
 

 

 

Inference in Non-stationary High-Dimensional VARs

Citation for published version (APA):

Hecq, A., Margaritella, L., & Smeekes, S. (2023). Inference in Non-stationary High-Dimensional VARs.
(pp. 2302.01434v1). Cornell University - arXiv. arXiv.org No. 2302.01434 https://arxiv.org/abs/2302.01434

Document status and date:
Published: 02/02/2023

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 20 Apr. 2024

https://arxiv.org/abs/2302.01434
https://cris.maastrichtuniversity.nl/en/publications/cd274bbc-ac42-408a-9ab0-06326887b263


Inference in Non-stationary High-Dimensional VARs

Hecq, A.†, Margaritella, L.‡1, Smeekes, S.†

†Maastricht University, ‡Lund University

February 6, 2023

Abstract

In this paper we construct an inferential procedure for Granger causality in high-dimensional non-
stationary vector autoregressive (VAR) models. Our method does not require knowledge of the order of
integration of the time series under consideration. We augment the VAR with at least as many lags as
the suspected maximum order of integration, an approach which has been proven to be robust against
the presence of unit roots in low dimensions. We prove that we can restrict the augmentation to only
the variables of interest for the testing, thereby making the approach suitable for high dimensions. We
combine this lag augmentation with a post-double-selection procedure in which a set of initial penalized
regressions is performed to select the relevant variables for both the Granger causing and caused vari-
ables. We then establish uniform asymptotic normality of a second-stage regression involving only the
selected variables. Finite sample simulations show good performance, an application to investigate the
(predictive) causes and effects of economic uncertainty illustrates the need to allow for unknown orders
of integration.

Keywords: Granger causality, Non-stationarity, Post-double-selection, Vector autoregressive models,
High-dimensional inference.
JEL codes: C55, C12, C32.

1. Introduction

In this paper we construct an inferential procedure for Granger causality in high-dimensional non-

stationary vector autoregressive (VAR) models. Investigating causes and effects in time series models has

a long and rich history, dating back to the seminal work of Granger (1969). The statistical assessment of

the directional predictability among two (or blocks of) time series can have important consequences for

decision making processes. Applications of Granger causality range over from macroeconomics, finance,

network theory, climatology and even the neuroscience. For instance, the evidence of causality between

money and gross domestic product is a long-debated issue in the macroeconomic literature. This was

first discussed in Sims et al. (1990) and Stock and Watson (1989) and it is still argued to this day, see

e.g., Miao et al. (2020). Financial applications of Granger causality include, among others, Billio et al.

(2012) who study the connectedness among monthly returns of hedge funds, banks, broker/dealers, and

1Part of this work has been carried out while the second author was a doctoral candidate at Maastricht University.
The second and third author thank NWO for financial support under grant number 452-17-010. Previous versions of
this paper have been presented at the (EC)2 2020, ICEEE 2021, IAAE 2021 and NESG 2022 conferences as well as the
2022 Maastricht Dimensionality Reduction and Inference in High-dimensional Time Series and the 2022 Maastricht-York
Economics workshops. We gratefully acknowledge the comments by participants at these conferences. In addition, we thank
Anders B. Kock, Joakim Westerlund, Gianluca Cubadda, Etienne Wijler for their valuable feedback. All remaining errors
are our own. Address correspondence to: Luca Margaritella, Department of Economics, Lund University, P.O. Box 7082,
S-220 07 Lund, Sweden. E-mail: luca.margaritella@nek.lu.se
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insurance companies. Hecq et al. (2021) build Granger causality networks from high-dimensional vector

autoregressive models, describing the dynamic volatility spillovers among a large set of stock returns.

Many applications are also found in climate science, for instance in trying to understand and disentangle

the causes of climate change. Among others, Stern and Kaufmann (2014) investigate causality between

greenhouse gas emissions and temperature. In neuroscience, Granger causality is employed to understand

mechanisms underlying complex brain function and cognition, with examples in the field of functional

neuroimaging (see e.g., Seth et al., 2015, Friston et al., 2013, for some reviews).

With the increased availability of larger and richer datasets, these causality concepts have recently

been extended to a high-dimensional setting where they can benefit from the inclusion of many more series

within the information set. In the original concept of Granger causality (Granger, 1969), conditioning

on a given information set plays a central role.2 After all, Granger causality is a study of predictability.

Only by considering predictability given a specific conditioning set, is possible to attach some sort of

causal meaning to the outcome (where the nature of that causality is still up for debate, of course). To

identify direct ‘truly causal’ links between variables would require one to condition upon all possible

variables that may be related to the variables of interest. Otherwise, any discovered relation may simply

be an artifact of omitted variable bias which would invalidate a causal interpretation. Indeed, Granger

himself envisioned the information set as “all the knowledge in the universe available at that time”

(Granger, 1980, p.330). While this concept cannot be operationalized with any finite amount of data, the

availability of increasingly high-dimensional datasets, along with the econometric techniques to analyze

them, provide a great opportunity for turning Granger causality from ‘just predictability’ into a concept

to which at least some form of causal interpretation can be attached.

Recently, Hecq et al. (2021) (HMS henceforth) proposed a test for Granger causality in high-dimensional

vector autoregressive models. This combines dimensionality reduction techniques based on penalized re-

gression such as the lasso of Tibshirani (1996), with the post-double selection procedure of Belloni et al.

(2014) designed to guarantee uniform asymptotic validity of the post-selection least squares estimator.

However, HMS assumed stationarity of all the time series considered. This is a typical assumption in

much of the literature on regularization methods, in particular when inference is considered. While the

literature on estimation and forecasting with high-dimensional non-stationary processes is growing (see

e.g. Smeekes and Wijler, 2020, and the references therein), this is not the case for inference due to the com-

plexities arising with unit roots and cointegration, which already have severe effects in low-dimensional

settings.

Working with (data possibly transformed to yield) stationary time series avoids these complications in

2Throughout the paper we focus on Granger causality in mean. While there are clearly many other forms of causal or
predictive relations possible, Granger causality in mean is the most prominent and therefore the focus of our attention. It
should therefore be understood that whenever we mention Granger causality in the paper, we refer to Granger causality in
mean.
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the asymptotic analysis and allows to invoke standard (Gaussian) limit theory, thereby enabling the use

of standard inferential procedures such as t and F -tests. On the other hand, it assumes prior knowledge

of the order of integration of all the time series entering the model. This prior knowledge is usually

acquired via unit root tests such as the augmented Dickey-Fuller (ADF) test (see Dickey and Fuller,

1979). However, these tests are sensitive to their specifications, such as the inclusion of a deterministic

time trend in the regression equation and the choice of the lag length. Even when performing what seems

to be the same test in, for example, different R packages, it may actually lead to different outcomes

(Smeekes and Wilms, 2020). That does not even take into account that there are many different units

root tests, none of which is clearly preferred to the others, as well as how specific data features (and their

treatment) such as seasonality (adjustments), structural breaks and outliers may affect these tests. As

such, the outcome of a unit root test is ambiguous at best; even more so if one also takes into account their

well-documented low power (Cochrane, 1991) on the one hand and the accumulation of the probability

of obtaining false positives through multiple testing – especially in high dimensions – on the other hand.

But even if one did know the true orders of integration, transformations such as differencing to achieve

stationarity are not innocuous. In particular, information about long-run relations such as cointegration

is deleted from the series. Yet the error correction mechanisms at play for the movement towards long-run

equilibria may well induce (Granger) causal relations that are not apparent anymore in the transformed

data. While this is not necessarily a problem if one is interested in the transformed data as such (for

example the growth rate off economic series may be an object of interest in themselves), in many applica-

tions we are interested in the level of the series and the transformations are only done to avoid issues with

non-stationarity. It would therefore be very beneficial to practitioners to have high-dimensional inference

methods available that are robust to (unknown) orders of (co)integration.

In this paper we develop a method which allows for testing Granger causality in high-dimensional

VAR models, irrespective of the (co)integration properties of the time series in the VAR. We avoid any

bias coming from unit root and cointegration pre-testing and instead use the VAR in levels directly to

perform inference on the (Granger causality) parameters of interest. The procedure we design builds on

the work of Toda and Yamamoto (1995) who first considered a simple lag augmentation of the system,

which they showed provides asymptotically normal estimators irrespective of potential unit roots and

cointegration (Dolado and Lütkepohl, 1996, also see). The same approach has also recently been used

to develop inference on impulse response functions (Inoue and Kilian, 2020, Montiel Olea and Plagborg-

Møller, 2021) that is robust to unit roots. We modify the approach outlined above by confining lag

augmentation to only the variable(s) tested as Granger causing, instead of adding lags of all variables.

We show that this modification, which makes it suitable for application to high-dimensional VARs, does

not affect the asymptotic properties. In addition, we modify the post-double selection procedure of HMS

to prevent the possibility of spurious regression, thereby extending its uniform validity to data with
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potential (co)integrated time series.

The remainder of the paper is organized as follows: Section 2 introduces the model, the Granger

causality testing and our lag-augmented post-double-selection approach. The theoretical properties of

our method are studied in Section 3. In Section 4 we investigate finite-sample performance through a

simulation study, while Section 5 proposes a data-driven method to find a sensible upper bound for the

lag length in the VAR. Section 6 uses the proposed testing framework to investigate the causes and effects

of economic uncertainty in the context of the FRED-MD dataset. Section 7 concludes. In Appendix A

the theory underlying the lag augmentation and the asymptotic properties is developed. are reported

introductory Lemmas and complementary results to the following two appendices. Appendix B is devoted

to the validation of high-level assumptions, while additional empirical results are presented in Appendix

C.

A few words on notation. For any n-dimensional vector x, we let ‖x‖p = (
∑n
i=1 |xi|p)

1/p
denote the

`p-norm. For any index set S ⊆ {1, . . . , n}, let xS denote the sub-vector of xt containing only those

elements xi such that i ∈ S. |S| denotes the cardinality of the set S. We use
p−→ and

d−→ to denote

convergence in probability and distribution, respectively.

2. Granger Causality Tests for Nonstationary High-Dimensional Data

In this section we propose our model, our strategy for lag augmentation of the Granger causality

tests, and the post-double-selection procedure needed to achieve uniformly valid inference. Section 2.1

first presents the model and lag-augmented Granger causality test. Next, 2.2 sets out the post-double-

selection procedure.

2.1. Lag-Augmented Granger Causality Testing

Let z1, . . . ,zT be a K-dimensional multiple time series process, where zt = (yt, xt,wt)
′
. Here yt is

the series we would like to test being Granger caused, xt the potentially Granger causing series and wt

is a K − 2 dimensional vector of controls constituting the information set. We allow for K to be large,

potentially larger than (and growing with) the sample size T . We assume zt is generated by a VAR(p)

process as

zt = A1zt−1 + · · ·+Apzt−p + ut, t = p+ 1, . . . , T , (1)

where A1, . . . ,Ap are K ×K parameter matrices and ut is a K × 1 vector of error terms.

Assumption 1. The VAR model in (1) satisfies:

(a) {ut}Tt=1 is an mds with respect to the filtration Ft = σ(zt, zt−1, zt−2, . . .) ut such that E(ut|Ft−1) = 0

for all t; the K×K covariance matrix Σu = E(utu
′
t) is positive definite and E|ut|2+δ ≤ ∞, for δ > 0.

(b) The roots of det(IK −
∑p
j=1Ajz

j) can either lie on the unit disc or outside.
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Note that Assumption 1(b) allows for the time series to have unit roots and be cointegrated. We

specifically allow elements of zt to be integrated of order d: I(d) for d = 0, 1, 2 and possibly cointegrated

of order d, b: CI(d, b) with 0 < b ≤ d. We formulate more specific assumptions on (co)integration

properties in Section 3 and Appendix B.

We are interested in testing the null hypothesis of Granger non-causality in mean between the Granger

causing series xt and the Granger caused yt, conditional on all the series inwt. For the moment we assume

the lag-length p in (1) to be known; we shall further elaborate on data-driven ways to select p in Section

5. Also, in order to ease the notation, we omit both the intercept and any polynomial time trend from

the model; the results we derive easily extend to those cases as well. It is convenient to introduce the

following stacked notation. Let X−p = (x−1, . . . ,x−p) denote the T × p matrix containing the p lags of

the Granger causing variable xt, where x−j is the vector containing the observations corresponding to

its j-th lag.3 Similarly, we define Y−p containing the p lags of the Granger caused variable yt and W−p

for the conditioning set such that W−p is a T × (K − 2)p matrix. Then, our equation of interest for the

Granger causality testing can be stated as

y = X−pβ + Y−pδ1 +W−pδ2 + u = X−pβ + V δ + u, (2)

where for notational simplicity we define V = (Y−p,W−p) as the matrix containing all control variables

and δ = (δ′1, δ
′
1)′ its coefficients.

Testing for no Granger causality is then equivalent to testing the following null hypothesis:

H0 : β = 0 against H1 : β 6= 0. (3)

To account for the potential unit roots in the system, we follow the approach pioneered by Toda

and Yamamoto (1995) and Dolado and Lütkepohl (1996) of augmenting the regression of interest with

redundant lags of the variables. However, in contrast to the existing approaches, we only augment the

lags of the Granger causing series xt. That is, we consider the lag-augmented regression

y = X−pβ +

d∑
j=1

βp+jx−(p+j) + V δ + u = X−(p+d)β+ + V δ + u, (4)

where X−(p+d) = (X−p,x−(p+1), . . . ,x−(p+d)) contains the p + d lags of xt. Here d represents the

maximum order of integration one suspects the series are having. Note that in fact βp+j = 0 for all

j ≥ 1 such that β+ = (β′,0′d)
′, as we are adding redundant variables. It should be clear that by testing

3To keep T observations for the lags, one can replace the missing values for t ≤ 0 with zeros. Alternatively, the vectors are
shortened to contain T − p observations only. Both approaches are equivalent asymptotically, and for notational simplicity
in the following we do not explicitly distinguish between them.
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whether the first p elements of β+ – those corresponding to β in (1) – we can perform the same test of

Granger non-causality as in the original setup.

By adding “free” lags of xt, we in essence allow this variable to “difference itself” into the correct

order to remove the unit roots. As a simple illustration, consider the following the DGP where xt may

be I(1):

yt = βxt−1 + u1,t, xt = ρxt−1 + u2,t, |ρ| ≤ 1. (5)

Testing whether β = 0 by estimating this regression directly, is complicated as the limit distribution of

the least squares estimator and the corresponding test changes depending on whether xt is I(1) or I(0).

By adding a redundant lag we can write (5) as

yt = βxt−1 + 0xt−2 + u1,t = βu2,t−1 + βρxt−2 + u1,t, (6)

suggesting that regressing on xt−1 and xt−2 is equivalent to regressing on u2,t−1 and xt−2. Moreover, if

u2,t were observed, we could test β = 0 directly using its regression coefficient. In Appendix A.1 we show

formally that not only the equivalence in (6) continues to hold in the presence of higher order lags as well

as control variables, but also that testing for Granger causality in the lag-augmented regression is in fact

equivalent to testing on the appropriately transformed variables. This, in turn, allows us to retrieve the

asymptotic normality of the least squares estimator regardless of the order of integration, provided that

the lag order p of the VAR and maximum order of integration d are correctly specified.

The main difference compared to the original results of Toda and Yamamoto (1995) is that we only

augment the Granger causing series xt. While this difference is not of importance when K is small, it

opens the door for high-dimensional applications where K is large, and may be even larger than T . As

we cannot estimate such regressions with least squares anymore, we combine lag-augmentation with the

post-double-selection framework of HMS to construct Granger causality tests in high-dimensional models

that are robust to unknown orders of integration. We describe the method in the next section.

Remark 1. For ease of exposition we confine our attention to the study of bivariate Granger causality

relations, conditional on a large information set. At the cost of more involved notation and algebra, our

approach can be extended to Granger causality between multiple variables. In that case, lag augmentation

is needed for all Granger causing variables, which is only feasible if the block of Granger causing variables

is not too large. HMS provide details about this in the stationary setting; the same approach can be

adapted here.

Remark 2. One important aspect of the current framework is that the lag-length p of the VAR is

necessarily larger than, or at least equal to, the suspected maximum order of integration d. It is therefore

important to specify p correctly in practice. We return to this issue in Section 5. One might also

worry that specifying d too high, or having mixed orders of integration among multiple Granger causing
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variables would lead to over-differencing, i.e., moving average unit roots being introduced by differencing

stationary time series (see e.g., Chang and Dickey, 1994). This, however, does not happen here as the

additional lags of the Granger causing and Granger caused variables are used “at convenience”; if they

are not needed because the variables are already stationary, inclusion of these redundant will at most

marginally decrease the power of the test given the small over-specification of the lag length.

Remark 3. Even if the variables in a particular dataset are thought to be at most of order I(1), it

may still pay off to take d = 2. The choice of d = 2 is supported by simulations reported later in

Section 4. It is well known that when one or more roots of the characteristic polynomial are close to

unity, the distribution of the least squares estimator becomes skewed, yielding estimators which tend to

underestimate the true autoregressive parameters (see e.g. Fuller, 2009). This also causes difficulties in

performing inference on these parameters. By augmenting with d = 2 lags, one can avoid any issues

with near unit roots. The simulations reported in Section 4 confirm that in the presence of substantial

autocorrelation beyond the first lag, augmenting with d = 2 lags is an easy way to improve the finite

sample behaviour of the test.

Remark 4. If the I(d) series object of the Granger causality test are also actually cointegrated, then

the lag-augmentation does not serve any purpose as no spurious relation would be estimated (Dolado

and Lütkepohl, 1996). This cause a slight loss in power which however is in practice minimal, as shown

in Section 4. If, however, the series in object are not cointegrated, then the lag-augmentation becomes

paramount to render the series difference-stationary before the estimation and testing. Note that also

all sorts of situations in between are allowed: some variables may be cointegrated, others contain ‘pure’

stochastic trends, and others may be stationary. In fact, in our high-dimensional setup where we apply

the test to a large dataset containing many variables, such mixed properties seem likely.

2.2. Inference after selection by the lasso

Assuming that δ is sparse in the sense that many elements of the vector are equal to zero, one

might consider estimating (4) with a technique that does variable selection such as the lasso, and then

re-estimating the equation including only the selected control variables. However, doing so we run into

the problems with inference after selection (Leeb and Pötscher, 2005), where even if selection is done

consistently, the (diminishing) probability of omitting a relevant variable causes a sufficiently large bias to

prevent uniform convergence of the post-selection least squares estimator to a Gaussian limit distribution.

To circumvent this problem Belloni et al. (2014) introduced the post-double-selection (PDS) method that

not only selects relevant variables on the outcome variable, but also on the treatment variable. This double

selection reduces the probability of admitting relevant variables to such an extent that it does not affect

the asymptotic distribution anymore.
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The PDS framework was used by HMS to develop high-dimensional tests for Granger causality in

sparse VAR models. In this section we show how to adapt the post-double selection framework of HMS

to the unit root non-stationary framework with lag augmentation. In this framework we first perform a

set of initial regressions – to be estimated with variable selection techniques such as the lasso – of the

dependent variable plus the explanatory variables of interest (here the p lags of xt) on all other variables.

To properly account for potential unit roots and avoid spurious regression in these initial regressions, we

need to slightly adapt the setup of HMS.

Let X−p,\{j} denote the matrix X−p from which the j-th column, corresponding to the j-th lag of

xt, has been removed. Let Z−p = (X−p,Y−p,W−p) denote the matrix of all (non-augmented) variables

and Z−p,\{j} = (X−p,\{j},Y−p,W−p). Then we consider the following regressions in the first step:

y = Z−pη0 + u, x−j = Z−p,\{j}ηj + ej , j = 1, . . . , p. (7)

In contrast to HMS, who follow Belloni et al. (2014) by only regressing y and x−j on the controls Y−p

and W−p, we also add all other lags of xt. This is done to avoid that the error terms in (7) contain unit

roots and the regressions become spurious.

Remark 5. Note that in the situation where p = d, there may still be a risk of spurious regression in

the first step. E.g. consider p = d = 1 where the regression of xt−1 on the remaining variables will not

contain any lags (or leads) of xt−1. This yields a spurious regression if xt is a non-cointegrated unit root

process. We therefore recommend to always take p ≥ d+1 in such cases. If this is not desirable, e.g. if the

sample size is too small to sustain such a large p, it is also possible to augment the first-stage regressions

with an additional lag of xt to eliminate the possibility of spurious regression. In the following we work

under the condition that the error terms ej are I(0), thereby implicitly assuming that one of the two

measures suggested above have been taken if needed.

Although the concept is tricky with integrated variables, the coefficients ηj in (7) can be thought of

as best linear predictors. Indeed, as the error terms ej are I(0), these coefficients are ensured to exist

and can be defined as the probability limits of the respective least squares estimators while keeping the

dimension K fixed.

As will be formalized in Assumption 2, we assume that the coefficients ηj are sparse. Let Sj = {m >

p : ηm,j 6= 0}, j = 0, 1, . . . , p, be the sets of active variables in (7).4 Then, we need that the cardinality of

these sets is small; that is, smaller than T and at most growing at a slow rate of T . In fact, the union over

all these sets, S :=
⋃p
j=0 Sj is our set of interest. This set represents all variables needed to control for

when regressing y on X−p, as they either have non-zero coefficients in (2) or are correlated with xt. In

4We exclude the variables corresponding to the lags of xt from Sj as these will always be included in the second stage.
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fact, variables would need to have both properties to cause omitted variable bias if they were not included

in the final regression. By aiming to recover S, we therefore have two opportunities to select relevant

variables, which is sufficient to reduce the probability of missing them to be asymptotically negligible.

Let VS denote the matrix consisting of only those columns of V that corresponds to the selected

variables in S, and δS the corresponding parameter vector. Our goal of the PDS regression is then to

recover the regression

y = X−(p+d)β+ + VSδS + u, (8)

in the second stage, and base inference on this.

To obtain an estimate for the set S, one can use the lasso or any of its relatives that similarly

ensure variable selection. The lasso (see Tibshirani, 1996) simultaneously performs variable selection and

estimation of the parameters in (7) by solving the following minimization problems

η̂0 = arg min
η

(
T−1‖y −Z−pη‖22 + λ‖η‖1

)
,

η̂j = arg min
η

(
T−1

∥∥x−j −Z−p,\{j}η∥∥2

2
+ λ‖η‖1

)
, j = 1, . . . , p,

(9)

where λ is a non-negative tuning parameter determining the strength of the penalty. Here, we follow the

framework of HMS and use the Bayesian information criterion (BIC) in selecting the tuning parameter

coupled with a penalty lower bound ensuring a maximum of selected variables per estimated equation

(see Remark 7 for details). Minimizing an information criterion (IC) in order to determine an appropriate

data-driven λ is one way to deal with dependent data (see HMS for an overview of other methods and

their finite sample behaviors).

The first step of our PDS method is then to estimate each of the regressions in (7) using a penalized

regression technique such as in (9). Let Ŝj = {m > p : η̂m,j 6= 0} represent the corresponding sets of

active variables retained in each of these regressions, and let Ŝ =
⋃p
j=0 Ŝj denote the set of all active

variables. Then we base our inference on the second-stage regression

y = X−(p+d)β+ + VŜδŜ + u, (10)

which may now be treated as if no selection took place, and can simply be estimated by least squares. As

we will show in the next section, the OLS estimator converges uniformly to a normal distribution, which

in turn makes standard tests such as the Wald test or the LM test applicable with their regular limiting

distributions.

Algorithm 1 describes the main steps of our post-double selection lag-augmented (PDS-LA) Granger

causality test implemented through the Lagrange Multiplier (LM) or Wald test.

Remark 6. In Algorithm 1, the choice among Step [5a] or [5b] does not affect the finite sample results

9



Algorithm 1 Post-double selection lag-augmented (PDS-LA) Granger causality test

[1] Estimate the initial partial regressions in (7) by an appropriate sparsity-inducing estimator such
as the (adaptive) lasso, and let η̂0, . . . , η̂p denote the resulting estimators. Collect the selected

variables in the sets Ŝj = {m > p : η̂m,j 6= 0} for j = 0, 1, . . . , p.

[2] Let Ŝ =
⋃p
j=0 Ŝj denote the set of all variables selected in at least one regression at Step [1]. Denote

its cardinality by Ŝ =
∣∣∣Ŝ∣∣∣.

Then, consider one of the following two tests:

PDS-LA-LM

[3] Regress y on V+,Ŝ = (x−(p+1), . . . ,x−(p+1),VŜ) by OLS and obtain the residuals ξ̂.

[4] Regress ξ̂ onto V+,Ŝ plus the Granger causing variablesX−p, retaining the residuals ν̂. Then obtain

R2 = 1− ν̂′ν̂/ξ̂′ξ̂

[5a] Reject H0 if LM = TR2 > qχ2
p
(1− α), where qχ2

p
(1− α) is the 1− α quantile of the χ2 distribution

with p degrees of freedom.

[5b] Reject H0 if

(
T−Ŝ−(p+d)

p

)(
R2

1−R2

)
> qF

p,T−Ŝ−(p+d)
(1 − α), where qFp,T−Ŝ−(p+d)

is the 1 − α quantile

of the F distribution with p and T − Ŝ − (p+ d) degrees of freedom.

PDS-LA-Wald

[3] Regress y on X−p and V+,Ŝ = (x−(p+1), . . . ,x−(p+1),VŜ) by OLS, obtaining β̂p, the estimated
coefficients corresponding to X−p, and the residuals û+.

[4] Reject H0 if Wald = β̂′p

(
V̂arβ̂p

)−1

β̂p > qχ2
p
(1−α), where V̂arβ̂p is the OLS standard error of β̂p.

of the test whenever the sample size T is large enough. The small sample correction in [5b] (see Kiviet,

1986) has a wider practical applicability since [5a] suffers from size distortion in small samples, therefore

in Section 4 we always use [5b] for the Monte-Carlo simulations of the PDS-LA-LM test. Unreported

simulations show that the Wald test performs very similarly to the LM test, if with slightly bigger size

distortions.

Remark 7. The algorithm designed in HMS employs a lower bound on the penalty to ensure that in

each selection regression at most cT terms gets selected, for some 0 < c < 1. Similarly, we also employ

a c = 0.5 lower bound on the selected variables in Algorithm 1. This ensures that in each equation the

lasso does not select too many variables, as this would render the union too large and hence infeasible for

post-least-squares estimation. Our PDS procedure does not require consistent model selection but only

consistency (see Assumption 2(c) below). Mistakes are allowed to occur in the selection: variables might

be incorrectly included as long as the estimator remains sufficiently sparse and consistency is guaranteed.

Note that even with the lower bound it remains possible that the lasso selects sufficiently distinct variables

at every selection step. Should such a case occur where the number of selected variables Ŝ is larger than

10



the sample size, post-OLS would be infeasible. One way to avoid this would be to impose an ad-hoc

increase on the tightness of the bound on the selected variables. Alternatively one could switch to a

sparser estimator, such as the adaptive lasso.

Remark 8. Although it is not necessary for the theory to hold, we advocate to always include the p lags

of yt in the second stage regression. Erroneously omitting them might induce spurious regression, which

is to be avoided. We achieved this by including them without penalty in the first stage regressions, such

that they will be included in the active set by default. Additionally, we do not penalise the lags of xt in

the first-stage regressions, to further reduce the probability of spurious regression and improving finite

sample behaviour.

3. Theoretical Properties

In this section we present the main theoretical result. We show the post-selection, lag-augmented, least

squares estimator β̂p is asymptotically Gaussian uniformly over the parameter space. Therefore, tests

for Granger causality are χ2 distributed. For the PDS-LA method to deliver uniformly valid inference,

a set of assumptions is necessary. Among others, sparsity needs to be assumed on the high-dimensional

vector δ. Also, a restricted (sparse) eigenvalue condition needs to be assumed on the (scaled) Gram

matrix, bounding away its smallest eigenvalue over a subset (cone) of RK . This condition essentially

guarantees that over a sufficiently large subset of the parameter space the Gram matrix is well behaved

and thus invertible. An empirical process bound is also required. This states that the (scaled) process

Z ′−pu uniformly concentrates around zero.

These conditions are standard in the literature to prove the consistency of the lasso. However, when

nonstationary processes are considered, more refined results are required. In particular, scaling becomes

more complicated as time series of different orders need to be scaled with different rates. In addition,

when time series are cointegrated, we first need to separate the stochastic trends from the stationary

components before the appropriate scaling can be applied.

For example, suppose that zt can be written as the cointegrated system

∆zt = AB′zt−1 + ut,

where ut is I(0) and A and B are n×r matrices with r < n. Then define st = ztQ where Q = (B,A⊥)′.

Then we can write

∆st = QAB′Q−1st−1 +Qut =

B′α 0

0 0

 st−1 +Qut.

Now the first r variables in st are I(0), while the remaining ones are I(1). Further details on constructing

such a matrix Q can be found in, e.g., Lütkepohl (2005, Chapter 7).
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Given the existence of such a matrixQ, we can without loss of generality assume that we may partition

st as st = (s0,t, s1,t, s2,t)
′, where si,t contains the I(i) variables. We then consider a scaling matrix

DT :=


T 1/2In0

0 0

0 T−1In1 0

0 0 T−2In2

 , (11)

where ni corresponds to the number of I(i) variables in st. Finally, we let GT := QDT as the final

‘scaling and rotation’ matrix.

Assumption 2. Let δT and ∆T denote sequences such that δT ,∆T → 0 as T →∞. For DT as defined in

(11), assume there exists a Kp×Kp matrix GT,Z = QDT conformably with Z−p such that the following

holds:

(a) Deviation Bound: With probability at least 1 −∆T we have that the empirical process satisfes∥∥G−1′
T Z ′−pu

∥∥
∞ ≤ γ̄T , for the deterministic sequence γ̄T .

(b) Boundedness: Let β in (2) be in the interior of a compact parameter space B ⊂ RK .

(c) Consistency: With probability 1−∆T , the following error bounds for ηj and η̂j , defined in (7) and

(9), holds:

‖Z−p (η̂0 − η0)‖22 ≤ δ
2
TT

1/2, ‖η̂0 − η0‖∞ ≤ δTT
−1/4,∥∥Z−p,\{j} (η̂j − ηj)

∥∥2

2
≤ δ2

TT
1/2 j = 1, . . . , p,

(d) Sparsity: Let s = |S| and Ŝ =
∣∣∣Ŝ∣∣∣ denote the number of active variables in population and sample,

respectively. Then with probability at least 1−∆T , we have that max(s, Ŝ) ≤ s̄T for the deterministic

sequence s̄T .

(e) Restricted Sparse Eigenvalues: For any η ∈ RKp with ‖η‖ ≤ s̄T , we have with probability at

least 1−∆T

‖η‖1 ≤
√
s̄T

∥∥∥Z−pG−1
T,Zη

∥∥∥
2
/κT,min,

for the deterministic sequence κT,min > 0.

(f) Rate Conditions: the deterministic sequences bounding sparsity (s̄T ), thickness of empirical process

tails (γ̄T ) and minimum eigenvalue (κT,min) must satisfy

T
s̄T γ̄T
κT,min

≤ δT . (12)

Condition (a) bounds the empirical process with high probability. Such deviation bounds for non-

stationary time series can be found in, among others, Smeekes and Wijler (2021, Lemma A.3), Mei and Shi
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(2022, Proposition 1) and Wijler (2022, Lemma 2). Condition (b) is standard and assumes compactness

of the parameter space of the vector β which in turn implies the boundedness.

Condition (c) supposes consistency of the first-stage estimator. Consistency is thereby established

using an error bound or oracle inequality. Such inequality gives the rate of convergence of the estimator

as a function of the tuning parameter λ, the deviation bound, the cardinality s of the active set and

the restricted (sparse) eigenvalue. As such, this condition is intimately related to (a), (d) and (e). For

stationary time series many results exist under a variety of settings; see e.g. Masini et al. (2022, Theorem

1) for VAR models or Adamek et al. (2022, Corollary 1) for general time series models. Nonstationary

time series are treated in Smeekes and Wijler (2021, Theorem 2), Mei and Shi (2022, Theorem 1 and 2)

and Wijler (2022, Theorem 2).

Condition (d) requires sparsity of the population parameters and the estimator. Sparsity of the

first-stage estimator is needed in our framework as we perform OLS on the selected variables from the

first-stage regressions. If the selected variables are not sparse enough, too many variables will be selected

for OLS to be feasible. For simplicity we work under the assumption of exact sparsity; however, at the

expense of more complicated notation and proofs this can be relaxed to approximate sparsity following

Belloni et al. (2014), where it is assumed hat the exact sparse model is a (good) approximation to the

true DGP, or weak sparsity following Adamek et al. (2022), where many non-zero but small coefficients

are allowed.

Condition (e) requires that for sufficiently sparse vectors, the eigenvalues of the subset of the Gram

matrix corresponding to their nonzero support do not decrease to zero too fast. While this is a standard

(and easily verifiable) assumption for stationary time series (see e.g., Adamek et al., 2022, Lemma A.3

and A.5 and Masini et al., 2022, Lemma 3 and Proposition 2), time series with unit roots require more

care. Indeed, Smeekes and Wijler (2021, Theorem B.2), Mei and Shi (2022, Lemma 2) and Wijler (2022,

Theorem 1) show for unit root regressors that the standard rate of T−2 coming from the DT scaling

still results in at least a factor of s̄−1
T in κT,min. As we allow κT,min to depend on the sample size, this

can be accommodated, as long as the interplay of the rates in condition (f) is satisfied. This condition

links the sparsity s̄T , the tails thickness of the empirical process γ̄T and the minimum eigenvalue κT,min.

The exact rates allowed for are a compromise between the number of moments existing, strength of the

dependence, growth rate of the dimension K and sparsity of the parameters.5

We can now state our first, and main, theoretical result. This establishes that the first stage regressions

allow for sufficiently accurate variable selection and estimation such that the second stage is not affected

by the variable selection performed.

Theorem 1. Let β̂p denote the OLS estimator of the first p elements of β+ (equal to β) in (10), and β̃p

5For an illustration of the complexities of these relations, we refer to Figure C.1 in Adamek et al. (2022) which visualises
the feasible combinations with regards to lasso consistency.
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the corresponding estimator in (8). Then uniformly over a parameter space B for which Assumptions 1

and 2 holds for all elements in B, we have that

√
T (β̂+ − β) =

√
T (β̃+ − β) + op(1).

Theorem 1 establishes the asymptotic equivalence of the estimator in the feasible second-stage regres-

sion (10) based on the estimated active set Ŝ, and the estimator in the infeasible second-stage regression

(10) based on the true, unobserved, active set S. Note that the equivalence is only established for the

estimators of the coefficients of the lags of the Granger causing variable –minus the augmented lags–

this is however all that is needed to establish the validity of that Granger causality tests. Before stating

this second result, we need another assumption on the asymptotic behaviour of the relevant variables.

For a finite number of relevant variables, this Assumption follows directly from well-known results in the

unit root and cointegration literature; see Appendix B. We state the assumption more generally to also

accommodate an increasing number of relevant variables.

Assumption 3. Let {st}Tt=1 denote an n-dimensional process, where n = nT may increase with T . Let

n0, n1 and n2 denote integers such that n = n0 +n1 +n2 and partition st = (s0,t, s1,t, s2,t)
′ comfortably

with (n0, n1, n2), and assume that E[stut] = 0 for all t = 1, . . . , T . Define

DT :=


T 1/2In0

0 0

0 T−1In1
0

0 0 T−2In2

 =:


DT,0 0 0

0 DT,1 0

0 0 DT,2,


and let ∆T denote a deterministic sequence such that ∆T → 0 as T → ∞. Then assume that with

probability 1−∆T the following statements hold jointly:

(a)
∥∥∥D−1

T,i

∑T
t=1 si,ts

′
j,tD

−1
T,j

∥∥∥
2
≤ φT,ij for i, j = 0, 1, 2 and i < j;

(b) λmin

(
D−1
T,0

∑T
t=1 s0,ts

′
0,tD

−1
T,i0

)
≥ κT,0 and λmin

(
D−1
T,−0

∑T
t=1 s−0,ts

′
−0,tD

−1
T,−0

)
≥ κT,12, where

s−0,t = (s′1,t, s
′
2,t)
′ and Dt,−0 = diag(DT,1,DT,2);

(c)
∥∥∥D−1

T,i

∑T
t=1 si,tut

∥∥∥
2
≤ γT,u,i for i = 0, 1, 2;

(d)
∥∥∥T−1

∑T
t=1

[
s0,ts

′
0,t − E

(
s0,ts

′
0,t

)]∥∥∥
2
≤ δT ;

where δT → 0 as T →∞ and the following holds regarding the rates:

(i) κT,12 − (φ2
T,01 + φ2

T,02)/κT,0 ≥ κT,−0;

(ii) φT,01 + φT,02 + 2(φ2
T,01 + φ2

T,02)/κT,0 ≤ φT,−0;

(iii) γT,u,1 + γT,u,2 + (φT,01 + φT,02)γT,u,0/κT,0 ≤ γT,u;

(iv) φT,−0(φT,−0 + γT,u)/κT,−0 ≤ δT .
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In addition, let Rm denote a deterministic m × n0 matrix where m < ∞ is not depending on T . Then

we have that

T−1/2
T∑
t=1

Rms0,tut
d−→ N(0,Ω),

where Ω = limT→∞ T−1RmE(s0,tutu
′
ts
′
0,t)R

′
m = σ2

uRmE(s0,ts
′
0,t)R

′
m.

We verify this assumption in Appendix B for a finite number of relevant variables (measured through

s). One way to extend the result to a growing number of variables would be through a Gaussian approx-

imation theorem; such an approach is considered in, e.g., Zhang et al. (2019, Remark 3.4) and Smeekes

and Wijler (2021, Theorem B.3). This is a relatively crude approach that puts significant limitations

on the allowed growth rate of s. However, as the growth rate of s is anyway only allowed to be limited

compared to the sample size T , such an approach would be feasible here without imposing strong addi-

tional restrictions (unlike in the general case such as for establishing a result like the deviation bound

2(a) where it would significantly restrict the allowed growth rate of K). With this assumption in place

we can now state our second theoretical result, which establishes the limit distribution of the Granger

causality tests.

Theorem 2. Let Wald and LM be as defined in Algorithm 1. Assume that Assumptions holds for

st = QSv+,S,t, where v+,S,t = (xt−p−1, . . . , xt−p−d,vS,t). Then, uniformly over a parameter space B on

which Assumptions 1 and 2 holds for all elements in B, we have that

LM,Wald
d−→ χ2

p, as T →∞,

under the null hypothesis that β = 0.

The proofs of Theorem 1 and 2 are reported in Appendix A.2.

Remark 9. Though we focus on homoskedastic error terms for simplicity, heteroskedasticity-robust

versions of the test can easily be constructed and shown to be valid, as this would only affect the low-

dimensional part of our results in Theorem 2. Standard techniques can therefore be used for constructing

heteroskedasticity-robust tests: for the Wald test, the OLS standard errors can be replaced by Eicker-

White standard errors, while the LM test can be modified as in Wooldridge (1987). We refer to HMS,

Algorithm 2 for a full treatment.

4. Monte-Carlo Simulations

We now evaluate the finite-sample performance of our proposed PDS-LA-LM Granger causality test.

We consider the following Data Generating Processes (DGPs) in first differences inspired by Kock and
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Callot (2015):

DGP1: ∆zt =



0.5 0 . . . 0

0 0.5 . . . 0

...
...

. . .
...

0 0 . . . 0.5


∆zt−1 + ut,

DGP2: ∆zt =



(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

...
. . .

...

(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1


∆zt−1 + ut,

with a = 0.3. The diagonal VAR(1) for DGP1 allows the sparsity assumption to be met. Instead,

for DGP2 the coefficients decrease with exponential pace departing from the main diagonal and hence

although the farthest coefficients are small, the exact sparsity assumption is not met. We report simu-

lations for Granger causality tests from the first variable to the second variable. Therefore, also when

integrated out to nonstationary, DGP1 automatically satisfies the null of no Granger causality from unit

2 to 1, however DGP2 does not. Therefore, for the power analysis of both DGP1 and DGP2 we set the

coefficient in position (2, 1) equal to 0.2. We set the same coefficient equal to zero for DGP2 for the size

analysis.

Simulations are reported for different types of covariance matrices of the error terms. We employ a

Toepliz-version for calculating the covariance matrix as Σi,j = ρ|i−j|, where (i, j) refer to row i, column

j of the matrix Σu. We cover two scenarios of correlation: ρ = (0, 0.7).

The lag length is fixed to p = 2, while we employ a double (d = 2) augmentation of the dependent

and the Granger causing variable. Having p ≥ 2 guarantees that no spurious results occur in the selection

steps. Following the recommendation in HMS, we employ the BIC in selecting the tuning parameter λ

for the lasso.

Table 1 reports the size and power of the PDS-LA-LM test out of 1000 replications. We use different

combinations of time series length T = (50, 100, 200, 500, 1000) and number of variables in the system

K = (10, 20, 50, 100). All the rejection frequencies are reported using a burn-in period of fifty observations.

Our PDS-LA-LM test shows good performance in terms of size and (unadjusted) power for all DGPs

considered. The setting of no correlation is handled remarkably well by all DGPs and only moderate size

distortion is visible in large systems for small samples. Whenever high correlation of errors is present,

sizes are still in the vicinity of 5% for DGP1 where the sparsity assumption is met. However, we notice

how for DGP2, for which the sparsity assumption is not met, some residual size distortion remains visible

even in large systems. However, the power of the test is always increasing with the sample size T for all

the considered cases.

16



Remark 10. As mentioned in Remark 7, in order to obtain the results for the size and power when

T ≤ Kp we need to impose a lower bound on the lasso penalty λ which guarantees to select at most c T

variables in each relevant equation of the VAR, for some 0 < c < 1. The bound should be set as strict as

the system requires and often there is not a universal constant c that works in all settings, therefore this

choice needs to be adaptive. For instance, if the lag length is p = 2, this implies 3 selection steps plus

d augmented lags of Granger causing variables to be added. In some cases this might lead to too many

variables being selected in order to perform least squares in the second step. In these cases we tighten

the bound using either c = 0.33 or c = 0.25.

Table 1: Simulation results for the PDS-LA-LM Granger causality test

T 50 100 200 500 1000 50 100 200 500 1000

DGP ρ K Size Power

1 0 10 10.4 7.2 5.5 4.2 5.5 23.3 41.0 74.2 99.4 100
20 12.5 9.5 7.3 6.3 5.9 19.7 40.1 74.6 99.5 100
50 10.7 7.1 7.2 5.4 4.7 17.7 38.9 66.5 99.2 100

100 9.9 8.4 6.8 6.1 5.3 16.0 34.1 68.1 98.5 100

2 10 9.0 6.2 4.7 4.2 5.4 19.7 36.0 69.3 99.2 100
20 13.3 8.1 5.6 5.5 6.1 17.3 36.9 69.4 98.5 100
50 8.6 7.3 6.9 5.9 4.7 18.2 34.4 63.9 98.8 100

100 8.6 8.2 7.5 6.4 5.4 13.9 31.4 62.4 98.0 100

1 .7 10 13.6 9.4 6.2 5.0 5.5 20.9 20.9 44.1 87.5 99.3
20 12.8 11.4 9.1 6.2 5.8 17.8 23.7 41.2 84.9 99.4
50 11.7 9.6 10.3 7.2 5.2 15.5 22.6 39.8 80.5 99.2

100 12.6 12.4 7.2 10.1 6.3 13.3 22.2 37.6 72.7 98.7

2 10 12.1 9.0 6.0 4.8 6.1 17.3 19.7 40.1 84.1 98.3
20 12.4 8.8 8.0 6.4 5.9 15.9 19.9 39.0 81.6 98.8
50 11.7 9.6 9.3 7.4 5.6 14.6 19.4 34.0 74.9 98.2

100 11.1 10.1 9.1 9.5 5.7 12.8 21.0 33.3 66.0 97.9

Notes: Size and Power for the different DGPs are reported for 1000 replications. T = (50, 100, 200, 500)
is the time series length, K = (10, 20, 50, 100) the number of variables in the system, the lag length is
fixed to p = 2 and BIC is used to select the tuninig parameter for the lasso. ρ indicates the correlation
employed to simulate the time series with the Toeplitz covariance matrix.

5. Lag Length Selection

Up until this point, we considered the lag length p as given. In reality, this is typically not the

case. In this section we propose a simple, data-driven method to estimate p. Standard techniques for

tuning the lag length such as information criteria or sequential testing fail when applied directly to the

high-dimensional VAR. The standard approach with penalized regression methods would be to set p

as a generous upper bound, and let the method decide which lags are needed. This however provides

complications for our approach as a large p means many first-stage regressions need to be done, with the

potential of selecting too many variables. On top of that, we need to augment the second stage with d

additional lags.

It is therefore important for our approach to have a reasonable data-driven selection of the lag length.

We are essentially looking for an ‘informative upper bound’ on the lag length; while mild over-specification
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is not a problem, under-specification breaks the lag augmentation, and must be avoided. We therefore

base selection on univariate autoregressions for all time series in our dataset, and applying an information

criterion to those. This approach is motivated through the final equations representation of a VAR model,

which implies that a VAR(p) with K variables generates individual ARMA models with maximal orders

(Kp, (K − 1)p). As such, lag length selection based on individual autoregressions is likely to yield lag

lengths larger than p (Zellner and Palm, 1974, Cubadda et al., 2009). On the other hand, (Cubadda

et al., 2009) observed that individual autoregressions often need much smaller lag lengths than the large

orders implied by the final equations representation, thus making it plausible that the orders found are

not overly conservative.

We implement this method as follows. First, we estimate the autoregressions

zi,t =

p∑
j=1

γj,pzi,t−j + εi,p,t, i = 1, . . . ,K,

by OLS. Then, letting ω̂i = 1
T

∑T
t=1 ε̂

2
i,p,t, we set Ω̂p = diag(ω̂1, . . . , ω̂K) and choose the p that minimizes

IC∗(p) = ln
(

det Ω̂p

)
+ CT

pK

T
=

N∑
i=1

log ω̂i + CT
pK

T
,

where CT takes the standard values for well-known information criteria, e.g. CT = lnT yields BIC∗,

while CT = 2 yields AIC∗. Note that next to the dimensionality reduction offered by running individual

autoregressions instead of a VAR, further reduction is achieved by letting Ω̂ be diagonal.

We investigate the performance of this method in a small simulation study. We simulate VAR

models using DGP2 with ρ = 0 as in Section 4 for the combinations of K = (10, 20, 50, 100) and

T = (50, 100, 200, 500, 1000).6 Knowing the true value of p = 2, we apply the model selection proce-

dure on a grid of 10 values for p.

We show the results in Figure 1 for AIC∗ and BIC∗. Both criteria succeed in barely ever underes-

timating the lag length. Moreover, BIC is quite accurate, only overestimating the lag length by more

than one when T = 1000, where larger values of p are not problematic. AIC is more liberal but still

performs well in smaller samples, where it matters most. This simple way of selecting lag lengths there-

fore works remarkably well in finite examples, and is therefore recommended in combination with the

PDS-LA method.

6We investigated DGP1 and ρ = 0.7 as well. The method showed similar or better performance there. Results are
available on request.
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Figure 1: Lag length selection frequencies for AIC∗ and BIC∗

6. Empirical Application: Causes and Effects of Economic Uncertainty

The role of economic uncertainty is a hot topic in macroeconomics. In particular, whether economic

uncertainty should be seen as an exogenous shock, causing economic conditions such as business cycle

fluctuations, or an endogenous response to economic fundamentals is much debated (Ludvigson et al.,

2021). A complicating issue is that there is no universal definition or measurement of uncertainty. In this

application we address both issues: we investigate whether uncertainty (Granger) causes or is caused by

other variables in the economy, and whether different measurements contain the same information.

Since the seminal paper of Bloom (2009) economic uncertainty has been at the forefront of macroe-

conomic debate. Bloom (2009) constructed a measure of uncertainty from the Chicago Board Options

Exchange (CBOE) S&P 100 Volatility Index (VXO), arguing that stock market volatility expectations

are a good proxy for overall economic uncertainty. The FRED-MD dataset of McCracken and Ng (2016)

has introduced the series VXOCLSx in its September 2015 vintage. This series is constructed by splicing

a synthetic historical VXO series obtained from Nicholas Bloom’s website and VXOCLS from FRED.7

An alternative very popular measure of uncertainty was proposed by Baker et al. (2016), who con-

structed the Economic Policy Uncertainty (EPU) index based on newspaper coverage frequency. That

is, it accounts for the frequency with which certain strings of keywords related to economic uncertainty

appear in the 10 leading U.S. newspapers. FRED issues a Global Economic Policy Uncertainty Index

(GEPUCURRENT) which is a GDP-weighted average of national EPU indices for 20 countries. How-

7In its December 2021 vintage, FRED-MD removed VXOCLSx and replaced it with VIXCLSx as the former has been
discontinued from the source. VIX is a similar measure of implied volatility based on the S&P 500. While I made analysis
focus on a pre-Covid vintage incorporating VXOCLSx, in Appendix C We extend our analysis to a recent post-Covid vintage
with VIXCLSx included.
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ever, FRED-MD does not contain any EPU uncertainty index. This naturally raises the question whether

EPU can serve as a better measure of economic uncertainty within FRED-MD or VXOCLSx is “good

enough”. If EPU and VXOCLSx measure the same content, one would expect that adding EPU to FRED-

MD would not lead to much predictive power for EPU if VXOCLSx is accounted for in the information

set.

Our PDS-LA method can thus be used in this context with a twofold purpose. First, by estimat-

ing Granger causal relationships between FRED macroeconomic variables and the uncertainty index and

counting the significant number of outgoing (index→FRED) and incoming (FRED→index) links, we con-

tribute in the understanding of whether such indexes are respectively exogenous sources of business cycle

(index→FRED) or rather endogenous responses to economic fundamentals (FRED→index). Second, by

investigating the links between a second index (EPU) and the FRED variables conditional on VXOCLSx

in the dataset, we can investigate whether EPU measures information not in VXOCLSx.

In our analysis we are particularly going to pay attention to the effect of how to treat potential

nonstationarity in the data. The FRED-MD dataset comes with a detailed appendix (McCracken and

Ng, 2016) and Matlab/R routines which allow not only to clean the data from missing values and outliers,

but also to take the appropriate transformations to render all the time series stationary. This presents

the practitioner with an easy and popular solution to deal with non-stationarity, however there are two

potential issues with this approach. First, not every time series can be clearly categorized regarding

the order of integration, and there are several variables for which a case can be made for two different

orders. Indeed, as illustrated by Smeekes and Wijler (2020) and Smeekes and Wilms (2020), unit root

tests may give ambiguous results and depending on the type of test employed, a different classification

may arise. Second, even with a correct classification, differenced time series lose long-run information

on any cointegrating relations, which may change the Granger causal relations. Our method provides an

alternative way of performing the tests directly on the levels of the data, thereby avoiding the issue of

transformations altogether.8.

For the Economic Policy Uncertainty index we gather the data directly from Baker et al. (2016).9

Specifically, we use the three component index which combines (i) news coverage about policy-related

economic uncertainty, (ii) tax code expiration data and (iii) economic forecaster disagreement.10 For

details on how the index is computed we refer to the given reference. As the EPU index is only available

starting January 1985, we accordingly use the FRED-MD data from January 1985. We split the analysis

considering two different endpoints of the sample. First we consider the series until November 2019,

thus intentionally excluding from the sample both the Covid pandemic and the war in Ukraine, but

8To run these analyses we used the authors R package HDGCvar available at https://github.com/Marga8/HDGCvar
9The data is freely available on the website of Scott R. Baker, Nick Bloom and Steven J. Davis at https://www.

policyuncertainty.com/index.html.
10We also repeated the analysis using the News-based Policy Uncertainty index as described in Baker et al. (2016) but

the results are nearly identical to those reported here.
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Figure 2: PDS-LA-LM, Causes of VXOCLSx, α = 0.01
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Figure 3: PDS-LA-LM, Caused by VXOCLSx, α = 0.01

including the 2008 financial crisis. This makes for a total of 117 variables (when EPU is included)

and 419 observations. In Appendix C we extend the analysis to a recent vintage which includes the

aforementioned crises and spans until September 2022.

First, we do not add yet US-EPU to the information set and in Figure 2 and 3 we instead just

investigate the predictive relations to and from VXOCLSx with all the macroeconomic series of FRED-

MD using PDS-LA-LM.

At significance level α = 0.01, eight macroeconomic series are found to Granger cause VXOCLSx

while the other way around VXOCLSx Granger-causes 41 macroeconomic series. Before adding US-EPU

to the dataset and investigate the changes, we repeat the analysis, this time applying the recommended

stationary transformations (ST) from FRED-MD and we use the PDS-LM test of HMS instead of PDS-

LA-LM to investigate the same relations.

The difference between Figure 2, 3 and Figure 4, 5 is quite striking, especially for the case VXOCLSx→FRED.

In fact, the number of significant connections drops dramatically from 39 to just two and some differences

can be found in the connections for the FRED→VXOCLSx too. To zoom in on the connections and the

difference between the lag-augmented (LA) and stationary transformed (ST) cases, in Figure 6 we loosen

the p-value threshold up to 10% and group the variables by their FRED-MD sector classification. The

bars now indicate the p-values of the test, with a full bar equaling a p-value of 0, and an empty bar

indicating a p-value above 10%.

The results again suggest how stationary transforming variables can have a profound impact on the

inference performed, leading to very different pictures of Granger causality. It is particularly noticeable

that sectors thought to be highly affected by uncertainty, such as the Output sector, barely has any

significant connections left when testing for Granger causality from VXOCLSx. Similarly, the absence of
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Figure 4: PDS-LM, Causes of VXOCLSx, α = 0.01
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Figure 5: PDS-LM, Caused by VXOCLSx, α = 0.01
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Figure 6: p-values for lag-augmented (LA) and stationary transformed (ST) Granger causality tests between FRED-MD
and VXOCLSx. Full bars equal a p-value of 0, empty bars a p-value above 10%
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Figure 7: PDS-LA-LM, Causes of US-EPU, α = 0.01
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Figure 8: PDS-LA-LM, Caused by US-EPU, α = 0.01

causality from the Stocks category to VXOCLSx is surprising, given the latter’s construction.

Next we add US-EPU to the dataset and again repeat the analysis where now the focus is connections

from and to US-EPU with all the macroeconomic series of FRED-MD using PDS-LA-LM. Importantly,

now the results will be conditioned on VXOCLSx which remains in the information set.

In Figure 7 we only find five connections when it come to Granger causality relations from FRED-

MD series to US-EPU. Vice-versa, in Figure 8 there are 13 causal paths from US-EPU to the other

macroeconomic series. The results are quantitatively similar to FRED↔VXOCLSx in Figure 2, 3, though

less pronounced. Both US-EPU and VXOCLSx are Granger caused by the S&P500 and S&P:indust but

the remaining connections are not equal. Importantly, VXOCLSx is found to be Granger causal for US-

EPU. Given the network US-EPU→FRED is conditional on VXOCLSx, the non-overlapping connections

found in Figure 8 that are not occurring in Figure 3 are new connections that could make US-EPU

an interesting uncertainty index to add to FRED-MD. A cross-check reveals that only UMCSENTx is

new, all others connections were already uncovered using VXOCLSx. This would seem to give credit to

FRED-MD in using VXOCLSx as main index of economic uncertainty without the need to further include

US-EPU. On the other hand, finding the connections from US-EPU despite the presence of VXOCLSx

in the information set, indicates that US-EPU may still add additional predictive information about

the variables predictable by VXOCLSx, suggesting that could still be worth including in an empirical

analysis.

As before, in Figure 9, 10 we repeat the analysis, this time around however we apply the recom-

mended stationary transformations (ST) from FRED-MD and we use Hecq et al. (2021) PDS-LM test

to investigate the same relations. Again, a decrease in the number of connections in both directions is

evident from the network results. In Figure 11 we again zoom in on the p-values and group the results
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Figure 9: PDS-LM, Causes of US-EPU, α = 0.01
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Figure 10: PDS-LM, Caused by US-EPU, α = 0.01

by sector. The red bar refers to the VXOCLSx series which is found to be Granger causal for EPU in the

analysis in levels. Interestingly, we find the opposite result with stationary transformed setting. Again,

the differences in the relations found indicate that transforming variables to stationarity may delete useful

information about predictability.

Our analysis suggests that uncertainty accompanying a wide variety of global events, if measured

in terms of expected volatility on the financial market, is primarily a cause rather than an effect of

variations in the economic activity. This is in line with the recent work of Ludvigson et al. (2021) who

finds uncertainty about financial markets to be a source of output fluctuations. In addition, there were

different measures of uncertainty clearly related, it may still be beneficial in empirical applications to

consider multiple measurements.

7. Conclusion

We propose an inferential procedure for Granger causality testing in high-dimensional non-stationary

VAR models which avoids any knowledge or pre-tests about integration or cointegration in the data. To

do so we adapt the Toda and Yamamoto (1995) approach of augmenting the lag length of the system and

we show that by reducing this augmentation to only the variables of interest for the test, we are able to

minimize parameter proliferation in high dimensions. We develop a post-double selection LM test which

is based on penalized least squares estimators to partial-out those variables having no influence on the

variables tested on while safeguarding from omitted variable bias using a double-selection mechanism.

We prove that the augmentation of the Granger causing variables has no effect on the null hypoth-

esis tested, yet provides an automatic differencing mechanism letting the OLS estimator have standard

asymptotic results. Also, we extend the relevant assumptions needed for the post-double selection esti-
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Figure 11: p-values for lag-augmented (LA) and stationary transformed (ST) Granger causality tests between FRED-MD
and US-EPU. Full bars equal a p-value of 0, empty bars a p-value above 10%

mator to work in the context of potentially unit roots. We derive the asymptotics of the post-selection

augmented estimator, showing it attains standard asymptotic normality hence allowing for a valid test

with standard χ2 limiting distribution.

Our proposed test shows good finite sample properties over different DGPs. We also give practical

recommendations on both the optimal augmentation d and on how to estimate the lag-length p. We

argue that d = 2 lags is the optimal augmentation in order to take into account possible I(2) as well as

near I(2) variables that could compromise the size of the test. In order to estimate the lag length p we

propose to reduce the original VAR to a diagonal VAR. This reduces the high-dimensional system to a

sequence of low-dimensional autoregressions, to which ab information criteria is applied in order to select

the correct lag length.

Finally, we investigate how our test performs in practice by analysing the causes and effects of eco-

nomic uncertainty. Using the FRED-MD dataset directly, without needing to apply their recommended

stationary transformations, we compare two different ways of measuring economic uncertainty (VXO and

EPU) and their relationship with all macroeconomic variables within the dataset. We also compare the

analysis with the stationary transformation case, highlighting how such transformation can profoundly

impact the results and give a very different picture of the causal structure. Our results suggest that

uncertainty is primarily a cause rather than an effect of variations in the economic activity.
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A. Main Theoretical Results

A.1. Justification of Lag-Augmentation

By adding a “free” lag of xt, we in essence allow the system to “difference itself” into the correct order

to remove the unit roots. We will now make this argument more precise using some algebra manipulations

similar to Toda and Yamamoto (1995). We will focus on the bivariate case, but give some pointers where

needed to extend the approach to multiple variables of interest. In the following, we will generally focus

on the case where d ≤ 2. While one can allow for higher orders d in the estimation procedure, this would

typically not be required for most economic applications of interest, where it is commonly accepted

that the maximum order of integration of economic data hardly ever exceeds 2. Hence, we confine our

presentation up to the case of I(2) series.

Let us introduce the following (p+ d)× (p+ d) upper-triangular transformation matrices:

R =



1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

...
...

...
. . .

...

0 0 0 · · · 1


, Pd = Rd =



1 2 3 · · · p+ d

0 1 2 · · · p+ d− 1

0 0 1 · · · p+ d− 2

...
...

...
. . .

...

0 0 0 0 · · · 1


.

Pd can be considered as an “integration matrix” which integrates the vector it is multiplied with to order

d. Similarly, we can consider the inverse matrix P−1
d as a difference matrix, which takes differences d

times. Now define the transformed data and parameters

β∗+
δ

 =

Pd 0

0 Ip(K−1)


β+

δ2

 ,
X∗−(p+d)

V

 =

X−(p+d)

V


Pd 0

0 Ip(K−1)


−1

. (A.1)

Then we can rewrite 4 as

y = X−(p+d)P
−1
d Pdβ+ + V P−1

d Pdδ + u,=

= X∗−(p+d)β
∗
+ + V δ + u.

(A.2)

X∗−(p+d) = P−1
d X−(p+d) now contains d-th order differences for the first p entries, which are I(0) if the

original data are I(d). Furthermore, performing the test of whether the first p elements of β+ are zero

has a one-to-one correspondence to a test on the first p elements of β∗+. This then allows us to transform

the test of Granger non-causality on I(d) into an equivalent test on I(0) data, thus leading to a test with

a standard limit distribution regardless of the order of integration of the data.

We will now show that the null hypothesis of Granger non-causality in (A.2) has a one-to-one corre-

spondence to a test on the first p elements of β∗+, denoted as β∗p.
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Lemma A.1. Consider testing (3) in (2). This is equivalent to testing

H0 : β∗p = 0 against H1 : β∗p 6= 0 (A.3)

in (A.2)

Proof of Lemma A.1. Define the selection matrix M =

 Ip 0p×d

0d×p 0d×d

. Let Rp×p denote the upper left

×p block of R, and note that

MPd = MRd =

Rp×p 0p×d

0d×p 0d×d


d

= (MR)d.

Therefore, we can write

 β∗p

0d×1

 = Mβ∗+ = MPdβ+ = (MR)dβ+ =

Rd
p×pβ

0d×1.

 (A.4)

As Rp×p is invertible, it follows that the test of βp = 0 if and only if β∗p = Rp×p0 = 0.

The following examples clarify how the lag augmentation allows the interest variables to be re-

expressed as difference-stationary. Let p = d = 1 and let x∗t be a row of X∗−(p+d). Then

R = P1 =

1 1

0 1

 ; P−1
1 =

1 −1

0 1

 ; P−1
1 x∗

′

t =

1 −1

0 1


xt−1

xt−2

 =

∆xt−1

xt−2

 .
For p = 2, d = 1 we get

R = P1 =


1 1 1

0 1 1

0 0 1

 ; P−1
1 =


1 −1 0

0 1 −1

0 0 1

 ; P−1
1 y∗

′

t =


1 −1 0

0 1 −1

0 0 1



xt−1

xt−2

xt−3

 =


∆xt−1

∆xt−2

xt−3

 .
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As a final example, let p = d = 2:

R =



1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1


; P2 = RR =



1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1


; P−1

2 =



1 −2 1 0

0 1 −2 1

0 0 1 −2

0 0 0 1


;

P−1
2 x∗

′

t =



1 −2 1 0

0 1 −2 1

0 0 1 −2

0 0 0 1





xt−1

xt−2

xt−3

xt−4


=



∆2xt−1

∆2xt−2

xt−3 − 2xt−4

xt−4


.

We now show the numerical equivalence of the Wald and LM test statistic for testing (3) in 4 and

(A.3) in (A.2). Let WS denote a subset S of the columns of W−p. In the low-dimensional case S may

simply contain all columns of W−p, whereas in the high-dimensional case S is determined through some

sort of (double) selection procedure. Let VS = (Y−p,WS) and δS = (δ1, δ2,S). Let the coefficients of the

regression

Y = X−(p+d)β+ + VSδS + u (A.5)

be denoted as (β̂′+, δ̂
′
S)′ and the coefficients of the regression

Y = X∗−(p+d)β
∗
+ + VSδS + u (A.6)

be denoted as (β̂∗′+ , δ̂
∗′
S )′.

Lemma A.2. Let β̂p denote the first p elements of β̂+, the OLS estimator of β+ in (A.5), and β̂∗p denote

the first p elements of β̂∗+, the OLS estimator of β∗+ in (A.6). Also define

û+ = y −X−(p+d)β̂+ − VS δ̂S û∗+ = y −X∗−(p+d)β̂
∗
+ − VS δ̂∗S

as the corresponding residuals. Then consider the Wald and LM statistics as defined in Algorithm 1

(with the generic set S replacing Ŝ). Then β̂∗p = Rd
p×pβ̂p, Wald = Wald∗ and LM = LM∗.

Proof of Lemma A.2. Define the residual-maker M(X) := I −X(X ′X)−1X ′. Then

 β̂∗p

0d×1

 = Mβ̂∗+ = M
(
X∗′−(p+d)M(VS)X∗−(p+d)

)−1

X∗′−(p+d)M(VS)y

= MPd

(
X ′−(p+d)M(VS)X−(p+d)

)−1

X ′−(p+d)M(VS)y = MPdβ̂+ =

Rd
p×pβ̂p

0d×1

 ,
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It therefore follows that β̂∗p = Rd
p×pβ̂p.

Next, let Z+ := (X−(p+d),VS) and Z∗+ := (X∗−(p+d),VS), and define

P ∗d =

 Pd 0(p+d)×(K−1)p

0(K−1)p×(p+d) I(K−1)p

 .

It then follows directly that Z∗+ = Z+P
∗
d and consequently

û∗+ = M(Z∗+)y =
(
I −Z+P

∗
d (P ∗′d Z

′
+Z+P

∗
d )−1P ∗′d Z+

)
y = M(Z+)y = û+.

Letting M− = (Ip,0p×d), then it follows directly from (A.4) that M−Pd = Rd
p×pM− The test

statistic can be written as

Wald∗ = y′M(VS)X∗−(p+d)

(
X∗′−(p+d)M(VS)X∗−(p+d)

)−1
M ′
−

[
σ̂∗2u

(
M ′
−X

∗′
−(p+d)M(VS)X∗−(p+d)M−

)−1
]−1

×M−
(
X∗′−(p+d)M(VS)X∗−(p+d)

)−1
X∗′−(p+d)M(VS)X∗−(p+d)y

= σ̂−2
u y′M(VS)X−(p+d)

(
X ′−(p+d)M(VS)X−(p+d)

)−1
P ′dM

′
−
(
M ′
−P
−1′
d X ′−(p+d)M(VS)X−(p+d)P

−1
d M−

)
×M−Pd

(
X ′−(p+d)M(VS)X−(p+d)

)−1
X ′−(p+d)M(VS)X−(p+d)y

= σ̂−2
u y′M(VS)X−(p+d)

(
X ′−(p+d)M(VS)X−(p+d)

)−1
M ′
−R

d′
p×p

×
(
Rd′

p×p

)−1

M ′
−X

′
−(p+d)M(VS)X−(p+d)M−

(
Rd

p×p

)−1

×Rd
p×pM−

(
X ′−(p+d)M(VS)X−(p+d)

)−1
X ′−(p+d)M(VS)X−(p+d)y

= σ̂−2
u y′M(VS)X−(p+d)

(
X ′−(p+d)M(VS)X−(p+d)

)−1
M ′
−M

′
−X

′
−(p+d)M(VS)X−(p+d)M−

×M−
(
X ′−(p+d)M(VS)X−(p+d)

)−1
X ′−(p+d)M(VS)X−(p+d)y = β̂′p

(
V̂arβ̂p

)−1

β̂p = Wald.

Let V+ = (x−(p+1), . . . ,x−(p+d),V ) and V ∗+ = (x∗−(p+1), . . . ,x
∗
−(p+d),V ). Defining σ̃2

u = ξ̂′ξ̂, we can

write the LM test as

LM = σ̃−2
u y′M(V+,S)X−p

[
X ′−pM(V+,Ŝ)X−p

]−1

X ′−pM(V+,Ŝ)y

= Wald
σ̃2
u

σ̂2
u

.

As we have already shown that Wald = Wald∗ and σ̂2
u = σ̂∗2u , it remains to show that σ̃2

u = σ̃∗2u . From the

definition of Pd we have that x∗−(p+1), . . . ,x
∗
−(p+d) are a linear combination of only x−(p+1), . . . ,x−(p+d).

Therefore M(V+,S)y = M(V ∗+,S)y from which the result follows. This completes the proof of the

lemma.

A.2. Proofs of Main Results

Proof of Theorem 1. Let P(A) = A(A′A)−1A′ denote the projection on the space spanned by A and

let M(A) = I −P(A) denote the corresponding residual-maker matrix. For any matrix A, let the norm
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‖·‖p represent the induced lp-matrix norm ‖A‖p = supx 6=0 ‖Ax‖p/‖x‖p.

We are working on the model

y = X−pβ + V δ + u = X−(p+d)β+ + V δ + u = X∗−(p+d)β
∗ + V δ + u. (A.7)

Define the set Ŝ+
j as the union of Ŝ and all lags of x except the j-th, such that the matrix ZŜ+

j
=

(x−1, . . . ,x−j+1,x−j−1,x−(p+d),VŜ contains all variables used in in the second-stage regression except

x−j . Similarly, define the set S+
j as the union of S and all lags of x except the j-th, such that the

matrix ZS+
j

= (x−1, . . . ,x−j+1,x−j−1,x−(p+d),VS contains all variables used in an ‘oracle’ version of

the second-stage regression. For the j-th coefficient in β̂+ (β+), we can then write

√
T (β̂j,+ − βj+) =

(
T−2a(x′−jM(ZŜ+

j
)x−j)

)−1

︸ ︷︷ ︸
A−1

T

T 1/2−2ax′−jM(ZŜ+
j

)
[
Z−p\{−j}η0,−j + u

]
︸ ︷︷ ︸

BT

,

where η0,−j is equal to η0 but with a 0 inserted for the coefficient of x−j , and a = 1/2 if x is I(0), a = 1

if x is I(1) and a = 2 if x is I(2).

We are now going to show in turn that

AT,j = T−2ax′−jM(ZS+
j

)x−j + op(1), j = 1, . . . , p+ d, (A.8)

and

BT,j = T 1/2−2ax′−jM(ZS+
j

) [V δ + u] + op(1), j = 1, . . . , p+ d. (A.9)

We write the first-stage regressions as

y = Z−pη0 + e0, x−j = Z−pηj + ej , j = 1, . . . , p.

Note that here for notational convenience, in a slight abuse of notation we insert xj on the right-hand

side into Z−p instead of considering Z−p,{−j} as we do in the actual regression. Thereby we implicitly

increase the vector ηj with one entry for x−j , for which we insert a zero.

We now prove (A.8). We have that

AT,j = T−2a (Z−pηj + ej)
′
[
M(ZŜ+

j
)−M(VS+

j
)
]

(Z−pηj + ej)

= T−2aη′jZ
′
−p

[
M(ZŜ+

j
)−M(ZS+

j
)
]
Z−pηj︸ ︷︷ ︸

AT,j,1

+ T−2ae′j

[
M(ZŜ+

j
)−M(ZS+

j
)
]
ej︸ ︷︷ ︸

AT,j,2

+ 2T−2aη′jZ
′
−p

[
M(ZŜ+

j
)−M(ZS+

j
)
]
ej︸ ︷︷ ︸

AT,j,3

.
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For AT,j,1, observe how ηj is zero outside the active set Sj which is in turn a subset of S+
j , such

that we may write Z−pηj = ZS+
j
ηj,S+

j
. It then directly follows that M(ZS+

j
)Z−pηj = 0. Hence, AT,j,1

reduces to

|AT,j,1| =
∣∣∣η′jZ ′−pM(ZŜ+

j
)Z−pηj

∣∣∣ =
∥∥∥M(ZŜ+

j
)Z−pηj

∥∥∥2

2
≤
∥∥∥M(ZŜj )Z−pηj

∥∥∥2

2

≤ min
η:η

m
=0,m/∈Ŝj

∥∥∥Z−pηj −ZŜjη∥∥∥2

2
≤ ‖Z−p(ηj − η̂j)‖22 ≤ δ

2
TT

1/2,

which follows from observing that Ŝj ⊆ Ŝ+
j , and that the constraint in the minimization is satisfied given

Ŝj = {m : η̂j,m = 0} and where the last inequality follows with probability 1−∆T from Assumption 2(c).

For AT,j,2, note that he difference between the residuals is equal to he difference between the corre-

sponding projections, such that we can simplify the expression to

|AT,j,2| =
∣∣∣e′j (P(ZS+

j
)− P(ZŜ+

j
)
)
ej

∣∣∣ ≤ ∣∣∣e′j (P(ZS+
j

))
)
ej

∣∣∣︸ ︷︷ ︸
A1

T,j,2

+
∣∣∣e′j (P(ZŜ+

j
)
)
ej

∣∣∣︸ ︷︷ ︸
A2

T,j,2

.

For j = 1, . . . , p, we then find that

A1
T,j,2 =

∣∣∣∣∣e′jZS+
j
D−1

T,S+
j

[
D−1

T,S+
j

Z ′S+
j

ZS+
j
D−1

T,S+
j

]−1

D−1

T,S+
j

Z ′S+
j

ej

∣∣∣∣∣
(I)

≤
√
s̄T

∥∥∥∥D−1

T,S+
j

Z ′S+
j

ej

∥∥∥∥
∞

∥∥∥∥∥
[
D−1

T,S+
j

Z ′S+
j

ZS+
j
D−1

T,S+
j

]−1

D−1

T,S+
j

Z ′S+
j

ej

∥∥∥∥∥
2

(II)

≤ s̄T

∥∥∥D−1
T,ZZ

′
−pej

∥∥∥
∞

∥∥∥∥∥
[
D−1

T,S+
j

Z ′S+
j

ZS+
j
D−1

T,S+
j

]−1
∥∥∥∥∥

2

∥∥∥∥D−1

T,S+
j

Z ′S+
j

ej

∥∥∥∥
∞

(III)

≤ s̄Tκ
−1
T,min

∥∥∥D−1
T,ZZ

′
−pej

∥∥∥2

∞

(IV )

≤ s̄T γ̄
2
Tκ
−1
T,min ≤ δ

2
TT

1/2,

where (I) follows from the dual norm inequality and bounding the `1 by the `2 norm at the expense of the

√
s̄T term; (II) follows from the fact that the columns of D−1

T,ZZ−p contain all columns of D−1

T,S+
j

ZS+
j

, the

definition of the induced norm and bounding the `2 norm by the `∞ norm. (III) then follows from the

eigenvalue condition in Assumption 2(e) while (IV) invokes the empirical process bound of Assumption

2(a); the last inequality then follows from Assumption 2(f). For A2
T,j,2 we can follow the same steps as

above to again find that A2
T,j,2 ≤ δ2

TT
1/2.

We finally consider AT,j,3. By the same arguments as for AT,j,1 we get that AT,j,3 reduces to AT,j,3 =∣∣∣η′jZ ′−pM(ZŜ+
j

)ej

∣∣∣. Let us define the noiseless least squares estimator

η̃j,Ŝ+
j

= arg min
η:ηm=0,m/∈Ŝ+

j

‖Z−pηj −Z−pη‖22, j = 1, . . . , p,
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such that M(ZŜ+
j

)Z−pηj = Z−p(ηj − η̃j,Ŝ+
j

). Then, with probability 1−∆T ,

AT,j,3 =
∣∣∣(ηj − η̃j,Ŝ+

j
)′DT,ZD

−1
T,ZZ

′
−pej

∣∣∣ ≤ ∥∥∥D−1
T,ZZ

′
−pej

∥∥∥
∞

∥∥∥DT,Z

(
η̃j,Ŝ+

j
− ηj

)∥∥∥
1

≤ γ̄T s̄Tκ−1
T,min

∥∥∥Z−p (η̃j,Ŝ+
j
− ηj

)∥∥∥
2
≤ γ̄T s̄Tκ−1

T,min‖Z−p (η̂j − ηj)‖2 ≤ δ
2
TT

1/2.

The first inequality follows from the dual norm inequality. The second inequality follows from combining

the sparsity and the restricted eigenvalue conditions in Assumption 2(d) and 2(e). In particular, letting

η̃†
j,Ŝ+

j

= DT,Z η̃Ŝ+
j

and η†j = DT,Zηj , we bound

∥∥∥∥η̃†j,Ŝ+
j

− η†j

∥∥∥∥
2

≤ s̄T
∥∥∥∥Z−pDT,Z

(
η̃†
j,Ŝ+

j

− η†j
)∥∥∥∥

1

as DT,Z

is diagonal and therefore does not affect the sparsity. We then use that η̃j,Ŝ+
j

was constructed to minimize

the `2 norm of the residuals. Finally, the last inequality follows the consistency Assumption 2(c) and the

rate Assumption 2(f).

Combining all results, we find that for all j = 1, . . . , p, we get that |AT,j | ≤ δ2
TT

1/2−2a ≤ δ2
TT
−1/2, as

sufficient for establishing (A.8).

Let us now prove (A.9). By re-arranging terms we have

BT,j = T 1/2−2a x′−j

[
M(ZŜ+

j
)−M(ZS+

j
)
]
Z−p\{−j}η0,−j︸ ︷︷ ︸

BT,j,1

+ T 1/2−2a x′−j

[
M(ZŜ+

j
)−M(ZS+

j
)
]
u︸ ︷︷ ︸

BT,j,2

.

We first deal with BT,j,1. As η0 is only non-zero on S, it follows directly thatM(ZS+
j

)Z−p\{−j}η0,−j = 0

and BT,j,1 reduces to BT,j,1 = x′−jM(ZŜ+
j

)Z−pη0. As above for (A.8), using the projection x−j =

Z−pηj + ej we the following expression

BT,j,1 = η′jZ
′
−pM(ZŜ+

j
)Z−p\{−j}η0,−j︸ ︷︷ ︸

B1
T,j,1

+ e′jM(ZŜ+
j

)Z−p\{−j}η0,−j︸ ︷︷ ︸
B2

T,j,1

.
(A.10)

B1
T,j,1 then follows analogously to AT,j,1:

∣∣B1
T,j,1

∣∣ ≤√∥∥∥M(ZŜ+
j

)Z−pηj

∥∥∥
2

∥∥∥M(ZŜ+
j

)Z−p\{−j}η0,−j

∥∥∥2

2

≤
√∥∥∥M(ZŜj )Z−pηj

∥∥∥
2

∥∥∥M(ZŜ0)Z−p\{−j}η0,−j

∥∥∥2

2

≤
√

min
η:ηj,m=0,m/∈Ŝj

∥∥∥Z−pηj −ZŜjη∥∥∥2

2
min

η:η0,m=0,m/∈Ŝ0

∥∥∥Z−p\{−j}η0,−j −ZŜ0η
∥∥∥2

2

≤ ‖Z−p(ηj − η̂j)‖2
∥∥Z−p\{−j}(η0,−j − η̂0)

∥∥
2
≤ δTT 1/4

∥∥Z−p\{−j}(η0,−j − η̂0)
∥∥

2
.
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As furthermore

∥∥Z−p\{−j}(η0,−j − η̂0)
∥∥

2
≤ ‖Z−p(η0 − η̂0)‖2 + ‖xj(η0,j − η̂0,j)‖2

≤ δTT 1/4 + |η̂0,j − η0,j |

√√√√ T−j∑
t=p+d+1−j

x2
t−j ≤ δTT

1/4 + δTT
−1/4Op(T

a),

by the consistency of η̂0 in Assumption 2(c). As
√∑T−j

t=p+d+1−j x
2
t−j = Op(T

a). We may then construct

a sequence, say ηT , such that ηT → ∞ but ηT δT → 0. It then follows that with probability 1−∆T , we

have that
√∑T−j

t=p+d+1−j x
2
t−j ≤ CηTT a and it then follows that B1

T,j,1 ≤ δ2
TT

1/2 + δ2
T ηTT

a ≤ 2δTT
a.

B2
T,j,1 can be treated analogously to AT,j,3. For j = 1, . . . , p, define the estimators

η̃0,Ŝ+
j

= arg min
η:ηm=0,m/∈Ŝ+

j

∥∥Z−p\{−j}η0,−j −Z−p\{−j}η
∥∥2

2
,

such that M(ZŜ+
j

)Z−p\{−j}η0,−j = Z−p\{−j}(η0,−j − η̃0,Ŝ+
j

). Then, with probability 1−∆T ,

∣∣B2
T,j,1

∣∣ =
∣∣∣(η0,−j − η̃0,Ŝ+

j
)′DT,Z,−jD

−1
T,Z,−jZ

′
−p\{−j}ej

∣∣∣
≤
∥∥∥D−1

T,Z,−jZ
′
−p\{−j}ej

∥∥∥
∞

∥∥∥DT,Z,−j

(
η̃0,Ŝ+

j
− η0,−j

)∥∥∥
1

≤ γ̄T s̄Tκ−1
T,min‖Z−p (η̂0 − η0)‖2 ≤ δ

2
TT

1/2.

For BT,j,2, analogously to AT,j,2 we have |BT,j,2| ≤
∣∣∣e′j (P(ZS+

j
))
)
ej

∣∣∣︸ ︷︷ ︸
B1

T,j,2

+
∣∣∣e′j (P(ZŜ+

j
)
)
ej

∣∣∣︸ ︷︷ ︸
B2

T,j,2

. Then

B1
T,j,2 ≤ s̄T

∥∥∥D−1
T,ZZ

′
−pej

∥∥∥
∞

∥∥∥D−1
T,ZZ

′
−pu

∥∥∥
∞

∥∥∥∥∥
[
D−1

T,S+
j

Z ′S+
j

ZS+
j
D−1

T,S+
j

]−1
∥∥∥∥∥

2

≤ s̄Tκ−1
T,mins̄T γ̄

2
Tκ
−1
T,min ≤ δ

2
TT

1/2,

and it directly follows that B2
T,j,2 ≤ δ2

TT
1/2 as well.

It then follows directly that |BT,j | ≤ δTT 1/2−a ≤ δ2
T , thereby establishing (A.9) for all j = 1, . . . , p.

Proof of Theorem 2. We first show that the second stage regression delivers asymptotically normal esti-

mators due to the lag augmentation. Let V+,Ŝ = (x−(p+1), . . . ,x−(p+d),VŜ) and V+,S = (x−(p+1), . . . ,x−(p+d),VS)

and similarly let V ∗
+,Ŝ and V ∗+,S denote their counterparts with x∗−(p+1), . . . ,x

∗
−(p+d) replacing x−(p+1), . . . ,x−(p+d).
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By virtue of Lemmas A.1 and A.2 as well as equations (A.8) and (A.9), we have that

√
T (β̂∗p − β∗p) =

√
TRp×p(β̂p − β) =

√
TRp×p

(
X ′−pM(V+,Ŝ)X−p

)−1

X ′−pM(V+,Ŝ)u

=
√
TRp×p

(
X ′−pM(V+,S)X−p

)−1
X ′−pM(V+,S)u+ op(1)

=
(
T−1X∗′−pM(V ∗+,S)X∗−p

)−1︸ ︷︷ ︸
AT

T−1/2X∗′−pM(V ∗+,S)u︸ ︷︷ ︸
bT

+op(1).

(A.11)

Let S = V+,SQS and GT,Q = QSDT,S . Then we can write

AT = T−1X∗′−pX
∗
−p − T−1/2X∗′−pV

∗
+,SG

−1
T,Q

(
G−1
T,QV

∗′
+,SV

∗
+,SG

−1
T,Q

)−1
G−1
T,QV

∗′
+,SX

∗
−pT

−1/2

= T−1X∗′−pX
∗
−p − T−1/2X∗′−pSD

−1
T,S

(
D−1
T,SS

′SD−1
T,S

)−1
D−1
T,SS

′X∗−pT
−1/2.

Let S−0 = (S1,S2) and DT,S−0 the corresponding submatrix of DT,S . It follows from inverting block

matrices that

AT = T−1X∗′−pM(S0)X∗−p︸ ︷︷ ︸
CT,1

−T−1/2X∗′−pM(S0)S−0D
−1
T,S−0︸ ︷︷ ︸

R′T,2

×
(
D−1
T,S−0

S′−0M(S0)S−0D
−1
T,S−0︸ ︷︷ ︸

RT,1

)−1
D−1
T,S−0

S′−0M(S0)X∗−pT
−1/2︸ ︷︷ ︸

RT,2

Then note that

λmin(RT,1) ≥ λmin

(
D−1
T,S−0

S′−0S−0D
−1
T,S−0

)
− λmax

(
D−1
T,S−0

S′−0S0D
−1
T,S0

(
D−1
T,S0

S′0S0D
−1
T,S0

)−1
D−1
T,S0

S′0S−0D
−1
T,S−0

)
≥ λmin

(
D−1
T,S−0

S′−0S−0D
−1
T,S−0

)
−
∥∥∥D−1

T,S−0
S′−0S0D

−1
T,S0

∥∥∥2

2
/λmin(D−1

T,S0
S′0S0D

−1
T,S0

)
,

where the final inequality uses that, for compatible matrices A and B, we have λmax(A′B−1A) ≤

λmax(A′A)λmax(B−1) = ‖A‖22/λmin(B). It then follows directly from Assumption 3 that λmin

(
D−1
T,S−0

S′−0S−0D
−1
T,S−0

)
≥

κT,12,
∥∥∥D−1

T,S−0
S′−0S0D

−1
T,S0

∥∥∥2

2
≤ φ2

T,01 + φ2
T,02 and λmin(D−1

T,S0
S′0S0D

−1
T,S0

)
≥ κT,0. We may then con-

clude that

λmin(RT,1) ≥ κT,12 − (φ2
T,01 + φ2

T,02)/κT,0 ≥ κT,−0.

In similar fashion we can bound

‖RT,2‖2 ≤
∥∥∥D−1

T,S−0
S′−0X

∗
−pT

−1/2
∥∥∥

2
+
∥∥∥D−1

T,S−0
S′−0S0D

−1
T,S0

∥∥∥
2

×
∥∥∥D−1

T,S0
S′0X

∗
−pT

−1/2
∥∥∥

2
/λmin(D−1

T,S0
S′0S0D

−1
T,S0

)
≤ φT,01 + φT,02 + 2(φ2

T,01 + φ2
T,02)/κT,0 ≤ φT,−0.
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Letting

Σxx := E
(
T−1X∗′−pX

∗
−p
)
, Σsx := E

(
T−1S′0X

∗
−p
)
, Σss := E

(
T−1S′0S0

)
, (A.12)

it follows directly from Assumption 3 that
∥∥AT,1 −Σx|w

∥∥
2
≤ δT with probability 1−∆, where

Σx|s := Σxx −Σ′sxΣ−1
ss Σsx. (A.13)

Putting everything together, we then find that AT = Σx|s + op(1).

Next we consider the numerator

bT = T−1/2X∗′−pu− T−1/2X∗′−pSD
−1
T,S

(
D−1
T,SS

′SD−1
T,S

)−1
D−1
T,SS

′u

= T−1/2X∗′−pM(S0)u︸ ︷︷ ︸
bT,1

−T−1/2X∗′−pM(S0)S−0D
−1
T,S−0︸ ︷︷ ︸

RT,2

×
(
D−1
T,S−0

S′−0M(S0)S−0D
−1
T,S−0︸ ︷︷ ︸

RT,1

)−1
D−1
T,S−0

S′−0M(S0)u︸ ︷︷ ︸
rT,3

The terms RT,1 and RT,2 were already treated for the denominator. For rT,3 we get

‖rT,3‖2 ≤
∥∥∥D−1

T,S−0
S′−0u

∥∥∥
2

+
∥∥∥D−1

T,S−0
S′−0S0D

−1
T,S0

∥∥∥
2

×
∥∥∥D−1

T,S0
S′0u

∥∥∥
2
/λmin(D−1

T,S0
S′0S0D

−1
T,S0

)
≤ γT,u,1 + γT,u,2 + (φT,01 + φT,02)γT,u,0/κT,0 ≤ γT,u.

Finally, it directly follows from Assumption 3 that

∥∥∥bT,1 − T−1/2X∗′−pu−Σ′wxΣ−1
wwS

′
0u
∥∥∥

2
≤ δT .

Then we can invoke the final statement of Assumption 3 to conclude that

bT,1 = T−1/2

[
Ip −Σ′sxΣ−1

ss

]X∗′−pu
S′0u

+ op(1)
d−→ N(0, σ2Σx|s).

Plugging everything back into (A.11), it then directly follows from the results above that

√
T (β̂∗p − β∗p)

d−→ N
(
0, σ2

uΣ
−1
x|s

)
.
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We finally consider the test statistics. For the Wald test we get that

Wald∗ = σ̂∗−2
u T−1/2y′M(V ∗

+,Ŝ)X∗−p︸ ︷︷ ︸
F ′T

(
T−1X∗′−pM(V ∗

+,Ŝ)X∗−p
)−1︸ ︷︷ ︸

GT

T−1/2X∗′−pM(V ∗
+,Ŝ)y︸ ︷︷ ︸

FT

,

where σ̂∗2u = û∗′+û
∗
+/T = û′+û+/T . It follows directly from the results obtained in the proof of Theorem

1 as well as the current proof that GT = Σx|w + op(1) and FT
d−→ N(0, σ2Σx|s). Furthermore,

σ̂∗2u = T−1u′u− T−1u′M(V+,Ŝ)X−p(β̂p − β) + T−1u′M(V+,Ŝ)V δ

− T−1(β̂p − β)′X ′−pM(V+,Ŝ)u+ T−1(β̂p − β)′X ′−pM(V+,Ŝ)X−p(β̂p − β)

+ T−1u′M(V+,Ŝ)V δ − T−1δ′V ′M(V+,Ŝ)u

+ T−1δ′V ′M(V+,Ŝ)X−p(β̂p − β) + T−1δ′V ′M(V+,Ŝ)V δ.

(A.14)

All terms – except for the leading T−1u′u term – can be treated exactly as in the proof of Theorem 1 to

show that we may replace Ŝ with S, and as in the current proof to show their asymptotic negligibility.

It then follows directly from the weak law of large numbers that σ̂∗2u
p−→ σ2

u. It then immediately follows

that Wald→ χ2
p.

The result for the LM test follows identically, except that we replace σ̂∗2u by σ̃∗2u = y′M(V+,Ŝ)y. As

β = 0 under the null hypothesis, we can decompose σ̃∗2u as in (A.14) with the terms involving set to 0.

It then directly follows that σ̃∗2u
p−→ σ2

u and LM
d−→ χ2

p.

B. Verification of Assumption 3

In this section we show how Assumption 3 is satisfied using standard results from the unit root

and cointegration literature. We will work under a set of assumptions commonly encountered in the

cointegration literature (Johansen, 1995, see e.g.).11

Assumption B.1. Let zt denote an n-dimensional process, generated as A(L)zt = ut, where A(z) =

I −
∑p
j=1Ajz

j . Then A(L) satisfies the following conditions:

(a) |A(z)| = 0 implies |z| > 1 or z = 1;

(b) Let Π = −A(1), then we can write Π = AB′, for some A and B, where A and B are n × r

matrices of rank r.

In addition, for an n× r matrix C let C⊥ be an n× (n− r) matrixof rank n− r such that C ′C⊥ = 00,

and define C̄⊥ = C⊥ (C ′⊥C⊥)
−1

. Then one of the following conditions holds:

11For simplicity we omit any deterministic components such as intercepts or linear trend terms in the analysis below.
With suitable modifications however, the analysis goes trough in a similar way if they are included.
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(c) A′⊥Ã(1)B⊥ is nonsingular, where Ã(z) = In −
∑p−1
j=1 Ãjz

j and Ãj =
∑p
i=j+1Ai;

(c′) Ā′⊥Ã(1)B̄⊥ = FG′, where and F and G are (n− r)× s matrices of rank s (0 ≤ s < n− r).

The rationale for these assumptions comes from rewriting the VAR model as a vector error correction

model (VECM), such that

∆zt = Πzt−1 +

p−1∑
j=1

Ãj∆zt−j + +ut, (B.1)

where Ãj =
∑p
i=j+1Ai and Π = A(1). Assumption B.1(a) rules out explosive processes but allow for

unit roots; B.1(b) allows for a reduced rank in Π that cointegration is present. If B.1(c) holds, zt is I(1)

and linear combinations B′zt are I(0). If B.1(c’) holds, zt is I(2) appropriate linear combinations are

I(1) or even I(0). This can be seen by again rewriting the VECM as

∆2zt = Πzt−1 +Φ∆zt−1 +

p−2∑
j=1

A∗j∆
2zt−j + ut, (B.2)

where Φ = Ã(1) and A∗j =
∑p−1
i=j+1 Ãi.

12

Under these assumptions, we can find appropriate rotation matrices Q such that st = Qzt can be

partitioned into variables “full-rank” s0,t, s1,t and s2,t that are I(0), I(1) and I(2) respectively (where

some sets may be empty). Limit results for appropriate products of variables with different orders of

integration are well-known and have been derived by a variety of papers – often under weaker assumptions

than Assumptions 1 and B.1 – see for example Phillips and Durlauf (1986), Park and Phillips (1988),

Sims et al. (1990), Phillips and Solo (1992), or Hamilton (1994) for an overview. We therefore state these

results here without proof.

Lemma B.1. Let zt satisfy Assumptions 1 and B.1 and let st = Qzt. Let s̃t = (s0,t,∆s1,t,∆
3s2,t) and

define Σ := Es̃ts̃′t, and partition it conformably such that Σij = Es̃i,ts̃′j,t. Let Λ =
∑∞
j=1 Es̃ts̃′t+j and

Ω = Σ +Λ +Λ′, where Ωij refers to the same submatrix as Σij , and assume that both Σ and Ω are

full rank. Let B(·) denote an n-dimensional Brownian motion with covariance matrix Ω, which can be

partitioned conformably with s0,t, s1,t and s2,t as B(·) = (B0(·)′,B1(·)′,B2(·)′)′, B̄i(s) =
∫ s

0
Bi(u)du

and Bu(r·) a univariate Brownian motion independent of B(·). Then we have the following results (where

convergence applies jointly if needed):

(a) T−1
T∑
t=1

s0,ts
′
0,t

p→ Σ00; (b) T−1/2
T∑
t=1

s0,t−1ut
d→ N(0, σ2

uΣ00);

(c) T−1
T∑
t=1

s1,t−1ut
d→
∫ 1

0

B1(s)′dBu(s); (d) T−1
T∑
t=1

s1,ts
′
0,t

d→
∫ 1

0

B1(s)dB0(s)′ +Σ10 +Λ10;

12Formally, we need another assumption to rule out that the process is I(30, see Johansen (1992, Theorem 3) for details.
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(e) T−2
T∑
t=1

s1,ts
′
1,t

d→
∫ 1

0

B1(s)B1(s)′ds; (f) T−2
T∑
t=1

s2,t−1ut
d→
∫ 1

0

B̄2(s)′dBu(s);

(g) T−2
T∑
t=1

s2,ts
′
0,t

d→
∫ 1

0

B̄2B0(s)′ (h) T−3
T∑
t=1

s2,ts
′
1,t

d→
∫ 1

0

B̄2B1(s)′

(i) T−4
T∑
t=1

s2,ts
′
3,t

d→
∫ 1

0

B̄2B̄2(s)′

Using these results, we can now determine the appropriate rates in Assumption 3. Let ηT denotes

a sequence such that ηT → ∞ at an arbitrarily slow rate. First, it follows from (d), (f) and (h) that

φT,01 = φT,02 = ηTT
−1/2, while . Next, we may directly deduce from (a) that κT,0 = η−1

T . Similarly,

it follows from (e), (g), (h) and (i) that κT,12 = η−1
T . This was shown for κT,1 in Phillips and Hansen

(1990), but the same reasoning can be applied to the whole matrix. It follows from (b), (c) and (f) that

γT,i = ηT for i = 0, 1, 2, and finally result (d) of Assumption 3 follows from (a).

It then remains to check the rates. As we chose ηT growing arbitrarily slowly, it follows that

η3
TT
−1/2 → 0. We then have that

(i) κT,0 − (φ2
T,01 + φ2

T,02)/κT,0 = η−1
T − 2η3

TT
−1 ≥ η−1

T /2 = κT,−0;

(ii) φT,01 + φT,02 + 2(φ2
T,01 + φ2

T,02)/κT,0 = 2ηTT
−1/2 + 2η3

TT
−1 ≤ 2ηTT

−1/2 = φT,−0;

(iii) γT,u,1 + γT,u,2 + (φT,01 + φT,02)γT,u,0/κT,0 = 2ηT + 2η3T−1/2 ≤ 2ηT = γT,u;

(iv) φT,−0(φT,−0 + γT,u)/κT,−0 ≤ η3
TT
−1/2 ≤ δT .

We complete this verification by noting that the final result simply follows from result (b).

C. Additional Empirical Analysis

Here we extend the analysis of Section 6 using the latest vintage of FRED-MD at the moment of

writing, namely that of September 2022 (453 observations). As mentioned, this vintage does include all

latest crises too and VXOCLSx is replaced by VIXCLSx.

Interestingly, a comparison of Figure 2 and Figure C.1 shows how all the connections FRED→VXOCLSx

in the November 2019 FRED-MD vintage are found also in the FRED→VIXCLSx October 2022 vintage

plus two more: IPFUELS and OILPRICEx. This tells us two things: first, the change from VXOCLSx

to VIXCLSx has not changed the causal infrastructure among the FRED-MD variables. This is sensible

as VIXCLSx has been built from VXOCLSx and precisely with the aim to replace it. Second, the various

global crises occurred between 2019 and 2022 have also not impacted the amount of insourcing Granger

causal connections onto VIXCLSx but have increased substantially more the outsourcing amount of con-

nections, as clear from Figure C.2. From 41 connections of VXOCLSx→FRED in Figure 3 for the 2019

vintage, the amount of connections increased in the latest vintage to a staggering 65 connections (at 1%

significance level). Therefore, this contributes to the evidence that latest crises have increased substan-

41



RPI

W875RX1

DPCERA3M086SBEA

RETAILx

INDPRO

IPFPNSS

IPFINAL

IPCONGD

IPDCONGD

IPNCONGD

IPBUSEQ

IPMAT

IPDMAT

IPNMAT

IPMANSICS

IPB51222S

IPFUELS

CUMFNS

HWI

HWIURATIO

CLF16OV

CE16OV

UNRATE

UEMPMEAN

UEMPLT5
UEMP5TO14

UEMP15OV

UEMP15T26

UEMP27OV

CLAIMSx PAYEMS

USGOOD

CES1021000001

USCONS

MANEMP

DMANEMP

NDMANEMP

SRVPRD USTPU

USWTRADE

USTRADE

USFIRE

USGOVT

CES0600000007

AWOTMAN

AWHMAN

HOUST

HOUSTNE

HOUSTMW

HOUSTS

HOUSTW

PERMIT

PERMITNE

PERMITMW

PERMITS

PERMITW

AMDMNOx

ANDENOx

AMDMUOx

M1SL

M2SL

M2REAL

BOGMBASE

TOTRESNS

NONBORRES

BUSLOANS

REALLN

S&P 500

S&P: indust

S&P div yield

FEDFUNDS
TB3MS

TB6MS

GS1

GS5

GS10

AAA

BAA

TB3SMFFM

TB6SMFFM

T1YFFM

T5YFFM

T10YFFM

AAAFFM

BAAFFM

TWEXAFEGSMTHx

EXSZUSx

EXJPUSx

EXUSUKx

EXCAUSx
WPSFD49207

WPSFD49502

WPSID61

WPSID62
OILPRICEx

PPICMM

CPIAUCSL

CPIAPPSL

CPITRNSL
CPIMEDSL

CUSR0000SAC

CUSR0000SAD

CUSR0000SAS

CPIULFSL

CUSR0000SA0L2

CUSR0000SA0L5

PCEPI

DDURRG3M086SBEA

DNDGRG3M086SBEA

DSERRG3M086SBEA

CES0600000008

CES2000000008

CES3000000008

UMCSENTx

INVEST

VIXCLSx

Figure C.1: PDS-LA-LM, Causes of VIXCLSx, α = 0.01
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Figure C.2: PDS-LA-LM, Caused by VIXCLSx, α = 0.01
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Figure C.3: PDS-LA-LM, Causes of US-EPU, α = 0.01
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Figure C.4: PDS-LA-LM, Caused by US-EPU, α = 0.01

tially the perceived economic uncertainty and such uncertainty is outpouring towards a large number of

macroeconomic variables.
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