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Transcranial Direct Current Stimulation Modulates
Working Memory Maintenance Processes in

Healthy Individuals

Stevan Nikolin1,2 , Donel Martin1,2, Colleen K. Loo1,2, and Tjeerd W. Boonstra1,3

Abstract

■ The effects of transcranial direct current stimulation (tDCS)
at the pFC are often investigated using cognitive paradigms,
particularly working memory tasks. However, the neural basis
for the neuromodulatory cognitive effects of tDCS, including
which subprocesses are affected by stimulation, is not
completely understood. We investigated the effects of tDCS
on working memory task-related spectral activity during and
after tDCS to gain better insights into the neurophysiological
changes associated with stimulation. We reanalyzed data from
100 healthy participants grouped by allocation to receive either
sham (0 mA, 0.016 mA, and 0.034 mA) or active (1 mA or 2 mA)
stimulation during a 3-back task. EEG data were used to analyze

event-related spectral power in frequency bands associated with
working memory performance. Frontal theta event-related syn-
chronization (ERS) was significantly reduced post-tDCS in the
active group. Participants receiving active tDCS had slower
RTs following tDCS compared with sham, suggesting interfer-
ence with practice effects associated with task repetition. Theta
ERS was not significantly correlated with RTs or accuracy. tDCS
reduced frontal theta ERS poststimulation, suggesting a selec-
tive disruption to working memory cognitive control and main-
tenance processes. These findings suggest that tDCS selectively
affects specific subprocesses during working memory, which
may explain heterogenous behavioral effects. ■

INTRODUCTION

Transcranial direct current stimulation (tDCS), a form of
noninvasive brain stimulation capable of modulating cor-
tical activity (Wiesman et al., 2018; Jog et al., 2016), is
increasingly used as a technique to investigate cognitive
functioning across multiple domains (Berryhill & Martin,
2018; Berryhill, Peterson, Jones, & Stephens, 2014). Of
these, one of the most researched is working memory.
Working memory has been described as a “cognitive prim-
itive” because of its central role as a core executive func-
tion (Diamond, 2013; Pennington, 1994). It is a complex
short-term memory storage system distinguished by its
capacity to maintain and manipulate a limited amount of
temporally ordered information (Aben, Stapert, &
Blokland, 2012; Baddeley, 2003; Baddeley & Hitch,
1974). Meta-analyses have demonstrated a significant
effect of tDCS on working memory. Specifically, healthy
participants were found to improve on measures of RT,
whereas accuracy was increased in neuropsychiatric popula-
tions (Lee, Lee, & Kang, 2021; Dedoncker, Brunoni, Baeken,
& Vanderhasselt, 2016; Hill, Fitzgerald, & Hoy, 2016;
Brunoni & Vanderhasselt, 2014), although some of these
findings have been questioned (Medina & Cason, 2017).

Working memory requires the coordinated activity of a
network of brain regions (D’Esposito, 2007), including the
dorsolateral prefrontal cortex (DLPFC), a key node within
the frontoparietal cognitive control network (Owen,
McMillan, Laird, & Bullmore, 2005). The cortical dynamics
supporting working memory may be captured by measur-
ing task-induced neural oscillations using EEG (Deiber
et al., 2007); for a review, see Pavlov and Kotchoubey
(2020). Briefly, maintenance processes are reflected
in frontal theta (4–8 Hz) activity (Fernández, Pinal, Díaz,
& Zurrón, 2021; Brzezicka et al., 2019) and incorporate
the DLPFC, occipitotemporal, and other brain regions
(Gazzaley, Rissman, & D’Esposito, 2004). In particular,
event-related synchronization (ERS) in the theta band is
associated with cognitive control efforts during working
memory processing (Duprez, Gulbinaite, & Cohen,
2020; Cavanagh & Frank, 2014), and positively correlates
with cognitive load (Pesonen, Hämäläinen, & Krause,
2007; Jensen & Tesche, 2002). Alpha frequency (8–
12 Hz) event-related desynchronization (ERD), signifying
a reduction in spectral power, has been associated with
attentional processes (Fodor, Marosi, Tombor, & Csukly,
2020; Hanslmayr, Gross, Klimesch, & Shapiro, 2011),
including visual processing (Wianda & Ross, 2019)
and top–down executive control thought to protect
working memory maintenance from external distractors
(Bonnefond & Jensen, 2012). Beta (13–30 Hz) activity
has been linked to active maintenance and item retention
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for further task requirements (Chen & Huang, 2016;
Deiber et al., 2007; Onton, Delorme, & Makeig, 2005).
Lastly, gamma ERS has been associated with working
memory capacity (Chen et al., 2014) and increases inwork-
ingmemory effort (Basar-Eroglu et al., 2007). It represents
stimulus encoding and propagation of working memory
items from sensory regions to those associated with
higher-order cortical activity (Novikov & Gutkin, 2018).
Investigating task-induced spectral changes may hence
provide insights into the mechanism of action by which
tDCS modulates working memory processes.
In comparison with the behavioral effects of tDCS on

working memory, relatively few studies have explored
tDCS-induced changes using EEG measures of cortical
dynamics. Gamma ERS has been shown to increase during
2- and 3-back working memory tasks following prefrontal
tDCS (Boudewyn, Roberts, Mizrak, Ranganath, & Carter,
2019; Ikeda, Takahashi, Hiraishi, Saito, & Kikuchi, 2019;
Hoy, Bailey, Arnold, & Fitzgerald, 2015), but others have
not observed these effects (Murphy et al., 2020; Hill,
Rogasch, Fitzgerald, & Hoy, 2018). Theta ERS acquired
during a 2-back task has been shown to increase following
stimulation as compared with sham (Hoy et al., 2013), and
to cathodal tDCS (Zaehle, Sandmann, Thorne, Jäncke, &
Herrmann, 2011). These studies also report conflicting
findings for the alpha frequency band; whereas Zaehle
et al. (2011) found an attenuation of ERD (i.e., a relative
increase of spectral power) following anodal prefrontal
tDCS relative to cathodal stimulation, Hoy et al. (2013)
reported greater ERD as compared with sham. Collec-
tively, these findings imply beneficial effects of tDCS to
maintenance operations and encoding of stimuli to work-
ing memory, as reflected by greater theta and gamma ERS,
respectively. However, because of the mixed nature of
findings in the literature, the impact of tDCS on cognitive
processes associated with working memory requires fur-
ther elucidation.
Therefore, we investigated the neuromodulatory effects

of tDCS on ERS/ERD during a working memory task para-
digm in a large sample of healthy participants (n = 100).
We aimed to determine which frequency-specific cogni-
tive subprocesses are modulated by tDCS. Working
memory performance outcomes and EEG-based time–
frequency measures were assessed in the period immedi-
ately following stimulation. Furthermore, we sought to
investigate changes to cortical dynamics during tDCS as
the concurrent effects of tDCS have been minimally inves-
tigated using EEG because of the inherent difficulties
posed by stimulation artifacts.

METHODS

Participants

Detailed methods and primary behavioral results are
reported in Nikolin, Martin, Loo, and Boonstra (2018).
The current study involves a reanalysis of EEG and

behavioral data. Briefly, a total of 100 participants (age:
22.9 ± 4.3 years: men: 47; women: 53) were recruited.
Participant exclusion criteria included significant psycho-
logical or neurological illness, excessive alcohol or illicit
substance abuse, smoking, and ambidextrous or left-
handed volunteers assessed using the Edinburgh Handed-
ness Test (Oldfield, 1971). Participants were evenly
allocated to one of five conditions in a parallel group,
single blind design. To leverage the large data set available
to investigate working memory effects of tDCS, partici-
pants receiving Sham1, Sham2, and off stimulation were
collectively grouped into a sham category (n = 60), and
participants receiving either 1- or 2-mA stimulation were
likewise categorized as receiving active stimulation (n =
40). An a priori power analysis was not possible given con-
flicting findings in the literature for tDCS effects on
ERS/ERD activity associated with working memory.
However, our sample size is sufficient to detect a medium-
sized effect (Cohen’s h = 0.57) with two-tailed α = .05
and 1 − β = 0.80 and is, to the best of our knowledge,
the largest such investigation to date. The study was
approved by the University of New South Wales Human
Research Ethics Committee (HC13278).

Procedure

The study consisted of two experiments (Figure 1), which
only differed methodologically in the timing of the base-
line 5-min resting-state EEG (results not reported here).
Participants were allocated to stimulation conditions in
each experiment using identical stratified randomization
methods according to baseline working memory perfor-
mance (see Nikolin et al. [2018] for stratification thresh-
olds). Of relevance to the current study, participants
performed the visual 3-back working memory task,
adapted from Mull and Seyal (2001) before, during, and
post-tDCS. The 3-back task was administered via Inquisit
software (Version 4, Millisecond Software). Participants
were presented a series of letters (A–J) each briefly flash-
ing on the screen for 30msec with an interval of 2000msec
between letter stimuli and were required to press the
spacebar on a standard keyboard when the letter pre-
sented on the screenmatched a letter observed three trials
previously. The task was presented for approximately
7 min, comprising 40 target stimuli and 180 distractors.
Participants were given the opportunity to practice the
3-back task before starting the experiment to ensure task
instructions were understood. Task performance was
assessed using RT for correct responses and d0, a measure
of discriminative sensitivity (Haatveit et al., 2010). d0 was
calculated using a z score transformation of the difference
between the percentage of correct responses and incor-
rect responses (i.e., false alarms).

tDCS

Stimulation was given for 15 min using 4 cm× 4 cm galva-
nized rubber electrodes (16 cm2), with saline-soaked
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sponges placed between the electrodes and the skin to
improve conductivity andminimize the risk of skin lesions
(Loo et al., 2011). The anode was placed on the left DLPFC
(F3 according to the International 10–20 EEG system), a
region associated with verbal working memory (Barbey,
Koenigs, & Grafman, 2013; Nyberg et al., 2003; Cabeza,
Dolcos, Graham, &Nyberg, 2002; Kikyo, Ohki, & Sekihara,
2001) and a common target for noninvasive brain stimula-
tion protocols seeking to modulate working memory
performance (Keeser et al., 2011; Teo, Hoy, Daskalakis,
& Fitzgerald, 2011; Zaehle et al., 2011). Cathodal
inhibitory effects are inconsistently observed in studies
of cognition ( Jacobson, Koslowsky, & Lavidor, 2012);
as such, the cathode reference electrode was placed
contralaterally on the right DLPFC (F4) in accordance
with previous tDCS studies. The two active tDCS condi-
tions were delivered at 1 mA and 2 mA using an Eldith
DC-stimulator (NeuroConn GmbH). Sham tDCS condi-
tions were delivered using either an Eldith DC-stimulator
(Sham1) or a tDCS-CT stimulator (Sham2; Soterix Medical
Inc.). Sham protocols involved an initial ramp up and
down of current to elicit paraesthetic sensations and
preserve participant blinding. The machine default opera-
tion during the off-stimulation mode produced a constant
background current of 0.016 mA during Sham1, and
0.034 mA during Sham2. A third, “off,” sham condition
was included in which the machine was switched on but
the electrode leads were left unplugged (i.e., 0 mA).

EEG Data Acquisition

EEG data were acquired using a TMSi Refa amplifier (TMS
International, Oldenzaal). The amplifier recorded 24-bit
resolution data with no in-built filters, except anti-aliasing.
Impedance was kept below 50 kΩ, that is, < 0.5% of
the input impedance of the EEG amplifier (100 MΩ). A
33-channel head cap with water-based electrodes was
used to record 31 EEG channels (see Nikolin et al.
2018). Sites F3 and F4 were reserved for tDCS-electrode
channels, which were secured in place using the EEG cap.

EEG data processing was conducted using custom-
developed MATLAB scripts (v.2020a; The MathWorks) in
addition to the Fieldtrip toolbox (Oostenveld, Fries, Maris,
& Schoffelen, 2011). EEG data were sampled at 1024 Hz
and filtered using a second-order bandpass filter (0.5–
70 Hz) to remove low- and high-frequency noise gener-
ated from head movements and muscle activity, and a
Butterworth IIR digital notch filter at 50 Hz to remove line
noise. The EEG data were epoched into 2-sec intervals,
beginning 0.5 sec before stimulus onset and continuing
for 1.5 sec after each stimulus presentation. Data were
inspected using a semi-automated algorithm to remove
epochs containing artifacts. Trials in which any individual
channel exceeded amplitudes greater than an absolute
z score of 12 relative to other channels were automatically
rejected. Remaining trials were rejected following visual
inspection. Independent components analysis (ICA) was
then used to remove eye blink and muscle artifacts
(Delorme, Sejnowski, & Makeig, 2007; Hyvärinen, Hoyer,
& Inki, 2001; Makeig, Bell, Jung, & Sejnowski, 1996) using
the default runica function implementation in Fieldtrip.
Finally, EEG data were rereferenced to the common
average reference, which reduces the distortion of mea-
sured EEG potentials as compared with a linked mastoids
reference (Hu, Lai, Valdes-Sosa, Bringas-Vega, & Yao,
2018).

Time–Frequency Analysis

Then-back workingmemory task requires continuous and
ongoing maintenance and updating cognitive subpro-
cesses. These underlying working memory processes are
therefore activated even during nontarget and incorrect
trials. For this reason, time–frequency power was calcu-
lated in single-trial data and then averaged across all trials,
that is, target letters and distractors combined, using a
Hanning taper with a fixed 500-msec time window. Spec-
tral power was calculated for each electrode in a range
from 1–70 Hz and represented as ERS or ERD. This shows
the relative change in power compared with a reference

Figure 1. Study protocol. Recruitment occurred in two experiments; in Experiment 1, participants were allocated to receive either Sham1 (0.016 mA)
or 2-mA tDCS; in Experiment 2, participants were allocated to receive either Sham2 (0.034 mA), 1-mA tDCS, or no stimulation at all in an off condition
(0 mA) in which the electrode leads were left unplugged for the entirety of the experiment. The dotted gray line represents when EEG setup
occurred and took approximately 15–20 min. The solid gray line shows when EEG was collected.
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interval at baseline (−500 to 0 msec before stimulus
onset).

Post-tDCS

Best practice suggests the use of a collapsed localizer blind
to group condition to select time intervals for EEG time–
frequency and event-related analyses (Luck & Gaspelin,
2017; Cohen, 2014). We therefore computed grand-
average time–frequency ERS/ERDs for all participants
combined at the post-tDCS timepoint. Time windows con-
taining the largest power changes for frequency bands of
interest were selected by visual inspection, allowing the
time interval of interest to be defined without bias. Using
this methodology, we specified values for frontal theta
ERS (4–6 Hz; 100 to 1000 msec; EEG channels AFz and
Fz—see Figure 2A), alpha ERD (8–13 Hz; 230–580 msec;
EEG channels O1, O2, P7, and P8—see Figure 2B), early
beta ERD (18–24 Hz; 130 to 430 msec; EEG channels
P7 and P8—see Figure 2C), late beta ERS (14–20 Hz;
600–1000 msec; EEG channels O1, Oz, O2, and POz—
see Figure 2D), and gamma ERS (30–60 Hz; 500–
1000 msec; EEG channels POz and Pz—see Figure 2E).

During tDCS

The above measures were also analyzed during tDCS
except for frontal theta, which showed strong signs of con-
tamination from the stimulation artifact. Previous studies
have suggested that a high-pass filter is sufficient to gener-
ate clean concurrent EEGdata during stimulation (Mancini
et al., 2015; Marghi et al., 2015), and the on-line effects of
tDCS on EEG activity can be successfully acquired
(Giovannella et al., 2018; Soekadar, Witkowski, Garcia
Cossio, Birbaumer, & Cohen, 2014; Schestatsky, Morales-
Quezada, & Fregni, 2013). Therefore, EEG analyses during
tDCSwere restricted to alpha frequency bands and higher,
effectively adopting a high-pass filter of 8 Hz.

Statistical Analysis

Analyses were performed using SPSS software (IBM SPSS
Statistics 26 for Windows, SPSS Inc.). Outliers were identi-
fied as those with values greater than 3 SDs from the grand
average of all participants and were excluded from the
measure(s) for which they were an outlier.

Time–Frequency Analyses

Because of minor timeline differences in EEG data collec-
tion between the two experiment groups, baseline time–
frequency measures before tDCS were not available for all
participants (i.e., Experiment 1). As such, we analyzed
time–frequency outcomes using separate multivariate
ANOVA (MANOVA) for during- and post-tDCS outcomes,
using the independent variable of Condition (sham: off,
Sham1, and Sham2; and active: 1 mA and 2 mA). This

was done to restrict the number of analyses and control
the Type I error rate, using a significance threshold of
p < .05. A significant MANOVA model ( p < .05) was
followed up with an ANOVA of the significant frequency
finding to determine which stimulus conditions (if any)
were associated with this difference. Effect sizes were
calculated using bootstrapped Cohen’s d comparing
active to sham. In addition, we performed confirmatory
simple univariate linear regressions with time–frequency
measures as the dependent variables and the ongoing
current intensity participants received over the duration
of the stimulation period included as a continuous inde-
pendent variable (off: 0 mA; Sham1; 0.016 mA; Sham2:
0.034 mA; and active conditions of 1 mA and 2 mA).

Follow-up exploratory nonparametric cluster-based
permutation tests were performed to identify any signifi-
cant differences between sham and active conditions
beyond the a priori time interval and channels operation-
alized for ERS/ERD analyses. This method controls
for multiple comparisons while comparing differences
across a large spatiotemporal parameter space (Maris &
Oostenveld, 2007). Permutation testing was performed
across all EEG channels within the time interval 0–
1000 msec and frequency range of 0.5–70 Hz following
presentation of n-back task stimuli. Participants’ data were
permuted 3000 times, and the resulting distributions were
compared using independent-samples t tests. A value of
α< .05 was adopted as the two-tailed significance thresh-
old. Because of the limited number of EEG recording
channels (i.e., 31), statistically significant clusters were
required to comprise only one neighboring channel.

Working Memory Performance

As complete behavioral data were available for all partici-
pants before, during, and post-tDCS, we analyzed RTs
for correct responses and d0 using repeated-measures
MANOVAs. Factors included Condition (two levels consist-
ing of sham: Off, Sham1, and Sham2; and active: 1 mA and
2 mA), Time (during tDCS and post-tDCS), and the Condi-
tion × Time interaction. Baseline performance was added
as a covariate to account for individual differences in
working memory. Bootstrapped Cohen’s d was used to
calculate effect sizes comparing active to sham groups
during and post-tDCS.

Correlations

Pearson correlations were used to test the relationship
between event-related time–frequency power spectra
and working memory performance measures (RTs and
d0) obtained during- and post-tDCS. Correlations were
conducted using combined data from all participants
included in active and sham groups. We controlled for
the false discovery rate by applying the Benjamini–
Hochberg adjustment for 18 outcomes, setting Q = 0.05
(Benjamini & Hochberg, 1995).
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RESULTS

One participant in the sham group, allocated to the off
condition, discontinued the experiment during the post-

tDCS period. Thus, the sample size in the sham group
was reduced to 59. Table 1 displays baseline demographic
information and working memory performance for active
and sham groups (independent-samples t tests found no

Figure 2. Time–frequency outcomes during n-back task. Task-related time–frequency power was generated by averaging brain activity for target and
distractor stimuli. Time–frequency plots show event-related synchronization (ERS) and desynchronization (ERD) at channels highlighted in black for
the grand-average of all participants immediately following active tDCS. The black box indicates the time and frequency ROI. (A) Frontal theta ERS;
(B) alpha ERD; (C) early beta ERD; (D) late beta ERS; (E) gamma ERS.
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significant between group differences, i.e., all ps > .05).
Side effects were reported in detail in a prior publication
(Nikolin et al., 2018). Briefly, all conditions were well tol-
erated with only minor side effects (e.g., paraesthesia and
transient headache) and no serious adverse events.

Time–Frequency Analyses

The number of components rejected during ICA was sim-
ilar between sham (5.8; SD = 1.6) and active participants
(5.3; SD = 1.2). Likewise, a similar number of trials were
rejected in both groups during tDCS (sham: 4.9, SD= 4.5;
and active: 5.4, SD= 4.0) and post-tDCS (sham: 4.4, SD=
4.7; and active: 5.8, SD = 5.2).

During tDCS

Qualitatively, there were a larger number of outliers identi-
fied during tDCS compared with post-tDCS, with most out-
liers identified from the active rather than the sham group.
This suggests that stimulation artifactsmay be present in the
data despite cleaning efforts. Two outliers were excluded for
alpha ERD, one for early beta ERD, four for late beta ERS,
and lastly nine from gamma ERS analyses. One outlier was
identified in the sham group for gamma ERS.
The MANOVA for time–frequency outcomes extracted

during tDCS was not significant (F= 1.0, p= .431). Simple
univariate linear regression analyses for all time–frequency
measures were similarly not significant (all ps > .05).
Cluster-based permutation tests comparing post-tDCS
time–frequency ERS/ERD between participants in active
and sham groups likewise did not reveal significant clusters.

Post-tDCS

Two outliers were identified and excluded from analysis
for late beta ERS and one from gamma ERS in the active

group. For the sham group, one outlier each was excluded
from theta and gamma ERS analyses.

The MANOVA for post-tDCS time–frequency outcomes
was significant (F = 2.3, p = 0.049). This finding was
driven by tDCS effects on frontal theta ERS, in which par-
ticipants receiving active tDCS had reduced ERS compared
with sham (F = 4.5; p = .037; Cohen’s d = −0.42; see
Figure 4 and Table 2). Simple univariate linear regression
analyses confirmed MANOVA findings, indicating a signif-
icant negative relationship between current intensity
and frontal theta ERS at the post-tDCS time point (β =
−0.06; r2 = .05; p= .029; see Appendix Figure A1). Linear
regressions for other time–frequency measures were not
significant (all ps > .05). Cluster-based permutation tests
comparing post-tDCS time–frequency ERS/ERD between
participants in active and sham groups did not identify
any significant clusters.

Working Memory Performance

RTs on the 3-back task showed a significant main effect of
Time (F = 7.9, p < .01, η2 = .08), indicating shorter

Table 1. Participant Characteristics at Baseline

Sham Active

Sample, n 59 40

Demographic details

Age, years 22.2 (3.1) 23.9 (5.5)

Education, years 15.2 (2.2) 16.0 (2.4)

Sex, F/M 28/31 24/16

Working memory

d0 2.5 (0.7) 2.6 (0.7)

RT, msec 700 (163) 718 (169)

Values represent the mean (standard deviation). RTs indicate mean
latency for correctly detected target stimuli.

Figure 3. Time–frequency power during the 3-back task post-tDCS.
EEG power shown for the average of frontal channels Afz and Fz for
sham and active conditions, as well as the active–sham contrast.
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latencies post-tDCS relative to during tDCS. The main
effect of Condition was not significant (F = 0.4, p = .53,
η2 < .01; Figure 5), although there was a significant
Time × Condition interaction (F = 5.8, p = .02, η2 =
.06). Post hoc comparisons of the change in RTs from
during to post-tDCS revealed a significant difference
between active and sham ( p = .03, Cohen’s d = 0.63),
suggesting that response latencies in the sham group
improved at a greater rate in between these time periods
as compared with the active group.

d0 analysis revealed no significant main effects of Time
(F = 1.4, p = .23, η2 = .02), or condition (F = 1.9, p =
.17, η2 = .02), and no Time × Condition interaction
(F= 1.1, p= .29, η2 = .01; Figure 3). Effect sizes compar-
ing active to sham participants were small-to-moderate

during tDCS (Cohen’s d=−0.38) and post-tDCS (Cohen’s
d = −0.17).

Correlation

There were no significant correlations between event-
related spectra and working memory performance out-
comes during and post-tDCS following correction for the
false discovery rate (all p > .05; Appendix Table A2).

Blinding

Upon completion of the data collection phase of the
experiment, most participants guessed they had received
active stimulation, 36/59 (61%) in the sham group and

Table 2. Time–Frequency Outcomes

MANOVA Sham Active Post hoc ANOVA

F p Mean SD n Mean SD n F p Cohen’s d

During tDCS 0.97 .431

Alpha ERD −0.44 0.30 59 −0.37 0.36 38 1.35 .248 0.24

Early beta ERD −0.23 0.21 59 −0.23 0.27 39 0.52 .474 0.01

Late beta ERS 0.25 0.34 59 0.15 0.43 36 0.17 .685 −0.28

Gamma ERS 0.02 0.08 58 −0.01 0.13 31 2.25 .138 −0.31

Post-tDCS 2.33 .049

Theta ERS 0.29 0.21 58 0.20 0.20 40 4.50 .037 −0.42

Alpha ERD −0.49 0.26 59 −0.43 0.27 40 0.77 .383 0.25

Early beta ERD −0.26 0.17 59 −0.20 0.17 40 3.41 .068 0.35

Late beta ERS 0.31 0.33 59 0.28 0.25 38 0.21 .650 −0.09

Gamma ERS 0.03 0.07 58 0.05 0.07 39 0.91 .342 0.25

SD = standard deviation; ERS = event-related synchronization; ERD = event-related desynchronization.

Figure 4. A 3-back task
frontal theta event-related
synchronization post-tDCS.
(A) Average theta event-
related synchronization/
desynchronization (ERS/D)
over time displayed with
bootstrapped 95% confidence
intervals. (B) Scatter plots of
theta ERS/D obtained from
frontal EEG channels AFz and
Fz, 100–1000 msec poststimulus
onset. Black lines show the
mean, red lines show the
median, light gray shaded boxes
indicate the 95% confidence
interval, and dark gray regions
indicate the standard deviation.
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28/40 (70%) in the active group. A Pearson’s chi-square
test found no significant difference in guesses between
groups (χ2 = 0.84, p = .359).

DISCUSSION

We investigated the concurrent and immediate afteref-
fects of tDCS on task-related spectral EEG activity during
a letter 3-back working memory task. The active group
showed attenuated frontal theta ERS following tDCS,
whereas no neurophysiological group differences were
observed during tDCS. Behavioral measures showed a
practice effect, with participants responding faster after
than during the intervention, which was attenuated in
participants receiving active stimulation (1 mA or 2 mA)
compared with those in the sham tDCS group (0 mA,
0.016 mA, 0.034 mA).
Task-related frontal theta ERS was selectively affected

out of all investigated event-related EEG outcomes follow-
ing tDCS. Theta ERS plays a role in integrating and coordi-
nating brain activity, including organization of the multiple
concurrent cognitive processes required for working
memory (Sauseng, Griesmayr, Freunberger, & Klimesch,
2010). Furthermore, theta is associated with higher-order
executive functioning (Klimesch, Schack, & Sauseng, 2005;
Sauseng, Klimesch, Schabus, & Doppelmayr, 2005;
Baddeley, 2003), including continuous maintenance and
manipulation processes required for the n-back task
(Maurer et al., 2015; Sauseng et al., 2010; Pesonen et al.,
2007), as well as cognitive control (Duprez et al., 2020;
Cavanagh & Frank, 2014). The time course of frontal theta
ERS reflects these functions, arising immediately after
stimulus presentation and remaining elevated for at least
a second to facilitate maintenance operations (Pesonen
et al., 2007). An increase in theta power is therefore
expected to be accompanied by improved working
memory performance (Popov et al., 2018). Conversely, a
decrease in task-related theta ERS should be associated
with poorer performance (Missonnier et al., 2006),
although the present study was unable to identify a signif-
icant correlation between theta activity and either d0 or
response latencies. Nevertheless, our findings could sug-
gest that tDCS interferes with maintenance and cognitive
control processes, indexed by frontal theta, early in the

cognitive cascade leading to a correct response on the
n-back task, although the strength of this interference
did not rise to a level that produced noticeable impair-
ments in performance. Alternatively, theta ERS has been
shown to positively correlate with cognitive load, that is,
the number of letters “n” to be recalled during the n-back
task (Pesonen et al., 2007; Jensen & Tesche, 2002; Gevins
& Smith, 2000; Gevins, Smith, McEvoy, & Yu, 1997). One
might suggest that a decrease in theta following tDCS sig-
nifies an improvement in the efficiency of workingmemory
processes and a relative reduction in cognitive load. How-
ever, attenuated practice effects in the active group may
argue against this positive interpretation of reduced theta
findings. Importantly, as theta could not be assessed during
tDCS, it is unclear whether this disruption occurred during
stimulation, or was the result of a neuromodulatory after-
effect. fMRI evidence suggests that 20 min of prefrontal
tDCS can perturb cortical dynamics within the first 6 min
of stimulation, and these effects remained stable for up to
3 days (Tu et al., 2021). It is therefore possible that a similar
time-course might be present for theta activity, although
this is obscured because of electrical artifacts in the EEG.

Similar effects of tDCS on theta activity have been
reported by Powell , Boonstra, Mart in, Loo, and
Breakspear (2014) in a tDCS study of patients with an
affective disorder. They showed a reduction in frontal
theta during the retention phase of a verbal workingmem-
ory task following tDCS, although this was not accompa-
nied by significant behavioral effects between active and
sham stimulation conditions. Conversely, Hoy et al. (2013)
reported the opposite, finding enhanced frontal theta
ERS in the active tDCS conditions (1mA and 2mA) relative
to sham, although a significant effect was only observed
during the 2-back but not the 3-back task. Similarly, anodal
tDCS has been shown to increase theta ERS during a
2-back task relative to cathodal stimulation, but not com-
pared with sham stimulation (Zaehle et al., 2011). Despite
these studies indicating greater theta ERS following tDCS,
others have not observed significant theta band differ-
ences between conditions in healthy (Murphy et al.,
2020; Splittgerber et al., 2020; Ikeda et al., 2019; Hill
et al., 2018) or patient populations (Hoy et al., 2015).

It is unclear which methodological difference(s) may
explain the disagreement between these studies.

Figure 5. A 3-back task working
memory performance
outcomes. Line graphs show
estimated marginal means for
RT and accuracy (d0) during-
and post-tDCS. Baseline (pre-
tDCS) performance was added
as a covariate to account for
individual differences in
working memory. Error bars
denote the SEM.
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Potentially relevant factors include the timing of stimula-
tion relative to task delivery, the tDCS montage, and the
task load, although none of these sufficiently explains all
discrepancies. The present study delivered the 3-back task
during stimulation, which improves tDCS effects (Martin,
Liu, Alonzo, Green, & Loo, 2014), possibly by modulating
activity in task-relevant regions via functional specificity
(Bikson & Rahman, 2013). Despite using a similar proto-
col, delivering tDCS during a task, Splittgerber et al.
(2020) did not observe theta effects. Our study and
Powell et al. (2014) used a bilateral F3/F4 or F3/F8 mon-
tage, both finding reduced theta following tDCS. Compu-
tational modeling suggests that F3/F4–F8 montages result
in more right lateralized electric fields, including the right
DLPFC and orbitofrontal cortex, compared with montages
in which the cathode is placed over the contralateral
supraorbital region (Bai, Dokos, Ho, & Loo, 2014). These
regions are consistently implicated in spatial and object
processing (Owen et al., 2005; Mesulam, 2000; Reuter-
Lorenz et al., 2000), and typically show significantly
increased theta coherence during visuospatial working
memory tasks at high cognitive loads (Muthukrishnan,
Soni, & Sharma, 2020). Speculatively bilateral montages
may therefore disrupt theta coherence within these
regions to a greater degree than other commonly used
electrode placements; however, further research is
needed to confirm this hypothesis. Finally, it is possible
that the use of the 3-back task, which entails a higher work-
ing memory load compared with the 2-back version of the
task, may interact differentially with tDCS stimulation to
produce reductions in theta. Similar effects have been
reported in other cognitive domains, showing that tDCS
reduced visual sustained attention at high but not
low/medium cognitive loads (Roe et al., 2016). Likewise,
results from a visuomotor tracking task found cognitive
enhancing effects of tDCS at moderate, but not high, dif-
ficulty levels (Kwon, Kang, Son, & Lee, 2015). Our results
may therefore agree with a growing body of literature sug-
gesting that task load is an important factor for consider-
ation in assessing tDCS outcomes (de Almeida, Pope, &
Hansen, 2020; Sánchez, Masip, & Gómez-Ariza, 2020; Gill,
Shah-Basak, & Hamilton, 2015; Meiron & Lavidor, 2013).

Previous analyses of the present data set found no sig-
nificant differences for working memory accuracy and RTs
between the five conditions that were assessed (Nikolin
et al., 2018). Categorization of participants into broader
sham and active groups, which increased statistical power,
now shows relatively prolonged response latencies in
active (1 mA and 2 mA) compared with sham stimulation
(0 mA, 0.016 mA, 0.034 mA) for the post-tDCS aftereffect
period (Cohen’s d = −0.28). The observed interaction
effect suggests that tDCS may have interfered with n-back
task practice effects. These findings run counter to previ-
ous meta-analyses suggesting small-to-moderate benefits
of tDCS to working memory performance (Lee et al.,
2021; Hill et al., 2016; Brunoni & Vanderhasselt, 2014),
and more generally improved RTs for cognitive tasks

following anodal prefrontal stimulation in healthy individ-
uals (Dedoncker et al., 2016). Our results raise questions
regarding the utility of tDCS to enhance n-back task
performance, in agreement with meta-analytic findings
showing no evidential value of tDCS in working memory
studies (Medina & Cason, 2017). Considering the unex-
pected direction of our findings, a possible interference
in practice effects following tDCS rather than an enhance-
ment of cognition, further independent replication by
similarly large, adequately powered, studies capable of
detecting small effects is needed.
No significant differences were observed between

active and sham groups for concurrent EEG measures
obtained during tDCS. There are several plausible inter-
pretations of this outcome. First, the only significant effect
observed post-tDCS occurred in the theta frequency band,
which could not be assessed during stimulation because of
excessive artifacts. Second, there is evidence to suggest
that the aftereffects of tDCS are larger than the concurrent
effects, and so may be statistically easier to detect (Jamil
et al., 2020). Third, qualitatively larger interindividual var-
iability was observed during tDCS. The resulting heteroge-
neity in outcomes, a common feature of tDCS (Li, Uehara,
& Hanakawa, 2015), reduces statistical power to identify
group differences. Finally, some stimulation artifacts may
still have been present in the EEG data acquired during
tDCS despite cleaning efforts, thereby obscuring the
effects of stimulation (Boonstra, Nikolin, Meisener,
Martin, & Loo, 2016). Although simple temporal and spa-
tial filtering strategies may attenuate some tDCS-induced
noise (Mancini et al., 2015; Marghi et al., 2015), they
appear to be insufficient to eradicate all inherent and
non-inherent physiological and stimulator artifacts. These
pose a unique nonstationary problem that can only be
removed with significant effort (Gebodh et al., 2019).
An advantage of the present study compared with prior

investigations of similar outcomes is the large sample size
afforded by analysis of combined data collected over two
experiments. This allowed for the detection of moderate
frontal theta ERS (Cohen’s d = −0.42) and small RT
(Cohen’s d = −0.28) effects of stimulation. Interestingly,
our findings indicate that neurophysiological measures
may bemore sensitive to the effects of tDCS than cognitive
performance outcomes. Indeed, similar views have been
expressed using ERPs obtained during the n-back task
(Hill, Rogasch, Fitzgerald, & Hoy, 2019; Keeser et al.,
2011), including previously reported analyses of the
present data set (Nikolin et al., 2018). These findings
suggest a greater role for EEG, andmore broadly neuroim-
aging techniques, including fMRI (Fischell, Ross, Deng,
Salmeron, & Stein, 2020; Vaqué-Alcázar et al., 2020; Lin
et al., 2019) and functional near infrared spectroscopy
(Schommartz, Dix, Passow, & Li, 2021), for investigations
of the neuromodulatory effects of tDCS on cognitive pro-
cesses. In the absence of behavioral changes following
tDCS, these techniques may be used instead to gain
insights into the mechanisms of action of tDCS, and
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thereby optimize stimulation parameters to achieve larger
and more consistent cognitive effects.

Limitations

The data presented in the current study were collected in
two separate experiments, and so randomization was not
possible to all five conditions at once, potentially introduc-
ing a sampling bias. However, the inclusion criteria and
method of recruitment were purposefully kept consistent
in both experiments, such that participants were similar in
demographic and working memory outcomes at baseline.
In addition, identical working memory performance
thresholds were used in both experiments during random-
ized stratification of participants to stimulation conditions.
Although the combination of these data sets introduces
heterogeneity because of inconsistent stimulation param-
eters, in doing so, it may improve the generalizability of
findings. A consensus is yet to emerge for the optimal
tDCS current intensity necessary to achieve cognitive
enhancing effects of tDCS. As a result, the vast majority
of studies select dosage parameters ranging between 1
and 2 mA (Hill et al., 2016), as was used in the present
study. Our results may thus be broadly reflective of tDCS
working memory effects obtained using commonly
employed current intensities within the field. We were
unable to measure frontal theta during tDCS because of
significant electrical artifacts introduced to the EEG signal
in this frequency band. Hence, we cannot determine
whether differences in theta could have emerged during
this time-point, preceding RT effects and potentially
suggesting a causal link. Lastly, the interpretation of

tDCS causing frequency-specific alterations in the theta
band should be made with caution. Although previous
research has labeled similar findings as an effect on
“oscillatory activity” (Murphy et al., 2020; Ikeda et al.,
2019; Hill et al., 2018; Heinrichs-Graham, McDermott,
Mills, Coolidge, & Wilson, 2017; Zaehle et al., 2011),
changes in spectral power following stimulation may
instead occur because of generalized shifts in the balance
of excitation and inhibition within the brain. In such
instances, signal fitting algorithms may be used to distin-
guish oscillatory and aperiodic components in the power
spectrum (Donoghue et al., 2020). Although this tech-
nique was recently applied to event-related data (Virtue-
Griffiths et al., 2022), testing whether it can accurately
distinguish rapid changes in event-related theta from
changes in the slope of aperiodic activity is beyond the
scope of this study.

Conclusions

Our findings suggest that tDCSmay interfere with working
memory processes, particularly maintenance and cogni-
tive control as measured by frontal theta ERS. This may
have attenuated practice effects, resulting in a relative
lack of improvement in response latencies post-tDCS
as compared with participants receiving sham stimula-
tion. The analysis of task-related spectral EEG changes
provides insights into mechanisms by which tDCS affects
working memory, in particular, why tDCS may not always
be useful in augmenting working memory in healthy
volunteers.
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APPENDIX
Sensitivity Analyses

Our previous analyses indicated that the Sham2 group
may have biological effects (Nikolin et al., 2018). However,
Sham2 amplitudes were not significantly different to
Sham1 and, indeed, were remarkably similar (Sham1
P3 = −0.59 μV; Sham2 P3 = −0.57 μV; p = .95, Hedges’
g = 0.02. Considering concerns that this group may alter
brain activity, we reran analyses excluding participants
from each group, similar to a condition-level leave-one-
out analysis, to assess the impact of this condition on
our overall findings.
Condition-level leave-one-out behavioral analyses

resulted in similar RT outcomes. The main effect of time
remained significant, indicating shorter latencies post-
tDCS relative to during-tDCS, except following exclusion
of the off group in which it was at trend level (F = 3.4,
p = .07, η2 = .04). The main effect of Condition was non-
significant following all exclusions. The Time × Condition
interaction remained significant except following exclu-
sion of the 1 mA group (F = 1.9, p = .18, η2 = .02).
Likewise, d0 analysis revealed no significant main effect

of Time, and no Time × Condition interaction following

Figure A1. Scatter plots of simple univariate linear regression for
during tDCS time–frequency outcomes. Time–frequency measures
were set as the dependent variable, with current intensity (mA)
included as the independent variable. Black dotted lines show the line
of best fit for first order linear regressions, and red dotted lines show
the same for second order linear regressions. Figure A2. Scatter plots of other frequency band results.
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each group exclusion. The main effect of Condition
narrowly attained the significance threshold following
exclusion of Sham2 participants (F = 4.0, p = .05, η2 =
.05), indicating reduced working memory accuracy in
the active group.
TheMANOVAs for EEG outcomes were no longer signif-

icant in the time-period post tDCS following exclusion of

off ( p = .10), 1 mA ( p = .09), and 2 mA ( p= .13) condi-
tions. Only exclusion of the Sham1 group resulted in
significant post-tDCS EEG findings ( p = .02). For the
time-period during tDCS, all exclusions resulted in non-
significant MANOVAs similar to results obtained using the
full sample (off p = .66; Sham1 p = .07; Sham2 p = .60;
1 mA p = .16; 2 mA p = .21).

Table A1. Simple Univariate Linear Regression Outcomes

Regression Model Constant Current Intensity

r2 F p B SEM t p B SEM t p

Post-tDCS

Theta ERS 0.05 4.93 .029 0.29 0.03 11.11 <.001 −0.06 0.03 −2.22 .029

Alpha ERD 0.01 0.70 .406 −0.49 0.03 −14.68 <.001 0.03 0.03 0.84 .406

Early beta ERD 0.02 1.51 .222 −0.25 0.02 −11.49 <.001 0.03 0.02 1.23 .222

Late beta ERS 0.01 0.76 .387 0.33 0.04 8.60 <.001 −0.03 0.04 −0.87 .387

Gamma ERS 0.02 1.54 .217 0.03 0.01 3.39 .00 0.01 0.01 1.24 .217

During tDCS

Alpha ERD 0.03 2.26 0.137 −0.45 0.04 −11.12 .00 0.07 0.04 1.50 .137

Early beta ERD 0.00 0.19 0.668 −0.22 0.03 −8.72 .00 0.01 0.03 0.43 .668

Late beta ERS 0.01 1.18 0.280 0.29 0.04 7.17 .00 −0.05 0.04 −1.09 .280

Gamma ERS 0.02 1.37 0.245 0.02 0.01 1.61 .11 −0.02 0.01 −1.17 .245

SEM = standard error of the mean; ERS = event-related synchronization; ERD = event-related desynchronization.

Table A2. Pearson Correlations Comparing Event-related Time–Frequency Power Spectra and Working Memory Performance
Measures

RT d0

r p FDR p r p FDR p

Post-tDCS

Theta ERS −0.06 .553 .664 −0.08 .438 .606

Alpha ERD −0.08 .428 .606 −0.17 .093 .422

Early beta ERD −0.15 .132 .422 −0.11 .274 .529

Late beta ERS −0.14 .164 .422 −0.05 .611 .687

Gamma ERS 0.11 .294 .529 −0.14 .163 .422

During tDCS

Alpha ERD −0.10 .356 .583 −0.01 .927 .964

Early beta ERD −0.11 .287 .529 0.01 .964 .964

Late beta ERS −0.07 .485 .624 0.15 .153 .422

Gamma ERS −0.20 .063 .422 0.27 .010 .180

Correlations were corrected for multiple comparisons using the false discovery rate. FDR = false discovery rate; tDCS = transcranial direct current
stimulation; ERS = event-related synchronization; ERD = event-related desynchronization.
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