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Abstract

We study centipede games played by an infinite sequence of players. Following the

literature on time–inconsistent preferences, we distinguish two types of decision makers,

naive and sophisticated, and the corresponding solution concepts, naive ε–equilibrium

and sophisticated ε–equilibrium. We show the existence of both naive and sophisticated

ε-equilibria for each positive ε. Under the assumption that the payoff functions are upper

semicontinuous, we furthermore show that there exist both naive and sophisticated 0-

equilibria in pure strategies. We also compare the probability to stop of a naive versus a

sophisticated decision maker and show that a sophisticated decision maker stops earlier.
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1 Introduction

We study centipede games played by an infinite sequence of players. Each player is active

only once. The active player can choose either to stop the game or to continue. As soon as

the active player chooses to stop, the game ends.

One of the main application areas of our model concerns the vast literature on decision

making with time–inconsistent preferences. It is customary (Strotz (1955), Pollak (1968),

Peleg and Yaari (1973), Goldman (1979)) to model a decision maker with time–inconsistent

preferences as consisting of a sequence of multiple selves, where day t self makes a decision

on behalf of the decision maker on day t. This leads to a game played by an infinite sequence

of players.

In their well-known paper Doing it now or later, O’Donoghue and Rabin (1999) consider

a decision maker who has to decide when to execute a certain task. One important feature

of their model is an exogenous deadline: once the deadline is reached, the decision maker has

no choice but to execute the task. This model can be seen as a finite centipede game and

is a special case of our more general model. In our model, the decision maker may have the

option to never quit, whence the title of our paper.

Following the literature on decision making with time–inconsistent preferences, we distin-

guish two types of decision makers, naive and sophisticated, and examine the corresponding

two types of solution concepts.

A naive decision maker acts under the erroneous assumption that his current self controls

all future decisions in the game. Thus a naive decision maker intends to follow a strategy that

maximizes his payoff over the entire continuation game, but in reality he only carries out the

first action. This happens because the strategy that is optimal for the current self need not

be optimal for future selves. This behavior is captured by the concept of naive equilibrium.

A sophisticated decision maker, in contrast, is fully aware that his day t self only controls

the decision on day t, and that the future selves have different preferences. Thus in a sophisti-

cated equilibrium each self of the decision maker best responds to the strategies of the future

selves. Hence a sophisticated equilibrium is essentially the subgame perfect equilibrium of

the game played by the selves of the decision maker “against” each other.

An example given in Flesch, Kuipers, Mashiah-Yaakovi, Schoenmakers, Solan, and Vrieze

(2010), discussed in detail in the following section, shows that in general a sophisticated

equilibrium need not exist. This motivates us to consider more permissive solution concepts:

naive ε–equilibrium and sophisticated ε–equilibrium. A naive ε-equilibrium is strategy profile

with the property that every player’s strategy can be supported with a belief that makes this

strategy and belief combination ε-optimal. In a sophisticated ε–equilibrium each player is
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assumed to play an ε-best response to the strategies of the subsequent players.

Our results are as follows. We show that for each ε > 0 there exists both a naive ε–

equilibrium and a sophisticated ε–equilibrium. These existence results rely on mixed strate-

gies. If we assume that each player’s payoff function is upper semicontinuous, then there

exist both a naive 0-equilibrium in pure strategies and a sophisticated 0-equilibrium in pure

strategies.

Herings and Rohde (2006) and Luttmer and Mariotti (2006) consider how time-inconsistent

decision makers interact in a market environment and give sufficient conditions for equilib-

rium existence. Nevertheless, Gabrieli and Ghosal (2013) point out that under standard

assumptions equilibria may fail to exist in such environments. The heart of the problem is

the satiation of the induced preferences of sophisticated decision makers, and the examples of

non-existence are robust. On the contrary, the equilibrium existence issues taken up in this

paper are at the level of the individual decision maker rather than the interaction between

decision makers and existence problems can be solved by notions of ε-equilibrium.

One of the key results in O’Donoghue and Rabin (1999) is that a sophisticated decision

maker executes a task earlier than a naive decision maker. We provide a counterpart of this

result in our setup. We show that for a given sophisticated ε-equilibrium there exists a naive

ε-equilibrium with the probability of stopping not higher than in the given sophisticated ε-

equilibrium. Conversely, given a naive ε-equilibrium there is a sophisticated ε-equilibrium

with the probability of stopping not smaller than in the given naive ε-equilibrium.

Apart from the literature on time–inconsistent decision making, our results contribute

to the literature on the existence of subgame perfect ε–equilibrium in perfect information

games, see e.g. Flesch et al. (2010), Purves and Sudderth (2011), and De Pril, Flesch,

Kuipers, Schoenmakers, and Vrieze (2014). For the most part, this literature focuses on

games with finitely many players. In contrast, here we consider a class of games played by

infinitely many players.

Related to the infinite centipede games as considered here are so–called stopping games,

see Solan (2005) and Mashiah-Yaakovi (2009). These are dynamic games where at each

period of time each player can choose to stop or to continue. Our work is also related to

intergenerational games, where there is a sequence of players such that each player represents

an entire generation, see Phelps and Polak (1968) and Balbus, Jaśkiewicz, and Nowak (2015).

The paper is organized as follows. In Section 2, we discuss the so–called procrastination

game. The game serves to illustrate some of the non–trivial aspects of our analysis and

to motivate the need for the solution concepts of naive ε–equilibrium and sophisticated ε–

equilibrium. In Section 3, we introduce the general model and define naive and sophisticated

ε–equilibria. In Section 4, we focus on a special class of games in which the payoffs are
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upper semi-continuous, and show the existence of naive 0-equilibrium and sophisticated 0-

equilibrium in pure strategies. In Section 5, we examine the existence of naive ε-equilibrium

and, in Section 6, the existence of sophisticated ε-equilibrium. In Section 7, we compare the

stopping probabilities of naive and sophisticated decision makers and show that sophisticated

decision makers stop earlier.

2 The Procrastination Game

Consider a decision maker who contemplates quitting smoking. On any given day the deci-

sion maker prefers quitting tomorrow to quitting today, and prefers quitting today to never

quitting. This is an example of a decision maker with time–inconsistent preferences: quitting

on day 2 is the best option from the perspective of day 1, but it is no longer the best option

once it is considered on day 2 itself.

Following the standard approach to modeling time–inconsistent preferences, we represent

the decision maker by a sequence of different selves, where day t self makes a decision on behalf

of the decision maker on day t. This leads us to the following game tree, where S (stop) stands

for quitting smoking and C (continue) represents the option to postpone quitting:

S S S S

CCC

 1
0
...




2
1
0
...




2
2
1
0
...





2
2
2
1
0
...



(
0
...

)
1 2 3 4

Figure 1: Procrastination game.

For the sake of concreteness we choose the following numerical values for the payoffs: the

day t self of the decision maker obtains a payoff of 1 if the decision maker quits on day t, a

payoff of 2 if the the decision maker quits on any day k > t, and 0 in all other situations, so in

particular if the decision maker never quits. We refer to this situation as the Procrastination

game. O’Donoghue and Rabin (1999) consider a decision maker who has to decide when to

execute a task such as quitting smoking. One important feature of their model is an exogenous

deadline: once the deadline is reached, the decision maker has no choice but to execute the

task. In contrast, the decision maker acting in the procrastination game above has the option

to never quit. Our general model as detailed in the following section captures both cases with
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and without an exogenous deadline.

Whether the decision maker quits, and if so, when, depends on his type. Following much

of the literature on time–inconsistent decision making we distinguish two types of decision

makers: naive and sophisticated.

A naive decision maker acts under the erroneous assumption that his current self controls

all future decisions in the game. Thus a naive decision maker intends to follow a strategy that

maximizes his payoff over the entire continuation game, but in reality only carries out the

first action. In the procrastination game, this behavior implies never quitting as the decision

maker always intends to quit later.

A sophisticated decision maker, in contrast, is fully aware that his day t self only controls

the decision on day t, and that future selves have different preferences. In the literature, this

behavior is captured by the concept of sophisticated equilibrium, which essentially is nothing

but a subgame perfect equilibrium of the game with multiple selves.

Somewhat surprisingly, the procrastination game has no sophisticated equilibrium in pure

strategies, a fact already noticed (without proof) in Flesch et al. (2010), who introduced

this game to show that properties of games with infinitely many players can be substantially

different from those having finitely many players. For the sake of completeness, we give a

short argument.

Claim 2.1. The Procastination game has no sophisticated equilibrium in pure strategies.

Proof. Suppose by way of contradiction that there is a sophisticated equilibrium in pure

strategies. We distinguish three cases and derive a contradiction in each case. Let I be the

set of players who choose action S conditional on reaching their decision nodes.

Case 1: Each player plays action C, so each player receives a payoff of 0. Player 1 would

get a payoff of 1 by deviating to S.

Case 2: Exactly one player, say player t, chooses S. Since players t + 1, t + 2, . . . do not

belong to I, player t+1 receives a payoff of 0 in the subgame starting in time t+1. A deviation

to S gives player t+ 1 a payoff of 1.

Case 3: There exist two distinct players, say t1 and t2, who are elements of I. Without

loss of generality, suppose t1 < t2. In the subgame starting in time t1, player t1 receives a

payoff of 1 but he would get 2 by deviating to C.

We show in Claim 6.1 that the procrastination game has no sophisticated equilibrium

even when mixed strategies are considered. Non–existence of a sophisticated equilibrium

in the procrastination game motivates us to consider approximate solution concepts: naive

ε–equilibrium and sophisticated ε–equilibrium. Under both concepts, the decision maker is

assumed to maximize his payoff up to a margin of ε. As we demonstrate in Section 6, the
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procrastination game does have a sophisticated ε–equilibrium for each positive ε, namely the

strategy profile whereby each self stops with probability ε.

3 The General Model

In this section, we describe infinite centipede games and define two solution concepts: naive

ε-equilibrium and sophisticated ε-equilibrium.

In an infinite centipede game G, the set of players is the set N of natural numbers and the

set of actions is A = {C, S}, where C stands for continue and S stands for stop. The game

is played as follows. At time 1, player 1 chooses an action. If he chooses action S, then the

game ends. If he chooses action C, then the play proceeds to time 2 where player 2 chooses

an action. This is repeated as long as players choose action C. The payoff for player i ∈ N is

ait if the game ends at time t and ai∞ if no one plays action S. We assume that payoffs are

uniformly bounded, i.e.,

B = sup
i∈N

sup
t∈N∗
|ait| <∞, (1)

where N∗ stands for N ∪ {∞}. By using the vector notation at = (ait)i∈N for every t ∈ N∗, a

centipede game can be represented as in Figure 2.

S S S S

CCC

a1 a2 a3 a4

a∞
1 2 3 4

Figure 2: An infinite centipede game.

Our model can easily encompass various forms of discounted utility. For instance, when

for all players the choice of C during the first t days yields instantaneous benefits bt ≥ 0

in day t, the instantaneous costs of stopping in day t are ct ≥ 0, after stopping no further

instantaneous costs and benefits occur, and player i discounts benefits and costs in day t by

the discount factor δit ∈ [0, 1], then we have

ait =
t−1∑
k=1

δikbk − δitct.

If discounting takes the standard exponential form, δit = (δ)t for some δ ∈ (0, 1), then bound-

edness of the sequences bt and ct is sufficient for ai∞ =
∑∞

k=1 δ
i
kbk to be well-defined and to

obtain uniform boundedness as expressed in (1).

A strategy for player i is a probability distribution σi on the set of actions {C, S}. The

interpretation is that, if time i is reached, then σi recommends to play C with probability
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σi(C) and to play S with probability σi(S). The set of strategies for player i is denoted by

Σi and the set of strategy profiles is denoted by Σ = i∈NΣi. A strategy σi of player i is

uniquely specified by the probability to stop, σi(S). Hence Σi can be identified with [0, 1],

and Σ can be identified with [0, 1]N.

A strategy σi is called pure if either σi(S) = 0 or σi(S) = 1. Hence a pure strategy is an

element of {0, 1} and a pure strategy profile is an element of {0, 1}N.

Let σ be a strategy profile. The expected utility of player i, conditional on the game not

being stopped before time t, is denoted by ui(σ|t) and can be calculated as:

ui(σ|t) = σt(S) · ait +

∞∑
k=t+1

σk(S)

k−1∏
j=t

σj(C) · aik +

∞∏
j=t

σj(C) · ai∞.

Note that ui(σ|i+ 1) is the expected utility of player i when player i plays action C at time i.

We now define the concept of naive ε-equilibrium.

Definition 3.1. Let ε ≥ 0. A strategy profile τ∗ ∈ Σ is called a naive ε-equilibrium if there

exists a sequence (τi)i∈N of strategy profiles satisfying the following two conditions:

1. τ∗,i = τ ii for every player i ∈ N,

2. ui(τi|i) ≥ ui(σ|i)− ε for every player i ∈ N and every strategy profile σ ∈ Σ.

A naive 0-equilibrium is simply called a naive equilibrium.

The idea behind Definition 3.1 originates with the literature on time–inconsistent decision

making. Thus suppose that, as in the procrastination game of the previous section, player i

represents the day i self of a decision maker. The strategy profile τi can then be thought of

as the complete course of actions that the day i self intends to carry out. Condition 2 says

that τi is an ε–optimal strategy profile in the continuation game when evaluated against day

i’s preferences.

The decision maker is naive as he fails to realize that his day i self only controls the

decision on day i, and that the strategy profile τi need not be ε–optimal for the future selves.

As a result, the sequence of strategies that the naive decision maker actually carries out is

(τ11 , τ
2
2 , . . . ). This sequence is exactly τ∗ by Condition 1 of Definition 3.1. Thus τ∗ could be

thought of as the realized behavior of a naive decision maker.

Naive ε–equilibrium could also be interpreted without a recourse to time–inconsistent

decision making. It represents a situation in which player i fails to take into account the fact

that he only controls a single decision node at time i, subsequent decisions being taken by

other players.
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For each player i ∈ N, we define Ai = {aii, aii+1, . . .} ∪ {ai∞}, which is the set of possible

payoffs for player i conditional on the fact that no player has stopped the game before him.

Also, we let

M i = supAi. (2)

With this notation, Condition 2 of Definition 3.1 is equivalent to

ui(τi|i) ≥M i − ε for every player i ∈ N. (3)

As an illustration, consider the Procrastination game in Figure 1. In this game, M i = 2

for each player i. It can be verified that the naive ε-equilibria are exactly those strategy

profiles τ∗ for which τ∗,i(C) ≥ 1− ε for each player i.

Definition 3.2. Let ε ≥ 0. A strategy profile σ∗ ∈ Σ is called a sophisticated ε-equilibrium

if for each player i ∈ N and each strategy σi ∈ Σi:

ui(σ∗|i) ≥ ui((σi, σ∗,−i)|i)− ε.

A sophisticated 0-equilibrium is simply called a sophisticated equilibrium.

A sophisticated decision maker is fully aware that his day i self only controls the decision

on day i and that the future selves may have different preferences. Thus in a sophisticated

ε–equilibrium each self of the decision maker ε–best responds to the strategies of the future

selves. Hence a sophisticated ε–equilibrium is essentially a subgame perfect ε–equilibrium of

the game.

If player i’s opponents play according to σ∗,−i and player i chooses action C at time i, then

his payoff is ui(σ∗|i+ 1), whereas if player i chooses action S, then his payoff is aii. Hence, a

strategy profile σ∗ is a sophisticated ε-equilibrium if and only if σ∗ satisfies the following two

inequalities for every player i:

ui(σ∗|i) ≥ ui(σ∗|i+ 1)− ε, (4)

ui(σ∗|i) ≥ aii − ε. (5)

In our illustrative example, the Procrastination game in Figure 1, there is no sophisticated

ε-equilibrium in pure strategies for ε ∈ [0, 1) and no sophisticated equilibrium as we will show

in Section 6. On the other hand, for ε > 0, we will provide a proof that this game does admit

a sophisticated ε-equilibrium in mixed strategies, where each player stops with probability ε.
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4 Existence of Equilibrium in the Upper Semicontinuous Case

In this section, we establish the existence of naive and sophisticated equilibria if the payoffs

in the game are upper semi-continuous, i.e., if for every player i ∈ N

lim sup
t→∞

ait ≤ ai∞. (6)

The payoffs of player i are upper semi-continuous if the payoffs of player i when stopping

the game at time t with t going to infinity are less than or equal to the payoffs obtained

when never stopping the game. A typical example of payoffs that are upper semi-continuous

but not continuous concerns the case where stopping the game corresponds to making a

costly investment, say for instance in the reduction of carbon dioxide emissions. Making the

investment too late leaves too little time to recoup the costs or would not change a disastrous

outcome. In such a case, not making the investment at all would be preferred to making

the investment at a very late point in time. Another example of payoffs that are upper

semi-continuous but not continuous results when stopping corresponds to giving in and the

player derives a positive psychological benefit from never doing so. Continuity, and therefore

upper semi-continuity, is satisfied in the standard model of exponential discounting when

instantaneous costs and benefits are uniformly bounded.

First, we provide necessary and sufficient conditions for the existence of naive equilibrium

without continuity assumptions on the payoffs.

Theorem 4.1. The following statements are equivalent:

(i) For every player i ∈ N, the set Ai = {aii, aii+1, . . .} ∪ {ai∞} has a maximum.

(ii) There exists a naive equilibrium in pure strategies.

(iii) There exists a naive equilibrium.

Proof. (i → ii) Consider a player i. If the maximum of Ai is ai∞, then let τi be the pure

strategy profile that always chooses action C. If the maximum of Ai is not ai∞, but some

ait with t ∈ N, then let τi be the pure strategy profile that always chooses action C, except

at time t, where it chooses action S. It is clear that the pure strategy profile τ∗ defined by

τ∗,i = τ ii for every i ∈ N is a naive equilibrium.

(ii→ iii) Obvious.

(iii→ i) Suppose that there exists a naive equilibrium. Take a player i. By (3), there exists

a strategy profile τi such that ui(τi|i) ≥ M i. It follows from (2) that ui(τi|i) = M i and that

there exists a t ∈ {i, i+1, . . .}∪{∞} such that ait = M i. Thus, the set Ai has a maximum.

In view of the above theorem, a naive equilibrium does not always exist. A concrete

example is the game in Figure 3, which we will consider later. However, we have the following

existence result for games with upper semicontinuous payoffs.
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Theorem 4.2. There exists a naive equilibrium in pure strategies if the payoffs are upper

semicontinuous.

Proof. Due to (6), the set Ai = {aii, aii+1, . . .} ∪ {ai∞} has a maximum for every player i ∈ N.

Therefore, by Theorem 4.1, there exists a naive equilibrium in pure strategies.

Now we turn to the existence of a sophisticated equilibrium. The proof of the following

result employs a truncation approach similar to that in Fudenberg and Levine (1983). One

crucial difference however is that we do not assume the payoffs to be continuous, but only

upper semicontinuous.

Theorem 4.3. There exists a sophisticated equilibrium in pure strategies if the payoffs are

upper semicontinuous.

Proof. Consider a centipede game G. For every T ∈ N, we define the T -period truncated

game GT which is identical to G except for one modification: if all players 1, . . . , T choose

to continue, then, regardless of future play, the payoff of each player i ∈ N is equal to aiT+1.

Since the payoffs cannot change after time T , this game is essentially a T -period game.

For every T ∈ N, the truncated game GT admits a pure sophisticated equilibrium σT in

which σiT (S) = 1 for every player i ≥ T + 1. Indeed, due to the payoffs in GT , we can set

σiT (S) = 1 for every player i ≥ T + 1 and then determine σTT (S), . . . , σ1T (S) by backward

induction. If a player is indifferent between playing action C and action S then either action

can be taken. The set of pure strategy profiles, as mentioned earlier, can be identified with

the infinite Cartesian product {0, 1}N and is thus a compact metrizable topological space.

Hence the sequence (σT )∞T=1 has an accumulation point σ̄ ∈ {0, 1}N. By taking a subsequence

if necessary, we can assume that (σT )∞T=1 converges to the strategy profile σ̄. We distinguish

two cases.

Case 1: Suppose that there are only finitely many players who play action S in the strategy

profile σ̄. So, there exists a time t such that for all players i ≥ t, σ̄i(C) = 1. We prove that

σ̄ induces a sophisticated equilibrium for the subgame of G starting at time t. So we need to

show that ui(σ̄|i) ≥ aii for all i ≥ t. For every i, T ∈ N, let

mi
T = min{k ≥ i|σkT (S) = 1},

so mi
T is the first player at time i or later who stops in the strategy profile σT . We have for
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every i ≥ t that

ui(σ̄|i) = ai∞ (7)

≥ lim sup
T→∞

aiT (8)

≥ lim sup
T→∞

aimi
T

(9)

= lim sup
T→∞

ui(σT |i) (10)

≥ aii. (11)

Equality (7) holds, since no one stops from time t onwards in the strategy profile σ̄; (8)

follows from the assumption of the theorem; (9) follows from the definition of limit superior,

because mi
T → ∞ as T → ∞, for every i ≥ t; (10) holds as ui(σT |i) = ai

mi
T

for every i and

T ; and finally (11) is true since σT is a sophisticated equilibrium in GT . Hence, we have

ui(σ̄|i) ≥ aii for all i ≥ t, as desired. This means that σ̄ induces a sophisticated equilibrium

for the subgame of G starting at time t. Now we can use backward induction from time t to

obtain a sophisticated equilibrium in G.

Case 2 : Suppose that there are infinitely many players who play action S in the strategy

profile σ̄. Take an arbitrary player i. Let

ni = min{k > i|σ̄k(S) = 1},

so ni is the first player at time i+1 or later who stops in the strategy profile σ̄. Since (σT )∞T=1

converges to σ̄, there exists T ≥ ni such that for all j ≤ ni we have σjT = σ̄j . Because σT is a

sophisticated equilibrium in the game GT , player i does not have a profitable deviation from

σT in GT . It follows that player i does not have a profitable deviation from σ̄ in the game G.

We conclude that σ̄ is a sophisticated equilibrium of G.

5 Existence of Naive ε-Equilibrium

We know from the previous section that a naive equilibrium does not always exist. The

following theorem deals with the existence of naive ε-equilibrium.

Theorem 5.1. For every ε > 0, there exists a naive ε-equilibrium in pure strategies.

Proof. Let ε > 0 be given. Consider a player i. We distinguish two cases in order to define a

pure strategy profile τi.

Case 1: ai∞ ≥ M i − ε, where M i is given in (2). In this case, let τi be the pure strategy

profile that always chooses action C.
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Case 2: ai∞ < M i − ε. In this case, there exists t ∈ {i, i + 1, . . .} such that ait ≥ M i − ε.
Let τi be the pure strategy profile that always chooses action C, except at time t, where it

chooses action S.

Now define the pure strategy profile τ∗ by setting τ∗,i = τ ii for every player i ∈ N. Then,

the strategy profiles τ∗ and τi, for every i ∈ N, satisfy Condition 1 of Definition 3.1 and

inequality (3), so τ∗ is a naive ε-equilibrium.

As an illustration, consider a game where the payoff for player i ∈ N is 1 − 1/(t − i + 1)

if the game ends at time t > i, and 0 if the game ends at time t ≤ i or if no one stops. The

game is given in Figure 3.

S S S S

CCC

(
0
...

) 
1
2

0
...




2
3

1
2

0
...





3
4

2
3

1
2

0
...



(
0
...

)
1 2 3 4

Figure 3: A game without naive equilibrium.

By Theorem 4.1, there is no naive equilibrium in this game. On the other hand, the pure

strategy profile τ∗ that always chooses action C is a naive ε-equilibrium for every ε > 0.

Indeed, let ε > 0. For every player i, take a time ti such that ti > i and aiti ≥ 1 − ε. Define

τi to be the pure strategy profile that always chooses action C, except at time ti, where it

chooses action S. Then, for every player i ∈ N it holds that τ∗,i = τ ii and inequality (3) is

satisfied, so τ∗ is a naive ε-equilibrium as claimed. Notice also that the strategy profile τ∗ is

a sophisticated equilibrium of the game.

6 Existence of Sophisticated ε-Equilibrium

In this section, we examine the existence of a sophisticated ε-equilibrium. The following claim

establishes that the Procrastination game has neither a sophisticated equilibrium nor a pure

sophisticated ε-equilibrium.

Claim 6.1. The Procrastination game in Figure 1 has the following properties:

1. It admits no sophisticated ε-equilibrium in pure strategies for any ε ∈ [0, 1).
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2. It admits no sophisticated equilibrium.

Proof. First we prove part 1. Take an ε ∈ [0, 1) and suppose by way of contradiction that

σ is a sophisticated ε-equilibrium in pure strategies. Consider some player i ∈ N. For any

pure strategy τ i it holds that ui(σ|i) ≥ ui((τ i, σ−i)|i)− ε. Because pure strategy profiles can

only induce payoffs 0, 1 or 2 to any player in the game and because ε < 1, we must have

ui(σ|i) ≥ ui((τ i, σ−i)|i). Therefore, pure strategy profile σ is a sophisticated equilibrium.

This contradicts Claim 2.1.

Now we prove part 2. Assume to the contrary that σ is a sophisticated equilibrium. For

every player k, let

p(σ|k) =
∞∏
i=k

σi(C)

be the probability that the game never stops, provided that it has not been stopped before

time k and that the players play according to σ.

Assume first that there are two players i and j, with i < j, such that σi and σj are not

pure. Since σi is not pure, we have ui((C, σ−i)|i) = ui((S, σ−i)|i). Note that ui((S, σ−i)|i) = 1

and

ui((C, σ−i)|i) = (1− p(σ|i+ 1)) · 2,

so p(σ|i+ 1) = 0.5. By a similar argument, we obtain for player j that p(σ|j + 1) = 0.5. But

then

p(σ|i+ 1) = σi+1(C)σi+2(C) · · ·σj(C)p(σ|j + 1)

yields σj(C) = 1, which is a contradiction to the fact that σj is not pure.

Therefore, there is a time t such that in the subgame that starts at t, the strategy profile

σ is a sophisticated equilibrium in pure strategies. By backward induction, we can then

construct a sophisticated equilibrium in pure strategies for the whole game. This is however

in contradiction with Claim 2.1.

The main result of this section is the following theorem on the existence of a sophisticated

ε-equilibrium.

Theorem 6.2. For every ε > 0, there exists a sophisticated ε-equilibrium.

Proof. Take a centipede game G. Recall the definition of B from (1). Choose a number δ so

that 0 < δ ≤ min{ ε
2B , 1}. Define the normal-form game G∗ as the game with set of players

N, set of strategies for player i ∈ N equal to

Σ∗i = {σi ∈ Σi | σi(S) ∈ [δ, 1]},

13



and utility function vi of player i ∈ N defined by

vi(σ) = ui(σ | i)

for each σ in Σ∗ = ×i∈NΣ∗i. The strategy sets of all players are non-empty, convex, and com-

pact. Each player’s utility function is affine, so quasi-concave, in that player’s own strategy,

since

vi(σ) = σi(S)aii + (1− σi(S))ui(σ|i+ 1), (12)

where ui(σ|i + 1) is unaffected by the strategy σi of player i. Crucially, each player’s utility

function is continuous on Σ∗. The key to the continuity of the payoff functions is that under

any strategy profile in Σ∗, the probability that no one ever stops is zero.

The game G∗ therefore has a Nash equilibrium, say σ∗, by Theorem 6.2 of Peleg and Yaari

(1973). In view of equation (12), if ui(σ∗|i+ 1) < aii then σ∗,i(S) = 1, and if ui(σ∗|i+ 1) > aii

then σ∗,i(S) = δ.

We show that σ∗ is a sophisticated ε-equilibrium of G. Take any player i ∈ N. If ui(σ∗|i+

1) < aii then σ∗,i(S) = 1, so ui(σ∗|i) = vi(σ∗) = aii and (4) and (5) are satisfied. If ui(σ∗|i+

1) = aii then ui(σ∗|i) = vi(σ∗) = aii, so (4) and (5) are satisfied. So assume that ui(σ∗|i+1) >

aii. We have that σ∗,i(S) = δ, so

ui(σ∗|i) = vi(σ∗)

= σ∗,i(S)aii + (1− σ∗,i(S))ui(σ∗|i+ 1)

= δ aii + (1− δ)ui(σ∗|i+ 1)

= δ(aii − ui(σ∗|i+ 1)) + ui(σ∗|i+ 1)

≥ −δ2B + ui(σ∗|i+ 1)

≥ ui(σ∗|i+ 1)− ε.

Hence, inequality (4) is satisfied. Furthermore, it holds that

ui(σ∗|i)− aii = vi(σ∗)− aii
= σ∗,i(S)aii + (1− σ∗,i(S))ui(σ∗|i+ 1)− aii
= (1− σ∗,i(S))(ui(σ∗|i+ 1)− aii)

≥ 0,

where the inequality follows by ui(σ∗|i+ 1) > aii. Hence, inequality (5) is also satisfied.

We remark that one could give a direct proof of the theorem using truncations of the game

tree. To do so, let GT be the game as in the proof of Theorem 4.3. One could show that GT
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has a sophisticated ε–equilibrium σT that is an element of Σ∗. One can further show that any

accumulation point of the sequence {σT }T∈N is a sophisticated ε–equilibrium of the original

game G.

According to the definition of B in (1), the payoffs are uniformly bounded. One might

wonder whether it would be enough to assume only that the payoffs are bounded for each

player separately. The following example shows that this weaker assumption would not suffice

for the existence of a sophisticated ε-equilibrium.

Consider the game with the following payoffs for every player i: If the game ends before

time i then player i’s payoff is 0. If the game ends at time i then player i’s payoff is 2i. If

the game ends after time i then player i’s payoff is 2i+1. Finally, if the game never ends then

player i’s payoff is 0. The game tree is given in Figure 4.

S S S S

CCC

 2
0
...




4
4
0
...




4
8
8
0
...





4
8
16
16
0
...



(
0
...

)
1 2 3 4

Figure 4: A centipede game without a sophisticated ε-equilibrium.

It is clear that, for each i ∈ N, sup
t∈N∗
|ait| = 2i+1. At the same time it holds that sup

i∈N
sup
t∈N∗
|ait| =

∞.

Claim 6.3. For each ε > 0, the game in Figure 4 admits no sophisticated ε-equilibrium.

Proof. Take ε > 0 and suppose by way of contradiction that there is a sophisticated ε-

equilibrium σ for the game in Figure 4. As in the proof of Claim 6.1, let p(σ|k) =
∏∞
i=k σ

i(C)

denote the probability that the game never stops, given that it has not stopped before time

k and the players follow the strategy profile σ.

Take a player i ∈ N. Since σ is a sophisticated ε–equilibrium, inequality (5) implies that

ui(σ|i) ≥ 2i − ε. On the other hand, since 2i+1 is the highest payoff player i can get and

since he gets 0 if the game never stops, we have the following upper bound on the payoff:

ui(σ|i) ≤ (1− p(σ|i)) · 2i+1 + p(σ|i) · 0. Combining these facts and rearranging terms, we find

that

p(σ|i) ≤ 1

2
+

ε

2i+1
.
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Notice that the sequence {p(σ|i)}i∈N is non–decreasing and bounded and hence has a limit.

Furthermore, the preceding inequality implies that

lim
i→∞

p(σ|i) ≤ 1

2
.

Consider any player i ∈ N. For each j > i it holds that

p(σ|i) =
∞∏
t=i

σt(C) =

j−1∏
t=i

σt(C) · p(σ|j).

Taking the limit as j approaches infinity, we obtain

p(σ|i) = lim
j→∞

j−1∏
t=i

σt(C) · lim
j→∞

p(σ|j) = p(σ|i) · lim
j→∞

p(σ|j) ≤ p(σ|i) · 1

2
,

which implies that p(σ|i) = 0.

Thus for each i ∈ N it holds that ui(σ|i) = σi(S)·2i+(1−σi(S))·2i+1 and ui(σ|i+1) = 2i+1.

Since σ is a sophisticated ε–equilibrium, it holds by inequality (4) that ui(σ|i) ≥ ui(σ|i+1)−ε,
and therefore σi(S) ≤ 2−iε.

Now take t ∈ N such that 21−tε < 1. Since 1 − p(σ|t) is the probability that the game

eventually stops conditional on time t being reached, we have

1− p(σ|t) =

∞∑
j=t

σj(S)

j−1∏
i=t

σi(C) ≤
∞∑
j=t

σj(S) ≤
∞∑
j=t

2−jε ≤ 21−tε,

so p(σ|t) ≥ 1− 21−tε > 0, contradicting p(σ|t) = 0.

7 Sophisticates Stop Earlier

One of the key results in O’Donoghue and Rabin (1999) is that a sophisticated decision maker

executes a task earlier than a naive decision maker. In this section we derive the counterpart

of this result in our setup. The comparison of sophisticated and naive decision makers in

our setup is somewhat complicated by the fact that in general there might exist multiple

sophisticated ε–equilibria and multiple naive ε–equilibria. We thus have to compare two sets

of equilibria. We achieve this by showing that [1] given a sophisticated ε–equilibrium there

exists a naive ε–equilibrium with the probability to stop not greater than in the sophisticated

ε–equilibrium at any given time, and [2] given a naive ε–equilibrium there exists a sophisticated

ε–equilibrium with the probability to stop not smaller than in the naive ε–equilibrium at any

given time.

We restrict attention to the case ε > 0 to guarantee the existence of naive and sophisticated

ε–equilibria. Indeed, recall that the Procrastination game of section 2 has no sophisticated
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equilibrium (see Claim 6.1), while it does admit a naive equilibrium, namely playing C at

every period. The game depicted in Figure 3 admits a sophisticated equilibrium but not a

naive equilibrium.

Theorem 7.1. Let some ε > 0 be given. For each sophisticated ε-equilibrium σ∗, there exists

a naive ε-equilibrium τ∗ such that for all i ∈ N, τ∗,i(S) ≤ σ∗,i(S).

Proof. Let σ∗ be a sophisticated ε-equilibrium. For every i ∈ N, we define the strategy

profile τi ∈ Σ as follows. If ui(σ∗|i) ≥ M i − ε, then let τi = σ∗. Otherwise, it holds that

ui(σ∗|i) < M i − ε. As aii − ε ≤ ui(σ∗|i) by inequality (5), it then holds that aii < M i.

Consequently, there exists t ∈ {i+ 1, i+ 2, . . . } ∪ {∞} such that ait ≥M i − ε. If t =∞ then

we define τi by letting τ ji (S) = 0 for all j ∈ N, while if t ∈ {i+1, i+2, . . . } we define τ ti (S) = 1

and τ ji (S) = 0 for all j 6= t. It is easy to see that the strategy profile τi satisfies inequality (3).

Now define τ∗ ∈ Σ by letting τ∗,i = τ ii for each i ∈ N. Then τ∗ is a naive ε–equilibrium. Since

τ∗,i(S) is either equal to σ∗,i(S) or 0, it holds for every i ∈ N that τ∗,i(S) ≤ σ∗,i(S).

Theorem 7.2. Let some ε > 0 be given. For each naive ε-equilibrium τ∗, there exists a

sophisticated ε-equilibrium σ∗ such that for all i ∈ N, τ∗,i(S) ≤ σ∗,i(S).

Proof. Fix a naive ε-equilibrium τ∗ and let (τi)i∈N be as in Definition 3.1. Choose a number

δ so that 0 < δ ≤ min{ ε
2B , 1}. For i ∈ N let πi = max{δ, τ∗,i(S)}. Define the normal–form

game G∗∗ as the game with set of players N, set of strategies for player i ∈ N equal to

Σ∗∗i = {σi ∈ Σi | σi(S) ∈ [πi, 1]},

and utility function vi of player i ∈ N defined by

vi(σ) = ui(σ | i)

for each σ in Σ∗∗ = ×i∈NΣ∗∗i. The strategy sets of all players are non-empty, convex, and

compact. The utility functions of all players are continuous on Σ∗∗ and affine, so quasi-

concave, in their own strategy. The game G∗∗ therefore has a Nash equilibrium, say σ∗, by

Theorem 6.2 of Peleg and Yaari (1973). The payoff functions can be written as

vi(σ) = σi(S)aii + (1− σi(S))ui(σ|i+ 1),

where ui(σ|i+1) is unaffected by the strategy σi of player i. It follows that if ui(σ∗|i+1) < aii

then σ∗,i(S) = 1, and if ui(σ∗|i+ 1) > aii then σ∗,i(S) = πi.

We show that σ∗ is a sophisticated ε-equilibrium of G.

Take any player i ∈ N. If ui(σ∗|i+ 1) < aii then σ∗,i(S) = 1, so ui(σ∗|i) = vi(σ∗) = aii and

(4) and (5) are satisfied. If ui(σ∗|i + 1) = aii then ui(σ∗|i) = vi(σ∗) = aii, so (4) and (5) are

satisfied. So assume that ui(σ∗|i+ 1) > aii. We have that σ∗,i(S) = πi.
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If πi = δ, then

ui(σ∗|i) = vi(σ∗)

= σ∗,i(S)aii + (1− σ∗,i(S))ui(σ∗|i+ 1)

= δ aii + (1− δ)ui(σ∗|i+ 1)

≥ −δ2B + ui(σ∗|i+ 1)

≥ ui(σ∗|i+ 1)− ε.

If πi = τ∗,i(S), we have the following chain of inequalities:

ui(σ∗|i)− ui(σ∗|i+ 1) = σ∗,i(S)aii + (1− σ∗,i(S))ui(σ∗|i+ 1)− ui(σ∗|i+ 1)

= σ∗,i(S)(aii − ui(σ∗|i+ 1))

= τ∗,i(S)(aii − ui(σ∗|i+ 1)) (13)

≥ τ∗,i(S)(aii −M i) (14)

= τ∗,i(S)aii + (1− τ∗,i(S))M i −M i

≥ τ∗,i(S)aii + (1− τ∗,i(S))ui(τi|i+ 1)−M i (15)

= ui(τi|i)−M i

≥ −ε, (16)

where equality (13) holds since we assume σ∗,i(S) = πi = τ∗,i(S). Inequality (14) holds

since ui(σ∗|i + 1) is an expectation of the payoffs under a probability distribution over the

set {aii+1, a
i
i+2, · · · } ∪ {ai∞}, a subset of Ai, and hence is bounded above by M i = supAi.

Inequality (15) follows since ui(τi|i+ 1) is likewise bounded above by M i, and inequality (16)

follows from inequality (3).

Hence, σ∗ satisfies inequality (4).

Moreover, we have

ui(σ∗|i)− aii = σ∗,i(S)aii + (1− σ∗,i(S))ui(σ∗|i+ 1)− aii
= (1− σ∗,i(S))(ui(σ∗|i+ 1)− aii)

≥ 0,

so inequality (5) is also satisfied.

Notice that the Theorems 7.1 and 7.2 do not preclude the possibility that there exist a

naive ε–equilibrium τ∗ and a sophisticated ε–equilibrium σ∗ such that τ∗,i(S) > σ∗,i(S) for

all i ∈ N. The trivial game where all payoffs are 0 would yield an example.
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8 Conclusion

In this paper, we have examined infinite centipede games with uniformly bounded payoffs.

We have looked at two solution concepts, naive and sophisticated ε-equilibria, depending on

the type of the decision maker.

Regarding a naive decision maker, we show that there does not always exist a naive 0-

equilibrium. We provide the necessary and sufficient conditions for the existence of a naive

0-equilibrium and show that upper semicontinuity of payoffs is sufficient for existence. Finally,

we show that a naive ε-equilibrium always exists, for any ε > 0.

For a sophisticated decision maker, we also show that sophisticated equilibria do not

always exist. We show the existence of a sophisticated 0-equilibrium in pure strategies when

payoffs are upper semicontinuous. Moreover, we show that for every ε > 0, there exists a

sophisticated ε-equilibrium.

We also examine the connection between naive and sophisticated decision makers. Let

some ε > 0 be given. We show that for every sophisticated ε-equilibrium there exists a

naive ε-equilibrium such that the stopping probability of every player in the sophisticated

ε-equilibrium strategy is higher than in the naive ε-equilibrium strategy. Additionally, we

show that for every naive ε-equilibrium there exists a sophisticated ε-equilibrium such that

the stopping probability of every player in the sophisticated ε-equilibrium strategy is higher

than in the naive ε-equilibrium.
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