administrative medical records) (2). The acquisition or
extraction of these extensive and voluminous data is colloquially known as Big Data. There
is no standard definition for Big Data, but in simplistic terms, it is a significantly large and
complex dataset, which is impossible to adequately manage and process with traditional
software (3). However, Gartner defines Big Data as:

"Big Data is high-volume, high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information processing that enable enhanced
insight, decision making, and process automation".

Although Big Data is perceived by many as just an extensive collection of datasets, there is
more to the definition of “big” than only the volume aspect.

Big Data Anatomy in Healthcare

Like the human body, Big Data has several distinct features. To have a better grasp of Big
Data in healthcare, we can look at four aspects regularly used to describe Big Data.

Volume
With the advancements in medical technology, a considerable amount of patients’ data can
be generated from clinical practice (e.g. diagnostic and therapeutic procedure information,
omics) and in public health (e.g. wearables and mobile devices).

Velocity
The switch from recording patients medical information on paper to an electronic health
records systems (EHRs) have increased the amount of data which can be accessed and shared
via a secure information system at any time. Hence, reducing the time between data generation
and processing for real-time (or near real-time) decision making.

Variety
Healthcare providers use different media formats (numbers, images, videos, text or audio)
which can be classified into three main groups (structured, semi-structured or unstructured)
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Veracity
The quality and source of data are very pivotal to make the right inference. The mere fact that
data comes from different sources opens the possibilities of bias, uncertainty, inconsistency,
incompleteness or imprecision. All these affect the accuracy of the results and conclusions
drawn from these heterogeneous sources.

Big Data in Healthcare

In 2006, Clive Humby, a UK mathematician, stated:

“Data is the new oil. It is valuable, but if unrefined it cannot be used.”

This analogy is not without merit as data fuels most if not all industries (e.g. sports,
agriculture, education). This quote and the accompanying hype is also influencing the
health-care sector as it continuously strives to add value to patient care. These efforts can be
split into two aims: to improve operational efficiency and to increase clinical insights and
excellence (in terms of personalized or precision medicine).

Improve operational efficiency

Owing to the increased incidence of cancer worldwide, combined with rising health-care
costs, operational efficiency in clinical practice becomes important. Optimizing or
automating clinical workflows could reduce human workload, increasing the number of
patients which can be treated and reducing the time spent receiving medical care.

Radiotherapy, one of the most widely used and effective cancer treatment options, is already
using Big Data to automate image contouring and treatment planning tasks (4). This
automation results in less variability in treatments, because it limits unnecessary human
variation. In the end, Big Data and proper application of methods can result in a shift of
repetitive and time-intensive tasks usually performed by humans to computer supervision.

Staff allocation per shift has been one of the challenges in clinical management. Finding
the perfect balance between over-staffing departments (while providing satisfactory patient
care) and under-staffing (with unsatisfactory care) is a challenging task. Big Data can help
to solve this dilemma by estimating the expected number of patients visiting an emergency
department on a daily and hourly base (5).

Clinical excellence

As our understanding of the human body increases, selecting the best treatment option
for a particular patient becomes more complicated. The information at hand is much
larger than the human brain can comprehend (6), resulting in treatment outcomes which
are unpredictable by humans (7). Fortunately, Big Data can be used to predict treatment
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outcomes, allowing humans to make decisions between various treatment options (and their
outcomes). These predictions can be used to target patients who need rapid interventions or
those will benefit from (neo)adjuvant treatments.

Eventually, applying such Big Data strategies could have benefits in terms of costs, quality
and time. For example, knowing which patients do not need (neo)adjuvant treatment
strategies would save costs for this treatment, improve quality of life (in terms of treatment
burden or adverse treatment effects), and reduce treatment time.

This also results in the concept of value-based care (8), where the interventions are weighed
against their actual benefit to the patient. As an example, in personalized treatment where
the patient’s specific tumor information is used to ascertain treatment response, Big Data can
identify tumor-specific patterns information contained within the pixels of medical images
which could assist the physician and radiologist in their diagnostics and decision-making
process (9).

Impediments of Big Data in Healthcare

William Cowper said in the late 18th century, “Variety is the spice of life”. However, too much
variety without a proper definition of terms can be detrimental for Big Data in health care.
Big Data within this domain are coming from a variety of sources which when combined
can give a richer insight or help provide better care. But the major challenge in data
sharing among different sources within health care (both within and without health-care
organizations) is how to preserve participants’ privacy while still benefiting future patients.
Data are currently stored in systems which are optimized for a specific (clinical) purpose,
which generally does not target re-use by users who are not the data holder or vendor of the
system (10).

To address these problems of data sharing in health care will require proper data descriptions
with formal and well-defined ontologies (terminologies, properties and their respective
relationships) within the domain. These ontologies are standardized in a machine-readable
format (with human-readable representations) and shared among the different participants
(10). The emphasis on having a common controlled vocabulary or standardizing an ontology
in health care is essential to avoid participants being unable to use each other’s data.

Benefits of FAIR Big Data in healthcare

To fully benefit from Big Data in health care, data and databases should firmly adhere to
the FAIR principles (11), i.e. they should be findable, accessible, interoperable, reusable
(FAIR) but still respecting patients’ privacy and medical confidentiality. These principles do
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not state that all data should be publicly available but urge that at least their descriptions
(e.g. what kind of data are available) are published, including the means to contact the
data (owners or maintainers), and which (semantic) representations are used. Using rich
metadata descriptions of the actual data should improve data reuse and make data FAIR.

Conclusion

Big Data is an emerging field which has come to revolutionize the way we think and act
in the health-care sector. Without a standard definition of the term, many have taken this
to mean collecting a vast amount of data without looking at the true meanings of Big Data.
The complexity of Big Data is an essential factor in health care, as data are coming from
different sources, with accompanying different data privacy regulations, ownership and
security implications.
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Abstract

Radiation therapy is a very complex process that consists of multiple steps. Thanks to technological
advances, an enormous amount of data is generated from each patient during treatment and beyond.
Collecting data from the treatment process is comparable to a snowball rolling down a hill. This rapid
growth in the amount of electronically stored data from routine clinical practice has led to an explosion
of interest in using Big Data techniques to address clinical challenges. With robust information
technology infrastructure and decades of archived digital data, radiation oncology is well-positioned
to take advantage of these Big Data techniques for better cancer care. Radiation oncologists also need
help translating the available data generated across the continuum of care into knowledge to support
decision-making in their clinical practice. This chapter gives a gentle introduction to Big Data and
describes areas from which Big Data in radiation oncology stems. In addition, an overview of Big
Data application in radiation oncology, limitations of application, and future perspective.
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Introduction

Radiation oncology is a sub-specialty of oncology that uses ionizing radiations to treat abnor-
mal and uncontrollable growing cells (neoplasia or lesions) with a curative (malignant cells
localized to one area of the body) or palliative intent. This radiation treatment technique is
called radiotherapy or radiation therapy and is often abbreviated RT, RTx, or XRT. Radiation
therapy is a local treatment. It only focused on the region of the body where the malignant
cells are located to deliver a precise amount of calculated dose of radiation to this region of
the body with cancerous cells using a linear accelerator. The purpose is to eradicate these
cells and improve quality of life while sparing adjacent healthy tissues. More often than not,
the administration of radiotherapy is combined with other treatment options like; surgery,
chemotherapy, targeted therapy, hormone therapy, etc. Either as neoadjuvant, adjuvant, or
concurrent therapy.

What is Big Data

Radiotherapy treatment has attracted a great deal of research interest over the past decades,
leading to significant technological advancement and complexity in the treatment workflow
processes (3.1). These changes have generated a sea of rich digital information with a unique
combination of patients’ clinical demographics, images (“radiomics”), and biomarkers
(genomics, proteomics, metabolomics) collected during the treatment period. This sea of
patient information makes radiation oncology a fertile and perfect ground for learning and
advancing care through Big Data opportunities (1).

Figure 3.1. Radiotherapy workflow.

Big Data is not a new concept in radiation oncology, and it existed long before the term was
coined in 2005. Records of Big Data application and the quest to analyse the available data
to generate information that could shape our activities dates back more than 7,000 years. As
with all new terminology, a diverse range of definitions has been proposed to describe Big
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Data best. However, Gartner defines Big Data as:

"Big data is high-volume, high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information processing that enable enhanced
insight, decision making, and process automation ".

As one of the most “hyped” terms in recent times, Big Data is no longer restricted to only the
big three V’s (Volume, Velocity, and Variety) as defined above. As the amount of collected
data from different sources continuously grow big and complex, with poor structure and
incompleteness, a fourth V (veracity) is added to the mix.

Features of Big Data in radiation oncology

Volume
Big Data has to be “big” before everything else and in this context measured in terms
of volume. As radiation therapy is used in about 50% of cancer patients producing
up to 10GB of data in advanced Image-Guided Radiation Therapy (IGRT) in the
developed world, the volume of data is indeed large.

Velocity
The technological advancements in the field of radiation oncology in the last decades
have led to the development of radiation therapy machines, which are faster and
more precise and produce images before and during treatment. These enhancements
mean an increased velocity at which new data is being generated. This accelerated
rate of data generation, together with the adoption of the electronic health records
systems (EHRs), makes radiation therapy a natural and fertile ground for Big Data
decision making in real-time (or near real-time).

Variety
With an increasing rate at which data is being generated (Velocity) leads to a large
amount of data being collected (Volume), which brings in the third feature variety.
This feature describes the vast diversity of data types in radiation therapy. From the
radiation treatment standpoint alone, a patient can receive either external or internal
radiation with a variety of modalities (MRLinac, particle therapy, etc.), each of these
methods generates different forms of data. Combining them with that from other
sectors (radiology, surgical oncology, administrative, insurance and social media)
brings in all types of data formats (numbers, images, videos, text, or audio).

Veracity
Being able to trust a data source or quality (i.e., knowing who generated the data,
how it was collected, when it was generated, and the purpose for collecting the data)
is more pivotal than accessing the data when the intent is inference. Big Data in
radiation therapy come from different institutions all around the world, and these
institutes use various instruments and equipment to collect these data. Implying that
data elements could be missing, biased, inconsistent, or not precise.
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Figure 3.2 provides a graphic summary of Big Data structure.

Figure 3.2. Big Data structure

With the sea of diverse data generated as a by-product of routine clinical workflow, coupled
with the fact that radiation therapy is the most opted form of cancer treatment gives the
field of radiation oncology a unique advantage in using Big Data to generate insights that
will benefit millions of cancer patients undergoing radiation therapy worldwide.

The primary objective of Big Data in radiation oncology is to improve the quality of life after
treatment. Hence, accumulating a vast amount of data which cannot generate insights that
can guide our future actions is of no value. Investing in Big Data infrastructure merits a
better understanding of the data generation source.

Big Data sources in Radiation Oncology

Big Data is gradually changing the field of radiation oncology, with the promise of
improving the quality of care, decision-making, and assist in some of the patient care
workflow tasks. However, these promises are based on the concept that a large amount
of aggregated data will yield valuable insights that can help make reliable decisions.
Hence, ensuring that the data collected is of high quality and integrity is very pivotal
because achieving high-quality data is as relevant and pivotal as the question to be answered.

Radiation therapy process begins when an individual, usually referred by the clinical
oncologist, first comes for consultation after the diagnostic phase is completed. The
radiation oncologist discusses the treatment strategy and the clinical situation with the
patient. After the consultation and assessment phase, the patient follows a series of stages
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outlined in figure 3.1. All these stages of the radiotherapy workflow generate an enormous
amount of data, which can be termed Big Data.

The data in radiation oncology can be classified into three categories. These categories
include diagnostics and prognostics, treatment and symptoms management, and outcome
measures. The goal is to use the diagnostic and prognostic factors for informed decision-
making at the treatment stage for a better outcome.

Diagnostic phase

Whenever a person is diagnosed with cancer, an image scan and pathological tests are
conducted to ascertain the stage of the disease and to verify if the tumor has metastasized
to other parts of the body like the lymph nodes (glands). Some of the medical image
modalities that produce detailed physiological and anatomical images of the body (2) with
varying contrast are film x-rays, computed tomography (CT), ultrasound (US), magnetic
resonance imaging (MRI), single-photon emission computed tomography (SPECT), and
positron emission tomography (PET) (Figure 3.3). Mostly the three 3D imaging modalities
(MRI, CT, and PET) are used for diagnosing tumors(3).

Figure 3.3. Image modalities used in clinics to visualize the human anatomy.
Source: Journal of Medical Imaging cover image, Vol. 2, No. 3 (2015).
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With the technological advancement in the last decades, developers have developed tools
which can convert these medical images into hundreds of thousands of (quantitative)
features, identifying specific tumor patterns in the image pixels. These extracted image
features can be categorised into four groups (shape, volume, texture, and intensity). Other
feature categories like log and wavelet can be computed with some advanced image
pre-processing.

Approximately 140 million patients were diagnosed with cancer before 2017 (4), with over
18.1 million new cases estimated in 2018 (5). Assuming that 50% of this population receives
radiation treatment, this implies a minimum (one study per patient) of 79 million patient
studies exist. These millions of images provide a potential wealth of patient data. Biopsies
taken in the diagnostic phase lead to another huge and growing source of data, from
pathology images and reports to biological data ranging from mutation to “panomics” data
of normal and tumor tissue.

Treatment planning data

The planning of the appropriate treatment technique for a radiation oncology treatment is a
team effort by oncologists, therapists, physicists, and dosimetrists. First, a treatment simula-
tion session is conducted without actually radiating the patient where typically imaging
scans (CT, MRI, PET) with the patient in treatment position are generated. Subsequently, the
target volume or organs at risk are delineated; these Regions of Interests (ROI) are another
data source. More data is created when the treatment plan is made, and the radiation dose
is calculated, including derived measures such as the dose-volume histogram.

Treatment Verification and Delivery

Treatment verification using images (IGRT) and dosimetric verification before and during
treatment (DGRT) produce data on the actual delivered dose and the quality of the therapy.
Specific datasets might include cone-beam CT, kV images, megavoltage images, surface
scans, ultrasound, and MRI. Furthermore, derived information is created, such as mis-
matches in position and subsequent shifts in table position or differences in planned versus
delivered dose. A more recently available data source is the detailed logs in machine settings
and sensor data (e.g., MLC positions). Finally, the treatment record is stored, containing
process information such as when which beam was given.

Treatment Adaptation

Adaptive radiotherapy is the changing of the radiation treatment plan of a patient dur-
ing treatment to account for unplanned changes (6). Typical reasons to adapt are tumor
shrinkage or patients losing weight during the course of treatment. These patient-tailored
adaptations of therapy are aimed at improving tumor outcomes and reducing toxicity. New
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images, plans, regions-of-interest, plans, and dose distribution are created, all potentially
interesting data sources.

Follow-up

Once a patient has completed the course of radiation therapy, several regular follow-up visits
are scheduled by the radiation oncologist or referring doctor. These visits are to examine
and check the results of the treatment and adverse effects and often include repeating
tests used in the diagnostic phase such as imaging, lab tests, physical examinations, etc.
All these processes generate additional patient data. Of particular interest are doctor and
patient-reported outcomes, which are typically standardized measures of tumor control,
early and late toxicity, and quality of life.

Other treatments

Radiotherapy is rarely given as monotherapy. Depending on the tumor stage, surgical resec-
tion might be indicated and comes with its own data sources such as pathology, anesthesia,
surgical reports, etc. Patients might also receive chemotherapy as a (neo)adjuvant therapy
to the local treatment, depending on the invasive nature of the tumor (7–9).

The agent given, the number of cycles, and acute toxicities are generally interesting data to
combine with radiotherapy data. Other treatment modalities include but not limited to bone
marrow transplant, immunotherapy, hormone therapy, targeted drug therapy, cryoablation,
radiofrequency ablation, and hypothermia. These treatment options might be administered
in combination with each other and with radiotherapy – all producing data which might be
relevant.

Non-medical data

Although a focus on medical information is understandable, it has been realized that
non-medical information such as social-economic status, social network, education, lifestyle,
and environment might play an essential role in cancer detection, treatment, and outcomes,
as shown in Figure 3.4.

Besides factors that may determine outcomes, surrogate measures to determine outcomes
more efficiently, such as using insurance claims for tumor recurrence and wearable and
mobile devices for quality of life, are interesting data sources to consider. Including such
non-medical data sources is rarely done but can be expected to occur more often in the
future.
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Figure 3.4. Socio-economic conditions that shape the health of individuals and communities.

In conclusion, data in radiation oncology is firmly in the realm of “Big Data.” With the
availability in many departments of electronic health records systems (EHR), oncology
information systems (OIS), and picture archiving and communication systems (PACS), data
about radiation oncology patients are becoming more and more available and with higher
quality. From calculations by experts, the annual collection of these data for a patient will
add 4 and 76 megabytes of text and imaging data to the EHRs, respectively (10, 11). As
estimated in subsection 3, assuming these 79 million radiotherapy-treated patients survive
for one year, then at the very least 5.886 petabyte (4 + 76 megabytes x 79 million patients)
of radiation oncology data exist. As discussed before, these data in radiation oncology are
considered as “Big Data” because they can be classified into:

Volume: The extensive use of imaging and quantitative analyses.

Velocity: Growing adoption of image-guided and adaptive radiotherapy.

Variety: The use of different imaging and treatment modalities and structured an
unstructured information

Veracity: Many different data sources with varying quality
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Recently, data has been considered as the new oil due to the way it is used to power much
of the transformative technologies we see today. Although valuable, data needs processing,
just as oil needs refining for it to be useful. The radiation oncology field is actively interested
in benefiting from this Big Data process output from two perspectives. First, to automate
and improve the treatment processes to treat patients in the most cost-effective manner
possible while ensuring a high quality of care. Second, for better cancer care by making sure
that patients have the best treatment outcome in terms of patient priorities and precision
medicine (12).

Big Data for better processes and automation

There have been a handful of novel applications of Big Data in radiation oncology recently.
Automating some parts of the radiation therapy workflow has produced a lot of benefits,
from reducing operational costs to improving operational efficiency.

Auto-contouring

The accurate contour delineation of the target region and organs at risk (OAR) is an essential
part of treatment planning (13). Several diagnostics images as mentioned in section 3 can be
used in the tumor and OAR structures delineation process. However, manual-contouring
is time consuming with high level interhuman variation in the quality of contours due
to skills level (14). Numerous robust and efficient delineation tools have been developed
with the dawn of the Big Data era in radiation therapy to help automate and speed these
delineation process (13). Some of these Big Data applications tools includes auto-segmenting
vital organs of the male pelvic anatomy (prostate, bladder, rectum) on CT-based images (15).
Automatic segmentation of brain organs at risk (16, 17).

Quality assurance

Quality assurance (QA) in radiation therapy are those procedures that ensure consistency of
the prescription and the safe fulfilment of that prescription in terms of dose to the target
volume, together with minimal dose to healthy tissue, minimal exposure of personnel,
and adequate patient monitoring aimed at determining the result of treatment (18). It
should be noted that QA here spans the entire radiation therapy workflow process to limit
every source of errors and ensure a high standard of radiation treatment. Big Data QA
methods have been developed to detect, minimize, and prevent these errors and anomalies
in radiation therapy (19, 20).
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Image reconstruction

We have seen the different image modalities in subsection 3. Here, Big Data for image
reconstruction can be placed into two categories.

The first used case is the mapping of and image, from one imaging modality format to another
(CT image from MRI). This Big Data application to transition from one image modality
to another is beneficial to bridge the limitation of one image modality for treatment.
CT images are used for dose calculation in the treatment process, but they have
inferior image contrast and possible side effect due to radiation. On the other hand,
MRI, which is safe (no radiation involve) with enhanced image contrast, is very
expensive.

The second use is the reconstruction of a high-quality image from a low-quality images (20).

Big Data for better outcomes

Our understanding of the human body has improved tremendously in the last decades
due to the advancement in medical technology. These technological advancements have
empowered our abilities to extract phenotypic features of tumors from medical images,
study tumors relations to their surrounding at a cellular level (21, 22), and apply gene
silencing for therapeutic reasons (23). Big Data can make use of this large volume of medical
information from individual patient data to identify novel risks or therapeutic options
that can then be applied at the individual patient level to improve outcomes. However, to
make use of these new Big Data techniques in radiation therapy, rigorous testing in real-life
scenarios and a lot of collaboration will be required.

Decision support

Decision-making is part of every daily human life. Myles Munroe said "Our life is the sum
of all the decisions we make daily". Making an optimal decision is not easy (21). In recent
times, decision-making has been likened to problem-solving, making decision-making be
perceived as a problem-solving action. Therefore a system that can aid people to make the
optimal decision is very pivotal. Systems that are capable of providing not just information,
but can participate in simple decision-making activities of an organization, are known
as Decision Support Systems (21). A decision support system (DSS) is a computer-based
application that collects, organizes, and analyzes data to facilitate quality decision-making
for the management, operations, and planning of the organization. DSS can be very
handy in complicated circumstances or rapidly changing situations where anticipating or
determining the future outcome is very difficult (24). Complex biological systems like the
human body are suitable areas where information technology can be applied to reduce error
and improve decision quality.
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One of the areas where the application of information technology is very pivotal is in
clinical decision support systems (CDSS) (21). A CDSS is a health information technology
system that is designed to assist physicians and other health professionals with their clinical
decision-making tasks by integrating different sources of health care information such as
electronic health records (EHR), laboratory test results, etc. (25). In recent years, CDSS
have become an essential topic for Big Data in radiation oncology with numerous domain
experts (radiologist and doctors) working together to build these Big Data CDSS tools.
Diverse Big Data technologies have been applied in radiation therapy to help radiologists
and physicians in their decision-making process (20, 25) like diagnostic support systems
which can detect lung nodules in thoracic CT scans of a patient (26), brain lesion on an MRI
(27) or micro-calcification breast masses in mammograms (28)

Precision medicine

During treatment development, the target is always for an “average” patient, ignoring
the reality of patients not being alike. The omission of this potential patient variability
during the development stage flows down to the treatment stage. In a therapeutic setting,
patients react differently to treatment regimes. Some patients do not respond to the
treatment at all, some patients’ condition becomes worse or deteriorates, and others recover
quickly under the same treatment condition (29). This variation in treatment response may
depend on observable factors such as genetic polymorphisms, age, sex, or tumor imag-
ing characteristics which opens up the option to personalize treatment or precision medicine.

In the field of oncology, precision medicine can be defined as a medical practice where
patient-specific tumor and normal tissue information is used to aid in the treatment planning,
diagnosis, prognosis, and ascertain treatment response, in other words, identifying which
treatment approach will be more useful for a patient based on genetic, environmental,
and lifestyle factors (Figure 3.5). Personalized medicine is an older term conveying the
same meaning as “precision medicine”. However, the term is sometimes misinterpreted
as implying that a unique treatment or prevention can be developed for each individual
(30–33).
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Figure 3.5. Distinction of precision medicine treatment form other treatment forms.
Source: Frost & Sullivan-New Paradigm Shift in Treatment

Precision medicine which aims at classifying patients into sub-populations based on their
disease susceptibility or treatment response is thought to be the best treatment option
because it removes the ”one size fits all” treatment paradigm allowing therapeutic inter-
ventions to be channeled to patients with the most benefits. Hence reducing the cost of
treatment, improve quality of life in terms of treatment burden or side effects, and waste of
time for those without a treatment benefit (33). Using Big Data in radiation oncology might
make the dream of precision medicine a reality by being able to predict patient-specific
outcomes of future patients (22).

Barriers of using Big Data applications in clinical

Big Data in radiation oncology, like in any other field, uses the same concept of looking
for trends and associations from large volumes of individual patient medical information
such as found in electronic health records systems (EHRS), images, insurance claims, social
media groups, and wearable and mobile devices to identify novel risks or therapeutic
options that can then be applied at the individual level to improve outcomes of future
patients. So, the million-dollar question is

“Why is Big Data in radiation oncology not widely accepted like in other industries?”

Google, for example, uses the same concept to provide accurate and personalized real-time
information to its many users. Here are some possible reasons why.
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Data
The very first evident limitation is data. Even though we are in the era of Big Data, Big
Data in radiation oncology is not yet big enough as compared to the likes of Google,
Netflix, Facebook, Ali-express, etc, which have free and open access to an ocean of
centralized data willingly provided by the customer. This limitation is chiefly because
Big Data in radiation oncology is scattered across multiple hospitals and healthcare
centers with no central sharing to allow the velocity and volume of data required to
exploit Big Data methods properly.

Privacy
The second limitation is privacy. Medical record, which represents deep individual
patients’ private and personal information is heavily guarded in their respective silos
and not readily shareable without violating patients’ privacy rights.

Technical Know-How
As complex as the human body is, so is the medical data extracted. Therefore, a
well-developed infrastructure and technicians with medical and data management
knowledge are required to process, manage and maintain these medical data from
different sources into a readily usable form. However, persons with this unique
combination of skill sets are limited and hard to find (34).

Reputation
Despite the fact that we are in the era of Big Data and everybody is anxious to
jump into this Big Data train to benefit from its many opportunities, many hospitals
and healthcare organization shy away from joining this Big Data train because they
cannot accurately value their current data. Sharing their data might jeopardize their
reputation as it allows their performance to be compared with others (e.g. higher
mortality and recurrence than others). Furthermore, these data can be used to build
Big Data techniques for which they have sole monopoly over. This implies competing
institutes can deliver these techniques as well, hence creating unwanted competitors.

So, regardless of the technological advancements in many areas of radiation oncology, there
still exist significant barriers in accessing patient data. Circumventing these barriers and
making Big Data in radiation oncology solutions work as intended will entail some effort.
First, a proper ontology with formal and well-defined terminologies (types, properties, and
interrelationships) within the radiation oncology domain (Radiation Oncology Ontology
(ROO), National Cancer Institute Thesaurus (NCIT) ontology and International Classification
of Diseases (ICD) ontology). These ontologies are organized in a formal logical format and
standardized in both human-readable and machine process-able format then shared with
the many participants (35, 36). Each participating institution is in charge of maintaining the
ontology, de-identifying their data and getting prior informed consent for the use of these
de-identified data.
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Experience of bringing to practice

The main reason why new Big Data products are not readily accepted into practice is that
it is not trivial to figure out where to insert these technologies into the existing working
workflow (Figure 3.1). Introducing new data-driven techniques into the current radiation
therapy workflow will lead to a significant disruption in the workflow causing specific
professions and radiation oncology as a whole to undergo changes that may be resisted.

Another reason is trust. These new data-driven technologies need to go via long periods of
testing before they can be trusted, especially techniques that replace a human action in some
way like diagnosing if a patient has a tumor from an image. But, technologies that automate
some parts of the workflows or reduce human workload and speed up the radiation therapy
process like auto contouring might transition rapidly to daily use. Similarly, techniques
not previously possible due to lack of Big Data infrastructures like auto-contouring are
likely to gain early adoption. In essence, Big Data technologies that are not trivial to use or
will require interrupting the normal radiation therapy process will meet some resistance
transitioning to practice.

On the other hand, Big Data technologies which are entirely built (hardware and software
incorporated) or requires just a push of the button on a computer screen to activate the
program in the background are far more likely to be adopted especially if they can solve
time-consuming tasks like auto-contouring. As previously mentioned, technologies that
can automate the radiation therapy workflow or are capable of flagging suspicious regions
on complex images and present a structured quantitative and visual report requiring just a
simple visualization check or a mouse click validation by the users will see greater success
transitioning into the clinics.

The future of Big Data in RO with FAIR principles

A significant number of patient data and databases have been established over the past
decades worldwide. However, this data is not often in the same place but scattered over
multiple hospitals and care centers around the globe with very little knowledge of their
existence, accessibility, collection protocol or generation procedure. This limits the potential
of radiation oncology Big Data in providing relevant and critical insights, that can then
be beneficial to future patients. At the same time, accumulating an extensive amount of
data is of no value if it cannot be used to generate future insights which can shape our
thinking and actions. To benefit from Big Data in radiation therapy, these databases should
follow the FAIR guiding principles (37). In other words, they should be Findable, Accessible,
Interoperable, and Reusable (Figure 3.6) while still respecting the patient’s privacy and
medical confidentiality.
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Figure 3.6. FAIR Guiding Principles for scientific data management and stewardship

Findable
The data should be easily identified and found for both humans and computers, with
the metadata to facilitate the search for the specific datasets.

Accessible
The data should be stored for as long as possible so that they can be accessed easily
or downloaded with well-defined accessing conditions, be it at metadata level or the
actual data.

Interoperable
The data should be ready to be combined with other datasets either by humans or
computers, without any ambiguous meanings of the data terms and values.

Reusable
The data should be prepared for future research use and further processed with
computational methods. This requires adequate information on the data generation
step and processing with an appropriate license.

Summary

The era of Big Data in radiation oncology is already here, with numerous challenges as well
as opportunities in the radiation oncology domain. There has been a limited number of novel
applications of Big Data in radiation oncology recently, with useful and appropriate tools
to assist in decision-making for clinicians, personalize treatment strategy for an individual
patient, and improve patient safety and treatment efficacy. Automating parts of the radiation
therapy workflow, auto-contouring are expected to be the first of many Big Data application
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Abstract

Purpose
Scoring system based on clinicohematologic parameters in cervical cancer patients receiving
chemoradiation has not been reported to date. The aim of this study was to determine the prognostic
value of clinicohematologic parameters in patients with cervical cancer undergoing chemoradiation
and to develop a prediction scoring system based on these results.

Summary of background
Cervical cancer is the seventh most common cancer and the third leading cause of cancer-related
death. Although most of these deaths occur in areas where healthcare services are indigent and
limited, numerous factors are associated with these death rates.

Patients and Methods
A total of 107 patients who received definitive chemoradiation for cervical cancer were enrolled in
this study. The clinical data and hematologic parameters were retrospectively reviewed, and their
prognostic value in predicting survival was analyzed. The neutrophil-to-lymphocyte ratio (NLR),
platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) and the changes in
these hematologic parameters (4NLR,4PLR, and4LMR) between pre- and post-treatment were
calculated to determine the specific value of these parameters for predicting patient survival.

Results
The median follow-up time was 39.9 (range 2.7 - 114.6) months. The 3-year overall survival rate and
progression-free survival rate were 80.9% (95% CI: 72.7 - 90.0) and 53.4% (95% CI: 44.1 - 64.8),
respectively. The median progression-free survival was 67.5 months and the median overall survival
was not reached. According to multivariable analysis, a 4NLR ≥ 0 was significantly associated
with decreased progression-free survival (HR = 2.91, 95% CI 1.43 - 5.94) and overall survival (HR
= 3.13, 95% CI: 1.18 - 8.27). In addition, age (age <58.5 years; progression-free survival: HR =
2.55, 95% CI 1.38 - 4.70; overall survival: HR = 4.49, 95% CI: 1.78 - 11.33) and the International
Federation of Gynecology and Obstetrics (FIGO) stage (III-IV progression free survival: HR = 2.49,
95% CI: 1.40 - 4.43; overall survival: HR = 3.02, 95% CI: 1.32 - 6.90) were identified as predictors
of poor survival.

Conclusion
Both the age and FIGO stage, as clinical parameters, and the4NLR, as a hematologic parameter, were
independent prognostic factors for survival for cervical cancer patients treated with chemoradiation.
Based on these results, we developed a risk score-based classification system for predicting survival.
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Introduction

Cervical cancer is the seventh most common cancer and the third leading cause of
cancer-related death (1). Currently, a comprehensive approach including prevention,
enhanced screening, and early diagnosis and treatment has reduced the high incidence
and mortality rate associated with cervical cancer. Nevertheless, the prevalence of human
papillomavirus remains high in Korea (2), and the incidence of cervical cancer in Korea is
higher than that in the USA and European countries (3).

In Korea, the incidence of cervical cancer decreased from an age-standardized rate of 16.3
per 100 000 in 1999 to 9.1 per 100 000 in 2015. However, cervical cancer was still the most
common gynecologic cancer during that period (4).

Parametrial invasion, lymph node metastasis, large-sized tumors, and advanced clinical
stage have been reported as poor prognosis indicators (5). In cervical cancer, an increased
neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have also
been reported to be related to a poor prognosis (6, 7). Furthermore, patients with a decreased
lymphocyte-to-monocyte ratio (LMR) have been reported to have a poor prognosis (8).

The change in the NLR was a significant prognostic predictor for advanced pancreatic
cancer patients who received chemotherapy (9). However, the prognostic significance of
the change in the NLR in patients with cervical cancer who are receiving chemoradiation
has yet to be determined. For the decision-making process, the prediction scoring system
has already been shown to be an effective strategy for cancer patients receiving further
treatment (10).

A scoring system based on clinico-hematological parameters in cervical cancer patients re-
ceiving chemoradiation has not been reported to the best of our knowledge. Thus, this study
aimed to determine the predictive value of pre-treatment clinico-hematological parameters
and changes in these hematological parameters in patients with cervical cancer treated with
chemoradiation and to develop a prediction scoring system based on the results.
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Materials and methods

Patient Selection

A total of 144 patients with histologically verified uterine cervical cancer received radiation
therapy at our institution from January 2009 to December 2016. The patients in this study
were staged according to the International Federation of Gynecology and Obstetrics (FIGO)
2009 staging system. The lymph node involvement for all patients was determined based
on clinical imaging methods such as computed tomography (CT) or magnetic resonance
imaging (MRI).

The inclusion criteria for this study were:

• Patients who were 18 years and older,

• Patients with FIGO stage1 IB1, IIA, IIIA, IIIB, or IVA,

• Histopathologically verified squamous cell carcinoma2,

• Patients without distant metastasis except para-aortic lymph node metastasis,

• Patient receiving definitive chemoradiation, including brachytherapy.

The exclusion criteria consisted of:

• Patients with incomplete information of interest3,

• Incomplete radiation therapy course,

• Patient who received radiation therapy as a palliative treatment.

The patients underwent routine procedures, including physical examinations, laboratory
tests, chest X-rays, and CT or MRI. The clinical data and CBC counts were retrospectively
reviewed. The following variables were analyzed: age, FIGO stage, pathology, and lymph
node involvement. The hematologic tests were performed before and after the definitive
radiation therapy. The complete blood counts (CBC) included the hemoglobin levels,
hematocrit, white blood cell counts, and platelet counts. The pre-treatment NLR (absolute
neutrophil count/absolute lymphocyte count), PLR (absolute platelet count/absolute
lymphocyte count), LMR (absolute lymphocyte count/absolute monocyte count),4NLR
(post-treatment NLR–pre-treatment NLR),4PLR (post-treatment PLR–pre-treatment PLR),
and4LMR (post-treatment LMR–pre-treatment LMR) were calculated accordingly.

1Based on the 2009 staging system
2Adenocarcinoma, or Adenosquamous cell carcinoma
3Including laboratory data such as complete blood counts (CBC) performed before or after treatment
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This study was approved by the Institutional Review Board (IRB) and performed following
the international (Declaration of Helsinki) ethical standards. The study was exempted
from informed consent due to the retrospective nature of this research and the fact that the
analysis used anonymous clinical data.

Treatment

All patients received radiation therapy with a total dose in the range of 70.4 - 103.6 Gy. All
patients received external radiation therapy using 10 or 15 MV photons in the pelvis using a
four-field technique. A total external radiation therapy dose of 50.4 – 75.6 Gy was delivered
in daily fractions of 1.8 – 2 Gy 5 days a week. After a median external radiation therapy
dose of 54 Gy was given, brachytherapy was started using a microselectron high dose rate
(Nucletron, The Netherlands) with an Ir-192 source. A total brachytherapy dose of 24 - 40 Gy
was delivered twice a week with a 3 - 5 Gy fraction size. Patients who received chemotherapy
were treated every week with 40 - 60 mg/m2 cisplatin concurrently with external radiation
therapy. In this study, no patient received consolidation chemotherapy after chemoradiation.
Figure 4.1 shows the chemoradiation scheme used to treat cervical cancer. Treatment
response was the primary endpoint. It was assessed by a clinical examination, including
a gynecologic exam with a Pap smear, a CT or MRI scan from the chest to the pelvis, and
positron emission tomography-computed tomography (PET/CT).

Figure 4.1. Treatment scheme of a cervical cancer radiation therapy course incorporating external
beam radiation therapy (EBRT) with concurrent weekly cisplatin, six fractions of intracavitary
brachytherapy (ICBT), and a parametrial and/or lymph node boost.

Statistical Analyses

The continuous variables were categorized based on the mean. The cut-off values for
4NLR,4PLR, and4LMR were determined based on a past study (11). Progression-free
survival was defined as the time interval between the initiation of treatment and the date
of the first progression or death from any cause. Overall survival was defined as the time
interval between the initiation of treatment and the date of death due to any cause or the
date of the last contact. Lost to follow-up was defined as the incomplete ascertainment of
the primary treatment outcome.
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The Kaplan–Meier method was used to visualize patient survival over time, and the log-rank
test for comparing survival differences between groups. The Cox proportional hazards
regression model was used to determine the survival hazard ratios. According to the
univariate analysis, the variables with p values< 0.3 were selected for multivariable analysis.
For the development of the prediction scoring system, the β-coefficient-based scoring system
was used (12). The β-coefficients were multiplied by 10 and rounded to the nearest integer.
We assessed the model performance by calculating the concordance index and calibration
plot. All p values were two-sided and were considered statistically significant if they were
< 0.3. All statistical analyses were performed using SPSS (13) and R (14) software.
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Results

Among the 144 patients who received radiation therapy at the Gil medical center and
considered for this study, we excluded 11 patients who did not have enough laboratory test
information, 3 patients who did not complete their scheduled treatment course, 2 patients
treated for palliative reasons, 10 patients who did not receive brachytherapy, and 11 patients
did not receive chemotherapy. A total of 107 patients who meet the eligibility criteria were
included in the final analysis. In this study, the number of patients lost to follow-up was 11
(10.3%).

The patient characteristics are presented in Table 4.1. More than half of the patients
had FIGO stage I and II cancer (I-II, 66.4%), and 67 patients (62.6%) had pelvic lymph
node involvement. During external radiation therapy, most patients (n=93, 86.9%) who
received chemoradiation were treated with cisplatin-based chemotherapy. The remaining
14 patients were treated with carboplatin. The median follow-up duration was 39.9 (2.7 -
114.6) months, and the 3-year overall survival rate and progression-free survival rate were
80.9 (72.7 - 90.0) and 53.4 (44.1 - 64.8), respectively. The total number of events in overall
survival is 23 events, and the total number of recurrences is 47 recurrences. The median
progression-free survival was 67.5 months, and the median overall survival was not reached.

The cut-off values for patient age, hemoglobin, hematocrit levels, white blood cell counts,
platelet counts, NLR, PLR, and LMR, was 58.5 years, 11.45 g/dL, 34.6%, 6.98x103/µL,
265.5x103/µL, 2.33, 136.57, and 4.17, respectively. The cut-off values for the4NLR,4PLR,
and4LMR were determined to be zero (0) for survival (11).
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Table 4.1. Summary of patients characteristics of the studies.

Variable Levels n (%)[range] Variable Levels n (%)[range]

Patients N 107 (100%) Follow-up Median 39.9 [02.7–114.6]

Age
(years)

Median 55 [26–84]

Histology

SCC 95 (88.8)

< 58.5 42 (39.3) AC 08 (07.5)

≥ 58.5 65 (60.7) AS 04 (03.7)

FIGO
stage

I-II 71 (66.4)
Pelvic LN
involvement

Pelvic LN 67 (62.6)

III-IV 36 (33.6) PALN 26 (24.3)

Both 24 (64.5)

Pre-Tx
Hb
(mg/dL)

Median 11.3 [07.6 – 15.5]
Pre-Tx
Hct (%)

Median 33.9 [22.2–45.3]

<11.45 47 (43.9) < 34.6 52 (48.6)

≥11.45 60 (56.1) ≥34.6 55 (51.4)

Pre-Tx
WBC
count (*)

Median 06.4 [02.4–41.4]
Pre-Tx
platelet
count (*)

Median 275 [76–451]

< 6.98 51 (47.7) < 265.5 51 (47.7)

≥ 6.98 56 (52.3) ≥ 265.6 56 (52.3)

Pre-Tx
NLR

Median 02.3 [00.8–18.6]
Pre-Tx
PLR

Median 165.7 [48.7–821.1]

< 2.33 53 (49.5) < 136.6 53 (49.5)

≥ 2.33 54 (50.5) ≥ 136.6 54 (50.5)

Pre-Tx
LMR

Median 03.9 [00.6–11.2]

4 NLR

Median -04.3 [-09.4–10.4]

< 4.17 53 (49.5) < 0.0 35 (32.7)

≥ 4.17 54 (50.5) ≥ 0.0 72 (62.3)

4 PLR

Median -71.4 [–533.4–715.7]

4 LMR

Median 01.3 [-07.0–03.9]

< 0.0 21 (19.6) < 0.0 86 (80.4)

≥ 0.0 86 (80.4) ≥ 0.0 21 (19.6)
FIGO = International Federation of Gynecology and Obstetrics , Hb = Hemoglobin
AC = Adenocarcinoma, AS = Adenosquamous, SCC = Squamous cell carcinoma.
Hct = Hematocrit, LMR = Lymphocyte-to-monocyte ratio, LN = Lymph node.
NLR = Neutrophil-to-lymphocyte ratio, PALN = Para-aortic lymph node, * = x103/µL.
PLR = Platelet-to-lymphocyte ratio, WBC = White blood cell, Pre-Tx = Pre-treatment.

Progression-Free Survival Analysis

Among the 71 patients with stage I and II cancer, 25 patients (35.2%) developed recurrences,
whereas 22 patients among the 36 patients with stage III and IV cancer (61.1%) developed
recurrences. In the univariate analysis, age, histology, FIGO stage, hematocrit, platelet count,
and 4NLR had p values < 0.3, which was selected to include the potential, and possibly
significant, variables for multivariable analysis. Table 4.2 shows the univariate analysis
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for progression-free survival. In the multivariable analysis, age (HR = 2.55, 95% CI 1.38 to
4.70), FIGO stage (HR = 2.49, 95% CI 1.40 to 4.43), and 4NLR (HR = 2.91, 95% CI 1.43 to
5.94) were significant predictors of the risk of recurrence. Table 4.3 shows the multivariable
analysis for progression-free survival, in which younger age, advanced stage, and a higher
4NLR were associated with significantly shorter survival (p = 0.003, p = 0.002, and p =
0.003, respectively).

Overall Survival Analysis

In the univariate analysis, age, FIGO stage, and4NLR had p values < 0.3. Table 4.2 shows
the univariate analysis for overall survival. In the multivariable analysis, age (HR = 4.49,
95% CI 1.78 to 11.32), FIGO stage (HR = 3.02, 95% CI 1.32 to 6.90), and4NLR (HR = 3.13,
95% CI 1.18 to 8.27) remained significant predictors of overall survival. Table 4.3 shows the
multivariable analysis for overall survival, in which younger age, advanced stage, and a
higher4NLR were associated with significantly shorter survival (p = 0.001, p = 0.009, and p
= 0.021, respectively).
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Table 4.2. Three-years univariate analysis for progression-free survival and overall sur-
vival.

Progression-free survival Overall survival

Variables Levels Survival probability
(95% C I) P-value Survival probability

(95% C I) P-value

Age
(years)

< 58.5 40.5 (27.9 - 59.0)
0.076

74.1 (61.7 - 89.0)
0.016

≥ 58.5 65.1 (53.0 - 79.8) 87.5 (77.6 - 98.7)

Histology
SCC 54.9 (44.8 - 67.1)

0.110
82.8 (74.2 - 92.4)

0.325
Others 41.7 (21.3 - 81.4) 87.5 (77.6 - 98.7)

FIGO
stage

I-II 60.8(49.3 - 75.1)
0.007

86.2 (76.9 - 96.6)
0.016

III-IV 38.8 (25.3 - 59.4) 70.5 (55.9 - 89.0)

Pelvic LN
involvement

Negative 57.1 (42.9 - 76.0)
0.867

83.6 (71.2 - 98.1)
0.016

Positive 51.3 (39.6 - 66.5) 79.1 (68.5 - 91.3)

PALN
involvement

Negative 55.6 (45.0 - 68.6)
0.507

81.0 (71.6 - 91.6)
0.926

Positive 46.2 (28.8 - 74.0) 81.0 (65.6 - 99.9)

Pelvic +
PALN
involvement

Negative 55.2 (44.7 - 68.1)
0.573

81.2 (71.9 - 91.7)
0.845

Positive 46.8 (28.9 - 75.5) 80.0 (64.1 - 99.8)

Hemoglobulin
(g/dl)

< 11.45 51.0 (37.7 - 69.1)
0.347

78.3 (65.8 - 93.0)
0.832

≥ 11.45 55.3 (43.1 - 71.1) 82.9 (72.5 - 94.7)

Hematocrit
(%)

< 34.6 52.1 (39.4 - 68.9)
0.258

75.2 (62.8 - 90.1)
0.558

≥ 34.6 54.6 (41.8 - 71.5) 85.8 (75.6 - 97.4)

WBC
(x103/µL)

< 06.9 49.3 (36.6 - 66.5)
0.388

83.5 (72.7 - 95.8)
0.892

≥ 06.9 57.7 (44.8 - 74.1) 78.5 (66.7 - 92.4)

Platelets
(x103/µL)

< 265.5 47.7 (34.8 - 65.5)
0.283

80.0 (68.2 - 93.8)
0.682

≥ 265.5 58.4 (45.9 - 74.4) 81.7 (70.7 - 94.4)

NLR
< 02.3 53.9 (41.0 - 70.9)

0.616
81.0 (68.9 - 95.1)

0.727
≥ 02.3 53.0 (40.3 - 69.7) 80.5 (69.7 - 92.9)

PLR
< 136.6 52.8 (40.0 - 69.6)

0.827
79.0 (66.6 - 93.6)

0.749
≥ 136.6 54.2 (41.3 - 71.0) 82.0 (71.3 - 94.2)

LMR
< 04.1 43.5 (31.1 - 60.8)

0.034
76.9 (65.2 - 90.7)

0.451
≥ 04.17 62.1 (49.1 - 78.6) 82.4 (70.1 - 96.8)

4NLR
< 00.0 64.8 (49.7 - 84.5)

0.067
86.4 (74.9 - 99.8)

0.451
≥ 00.0 47.4 (36.2 - 62.2) 77.7 (66.9 - 90.2)

4PLR
< 00.0 61.2 (43.4 - 86.4)

0.854
79.9 (64.0 - 99.7)

0.747
≥ 00.0 51.7 (41.2 - 64.8) 81.1 (71.7 - 91.6)

4LMR
< 00.0 53.6 (43.2 - 66.5)

0.857
81.7 (72.6 - 92.0)

0.378
≥ 00.0 52.5 (33.7 - 81.6) 76.5 (58.5 - 100)

FIGO = International Federation of Gynecology and Obstetrics , WBC = White blood cell, SCC = Squamous cell carcinoma.
LMR = Lymphocyte-to-monocyte ratio,4LMR = post treatment LMR - pre treatment LMR, LN = Lymph node.

NLR = Neutrophil-to-lymphocyte ratio,4NLR = post treatment NLR - pre treatment NLR, PALN = Para-aortic lymph node
PLR = Platelet-to-lymphocyte ratio, 4PALN = post treatment PLR - pre treatment PLR.
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Table 4.3. Multivariable analysis for progression-free survival and overall survival.

Variables Levels HR (95% C I) β - coefficient Risk score P-value

Progression-free survival

Age ≥ 58.5 vs < 58.5 2.54 (1.38 - 4.69) 0.93 09 0.003

FIGO stage I-II vs III-IV 2.48 (1.39 - 4.43) 0.91 09 0.002

4NLR ≥ 00.0 vs < 00.0 2.91 (1.42 - 5.93) 1.06 10 0.003
Overall survival

Age ≥ 58.5 vs < 58.5 4.48 (1.77 - 11.32) 1.50 15 0.001

FIGO stage I-II vs III-IV 3.01 (1.31 - 6.89) 1.10 11 0.009

4NLR ≥ 00.0 vs < 00.0 3.13 (1.18 - 8.27) 1.14 11 0.021

Scoring System for Risk Stratification

Based on the prognostic factor analysis for predicting survival, the prognostic risk score for
progression-free survival included prognostic factors such as an age < 58.5 years (9 points),
FIGO stage III or IV (9 points), and a4NLR ≥ 0 (10 points) were each assigned scores based
on the β-coefficients of the risk factors for survival.

The risk stratification of progression-free survival according to the risk scores was
performed as follows: risk score ≤ 10, low-risk group (n = 59, 55.1%); risk score 10 < and ≤
19, intermediate group (n=40, 37.4%); risk score > 19, high-risk group (n=8, 7.5%). There
were significant differences in the 3-year progression-free survival rates among the low,
intermediate, and high-risk patients (70.7%, 40.5%, and 0%, respectively; p < 0.05) (Figure
4.2).

The prognostic risk score for overall survival included prognostic factors such as an age
58.5 years (15 points), FIGO stage III or IV (10 points), and a4NLR ≥ 0 (10 points); each
was assigned scores based on the β-coefficients of the risk factors for survival. The risk
stratification of overall survival according to the risk
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Figure 4.2. Kaplan–Meier plots of progression-free survival and overall survival according to risk
stratification, respectively.

Scores was performed as follows: risk score ≤ 10, low-risk group (n = 40, 37.4%); risk score
10 < and ≤ 25, intermediate group (n = 59, 55.1%); risk score > 25, high-risk group (n = 8,
7.5%). There were significant differences in the 3-year overall survival rates among the low,
intermediate, and high-risk patients (92.8%, 79.1%, and 37.5%, respectively; p < 0.05) (Figure
4.2). Table 4.3 shows the risk-scoring algorithm based on the β-coefficients of the risk factors
obtained from Cox proportional hazards model for survival. The concordance indices for
progression-free survival and overall survival were 0.663 and 0.736, respectively. Figure 4.3
shows the calibration curves for 3-year survival.

Figure 4.3. Calibration curve of progression-free survival and overall survival, respectively. The plot
illustrates how the predicted probabilities from the model compare with the actual patient outcomes.
Gray line represents the performance of an ideal prediction model, and blue the presented prediction
models.
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Discussion

This study retrospectively analyzed prognostic factors predicting survival in cervical cancer
patients treated with chemoradiation. As a result, we found that the prognostic significant
factors for survival were age, FIGO stage, and 4NLR. Based on these results, risk scores
for survival were generated from the β-coefficients of the risk factors (12). Furthermore,
risk stratification for survival according to the risk scores were performed to identify the
high-risk group of cervical cancer patients treated with chemoradiation. In cervical cancer,
the age and FIGO stage at diagnosis have been reported as significant prognostic factors
for predicting survival (15–17). Recently, there has been a report that the hematologic
parameters, such as a low lymphocyte percentage and a high NLR, were associated with
younger age, an advanced stage, and other parameters (17). Our findings are similar to
the results of the Onal et al. (18) study , which showed that younger age, a higher FIGO
stage, and an increased pre-treatment NLR were associated with poor survival. However,
in our study,4NLR rather than pre-treatment NLR, showed a prognostic significance for
survival. Previous studies showed that systemic inflammatory markers such as NLR, PLR,
and LMR are prognostic factors for various types of carcinomas, including cervical cancer
(6–8, 18, 19). The results of the studies analyzing the correlations between hematologic
parameters and the prognosis of patients who underwent treatments are summarized in
Table S4.1 of the supplementary material. In contrast to these results, in our study, the
NLR, PLR, and LMR did not show significance in predicting survival, but the 4NLR
showed statistical significance, demonstrating the value of the combination both of the
pre- and post-treatment NLR. Because of the different treatment modalities used and the
retrospective nature of the study, direct comparisons and interpretations of different studies
are somewhat difficult. Furthermore, in most studies, the hematologic values were assessed
during the pre-treatment period, and4NLR was rarely analyzed.

For the association between the hematologic parameters and the clinical outcome of cancer
patients, several explanations have been postulated. Neutrophils produce cytokines and
vascular endothelial growth factor, which play an important role in angiogenesis(20).
Conversely, circulating lymphocytes participate in preventing the proliferation and
metastasis of tumor cells by producing cytokines (21). Therefore, when taken together, these
results may indicate that the NLR may reflect the immune and inflammatory responses.
Additionally, patients with cervical cancer with an increased pre-treatment NLR may
experience relative neutrophilic leukocytosis and lymphocytopenia, which suggests the
presence of a pro-tumor inflammatory response that is likely to result in poor survival.
Similarly, a change in the post-treatment NLR might reflect changes in the immune and
inflammatory responses (22). If the NLR increases after chemoradiation, this indicates the
state of the pro-tumor inflammatory response.
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Through the assessment of each independent risk factor associated with survival, we
established a prediction scoring system for cervical cancer patients treated with chemora-
diation. The distinction between the different risk stratification based on this scoring
system might provide further guidance for individual treatment and optimized treatment
plans. Furthermore, considering the number of events in progression-free survival and
overall survival, we believe the results of this study are not overfitted and are reproducible
according to the "one in ten rule", which states that one predictive variable can be analyzed
for every ten events. This rule is a criterion for how many predictor variables can be
estimated from the data (23).

Therefore, we have also tried to perform the multivariable analysis for survival based
on all the independent variables including pre-treatment NLR, PLR, and LMR, although
these parameters were were not shown as significant parameters or p values < 0.3
in univariate analysis, but the 4NLR only showed statistical significance among the
hematologic parameters. Based on the results of this study, we hypothesized that the4NLR
is the strongest predictor of survival among the other hematologic variables such as the
pre-treatment NLR or post-treatment NLR.

In this study, for the assessment of treatment response, including lymph node involvement
and the detection of distant metastatic disease, some patients underwent PET/CT, which
has been reported as resulting in a high false-positive rate, especially for the detection of
lymph node metastasis (24). Although lymph node involvement was not a prognostic
significant parameter, further analysis based on patient staging with the 2018 FIGO staging
system is needed.There were some limitations to this study. First, we analyzed patients
who were retrospectively enrolled and there was a relatively small sample size. Second,
this research was conducted based on the patients at a single institution. Besides, we could
not perform the validation analysis based on another cohort due to the above reasons. We
believe that further study with a well-designed clinical trial with more patients enrolled at
multicenter institutions could confirm the exact significance of the results of the study.

Conclusion

In conclusion, for survival, as a hematologic parameter, the 4NLR was an independent
prognostic factor. In addition, as clinical parameters, age and FIGO stage were independent
prognostic factors for cervical cancer patients treated with chemoradiation . Based on these
results, we developed a risk stratification method based on a risk scoring system for cervical
cancer patients who received chemoradiation.
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Supplemental materials

Table 4.1. Comparison of the studies that analyzed the correlation between hematologic
parameters and the prognosis of cervical cancer patients who underwent treatment.

Hazard Ratio (95% Confidence Interval)

Study Patients (n) Treatment Variable Overall survival Progression-free survival

Nakamura et al. (6) 32 CCRT Pre-treatment PLR 4.20 (1.15 - 15.26) -

Mizunuma et al. (7) 56 RT or CCRT Pre-treatment NLR 2.80 (0.83 - 9.34) 1.53 (1.19 - 1.97)

Chen et al. (8) 485 Surgery

DSI - 1.39 (1.01 - 1.93)

FIGO stage - 1.32 (0.97 - 1.81)

LN metastasis 1.59 (1.29 - 1.97 1.73 (1.457 - 2.06)

Pre-treatment LMR 0.41 (0.244 - 0.71) 0.43 (0.27 - 0.69)

Onal et al. (18) 235 CCRT

Age 1.01 (1.00 - 1.03) -

LN metastasis 2.62 (1.70 - 4.02) 2.98 (1.91 - 4.37)

Pre-treatment NLR 3.32 (1.90 - 5.79) 3.57 (2.10 - 6.08)

Lee et al. (19) 1061 Surgery (RH) or
RT or CCRT

Age 1.02 (1.00 to 1.04) -

Pre-treatment NLR 1.19 (1.13 to 1.25) 1.13 (1.08 to 1.18)

Present study 107 CCRT

Age 4.48 (1.77 - 11.32) 2.54 (1.38 - 4.69)

FIGO stage 3.01 (1.31 - 6.89) 2.48 (1.39 - 4.43)

4NLR 3.13 (1.18 - 8.27) 2.91 (1.42 - 5.93)
FIGO = International Federation of Gynecology and Obstetrics , CCRT = Concurrent Chemoradiation Therapy,
LMR = Lymphocyte-to-monocyte ratio, DSI = Depth of Stromal Invasion, LN = Lymph Node.

NLR = Neutrophil-to-lymphocyte ratio,4NLR = Post treatment NLR - Pre treatment NLR, RH = Radical Hysterectomy.
PLR = Platelet-to-Lymphocyte Ratio, RT = Tadiation Therapy.
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Chapter 5 Spinal metastases survival

Abstract

Purpose
This study aimed to develop a nomogram for predicting 1, 3, and 6-months overall survival of
patients with metastatic spinal tumors and provide a tool for easy use and integration into the clinic.

Summary of background
About 30 - 70% of patients with a primary tumor have a metastatic spinal disease at autopsy. Spinal
metastasis forms a significant disease burden, with the spine being the third most common site for
metastases.

Patients and Methods
We reviewed a total of 250 patients with spinal bone metastases admitted to our institution between
January 2014 to April 2016 for this study. Only breast, prostate, colon, rectal, and lung cancer were
included as primary tumor sites, reducing the number of patients for this study to 195. A 5-fold
cross-validation Cox proportional hazard regression model with the lasso penalty was employed
for the feature selection process before establishing the prognostic nomogram. The discrimination
developed nomogram was measured by the concordance index (C-index). A bootstrap calibration plot
was used to ascertain the model’s accuracy.

Results
Six independent prognostic factors, including age, the presence of visceral metastasis, spinal cord
compression, brain metastasis, WHO performance status, and primary tumor, were identified
during the feature selection process for building the nomogram with the addition of gender. The
calibration curves for 1, 3, and 6-month overall survival showed good agreement between the pre-
dictive and the actual probabilities. The nomograms mean C-index was 0.720 (95% CI, 0.683 – 0.757)

Conclusion
We established a user-friendly nomogram to predict survival probability for patients with spinal
bone metastasis. We provided a tool for flexible and easy usage, which can help physicians with their
decision-making process and the individualized care planning of SBM patients.

64



Chapter 5 Spinal metastases survival

Introduction

Tumor metastasis is the leading cause of morbidity and mortality in cancer patients (1, 2).
The spine is the third most common site for cancer cells to metastasize after lung and
liver, and 30 - 70% of patients with a tumor have metastatic spinal disease at autopsy (1, 3–5).

Primary tumors of the breast, prostate, thyroid, lung, gastrointestinal (GI), and kidney are
the most common to metastasize to the spine (1, 3–5). Within the spinal column, metastases
are more commonly found in the thoracic spine, followed by the lumbar spine, while the
cervical spine is the least likely location to find metastasis.

Spinal bone metastases (SBM) account for over 70% of all osseous metastases and are
slightly more common in men than in women. Adults between the ages of 40 and 65 are
affected more than any other age group (4–6). The prognosis of SBM is abysmal and heavily
depends on the primary tumor (7). Only 10 to 20 percent of the diagnosed patients have
survival of more than two years, which implies that caregivers should tailor treatment
based on an individual patient profile for an optimal outcome.

Graphical tools such as nomograms that can be used to estimate an event’s probability
by assigning scores to each important risk factor known to impact the events of interest
combined with a prediction model can be used in such a situation. Since nomograms can
estimate patient-specific probability of an outcome, they are an excellent decision support
system for clinicians and caregivers.

Numerous nomograms have been developed for different cancer-specific outcomes (8–13).
and thanks to the technological advancements in the oncological field in the last decade,
some of these nomograms have been digitalized (14). However, until now, no prognostic
nomogram has been established for SBM.

Therefore, this study aims to develop a nomogram with a user-friendly digital interface that
can estimate the 1, 3, and 6-month overall probabilities of survival for patients with SBM
and guide individualized patient management decisions.
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Materials and methods

Between January 2014 and April 2016, we retrospectively collected a series of 250 cancer
patients treated for SBM from the electronic medical record (EMR) system at Maastro
Clinic, Maastricht, The Netherlands, after acquiring approval from the internal review
board. All the patients received radiotherapy for their metastatic tumor. We extracted the
following patient demographics and clinical information age, sex, WHO performance status,
pathological fracture, spinal cord compression, number of spinal metastases, extra spinal
metastases, visceral metastases, brain metastases, lymphatic metastases, pain score, and
primary tumor for this analysis. We only included patients with a primary tumor of the
breast, prostate, colon, rectum, or lung in this study. Overall survival (OS) at 1, 3, and 6
months was defined as the primary outcome of interest. The OS was calculated as the time
difference between the date of diagnosis and the date of death or last follow-up.

LASSO

The least absolute shrinkage and selection operator (LASSO) method which performs the L1
regularization (L1 norm) was used to select the important variables to build the nomogram.
The regularization parameter (λ) imposes a penalty on the absolute value of the magnitude
of the coefficients, leading to some variables shrinking to zero depending on the λ value.
The λ parameter has two optimal values called minimum criteria (λmin) and 1 standard
error of the minimum criteria (λ1−SE) which are the smallest and largest λ values for each
cross-validation run, respectively. The λmin value gives a model which has the minimum
mean cross-validated error while λ1−SE gives a model which is 1 standard error away from
the minimum error across all the folds(15).The λ parameter have two optimal values called
minimum criteria (λmin) and 1 standard error of the minimum criteria (λ1−SE) which are
the smallest and biggest λ values respectively

Statistics

Descriptive statistics and data visualization were applied to understand and detect the
data sets underlying patterns such as missing information and possible outlying values. A
5-fold cross-validation Cox proportional hazard regression model with the least absolute
shrinkage and selection operator (LASSO) penalty was used to select features that can
predict survival for patients with SBM. The optimal λ values which compromise model
complexity and performance were determined using the cv.glmnet function. Variables with
a non-zero coefficient under the λmin value were used to fit a multivariate Cox proportional
hazard regression model. The fitted multivariate Cox proportional hazard regression
model was translated to a nomogram for visualization using the nomogram function
from the rms package (16) The accuracy of the nomogram on a repeated (R = 10) 5-fold
cross-validation was measured based on the concordance index (C-index) value with a
C-index of 1 indicating a perfect nomogram and a C-index of 0.5 implying the nomogram is
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as reliable as tossing a coin. An internal bootstrap (B = 500) correction plot of observed
against nomogram-predicted survival probability was used to calibrate the nomogram at
the different time points of interest.

The linear predictors (LP) which are the linear combination of the coefficients of the variables
in the nomogram were discretized to create the survival risk groups. Survival difference was
visualized and tested using Kaplan-Meier plots and log-rank test, respectively. To evaluate
the models’ ability to classify future patients into the different risk groups, we compared
the predicted mean survival curves for each of the risk groups with the true Kaplan-Meier
survival curves of each risk group by overlaying the two plots. All statistical analyses were
performed using R software (17) and the glmnet package (18) was used for variable selection
and model fitting process.

67



Chapter 5 Spinal metastases survival

Results

A total of 250 patients with SBM were identified at Maastro Clinic. Of these patients, 195 had
a primary tumor of the breast, prostate, colon, rectum, or lung. One patient with missing
WHO performance status was excluded from this analysis. The variable ‘pain score’ was
excluded from the study due to its high percentage (45%) of missing information. The
median age of patients in this study was 69 (39 - 92) years. There was no statistical survival
difference between surviving and non-surviving patients for all considered variables but
visceral metastasis and the primary tumor. The median follow-up time for this study was
46.78 (37.03 - 56.34) months with a 1, 3, and 6-month overall survival probability of 88%,
67%, and 53%, respectively. Table 5.1 shows the general patient characteristics for this study.
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Table 5.1. General characteristics for surviving and non surviving patients

Variable Levels Survivors Non-Survivors p-value

Age at RT in years Mean (sd) 67.8 (8.8) 68.9 (10.4) 0.651

Sex
Female 10 (66.67%) 80 (44.40%)

0.097
Male 05 (33.33%) 100 (55.60%)

WHO performance score

Active 01 ( 6.67%) 05 ( 2.78%)

0.854
Restricted 07 ( 46.67%) 69 (38.33%)
Self-care 05 (33.33%) 74 (41.11%)
Bed-bound 02 (13.33%) 31 (17.22%)
Missing 00 (0.00%) 01 (0.56%)

Pathological fracture
Yes 11 (73.33%) 141 (78.33%)

0.654
No 04 (26.67%) 39 (21.67%)

Spinal compression
No 14 (93.33%) 142 (78.89%)

0.179
Yes 01 (6.67%) 38 (21.11%)

Number spinal
metastases

One 03 (20.00%) 33 (18.33%)
0.981Two 03 (20.00%) 39 (21.67%)

Three + 09 (60.00%) 108 (60.00%)

Extra spinal bone
metastases

No 04 (26.67%) 41 (22.78%)
0.731

Yes 11 (73.33%) 139 (77.22%)

Visceral metastases
Absent 13 (86.67%) 109 (60.56%)

0.045
Present 02 (13.33%) 71 (39.44%)

Brain metastases
Absent 00 (0.00%) 10 (5.56%)

0.348
Present 15 ( 100%) 170 ( 94.44%)

Lymphatic metastases
Absent 09 (60.00%) 102 (56.67%)

0.802
Present 06 ( 40.00%) 78 (43.33%)

Pain score

No pain 00 (0.00%) 05 (2.78%)

0.431
Mild 01 (6.67%) 06 (3.33%)
Moderate 05 (33.33%) 35 (19.44%)
Severe 07 (46.67%) 76 (42.22%)
Missing 02 (13.33%) 58 (32.22%)

Primary tumor

Breast 10 (66.67%) 35 (19.44%)

< 0.05

Prostate 05 (33.33%) 50 (27.78%)
Lung 00 (0.00%) 70 ( 38.89%)
Colon 00 (0.00%) 14 ( 07.78%)
Rectum 00 (0.00%) 11 (06.11%)

WHO = World Health Organization , sd= standard deviation

Figure 5.1A shows a plot of the model performance (C-index) against the log values of the
different λ used in the cross-validation process for variable selection. The values at the top
of the plot indicate the number of non-zero variables in the model for a particular λ value
and the performance of the said model can be read on the y-axis. Based on the selected
λmin value from the repeated 5-fold cross-validation of the LASSO Cox proportional hazard
regression model, the 11 considered variables were reduced to 6 potential predictors (age,
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spinal cord compression, brain metastasis, visceral metastasis, WHO performance status,
and primary tumor) with a non-zero coefficient. Figure 5.1B shows the coefficients of the 11
variables represented by different colors against the log(λ) values. The vertical dotted gray
line was drawn at the selected λmin value which resulted in the 6 variables with nonzero
coefficients.

A

B

Figure 5.1. Variable selection using the LASSO Cox proportional hazard regression model. [A]
Selection plot of the tuning parameter (λ) for the LASSO model on the repeated 5-fold cross-validation.
The C-index values were plotted against the log(λ) values. Dotted vertical lines are drawn at the
optimal λ values λmin and λ1−SE respectively. [B] Profile plot of the LASSO coefficient against the
log(λ) sequence for the 11 considered variables. The dotted gray line represents the selected λmin

value (0.0895) which gives a log (λmin) of -2.413.

The fitted multivariate Cox proportional hazard regression model with the selected variables
was translated to the prognostic nomogram shown in Figure 5.2. The variable sex was
included in the model thou not selected based on the chosen λ value because it is known to
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be an important factor based on literature. Also, The Kaplan-Meier plot for sex (Figure S5.2
supplemental material) showed a significant survival difference. The mean C-index and the
95% confidence interval(CI) of the nomogram was 0.720 (0.683 – 0.757).

Figure 5.2. Developed nomogram to predict 1, 3, and 6-months overall survival for metastatic spinal
bone patients using seven clinical characteristics. To use the nomogram, locate the patient’s variable
on the corresponding axis, draw a vertical line to the points axis, sum the points, and draw a vertical
line from the total points axis to the 1, 3, or 6 - months overall survival probability axis.

We have also provided a user-friendly online version of this nomogram to facilitate
its widespread use by physicians and researchers (Link1). The Web application allows
predicted survival probabilities and curves for each input information to be stacked making
comparison easier.

To evaluate the developed nomogram, we presented its performance in predicting 1, 3, and
6 months overall in terms of discrimination by plotting the actual survival probabilities
against the nomogram-predicted probabilities. This plot shows the similarity between the
predicted probabilities and the observed probabilities, with all points falling precisely on
the perfect model’s diagonal line. The calibration curve in figure 5.3 reveals good agreement
between the predictions of the nomogram and observation.

1https://bich.shinyapps.io/SpinalMets/
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Figure 5.3. SBM overall survival nomogram calibration plots for 1, 3, and 6 months, respectively.
The nomogram-predicted overall survival is plotted on the x-axis, and the actual overall survival
is plotted on the y-axis. The dashed line represents the ideal fit where the nomogram-predicted
probability matches the observed probability. The vertical solid lines represent the 95% confidence
interval.
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The nomograms’ ability to discriminate between patients based on their survival probability
was evaluated by first making a histogram of the linear predictors, as shown in figure 5.4
with higher values indicating poor prognosis. The linear predictors were then discretized
into three risk groups with cutoff values at the 25th and 75th percentile, as shown on the
plot. We considered patients between the cutoff values to have a moderate risk of death.
Patients below and above the 25th and 75th percentile values were considered to have a
lower and higher risk of death, respectively.

Figure 5.4. Histogram of the linear predictor extracted from the nomogram. The vertical lines
indicates the 25th (green), and 75th (red) percentile respectively.

The percentages of patients in the three risk groups are 25.3%, 49.4%, and 25.3%, respectively.
The Kaplan-Meier curves for overall survival stratified by the risk groups, as shown in figure
5.5, agree with the c-index value and calibration plots, indicating that the nomogram has
some discriminating power as the three curves are significantly separated with a p-value <
0.005. Patients in the high-risk group had a median survival time of 1.77 (0.92 - 3.98) months
and the moderate group had 6.90 (2.66 - 15.21) while the low-risk group had 25.72 (13.40 -
45.47) months as shown in figure 5.5.
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Figure 5.5. The Kaplan-Meier survival curve for the low, moderate, and high-risk groups based on
the percentile cutoff values.

To further evaluate the nomogram’s performance, we compared the predicted mean survival
curves for each of the risk strata with the Kaplan-Meier survival curves, as shown in figure
5.6.

Figure 5.6. Comparison of predicted mean survival curves (dotted lines) and stratified Kaplan-Meier
(solid lines) for the different risk groups.

Figure 5.6 indicates that the nomogram is well-calibrated given the close similarity between
the predicted (dotted lines) and actual (solid lines) survival curve for all except the low-risk
group, where the model slightly under-predicts at the beginning and over-predict over time.
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Discussion

The disease burden and mortality rate of SBM have opened up intriguing research possibili-
ties in the field, focusing on improving patients’ quality of life via a personalized treatment
procedure for an optimal outcome. Despite the significant progress in understanding tumor
metastasis and the underlying mechanisms, the precise process remains complicated with
multiple sequential and interrelated biochemical events, which still need elucidation.

The treatment choice for spinal metastases depends on correctly localizing the affected
vertebra(e), the patient’s priorities for treatment, and other individual patient characteristics.
However, no therapy has proven to increase the life expectancy of these patients (5). Hence,
treatment aims to improve quality of life, spinal cord compression, relieve pain or prevent a
vertebral collapse (19). Therefore, assessing a patient’s prognosis before treatment is very
pivotal for an optimal treatment selection. That is, caregivers should tailor treatment based
on each patient’s desires and overall prognosis.

Renowned prognostic scoring systems (Bauer, Tokuhashi, Tomita, van der Linden, Sioutos,
Katagiri, and NESMS) have been developed to assist clinicians and care providers in
determining the survival prognosis of metastatic spine tumor patients for an optimal
therapeutic choice (20–28). In contrast to this study, none of these scoring systems include
demographic features such as age and sex. Logically, these variables should be included
in any scoring system given that these variables have been proven from literature to be
associated with SBM survival, as the disease is more common in men than women as well
as in elderly patients as compared to the younger population (4–6, 29). More to this, men
are more at risk of developing a spinal disease than women since men are more susceptible
to developing a primary tumor than women (30, 31)

Yang et al. (32), Liu et al. (33) and Pereira et al. (34) have previously developed nomograms
to support the personalized predictions of survival probability for patients with spinal
metastasis disease from non-small cell lung cancer (NSCLC), colorectal cancer, and operable
patients respectively. These nomograms did consider age, sex, performance status, primary
tumor, visceral, and brain metastasis as significant prognostic factors associated with spine
metastasis survival, which are in concordance with this study. However, none of these
studies have considered including both age and sex in the same nomogram. This assumes
all patients have an equal risk of dying from the disease irrespective of their age, sex, or
both variables despite the sea of literature supporting these differences (4–6, 29, 31, 35, 36)
especially when more than one primary tumor is considered (Figure S5.1 supplemental
material). This variable omission implies the predicted survival probabilities from such
nomograms are less personalized.
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We developed a nomogram with seven variables, including an interaction between age and
sex, to improve previously developed scoring systems. The developed nomogram captures
the age effect within the sex variable as there is over 15 points survival difference between
males and females of the same age. From the nomogram, women have relatively better
survival than men before 75 years. However, after 75 years, the reverse is seen with men
having a somewhat better survival than women. The proposed nomograms have relatively
good c-indexes of 0.72 (95% CI, 0.683 – 0.757) and perform well in calibration. A digital
version of the nomogram is also provided for easy insertion into the treatment workflow for
better decision-making in managing spinal metastases and offering practical guidance to
caregivers.

All the existing scoring systems for SBM known to us are between 1 - 24 months. The digital
version of the present nomogram can make predictions at any given time point as low
as half a month. Besides the survival probability, it also provides the confidence interval
of the predicted survival probability and a personalized survival curve, which gives the
caregiver more insights to determine the optimal therapeutic strategy for a patient, such
as, e.g., stereotactic body radiation therapy (SBRT). The personalized survival curve could
serve as a good starting point for shared decision-making between patients and caregivers.

The present nomogram might be a suitable tool for clinical assistance; however, the
performance is still not optimal due to some limitations. The nomogram’s clinical reliability
could not be evaluated at the moment, given the study’s single-center nature. However, we
performed a thorough internal validation (bootstrap) and planned to do a proper external
validation to ascertain the nomogram’s clinical usefulness. A direct comparison between our
developed nomogram and the other nomograms was not possible due to population differ-
ences. However, Liu et al. (33) and Pereira et al. (34) did consider hematological parameters
such as carcinoembryonic antigen (CEA), hemoglobin levels, and white-blood-cell count
(WBC) for their nomogram. Given the pivotal role of blood and lymph in tumor metastasis,
we believe these variables could be essential prognostic features but were, however, absent
in the current study because of its retrospective nature. Yang et al. (32) on the other hand,
used a renowned scoring system called the Frankel score in their nomogram, which was
also not included in the present study. However, this feature might not be predictive
of spinal metastasis survival since it was only designed to categorize spinal cord injuries (37).

Access to population-based registries and adding other variables to the nomogram, such
as (radi)omics, pathology, and hematological parameters, might further improve the
nomograms’ performance. Also, accessing these databases will make the nomogram more
generalizable by including more primary tumors and increase the number of patients in
each primary tumor. At present, the nomogram is limited to five primary tumors, which
implies that patients with other primary tumors like cervix, kidney, bladder, etc., cannot
benefit from this nomogram.
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Conclusions

We have established a user-friendly and easy-to-use prognostic nomogram for patients with
SBM using seven known clinical parameters. It has a digital version that can be integrated
into the current treatment workflow to aid treatment decision-making in managing cancer
patients with SBM. However, proper external validation is needed to ascertain its clinical
reliability.
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Supplemental materials

Figure 5.1. Box-plots showing the age distribution for sex and primary tumor respectively

Figure 5.2. The Kaplan-Meier survival curve for sex.
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Chapter 6 Radiotherapy compliance.

Abstract

Purpose
This study aims to analyze the relationship between the available variables and treatment compliance
in elderly cancer patients treated with radiotherapy and establish a decision tree model to guide
caregivers in their decision-making process.

Summary of background
Radiotherapy is one of the most opted forms of cancer treatment. Unfortunately, unwanted
interruptions often affect the treatment process, affecting overall survival and local control.

Patients and Methods
For this study purpose, 457 patients over 74 years of age who received radiotherapy between
2005 and 2017 at the Gil medical center in Korea were included in this retrospective analysis.
The outcome of interest was radiotherapy compliance, determined by whether patients completed
their scheduled radiotherapy treatment (compliance means they completed their treatment and
noncompliance otherwise). A bootstrap (B=400) technique was implemented to select the best tunning
parameters to establish the decision tree. The developed decision tree’s performance in discriminating
between compliance and noncompliance patients was evaluated by computing the area under
the curve (AUC) and generating calibration plots based on the repeated 5-fold cross-validation method.

Results
The developed decision tree uses patient‘s status, Charlson comorbidity index, Eastern Cooperative
Oncology Group Performance scale, cancer type, age, sex, cancer type, health insurance status,
radiotherapy aim, and fractionation type to distinguish between compliance and noncompliance
patients. The decision trees’ mean AUC and 95% confidence interval was 0.71 (0.66 - 0.77).

Conclusion
We developed and internally validated a novel decision tree that could discriminate between compli-
ance and noncompliance to radiotherapy treatment for elderly cancer patients. The decision tree has a
moderate discriminating ability and could serve as a decision aid for caregivers to care better for their
elderly cancer patients. However, external validation of the decision tree is warranted to ascertain its
clinical usefulness.
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Introduction

Approximately 60% of cancer incidence occurs in adults aged 65 and older (1–5). Nowadays,
many consider people over 70 years as elderly (4). However, this group of patients,
generally called the elderly, are often not granted access to therapeutic clinical trials (6, 7).
Therefore, there are still many open questions about the clinical and behavioral responses
of elderly cancer patients to cancer treatment (2). Generally, elderly persons are frail
due to their relatively weaker immune systems (8). This frailty, combined with common
multiple comorbidities, makes them vulnerable to chronic illnesses and even therapy (9, 10),
making it arduous to choose the appropriate treatment (2, 11, 12). Although studies have
shown that some treatments are feasible for elderly patients (13, 14), the likelihood of their
discontinuation is greater than that of the younger generation [15]. This is primarily due to
increased comorbidity, decreased performance status, and poor health due to treatment (15).

Radiotherapy, a treatment option that uses ionizing radiation to treat various malignant
and benign disorders with curative or palliative intent, is one of the most widely used and
effective cancer treatments. However, the treatment process is sometimes not completed as
planned, with unwanted interruptions encountered during the treatment process either due
to technical reasons or patient-related reasons, such as religious beliefs, financial burden,
radiotherapy myths, and travel burden (16–18). Such treatment interruptions may affect
local control and overall survival (19) and induce unnecessary treatment-related toxicities
for these patients (19–21).

True, some studies have looked at treatment compliance as an outcome of interest either
for a particular disease or a combination of diseases (15, 22, 23). However, as far as we are
aware, these studies have focused their analysis on a univariate association of the available
variables with the endpoint treatment compliance in (elderly) cancer patients. Therefore, a
strategy or model to identify elderly cancer patients who might not complete their planned
radiotherapy treatment beforehand would be beneficial.

Decision trees, a commonly used prediction technique that can connect several variables to
naturally classify patients into various risk groups based on the outcome of interest and
present the knowledge graphically to serve as a decision aid (23, 24), are more suitable to
model such endpoints.

Therefore, this study aimed to use the available patient information to develop a decision
tree that can discriminate between elderly cancer patients based on the likelihood of them
completing their planned radiotherapy treatment and use the visual knowledge from the
tree to support physicians and caregivers with their decision-making tasks for better patient
management.
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Materials and methods

After obtaining ethical approval from the internal review board, data for 456 cancer patients
above 74 years (elderly) who were treated with radiotherapy were retrospectively collected
from the patient’s medical records at the Gil Medical Center in Korea between January
2005 and September 2017. All methods were performed following relevant guidelines and
regulations.

Radiotherapy was performed using 6 to 15 MV X-ray photons or electron beams with
various energies. Compliance, the outcome of interest, was defined as the completion of the
prescribed radiotherapy dose, and noncompliance was defined as the discontinuation of
therapy by the patient without the caregivers’ advice or consent. Only patients with lung,
metastatic, head and neck, and gastrointestinal & hepatobiliary cancer were enrolled in this
study because they are prevalent cancer types and have a high rate of noncompliance with
treatment.

The total radiotherapy dose, fractionation, and radiotherapy field size were determined
based on the type of cancer. Patient information such as age, sex, Eastern Cooperative
Oncology Group Performance scale (ECOG PS) (25), Charlson comorbidity index (CCI)
(26), patient status (in-patient or out-patient), radiotherapy aim, fractionation type, health
insurance status, and cancer type was considered for this study. Radiotherapy aim and
fractionation type (conventional fractionation and hypofractionation) were considered
for treatment information. Only patients treated with conventional fractionation and
hypofractionation techniques were included in this study. The stereotactic radiosurgery
(SRS) / stereotactic body radiotherapy (SBRT) technique was not included because just
one patient was noncompliant with radiotherapy (Figure S6.1 supplemental material).
Based on radiotherapy dose and fractionation, patients were classified into either the
conventional fractionation (1.8-2.0 Gy fractionation) group, hypofractionation (more than 2
Gy fractionation) group, or stereotactic radiosurgery/ stereotactic body radiotherapy (more
than 7.5 Gy fractionation) group.

Health insurance status was used as a surrogate for the actual financial status of the patient.
In Korea, the health protection system exempts economically disadvantaged people (patients
with medical care insurance) from insurance premiums which means they do not have to
pay for their treatment. For indirectly estimating the economic status of elderly patients,
medical insurance status was introduced, which can be classified into two patient groups,
one with health insurance and the other with medical care in Korea. Patients with health
insurance pay part of the treatment fee, and the government pays the rest, whereas, for
medical care patients, the government pays the entire treatment cost for the patients.
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Decision Trees

A decision tree is a nonlinear discrimination method that uses independent variables to
split a sample into progressively smaller subgroups, utilizing binary rules. The basic
idea is to recursively partition the covariate space to form subgroups called nodes on
the tree for subjects with similar characteristics based on the outcome of interest. The
iterative procedure begins with the independent variable with the strongest association
with the dependent variable of interest based on specific criteria (27). The first variable
or node at the top of the tree is the root node, the tree’s most important feature. The
other variables that help the tree split further are the internal nodes. Each variable split
on the tree is called a branch or edge, and the end of the branch that does not split
any further is called the decision or leaf node; in this case, whether a patient completed
(compliance) or discontinued (noncompliance) their planned radiotherapy treatment (27, 28).

Statistical analysis

Exploratory analyses and data visualization such as distribution and box plots were applied
to gain insights into the data sets and understand the data’s underlying patterns. The
bootstrap (B = 400) technique and grid search option within the caret package (29) was
employed to find the best tuning parameters. The identified optimal hyperparameters were
then used to grow the decision tree to predict compliance in elderly cancer patients. The
performance of the resulting decision tree was evaluated using a 5-fold cross-validation
method. The respective area under the curve (AUC) and calibration for each of the folds
were then computed and plotted. Odds ratios at each branch of the tree were computed
to measure the association between treatment compliance and the variable. All statistical
analyses were performed with the R software (30), and a p-value < 0.05 was considered
statistically significant.
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Results

A total of 456 elderly cancer patients with a median age of 78 (74-92) years who received
radiation therapy were considered to grow and internally validate the decision tree. Table
6.1 shows the demographic and clinical characteristics of the study. There was no difference
in the median age or CCI for compliant and noncompliant patients. In contrast, the median
fractionation and radiotherapy dose for compliant patients was 3-fold that of noncompliant
patients. Metastatic patients had the highest contribution to this study based on sample size
and lung cancer patients in terms of noncompliance.

Table 6.1. General patient demographic and clinical characteristics

Variable Levels Compliance Noncompliance Total

CCI Median (sd) 6 (1.9) 6 (1.9) 6 (1.9)

Age Median (sd) 78 (3.5) 78 (3.3) 78 (3.5)

Fractionation Median (sd) 25 (9.9) 8 (7.2) 25 (11)

RT dose (Gy) Median (sd) 50.4 (15.4) 16.4 (13.5) 45 (18.9)

Sex
Male 187 (78.6%) 51 (21.4%) 238(52.1%)
Female 182 (83.1%) 37 (16.9%) 219(47.9%)

ECOG PS
Good (0-2) 322 (79.7%) 82 (20.3%) 404(88.4%)
Poor (3-4) 47 (88.7%) 6 (11.3%) 53 (11.6%)

Patient Status
In-patient 258 (84.6%) 47 (15.4%) 305(66.7%)
Out-patient 111 (73.0%) 41 (27.0%) 152(33.3%)

RT Aim
Curative 274 ( 80.4%) 67 (19.6%) 341(74.6%)
Palliative 95 ( 81.9%) 21 (18.1%) 116(25.4%)

Insurance
Type

Medical care 50 (86.2%) 8 (13.8%) 58 (12.7%)
Health insurance 319 (79.9%) 80 ( 20.1%) 399 (87.3%)

Fraction type
Conventional 242 ( 82.0%) 53 (18.0%) 295 (64.6%)
Hypofraction 242 ( 82.0%) 53 (18.0%) 295 (64.6%)

Cancer
Type

Lung 102 (79.7%) 26 (20.3%) 128 (28.0%)
Metastatic 117 (82.4%) 25 (17.6%) 142 (31.1%)
Head & Neck 46 (76.7%) 14 (23.3%) 60 (13.1%)
Gastrointestinal 104 (81.9%) 23 (18.1%) 127 (27.8%)

Total - 369 (80.7%) 88 (19.3%) 789 (100%)

sd: Standard Deviation, RT: Radiotherapy
ECOG PS = Eastern Cooperative Oncology Group Performance Scale.

Biological Effective Dose (BED) (31) and Equivalent Dose in 2 Gy fractions (EQD2) (32) using an α/β ratio 10

are also used to quantify radiobiological concepts into concrete interpretable values.

Focusing only on noncompliant patients (Table 6.1), as it is the group of interest, 87 (19.1%)
patients out of the 456 analyzed did not complete their planned radiotherapy treatment
(Figure S6.2 supplemental material). More than 50% of the patients in this population did
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not complete their treatment due to worsening performance status. The rest of the patients
decided not to continue treatment (21%), had radiotherapy-related morbidity (8%), or died
during treatment (2%).

Based on table 6.1, men had a higher noncompliant rate than women. Only 6 (11.3%)
patients with poor (3-4) ECOG PS did not adhere to their treatment against 81 (20.1%) with
good (0-2) ECOG PS. There were similar observations for health insurance status, as there
were 79 (19.8%) patients with health insurance but only 8 (13.8%) with medical care. The
number of patients treated with curative intent (67 (19.6%)) was 3 times more than that
treated with palliative intent (21(18.1%)). The number of noncompliant inpatients was only
slightly higher than that of outpatients while those treated with conventional fractionation
53 (18.0%) were more than those treated with hypofractionation 34 (21.1%). With respect
to cancer type, lung and metastatic cancer had the highest number of noncompliance 25
(19.7%) and 25 (17.6%) respectively while head and neck cancer had the least 14 (23.3%).

Given that this study is centered around elderly cancer patients, box plots of age and
the other considered variables were produced to visualize age distribution within these
variables by compliance status. Figure 6.1 shows that there was no significant mean age
difference between compliant and noncompliant patients. The same nonsignificant result
was observed in all the other variables except for health insurance status and tumor type.
Additionally, there was no significant mean age difference within the variables’ levels.
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Figure 6.1. Box-plot of age and all the considered variables by compliance status. p-values in above
are within-group comparison and below between-group comparison.
HI: Health insurance, MC: Medical care, Conv: Conventional fractionation, Hypo: Hypofractionation,
GasHep: Gastrointestinal & Hepatobiliary, H&N: Head & Neck, Mets: Metastatic, ECOG: Eastern Co-
operative Oncology Group.
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Decision tree

Based on the bootstrap result (Figure S6.3 supplemental material), a maximum tree depth of
4 was selected with a minimum criterion of 0.041. Figure 6.2 shows the resulting decision
tree with these optimal tuning parameters from the bootstrap runs. The oval structures
are the independent variables represented as a condition or node, based on which the tree
splits into branches or edges. The black text between the thin line on both sides of the nodes
describes the split situation that is to be followed to obtain the patient’s probability of
radiotherapy compliance from the rectangular structures at the bottom of the tree.

To use the decision tree as a decision tool, locate the root node on the top of the tree and
read the condition. Then, follow a series of repeated IF-THEN processes based on the
patient characteristics on the decision tree until you arrive at the last node, which splits no
further. The patients’ probability of compliance or noncompliance is then read from the leaf
node. On this tree, the most important variable is the patient’s status, which splits between
inpatients and outpatients. For outpatients, we take the left route, which indicates that the
sex of the patient is needed to reach a decision.

In contrast, if the patient is an inpatient, we take the right path, where the second most
essential variable for this group of patients needs to be consulted. Here, we checked the
patient’s CCI. If the patient has a CCI value above 6, we move right, where the patient’s
insurance status becomes important and split into patients with health insurance and
medical care. For medical care patients, their corresponding compliance probability is read
directly from the leaf node at the bottom of the tree. In this case, there is an approximately
95% chance that the patient will complete their planned radiotherapy treatment or a 5%
chance of noncompliance. On the other hand, if the patient has health insurance, we move
left where the treatment aim becomes important, and the tree splits up directly into two leaf
nodes, with curative patients having a slightly higher noncompliance probability ( 25%)
compared to palliative patients (20%).
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Figure 6.3 shows the decision tree’s performance for predicting radiotherapy compliance
in elderly cancer patients based on the area under the curve (AUC) and the calibration
plot. The decision tree’s mean AUC and 95% confidence interval (CI) were 0.71 (0.66 -
0.77). The sensitivity and specificity of the developed decision tree were 0.64 and 0.75,
respectively, based on a threshold of 0.19. These figures imply that approximately 64% of
the patients who completed their planned radiotherapy treatment were correctly classified
as patients who adhered to treatment by the tree. On the other hand, 75% of the patients
who discontinued their treatment were correctly identified by the tree as noncompliant.

Calibration plots indicate how similar the predicted probabilities are to the actual or ob-
served values. For a perfect or ideal model, all the points should fall precisely on the
dotted diagonal gray line. The plot shows good agreement between observed and predicted
probabilities for most of the cross-validation samples.

Figure 6.3. The grown decision tree’s performance in terms of the area under the receiver-operating
characteristics curve (AUC) and calibration, respectively.
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Discussion

The decision tree methodology was the preferred analysis method because it can simplify
complex relationships between the dependent and target variables and make the connec-
tions more natural to understand and interpret (24). Unlike other classification models, tree
models are more intuitive, self-explanatory, and easy to understand. Decision trees are
nonparametric, meaning assumptions or data distributions do not tie them down (23, 33).
Therefore, they can be applied to any data to evaluate and account for complex relationships
within the data and present the results in a (clinically) usable form (17, 33). Their ability to
naturally classify patients into various groups based on the outcome or endpoint of interest
makes them a very appealing and handy decision tool in medicine (33).

The current study developed and internally validated a decision tree for predicting
radiotherapy compliance in elderly cancer patients. The decision tree had a mean
AUC value of 0.71 (0.66 - 0.77), with patient status, sex, cancer type, age, CCI, ECOG
PS, fractionation type, treatment aim, and insurance as essential factors to determine
radiotherapy compliance. Our findings are similar to Gupta et al. (15) who also analyzed
treatment compliance in cancer patients and reported that age, sex, tumor stage, concurrent
chemoradiotherapy, and travel distance were significantly associated with noncompliance
with radiotherapy. However, it is somewhat challenging to make direct comparisons and
interpretations of both studies because of the difference in analytical approaches and study
design.

In our study, CCI was a key factor for predicting radiotherapy compliance in elderly
patients for both inpatients and outpatients. However, for outpatients, it was only necessary
to determine radiotherapy compliance for females. Other studies have also found CCI to
be a significant factor affecting adherence to treatments in females, such as chemotherapy
and radiotherapy in breast cancer (34). Nonetheless, Di Genesio Pagliuca et al. (13) found
no statistically significant correlation between CCI and chemotherapy in a mixed pop-
ulation of 137 (60% males and 40% females) elderly patients treated with chemoradiotherapy.

These contradictory results on the importance of the CCI to predict treatment compliance
can be attributed to the difference in the patient population under consideration. The
decision tree shows that CCI is a pivotal factor in treatment compliance, but for certain
patient groups. Therefore, without proper subgroup analysis or methods such as decision
trees, important predictor variables could be easily missed, leading to contradictory results.
In addition, the study did report that most of the patients who stopped chemoradiotherapy
had a relatively higher CCI and poor performance status. In this study, the odds of
noncompliance for an outpatient female with a CCI below 7 are just 0.25 times the odds
of an outpatient female with a CCI value above 7. While the noncompliance odds for
inpatients with a CCI value below 6 was 2.55 times the odds of noncompliance for inpatients
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with a CCI value above 6 (Table S6.1 supplemental material) and all the odds ratios were
statistically significant.

This study could not include information about the morbidity of elderly cancer patients
because of too much missing information. Hence, we could not evaluate the relationship
between morbidities and radiotherapy compliance. Nevertheless, we postulate that
good and poor ECOG PS patients could not complete their scheduled radiotherapy
due to treatment-related morbidities. However, patients with poor ECOG PS would
be more affected by radiotherapy treatment than those with good ECOG PS. In the
present study, patients with poor ECOG PS had a lower median age in the compliance
group than in the noncompliance group (Figure 6.1). This age difference was absent for
patients with good ECOG PS. Based on the developed decision tree, the ECOG PS is
only pivotal for outpatient females with a CCI value of less than 7. Patients with good
ECOG PS have a relatively higher noncompliance probability than those with poor ECOG PS.

In general, except for the ECOG PS before radiotherapy, numerous factors can affect a
patient’s ECOG PS during treatment. These include oral mucositis and esophagitis, both of
which are typical side effects of radiotherapy either for head and neck cancer or lung cancer.
In the study by Yoon et al. (35), they reported that the main reasons for discontinuation
of radiotherapy treatment in elderly lung cancer patients were that five patients (42%)
were experiencing aggravation of the general condition and cancer progression, and seven
patients (58%) were experiencing treatment-related toxicity. They concluded that physicians
should pay attention to selecting elderly cancer patients and chemotherapy agents
considering general conditions and toxicity before planning concurrent chemoradiotherapy.

In terms of indirectly estimating the economic status of elderly patients, we analyzed
radiotherapy compliance according to medical insurance status, classified into patients with
health insurance and patients with medical care. As per our institution’s policy, insured
patients who decide to receive radiotherapy should pay the treatment fee at every visit
and not the total cost at the initial appointment. Generally, the radiotherapy treatment
fee is higher than the other treatment modalities, which means that cancer patients need
for radiotherapy funds is still substantial relative to the other treatments and can cause
significant “financial distress.” Therefore, patients with health insurance are more likely
to have a financial burden than patients with medical care since the government covers
the treatment costs. As a result, the noncompliance rate in the health insurance group was
tenfold higher than that in patients with medical care.

Although there was a statistically significant age difference between these two insurance
groups, noncompliant patients had a higher median age within each group, especially for
medical care patients (Figure 6.1). Based on the decision tree, inpatients with a CCI value
greater than six and medical care have a higher compliance probability than patients with
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health insurance. Also, at this node (node 21), the odds of noncompliance for an inpatient
with a CCI above 6 is reduced by approximately 60% if the patient has medical care
insurance (Table S6.1 supplemental material). For health insurance patients, compliance is
mostly affected by the type of treatment they receive, with patients treated with curative
intent having a relatively higher noncompliance probability than palliative patients (Figure
6.2). More so the odds of noncompliance for patients who received palliative care (node 22)
treatment was 0.58 times the odds of noncompliance for curative treatment patients (Table
S6.1 supplemental material).

The developed decision tree results can help caregivers and physicians in their decision-
making process. For instance, an 80-year-old male not admitted to the hospital (outpatient)
and suffering from a metastatic disease is expected to complete his planned radiotherapy
schedule based on the decision tree. In such a case, the physician can recommend the most
appropriate radiotherapy technique for the patient regardless of age by considering the
feasibility of completing treatment based on objective results from the decision tree. On
the other hand, an outpatient female with a CCI value above 7 has a 25% chance of not
completing her planned radiotherapy treatment. Such information can assist in selecting the
most appropriate treatment for this patient or channeling the right resources for a better
outcome.

Generally, when radiotherapy treatment lasts longer than seven weeks, it induces
fatigue in patients. This is especially true for the elderly, particularly as their physical
and mental status is impacted. Hence, based on the decision tree, physicians could
propose a shorter radiotherapy treatment period technique, such as stereotactic body
radiotherapy (SBRT), for patients predicted to be noncompliant with radiotherapy treatment.

In a study by Amini et al. (36), the authors used SBRT with a relatively short duration of
treatment compared to conventional split radiotherapy for elderly head and neck cancer
patients with poor performance status. Hayashi et al. (37) also reported the effects of SBRT
in elderly patients with stage I non-small-cell lung cancer (NSCLC). They concluded that
SBRT for stage NSCLC was well tolerated and feasible in very elderly patients, although
elderly patients experienced significantly more severe radiation pneumonitis.

Recent advances in radiotherapy techniques that reduce radiation-related adverse effects,
such as intensity-modulated radiation therapy, SBRT, and stereotactic radiosurgery,
should be considered for treating elderly cancer patients. Although we did not enroll
SRS/SBRT-treated patients in this study, we did visualize the distribution of compliant and
noncompliant patients within the different fractionation types, which shows that all but one
patient was compliant with radiotherapy treatment as expected (Figure S6.1 supplemental
material).
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In this study, the number of outpatients who discontinued their planned radiotherapy
treatment was higher than inpatients, with a significant difference in the odds of noncom-
pliance (OR = 0.48, 95% CI [0.29 - 0.78]) between the two patient status groups (Table S6.1
supplemental material). This outpatient noncompliance majority was more pronounced
in the lung and gastrointestinal/hepatobiliary cancer patients (Figure S6.4 supplemental
material). Extended fractionation schedules will require outpatients to commute between
the radiotherapy center and their residence. Since elderly patients are more susceptible to
treatment-related fatigue and deficits in physical activity, these constant travels can severely
impact their quality of life, making it infeasible for them to come for future treatments.

To increase adherence to planned radiotherapy treatment in this patient group, Palwe et al.
(18) suggested providing accommodation for these patients closer to the treatment center
or having more frequent outpatient visits after the third week of planned radiotherapy
treatment. Contrary to these two cancer types, the number of noncompliant outpatients
with metastatic or head & neck cancer was lower or equal to inpatients respectively (Figure
S6.4 supplemental material). A possible explanation for this difference could be that the
general condition of patients in this group is relatively poor and can deteriorate easily or
the radiation treatment was administered basically to relieve severe metastasis-related
symptoms such as pain and neurologic symptoms. This increases the chance of a patient
discontinuing treatment if symptoms were immediately alleviated during treatment or
could be advised by a caregiver if the patient’s condition worsens.

To the best of our knowledge, this study is the first to assess the predictive value of decision
trees for radiotherapy compliance in elderly cancer patients. Therefore, there is room for
improvement. As a retrospective study derived from a single institution, this analysis could
not include other information, such as morbidity, during radiotherapy. Therefore, external
validation of the developed decision tree is needed to ascertain its clinical usefulness.

Nonetheless, the performance of the developed decision tree to determine if a patient will
complete their planned radiotherapy treatment is better than toasting a coin. In addition,
75% of the patients who discontinued their treatment was correctly identified by the tree
as noncompliant, which provides caregivers with a subgroup of patients to monitor very
closely to help prevent them from discontinuing their treatment since it might lead to an
unnecessary increase in treatment cost and time wasted for both the patient and caregiver.
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Conclusion

In conclusion, we have developed and internally validated a decision tree to predict ra-
diotherapy compliance in elderly cancer patients. Based on the decision tree, treatment
compliance mainly depends on the patient’s status. Other clinical, social, demographic,
and treatment features, such as CCI, ECOG PS, age, sex, cancer type, health insurance
status, radiotherapy aim, and fractionation type, also influenced treatment compliance.
The developed tree has a reasonably good ability to identify those patients who are likely
to discontinue their radiotherapy treatment, giving caregivers a better rationale to decide
whether to start a radiotherapy treatment or look for alternative treatment for these patients.
The developed decision tree has a moderate discriminating ability and could serve as an aid
for caregivers to select the optimal treatment for elderly cancer patients although external
validation is needed to determine its clinical usefulness. And, the developed decision tree
can also help boost treatment compliance by targeting those patients who are likely to
discontinue therapy with incentives and techniques to support them adhere to treatment,
especially for patients already receiving therapy.
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Supplemental materials

Figure 6.1. Box and Bar plots for fractionation type by compliance status

Figure 6.2. Reasons for radiotherapy noncompliance
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Figure 6.3. Bootstrap output for selecting optimal parameters

Figure 6.4. Bar plots of compliance by patients status for each disease.
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Table 6.1. The odds ratio of noncompliance with the corresponding 95% confidence
interval and p-value for each branch on the developed decision tree to predict compli-
ance in elderly cancer patients.

Node Variable Levels Nonc Comp OR (95% CI) P-value

1 Patient Status
Out-patient 46 258

0.48 (0.29 - 0.78) <0.05
In-patient 41 111

2 Sex
Female 19 142

0.57 (0.30 - 1.08) 0.08
Male 27 116

3 Cancer Type
Metastatic 02 27

0.28 (0.04 - 1.04) 0.06
Others 25 89

4 Cancer Type
Lung 11 38

1.05 (0.42 - 2.60) 0.90
Others 14 51

7 Patient Age
Above 76 00 20

- -
Below 76 02 07

10 CCI
Below 7 14 128

0.25 (0.09 – 0.91) 0.03
Above 7 05 14

11 ECOG-PS
3-4 00 11

– -
0-2 14 117

15 CCI
Below 6 23 35

2.55 (1.32 – 5.67) <0.05
Above 6 18 76

16 Fraction Type
Conventional 15 29

0.39 (0.10 - 1.37) 0.12
Hypofraction 18 06

17 Sex
Female 11 15

2.47 (0.65 - 11.0) 0.18
Male 15 29

21 Insurance
MC 01 11

0.39 (0.01 - 2.28) 0.31
HI 17 65

22 Treatment
aim

Palliative 13 55
0.58 (0.16 - 2.49) 0.43

Curative 04 10

Nonc: Noncompliance, Comp: Compliance, OR: Odds ratio, CI: Confidence Interval
CCI: Charlson comorbidity index, MC: Medical Care, HI: Health Insurance
ECOG-PS: Eastern Cooperative Oncology Group Performance Scale
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Abstract

Purpose
This study aims to develop and validate a decision tree algorithm to predict the overall survival of
IIB-IVA cervical cancer patients with squamous cell carcinomas.

Summary of background
Cervical cancer claims approximately 200 lives of women in the Netherlands and over 800 in
Korea each year. In less developed countries with limited healthcare services, cervical cancer-related
deaths are increasing. Knowing expected survival in an individual patient may help direct the right
resources to treat this patient.

Patients and Methods
A total of 146 women diagnosed with cervical cancer and treated between 2000 to 2017 at Maastro
and Gil Medical center were analyzed to develop and validate the decision tree. We used the
rpart package in R to grow the decision tree and the concordance index (C-index) to measure its
discriminating ability.

Results
The developed decision tree requires only three features to predict the overall survival of these
patients. The most important predictor for all patients was their FIGO stage. Age at radiotherapy
and the SCC-Ag level were the second and third most important features for FIGO stage IIB patients.
While for patients with FIGO stage III-IVA tumor, tumor size and the SCC-Ag level were the most
important variables in predicting their overall survival. The decision tree’s performance on the
training cohort reached a C-index of 0.786 (95% CI, 0.711 - 0.860) and 0.716 (95% CI, 0.639 -
0.893) on the validation cohort.

Conclusion
We have developed and externally validated a decision tree to predict the overall survival probability
for cervical cancer patients. The tree separates patients into different risk groups based on their
survival probabilities which could be leveraged to manage cervical cancer patients better.
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Introduction

Thanks to early screening, the mortality rate of cervical cancer has dramatically decreased
over the last decades (1). Regardless of all these endeavors, cervical cancer remains the
second most common form of cancer-related death in women worldwide (2, 3). Numerically,
over 25 000 women die from this disease in Europe each year, and over 200 women in the
Netherlands, specifically (4–6). In Korea, about 800 cervical cancer-related deaths occur
each year (7). These numbers are even higher in less-developed countries and areas with
limited healthcare services (3, 8).

Besides health care accessibility, numerous risk factors are associated with these death rates.
The International Federation of Gynecologists and Obstetricians (FIGO) score is a prominent
prognostic factor for estimating survival for cervical cancer patients. However, several
studies have shown that other clinical and pathological information could improve patient
survival prediction models (9–12). These survival models can be graphically represented to
serve as decision aid tools such as nomograms and decision trees, where a patient’s overall
survival (OS) probability can be determined from these clinical and pathological factors (12).

Prediction models such as decision trees are gradually being valued in the medical sector
because of their high explainability and interpretability. Their ability to naturally classify
patients into various risk groups based on the outcome of interest makes them a handy
decision tool (13–15). Until this study’s analysis, to the best of our knowledge, no decision
tree model existed to predict the overall likelihood of surviving cervical cancer, which is
essential for treatment modality decision-making.

This study, therefore, aims at developing and externally validating a decision tree model to
predict the overall survival (OS) for locally advanced (IIB-IVA) cervical cancer patients with
squamous cell carcinomas.
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Materials and methods

A total of 76 patients diagnosed with cervical cancer and treated from 2000 to 2010 at
Maastro clinic, Maastricht, The Netherlands, were extracted to train the decision tree. We
used an external set of 70 patients from Gil medical center Korea to validate the decision tree.
Patients with a histological type of cervical cancer different from squamous, FIGO stage
less than IIB, or treated with hyperthermia were excluded from the analyses. We focused
on locally advanced cervical cancer patients who are treated with definitive platinum-
based concurrent chemoradiation therapy (CCRT). Extracted parameters common to both
treatment institutions include the FIGO stage (IIB, IIIA, IIIB, and IVA), patient age at
radiotherapy (in years), tumor size, squamous cell carcinoma antigen (SCC-Ag) level, and
clinical lymph node involvement based on clinical examination and abdominopelvic CT
and/or pelvis MRI imaging. The variable of interest is the overall survival (OS), defined as
the time difference between tumor diagnosis and death or last follow-up. The tumor size
was determined by measuring the central tumor diameter on abdominopelvic CT and/or
pelvis MRI.

Statistical analysis

The preliminary analysis explored the data with some descriptive statistics and graphs.
Tumor size was binarized into patients with a tumor size above and below 4cm and excluded
patients with missing information from the tree-building process. The variable selection
procedure was incorporated into the tree-growing process since the algorithm can select
essential variables based on the response. Survival risk groups were constructed from the
decision tree splitting leaf nodes and visualized with Kaplan–Meier plots. We compared
survival between the risk groups using the log-rank test. The rpart package with default
parameter settings was used to construct the decision tree. The concordance index (C-index),
which reflects the accuracy of survival models, was used to evaluate the tree’s performance.
A C-index value of 1 indicates a perfect prediction, while a C-index value of 0.5 is comparable
to a random guess (16). All statistical analyses were performed with the R software (17),
and a p-value < 0.05 was considered statistically significant.
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Results

A total of 146 women with cervical cancer were considered to grow and validate the decision
tree. Excluded patients with missing information reduced the training and validation
cohorts to 68 and 69, respectively. The median age of patients at Maastro was 59 (34-89)
and 61 (26-84) at Gil medical center. We found no statistical difference between the two
institutions regarding age and FIGO stage. The median follow-up time in months at Maastro
and Gil medical center was 58.51 (49.74-87.36) and 46.87 (21.40-66.93), respectively. Table 7.1
shows the patient and tumor characteristics from the two institutions.

Table 7.1. General patient characteristics at Gil medical center and Maastro

Variable Levels Gil MC Maastro p-value

Age Mean (sd) 61 (12.51) 59 (13.20) 0.142

SCC-Ag
Mean (sd) 19 (22.25) 12 (15.22)

0.028
Missing 01 (1.67%) 08 (10.53%)

FIGO

IIB 46 (65.71%) 40 (58.82%)

0.779
IIIA 05 ( 07.14%) 04 (05.88%)
IIIB 14 (20.00%) 18 (26.47%)
IVA 05 (07.14%) 06 (08.82%)

Tumor size
< 4cm 10 (14.29%) 13 (19.12%)

< 0.05≥ 4cm 60 (85.71%) 55 (80.88%)
Missing 00 (00.00%) 01 (01.32%)

Clinical N
Normal 21 (30.00%) 69 (91.18%)

< 0.05
Metastases 49 (70.00%) 06 (8.82%)

FIGO: The International Federation of Gynecology and Obstetrics
SCC-Ag: Squamous Cell Carcinoma Antigen, MC: Medical Center , sd: Standard Deviation.

The mean patient age at the Gil medical center was slightly higher than at Maastro, with
fewer patients having a pelvis nodal metastasis and lower mean SCC-Ag level. A more
favorable survival was found in the Gil medical center, as depicted in Figure 7.1. Based on
the FIGO staging, stage IIIA, and lower patients were about 72.8% in Gil medical center. In
contrast, it was 64.7% for Maastro, with more patients having a FIGO stage IIIB or higher.
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Figure 7.1. Kaplan–Meier OS curve for late-stage (IIB-IVA) cervical cancer patients with
squamous cell carcinomas at Gil Medical Center(N = 70) and Maastro(N = 76).

Survival tree for OS

The decision tree was developed using all the essential independent prognostic factors
for overall survival, as shown in Figure 7.2. The most important prognostic factor for
determining overall survival was the patient’s FIGO stage based on the tree. The tree then
splits into patients with FIGO stage IIB tumor versus FIGO stage III-IVA tumor. The second
most important factor for these two groups of patients was quite different. For stage IIB
patients, age was the most significant factor, while for stage III-IVA patients, tumor size was
more important. The survival curve for IIB patients above 70 years can be consulted directly
from the tree. Likewise, stage III-IVA patients with a smaller than 4cm tumor. However,
for IIB patients younger than 70 years and the more advanced stage patients (III-IVA) with
a tumor larger than 4cm, the patient’s SCC-Ag level has to be consulted but at slightly
different concentrations of 3.75 ng/ml and 3.9 ng/ml respectively.
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Figure 7.2. Survival tree for predicting the overall survival in women with stage IIB and
higher cervical cancer.

The grown tree performs reasonably well in the training and validation data, with a C-index
of 0.786 (95% CI, 0.711 - 0.860) and 0.716 (95% CI, 0.639 - 0.893). Six risk groups were created
based on the splitting of the survival tree, as shown on the leaf nodes of Figure 7.2. The
first three-leaf nodes of the tree were considered IIB patients with low, moderate, and high
risk, and the subsequent three-leaf nodes were also considered III-VA patients with low,
moderate, and high risk. The number of patients in each risk group is shown at the top
of each leaf node’s rectangular box. A Kaplan-Meier curve for each risk group is shown
in Figure 7.3 for the training and validation cohort, respectively. The log-rank test for the
difference between risk groups’ survival curves was statistically significant in both cohorts,
indicating that the survival tree is good at discriminating between patients based on their
survival probabilities.
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Figure 7.3. The Kaplan-Meier survival curve for the different risk groups in the train and validation
cohort

Risk groups

To evaluate the decision tree’s ability to predict future patients’ survival probability in these
different risk groups, the predicted mean survival curve of each risk group was compared
with the observed Kaplan-Meier survival curves by overlaying the two plots, see Figure 7.4.
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Figure 7.4. Overlaid comparison of predicted mean survival curves (dotted lines) and observed
Kaplan-Meier curve (solid lines) of the risk groups for the train and validation cohort respectively.

Based on figure 7.4, the decision tree reasonably predicts these women’s survival probability,
given the close alignment of the actual and predicted survival curves in both the training
and validation cohort.
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Discussion

Survival is a significant concern and fear for most, if not all, persons diagnosed with cancer.
In recent years, cervical cancer mortality has dropped significantly, with women at the
very early stages of the disease having approximately a 100% survival rate (18). Although
cervical cancer is treatable and even curable, it remains very lethal for some women,
especially women at the advanced stage of the disease or in areas with limited medical care.
Predicting the survival probability for these women is pivotal, given that most clinicians
decide the therapeutic modality based on the patient’s treatment outcome, especially overall
survival. Also, some patients wish to know how long they have to live.

The developed survival tree performs reasonably well in the training and validation cohorts,
with a C-index of 0.786 (95% CI, 0.711 - 0.860) and 0.716 (95% CI, 0.639 - 0.893). The survival
tree’s visual and straightforward graphical display with only four readily available clinical
parameters (FIGO stage, age, tumor size, and SCC-Ag) means they can be readily printed
on paper for clinical use. Also, the visual representation of the survival curve of patients
in the different risk groups on the tree can be beneficial to physicians in their (shared)
decision-making process.

Lymph node involvement was not significant enough for the tree to include it in predicting
survival for these cervical cancer patients with squamous cell carcinomas. However, studies
have shown that this variable is predictive of survival (19, 20). Yuan et al. (21), on the other
hand, found in a study of approximately 800 cervical cancer patients that the tumor marker
(SCC-Ag level) is significantly correlated with pelvic lymph node metastasis (PLNM) with
a p-value of 0.001. The small sample size of this study and the significant correlation
between lymph nodes and the SCC-Ag level might explain its absence on the survival tree.
Generally, elevated pretreatment SCC-Ag level is associated with bulky tumors, treatment
resistance, and poor survival (22–24). Therefore, this tumor-associated protein (SCC-Ag) is
an all-important variable for survival prediction and detection of patients with possible
tumor relapse at a very early stage, guiding physicians to select patients who might benefit
most from adjuvant therapy.

Patient age was another significant survival predictor on the tree. However, the controversy
surrounding the impact of age on the survival of cervical cancer women is overwhelming.
Some studies suggest that younger age is an unfavorable prognostic factor (25, 26). In
contrast, others believe that older women have an unfavorable prognosis (27), more so
in the disease’s advanced stages. On the other hand, Wright et al. (28), believe that age
is a poor prognostic factor for cervical cancer patients. Despite literature suggesting
that younger women may have a relatively improved outcome (29, 30), given the
direct correlation of age with survival in various cancers (31, 32), with older people
experiencing worse survival because of their comparatively weaker immune system.
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The contradicting age results observed between these studies might be due to the pa-
tient population’s heterogeneity enrolled or the demographic effect of these different studies.

For example, in this study, the significant age difference concerning survival seen between
FIGO stage IIB patients at Maastro was absent for the other FIGO stages (IIIA-IVA) and
utterly absent at the Gil medical center (Figure S7.1 supplemental material). However,
the developed tree could still capture this heterogeneity within the data and present the
knowledge graphically. As depicted on the tree, age is an essential predictive factor for
survival but only for women with FIGO stage IIB, and older women above 70 have a
relatively unfavorable survival.

We also evaluated the relationship between the continuous variables on the tree in both
institutions. In general, the correlations between age and SCC-Ag level in both centers was
not significant with more or less similar distribution pattern (Figure S7.2 supplemental
material). However, age was positively correlated to the SCC-Ag level at Maastro and
negatively correlated at the Gil medical center. A detailed plot of the correlation between
age and SCC-Ag level stratified by FIGO stage (Figure S7.3 supplemental material) shows a
significant difference between the two institutions, with FIGO stage IIIA and IVA having
an opposite correlational relationship. This institutional difference based on the FIGO
staging could also be seen in the boxplot of age with FIGO stage stratified by patients’
survival status (Figure S7.1 supplemental material). Despite the considerable difference in
the distribution of these variables between the two treatment institutions, the tree could still
reasonably predict patients into the different risk groups.

Tree algorithms have many advantages for overcoming data problems and complexity
(missing information, variable distribution, etc.) to provide caregivers with a visual tool
to help them make data-driven decisions. However, most studies analyzing cervical
cancer prognosis are not performed with the tree algorithm (23, 33–35). To the best of
our knowledge, there has been no study to assess the predictive value of a decision tree
in the survival of stage IIB-IVA cervical cancer patients with squamous cell carcinomas
receiving CCRT. Importantly, this study’s secondary value was to show the predictive value
of decision trees and highlight their possible clinical use because caregivers who can ben-
efit from them are less exposed or have very little knowledge of their existence and potential.

This study provides some exciting findings, including a reasonably good predictive
performance. However, it is not void of limitations mainly because of its retrospective
nature in which data quality is not optimal. Nevertheless, a detailed data quality check was
performed by physicians on both data sets from the two institutions throughout the study,
and patients with missing information were excluded rather than imputing missing data.
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The sample size and the number of independent variables used for this study were quite
limited, with only women included with the disease at an advanced stage. This means
that the tree cannot be generalized to women in the early stage of the disease. However,
most treatment institutions generally collect the variables used to grow the decision tree,
and they have been established to be predictive for survival. The tree also performs
reasonably well when validated on patients from another treatment institution where
patients’ characteristics differ significantly from the training population.

The tumor size was dichotomized to patients with tumors larger or smaller than 4cm,
leading to information loss. However, tree algorithms work by binarizing the independent
variables; hence, we could not salvage any information loss in this regard.

Conclusion

We have developed and externally validated a novel survival tree to predict the overall
survival of locally advanced cervical cancer patients with squamous cell carcinomas and
highlighted some essential values of the tree methodology for clinical application. The
visual representation of the grown tree provides valuable survival insights for patients in
the different risk groups, which healthcare providers can leverage for better patient manage-
ment, given its predictive performance on both the train and validation data. However, we
recommend an external validation of the tree on a larger sample size to ascertain its clinical
applicability.
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Supplemental materials

Figure 7.1. Boxplot of age and FIGO stage by survival status for Maastro and Gil MC, respectively.

Figure 7.2. Correlation plot of age and SCC-Ag level for Maastro and Gil MC, respectively.

Figure 7.3. Correlation plot of age and SCC-Ag by FIGO stage for Maastro and Gil MC, respectively.
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Abstract

Purpose
To develop an expert-elicited Bayesian network (BN) for predicting local tumor recurrence
in rectal cancer and compare its performance with an algorithmically determined structure.

Summary of background
Tumor recurrence after treatment, a characteristic of malignant tumors, is the biggest
concern for rectal cancer survivors. The epidemiology of the disease calls for a pressing
need to improve healthcare quality and patient outcomes. Prediction models such as
Bayesian networks (BN), which can probabilistically reason under uncertainty, could assist
caregivers with patient management.

Patients and Methods
A retrospective study on 6754 patients with locally advanced rectal cancer (LARC) enrolled
in 14 international clinical trials from 1993 to 2014. Local tumor recurrence at 2, 3, and
5 years was defined as the endpoints of interest. The expert BN structure was elicited
from the opinions of five expert rectal cancer treating physicians from three countries
on two continents. The algorithmic BN structure was developed from the data with the
hill-climbing algorithm. The area under the curve (AUC) values and calibration plots were
used to assess the performance of the structures.

Results
The median age of patients in this study was 61 (22 - 90) years, with males twice the number
of females. The mean AUC of the expert structure on the training and validation data was
above 0.9 and 0.8, respectively, for all the time points of interest. However, the algorithmic
networks with 14 variables and more than 32 connections had superior performance over
the expert structure with ten variables and 19 relationships over all-time points of interest.

Conclusion
We have developed and internally validated a Bayesian networks structure from experts’
opinions, which can predict the risk of a LARC patient developing a tumor recurrence at 2,
3, and 5 years. Our result shows that algorithmic-based structures are more performant and
less interpretable than expert-based structures.
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Introduction

The introduction of total mesorectal excision (TME) surgery and the use of neoadjuvant
chemoradiation (nCRT) have reduced mortality and recurrence rate for rectal cancer
patients, with an incidence of locoregional relapses after treatments of 4-8% (1–3). Despite
the low incidence, tumor recurrence remains the predominant concern for most rectal
cancer survivors considering the relatively poor quality of life involved (4, 5). Besides the
treatment procedure, several other factors such as tumor site, size, ethnicity, genetics, etc.
could influence the chance of tumor recurrence (5–7) and processing all these pieces of
information to estimate the likelihood of a patient developing a tumor recurrence after
treatment can be overwhelming, even for experts (8, 9). Predictive models such as Bayesian
networks, which consider causal relationships between features, can, on the other hand,
learn efficiently from large and heterogeneous volumes of available information and make
inferences about future patients.

Bayesian networks are suitable for clinical applications because they can probabilistically
reason under uncertainty with an intuitive clinical interpretation of the results (10–12).
Generally, they can be specified by an expert in the domain of interest or inferred from
available data via a learning algorithm (11, 13). However, these methods may be challenging
in healthcare. An algorithm-based structure can include spurious relationships that are
not plausible or have no clinical meaning (e.g., causally linking gender to age) due to
correlations in the data and the impossibility to determine the direction of causality from
data (14). On the other hand, a structure specified by an expert might be biased by the
expert’s prior knowledge and subjective domain experience.

One possible solution to this problem is to survey multiple experts’ opinions. This study
hypothesizes that eliciting multiple experts’ opinions will give a reliable Bayesian network
structure to predict local tumor recurrences at several time points (2, 3, and 5 years) in
rectal cancer patients whose predictions closely approximate the ground truth. To test
this hypothesis, we implemented a solution to examine experts’ opinions on the causal
relationships to predict tumor recurrences in locally advanced rectal cancer (LARC) patients.
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Materials and methods

A retrospective cohort of 6,754 diagnosed LARC patients treated with neoadjuvant chemora-
diation followed by surgery from 1993 to 2014 from 14 international trial cohorts was
analyzed for this study (Table S8.1 supplemental material). All the trials have different
treatment protocols, patient characteristics, and accrual start dates. Only non-metastatic
rectal cancer patients treated with conventional preoperative radiotherapy were considered
for this study. Patients with a surgical procedure different from anterior-resection or ab-
dominoperineal resection, treated with adjuvant radiotherapy or incomplete radiotherapy
treatment, were excluded due to their relatively low representation. Figure S8.1 shows
the variables under investigation in this study based on a timeline (T) of clinical practice
availability. Local tumor recurrence at 2, 3, and 5 years was considered the endpoints of
interest, defined as detecting a tumor on the same sites it previously started after therapy.

Statistics

Data from the 14 trial cohorts were merged and split into training and validation sets
by performing a random 80 - 20% split (stratified per cohort). The SMOTE algorithm
(15) was used to address the class imbalance per response time point, and continuous
variables were categorized based on literature and experts’ suggestions. The circumferential
resection margin (CRM) was dichotomized into positive if the tumor is ≤1mm from the
circumferential margin and negative if >1mm (Table S8.2 supplemental material). Missing
values were considered as a category (Unknown) for all variables. However, patients with
missing information on their local recurrence status were excluded from further analyses.
All analyses were conducted in R version 3.6.1 (16) using the bnlearn package (17) and
GeNIe (Graphical Network Interface) application (18) was used for structural visualization.
Model performance was assessed by generating calibration plots, model accuracy, and
calculating the area under the curve (AUC) on training and validation sets for all time
points of interest.

The median age of 5404 patients in the training and 1350 in the validation cohorts was 61
(22 - 90) and 61 (25 - 84) years respectively. Patients characteristics and treatment modalities
are shown in table 8.1
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Table 8.1. General patient characteristics on the training and validation datasets

Variable Levels Training Validation p-value

Age (years)
Mean (sd) 61.4 (9.6) 61.4 (10)

0.82
Missing 92 (1.7%) 17 (1.3%)

Gender
Male 3760 (69.6%) 929 (68.8%)

0.52Female 1630 (30.2%) 420 (31.1%)
Missing 14 (0.2 %) 01 (0.1%)

Clinical T

cT 1 93 (1.7%) 30 (2.2%)

0.13
cT 2 387 (7.2%) 117 (8.7%)
cT 3 4002 (74.1%) 987 (73.1%)
cT 4 370 (6.8%) 84 (6.2%)
Missing 552 (10.2%) 132 (9.8%)

Clinical N

cN 0 1547 (28.6%) 367 (27.2%)

0.57
cN 1 1707 (31.6%) 438 (32.4%)
cN 2 303 (5.6%) 78 (5.8%)
Missing 1847 (34.2%) 647 (34.6%)

RT dose (Gy)
Mean (sd) 47.7 (3.6) 47.7 (3.5)

0.98
Missing 1378 (22.5%) 347 (22.9%)

Surgery procedure

APR 1629 (30.1%) 426 (31.6%)

0.42
ARbased 3489 (64.6%) 851 (63.0%)
No surgery 107 (2.0%) 22 (1.6%)
Missing 179 (3.3%) 51 (3.8%)

Circumferential resection
margin

Negative 543 (10.1%) 140 (10.3%)
0.91Positive 435 (8.0%) 114 (8.4%)

Missing 4426 (81.9%) 1096 (81.2%)

Overall treatment time
(days)

Mean (sd) 37 (6.6) 37.4 (9.3)
0.16

Missing 1598 (26.1%) 396 (25.8%)

Neoadjuvant chemo

5FU+OXI 1128 (20.9%) 266 (19.7%)

0.60
5FUbased 2806 (51.9%) 709 (52.5%)
No Chemo 1245 (23.0%) 321 (23.8%)
Missing 225 (4.2%) 54 (4.0%)

Tumor distanced(cm)
Mean (sd) 06 (3.1) 06 (3.1)

0.84
Missing 1023 (16.7%) 260 (17.0%)

Interval between RT and
Surgery (weeks)

Mean (sd) 0.9 (0.4) 0.9 (0.3)
0.77

Missing 2251 (36.7%) 554 (36.2%)

Adjuvant Chemo

5FU+OXI 651 (12.0%) 152 (11.3%)

0.70
5FUbased 2497 (46.2%) 621 (46.0%)
No Chemo 2024 (37.5%) 515 (38.1%)
Missing 232 (4.3%) 62 (4.6%)

Pathological N

ypN 0 3436 (63.6%) 852 (63.1%)

0.95
ypN 1 1225 (22.7%) 311 (23.0%)
ypN 2 312 (5.7%) 77 (5.7%)
Missing 431 (8.0%) 110 (8.2%)

Pathological T

ypT 0 625 (11.5%) 148 (11.0%)

0.05
ypT 1 307 (5.7 %) 95 (7.0%)
ypT 2 1453 (26.9%) 387 (28.7%)
ypT 3 2413 (44.7 %) 557 (41.3%)
ypT 4 175 (3.2 %) 53 (3.9%)
Missing 431 (8.0%) 110 (8.1%)

2 years local recurrence
True 385 (7.1%) 90 (6.7%)

0.49False 4168 (77.1 %) 1060 (78.5%)
Missing 851 (15.8%) 200 (14.8%)

3 years local recurrence
True 487 (9.0%) 118 (8.8%)

0.61False 3445 (63.8%) 882 (65.3%)
Missing 1472 (27.2%) 350 (25.9%)

5 years local recurrence
True 599 (11.1%) 153 (11.3%)

0.66False 2036 (37.7%) 497 (36.8%)
Missing 2769 (51.2%) 700 (51.9%)

sd: standard deviation, d: Distance to anal verge (cm), Chemo: Chemotherapy, RT: Radiotherapy

APR: Abdominoperineal resection, ARbased: Anterior resection, OXI: oxaliplatin, 5FU: 5−Fluorouracil
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Structure learning

The domain knowledge from multiple experts’ in three international radiotherapy institu-
tions (Gemelli, Maastro and Gil Medical Center) was employed to develop and validate the
Bayesian network structure. Two experts from Gemelli independently defined the causal
relationship between the variables. These experts were requested to draw arrows between
variables to indicate causal relationships without setting the relationships’ importance. The
relationships were restricted to only variables in the same time-point t or the next t + n.
Arrows drawn from a given variable at time point t to another variable in a preceding time
point t - n were considered invalid. For example, arrows from Clinical T stage to Clinical
N stage or from Age to Clinical T stage are accepted. However, arrows from Clinical T
stage to Age are rejected.

Figure 8.1. Variables under investigation on extraction timeline

Two other experts from Maastro separately reviewed the subset of connections common
to both experts from Gemelli. The Dutch experts were tasked to validate the relationship
by agreeing or disagreeing with each of the connections between the variables made by
Gemelli experts. Only connections where both experts agreed were considered for further
evaluation. As a final validation, an expert from Gil Medical Center reviewed the subset
of connections common to both experts from Maastro. Only the connections validated by
the expert were used to construct the final structure. The expert-developed structure was
checked for cycles, which are not allowed in Bayesian network structures.
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Structure comparison

In order to compare the performance of the developed expert Bayesian network structure
in predicting local recurrence in rectal cancer patients, a structure was also inferred solely
from the data with the hill climbing (HC) algorithm (19) for each time point of interest
using the same training and validation data as the expert structure. The structures were
first compared structurally and then numerically using the AUC, sensitivity, and specificity
values. Calibration plots that measure how similar the distribution and behavior of the
predicted probabilities are to that observed in data were produced to further evaluate the
performance of the structure. The HC algorithm, which looks for the best structure over
the search space by adding, removing, and reversing arcs (arrows) in the DAG one at a
time, was preferred because it is computationally efficient, and a random restart search was
implemented to prevent the structure from getting stuck on a bad local optimum (20). The
Bayesian Information Criterion (BIC), a statistical goodness-of-fit measure that penalizes
structural complexity, was used for the structure-learning process (19).
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Results

Figure 8.2 shows the resulting BN structure based on expert knowledge. This network
achieved AUCs above 0.9 and 0.8 for predicting the risk of local recurrence on the training
and validation data, respectively, for all time points of interest. Table 8.2 shows the mean
accuracies, AUCs, and confidence intervals of the structure’s performance on the training
and validation data at all follow-up time-points of interest.

Figure 8.2. Bayesian network structure based on expert knowledge. The boxes represent the variables
(Node); the colors represent the variables’ time points (t) of availability in the clinical process, as
shown in Figure 8.1. The arrows indicate cause-effect relationships. The gray arrows indicate a direct
causal effect on the outcome of interest.

Table 8.2. The performance of the expert structure based on the accuracy and AUC
values at different time points on the training and validation data.

Training Validation
Time ACC AUC 95% CI ACC AUC 95% CI

2 years 0.84 0.92 0.91 - 0.93 0.76 0.87 0.86 - 0.88
3 years 0.83 0.92 0.91 - 0.92 0.74 0.86 0.84 - 0.87
5 years 0.84 0.91 0.92 - 0.93 0.72 0.80 0.79 - 0.82
CI: confidence interval, ACC: Accuracy
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Structure comparison

The Bayesian network structures resulting from the HC algorithm mentioned above
used all 14 available variables ( Figure S8.1 supplemental material) with 32, 33, and 30
arcs for 2, 3, and 5 years tumor recurrence, respectively. On the other hand, the experts’
structure had 19 arcs and ten variables, excluding age, gender, adjuvant chemotherapy,
and overall treatment time. The outcome had a direct patent-to-child connection with
all 13 nodes for the structure at 5-years, and the outcome for the 2-year structure had
11 children, excluding the arc with adjuvant chemotherapy and CRM, while that of
the 3-year structure had 10, excluding adjuvant chemotherapy, pathological T, and N
which was quite the opposite for the expert structure with just six parents. The only
similarity between the algorithmic and expert structures was the arc CRM to the outcome for
the 2-year structure and the arcs pathological T and N to the outcome for the 3-year structure.

Based on the relationship of the variables with the outcome among the algorithmic
structures, the arcs pathological T and N to the outcome for the 3-year structure were
revered in the 2, and 5-year structures and the arc CRM to the outcome in the 2-year
structure was reversed in the 3 and 5-year structures while the arc adjuvant chemotherapy
to the outcome in the 2-year structure was revered in the 5-year structure and absent in the
3-year structure. Age was only connected to the outcome alone for 3 and 5 years structures.

The numerical comparison of the expert and algorithmic structures based on their perfor-
mance in terms of the AUC (Figure S8.2 supplemental material), sensitivity, and specificity
values for each time points in the training and validation data is shown in Table 8.3. The
algorithmic structures performed slightly better than the expert structure for all matrices
of interest, especially in the validation data. However, these differences in the AUC values
between the structures were statistically significant (p-value < 0.05) for all time points.
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Table 8.3. The AUC, sensitivity, and specificity values of the expert and algorithmic
structures on the training and validation data at different time points.

Training

Time Structure AUC Sensitivity Specificity

2 years
Experts 0.92 0.93 0.76
Algorithm 0.93 0.92 0.78

3 years
Experts 0.92 0.91 0.75
Algorithm 0.94 0.92 0.80

5 years
Experts 0.92 0.92 0.76
Algorithm 0.94 0.92 0.80

Validation

2 years
Experts 0.87 0.86 0.67
Algorithm 0.90 0.88 0.75

3 years
Experts 0.86 0.84 0.63
Algorithm 0.92 0.89 0.76

5 years
Experts 0.80 0.73 0.71
Algorithm 0.89 0.96 0.72

The calibration plots in Figure 8.3 show a good match between the predicted probabilities
and the observed frequencies in the training and validation cohort for both expert and
algorithmic structures. Generally, the expert structure seems to be better calibrated than the
algorithmic structures since most of its points are closer to the dotted diagonal gray line
representing an ideal model, especially recurrence at 5 years.
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Figure 8.3. Calibration plots of the models on the training (left) and validation (right) data for 2-year
(top) to 5-year (bottom) local recurrence. The gray dashed line represents ideal calibration, while solid
lines represent each model’s calibration. Vertical bars indicate a 95% confidence interval, and dots
indicate bias-corrected estimates.
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Discussion

In the current study, we have developed and internally validated a Bayesian network
structure based on five experts’ opinions from three different radiation therapy treatment
institutions to predict tumor recurrence for locally advanced rectal cancer patients. The
structure was developed to capture the biological process that leads to a tumor recurrence by
connecting the variables in the structure based on a timeline of their clinical availability. The
developed structure used nine clinical features well-known to clinicians as pivotal factors
for predicting local tumor recurrence. The structure was well-calibrated with predictive
performance based on the AUC values above 0.9 and 0.8 in training and validation data,
respectively, for all time points of interest. Structures inferred from a learning algorithm
used four variables more than the expert structure, including age, gender, adjuvant
chemotherapy, and overall treatment time, with slightly better performance in terms of AUC
values. However, the expert structure was clinically more plausible than the algorithmic
structures and aligned with the clinical process.

The choice of model to predict local tumor recurrence in rectal cancer patients in this
study was influenced by two main reasons. Firstly, Bayesian networks better represent
complex systems such as the clinical processes leading to tumor recurrence since they have
more liberty to define interactions between variables (10, 21), unlike the generally used
regression method (22–24). Secondly, their ability to make inferences on any variable(s)
in the network makes them very valuable for decision support as they can serve as a
diagnostic and prognostic tool. Thus far, this study is the first to assess the predictive value
of Bayesian networks for tumor recurrence in rectal cancer patients which makes a direct
comparison and interpretation with other studies arduous because of the difference in
analytical approach and study design.

Nonetheless Valentini et al. (22) have previously developed a model to predict tumor
recurrence in locally advanced rectal cancer patients as a decision support tool. The model
included age as a predictive factor for local recurrence, a variable missing in our expert
structure. One apparent reason for this difference is the variable selection procedure, given
that age is also present in the algorithmic structures. Algorithm-based variable selection
methods exploit spurious correlations within the data, which might unnecessarily increase
the complexity of the model and cause overfitting. Also, Farhat et al. (25) did not find age or
gender a predictive factor for tumor recurrence in their 16-year respective study, which is in
support of the expert structure. Although the controversy of included variables depends
largely on patient heterogeneity between the studies, variable inclusion in a prediction
model must not always be strictly algorithm-based, even if it improves its performance.
Instead, it should contain some level of clinical understanding, context, or rationale, which
domain experts are more suited to provide because a correlation between variables does not
necessarily imply causality.

133



Chapter 8 Tumor recurrence

The algorithmic structures used four variables more than the expert structure, which
explains the slightly better predictive performance. However, the additional variables
increase the complexity of the structure since more connections between the variables are
formed but with minimal predictive benefits (Table 8.3). Although the expert structure did
not perform better than the algorithmic structures, we believe the expert structure might
be more suitable for clinical use over the algorithmic structure. Firstly, the algorithmic
structure uses parent-to-child connections not aligned with the clinical process (e.g., the
pathological nodal stage has a causal link to age at start radiotherapy) to make decisions.
This implies that even with better performance on both data sets, algorithmically generated
structures are comparable to black-box models since the decision process lacks clinical
explanation. Regarding model calibration, the expert structure seems to be better calibrated
for all time points than the algorithmic structure with higher AUCs.

Tumor recurrence is a very challenging endpoint not only in terms of quality of life
for cancer survivors (4, 5) but also the difficulty in accurately predicting the endpoint
(26). Patient variability can explain this difficulty since a treatment regime that leads to
recurrence-free for one patient might not give another patient the same outcome. Therefore,
collaboration with domain experts is pivotal to have a more personalized prediction of
tumor recurrence since they better understand tumor biology. The performance of the
proposed expert structure is well above the chance level with clinically valid relationships.
Therefore, it might be valuable in routine clinical settings as a decision aid to support
personalized treatment decision-making. Also, it could guide clinicians to opt for a more
aggressive adjuvant therapy to prevent the chance of a tumor recurrence for patients who
have undergone surgery but with a high predicted probability of a tumor recurrence in the
structure. However, the structure is trained on retrospective clinical trial data and warrants
an external validation on routine clinical data to ascertain its clinical usefulness. In addition,
the circumferential resection margin, a variable proven to influence local recurrence (27, 28),
had a large proportion of missing information and will be worthwhile to retrain the CPT of
this variable on more complete dataset.

Despite the predictive performance of the Bayesian network structures in this study, there
is still room for improvement. The international and multi-trial nature of our study may
be seen as a limitation, given that it combines the contribution of experts from three
cancer institutions and data from multiple clinical trials with different treatment protocols.
However, this limitation could also be considered a strength, as it may make our findings
more robust and generalizable. The multi-trial combination is particularly relevant for
this study since it enables the structure to be trained on a large sample size, which reflects
the models’ superior performance over other studies with relatively smaller sample sizes
(22–24) given that model performance is proportional to training sample size. Also, this
large sample size helped improve the number of events given the disease’s low event
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rate. Despite combining data from 14 different European trials, the number of local
recurrence events was relatively low. Our study design also prevents updating the number
of connections between variables since each expert is contacted only once for input. Also,
some of the variables were categorized, leading to a loss of information. Lastly, blood tumor
markers such as carcinoembryonic antigen (CEA), a proven predictive factor for local tumor
recurrence in rectal cancer (25), were not included in the structure because of the study’s
retrospective nature.

Conclusions

we have developed and validated a Bayesian network structure from 14 trial cohorts’
data by analyzing a total number of 6754 rectal cancer patients for predicting the risk
of local recurrence in locally advanced rectal cancer patients at 2, 3, and 5 years. The
causal relationships between the variables in the developed Bayesian network structure
were proposed and validated by domain experts with years of experience from different
international radiotherapy centers, where treatment protocols may differ. Our result showed
that although structures from both methods performed above chance level, the algorithmic
based structures had higher discriminating power than the expert structure. However,
they contained clinically incomprehensible arcs, making the expert structure more credible
even with relatively lower predictive performance. Future research will combine these two
Bayesian network structure learning approaches to produce clinically plausible structures
with optimal predictive performance.
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Supplemental materials

Table 8.1. The 14 clinical trials, accrual dates and the total number of patients from
each trial included in this study
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Table 8.2. Variables categorized into different groups

Variable Levels Names

Patient Age at Radiotherapy

Less than 49 years Adults
Between 50 to 59 years Aged
Between 60 to 69 years Old
Above 70 years Senior

Interval between radiotherapy and surgery
Before six weeks Early
After six weeks Late

Tumor distance from the anal verge in cm
Less than 5 cm Low
Between 5 - 10 cm Mid
Above 10 cm High

Overall treatment time (OTT)
Less than 37 days Short
More than 37 days Long

Circumferential resection margin (CRM)
≤ 1mm Positive
> 1mm Negative
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Figure 8.1. The Bayesian network structures based on the hill-climbing algorithm. The circles
represent the variables (Node), and the arrows indicate the direction of the causal-effect relationships.
The brown arrows indicates a direct causal-effect from the outcome of interest
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Abstract

Purpose
The aim of this study was to develop and internally validate a clinically plausible Bayesian network
structure to predict two-year survival in patients diagnosed with non-small cell lung cancer
(NSCLC) and primarily treated with (chemo) radiation therapy by combining expert knowledge and
a learning algorithm.

Summary of background
The incidence of lung cancer has been increasing. Healthcare providers are trying to acquire more
knowledge of the disease’s biology to treat their patients better. However, the information available
is more than humans can efficiently process. Predictive models such as Bayesian networks, which
can intricately represent causal relations between variables, are suitable structures to model this
information. However, commonly known methods for developing Bayesian network structures are
limited in healthcare.

Patients and Methods
545 NSCLC patients treated primarily with (chemo) radiation therapy from Maastro clinic in the
Netherlands between 2010 to 2013 were considered to develop this Bayesian network structure. All
continuous variables were discretized before analysis. Patients with missing survival status and
variables with more than 25% missing information were excluded. The causal relationships (arcs)
between variables in the data were determined using the hill-climbing algorithm with domain experts’
restrictions. The learning algorithm was run on a number of bootstrapped samples (B=400) and for
the final structure, we kept the arcs present in at least 70% of the learned structures. Performance
was assessed by computing the area under the curve (AUC) values and producing calibration
plots based on a 5-fold cross-validation. In addition, an adapted pre-specified expert structure was
compared with a structure developed from the method in this study.

Results
Tumor load was included in the main structure due to its high percentage (37%) of missingness and
lack of added value. The final cohort used to develop the structure was reduced to 499, excluding 46
(8.4%) patients with missing survival status. The resulting structure’s mean AUC and confidence
interval to predict two-year survival was 0.614 (0.499 - 0.730 ). The AUC of the compared structures
was only slightly above the chance level, but the structure based on the method in this study was
clinically more plausible.

Conclusion
The results of this study shows that Bayesian network structures which combine expert knowledge
with a rigorous structure learning algorithm produce a clinically plausible structure with optimal
performance.
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Introduction

Lung cancer is the second most common cancer and the leading cause of cancer morbidity
and mortality in men and second for women after breast cancer worldwide, with non-small
cell lung cancer (NSCLC) accounting for approximately 85% of this disease (1, 2). These
statistics actuate healthcare providers to acquire more knowledge and understand the patient
condition and disease characteristics for better patient management and treatment outcomes.

However, the amount of information that needs to be processed to ascertain if a patient
will experience an event of interest can be challenging even for domain experts (3, 4).
Furthermore, it has been shown that even experienced domain experts specialized in the
treatment of lung cancer have limited to no capabilities for predicting patients’ outcomes
vis-a-vis prediction models (5–8). Predictive models such as Bayesian networks (BN), which
can structurally represent a domain of interest by causally mapping the domain’s variables,
may be more suitable for modeling such information.

Bayesian network structures are either expert(s) specified or algorithm-based (9–11). How-
ever, these methods are limited in a clinical setting due to implausible casual relationships
for algorithmic structures or bias for expert structures based on their experience and domain
knowledge. Our prior work, which compared the performance of structures from these two
sources, showed that algorithm-based structures perform relatively better but with little or
no clinical interpretability (12). On the other hand, expert structures are more clinically
interpretable but with relatively inferior performance. Therefore, this study aims to develop
a Bayesian network structure that stems from both methods to predict two-year survival in
patients diagnosed with lung cancer primarily treated with radiation therapy.

We hypothesize that a symbiotic relationship between domain experts and a robust learning
algorithm (expert-algorithm) would yield a clinically interpretable and plausible Bayesian
network structure to predict two-year survival for lung cancer patients with optimal perfor-
mance.
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Materials and methods

We retrospectively collected data of 545 non-small cell lung cancer (NSCLC) patients diag-
nosed between 2010 to 2013 and eligible for (chemo) radiotherapy treatment at Maastro
Clinic, Maastricht, The Netherlands. Patients’ demographics and clinical information such
as age, gender, WHO performance status, TNM stage, tumor load, FEV, smoking status,
chemotherapy type, and two-year survival status were extracted to establish the Bayesian
network.

Bayesian network

Bayesian networks model the relationships between a set of variables. These relationships
are represented in a directed acyclic graph (DAG), where each node in the graph signifies a
variable (9).The direction of the link between nodes represents the influence dependency
from the causal variable known as the parent node to the affected variable called the child
node. Therefore, each variable can be a child or parent to numerous variables, but the
process should not contain any loops. In other words, tracing the parent-to-child link should
not connect a variable with itself or a variable functioning as a child and parent to another
variable (11). The conditional probability table (CPT) represents the probabilities of each
possible state of a node, given the states, its parent node may take (9, 10, 13).

Structure learning

The structure learning process was bootstrapped (B=400) with varying sample sizes at each
run using the hill-climbing algorithm to identify the causal relationships (arcs) between
variables in the dataset. Arc strength was evaluated as the rate of occurrence over all the
bootstrap runs, and only arcs with an occurrence rate above 70% were included in the final
structure. Domain knowledge from multiple experts in the field was employed to restrict
the algorithm from forming arcs in clinically implausible directions (so-called blacklist) like
age having a causal influence on gender (Table S9.1 in the supplementary materials). The
pseudocode for the expert-algorithm method is outlined in algorithm 1.
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Algorithm 1: Expert-Algorithm pseudocode
Input: Data D, Bootstrap run B, Restriction R, threshold ε
Output: Arcs as list A, BN
Step 1: Bootstrap Learning // Learning on the bootstrap samples di

for i : 1...B in di do
Aj = hc(di, B, R) // R: Expert restricted arcs

end
Step 2: Arc Strength

A =

∑n
(j=1)Aj

B
// Count each arc in all bootstrap runs

Step 3: Arc Thresholding
foreach arc in A
if The arc strength ≥ ε // Arc selection for final BN structure

then
Include in the final structure.

end
end
return BN
hc = Hill-climbing learning algorithm, BN = Bayesian Network

Statistical analysis

All analysis was conducted in R version 4.1.0 (14) using the bnlearn package (15) and
GeNIe a Graphical Network Interface application (16) was used to visualize the developed
Bayesian network structures. Tumorload and age were categorized into three groups with
cutoff values at the 25th and 75th percentile and the force expiratory volume (FEV) was
categorized based on experts opinions. Missing values were imputed using the Multivariate
Imputation via Chained Equations (MICE ) package (17). Patients with missing survival
status and variables with more than 25% missingness were excluded from the analysis.
The predictive performance of the resulting Bayesian network structure was assessed by
computing the area under the curve (AUC) using a 5-fold cross validation technique and
generating calibration plots.

The main structure was updated with the excluded variable using the structural.em function
in the bnlearn package to check if the excluded variables having above 25% missingness
were crucial. The function learns a Bayesian network from a dataset containing missing
information by first inputting the missing data using the expectation-maximization (EM)
algorithm and then finds the best possible structure based on the imputed data. The arcs of
the main structure were used as a whitelist in the structure update process.
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Results

Of the 545 patients in this study, 46 (8.4%) with a missing two-year survival status were
excluded from this analysis, reducing the cohort to 499. Tumorload was excluded from
further analysis due to its high percentage (37%) of missing information. The median age of
patients in this study was 68 (33 - 89). Most of the patients in this study are ex-smokers, with
the number of males almost twice that of females. Table 9.1 shows detailed descriptions of
patients’ characteristics for this study cohort.

The variable age was discretized into three groups with cutoff values at the 25th and 75th
percentile (Figure S9.2 supplementary materials). Patients between the cutoff values are
considered elderly as shown in equation 9.1 while patients below and above the cutoff
values were considered adults and seniors, respectively. The forced expiratory volume (FEV)
was also discretized into four groups based on experts’ suggestions as shown in equation
9.2.

The WHO performance status was recategorized into four groups by combining patients in
the limited (3) and bed-bound (4) categories into the same category (bed-bound) because
of the very low number of patients in the two categories (Table 9.1). Also, they both have
similar characteristics (See Table S9.2 in the supplemental material for further explanations).

Diagnostic plots were created to ensure that the imputations have converged to the desired
distribution. The convergence check plot (Figure S9.1 supplemental material) of the imputed
values suggests the imputation has converged to the target distribution. Furthermore,
the density plot (Figure S9.4 supplemental material) which compares the distribution of
the imputed and observed values confirms that the imputations are reasonable since the
distribution of the imputed and observed values are very similar.
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Table 9.1. Overview of patient demographics and clinical characteristics

Two years survival
Variable Levels False True Total

Age at RT Mean (sd) 68 (10.9) 67 (10.1) 68 (10.5)

FEV
Mean (sd) 76 (20.8) 78 (22.4) 77 (21.5)
Missing 68 (22.5%) 42 (21.3%) 110 (22.0%)

Tumorload
Mean (sd) 136 (143.6) 92 (150.7) 113 (145.7)
Missing 111 (36.8%) 64 (32.5%) 204 (37.4%)

Sex
Male 205 (63.1%) 120 (36.9%) 325 (65.1%)
Female 97 (55.7%) 77 (36.9%) 174 (34.9%)

Metastasis
No 252 (60.3%) 166 (39.7%) 418 (90.9%)
Yes 28 (66.7%) 14 (33.3%) 42 (09.1%)
Missing 22 (56.4%) 17 (43.6%) 39 (07.8%)

Chemotherapy type

No chemo 71 (66.4%) 36 (33.6%) 107 (25.6%)
Sequential 31 (60.8%) 20 (39.2%) 51 (12.2%)
Concurrent 151 (58.1%) 109 (41.9%) 260 (62.2%)
Missing 49 (60.5%) 32 (39.5%) 81 (16.2%)

Smoking status

Non smokers 07 (50.0%) 07 (50.0%) 14 (03.1%)
Quit smoking 194 (62.4%) 117 (37.6%) 311 (68.2%)
Smokers 76 (58.0%) 55 (42.0%) 131 (28.7%)
Missing 25 (58.1%) 18 (41.9%) 43 (08.6%)

WHO performance
status

Active (0) 46 (52.9%) 41 (47.1%) 87 (17.7%)
Restricted (1) 172 (61.4%) 108 (38.6%) 280 (57.0%)
Self care (2) 65 (64.4%) 36 (35.6%) 101 (20.6%)
limited (3) 13 (65.0%) 07 (35.0%) 20 ( 04.1%)
Bedbound (4) 02 (66.7%) 01 (33.3%) 03 ( 00.6%)
Missing 04 (50.0%) 04 (50.0%) 08 (01.6%)

Tumor stage

T0 45 (61.6%) 28 (38.4%) 73 (15.7%)
T1 89 (64.0%) 50 (36.0%) 139 (29.8%)
T2 50 (60.2%) 33 (39.8%) 83 (17.8%)
T3 100 (58.5%) 71 (41.5%) 171 (36.7%)
Missing 18 (54.5%) 15 (45.5%) 33 (06.6%)

Nodal stage

N0 77 (58.3%) 55 (41.7%) 132 (27.6%)
N1 16 (51.6%) 15 (48.4%) 31 ( 06.5%)
N2 114 (58.5%) 81 (41.5%) 195 (40.8%)
N3 85 (70.8%) 35 (29.2%) 120 (25.1%)
Missing 10 (47.6%) 11 (52.4%) 21 (04.2%)

Two year survival
False - - 302 (60.5%)
True - - 197 (39.5%)
Missing - - 46 (08.4%)

RT: Radiotherapy, Chemo: Chemotherapy, WHO: World Health Organization, FEV: Forced expiratory volume
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Table 9.2 shows the results of the aggregated arcs from the bootstrap structure learning
process using the hill-climbing (hc) algorithm and expert restriction (Blacklist). The arc
strength shows the percentage of occurrence of each arc in the bootstrap runs.

Table 9.2. Bootstrap run output with arcs and strength for the main structure.

Arcs Dependencies (A)
Strength

Parent node Child node

Gender Two year survival 0.65
Gender FEV 0.64
WHO PS Two year survival 0.70
WHO PS Chemotherapy type 0.43
Age Two year survival 0.61
Age WHO PS 0.84

Age Chemotherapy type 0.99
Tumor stage Two year survival 0.73
Tumor stage WHO PS 0.43
Tumor stage Nodal stage 0.91
Tumor stage FEV 0.64
Tumor stage Chemotherapy type 0.94
Nodal stage Two year survival 0.84
Nodal stage WHO PS 0.91
Nodal stage FEV 1.00
Nodal stage Chemotherapy type 1.00
Metastasis Two year survival 0.42
Metastasis WHO PS 0.92
Metastasis FEV 0.66
Metastasis Chemotherapy type 0.76
FEV Two year survival 0.63
FEV WHO PS 0.86
FEV Chemotherapy type 0.97
Chemotherapy type Two year survival 0.34
Smoking status Two year survival 0.86
Smoking status FEV 0.82

FEV: Forced expiratory volume, WHO PS: World Health Organization performance status

A threshold of 0.7 was chosen to decide which arcs should be included or excluded in
the Bayesian network structure. A higher threshold value ensures that the conditional
probability table (CPT) of the outcome does not grow too large, which can cause the
structure to overfit. Therefore, the chosen threshold helps restrain the structure from
overfitting but allows enough room for structural complexity for optimal performance.
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The resulting Bayesian network structure based on the chosen threshold is presented in
figure 9.1. Of the 26 arcs produced during the bootstrap structure learning process, only 15
had an arc strength above the selected threshold and were used to develop the Bayesian
network structure. Four variables directly influenced the response of interest (gray arcs),
while gender was isolated in the structure because it was neither a parent nor a child to any
variable in the network.

Figure 9.1. Resulting Bayesian network structure to predict two-year survival from the expert-
algorithm method. The oval structure represents the variables (Node), and the arrows indicate the
direction of the causal-effect relationships. Grey arrows indicate a direct parental link to the outcome
of interest
FEV = Forced expiratory volume, Chemo = Chemotherapy, WHO PS = World Health Organization performance status

Figure 9.2 shows the performance assessment results when the resulting Bayesian network
structure was used to predict two years survival in lung cancer patients using the repeated
(r=50) 5-fold cross-validation technique. The left figure shows the area under the curve and
confidence intervals of the respective folds with a mean value of 0.614 (0.499 - 0.730). The
right figure gives a measure of how similar the predicted probabilities are to the observed
probabilities with calibration assessed in terms of the degree of deviation of the points
(color) from the 45-degree line (dotted gray).

Updating the main structure with the excluded variable included three arcs (red) between
tumor load and tumor stage, tumor load and the presence of metastasis, the presence of
metastasis and two years survival (Figure S9.3 in the supplemental material). However, the
addition of these arcs had no significant improvement on the mean AUC value. Gender was
again not connected to any other variable in the structure.
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Figure 9.2. The area under the curve and calibration plot of the structure for predicting two-year
survival.

To assess the expert-algorithm method, the structure and performance of an expert pre-
specified structure from Jochems et al. (18) was compared with a structure resulting from the
expert-algorithm procedure with a threshold of 0.7 and the same variables. The aggregated
arcs results from the bootstrap runs based on these variables are presented in table 9.3

Table 9.3. Bootstrap run output with arcs and strength for structure comparison.

Arcs Dependencies (A)
Strength

Parent node Child node

WHO PS Two year survival 0.43
Age Two year survival 0.38
Age WHO PS 0.94
Tumor stage Two year survival 0.36
Tumor stage WHO PS 0.10
Tumor stage Nodal stage 0.68
Nodal stage Two year survival 0.74
Nodal stage WHO PS 0.92

WHO PS: World Health Organization performance status

The structure from Jochems et al. (18) was adapted in this analysis because of the missing
total tumor dose variable. Figure 9.3 shows the adapted structure from Jochems et al. (18)
and that resulting from the expert-algorithm method respectively. The only similarity in the
structures is that the outcome has just one parent but the variables are completely different
with the adapted structure having WHO performance score as parent and nodal stage for
the expert-algorithm structure. Based on the differences, the expert-algorithm structure uses
one variable and arc less with the outcome being an end node (having no child) compared
to the adapted structure.
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Figure 9.3. Adapted structure from Jochems et al. (18) and that from the expert-algorithm procedure
respectively. The oval structure represent the variables (Node), and the arrows indicate the direction
of the causal-effect relationships. Grey arrows indicate a direct parental link to the outcome of interest
WHO PS: World Health Organization performance status

The performance of both structures was only slightly better than flipping a coin (Figure
S9.5 supplemental material) with an area under the curve of 0.56 (0.517 - 0.613) for the
expert-algorithm structure and 0.53 (0.489 - 0.582) for the adapted structure from Jochems
et al. (18). Though both structures had poor performance with just one arc to the outcome,
the expert-algorithm structure had a slightly higher discriminating ability than the adapted
structure, but this difference was not statistically significant (p-value = 0.413).

To further evaluate the performance of the structures, their respective calibration plots were
produced and overlaid (Figure S9.5 supplemental material). They show that both plots
were poorly calibrated given how distant the points are from the diagonal dotted gray line.
However, the expert-algorithm structure better calibrated relatively with more points closer
to the diagonal line.
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Discussion

We have developed a novel structure learning method to produce clinically plausible and
interpretable Bayesian networks resulting from an interplay of a learning algorithm and
experts’ restrictions. The structure produced due to our expert-algorithm method was used
to predict two-year survival in NSCLC patients. A resulting structure from the application
of our expert-algorithm method was compared to an adapted expert pre-specified structure.
Both structures produced comparable results in terms of AUC and calibration. However,
the expert-algorithm structure had a slightly better performance with one variable and arc
less than the adapted structure and more clinically plausible arcs.

Numerous Bayesian network structures have been developed to predict survival in lung
cancer patients (19), and some of these structures stem from our group (12, 18, 20–22).
These structures were either inferred from the data by a structure learning algorithm or
pre-specified by expert(s). Jochems et al. (18) has even compared the performance of
structures derived from both methods and showed that expert-based structures were more
performant than algorithm-based structures, although the difference was not statistically
significant. To our knowledge, this is the first time a Bayesian network structure has been
developed from routine clinical care data that applies both structure learning methods
while considering the clinical sanity and interpretability of the resulting structure—in other
words, developing a Bayesian network structure which is suited for clinical implementation,
because Bayesian network structures which captures domain knowledge are more
interpretable which is essential for clinical decision making.

Bayesian network structure learning process can be time-consuming and computer-
intensive, especially for expert base and algorithmic structures like the hill-climbing
algorithm, which test pairs of variables to determine whether edges should be included
or removed from the structure respectively. Therefore applying our expert-algorithm
method, which restricts candidate solutions (arcs) from being evaluated during the search
process, could significantly improve structure learning in radiotherapy fields, which
involves using high dimensional data, as is the case with radiomics studies. Furthermore,
our expert-algorithm method could serve as a means to perform variable selection in the
structure learning process of Bayesian networks, something missing in literature since
variable selection is mainly performed manually by experts. When a high threshold is
applied to the bootstrap object, it leads to the removal of arcs with strength smaller than the
specified threshold and possibly variables with arc strength inferior to the threshold as in the
case for gender in figure 9.1. Finally, the expert restriction and the use of threshold ensure
that the resulting structure is clinically correct and includes only relevant relationships in
the data with optimal performance.
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This study hypothesized that combining experts’ knowledge with a learning algorithm
would yield a more clinically correct structure. The results comparing the structures from
both methods support this hypothesis. Although both structures performed relatively
poorly, we observed a significant improvement in our expert-algorithm structure as most of
the arcs in the adapted structure were either reversed or modified to clinically acceptable
arcs. However, the arc from WHO PS to the outcome, present in the adapted structure,
was absent in the expert-algorithm structure. One possible explanation for this difference
could be that WHO PS alone is not a good correlate to survival, but its interplay with other
variables increases its influence on survival, as seen in the primary structure ( Figure 9.1 )
with an arc strength of 0.73 as opposed to 0.43 ( Table 9.2 and 9.3 respectively) . Similar
conclusions can be drawn from the study by Jayasurya et al. (20) as the arc (WHO PS to
Survival) was also present in their structure with a link weight of -0.169, suggesting that
WHO PS has limited ability to predict survival correctly.

The structures presented in this study are not intended for clinical use at the moment
but to encourage further research on how to merge these two methods best to develop
a Bayesian network structure for a more clinically correct structure but with optimal
predictive performance. Therefore, this study is not devoid of limitations mainly because
of its retrospective nature, which implies the possibility of data bias. Furthermore, the
main structure did not include predictive variables such as the number of positive lymph
nodes on the PET scan (PLNS) and tumor load. Although tumor load was available
as a variable in this study, it was excluded due to missing information. Faehling et al.
(23) has shown that tumor load is an essential factor for overall survival, and patients
with lower tumor load have a better outcome than patients with larger tumor load.
PLNS, on the other hand, was unavailable in this study which makes the structural
comparison somewhat unfair. Also, information is lost with the discretization of con-
tinuous variables, which might explain the low predictive power of tumor load in this
study coupled with the high missingness. Lastly, this study’s threshold selection is
set arbitrarily, which means a large threshold will lead to a sparse network that only
partially represents the domain, and a small threshold yields a dense network (complex,
squiggly, and harder to read ) which might overfit the data. Future researchers should focus
on finding an optimal threshold that addresses the shortcomings of the present thresholding.
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Conclusion

We have developed a Bayesian network structure from routine clinical data for predicting
two-year survival in lung cancer patients treated with (chemo) radiotherapy. Our expert-
algorithm method uses bootstrapping with arc restriction in the structure learning process
and assesses the robustness of causal relationships. Therefore, selecting the most robust
relationships overall bootstrapping samples produces a structure that captures all relevant
relationships within the data with a reduced chance of adding spurious links. In the future,
we intend to use this method to evaluate different structures learned from different data
sets and perform a privacy-preserving distributed learning approach to structure learning
in Bayesian networks.
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Supplemental materials

Figure 9.1. The convergence check plot shows the mean (left) and standard deviation (right) of the
imputed values against iteration number. The plot suggests the imputation has converged to the
target distribution given the good mix/intermingling of the streams and its trends-free nature at the
later part of the iterations
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Figure 9.2. Histogram of age and tumorload with vertical lines at the 25th and 75th percentile
respectively.

Figure 9.3. Updated Bayesian network structure to predict two-year survival with the structural.em
function in the bnlearn package. The oval structure represent the variables (Node), and the arrows
indicate the direction of the causal-effect relationships. Grey arrows indicate a direct parental link to
the outcome of interest and red arrows indicates additional arcs.
FEV: Forced expiratory volume, Chemo: Chemotherapy, WHO PS: World Health Organization performance status
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Figure 9.4. Kernel density estimates for the observed data (blue) and the imputed data (thin red
lines) for forced expiratory volume (FEV).

Figure 9.5. Performance of the adapted and expert-algorithm structure in terms of the area under
the curve and calibration respectively.
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Table 9.1. Blacklist restriction of patient characteristics.
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Gender O X X X X X X X X L L

WHO PS X O T T T X T T T T L

Age X L O L X X X X X X L

Chemo type X L T O T X T T T T L

Tumorload X L X L O X L L L L L

Smoking status X X X X X O X X X X L

Tumor stage X L X L T X O L X L L

Nodal stage X L X L T X T O X L L

Metastasis X L X L T X X X O L L

FEV T L X L T X T T T O L

Two year survival T T T T T T T T T T O

FEV: Forced expiratory volume, Chemo: Chemotherapy
WHO PS: World Health Organization performance status
T: Top determines left, L: Left determines top, X: Both direction blocked, O: Diagonal

Table 9.2. WHO Performance status

Grade Explanation of activity

0 Fully active, able to carry on all pre-disease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry
out work of a light or sedentary nature, e.g., light house work, office work

2 Ambulatory and capable of all self-care but unable to carry out any work
activities. Up and about more than 50% of waking hours

3 Capable of only limited self-care, confined to bed or chair more than 50%
of waking hours

4 Completely disabled. Cannot carry on any self-care. Totally confined to
bed or chair.

5 Dead
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Introduction

Machine learning methods that transform (Big) Data into knowledge have undergone
unprecedented changes over the last decade, drawing much attention and interest in
numerous life science fields. Their potential and impact on advancing healthcare and, more
specifically, radiation oncology are vast. Unfortunately, many assume machine learning
models are “black boxes” capable of magically providing the needed answers, with no
interest in the reasoning behind the answer. The sad reality in medicine is that most of
these developed prediction models will rarely be applied in real-world settings. In the
model-building process, the two most pivotal things are the research question and the
solution provided by the model. The end-users who implement the actionable insight
generated by these trained prediction models might not know the intricate details of how
the model works. However, since the model will be an integral part of the decision-making
process, they have the right to pose the question, “how does the model arrive at its
decisions?” Answers to such questions might help build trust between a machine-learning
model and end-users.

To this end, this thesis tries to bridge the gap between clinical (Big) data and actionable
insights using machine learning models to improve patient management and care. In
particular, we focused on models representing how relevant features relate to each other
and the outcomes of interest in the best, most straightforward manner possible. These
relationships between variables and outcomes create a holistic view of the treatment
process leveraged for informed clinical decisions. Furthermore, this thesis embedded the
importance of including experts who are most often the end-users in the model-building
process from a broader perspective to assist in making these models clinically meaningful.

The introduction section gives the skeletal content of this thesis and briefly talks about the
disease, its treatment regarding radiation, the data it generates, and three fitted interpretable
models. The theoretical section discusses the importance of Big Data in radiation oncology,
from improving operational efficiency to clinical excellence for better cancer care and the
challenges surrounding clinical Big Data. The analytical section, which is also the most
extensive part of this thesis, uncovers how available patients’ information (diagnostic,
treatment, and observational information) is related to each other and a specific outcome
of interest to predict the probability of future patients developing the outcome at a patient-
specific level using three different machine learning methods. This chapter will briefly
summarize the results of this thesis and discuss some challenges encountered during the
model-building process and give some general recommendations. Then the importance of
interpretable models and the value of experts for model development are discussed. Finally,
some future perspectives are stated before this thesis is concluded.
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Results summary

Big Data’s potential in radiation oncology is tremendous, as discussed in the theory section
in chapters 2 and 3. However, the high spread of data across many sources governed by
different states, hospitals, and administrative bodies poses a significant challenge for Big
Data applications in healthcare to reach their full potential, mainly due to patient privacy
concerns and institutional reputation.

With the concept of data-driven medicine gradually being embraced as complementary to
evidence-based medicine, the development of prediction models for various outcomes as
implemented in the analysis section chapters 4 to 9 to assist caregivers with their decision-
making tasks is needed. The regression part primarily focuses on the overall survival of
patients for two different diseases. Chapter 4 looks at 3-years survival for women with
cervical cancer and found that age, FIGO stage, and change in neutrophil-to-lymphocyte
ratio (4NLR) were significantly associated with survival. The next chapter found age, spinal
cord compression, brain metastasis, visceral metastasis, WHO performance status, sex, and
the primary tumor itself to be relevant for predicting 1, 3, and 6 months overall survival for
patients whose primary tumor has metastasized to the spine. Model performance in this
part based on the concordance index, and the 95% confidence interval was 0.73 (0.64 – 0.88)
and 0.72 (0.68 – 0.75) for chapters 4 and 5, respectively. Their stratified Kaplan-Meier curves
for the created risk groups were significantly separated with decent calibrations, suggesting
the models have good discriminating power.

The decision tree developed for elderly cancer patients in chapter 6 showed that the
hospitalization status of the patient is an essential determinant of radiotherapy compliance.
The second most relevant predictor for outpatients was gender, while the comorbidity index
was more important for outpatients. Other variables like performance status, cancer type,
age, insurance status, fractionation type, and treatment aim were also part of the tree. These
variables achieved a mean area under the curve (AUC) and a 95% confidence interval value
of 0.71 (0.66 - 0.77). In chapter 7, the tree methodology was extended to time-to-event data
to predict survival in cervical cancer patients. The tree had Figo staging as the primary
determinant of survival, with age and tumor size also splitting to form other branches on
the tree, with the SCC-Ag level being the last internal node. The tree had a concordance
index of 0.78 (95% CI, 0.71 - 0.86) and 0.71 (95% CI, 0.63 - 0.89) in the training and external
validation data, respectively. The Kaplan-Meier curve for the created risk group had a
significant split in the training and validation cohort.

The last part of the analyses section is focused on the development and comparison of
Bayesian network structures. The expert elicited Bayesian network structure developed in
chapter 8 to predict tumor recurrence in rectal cancer patients was more clinically valid than
the algorithm-based structure, which relies on retrospective data that might be biased to
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build the Bayesian network structure. However, the structural performance of the expert-
elicited structure was inferior to that of the algorithm-based structure. In chapter 9, a hybrid
approach that uses experts’ restriction of arcs (blacklist) and an algorithm’s knowledge
of the data (expert algorithm) was taken to develop the Bayesian network structures to
predict two-year survival in patients diagnosed with non-small cell lung cancer. The mean
area under the curve and confidence interval of the structure was 0.61 (0.49 - 0.73). The
resulting structure based on the expert algorithm method outperformed an adapted expert
pre-specified structure in terms of clinical correctness and area under the curve.

Model building challenges

Predictive models are fast becoming an integral component of healthcare since they can
learn from the available patient information and provide insights that can assist patients
and caregivers in making informed decisions. However, predictive modeling has several
demanding and challenging tasks that could severely affect the model if not adequately
handled in the development process.

Data quality

The first evident level of demand is the data quality, given that prediction models use
data to learn how the variables are related to one another and the outcome of interest.
Therefore the quality of data on which a model is developed determines its quality and
trustworthiness. Given that trust is a critical aspect in healthcare, accuracy, completeness,
consistency, credibility, and timeliness are used to judge data quality. Therefore, as the need
to learn from each other’s data via Big Data analytics to improve knowledge discovery
and innovation continues to grow, ensuring data is of high quality in our respective silos is
pivotal.

Missing information

Missing information is an inevitable problem in real-world datasets especially in routine
clinical care as caregivers will not always have access to or time to note all desired data
elements. (1, 2). However, when a dataset contains missing information, there is always
a plausible reason for missingness (3), whether known or not. Therefore, understanding
the possible cause(s) of the missing information and an appropriate method to handle the
missingness is essential, especially for small sample size data.

Generally, most researchers handle missing information within their dataset using the
listwise deletion method (4, 5), where all individuals within the data with missing
information on any variable in the data are removed from further analyses (complete-case
analysis). This method and its variant pairwise deletion (available-case analysis) are
problematic in machine learning, since dropping observations could dramatically impact
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the sample size. Reducing sample size leads to loss of information, reduced statistical
power (6), less robust model (4), and potential bias in the estimated parameter (5).
Single imputation methods such as zero imputation (7), mean imputation (8), hot deck
imputation (9) and its algorithmic variant K-Nearest Neighbor imputation used to
handle missing information at the data level have been largely criticized by researchers for
their inability to properly account/handle the uncertainty induced by the imputed values (3).

In chapter 8, the missingness within the data was handled differently from the methods
mentioned above. Here, the missing information is labeled to represent its state in
the Bayesian network. Lin and Haug (10) have proven this method is superior to the
complete-case analysis and single value imputation in terms of predictive power. The
multiple imputation (MI) procedure that replaces each missing value with a set of imputed
values is, however, the most commonly known herculean alternative method to handle
missing information at the data level since it addresses most of the shortcomings of the
single imputation methods (5, 9, 11). One way to roughly assess or ascertain the validity of
the results obtained from the MI procedure is by a visual inspection of the trace (Chapter
9) and autocorrelation function plots (12, 13). The multiple imputation technique is
implementable in most popular statistical tools like R, python, SAS, and SPSS.

The maximum likelihood (ML) and its superior iterative variant expectation-maximization
(EM) (14) are better and more sophisticated techniques for handling missing information
at the algorithmic level. The maximum likelihood method, which estimates the model’s
parameters directly by maximizing the incomplete data’s likelihood function, is better
than the multiple imputation method (15). The EM technique is much more popular
with Bayesian network models (10, 16, 17), and it is implementable in some R packages
(18, 19), while the other methods like MI are much more associated with regression models.
In healthcare, we recommend using experts’ predefined Bayesian network structure or
learning one with experts’ restriction(s) as in chapter 9 when applying the EM technique.
These options ensure the structure stays in sync with the clinical process.

Decision trees, on the other hand, have an inbuilt mechanism that helps them deal with
missing information in a more straightforward and less time-consuming manner by simply
ignoring or labeling the missing information as a category during the splitting process
(20–22).

Class imbalance

Class imbalance in binary responses, also called rare events, is a common datasets problem
that critically affects the prediction of machine learning models in most domains. An
imbalanced class dataset occurs when the number of events in one particular class of the
binary response is much smaller than the other nonevents class. Building a prediction
model where the response class distribution is imbalanced is very difficult. During the
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learning process, the model implicitly assumes that the response classes are balanced
(number of events and nonevents) and tries to optimize the overall classification accuracy
based on this assumption. Therefore, during classification, the model favors the majority
class, resulting in poor accuracy in detecting the minority class observations, which is often
the class of interest (23, 24).

Researchers often try to deal with this imbalance class problem naturally by collecting
a significant amount of observations to include as much data as possible of the rare
events. However, this method can significantly increase the data collection demands
and cost without guaranteeing enough events to alleviate the minority or rare class
detection problem. The data in chapters 6 and 8 had a severe class imbalance problem
even with a sample size of approximately five hundred and seven thousand observations
respectively. The sampling technique, which deals with class imbalance problems at
the data level by either oversampling the minority class or undersampling the majority
class to achieve a balanced class distribution, is another option (25). This technique,
however, has some drawbacks, first in defining an appropriate sampling ratio (26).
Secondly, undersampling leads to loss of information, and the sampled group might
not be an accurate representation of the actual population (27) while oversampling can
lead to model overfitting (28). The two-step approach that first clusters the majority
class and then uses the medoid (center of cluster) of each cluster with the rare events
to train the model is a better alternative as it reduces the severity of population misrep-
resentation compared to the undersampling method, which randomly discards observations.

Methods such as cost-sensitive learning can deal with the imbalanced class distribution
problem at the algorithm level by assigning a penalty call “cost” for every incorrect pre-
diction or misclassification made by the algorithm. Therefore, setting a high cost to the
misclassification of the minority class sample helps to improve the model performance
without modifying the class distribution in the data (29, 30). Decision trees that aim to find
logical rules that separate the observations within a dataset into different classes of homoge-
neous groups are among the algorithms most used in combination with the cost-sensitive
learning technique for optimal performance (31–34).

Feature selection

In predictive modeling, as stated before, the aim is to find the relationship, if any exist,
between the predictor variable(s) and the outcome of interest, and then to use these
relationships to predict the outcome. Therefore, one might believe that the more variables in
the model related to the outcome, the greater the model’s predictive power. However, based
on the principle of parsimony, simple models with fewer predictor variables are preferred
over models with many variables (35) for several reasons. First, sparsity, a measure of how
small or scanty a model is in terms of variables, is often used to measure interpretability
mainly because humans’ ability to handle several cognitive entities at a time is limited.
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Therefore sparsity makes it easier to check and reason about counterfactuals as can be seen
in the Bayesian network part chapters 8 and 9.

Secondly, when too many variables exist in a model, the chances of finding highly correlated
predictors (multicollinearity) are almost always high. Including correlated predictors in the
same models implies one of the variables is redundant since it adds no new information
in explaining the outcome, which weakens the model’s predictive power (36). Lastly, too
many predictor variables give rise to models which are very complex and dependent on
the training data since they try to capture all the patterns/relationships within the data,
which makes the model lose its ability to generalize on new data and increases the risk
of the model overfitting the training data. Consequently, the model becomes inefficient,
inapplicable, incomprehensible (interpretability), and the computational cost of training the
model increases significantly.

Therefore, the variable selection process that extracts a subset of appropriate predictor
variables from a set of available variables is pivotal in the model development phase, though
it is very challenging. With the coming of the Big Data era, which grants access to datasets
with dozens, hundreds, or even thousands of predictors, the million-dollar question is,
"which subset of these predictors variables will yield the simplest model possible but with
high enough predictive power to correctly and efficiently predict instances in the outcome
variable?" Prior knowledge from scientific literature was previously the primary raison
d’être for the inclusion or exclusion of a variable from a model. This method met its end
when literature could not match all research questions asked. This setback gave birth to the
development of an endless list of herculean decision rules and algorithms-based variable
selection methods (37). However powerful, there is no universal consensus on which
method is best under all considerations. Hence, the variable selection method employed
should depend on the research priorities, provided the pros and cons of the method are
known (38).

The expert-based variable selection technique is one of the most neglected and underused
variable selection methods because transportability is seldom a concern. Also, the fear
that experts will always only select those variables known to correlate with the outcome
could be another reason most researchers shy away from the method since it adds no new
information to existing knowledge and can introduce selection bias to the study. However,
the importance and impact of experts’ contribution to the variable selection process are
enormous and will be discussed later.

Collaboration

Tackling the main challenges in the model-building process like those mentioned earlier
is not enough. Another less apparent hurdle that hinders machine learning models from
attaining their full potential, especially in the healthcare domain, is something that we
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like to call “collaboration variety.” Outcome prediction models like survival stem from
different research groups and labs, with each having little or no data and expertise from
another research group because they work in isolation. For example, a tumor recurrence
prediction model is sometimes built with clinical, genomics, and even imaging information
but will not include parameters like diet, occupation, residence, income, insurance, mode
of transportation, and lots of other factors which might influence tumor recurrence. Such
models seldom attain optimal predictive performance, and even when they do, they will
hardly generalize to other populations. Prediction models in healthcare should not only be
limited to healthcare data. As it only includes the patient journey partially.

On the contrary, we propose including patient information beyond admission and dis-
charge with their physical and socio-economic characteristics to have a holistic picture of the
patient’s journey since all this information contributes to the patient’s overall health, as dis-
cussed in chapter 3. An excellent example is using marital status, income, and race to predict
overall survival in patients with stage III non–small-cell lung cancer (39). However, it might
be arduous to develop such a model, especially with the General Data Protection Regulation
(GDPR) in place. Therefore, one might have to rely on federated learning techniques, which
have seen great success over the past years, especially in terms of collaboration and data
observation (40).

Importance of interpretability

Researchers are gradually shifting to more complex models like neural networks and spline
models to optimize prediction performance. These models contain many (hyper)parameters
that can be adapted to give the model the necessary flexibility to fit the data. Although
these models have seen great success in the different areas of radiation therapy, they are not
the only or ultimate algorithms suitable for solving healthcare problems. In most cases,
more complex models will perform better than simpler models. For example, a neural
network will undoubtedly outperform a simple regression model for image recognition
tasks. However, for clinical data, simpler models will perform almost as well as these
complex models with little effort and assistance from domain experts (41, 42), as in chapter
8. In addition, a large amount of data is needed to train these complicated models properly.
For example, self-driving cars use Light Detection and Ranging (lidar) to create 3D maps
of the car’s surroundings by emitting laser beams in all directions, scanning hundreds of
thousand points in a second (43). These scans feed the model with additional information to
fill the knowledge gaps that the model might be missing. In radiation oncology, the amount
of information (scans) available to train these models in a single hospital is too little, and
collaborating with other institutions to increase the sample size to build a decent model is
also being challenged chiefly due to patient privacy issues, which means these models are
liable to overfitting.
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Therefore, one could argue that we favor model performance for the wrong reasons because
the internal working mechanism of these complex models is hardly known, hence the name
“black box” models. This lack of model interpretability might be problematic for end-users
because they can be held accountable for decisions made by these models. Generally,
people seldom trust what they do not understand. Therefore, a model which predicts
without concrete arguments for its decision will likely not be trusted by its users. On
the other hand, interpretable models give vivid and transparent reasoning of how each
decision was reached and insights into causality within the training data. Therefore, model
interpretability is a valued component of prediction models, especially in healthcare, where
stakes are much higher, and accountability is an asset.

Regulations are being put in place to legally protect individuals affected by automated
algorithmic systems by granting them the right to demand a logical explanation of how
the system reached such a decision. As a result, most research institutions are gradually
shifting to interpretable models or seeking ways to interpret the workings of these black-box
models. Regulations aside, interpretable models are essential since they give users the
feeling of control over what is happening, making their inner workings inherently easier
to communicate to stakeholders and less technical audiences. In addition, interpretability
can ensure the trained model has not inherited any bias from the training dataset. In other
words, interpretability would help debug the trained model by drawing attention to the var-
ious adversarial perturbations that might influence the predictions or decisions of the model.

As discussed earlier, models might sometimes perform exceptionally well not because they
have been adequately trained but because they include some form of noise inherited from
the data the model was derived from. That is making the correct prediction for the wrong
reasons (chapter 8). An excellent example of the danger of these opaque Local Interpretable
Model-agnostic Explanations (LIME) is that a model developed to distinguish between
wolves and huskies was not using the anatomical feature of these animals but rather the
surroundings. The model relied heavily on the presence of snow to make its decision and
would classify an animal as a wolf if there is snow and huskies otherwise.

As evident from the study by Ribeiro et al. 44, such misguided correlations can never be
spotted with black-box models, and if these biases are not identified and tackled before
model deployment, it could open up a whole world of moral, ethical, and legal problems.
Consider for a second that instead of snow, this model was dependent on more sensitive
features like gender or ethnicity to make its decisions. Such instances highlight the value
of interpretable models since they can effortlessly identify such misguided dependencies
within the model (Chapter 8 and 9) to ensure that clinical, ethical, and legal integrity is not
violated. In addition, interpretable models could give a clue into the accuracy of the data
used to build the model. For example, a decision tree that splits patients into the different
marital statuses for a node that contains patients younger than five years.
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Although model interpretability is essential, it depends largely on the target audience.
Generally, healthcare, specifically radiation oncology, need machine learning to support and
improve clinical practice on two fronts: better cancer care and treatment process automation.
Therefore in a situation where the model gives an opinion or makes a prediction like which
treatment option is best for a patient or if a said patient is going to have a tumor recurrence
within a time interval, model interpretability is essential. However, if the model’s decision
does not directly affect the patient, like auto contouring of CT scans, model interpretability
might be less of an issue. In essence, we need not know the internal workings of the model if
their purpose is to automate time-intensive manual tasks to save time for the expert to focus
on more critical tasks like patient examination since the expert still has the final decision
after manual check to discard, correct, or keep the laborious automated solution of the
model. Just like self-driving cars are still built with all the parts of a standard car to allow
the rider to take control of the car when it starts behaving abnormally.

The value of experts

The phrase “nothing lasts forever” applies even to predictive models since the model’s
predictive performance deteriorates over time, a concept known as concept or model drift.
Changes in population characteristics and treatment options can affect the established
relationships between or within predictor variables and the outcome of interest. For
example, high carcinoembryonic antigen (CEA) levels in the pre-pandemic era indicated
possible tumor recurrence in non-small cell lung cancer patients (45). In the post-pandemic
era, a high CEA level could also indicate a poor covid-19 outcome (46). Therefore a
pre-pandemic model with such variable(s) might be challenging to use in the post-pandemic
era since a high CEA level could mean either of both outcomes. Therefore, it is crucial
to be aware of these potential variable changes and their impact on the model’s future
performance. Domain experts can quickly adapt to these changes, whereas prediction
models will fail due to their established underlying relationship between the features in
the model (their lack of a view of the world). These challenges stress the importance of
involving experts in every project since they can point out when such life changes occur,
like introducing a new treatment (protocol) or new tumor staging system, so that we can
detect and adequately adapt these changes at the model level. The methods to detect and
deal with concept drift are outside this thesis’s scope, but retraining the model is a fast and
easy way out.

Missing information within a dataset can sometimes be very informative as well. Therefore,
it is worthwhile to thoroughly study this missing information for better processing and
check if there is any hidden information behind it because there is always a reason for
missing values. For example, a patient might have missing information on the surgery type
variable. However, this information might be missing because it was forgetfully not filled in
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for some reason. Another possibility could be that the patient is in the “watch and wait”
treatment option, which might be deduced by inspecting the other variables like tumor size
and pathological lymph node status.

Nevertheless, to make such inferences, a solid understanding of the biological system under
study is needed, which can be provided only by domain experts who are also the end-users
of the prospective model. Therefore, it is pivotal to include end-users at the beginning of
every study to rectify missing information problems such as the example mentioned above,
which will be wrongly imputed if not rectified. Also, expert knowledge of variables prone
to missingness can guide the data collection process to include known correlates of these
prone to missingness variables. These correlated secondary variables can then serve as
a surrogate for the model’s primary variable of interest. However, this substitution will
largely depend on the missingness within the primary variable and the outcome of interest.

Based on variable selection, the experts’ selection approach ensures that essential variables
are not excluded from the model since biological plausibility is pivotal for interpretable
models in healthcare. Secondly, expert suggestions such as combining some predictor
variables to form one more informative variable could help reduce the number of candidate
variables. This process reduces the actual variable selection time and complexity, leading to
a less complicated and inevitably interpretable model since the final subset of variables
included in the model might be small. For example, in chapter 4 the difference between
pre-treatment and post-treatment blood parameters was used instead of the original
variables separately. Furthermore, it would seem that models with predictors chosen by
experts would perform equally likely compared to models with predictors chosen purely by
an algorithm with a reduced chance of a selection bias as in chapter 8. One possible solution
to circumvent the “new knowledge phobia of most researchers” is to complement expert
knowledge or opinions with information from the data as implemented in Chapter 9.

In general, experts’ involvement in the model building process significantly improves the
quality of the model and the training data as they can ascertain if specific patient information
is accurate, consistent, or an outlier. An example of such a situation is a stage I cancer patient
with metastasis. Although both entries are valid under their respective column, their
combination is inconsistent and might affect the model. Furthermore, expert involvement
ensures that models like Bayesian networks are clinically correct and in sync with clinical
processes, as shown in chapter 8 and 9.

Future perspectives

Generally, interpretable machine learning models are considered a limitation to knowledge
advancement, especially those built from experts’ options. In other words, because they
are easy to build, they are less likely to teach or give us new insights into the relationship
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between and within the predictors and the outcome. Nonetheless, future studies should
concentrate on methods to complement or blend expert opinions and knowledge from the
data, as in chapter 9.

Developing interpretable models such as Bayesian networks is time-consuming, primarily
because experts are not that versed with what the researcher requires from them, coupled
with their busy schedules. Therefore, future studies should involve experts more in model
development projects, so they become acquainted with the process and can give qualitative
input in future studies. Organizing short data science seminars will also provide experts
with additional knowledge and information on the domain. All these endeavors to get
experts acquainted with the model-building process, facilitate future projects, and saves a
considerable amount of time.

Variables used to predict the outcomes in this thesis are limited and primarily clinical,
with most of the sample sizes in hundreds. Future studies can improve this by including
multiple sources of patient information such as omics, pathology, hematological, and even
socio-economical data. Furthermore, the distributed learning method, which has not been
included in this thesis but is currently in development, is an option to increase the sample
size of future studies for a more robust interpretable model.

Conclusion

Big Data is a game-changing revolution that can transform any sector regarding operational
efficacy, better processes, and automation. However, Big Data in radiation oncology is
still in the infancy stage (comparatively) and requires a lot of collaborative effort between
institutions and most importantly between data scientists and clinicians to harness its power
before fully benefiting from it.

Regulations aside, caregivers and other medical experts still need assistance translating
data into knowledge to improve patient care in routine clinical practice. Prediction models
should therefore have end-users in mind during development because providing end-users
with a model to assist them in making important decisions that could significantly affect
lives will face trust issues, especially when end-users do not fully understand the model’s
inner workings. Furthermore, when they do not trust the model, they are less likely to
use it for decision-making, even if it has good predictive performance. In other words, the
models should focus on end-user interpretability first before any other criteria or metrics.
Additionally, domain experts, who are most likely the end-users, should be involved in
every step of the model development process.

176



Chapter 10 Thesis discussion

Bibliography

[1] Nicoli-Carr Valeria. Why do patients drop out of clinical trials? 2020. URL https://
mdgroup.com/blog/why-do-patients-drop-out-of-clinical-trials/.

[2] Weichung Joseph Shih. Problems in dealing with missing data and informative censor-
ing in clinical trials. Current controlled trials in cardiovascular medicine, 3(1):1–7, 2002.

[3] Therese D Pigott. A review of methods for missing data. Educational research and
evaluation, 7(4):353–383, 2001.

[4] James L Peugh and Craig K Enders. Missing data in educational research: A review of
reporting practices and suggestions for improvement. Review of educational research, 74
(4):525–556, 2004.

[5] Kristel JM Janssen, Yvonne Vergouwe, A Rogier T Donders, Frank E Harrell Jr, Qingxia
Chen, Diederick E Grobbee, and Karel GM Moons. Dealing with missing predictor
values when applying clinical prediction models. Clinical chemistry, 55(5):994–1001,
2009.

[6] Richard D Riley, Joie Ensor, Kym IE Snell, Frank E Harrell, Glen P Martin, Johannes B
Reitsma, Karel GM Moons, Gary Collins, and Maarten Van Smeden. Calculating the
sample size required for developing a clinical prediction model. Bmj, 368, 2020.

[7] Joonyoung Yi, Juhyuk Lee, Kwang Joon Kim, Sung Ju Hwang, and Eunho Yang. Why
not to use zero imputation? correcting sparsity bias in training neural networks. arXiv
preprint arXiv:1906.00150, 2019.

[8] Teresa A Myers. Goodbye, listwise deletion: Presenting hot deck imputation as an easy
and effective tool for handling missing data. Communication methods and measures, 5(4):
297–310, 2011.

[9] Rebecca R Andridge and Roderick JA Little. A review of hot deck imputation for
survey non-response. International statistical review, 78(1):40–64, 2010.

[10] Jau-Huei Lin and Peter J Haug. Exploiting missing clinical data in bayesian network
modeling for predicting medical problems. Journal of biomedical informatics, 41(1):1–14,
2008.

[11] Shinichi Nakagawa. Missing data: mechanisms, methods and messages. Ecological
statistics: Contemporary theory and application, pages 81–105, 2015.

[12] MW Heymans and Iris Eekhout. Applied missing data analysis with spss and (r) studio.
Heymans and Eekhout: Amsterdam, The Netherlands: 20Available online: https://bookdown.
org/mwheymans/bookmi/[accessed 23 May 2020], 2019.

[13] Stef Van Buuren. Flexible imputation of missing data. CRC press, 2018.

[14] Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data:
A comparison of neural network and expectation maximization techniques. Current
Science, pages 1514–1521, 2007.

[15] Paul T Von Hippel. New confidence intervals and bias comparisons show that maxi-
mum likelihood can beat multiple imputation in small samples. Structural Equation
Modeling: A Multidisciplinary Journal, 23(3):422–437, 2016.

177

https://mdgroup.com/blog/why-do-patients-drop-out-of-clinical-trials/
https://mdgroup.com/blog/why-do-patients-drop-out-of-clinical-trials/


Chapter 10 Thesis discussion

[16] YT Mustafaa, V Tolpekin, and A Stein. Application of the em-algorithm for bayesian
network modelling to improve forest growth estimates. Procedia environmental sciences,
7:74–79, 2011.

[17] Serge Romaric Tembo, Sandrine Vaton, Jean-Luc Courant, and Stéphane Gosselin. A
tutorial on the em algorithm for bayesian networks: Application to self-diagnosis of
gpon-ftth networks. In 2016 International Wireless Communications and Mobile Computing
Conference (IWCMC), pages 369–376. IEEE, 2016.

[18] Alberto Franzin, Francesco Sambo, and Barbara Di Camillo. bnstruct: an r package for
bayesian network structure learning in the presence of missing data. Bioinformatics, 33
(8):1250–1252, 2017.

[19] Marco Scutari and Robert Ness. bnlearn: Bayesian network structure learning, parame-
ter learning and inference. R package version, 3, 2012.

[20] Maytal Saar-Tsechansky and Foster Provost. Handling missing values when applying
classification models. 2007.

[21] Ad Feelders. Handling missing data in trees: surrogate splits or statistical imputation?
In European Conference on Principles of Data Mining and Knowledge Discovery, pages
329–334. Springer, 1999.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.

[23] Maher Maalouf and Theodore B Trafalis. Rare events and imbalanced datasets: an
overview. International Journal of Data Mining, Modelling and Management, 3(4):375–388,
2011.

[24] Yang Zhao, Zoie Shui-Yee Wong, and Kwok Leung Tsui. A framework of rebalancing
imbalanced healthcare data for rare events’ classification: a case of look-alike sound-
alike mix-up incident detection. Journal of healthcare engineering, 2018, 2018.

[25] Luís Torgo, Paula Branco, Rita P Ribeiro, and Bernhard Pfahringer. Resampling
strategies for regression. Expert Systems, 32(3):465–476, 2015.

[26] Ikram Chaabane, Radhouane Guermazi, and Mohamed Hammami. Enhancing tech-
niques for learning decision trees from imbalanced data. Advances in Data Analysis and
Classification, pages 1–69, 2019.

[27] Yuchun Tang, Yan-Qing Zhang, Nitesh V Chawla, and Sven Krasser. Svms modeling
for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(1):281–288, 2008.

[28] Robert C Holte, Liane Acker, Bruce W Porter, et al. Concept learning and the problem
of small disjuncts. In IJCAI, volume 89, pages 813–818. Citeseer, 1989.

[29] Haibo He and Yunqian Ma. Imbalanced learning: foundations, algorithms, and appli-
cations. 2013.

[30] Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. Cost-sensitive learning
methods for imbalanced data. In The 2010 International joint conference on neural networks
(IJCNN), pages 1–8. IEEE, 2010.

178



Chapter 10 Thesis discussion

[31] Charles Elkan. The foundations of cost-sensitive learning. In International joint conference
on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd,
2001.

[32] Victor S Sheng, Charles X Ling, Ailing Ni, and Shichao Zhang. Cost-sensitive test
strategies. In Proceedings of the National Conference on Artificial Intelligence, volume 21,
page 482. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

[33] Kai Ming Ting. Inducing cost-sensitive trees via instance weighting. In European
symposium on principles of data mining and knowledge discovery, pages 139–147. Springer,
1998.

[34] Charles X Ling, Victor S Sheng, and Qiang Yang. Test strategies for cost-sensitive
decision trees. IEEE Transactions on Knowledge and Data Engineering, 18(8):1055–1067,
2006.

[35] Joachim Vandekerckhove, Dora Matzke, Eric-Jan Wagenmakers, et al. Model comparison
and the principle of parsimony. eScholarship, University of California, 2014.

[36] Jim Frost. Multicollinearity in regression analysis: problems, detection,
and solutions. Statistics by Jim. Available online also at: https://statisticsbyjim.
com/regression/multicollinearity-in-regression-analysis/[accessed in Jakarta, Indonesia: Decem-
ber 22, 2018], 2017.

[37] Stefan Walter and Henning Tiemeier. Variable selection: current practice in epidemio-
logical studies. European journal of epidemiology, 24(12):733–736, 2009.

[38] Farideh Bagherzadeh-Khiabani, Azra Ramezankhani, Fereidoun Azizi, Farzad
Hadaegh, Ewout W Steyerberg, and Davood Khalili. A tutorial on variable selec-
tion for clinical prediction models: feature selection methods in data mining could
improve the results. Journal of clinical epidemiology, 71:76–85, 2016.

[39] M Vyfhuis, Josephine L Feliciano, Søren M Bentzen, Whitney M Burrows, Elizabeth M
Nichols, and Mohan Suntharalingam. Marriage predicts for survival in patients with
stage iii non–small-cell lung cancer. The Journal of Community and Supportive Oncology,
16(5):e194–e201, 2018.

[40] Timo M Deist, Frank JWM Dankers, Priyanka Ojha, M Scott Marshall, Tomas Janssen,
Corinne Faivre-Finn, Carlotta Masciocchi, Vincenzo Valentini, Jiazhou Wang, Jiayan
Chen, et al. Distributed learning on 20 000+ lung cancer patients–the personal health
train. Radiotherapy and Oncology, 144:189–200, 2020.

[41] Biche Osong, Carlotta Masciocchi, Andrea Damiani, Inigo Bermejo, Elisa Meldolesi,
Giuditta Chiloiro, Maaike Berbee, Seok Ho Lee, Andre Dekker, Vincenzo Valentini,
et al. Bayesian network structure for predicting local tumor recurrence in rectal cancer
patients treated with neoadjuvant chemoradiation followed by surgery. Physics and
imaging in radiation oncology, 22:1–7, 2022.

[42] Timo M Deist, Frank JWM Dankers, Gilmer Valdes, Robin Wijsman, I-Chow Hsu, Cary
Oberije, Tim Lustberg, Johan van Soest, Frank Hoebers, Arthur Jochems, et al. Machine
learning algorithms for outcome prediction in (chemo) radiotherapy: An empirical
comparison of classifiers. Medical physics, 45(7):3449–3459, 2018.

179



Chapter 10 Thesis discussion

[43] Jeff Hecht. Lidar for self-driving cars. Optics and Photonics News, 29(1):26–33, 2018.

[44] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[45] M Grunnet and JB Sorensen. Carcinoembryonic antigen (cea) as tumor marker in lung
cancer. Lung cancer, 76(2):138–143, 2012.

[46] Bangshun He, Aifang Zhong, Qiuyue Wu, Xiong Liu, Jie Lin, Chao Chen, Yiming He,
Yanju Guo, Man Zhang, Peiran Zhu, et al. Tumor biomarkers predict clinical outcome
of covid-19 patients. Journal of Infection, 81(3):452–482, 2020.

180



Part VII

Appendices

181



SUMMARY

182



Summary

Introduction

Machine learning models have seen considerable success, from automating conventional
workflows for improving operational efficiency and performance to providing fast,
personalized, and reliable recommendations. Examples of real-world applications are
Netflix movie recommendations, Tesla self-driving cars, and Amazon speech recognition
(Alexa). These applications are possible thanks to the (Big) Data generated and willingly
donated by end-users in their daily activities. Patients and caregivers need help translating
this level of success to address healthcare challenges and assist them in making personalized
decisions for optimal outcomes using the available healthcare and patient (Big) Data.

Therefore, this thesis focuses on healthcare Big Data and the value of interpretable machine
learning models for outcome prediction in radiation oncology and highlights the benefits
of experts’ involvement in the model development process. This thesis is partitioned into
a theoretical and practical section, with the theoretical section consisting of two literature
review chapters that discuss Big Data in radiation oncology and healthcare in general. In
contrast, the practical section contains three parts (Regression, Decision tree, and Bayesian
network) representing the fitted interpretable machine learning models, with each part
also containing two original research chapters. Chapter 1 briefly introduces the contents of
subsequent chapters and provides the blueprint of this thesis.

Part: Big Data

Data has become one of the most valuable commodities in recent years, to the point that
it is being likened to crude oil. The healthcare domain is very interested, amongst others,
in using (Big) Data to improve cancer care. Thus, chapter 2 gives a gentle introduction to
Big Data and its main characteristics in healthcare. Chapter 3 then paints a more detailed
picture of Big Data characteristics and its different sources within the confines of radiation
oncology. Both chapters 2 and 3 discuss the solutions provided by Big Data for healthcare
challenges, with examples where Big Data has improved operational efficiency for clinical
excellence. Chapter 3 furthers the discussion on domain applications, barriers, and the
future of radiation oncology Big Data.

Part: Regression

Due to the mortality rate, cancer patients are predominantly concerned about how long
they have to live, more so for patients whose tumor has metastasized to other parts of
the body like the spine. However, accurate prediction of complex endpoints like overall
survival is challenging, even for an experienced clinician. Chapter 4 looks at the prediction
of progression-free survival and overall survival for cervical cancer patients, while Chapter
5 looks at overall survival within a 1, 3, and 6 months time frame for patients with spinal
bone metastases. Both chapters use a Cox proportional hazard regression model and stratify
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patients into different survival risk groups to assist caregivers with patient management.
Chapter 5 goes a step further and translates the model into a nomogram to provide caregivers
with a tool for individualized estimates of survival probabilities for patients with spinal
bone metastases.

Part: Decision tree

This part involves a tree-based algorithm, one of the most popular machine learning tech-
niques, because of its non-parametric nature and ability to naturally classify observation into
various groups. In addition, they are effortlessly understandable by a less technical audience
due to their IF-THEN nature, making them valuable as clinical decision aids. Chapter 6
focuses on discriminating before the start of treatment between elderly cancer patients who
will comply with their planned radiotherapy treatment and those likely not to comply using
a decision tree (Compliance tree). Chapter 7 extends the application of decision trees to
time-to-event data. This chapter developed a decision tree to predict overall survival in
women treated in the Netherlands with radiotherapy for squamous cell cervical carcinoma
FIGO-stage IIB-IVA (Survival tree) and externally validates the tree on a Korean population.
Both chapters found age to be associated with the outcomes. One logical explanation of this
result is immunosenescence which makes individuals susceptible to numerous diseases and
morbidity, leading to a reduced chance of survival and treatment completion. Chapter 7
compared the survival curves of each risk group created from the decision tree splits of the
leaf nodes on the external validation data to ascertain that the model is generalizable.

Part: Bayesian network

Prediction models can assist caregivers with their decision-making by estimating an individ-
ual’s probability of developing the outcome of interest. However, the biological process
which leads to a particular outcome consists of complex relationships interdependent over
and within time. This complexity poses a significant challenge for statistical analysis since
the likelihood of correlated features is almost inevitable. Also, clinical researchers will
have difficulty determining whether or where a variable should be included for model
development, making domain experts’ contributions indispensable in the model-building
process. Predictive models which can probabilistically reason under uncertainty such as
Bayesian networks are more suitable to model such information. Chapter 8 tackles some
of these problems by eliciting multiple experts’ opinions from different countries on the
interplay between variables to develop a Bayesian network structure capable of predicting
tumor recurrence for rectal cancer patients. This chapter also compares an expert-elicited
structure with an algorithmic structure. Chapter 9 builds on the knowledge of Chapter 8 to
develop a Bayesian network that predicts two-year survival for lung cancer patients from a
symbiotic relationship between experts’ opinions and algorithmic knowledge of the data.
Both chapters highlight the value of including experts in the model-building process to
develop clinically valid Bayesian network structures. Chapter 8 shows the need to include
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essential variables in a model based on their availability on a timeline of extraction to have a
Bayesian network structure whose reasoning aligns with the clinical process. A bird’s-eye
view of this part shows that structures developed by multiple experts or received input
from multiple experts are clinically more plausible than algorithmic structures or structures
developed by a single expert.

Chapter 10 discusses some of the challenges encountered during the model-building pro-
cess with possible options to tackle these challenges and emphasizes the need to include
end-users in the model-building process in healthcare. Finally, this chapter discusses the im-
portance of interpretable machine learning models in healthcare with some future directions
for research.
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Introductie

Het gebruik van Machine Learning heeft geleid tot aanzienlijke successen, van het
automatiseren van werkwijzen voor operationele efficiëntie tot het aanbieden van snelle,
gepersonaliseerde en betrouwbare aanbevelingen. Praktijkvoorbeelden hiervan zijn
film-aanbevelingen op Netflix, de zelf-rijdende auto van Tesla, en stemherkenning zoals
Amazon Alexa. Deze toepassingen zijn mogelijk door beschikbaarheid van “Big Data”,
gedoneerd door eindgebruikers bij het gebruik van technologie in hun dagelijkse activiteiten.
Om dit niveau van succes te evenaren binnen de gezondheidszorg moeten patiënten
en zorgverleners geholpen worden. Machine Learning kan helpen bij het maken van
gepersonaliseerde beslissingen voor behandeling, gebruik makend van de beschikbare (big)
data van voorgaande patiënten.

Deze thesis focust op Big Data binnen de gezondheidszorg, en de waarde van interpre-
teerbare Machine Learning modellen voor het voorspellen van uitkomsten binnen de ra-
diotherapie. Hierbij wordt de meerwaarde van inclusie van klinische expertise binnen het
ontwikkelproces onder de aandacht gebracht. Deze thesis is verdeeld in een theoretisch
en praktisch deel, waarbij het theoretisch deel twee literatuuronderzoeken bevat naar het
gebruik van Big Data in radiotherapie en de gezondheidszorg in het algemeen. Het praktisch
deel bestaat uit drie onderdelen (regressie, beslisbomen en Bayesiaanse netwerken) ron-
dom interpreteerbare machine learning modellen, waarbij ieder onderdeel twee onderzoek
hoofdstukken bevat. Hoofdstuk 1 bevat een algemene inleiding, en dient als beschrijving bij
deze thesis.

Big Data

Data is de laatste jaren een belangrijk (handels)waar geworden, waardoor de analogie
met ruwe olie wordt gemaakt. De gezondheidszorg sector is steeds meer geïnteresseerd
om (Big) Data te gebruiken om kankerzorg en behandelingen te verbeteren. Hoofdstuk
2 geeft dan ook een korte introductie in Big Data en de karakteristieken hiervan binnen
de gezondheidszorg. Hoofdstuk 3 beschrijft een meer gedetailleerd beeld van Big Data,
en de verschillende bronnen die gebruikt kunnen worden binnen de radiotherapie. Beide
hoofdstukken beschrijven mogelijkheden op basis van Big Data voor uitdagingen in de
gezondheidszorg, met voorbeelden waarbij Big Data operationele efficiëntie en kwaliteit
heeft bevorderd. Hoofdstuk 3 beschrijft eveneens de toepassingen in de gezondheidszorg,
barrières en de toekomst van radiotherapie en Big Data.

Regressie

Een van de zorgen van kankerpatiënten is de overlevingskans en -duur, zeker voor patiënten
met metastasen naar andere lichaamsdelen, zoals bijvoorbeeld de ruggengraat. Helaas zijn
accurate voorspellingen voor complexe uitkomsten – zoals overleving – een uitdaging, ook
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voor een ervaren arts. Hoofdstuk 4 onderzoekt dan ook de voorspelling van progressie-vrije
en algemene overleving bij cervix kanker patiënten, waar hoofdstuk 5 de overleving van
patiënten met ruggengraat metastasen onderzoekt bij 1-3-6 maanden na behandeling. Beide
hoofdstukken gebruiken het “Cox proportional hazards” regressie model waarbij patiënten
in verschillende risicogroepen worden gestratificeerd. Deze risico groepering kan door
zorgverleners worden gebruikt voor het inschatten van behandeluitkomsten. Hoofdstuk 5
beschrijft dit niet alleen in statistische getallen, maar ook als visueel nomogram voor het
berekenen van individuele inschattingen van overleving in de praktijk.

Beslisbomen

Dit onderdeel van de thesis beschrijft het gebruik van “tree-based algorithms”, die populair
zijn binnen het machine learning domein vanwege de non-parametrische eigenschappen
en het vermogen om observaties op natuurlijke wijze in groepen te classificeren. Verder
zijn deze algoritmen makkelijk te begrijpen door een minder technisch publiek vanwege
de ALS-DAN keuzes en gevolgen onderliggend aan een beslisboom. Dit maakt ze ook
waardevol als klinische beslisondersteuning. Hoofdstuk 6 beschrijft de ontwikkeling van een
beslisboom die vóór behandeling de kans berekent dat een oudere patiënt de behandeling
gaat/kan doorstaan. Hoofdstuk 7 gaat hierbij verder door het toepassen van beslisbomen
op “tijd-tot-voorval” data. Dit hoofdstuk beschrijft de ontwikkeling van een beslisboom
voor het voorspellen van overleving bij vrouwen behandeld met radiotherapie voor een
cervix plaveiselcarinoom met FIGO-stadium IIB-IVA. Deze beslisboom is extern gevalideerd
op een Koreaanse populatie. Beide hoofdstukken vonden leeftijd sterk gecorreleerd met
de uitkomst. Een logische verklaring hiervoor is immunosenescentie, waarbij iemand
meer vatbaar wordt voor mobiliteiten en leidt tot een verminderde kans op overleving en
behandeling adherentie. Hoofdstuk 7 vergelijkt hierbij ook de overlevingscurves van iedere
risicogroep (gegenereerd uit de eindresultaten van de beslisbomen) om te valideren of het
model generaliseerbaar is over de verschillende datasets en landen.

Bayesiaans netwerk

Voorspellende modellen kunnen zorgverleners ondersteunen bij beslissingen op basis van
inschattingen van kansen van het individu op een bepaalde uitkomst. De uitdaging hierbij
is dat biologische processen complex zijn, en veel onderlinge afhankelijkheden en relaties
hebben. Niet alleen op een bepaald punt in tijd, maar ook over tijd. Deze complexiteit
zorgt voor een grote uitdaging voor statistische analyses aangezien er een hoge kans is op
correlatie tussen gegevens. Verder is domein expertise nodig in het ontwikkelproces om te
bepalen of informatie relevant is in een model, en wanneer deze informatie in het klinisch
proces beschikbaar komt. Voorspellende modellen die met kans kunnen rekenen, waarbij
onzekerheden in acht worden genomen, zijn daarom meer geschikt voor het modeleren
van complexe informatie. Een voorbeeld hiervan zijn Bayesiaanse netwerken. Hoofdstuk
8 beschrijft dan ook de kennisvergaring van meerdere experts uit verschillende landen
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voor het beschrijven van causale verbanden tussen medische gegevens. Specifiek voor de
observationele, behandel, en uitkomst informatie (lokaal recidief) van patiënten met rectum
kanker. Deze informatie wordt gestructureerd in een Bayesiaans netwerk. Deze informatie
wordt vergeleken met en Bayesiaans netwerk automatisch gegenereerd door een algoritme,
en geëvalueerd op basis van prestatie in het voorspellen van lokaal recidief. Hoofdstuk 9
bouwt voort op de kennis uit hoofdstuk 8 voor ontwikkeling van een Bayesiaans netwerk
voor het voorspellen van twee jaar overleving voor longkankerpatiënten, op basis van
kennis van experts en data. Beide hoofdstukken (8 en 9) laten de meerwaarde zien van
klinische expertise en kennis tijdens het bouwen van klinisch valide Bayesiaanse netwerken.
Verder laat hoofdstuk 8 zien hoe informatie op een tijdlijn gepresenteerd kan worden,
zodat deze overeen komt met het klinisch proces. Een hogere abstractie laat hierbij zien
dat de structuur van causale verbanden, opgemaakt door meerdere experts, klinisch meer
plausibel is dan een structuur gebouwd door één expert.

Hoofdstuk 10 bediscussieerd een aantal uitdagingen die tijdens modelontwikkeling naar
voren zijn gekomen in de verschillende projecten. Hierbij worden ook mogelijke oplossingen
aangedragen, waarbij wordt benadrukt dat klinische experts en eindgebruikers betrokken
moeten worden in het model-ontwikkelingsproces. Verder beschrijft dit hoofdstuk de
noodzaak van interpreteerbare machine learning modellen in de gezondheidszorg met
aanbevelingen voor vervolgonderzoek.
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Introduction

Radiation oncology is a fertile field for applying revolutionary Big Data techniques for better
cancer care. However, with data sharing across institutions restricted by administrative,
political, and legal barriers, radiation oncology Big Data can not function at its full potential.
The clinical data science (CDS) research group at Maastricht University, from which this
thesis stems, stands on a three-legged platform to front these data barriers problems and
provide the necessary assistance to caregivers and patients. The first pillar focuses on devel-
oping global FAIR data-sharing infrastructures, the second uses state-of-the-art machine
learning techniques to build prediction models from these (FAIR) data, and the third applies
these prediction models for better cancer care.

Knowledge dissemination

The three CDS pillars mentioned earlier represent the group’s main research areas and
reflect this thesis. The theoretical section relates to the antecedent of the first pillar, which
is the benefits of a functional FAIR data-sharing infrastructure since access to FAIR data
stations will lead to more mature radiation oncology (Big) Data. The analysis section fits
the second pillar’s goal and develops different interpretable machine learning models for
outcome prediction in radiation oncology. The discussion and theoretical sections do not
entirely align with the third pillar but discuss issues that hamper the application of these
developed models for better cancer care, with one of the root causes being the lack of model
interpretability by end-users.

When the logical flow of the patterns of the clinical events leading to an outcome or endpoint
of interest is captured within a prediction model such as a Bayesian network, it contributes
to the clinical understanding and interpretability of the model’s output. In chapter 8,
the Bayesian network structure was developed to capture the sequential events on how
the variables are extracted in the treatment process on a timeline, making the model’s
reasoning easier to understand. More so, it prevents the structure from having unrealistic
dependencies such that a future variable influences a precedent variable at a particular time
point, irregularities that even non-experts can identify when the process is explained.

Cultural focus

Generally, most researchers believe there is a trade-off association between the accuracy and
interpretability of a machine learning model. However, chapter 8 does not support this
theory and proves this belief is nothing but a “myth” since the predictive performance of
the expert Bayesian network is almost as good as the complicated algorithm-based model.
The problem is that most researchers allocate the same amount of time to build interpretable
and complex models, which will disfavor interpretable models’ performance. Interpretable
models do require a significant amount of time and effort to construct, with a lot of domain
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expert(s) involvement.

This thesis tackles some challenges involved in introducing these developed models to
improve healthcare. It will seem end-users are more open and accepting of models that
automate time-consuming tasks like auto contouring in the clinic rather than a model that
supports decision-making, such as predicting the best treatment option for a patient. For
automated models, end-users can visualize the model’s output and decide whether to use
or discard the model’s solution based on how much they agree. This is tricky for prediction
models because end-users can not do much with the models’ output except when the model
is interpretable, as then they can base their judgment on the model’s reasoning. Therefore, it
all boils down to end-users trust in the model. Chapter 10 provides some suggestions to
help increase the end-users’ trust in these models, one of which is including the end-users
in the building process because if they assist in building the model. They understand how
the model works then, there is a high probability of them making use of the model.

Clinical focus

Radiation oncology is a data-rich domain and the perfect field to leverage machine learning
techniques to unlock hidden potential knowledge that could assist healthcare professionals
and benefit the oncology community. Therefore, this thesis focuses mainly on developing
models that can serve as decision aids to caregivers for better patient management. The
nomogram in chapter 5 and the decision trees of chapter 6 and 7 can be readily printed to
serve as a decision support tool after they have been adequately validated.

Cancer is among the top three leading causes of death worldwide, with metastatic tumors
responsible for approximately 90% of all these deaths, making the management of this type
of cancer a major clinical challenge. The electronic version of the developed nomogram in
chapter 5 provides personalized survival plots, which could come in handy during shared
decision-making sessions.

Regression methods are the most common machine learning approach well-versed with
physicians and their choice model, especially in decision-making. Unlike regression meth-
ods, Bayesian networks are better at dealing with uncertainty related to incomplete domain
coverage because the variables used as inputs for the model and their relationships are
direct representations of real-world features and their interplay, which is different from
other models based on purely mathematical constructs like regression models. Bayesian
networks’ ability to probabilistically reason about any variable in the structure makes them
a valuable tool in any field, more so in medical sciences since explainable visual reasoning
increases interpretability. This thesis introduces caregivers to Bayesian networks to increase
their knowledge and flexibility in using other machine learning models.
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Economical focus

This thesis focuses on developing prediction models which end-users can easily understand
and apply to improve healthcare. In addition, chapter 4, 5 and 7 have created risk strata to
group patients into subgroups of risk based on their clinical and lifestyle characteristics to
assist caregivers with their patient management decisions. These risk stratification can help
caregivers reduce costs and improve patient care since they will focus greater attention and
resources on the high-risk group patients.

Chapter 6 developed a decision tree capable of discriminating before the start of treatment
between patients who will complete their planned radiotherapy treatment and those likely
to discontinue (compliance tree). This tree has a two-fold benefit for patients likely to
discontinue treatment: the treatment cost and unnecessary treatment-related toxicity. For
caregivers, the model saves them valuable time and helps them make better treatment
decisions for patients. This chapter also provides some suggestions to help boost the
compliance rate for radiotherapy treatment.

The Bayesian network in chapter 8 models the clinical process which leads to tumor re-
currence, a predominant concern for most cancer survivors. The structure predicts if a
rectal cancer patient will develop a tumor recurrence (True or False) within a specific time
after treatment. Patients with a low probability of developing a tumor recurrence could
be discharged with limited need for regular check-ups or worries from the patients if their
tumor will resurface. However, those predicted to develop a tumor recurrence could be
triaged to special hospital services, intensive outpatient case management, and early clinical
visits post-discharge. Such applications, therefore, allow for early interventions to reduce
readmissions for recurrence patients and maximize cost-effectiveness, especially for patients
who are unlikely to develop a tumor recurrence.

Technological focus

This thesis did not develop a fully functional technology per se, but two chapters contain
some promising technology still under development. The first product is the nomogram in
chapter 5 which is transformed into a shiny application1. The app provides personalized
predicted survival curves for individuals. It also predicts a patient’s survival probability
and confidence interval around its predictions at any given time point.

The second product is a transformed version of the expert-elicited Bayesian network
structure2 of chapter 8 for the prediction of local tumor recurrence in rectal cancer patients
into an interactive user interface model. The probabilistic dependencies between the
variables in the structure align with the clinical process, which means one can use the

1https://bich.shinyapps.io/SpinalMets/
2https://thomas.zakbroek.com/app/network/rectalcancer
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structure to reason forward, from causes to consequences, or backward, and deduce the
probabilities of different causes given the consequences.

Although these applications are still under development, the first round of external valida-
tion of hopefully many to assess their clinical applicability and generalizability is underway.
Their shareable link will ease their integration into the current radiotherapy workflow to
assist caregivers in making better decisions for better cancer care when fully developed.
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