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a b s t r a c t

We study the integrality gap of the natural linear programming relaxation for the
Bounded Color Matching (BCM) problem. We provide several families of instances
and establish lower bounds on their integrality gaps and we study how the Sherali–
Adams “lift-and-project" technique behaves on these instances. We complement
these results by showing that if we exclude certain simple sub-structures from our
input graphs, then the integrality gap of the natural linear formulation strictly
improves. To prove this, we adapt for our purposes the results of Füredi (1981). We
further leverage this to show upper bounds on the performance of the Sherali–Adams
hierarchy when applied to the natural LP relaxation of the BCM problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and problem definition

In 1982, Papadimitriou & Yannakakis defined the Exact Matching (EM) problem [1]: Given a bipartite
graph B with some edges painted red, does B contain a perfect matching with exactly k ∈ Z+ red edges?
This is one of the very few problems whose complexity is not yet fully understood. On one hand, there exists
an exact polynomial time randomized NC algorithm by Mulmuley and U. & V. Vazirani [2] which suggests
that EM is probably not NP-complete. Moreover, Yuster [3] showed that there exists an algorithm which,
in polynomial time, either correctly decides that there is no maximum matching with exactly k red edges
or returns a matching of cardinality at most µ(G) − 1 with exactly k red edges, where µ(G) is the matching
number of the input graph G i.e., the maximum cardinality matching in G. This result puts EM as close
to P as possible (unless of course EM ∈ P). The problem was also studied in some restricted classes, for
example in complete and complete bipartite graphs, see Karzanov and Yi, Murty & Spera [4,5] respectively.
Still, the exact complexity of the problem remains unknown and this has prompted researchers to investigate
meaningful related cases of the Exact Matching problem.

Here we consider the following very natural generalization of the EM problem:
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Definition 1 (Bounded Color Matching-BCM). We are given a (simple, undirected) graph G = (V,E). The
edge set E is partitioned into k sets E1 ∪ · · · ∪ Ek i.e., every edge e belongs to color class Cj if e ∈ Ej and
has a profit pe ∈ Q+. By abusing notation slightly, we will say that edge e “has” color Cj if e ∈ Ej . Let
C = ∪i=1,...,kCi be the collection of all color classes. Each color class Cj is associated with a positive number
wj ≥ 1. Our goal is to find a maximum (weighted) matching M that contains at most wj edges of color Cj
i.e., a matching M such that |M ∩ Ej | ≤ wj , ∀Cj ∈ C.

In [6] an LP-based approximation algorithm with approximation ratio 1/2 was given for the BCM problem,
which matches the integrality gap of the natural LP relaxation for this problem. The algorithm is based on
the elegant technique by Parekh [7] which gives an inductive process to write any basic feasible solution of
the relaxed LP as an approximate sparse convex combination of integral solutions. The result holds for any
bounds wj ≥ 1, integral or otherwise, since the analysis does not make use of the fact that wi ∈ Z+,∀i, only
the fact that wi ≥ 1 (otherwise the integrality gap could be unbounded). It has been further generalized by
Parekh and Pritchard [8] to uniform hypergraphs.

A very natural question occurs: a negative result based on a bad integrality gap instance rules out
the possibility of a good relaxation-based approximation algorithm. But this holds only for the particular
relaxation that we use. What about other, more complicated and sophisticated relaxations? As an illustrative
example, if we take the normal (degree-constrained) relaxation for the classical matching problem, which
has integrality gap of 3/2, and enhance it with the blossom inequalities, we get an exact formulation of the
convex hull of all integer points for the matching problem [9].

Given the apparent difficulty of identifying stronger/tighter linear relaxations for combinatorial optimiza-
tion problems, a large body of work has been dedicated in recent years to identifying systematic techniques
to enhance the quality of a given linear (or semi-definite) program with valid inequalities (inequalities that
are satisfied by all integral points). The hope is that the part of the polyhedron responsible for the bad
integrality gap example will be eliminated. Many such “lift and project” methods have been proposed so
far, in particular by Sherali and Adams (SA) [10], by Lovász and Schrijver (LS) [11], by Balas, Ceria and
Cornuéjols (BCC) [12], by Lasserre [13] and by Bienstock and Zuckerberg (BZ) [14]. For a very thorough
and readable comparison of the first three such hierarchies see [15]. Their use in approximation algorithms
was initiated by the seminal work of Arora, Bollobás, Lovász and Tourlakis [16].

The general idea has the following pattern: Let P0 = {x ∈ {0, 1}n : Ax ≤ b}, A ∈ Rm×n,b ∈ Rm

be an initial integral polyhedron in nth dimensional space and let F0 be the corresponding relaxation
i.e., F0 = {x ∈ [0, 1]n : Ax ≤ b}. Starting from F0 we operate in rounds (also called levels), and in each
round new variables are added and a specific set of valid linear or semi-definite inequalities is added (the
lifting phase) and then the lifted polyhedron is projected back to the original space (projection phase). Thus
we obtain a hierarchy of tighter formulations Fk ⊆ Fk−1 ⊆ · · · ⊆ F0 of F0 such that for each 0 < j ≤ n, Fj
is obtained from Fj−1. An important feature of this sequence is that we can efficiently optimize any linear
(or semi-definite) objective function over Ft for any fixed t and, moreover, after at most n rounds we have
that Fn = P0 = conv(F0 ∩ {0, 1}n). That is, this progressively tighter sequence of relaxations converges to
the convex hull of the integral solutions.

From the point of view of approximation algorithms, the first “few” rounds of such hierarchies (constant or
poly-logarithmic) are particularly interesting, especially for problems for which the gap between the current
best approximation algorithm and the complexity theoretic inapproximability bound is large enough; the
hope is that better (quasi-)polynomial algorithms can be designed. The effect of such methods has been
extensively studied for a host of combinatorial optimization problems, for example see [17–23] and the
references therein. In many cases such hierarchies fail to generate polytopes with better integrality gaps
(after a few rounds) but there are some notable results where the current best approximation algorithms
are known to be either consistent with few rounds of some hierarchy or produce even better approximability
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results not achievable by other techniques. See, for example, [18,19,23–28] for some important works in that
direction.

Of particular interest in our paper is the Sherali–Adams (SA) Hierarchy, which we formally define in a
subsequent section. This is a very well-known and commonly-used “lift-and-project” method in combinatorial
optimization and has produced a host of positive results. See [29] for Vertex Cover in Planar graphs, [30] for
Max-Cut in dense graph instances, [27] for Max–Min Fair Allocations, [25,26] for dense instances of CSPs
and [31,32] for Sparsest Cuts in bounded treewidth graphs. In contrast to these positive results, we will show
that the SA hierarchy is not so successful for the problems considered in this paper.

Our Contribution: We study to what extent formulations generated by the Sherali–Adams hierarchy can
improve the integrality gap of the natural LP formulation for BCM. As a first step, we show that if we
allow the bounds wj on the color classes to be fractional numbers (greater than or equal to 1, otherwise
the integrality gap can be unbounded), then there exists a family of instances for the BCM problem such
that even a sub-exponential number of rounds of the Sherali–Adams hierarchy do not suffice to reduce the
integrality gap of 2. Similar bounds and instances (uniform lengths/sizes, fractional bounds/capacities) have
been used in the integrality gap study of the Knapsack problem [18]. This demonstrates a severe limitation
of a more general computational model, i.e., even large families of large linear programs cannot “realize”
such relatively simple structured instances.

Given that the previous result for the Sherali–Adams hierarchy uses instances that have fractional bounds,
and because this might seem somewhat artificial, we next explore whether these bounds are inherently
necessary. That is, we would like to answer the following question: are there instances with integral color
bounds wj with integrality gap of 2 and how does the Sherali–Adams hierarchy behave on them? In that
direction, we provide two extra families of integrality gap instances. First, a family of instances with
integrality gap of 2 which resist only a constant number of Sherali–Adams rounds, and another family
with integrality gap k/k−1 for integer parameter k which, in contrast, is preserved for a sub-exponential
number of Sherali–Adams rounds. In order to show strong integrality gap properties for the Sherali–Adams
hierarchy it is required that the instances have certain special properties (such as large degree and large
cardinalities of the color classes).

This motivates the second part of our paper: there, we show that if we exclude a certain simple sub-
structure (called truncated projective plane of order two, i.e., an alternating bi-chromatic cycle on four
vertices) then the integrality gap immediately improves. This means that every instance with integrality gap
of 2 should have many disjoint copies of these sub-graphs. These bi-chromatic cycles, which cause the large
integrality gap, can be recognized very quickly by the Sherali–Adams hierarchy i.e., only few rounds of this
hierarchy are enough to lower the integrality gap below 2. For completeness we include the simple proof of
this fact.

The combined results of our paper demonstrate that (i) the only instances of integrality gap 2 that
resist a large (non-constant) number of rounds of the Sherali–Adams hierarchy, are instances with fractional
bounds on the color classes and (ii) when we deal only with integral bounds, 2 rounds of the Sherali–Adams
hierarchy suffice to reduce the integrality gap of the natural LP relaxation of the BCM problem. Our proofs
are non-algorithmic and, although they were inspired by the results of Füredi [33] (which were also used
by Chan & Lau [19]), the technicalities involved make the arguments highly non-trivial. It remains a very
interesting open problem to exploit this result algorithmically and this is a point that we will elaborate later
in our manuscript.
Related Work: To the best of our knowledge, the first time such a generalization of the EM problem was
studied, at least from an approximation point of view, was in [34] where the so-called blue–red matching
problem was studied: find a maximum cardinality matching with at most w ∈ Z+ red and at most w
blue edges. Besides the theoretical relevance, their motivation was that this can be used to approximately
solve the Directed Maximum Routing and Wavelength Assignment problem (DirMRWA) [35] in rings which
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is a fundamental network topology [34,36]. They provided an RNC2 algorithm and a 3/4-approximation
combinatorial algorithm noticing also that the greedy procedure produces a 1/2-approximate solution. The
exact complexity of this problem remains open.

The BCM problem has appeared in the literature under many different names. In [37] ([GT55]) it was
defined as Multiple Choice Matching and was claimed to be NP-hard citing [38]. Unfortunately, the results
of [38] do not prove this claim since the color classes do not form a partition of the edge set. This was
acknowledged in [39] where it was shown, amongst other interesting results, that the problem is indeed
NP-hard even on 3-regular bipartite graphs. BCM is also known as the Rainbow Matching problem [40,41]
when wj = 1,∀j. In [42] a host of complexity results are given. Among these, it is shown that Rainbow
Matching is hard to approximate within a factor better than 139/140 even in complete graphs and this
trivially carries over to the BCM problem. Some graph classes where it is solvable in polynomial time were
also identified.

Finally, the BCM problem can be recast as a problem of maximizing a linear function subject to a
matching constraint and a partition matroid constraint which enforces that at most wj elements can be
chosen from Cj . As a consequence, the greedy algorithm immediately gives a 1/3-approximation and this is
tight i.e., there are simple instances where the greedy achieves exactly this ratio, see [43,44].

2. Technical preliminaries

Here we will define the natural linear programming formulation of the problem and we will comment
on its properties with respect to its integrality gap. The purpose of the subsequent sections is to provide
families of integrality gap instances and a study of the behavior of the Sherali–Adams hierarchy on them.
We will give the standard definition of the Sherali–Adams hierarchy.

For any vertex v of a graph G with edge set E(G) let δ(v) = {e ∈ E(G) : v ∈ e} i.e., the set of the edges
incident to v. For a given instance of the BCM problem we can describe the set of all feasible solutions as
follows.

Mc =
{

x ∈ {0, 1}E : x ∈ M and
∑
e∈Ej

xe ≤ wj , ∀j ∈ [k]
}

(1)

where M is the usual (degree-constrained) matching polytope: M = {y ∈ {0, 1}E :
∑
e∈δ(v) ye ≤ 1,∀v ∈

V (G)}. We call the additional constraints color constraints. We want to find the maximum profit solution
vector x (that maximizes pTx) such that x ∈ Mc. As usual, we relax the integrality constraints x ∈ {0, 1}E

to x ∈ [0, 1]E and we solve the corresponding linear relaxation efficiently to obtain a fractional vector
x ∈ [0, 1]E . It is not hard to show that the integrality gap of Mc is 2 and this is true even if we add the
blossom inequalities i.e., if instead of M as defined here, we use the well known Edmond’s LP [9].

Given an integral polyhedron I for a maximization problem and its linear relaxation L the integrality
gap of L is the maximum ratio of the optimal fractional solution over the optimal integral one, ranging
over all possible instances. Linear relaxations that always have integral optimal solutions have integrality
gap equal to 1. An LP formulation with integrality gap of ϱ implies that it is impossible to design an
approximation algorithm with performance guarantee better than ϱ using this particular formulation as
upper/lower bounding schema for our discrete optimization problem.

The Sherali–Adams Hierarchy: We recall the definition of the SA hierarchy of progressively stronger
relaxations of an integer polyhedron in the n-dimensional hypercube {0, 1}n. We use the original
definition [10].

Let F0 = {x ∈ [0, 1]n : aTi x =
∑
j∈[n] aijxj ≤ bi,∀i ∈ [m]} with aij , bi ∈ Q, ∀i ∈ [m], j ∈ [n] be an initial

convex polyhedron in [0, 1]n . Let I = conv(F0 ∩ {0, 1}n) be the convex hull of all integer points of F0. The
SA hierarchy, starting from F0, constructs a hierarchy of progressively non-weaker relaxations F1, F2, . . . of
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I in the sense that Fn ⊆ Fn−1 ⊆ · · · ⊆ F0. Let Fψ be the polyhedron resulting after ψ iterations of the SA
methods applied initially to F0. After at most n rounds we will arrive at I i.e., Fn = I. Sometimes n rounds
are necessary in order to arrive at I. At the ψth iteration, ψ ≥ 1, the SA hierarchy obtains Fψ from Fψ−1
(in fact, from F0) as follows: For all disjoint subsets Γ ,∆ of [n] such that |Γ | + |∆| ≤ ψ:

SA-1 For each constraint bi − aTi x ≥ 0 add the constraint

(bi − aTi x)
∏
γ∈Γ

xγ
∏
δ∈∆

(1 − xδ) ≥ 0.

SA-2 Add all the constraints
∏
γ∈Γ xγ

∏
δ∈∆(1 − xδ) ≥ 0.

SA-3 Expand all the polynomial constraints described by SA-1 and SA-2:

(1) Replace each term of the form x2
i by y{i},

(2) Replace each product of monomials
∏
ζ∈Z xζ , defined by a set of variable indices Z ⊆ {1, . . . , n},

by a new variable yZ .

SA-4 Let F lψ be the resulting lifted polyhedron. Project F lψ onto the original nth dimensional space by
eliminating all yZ variables for which |Z| ≥ 2:

Fψ = {x ∈ [0, 1]n : ∃y ∈ F lψ, y{i} = xi∀i}.

In case both Γ ,∆ are empty, the corresponding term is simplified to y∅. The size of the lifted program
after t rounds is O(

∑t
i=1
(
n
i

)
). We note that the effect of the SA hierarchy on the usual matching polytope

was fully studied in [17]. See also [45–47] for other relevant results regarding the performance of various
lift-and-project methods on the matching polytope.

3. Integrality gaps for the Sherali–Adams hierarchy

We will show that the integrality gap of Mc resists an asymptotically linear number of rounds of the
(SA) hierarchy by providing a particular family of graphs and a feasible solution for the ψth level of the
SA hierarchy with high fractional value with respect to the optimal integral value. We first provide our
integrality gap example.

3.1. A family F of integrality gap instances

For a given graph G = (V,E), an edge coloring of G is a function c : E → {1, . . . , k} such that
c(e1) ̸= c(e2) whenever e1 ∩ e2 ̸= ∅ (i.e., share a common endpoint). The edge chromatic number (also
known as chromatic index) of a graph G is the smallest positive integer k for which an edge coloring exists,
and it is denoted by χ′(G). For any G, let ∆(G) = maxv∈V (G) |δ(v)|. In a classical result, Vizing [48] showed
that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. For bipartite graphs a stronger statement holds:

Theorem 1 ([49]). If G is bipartite, then χ′(G) = ∆(G).

Our starting point will be the ℓ-dimensional hypercube graph Qℓ: Qℓ can be constructed inductively from
the disjoint union of the two hypercubes Qℓ−1, by adding an edge from each vertex in one copy of Qℓ−1 to
the corresponding vertex in the other copy. The joining edges form a perfect matching. Qℓ has 2ℓ vertices
and ℓ · 2ℓ−1 edges. More importantly, every hypercube graph is a uniform bipartite graph of degree ℓ and
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thus, applying the result of [49] we conclude that the edge chromatic number χ′ of Qℓ is precisely ℓ, the
degree of each vertex in V (Qℓ). In other words, we can edge-color the edges of Qℓ with ℓ colors such that all
edges adjacent to any vertex receive distinct colors. Trivially, each color class Cj , j ∈ [ℓ] contains 2ℓ−1 edges.
We set the bound wj = 2(1 − ϵ) for each color class, for some ϵ > 0. Then, the maximum integral matching
contains ℓ edges (one edge per color class) whereas, by setting the values of the variables (corresponding
to edges) to 1

2ℓ−2 − ϵ, the maximum fractional matching (solution to the LP relaxation Mc) has value
≈ ℓ·2ℓ−1

2ℓ−2 = 2ℓ. This is indeed a feasible solution since (1) ℓ( 1
2ℓ−2 − ϵ) ≤ 1 and (2) 2ℓ−1( 1

2ℓ−2 − ϵ) ≤ 2(1 − ϵ)
i.e., it satisfies both degree and the color bound constraints.

Let F be the family of all graphs constructed as above. Observe that these particular instances are “easy”
from an algorithmic point of view: indeed, the first Chvátal Closure of Mc closes the gap. We remind that
the first Chvátal closure of a polyhedron P = {x ∈ Rn : Ax ≤ b} for A ∈ Qm×n and b ∈ Qm, is defined as

P c =
{

x ∈ Rn : Ax ≤ b,
n∑
j=1

(⌊uTAj⌋)xj ≤ ⌊uTb⌋,∀u ∈ Rm
}
.

I.e., if we apply the first Chvátal closure to Mc with u = (1, 1, . . . , 1)T vector for a graph G ∈ F , then the
integrality gap vanishes. On the other hand, this closure alone is not enough to close the integrality gap on
any arbitrary instance: take the size four cycle with alternating edges from E1, E2 and set βj = 2(1 − ϵ).
Then, the first Chvátal closure will set b′

j = 1 which has integrality gap again 2 whereas two rounds of the
(SA) are enough to eliminate this gap. This shows that the two operators are incomparable, at least with
respect with Mc.

The effect of SA on the family F : Let G ∈ F be any graph constructed as in the previous subsection
for some ℓ. Given such a G, we will define an appropriate fractional solution vector y and we will prove that
y is feasible for the ψth level of the Sherali–Adams hierarchy, for any ψ = o(2ℓ). Then we will see that this
proposed vector has fractional value twice as large as the optimal integral solution.

Now define the vector y ∈ Fψ in [0, 1]η, η =
∑
q∈[ψ]

(
n
q

)
as follows:

y =

⎧⎨⎩
y∅ = 1
y{e} = 1−ϵ

2ℓ−2+ψ(1−ϵ) (= ρ), ∀e ∈ E(G)
yI = 0, ∀I ⊆ [n], |I| ≥ 2

We would like to show that this proposed vector is valid (feasible) for the ψth level of the SA hierarchy. In
order to prove that, we need to prove that it satisfies all the constraints of the ψth level of the SA hierarchy
applied to Mc for a graph G ∈ F . Analyzing the construction of the constraints of the ψth level of SA as
outlined in the previous section, we have the following sets of constraints:

Degree constraints: These correspond to all the constraints(
1 −

∑
e∈δ(v)

ye

) ∏
γ∈Γ

yγ
∏
δ∈∆

(1 − yδ) ≡
(

1 −
∑
e∈δ(v)

ye

) ∑
H⊆∆

(−1)|H|yΓ∪H ≥ 0

where Γ ,∆ ⊆ [n]: Γ ∩ ∆ = ∅ and |Γ |, |∆| ≤ min{n, ψ + 1}. This is still not a linear constraint. If we insist
to fully linearize them, then they will take the form∑

H⊆∆

(−1)|H|yΓ∪H −
∑
e∈δ(v)

∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0.

In the above H,Γ are set of indices of variables. By abusing notation slightly we allow ourself to write
Γ ∪H ∪ {e} where for e we mean the index of its corresponding variable. This is true in all the following.
We also use ye instead of y{e} (since the coordinates of y are defined on sets rather than elements).

Color constraints: Similarly, for all the color constraints we add all the constraints of the form

wj ·
(∑
H⊆∆

(−1)|H|yΓ∪H

)
−
∑
e∈Ej

∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0.
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Non-negativity constraints: These are the constraints 1 − ye ≥ 0 and ye ≥ 0, ∀e ∈ E. Identically with
the previous cases, these constraints will become, respectively,∑

H⊆∆

(−1)|H|yΓ∪∆ −
∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0 and
∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0.

Lemma 1. The vector y, as defined above, is feasible for the ψth level of the Sherali–Adams hierarchy
applied on Mc, for any ψ = o(2ℓ−2).

Proof. First of all, it is immediate from the definition that y satisfies all the initial constraints (the
constraint matrix of Mc) or, in other words, the zero-th level of the SA hierarchy applied to Mc. We will
prove that it satisfies all the color constraints arising after ψ rounds, for any ψ. The other two sets of
constraints can be shown to be satisfied by the vector y using identical, and in fact easier, arguments. At
the end, by selecting any ψ = o(2ℓ−2), we will prove that the value of the fractional solution is twice the
value of the optimal integral one.

So, we have to show that for the defined y we have that

Ξ = wj
∑
H⊆∆

(−1)|H|yΓ∪H  
Σ1

−

Σ2  ∑
e∈Ej

∑
H⊆∆

(−1)|H|yΓ∪H∪{e} ≥ 0.

To prove our claim, we will distinguish between three major cases with respect to the cardinality of the
set Γ :

Case 1. |Γ | ≥ 2: In this case we have that |Γ ∪H| ≥ 2, ∀H ⊆ ∆ and so, be the definition of the solution
vector y we have that yΓ∪H = 0. So, both Σ1,Σ2 become zero forcing the entire sum Ξ to be zero and
thus the constraint is trivially satisfied.

Case 2. |Γ | = 1: In this case Γ contains the index of some edge e ∈ E(G) and again, by slightly abusing
notation, we can write that Γ = {e}. In that case, there are two possibilities regarding the set ∆ which
we need to handle.
We will first show that {e} cannot belong in the set ∆. Indeed, assume {e} ∈ ∆. Then Γ ∩ ∆ is not
equal to ∅. Using this we will show that the whole sum Ξ is zero (and this is the reason why we impose
the requirement that Γ ∩ ∆ should be ∅): For this, let H ⊆ ∆ such that {e} /∈ H (the case H = {e}
is treated completely symmetrically). Then, the corresponding term in the sum becomes (−1)|H|yΓ∪H .
Consider now the term H ∪ {e}. The corresponding term in the sum is now

(−1)|H|+1yΓ∪H∪{e} = (−1)|H|+1yΓ∪H ,

(since {e} ∈ Γ , we have that yΓ∪H∪{e} = yΓ∪H), a term that has opposite sign than (−1)|H|yΓ∪H .
So, the two terms cancel each other, and the whole sum is zero. This shows that if {e} ∈ ∆ then Ξ is
satisfied.
We will consider now the case where {e} /∈ ∆. This is equivalent to ∆ = ∅ since, otherwise, we would
have |Γ ∪ ∆| > 1 and so, be definition of y, yΓ∪∆ = 0. In that case, the sum Σ1 is of the form
wj · (−1)0yΓ∪∅ = y{e} = wj · ρ ≥ 0 and the sum Σ2 becomes simply ρ because the only surviving term
for the outermost summation (over all indexes of edges in Ej) is for the particular {e} = Γ since the
term ye∪e′ = 0 for e′ ̸= e, and so we have that Ξ = wjρ − ρ > 0 and so the constraint Ξ is again
satisfied.
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Case 3. |Γ | = 0: In this case, we will derive expressions for Σ1,Σ2 and compare them to prove the claim.
We start with Σ1 and we see that in this case the only terms that survive are the term y∅ = 1 with
coefficient (−1)0 = 1 and all the terms of the form y{h} for h ∈ ∆ with coefficient (−1)1 = −1. We
have |∆| ≤ ψ many such terms so, at the end, we have that

Σ1 = wj(1 − |∆|ρ).

For Σ2 we proceed as follows: first we fix an e ∈ Ej . For this e, the surviving terms of the second sum
are the ones corresponding to H = ∅ and H = {e}, if e ∈ ∆. For H = ∅ the corresponding term becomes
(−1)0y{e} = ρ and we have one such term for each e ∈ Ej . For H = {e} ∈ Ej ∩ ∆ the corresponding
term becomes (−1)1y{e}∪{e} = −1y{e} = −ρ and we have |Ej ∩ ∆| many such terms. For all e′ ∈ ∆

such that e′ /∈ Ej , the corresponding terms become y{e′}∪{e} = 0 by definition. So, all in all,

Σ2 = ρ|Ej | − ρ|Ej ∩ ∆|.

Since Ξ = Σ1 −Σ2, we want to prove that Ξ ≥ 0 which is equivalent from the above derivations on Σ1
and Σ2 to

Ξ = Σ1 − Σ2

=
(
wj(1 − |∆|ρ)

)
−
(

|Ej | · ρ− |Ej ∩ ∆| · ρ
)

≥ 0
⇔ |Ej |ρ− |Ej ∩ ∆|ρ ≤ wj(1 − |∆|ρ).

Since |Ej ∩ ∆|ρ ≥ 0, we will show that

|Ej |ρ ≤ wj(1 − |∆|ρ) ⇔ |Ej |ρ+ wj |∆|ρ ≤ wj

which trivially implies that Ξ ≥ 0. Indeed, using the fact that |∆| ≤ ψ and |Ej | = 2ℓ−1, we have that

|Ej |ρ+ wj |∆|ρ ≤ ρ
(

|Ej | + ψ · wj
)

= (1 − ϵ)
2ℓ−2 + ψ(1 − ϵ) ·

(
2ℓ−1 + ψ · 2(1 − ϵ)

)
= (1 − ϵ)

2ℓ−2 + ψ(1 − ϵ) · 2 ·
(

2ℓ−2 + ψ · (1 − ϵ)
)

= 2(1 − ϵ) = wj ,

as required and this concludes the proof that Ξ ≥ 0 when |Γ | = 0.
We have proven that the proposed vector y satisfies all the color constraints arising after at most ψ rounds

of the Sherali–Adams hierarchy and observe that the analysis above is independent of the actual value of
ψ. If we want to retain the integrality gap of 2 we will show that choosing any ψ = o(2ℓ−2) achieves this.
The rest of the constraints (non-negativity, degree) can be proven to be satisfied by the proposed solution
vector y, for the same bounds on the number of rounds ψ, in an identical manner. Here we briefly mention
the details for the remaining cases. In order to show that the degree constrains are satisfied by the proposed
vector y, we follow the calculations as above, and indeed the first two cases go through in exactly the same
way. For the case |Γ | = 0 and for the constraint imposed by a vertex v, everything boils down to showing
that ρ(|δ(v)| +ψ) = ρ(ℓ+ψ) ≤ 1, which is trivially true by the definition of ρ. Regarding the non-negativity
constraints, we will first show that

∑
H⊆∆(−1)|H|yΓ∪H∪{e} ≥ 0, which corresponds to the constraint ye ≥ 0,

for all e ∈ E. Again, we distinguish three cases regarding the cardinality of Γ .
Fix a term corresponding to a non-negativity constraint for an edge e. If |Γ | > 1 then the corresponding

term is zero by definition. If |Γ | = 1 then the corresponding term is non-zero only when Γ = e. Again
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Fig. 1. A graph from B.

as before, in both cases where e ∈ ∆ and e /∈ ∆, we see that the constraint is satisfied: if e ∈ ∆ then
the constraint is equal to zero otherwise is equal to ye > 0. If |Γ | = 0 again we distinguish two cases
regarding whether e ∈ ∆ or not. In both cases, identical arguments as before show that the constraint
should be ≥ 0. Indeed, if e ∈ ∆ then the term (constraint) becomes zero (the only surviving terms are the
one for H = ∅ and H = {e}), otherwise it becomes ye > 0 (the only surviving term is the one for H = ∅).
The second non-negativity constraint

∑
H⊆∆(−1)|H|yΓ∪∆ −

∑
H⊆∆(−1)|H|yΓ∪H∪{e} is a special case of the

degree constraint and so its non-negativity follows directly from the non-negativity of the latter. □

We now bound the value of the objective function for this y: ∀ϵ > 0 and ψ = o(2ℓ−2)

value(y) = lim
ϵ→0

(
ℓ2ℓ−1 (1 − ϵ)

2ℓ−2 + ψ(1 − ϵ)

)
= lim
ϵ→0

2ℓ 2ℓ−2(1 − ϵ)
2ℓ−2 + ψ(1 − ϵ) = 2ℓ.

On the other hand, any integer solution can select at most one edge per color class and so the integer
optimum is exactly ℓ.

Theorem 2. For any ϵ > 0, there exist graphs G on n vertices and m edges such that for any ψ = o(m)
the integrality gap of the ψth level of the Sherali–Adams hierarchy applied to Mc for G, is at least 2

1+ϑ ,
ϑ = o(1).

3.2. Integrality gap instances with integral bounds

The results of the previous section used the fact that the color bounds were fractional numbers so a very
natural question is whether we can find instances for the BCM problem with integer color bounds that cause
the SA to perform poorly on them (whereby the integrality gap of 2 resists a large number of SA rounds).
As the results of the previous section suggest, we need highly structured instances in order to “fool” the SA
hierarchy: both the degrees of the vertices and the cardinalities of the color classes are required to be Θ(n)
in order to have strong integrality gaps for the SA hierarchy after O(n) rounds. It is not clear at all if such
instances exist and, if they do, how they can be constructed. In the next section we will show how the only
instances that have an integrality gap of 2 that resist a large number of Sherali–Adams rounds, must have
fractional color bounds.

Observe that it is an easy task to come up with arbitrary instances that have integrality gap of 2 (for
the natural initial relaxation): Consider the following family of bipartite instances, B, for the BCM (in fact
the Rainbow Matching) problem: take k copies of the C4 graph, k ∈ N, where C4 is the usual 4-cycle.
Let the ith copy of C4, Ci4, 1 ≤ i ≤ k, have vertices α1

i , α
2
i , α

3
i , α

4
i . Let Eri = {{α1

i , α
2
i }, {α3

i , α
4
i }} and

Ebi = {{α1
i , α

4
i }, {α2

i , α
3
i }}. Now, connect the ith copy of C4, Ci4, 1 ≤ i ≤ k− 1 with the (i+ 1)th as follows:

add the edge {α2
i , α

1
i+1} and assign to this edge a new color, say cw. Add the edge {α3

i , α
4
i+1} and color it

again with cw. Connect Ck4 with C1
4 in same way as before and assign to the two new edges color cw. All

color bounds are set to 1. See Fig. 1.
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Fig. 2. The graphs corresponding to ℓ = 1, 2, 3. The ordered list of colors is black, red, blue, green, orange, purple and so, for example,
black connects all vertices vi ∈ L to ui ∈ R. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

All in all, our graph has 4k vertices and 4k + 2k = 6k edges, i.e., E = Ew ∪ (
⋃k
i=1(Eri ∪ Ebi )) where

|Eji | = 2, ∀i ∈ [k], j ∈ {r, b} and |Ew| = 2k. The optimal integral solution has value k + 1 whereas the
optimal fractional solution can have value 2k. By following very similar calculations as in the previous
section we can see that after only a few (constant, in fact 3) number of rounds the Sherali–Adams procedure
will declare any fractional vector approaching value 2k as infeasible. This is consistent with the structural
requirements explained above that are needed in order to prove large SA integrality gaps after a large number
of rounds. As we will see in the next section, this is not a coincidence: these bi-chromatic cycles Ci4 are, in
some very precise sense, the only obstacles for instances with improved integrality gap bounds.

We move on by describing a third family F ′ of integrality gap instances. In contrast with the previous
two families, this family will have integrality gap of k/k−1 for parameter k. However, in contrast with the
second family B described above, this bound on the integrality gap resists any sub-linear number of the
Sherali–Adams strengthening. The construction is as follows: let k = 2ℓ, ℓ be a positive integer greater than
or equal to 1. The graph will be bipartite with bipartition L,R where |L| = |R| = k = 2ℓ. Moreover, the
graph will be k-regular i.e., each vertex from the “left” bipartition L will be connected to each vertex of
the “right” bipartition R. We now provide the coloring of the edges to complete the instance of the BCM
problem. The resulting graph will be properly edge-colored. We have k = 2ℓ different colors c0, c2, . . . , ck−1.
Take vertex vj ∈ L, j ∈ {0, 1, . . . , k−1}. For each ∆ ∈ {0, 1, . . . , k−1} edge (vj , v(j+∆) mod k) gets color c∆.

In other words, for every vertex vj ∈ L we take the ordered list of colors c0, . . . ck−1 and we paint
(vj , uj) with c0, (vj , uj+1) with c1 and so on. Set the bound of each color class equal to 1. See Fig. 2 for a
demonstration of the construction for ℓ = 1, 2, 3.

For ℓ = 1(k = 2) we have a bi-chromatic cycle which has integrality gap of 2. For ℓ = 2(k = 4) the
integrality gap is 4 over 3: the maximum colored matching is 3 but the LP can have fractional value of 4.
In general, for any even k, the maximum colored matching has cardinality of at most k − 1 (see Lemma 2)
versus fractional value of k: set xe = 1/k for all edges e. Since the degree of every vertex and the cardinality
of every color class are both k, this constitutes a feasible solution. Then, since we have k × k edges, the
overall objective function value is k giving an integrality gap of k/k−1.

Lemma 2. Let Gk be a graph constructed as above for some even positive number k. Then, the cardinality
of the maximum matching that has at most one edge per color is at most k − 1.

Proof. Let A be the matrix whose (i, j) entry has the color of the edge (vi, uj) ∈ L×R. It is easy to notice
that A is in fact a Latin Square of order k i.e., a matrix filled with k different symbols (the colors), each
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color occurring exactly once in each row and exactly once in each column. Furthermore, by construction,
A corresponds to a cyclic group of order k (for every row, the list of colors is shifted by one with respect
to the preceding row). If there was a feasible (colorful) matching of size k, then this would correspond to a
transversal in A: A transversal of a Latin Square is a set of entries which includes exactly one entry from
each row and column and one of each symbol. But Latin Squares of cyclic groups of even order cannot have
a transversal [50]. □

We note that the choice of k being an even number is crucial: According to the well known Ryser’s
conjecture [51] every Latin Square of order n contains a Latin transversal when n is odd. In our context
this is equivalent to saying that every proper n-edge-coloring of the complete bipartite graph Kn,n always
contains a colorful perfect matching when n is an odd number. Although this is a conjecture for general
properly edge colored complete bipartite graphs, we can easily prove that this is true for the cyclic group
corresponding to the coloring of the edges given above: Take the edge (v0, u0) of color c0. For j = 1, . . . , k−1,
vertex vj is matched to vertex u(j+j) mod k and this edge (vj , u(j+j) mod k) gets color cj . This constitutes
a perfect colorful matching. Alternatively, the greedy strategy gives always such a matching. This implies
that Ryser’s conjecture is true for Latin Squares corresponding to cyclic groups.

Now, identical arguments as before (we omit the details since they are completely identical) give us that
o(k) rounds of the Sherali–Adams strengthening are not enough to reduce the integrality gap below k/k−1

in the slightest.

Theorem 3. Let Gk ∈ F ′. Then, even o(k) rounds of the Sherali–Adams hierarchy applied to the natural
LP relaxation of the BCM problem on this instance, are not enough to reduce the integrality gap below k

k−1 .

4. Improved integrality gap bounds

In this section we will study more carefully the integrality gap properties of the natural linear relaxation
Mc of the BCM problem. The previous section suggests that the bi-chromatic cycles on four vertices are
building blocks of instances of integrality gap 2. Here, we will formalize this result in the following strong
sense: if we exclude these simple sub-structures (bi-chromatic cycles with alternating colors, like the Ci4s
above) from our input graphs, then the integrality gap strictly improves. Towards that goal, we will firstly
cast the problem as a natural hypergraph matching problem. In order to provide an upper bound on the
fractional value for a given instance (as a function of two relevant parameters: the size of its matching and
the number of disjoint copies of these sub-structures) of the natural linear relaxation of BCM (as hypergraph
matching problem), we will use the dual relaxation of Mc: the value of any feasible solution to this dual
program will provide an upper bound on the feasible fractional value of Mc (including the optimal value
of it). We will then relate this value to the optimal integral solution. We will distinguish between the cases
where the input graph instance is a bipartite graph or not, and give slightly different bounds for these two
cases, although the idea is identical.

A direct implication of this is the following: if we want to construct instances of the BCM problem
for which the Sherali–Adams hierarchy cannot close the integrality gap of 2 after a large (i.e., sub-linear)
number of rounds, then fractional bounds are necessary. This is because we will show that the absence of
the bi-chromatic cycles immediately reduces the integrality gap and, moreover, as the results of the previous
section suggest, the Sherali–Adams hierarchy very quickly recognizes such instances (declares vectors which
assign fractional value of 2 to each such cycle as infeasible).

Without any loss, we will focus on the case where wj = 1 for all color classes Cj ∈ C i.e., the
Rainbow Matching problem. We can easily cast this case as a hypergraph matching problem as follows:
let G = (V,E1 . . . Ek) be an instance of this rainbow matching problem. For each color class Cj , create a
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new vertex cj and let N be the set of all these new vertices. For every edge e = {u, v} ∈ Ej of the initial
graph, create the hyperedge {u, v, cj}. In this way we have created a uniform (each edge has three elements)
hypergraph H = (V ∪N,EH) where EH is the set of hyperedges constructed as above. It is immediate that
any feasible matching in H translates 1–1 to a feasible matching of G with exactly the same cardinality.
Given an instance where wj = k > 1 for some j, obtain the following 3-hypergraph matching problem by
introducing k new color classes Cj1 , . . . , Cjk and set wji = 1,∀i ∈ [k]. For every edge e = {u, v} of color
Cj , include all the hyperedges (u, v, Cji). Any hypergraph matching of cardinality c in the new hypergraph
can be transferred in an immediate way to a feasible solution for the initial BCM instance of the same
cardinality, i.e., to a solution that can have at most k edges of color Cj .

Now, for every hyperedge e ∈ EH , we introduce a binary variable xe. Then the standard integer linear
formulation of this hypergraph matching problem is simply to maximize

∑
e∈EH

xe subject to
∑
e:v∈e xe ≤ 1,

for all v ∈ V (H). By relaxing the integrality constraints to xe ∈ [0, 1] for all hyperedges e we obtain the
linear relaxation of this LP which, as we have already discussed, has integrality gap of 2. Let us call this
LP HMc.

Let us take the minimal instance that has integrality gap of 2 for the BCM (and Rainbow Matching)
problem: a simple bi-chromatic 4-cycle with alternating edges of these two colors. It is easy to observe that if
we cast this instance as a hypergraph instance, then this is equivalent to the truncated 3-uniform projective
plane. We remind that a projective plane is a hypergraph that satisfies the following conditions: (1) for
any two vertices of the hypergraph, there is a unique hyperedge that contains them both, (2) for any two
hyperedges, they share exactly one common vertex, and (3) there are four vertices of the hypergraph such
that no hyperedge contains more than two of them. It is a well known fact that r-uniform projective planes
exist if r − 1 is a prime power (see [52], page 250). A truncated projective plane is obtained by removing a
single vertex from the initial projective plane and all the hyperedges incident to that vertex. Interestingly,
(truncated) projective planes are linked to integrality gaps of the hypergraph matching problem (since in
a projective plane we can choose exactly one independent hyperedge): an r-uniform projective plane has
integrality gap of r − 1 + 1

r whereas a truncated r-uniform projective plane has integrality gap of r − 1 for
their corresponding natural LP relaxations. The 3-uniform projective plane is known as the Fano plane. The
projective plane we obtain by truncating it is simply the bi-chromatic 4-cycle with alternating edges from
the two colors. We denote such sub-instances by BC and by BCH we denote their hypergraph translation.

We move on by defining the dual LP of the one described by HMc: given a 3-uniform hypergraph H,
i.e., an instance of the hypergraph representation of the Rainbow Matching problem, for every edge we
have a constraint and for every vertex v of H a variable yv. Then, for every hyperedge e of H we have the
constraint

∑
v∈e yv ≥ 1. This is the dual of the hypergraph matching relaxation and any feasible fractional

solution to it provides an upper bound on the fractional solution of the linear relaxation of the hypergraph
matching problem. By duality, the two optimal values are the same. Let y∗ denote the optimal (minimum)
fractional dual value for a given instance. This dual LP, let us call it D(HMc), is also called a fractional
covering (or transversal) LP.

Theorem 4. Let H be a 3-uniform hypergraph (a hypergraph instance for the rainbow matching problem)
such that H has a matching (independent set of edges) of size µ ∈ Z+. Assume that H has at most q pairwise
disjoint copies of BCH . Then, we have that

1. y∗(H) ≤ 3µ/2 + q/2 if the underlying graph is bipartite, and
2. y∗(H) ≤ 5µ/3 + q/3 otherwise.

We will prove the claim by induction on µ, the cardinality of the matching in H. For that, we will
find useful a translation of the following result from [6] which says that any basic feasible solution for
Mc (and, consequently, the natural linear programming relaxation for the 3-uniform hypergraph matching
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interpretation of the Rainbow/BCM problem captured by HMc) has a very particular structure. The result
holds on both general and bipartite graphs. We restate the result in terms of hypergraphs as opposed to
the pure BCM setting that was originally stated, but the restatement is straightforward. In the following
we remind that a basic feasible solution (or vertex solution) for an LP is a solution that cannot be written
as a convex combination of other feasible solutions.

Theorem 5 (Lemma 2 in [6]). Let x ∈ (0, 1)E be a basic feasible solution for the linear relaxation of the
3-uniform hypergraph matching problem. Construct the graph LH by including a hyperedge e in E(LH) if
xe > 0. Then, there exists some vertex v ∈ V (LH) ⊆ V (H)(= V ∪N) such that the degree of v in LH is at
most 2.

In other words, basic feasible solutions are sparse. Indeed, we can form a basic feasible solution by selecting
|E| = |E(LH)| linearly independent constraints from our linear program, setting them to equality, and solving
the linear system. The above result simply says that the number of non-zero variables (corresponding to
edges in LH) is equal to the number of linearly independent constraints set to equality. The assumption that
xe ∈ (0, 1) implies that all constraints that we set to equality are vertex constraints, but not non-negativity
constraints. See [53,54] for more details. We will critically exploit this fact in the following.

Some Notation: Before we move on to the proof, we set up some notation. Let v be any vertex of H
(in fact, of LH). Denote by E(v) the set of edges that contain v i.e., E(v) = {e ∈ E(LH) : v ∈ e}. Also,
denote by H(e) the hypergraph that is obtained by removing edge e and all edges e′ that intersect with e

i.e., the hypergraph with edge set H(e) = {e′ ∈ E(H) such that e∩e′ = ∅}. According to Theorem 5, we can
always find a vertex v of degree at most 2 in LH . Let e1 and e2 be these two edges, with non-zero fractional
value xe1 , xe2 respectively, incident on v in LH and let H(ei), i = 1,2, be the sub-hypergraph obtained by
removing ei and all edges intersecting with this edge. For any u ∈ V (LH) \ {v} let δv(u) ∈ {0, 1, 2} be the
degree of u in Hv = (V (H), E(v)) i.e., the degree of u in the subgraph consisting of the two edges in E(v).

Proof of Theorem 4. With the above notation and relevant results, we will prove the claim of the theorem
by an inductive argument on the cardinality of µ.

Base Case: For the base case of the induction, assume that µ = 1 (and, of course, q can be at most 1). It is
immediate to see that in this case H(e1), H(e2) are both the empty graphs: if not, then we can always choose
two independent edges for a matching size µ = 2, one edge from H(ei) and then one edge among e1, e2 and
all other edges that intersect them. We will construct a feasible solution for the dual LP D(HMc) as follows:
for every u ∈ V (L(H)) \ {v} put yu = δv(u)/2. We first claim that this is a feasible solution i.e., satisfies all
constraints

∑
u∈e yu ≥ 1 for all hyperedges e. For the base case we need to prove the claim only for e ∈ E(v)

and any other hyperedge that intersect either e1 or e2 (since H(ei), i = 1,2 is empty in this case). It is easy
to see that for any such edge ∑

u∈e
yu = 1

2
∑

u∈(e\{v})

δv(u) ≥ 1
2 · 2 = 1.

We have used the fact that for each of the two edges in E(v), the remaining vertices in each edge have
degree in Hv at least 1. For edges e /∈ E(v) we use the fact that, in case µ = 1, such edges intersect both
e1, e2 incident on vertex v: if that was not the case, then there would be vertices of degree 1 (since H(ei) = ∅,
for i = 1,2), a contradiction. In other words, if there was an edge e /∈ E(v) that intersects exactly one of
e1, e2, say intersects only e1, then e2 ∪ e gives a matching of size 2 since e2 ∩ e = ∅ by assumption which
gives a contradiction that there exists an edge that intersects exactly one of the edges in H(v). Then, we
see immediately that the above constraint is satisfied in this case as well.
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Fig. 3. Two graphs with matching size µ = 1 and with q = 0 that achieve the bounds of the base case. On the left, a bipartite graph
where edges {v1, v2}, {v3, v4} are blue and the other edge is red. By assigning value 1/2 to each edge we get optimal fractional value of
3/2 vs. value 1 in the integral case. On the right side we have a graph which is not bipartite: edges {u1, u2}, {u3, u4} are green, edge
{u1, u3} is blue and the remaining edge {u2, u3} is red. By assigning value 2/3 to {u1, u2} and value 1/3 to each other edge, we get an
optimal feasible fractional solution of value 5/3 vs. value 1 in the integral case. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

We will now compute the value of the dual LP which, by duality, will give an upper bound on the fractional
solution for the hypergraph matching problem. We have that

y∗(H) ≤
∑

u∈V (H)

yu = 1
2

∑
v∈V (H)\{v}

δv(u) ≤ 1
2 · 4 = 2.

We will now show that for the base case (µ = 1), if q = 0 then y∗(H) ≤ 3/2 for bipartite and y∗(H) ≤ 5/3

for non-bipartite graphs which will complete the proof for the base case. The fact that µ = 1 means that all
edges are pairwise intersecting either on a common “color” vertex cj or on a common vertex of the normal
graph G (or both). This means that either all edges have the same color, or G is the star graph, or G is a
(possibly heterochromatic) triangle (pairwise vertex intersection). In all cases, it is immediate by a simple
search to see that the maximum possible fractional value we can get is 5/3 for general graphs and 3/2 for
bipartite graphs, see Fig. 3.

Inductive Step: Now, assume that G is an instance for the Rainbow Matching problem that has a matching
of size µ and has q disjoint copies of BCH . Let x ∈ [0, 1]E be a basic feasible fractional solution of Mc for
this instance and let LH be the restriction of the hypergraph representation of G with respect to x. We
know from Theorem 5 that LH must have a vertex v with degree (at most) 2 and let e1, e2 be these two
edges incident to v. Consider the two sub-hypergraphs H(e1) and H(e2) where H(ei), i = 1,2 is constructed
by removing ei and all edges intersecting with ei from LH . These two sub-hypergraphs induce two new
(fractional) sub-instances for the underlying restricted matching problem.

In order to use the inductive hypothesis, we need to prove the following easy but important claim:

Claim 1. The restrictions xi of x to the edges induced by H(ei), i ∈ {1, 2} are still basic feasible solutions
for the corresponding restricted instances of HMc.

Proof. This proof follows an easy pattern but we keep it here for the sake of completeness. Indeed, if they
were not, then x would not have been a basic feasible solution for LH in the first place, since then it could
be written as a convex combination by the corresponding convex decompositions of the restricted vectors of
x in a straightforward way: Assume that for α ∈ (0, 1), xi = αz1 + (1 −α)z2. Then x = αz1 + (1 −α)z2 + xe
where xe ∈ (0, 1)E is simply the restriction of x to e1 and all edges intersecting it, and has zero on indices
of all the other edges (that are in H(e1)). A contradiction. □

This means that we can apply the inductive hypothesis on H(e1) and H(e2) separately: each one of them
has a matching of size at most µ− 1 (since, in each, we have removed an edge and all its intersecting edges
which means that we can always add back at least one extra edge to reach µ, the size of matching in H)
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and each one has at most q disjoint copies of BCH . In the following, we will prove the claim only for the
case of general graphs but completely identical arguments hold for the bipartite case as well. In our analysis
below we will distinguish between two cases: (1) both H(ei) have a matching of size exactly µ − 1, or (2)
at least one of H(e1) has a matching of size ≤ µ − 2. The first case simply means that there is no edge e
that intersects exactly one of e1, e2. So, in this case, for any edge e /∈ {e1, e2} we have that either e does not
intersect any of them or intersects both of them.

We start with the second case. We will define a fractional dual solution y for LH as follows: y(v) = 0 and
for any u ̸= v ∈ V (H)

y(u) = 1
2

(
δv(u) + y1(u) + y2(u)

)
(2)

where the existence of each yi is guaranteed by inductive hypothesis.

Claim 2. The solution y defined above is a feasible dual solution for the Rainbow Matching problem instance.

Proof. To show that this is indeed a feasible dual solution for our instance, we need to show that∑
u∈e y(u) ≥ 1 for all edges e of LH (since the non-negativity constraint is trivially satisfied). This is

indeed true for any edge e ∈ Hv since, as before in the base case, for any such edge we have that∑
u∈e y(u) = 1/2

∑
u∈e δv(u) ≥ 1/2 · 2 = 1. For all other edges e ∈ E(LH) \ E(Hv) we have that∑

u∈e
y(u) = 1

2
∑
u∈e

(
δv(u) + y1(u) + y2(u)

)
If edge e intersects both e1 and e2 (the edges incident to the degree-2 vertex v in V (LH) the existence
of which is guaranteed by the properties of basic feasible solutions) then

∑
u∈e δv(u) ≥ 2 and the above

expression is ≥ 1 as required. If
∑
u∈e δv(u) = 0 this means that e intersects neither e1 nor e2 and thus it

belongs to both sub-hypergraphs H(e1) and H(e2). This further means that for this edge the corresponding
constraint is satisfied by both y1 and y2 i.e.,

∑
u∈e yi(u) ≥ 1, i = 1,2 and thus the whole expression above is

again ≥ 1. The only remaining case is when e intersects only one of e1, e2 in one vertex i.e., the case where∑
u∈e δv(u) = 1. Without any loss let us assume that e intersects e1 only. This means that e /∈ E(H(e1))

but since e does not intersect e2 we have that e ∈ E(H(e2)) and as such the constraint is satisfied by the
dual solution y2 i.e.,

∑
u∈e y2(u) ≥ 1. This, together with the fact that

∑
u∈e δv(u) = 1 proves that y(u) ≥ 1

as required. □

To finish the proof, we will give a bound on the fractional dual solution value which, by duality theory,
gives an upper bound on the fractional value (and hence integrality gap) for the fractional Rainbow Matching
problem. We remind that we are in the case where at least one of the H(ei) has a matching of size at most
µ− 2, let this be H(e1). We apply the inductive hypothesis on yi and we have that

y∗ =
∑

v∈V (LH )

y(u) = 1
2

( ∑
u∈V (LH )\{v}

δv(u) + y1(u) + y2(u)
)

= 1
2

( ∑
u∈V (LH )\{v}

δv(u) +
∑

u∈V (LH )\{v}

y1(u) +
∑

u∈V (LH )\{v}

y2(u)
)

≤ 1
2

(
4 + 5(µ− 2)

3 + q

3 + 5(µ− 1)
3 + q

3

)
= 5µ

3 + q

3 − 1
2

<
5µ
3 + q

3
as desired.
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We now move to the first case: both H(ei) have a matching of size exactly µ− 1 which implies that there
is no edge e that intersects exactly one of e1, e2 at one endpoint (say e1): if there was such an edge then the
graph that is induced by edge e1 and all other edges that intersect it would have matching size of 2 since
e and e2 are independent which implies that the matching size of the original instance is µ + 1 + 2 > µ.
Let R(ei) be the set of edges that intersect ei (including ei). We know by assumption that each R(ei) has a
matching of size exactly 1. Again, we will distinguish between two cases: (1.a) Neither of R(ei) is isomorphic
to a BCH , and (1.b) both of them are (since there are no edges intersecting exactly 1 of e1, e2 implies that
either both are isomorphic to BCH or none is).

We start with case (1.a) and we use the inductive hypothesis (in fact the base case since the matching size
is one) on R(ei). This case tells us that there exists a dual solution yRi

for the vertices in R(ei) with value
at most 5/3 and by inductive hypothesis there exist dual solutions yi with the desired properties. Define a
new dual solution vector y for H as follows:

y(u) = 1
2

(
yR1(u) + yR2(u) + y1(u) + y2(u)

)
.

Claim 3. The solution y defined above constitutes a feasible dual solution for the Rainbow Matching problem
instance.

Proof. As before, all edges in R(ei) are satisfied by the dual solution by construction. This includes the
edges that intersect both e1 and e2. The only remaining edges are those that intersect neither e1 nor e2 and
identical arguments to the previous case (2) can be applied here as well. □

We finish this case by providing a bound on the fractional dual solution value where again we apply the
inductive hypothesis on yi and we have that

y∗ =
∑

v∈V (LH )

y(u) = 1
2

( ∑
u∈V (LH )

yR1(u) + yR2(u) + y1(u) + y2(u)
)

≤ 1
2

(5
3 + 5

3 + 5(µ− 1)
3 + q

3 + 5(µ− 1)
3 + q

3

)
= 5µ

3 + q

3
and this concludes the proof of case (1.a). For case (1.b) where both R(ei) are isomorphic to BCH we use
the solution vector defined in Eq. (2). With identical arguments we see that this is a feasible solution vector
whose value (using, once more, the inductive hypothesis and the fact that both H(ei) can have at most q
disjoint copies of BCH) is

y∗ =
∑

v∈V (LH )

y(u) = 1
2

( ∑
u∈V (LH )\{v}

δv(u) + y1(u) + y2(u)
)

= 1
2

( ∑
u∈V (LH )\{v}

δv(u) +
∑

u∈V (LH )\{v}

y1(u) +
∑

u∈V (LH )\{v}

y2(u)
)

≤ 1
2

(
4 + 5(µ− 1)

3 + q − 1
3 + 5(µ− 1)

3 + q − 1
3

)
= 5µ

3 + q

3 + 2 − 5
3 − 1

3

= 5µ
3 + q

3 .

The case where the underlying graph is bipartite can be handled by completely identical arguments,
changing only the bounds.
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We finish the proof by briefly comment the case where the vertex v guaranteed by Theorem 5 has degree
1 (the case zero is of no importance). Let e1 be the unique edge guaranteed by Theorem 5 incident to vertex
v and let H(e1) be the sub-hypergraph resulting from the removal of e1 and all other edges that intersect it.
As before, we apply the inductive hypothesis on H(e1) which has a matching of size µ− 1 and, of course, at
most q disjoint copies of BCH . This means that we are in a sub-case of case (1) above where we dealt with
the case that both H(e1), H(e2) each have a matching of size exactly µ− 1. In this case, H(e2) is simply the
empty graph. We use the adjusted equation (2) as above where now y2 is simply the null (zero) vector and
the 1/2 factor is no longer needed. In other words, we define for any u ̸= v y(u) = dv(u) + y1(u). Notice that
in this case dv(u) ∈ {0, 1}. The proof that the proposed vector is indeed a feasible vector follows from the
proof of the Claim preceding equation (2). If edge e intersects e1, then indeed we have that

∑
u∈e δv(u) ≥ 1

since in this case δv(u) = 1. If e does not intersect e1 then
∑
u∈e y1(u) ≥ 1 by induction, and we are done.

The bound on the fractional dual solution value provided by y is identical to previous cases. □
The above upper bound suggests that the fewer pairwise disjoint truncated projective planes we have in

our input graph (more precisely: in its hypergraph representation) the closer to 3/2 the integrality gap gets
and the more we have, the closer to 2 we get—which we know is an upper bound on the integrality gap,
achievable by [6,8].

4.1. Algorithmic implications

One very natural and immediate question is if, and how, the above arguments can be exploited and turned
into an explicit algorithmic construction achieving the corresponding bounds. The natural approach would
be to study the cases of BCM where instances are constrained to have only few of these bi-chromatic cycles.
Another approach is to add the following linear constraint in the natural LP relaxation of the problem:∑

e∈BC
xe ≤ 1, ∀ bi-chromatic 4-cycle BC.

We call these constraints as “bi-chromatic constraints”. By doing this, we explicitly require that the
fractional value assigned to each such bi-chromatic cycle is reduced to 1 (instead of 2, which is the source
of the bad integrality gap). Theorem 4 suggests that the integrality gap of the new enhanced LP would
be bounded by 3/2 in bipartite graphs and 5/3 in general graphs. However, it is not clear what a rounding
procedure would be that can output an integral solution achieving these bounds. The “vanilla” rounding
approach would give again an 1/2-approximation guarantee.

We note that a very similar idea was pursued in [19] where the authors defined an analogous LP for
the 3-Hypergraph Matching problem (maximum matching in 3 uniform hypergraphs). For this problem,
the standard LP-based approach gives an approximation guarantee of 3/7 and, as previously mentioned,
Füredi [33] proved that the so-called Fano plane is the only structure that forces the LP to achieve this
bound: the Fano plane, the 3-uniform projective plane, achieves integrality gap of exactly 7/3. Given this,
Chan Li & Lau considered the Fano LP: for every Fano plane, add the constraint that the sum of the values
of the variables corresponding to edges of the Fano plane is at most 1 (they actually used, for technical
reasons, the weaker version that this sum should be at most 2). They proved that the new Fano-LP should
have improved integrality gap from 7/3 to 2. Unfortunately, they did not provide arguments that could make
this algorithmic.

We believe that such an algorithmic question requires further insights on the structure of the enhanced LP
beyond the “sparsity” of basic feasible solutions—a property which is not clearly extended to the enhanced
LP. Such insights would lead to an appropriate rounding procedure that eludes us at the moment. One
promising road could be by noticing that the results of the previous section have also implications on the
performance of the Sherali–Adams hierarchy on the natural LP relaxation of the BCM problem. The reason
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is that these bi-chromatic cycles have very simple structure and we expect that the Sherali–Adams hierarchy
might be able to “recognize” them after few rounds. After all, r rounds of the Sherali–Adams (and other
related lift-and-project techniques) can generate all valid “local” constraints on r variables, so we would
expect that 4 rounds should be enough to imply the above set of constraints (

∑
e∈BC xe ≤ 1, ∀ bi-chromatic

4-cycle BC.) Here we will show that this claim is actually true. For completeness, we will include the details
of a slightly strengthened version of this result.

Lemma 3. All the bi-chromatic constraints, for every bi-chromatic 4-cycle BC, are implied after 2 rounds
of the Sherali–Adams hierarchy applied to the natural LP relaxation of the BCM problem.

Proof. Take a bi-chromatic 4-cycle with edges e1, e2, e3, e4 such that, w.l.o.g., e1, e2 are painted blue and
e3, e4 red. Thus we have the following two color constraints: xe1 + xe2 ≤ 1 and xe3 + xe4 ≤ 1. At the
second round, the Sherali–Adams hierarchy will multiply both the right and the left side of these constraints
(according to rule SA-1) with products of two variables. Among (many) others, we have the following
constraint

(xe1 + xe2)(1 − xe3)(1 − xe4) ≤ (1 − xe3)(1 − xe4),

which is equivalent to

xe1 + xe2 + xe3 + xe4 ≤ 1 + xe1xe3 + xe1xe4 + xe2xe3 + xe2xe4 + xe3xe4 − xe1xe3xe4 − xe2xe3xe4 (A).

The product of variables xixj will be simulated/substituted by yij (rule SA-3) and is, by definition, ≥ 0
(rule SA-2). Another set of constraints that will be added is the following:

(xe1 + xe2)xe1 ≤ xe1 ,

from which, using the rule x2
i = xi, we get that xe1xe2 ≤ 0 which means that xe1xe2 = 0 since the

variable is non-negative. Similarly, by multiplying the constraint xe3 + xe4 ≤ 1 with xe3 we can deduce
that xe3xe4 = 0. Now, we work with the degree constraints. For each vertex of this bi-chromatic 4-cycle we
have one degree constraint. Take the vertex where edges e1, e3 meet, and let us name it v1. We have that
xe1 + xe3 + α ≤ 1, where α is simply a term (sum of variables) corresponding the rest of the edges incident
to v1. Multiplying this constraint with xe3 we get that xe1xe3 + αe3xe3 ≤ 0 ⇒ xe1xe3 = 0. Identically, we
get that xe1xe4 = xe2xe3 = xe2xe4 = 0. This means that inequality (A) from above becomes

xe1 + xe2 + xe3 + xe4 ≤ 1 − xe1xe3xe4 − xe2xe3xe4 ≤ 1,

i.e., 2 rounds of the Sherali–Adams hierarchy imply all the bi-chromatic 4-cycle constraints. □

Combining Lemma 3 with Theorem 4 gives the following:

Theorem 6. Let G be a graph with q ∈ Z≥0 disjoint copies of bi-chromatic 4-cycles. After 2 rounds of the
Sherali–Adams hierarchy applied to the natural LP relaxation of the BCM problem, the integrality gap is at
most 5/3 for general graphs and at most 3/2 for bipartite graphs.

This means that instead of working with the enhanced LP, we can work directly with hierarchies generated
by a low number of rounds, and use promising rounding approaches. We leave this as an open question with
the hope that the results of the current manuscript will be a first step towards this direction. Given the
similarity of BCM with the 3-hypergraph matching problem, we also expect that any positive result for the
former could be adapted to provide a positive result for the later, solving a major open problem in the field.
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